US20020180072A1 - Wet scrubber - Google Patents

Wet scrubber Download PDF

Info

Publication number
US20020180072A1
US20020180072A1 US09/865,803 US86580301A US2002180072A1 US 20020180072 A1 US20020180072 A1 US 20020180072A1 US 86580301 A US86580301 A US 86580301A US 2002180072 A1 US2002180072 A1 US 2002180072A1
Authority
US
United States
Prior art keywords
perforate
gas conduit
scrubbing
scrubbing chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/865,803
Other versions
US6488269B1 (en
Inventor
Johnson Chuang
Jackson Chuang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Microelectronics Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/865,803 priority Critical patent/US6488269B1/en
Assigned to UNITED MICROELECTRONICS CORP. reassignment UNITED MICROELECTRONICS CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHUANG, JACKSON, CHUANG, JOHNSON
Application granted granted Critical
Publication of US6488269B1 publication Critical patent/US6488269B1/en
Publication of US20020180072A1 publication Critical patent/US20020180072A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/09Furnace gas scrubbers

Definitions

  • the present invention relates to a scrubber for removing soluble materials from toxic gases, and more particularly to a scrubber for removing soluble materials from harmful gaseous effluents with high efficiency and safety.
  • Semiconductor manufacturing facilities utilize chemical vapor deposition, etching and a wide variety of other unit operations in the fabrication of modern semiconductor devices using process gases such as SF 6 , SiCl 4 , SiH 2 Cl 2 , and WF 6 .
  • the gaseous effluent from processing units in such facilities comprise the unconsumed process gases, as well as by-products of such gases.
  • the gaseous effluent additionally may contain significant quantities of particulates such as silica, which must be removed, in addition to various water soluble components such as hydrochloric acid and residuals of phosphine and arsine.
  • Water scrubbing is commonly used to remove such particulates and water-soluble gases from the process effluent stream.
  • the effluent gas is intimately contacted with water, e.g., by passage of the gaseous effluent through a water spray, to dissolve the soluble gas components and wet and thereby remove the particulates.
  • the scrubbing liquid may then be filtered, to remove the scrubbed particulates from the scrubbing medium.
  • the water scrubber unit typically is deployed immediately upstream of a bulk exhaust for the entire plant facility, and is used to treat the process facility effluent, which may vary considerably in concentration of water-soluble components and particulates, depending on the specific types of semiconductor devices or subassembly parts which are being manufactured, and the resulting “mix” of unit operations being carried out in the process facility.
  • FIG. 1A shows a conventional fume scrubber 100 .
  • a scrubbing chamber 110 having a filter region 120 therein is shown.
  • the filter region 120 comprises an upper perforate diverter plate 122 and a lower perforate plate 124 .
  • a plurality of filter media 126 are packed into the filter region 120 and between the perforate diverter plate 122 and the perforate plate 124 .
  • the detail structure of the filter media 126 is shown in FIG. 1B and the filter media 126 is comprised of plastic packing spheroids formed of open annular loops as shown in the figure.
  • a gas inlet 112 a In the top of the scrubbing chamber 110 , there are a gas inlet 112 a , an opening 112 b , fluid inlets 114 a and 114 b .
  • a dry exhaust pump 152 exhausts the gaseous effluent from processing units to the scrubbing chamber 110 through a gas exhaust conduit 132 connecting the gas inlet 112 a .
  • An N 2 purge conduit 133 is connected to the gas exhaust conduit 132 .
  • a gas discharge conduit 134 connecting to a main gas discharge conduit (not shown) is through the top of the scrubbing chamber 110 and the filter region 120 by the opening 112 b .
  • the gas discharge conduit 134 has a gas inlet 135 with a tilt opening under the perforate plate 124 .
  • a tap water supply pipe 136 connects the scrubbing chamber 110 by the fluid inlets 114 a . There are also a fluid outlet 116 a and an opening 116 b on the bottom of the scrubbing chamber 110 as shown in FIG. 1A.
  • a recirculation pump 154 exhausts the scrubbing water from the bottom of the scrubbing chamber 110 back to the filter region 120 via a recirculation pipe 138 .
  • the two ends of the recirculation pipe 138 individually connect the scrubbing chamber 110 at the fluid inlets 114 b and the fluid outlet 116 a .
  • An over flow drain pipe 140 used to drain excess scrubbing water is disposed through the bottom of the scrubbing chamber 110 by the opening 116 b , and the over flow drain pipe 140 has a fluid outlet 142 used to drain the excess scrubbing water.
  • the gaseous effluent from processing units is exhausted through the gas exhaust conduit 132 into the scrubbing chamber 110 by the dry exhaust pump 152 , wherein the N 2 purge conduit 133 provides dry N 2 gas to exclude moisture so that less contamination or clump of particulates will precipitate.
  • the gaseous effluent passes the filter region 120 and contacts with the tap water from the tap water supply pipe 136 , and the water-soluble gas components will solve in the tap water. Owing to the open annular loops of the filter media 126 , the water-soluble gas components will solve in the tap water flowing along the open annular loops more effectively.
  • the tap water transfers to scrubbing water and flows to the bottom of the scrubbing chamber 110 .
  • the scrubbing water accumulates at the bottom of the scrubbing chamber 110 until the scrubbing water surface reaches the fluid outlet 142 , and the excess scrubbing water will be drain through the over flow drain pipe 140 to a main drain pipe which is not shown in FIG. 1A.
  • the scrubbing water also will be exhausted through the recirculation pipe 138 back to the filter region 120 by the recirculation pump 154 .
  • the scrubbing water will remix with the gaseous effluent through the recirculation cycle set forth. After passing the filter region 120 and mixing with the tap water and the scrubbing water, the gaseous effluent will be exhausted through the gas discharge conduit 134 to the main gas discharge conduit (not shown).
  • the drawbacks of the conventional fume scrubber 100 present environment protection issues and production facility malfunctions, and even result in factory safety problems.
  • the scrubbing water is usually exhausted together with the gaseous effluent through the gas discharge conduit 134 to the main gas discharge conduit (not shown) after passing the filter region 120 thereby results in the pump malfunctions of the production facilities connected to the main gas discharge conduit and even causes serious factory safety problems.
  • the mixing efficiency of the gaseous effluent with the tap water and the scrubbing water is not satisfactory and the environment protection issues will arise from the interruption of the tap water, and thus the production facilities must be shut down.
  • a scrubber of the invention for scrubbing gaseous effluents by a scrubbing liquid.
  • the scrubber comprises a scrubbing chamber, a first gas conduit connecting the top of said scrubbing chamber, a manual valve, a second gas conduit connecting said first gas conduit by said manual valve, a gas exhaust pump exhausting a gaseous effluent to said second gas conduit, a check valve, a third gas conduit having a purge conduit used to transit a purge gas, said third gas conduit connecting said second gas conduit by said check valve, said third gas conduit connecting the bottom of said scrubbing chamber to transit said gaseous effluent into said scrubbing chamber, wherein only effluents from said second gas conduit to said third gas conduit can pass said check valve, a scrubbing liquid supply pipe used to transit a scrubbing liquid into said scrubbing chamber connecting the top of said scrubbing chamber, a
  • the scrubbing chamber further comprises a filter region therein and at least two perforate plates disposed in sequence and under said perforate filter.
  • the filter region comprises a perforate diverter, a perforate filter under said perforate diverter and a plurality of filter media packed between said perforate diverter and said perforate filter.
  • FIG. 1A shows a schematic diagram of a conventional fume scrubber
  • FIG. 1B shows a schematic diagram of a filter medium
  • FIG. 2A shows a schematic diagram of a scrubber of this invention
  • FIG. 2B shows openings of the upper perforate plate
  • FIG. 2C shows openings of the lower perforate plate.
  • a scrubber 200 of this invention is shown.
  • a scrubbing chamber 210 having a filter region 220 therein is shown.
  • the filter region 220 comprises a perforate diverter 222 and a perforate filter 224 .
  • the perforate diverter 222 and the perforate filter 224 preferably comprise, but are limited to: a rotatable perforate plate and a perforate filter plate.
  • the rotatable perforate plate and the perforate filter plate are made of acid-resisting materials.
  • the perforate diverter 222 is used to divert or spread liquid came from above.
  • a plurality of filter media 229 are packed into the filter region 220 and between the perforate diverter 222 and the perforate filter 224 .
  • the filter media 229 preferably comprise filter media as shown in FIG. 1B.
  • the detail structure of the filter media is shown in FIG. 1B.
  • the filter media are comprised of plastic packing spheroids formed of open annular loops as shown in the figure.
  • Two perforate plates 226 a and 226 b are disposed in the scrubbing chamber 210 and under the filter region 220 .
  • the perforate plates 226 a and 226 b preferably comprise perforate plates made of acid-resisting materials.
  • the perforate plates 226 a and 226 b preferably have openings 228 a and 228 b separately shown in FIG. 2B and FIG. 2C.
  • the opening 228 a of the perforate plates 226 a has a size smaller than the size of the opening 228 b of the perforate plate 226 b .
  • the size of the opening 228 a for example, can be about 1 centimeter.
  • the opening 228 b can has a size of about 3 centimeter. It is noted that there can be more than two perforate plates similar to the perforate plates 226 a and 226 b disposed in the scrubbing chamber 210 and under the filter region 220 . Each of the perforate plates disposed has a size of openings which is different from the sizes of openings of other perforate plates, and the perforate plates are disposed in sequence of opening size so that the perforate plate having the smallest openings is disposed at the highest level or a position nearest the filter region 220 .
  • a pump comprising a gas exhaust pump 252 exhausts gaseous effluents from processing units to the bottom of the scrubbing chamber 210 through a gas conduit 232 , a check valve 262 and a gas conduit 236 as shown in FIG. 2A.
  • the flow path of the gaseous effluent set forth is the main gaseous effluent flow path of this invention.
  • the gas conduit 236 further comprises a purge conduit 237 used to introduce a purge gas such as N 2 gas.
  • a bypass comprising the gas conduit 232 , a manual valve 264 and a gas conduit 234 disposed on the top of the scrubbing chamber 210 connecting the gas outlet 212 to a main gas discharge pipe which is not shown.
  • a scrubbing liquid supply pipe 242 used to transit a scrubbing liquid preferably comprising tap water into the scrubbing chamber 210 connects the fluid inlets 214 a to a scrubbing liquid supply source which is not shown.
  • a recirculation pipe 238 connecting the fluid inlet 214 b and the fluid outlet 216 a is used to recirculate the scrubbing liquid supplied via the scrubbing liquid supply pipe 242 from the bottom of the scrubbing chamber- 210 back to the filter region 220 . This is done by a pump 254 comprising a recirculation pump exhausting the scrubbing liquid.
  • a scrubbing liquid drain pipe 240 connecting a fluid outlet 216 b of the scrubbing chamber 210 to a main liquid drain pipe (not shown) is also shown in FIG. 2A.
  • the scrubbing liquid drain pipe 240 is used to drain the excess scrubbing liquid.
  • the fluid outlet 216 b is located on a sidewall of the scrubbing chamber 210 and at a level higher than the perforate plate 226 a or the highest perforate plate.
  • the gaseous effluent from the processing units is exhausted to the gas conduit 232 by the pump 252 comprising a gas exhaust pump.
  • the gaseous effluent then passes the check valve 262 to the gas conduit 236 .
  • the manual valve 264 is closed in normal operation condition.
  • the gaseous effluent next enters the scrubbing chamber 210 through the gas conduit 236 , meanwhile, a scrubbing liquid such as tap water flows into the scrubbing chamber 210 via the scrubbing liquid supply pipe 242 .
  • the scrubbing liquid will accumulate at the bottom of the scrubbing chamber 210 . Because the gas conduit 236 connects the bottom of the scrubbing chamber 210 , the scrubbing liquid will flow into the gas conduit 236 , but the scrubbing liquid will be blocked by the check valve 262 so that the scrubbing liquid will not flow into the gas conduit 232 . The gas effluent passing through the check valve 262 will contact and sufficiently mix with the scrubbing liquid so that most of the soluble components of the gas effluent will solve in the scrubbing water.
  • the perforate plates 226 a and 226 b having well-distributed openings are used.
  • more than two perforate plates could be uitilized.
  • Each of the perforate plates disposed in sequence has a size of openings which is different from the sizes of openings of other perforate plates, and the perforate plates are disposed in sequence of opening size so that the perforate plate having the smallest openings is disposed at the highest level or nearest the filter region 220 .
  • the gaseous effluent passing through the perforate plates 226 a and 226 b and leaving the scrubbing liquid surface then are exhausted to the main gas discharge conduit (not shown) through the filter region 220 and the gas conduit 234 .
  • the gaseous effluent will contact and remix with the scrubbing liquid flew through the filter media 229 of the filter region 220 .
  • the scrubbing liquid accumulated on the bottom of the scrubbing chamber 210 will be exhausted back to the filter region 220 through the recirculation pipe 238 by the pump 254 .
  • the scrubber of this invention provide a high recirculation efficiency of the harmful gaseous effluent and via twice mixes of the scrubbing liquid and the harmful gaseous effluent so that the standards of environment protection will be met. Furthermore, the scrubber of this invention prevents the problems of factory safety presenting in the conventional fume scrubber. Owing to the high efficiency of the mixing of the harmful gaseous effluent and the scrubbing liquid, the production facilities or processing units need not stop operating as the supply of the scrubbing liquid terminates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Particles Using Liquids (AREA)

Abstract

A scrubber for removing soluble materials from harmful gaseous effluents with high efficiency and safety is disclosed. By using twice mixes of the scrubbing liquid and the harmful gaseous effluent, the scrubber meets the standards of environment protection. The scrubber of this invention also prevents the problems of factory safety presenting in the conventional fume scrubber. Owing to the high efficiency of the mixing of the harmful gaseous effluent and the scrubbing liquid, the production facilities or processing units need not stop operating once the supply of the scrubbing liquid terminates.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a scrubber for removing soluble materials from toxic gases, and more particularly to a scrubber for removing soluble materials from harmful gaseous effluents with high efficiency and safety. [0002]
  • 2. Description of the Related Art [0003]
  • Semiconductor manufacturing facilities utilize chemical vapor deposition, etching and a wide variety of other unit operations in the fabrication of modern semiconductor devices using process gases such as SF[0004] 6, SiCl4, SiH2Cl2, and WF6. The gaseous effluent from processing units in such facilities comprise the unconsumed process gases, as well as by-products of such gases. The gaseous effluent additionally may contain significant quantities of particulates such as silica, which must be removed, in addition to various water soluble components such as hydrochloric acid and residuals of phosphine and arsine.
  • Water scrubbing is commonly used to remove such particulates and water-soluble gases from the process effluent stream. In such scrubbing, the effluent gas is intimately contacted with water, e.g., by passage of the gaseous effluent through a water spray, to dissolve the soluble gas components and wet and thereby remove the particulates. The scrubbing liquid may then be filtered, to remove the scrubbed particulates from the scrubbing medium. The water scrubber unit typically is deployed immediately upstream of a bulk exhaust for the entire plant facility, and is used to treat the process facility effluent, which may vary considerably in concentration of water-soluble components and particulates, depending on the specific types of semiconductor devices or subassembly parts which are being manufactured, and the resulting “mix” of unit operations being carried out in the process facility. [0005]
  • FIG. 1A shows a [0006] conventional fume scrubber 100. As shown in FIG. 1A, a scrubbing chamber 110 having a filter region 120 therein is shown. The filter region 120 comprises an upper perforate diverter plate 122 and a lower perforate plate 124. A plurality of filter media 126 are packed into the filter region 120 and between the perforate diverter plate 122 and the perforate plate 124. The detail structure of the filter media 126 is shown in FIG. 1B and the filter media 126 is comprised of plastic packing spheroids formed of open annular loops as shown in the figure. In the top of the scrubbing chamber 110, there are a gas inlet 112 a, an opening 112 b, fluid inlets 114 a and 114 b. A dry exhaust pump 152 exhausts the gaseous effluent from processing units to the scrubbing chamber 110 through a gas exhaust conduit 132 connecting the gas inlet 112 a. An N2 purge conduit 133 is connected to the gas exhaust conduit 132. A gas discharge conduit 134 connecting to a main gas discharge conduit (not shown) is through the top of the scrubbing chamber 110 and the filter region 120 by the opening 112 b. The gas discharge conduit 134 has a gas inlet 135 with a tilt opening under the perforate plate 124. A tap water supply pipe 136 connects the scrubbing chamber 110 by the fluid inlets 114 a. There are also a fluid outlet 116 a and an opening 116 b on the bottom of the scrubbing chamber 110 as shown in FIG. 1A. A recirculation pump 154 exhausts the scrubbing water from the bottom of the scrubbing chamber 110 back to the filter region 120 via a recirculation pipe 138. The two ends of the recirculation pipe 138 individually connect the scrubbing chamber 110 at the fluid inlets 114 b and the fluid outlet 116 a. An over flow drain pipe 140 used to drain excess scrubbing water is disposed through the bottom of the scrubbing chamber 110 by the opening 116 b, and the over flow drain pipe 140 has a fluid outlet 142 used to drain the excess scrubbing water.
  • In the operation of the [0007] conventional fume scrubber 100, the gaseous effluent from processing units is exhausted through the gas exhaust conduit 132 into the scrubbing chamber 110 by the dry exhaust pump 152, wherein the N2 purge conduit 133 provides dry N2 gas to exclude moisture so that less contamination or clump of particulates will precipitate. The gaseous effluent passes the filter region 120 and contacts with the tap water from the tap water supply pipe 136, and the water-soluble gas components will solve in the tap water. Owing to the open annular loops of the filter media 126, the water-soluble gas components will solve in the tap water flowing along the open annular loops more effectively. After contacting and adsorbing the gas components, the tap water transfers to scrubbing water and flows to the bottom of the scrubbing chamber 110. The scrubbing water accumulates at the bottom of the scrubbing chamber 110 until the scrubbing water surface reaches the fluid outlet 142, and the excess scrubbing water will be drain through the over flow drain pipe 140 to a main drain pipe which is not shown in FIG. 1A. The scrubbing water also will be exhausted through the recirculation pipe 138 back to the filter region 120 by the recirculation pump 154. The scrubbing water will remix with the gaseous effluent through the recirculation cycle set forth. After passing the filter region 120 and mixing with the tap water and the scrubbing water, the gaseous effluent will be exhausted through the gas discharge conduit 134 to the main gas discharge conduit (not shown).
  • However, it is found that the drawbacks of the conventional fume scrubber [0008] 100 present environment protection issues and production facility malfunctions, and even result in factory safety problems. For example, the scrubbing water is usually exhausted together with the gaseous effluent through the gas discharge conduit 134 to the main gas discharge conduit (not shown) after passing the filter region 120 thereby results in the pump malfunctions of the production facilities connected to the main gas discharge conduit and even causes serious factory safety problems. Furthermore, the mixing efficiency of the gaseous effluent with the tap water and the scrubbing water is not satisfactory and the environment protection issues will arise from the interruption of the tap water, and thus the production facilities must be shut down. In view of the drawbacks mentioned above, it is desirable to provide an advance scrubber that can prevent the problems of the conventional fume scrubber set forth, it is toward these goals that this invention specially directs.
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the invention to provide an advance scrubber having high recirculation efficiency of the harmful gaseous effluent. [0009]
  • It is another object of this invention to provide an advance scrubber which can meet the standards of environment protection and the requirements of factory safety. [0010]
  • It is a further object of this invention to provide a reliable scrubber for removing soluble materials from harmful gaseous effluents with high efficiency and safety. [0011]
  • It is another object of this invention to provide an advance scrubber which renders the production facilities or processing units continually operating as the supply of the scrubbing liquid terminates. [0012]
  • To achieve these objects, and in accordance with the purpose of the invention, a scrubber of the invention for scrubbing gaseous effluents by a scrubbing liquid is provided. The scrubber comprises a scrubbing chamber, a first gas conduit connecting the top of said scrubbing chamber, a manual valve, a second gas conduit connecting said first gas conduit by said manual valve, a gas exhaust pump exhausting a gaseous effluent to said second gas conduit, a check valve, a third gas conduit having a purge conduit used to transit a purge gas, said third gas conduit connecting said second gas conduit by said check valve, said third gas conduit connecting the bottom of said scrubbing chamber to transit said gaseous effluent into said scrubbing chamber, wherein only effluents from said second gas conduit to said third gas conduit can pass said check valve, a scrubbing liquid supply pipe used to transit a scrubbing liquid into said scrubbing chamber connecting the top of said scrubbing chamber, a recirculation pump used to exhaust said scrubbing liquid connecting the bottom of said scrubbing chamber, a recirculation pipe used to recirculate said scrubbing liquid connecting said recirculation pump and the top of said scrubbing chamber, and a scrubbing liquid drain pipe connecting said scrubbing chamber at a level higher than said perforate plates. The scrubbing chamber further comprises a filter region therein and at least two perforate plates disposed in sequence and under said perforate filter. The filter region comprises a perforate diverter, a perforate filter under said perforate diverter and a plurality of filter media packed between said perforate diverter and said perforate filter. [0013]
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.[0014]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein: [0015]
  • FIG. 1A shows a schematic diagram of a conventional fume scrubber; [0016]
  • FIG. 1B shows a schematic diagram of a filter medium; [0017]
  • FIG. 2A shows a schematic diagram of a scrubber of this invention; [0018]
  • FIG. 2B shows openings of the upper perforate plate; and [0019]
  • FIG. 2C shows openings of the lower perforate plate.[0020]
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present invention can be practiced in conjunction with various techniques that are used in the art, and only so much of the commonly used structures and operation steps are included herein as are necessary to provide an understanding of the present invention. The present invention will be described in detail with reference to the accompanying drawings. It should be noted that the drawings are in greatly simplified form and they are not drawn to scale. Moreover, dimensions have been exaggerated in order to provide a clear illustration and understanding of the present invention. [0021]
  • Referring to FIG. 2A, a [0022] scrubber 200 of this invention is shown. As shown in FIG. 2A, a scrubbing chamber 210 having a filter region 220 therein is shown. The filter region 220 comprises a perforate diverter 222 and a perforate filter 224. The perforate diverter 222 and the perforate filter 224 preferably comprise, but are limited to: a rotatable perforate plate and a perforate filter plate. Furthermore, the rotatable perforate plate and the perforate filter plate are made of acid-resisting materials. The perforate diverter 222 is used to divert or spread liquid came from above. A plurality of filter media 229 are packed into the filter region 220 and between the perforate diverter 222 and the perforate filter 224. The filter media 229 preferably comprise filter media as shown in FIG. 1B. The detail structure of the filter media is shown in FIG. 1B. The filter media are comprised of plastic packing spheroids formed of open annular loops as shown in the figure.
  • Two [0023] perforate plates 226 a and 226 b are disposed in the scrubbing chamber 210 and under the filter region 220. The perforate plates 226 a and 226 b preferably comprise perforate plates made of acid-resisting materials. Moreover, the perforate plates 226 a and 226 b preferably have openings 228 a and 228 b separately shown in FIG. 2B and FIG. 2C. The opening 228 a of the perforate plates 226 a has a size smaller than the size of the opening 228 b of the perforate plate 226 b. The size of the opening 228 a, for example, can be about 1 centimeter. The opening 228 b can has a size of about 3 centimeter. It is noted that there can be more than two perforate plates similar to the perforate plates 226 a and 226 b disposed in the scrubbing chamber 210 and under the filter region 220. Each of the perforate plates disposed has a size of openings which is different from the sizes of openings of other perforate plates, and the perforate plates are disposed in sequence of opening size so that the perforate plate having the smallest openings is disposed at the highest level or a position nearest the filter region 220.
  • In the top of the scrubbing [0024] chamber 210, there are a gas outlet 212, fluid inlets 214 a and 214 b. In the bottom of the scrubbing chamber 210, there are a fluid outlet 216 a and an effluent inlet 218. A pump comprising a gas exhaust pump 252 exhausts gaseous effluents from processing units to the bottom of the scrubbing chamber 210 through a gas conduit 232, a check valve 262 and a gas conduit 236 as shown in FIG. 2A. The flow path of the gaseous effluent set forth is the main gaseous effluent flow path of this invention. The gas conduit 236 further comprises a purge conduit 237 used to introduce a purge gas such as N2 gas. There is a bypass comprising the gas conduit 232, a manual valve 264 and a gas conduit 234 disposed on the top of the scrubbing chamber 210 connecting the gas outlet 212 to a main gas discharge pipe which is not shown. A scrubbing liquid supply pipe 242 used to transit a scrubbing liquid preferably comprising tap water into the scrubbing chamber 210 connects the fluid inlets 214 a to a scrubbing liquid supply source which is not shown. A recirculation pipe 238 connecting the fluid inlet 214 b and the fluid outlet 216 a is used to recirculate the scrubbing liquid supplied via the scrubbing liquid supply pipe 242 from the bottom of the scrubbing chamber-210 back to the filter region 220. This is done by a pump 254 comprising a recirculation pump exhausting the scrubbing liquid. A scrubbing liquid drain pipe 240 connecting a fluid outlet 216 b of the scrubbing chamber 210 to a main liquid drain pipe (not shown) is also shown in FIG. 2A. The scrubbing liquid drain pipe 240 is used to drain the excess scrubbing liquid. The fluid outlet 216 b is located on a sidewall of the scrubbing chamber 210 and at a level higher than the perforate plate 226 a or the highest perforate plate.
  • In the operation of the [0025] scrubber 200, the gaseous effluent from the processing units is exhausted to the gas conduit 232 by the pump 252 comprising a gas exhaust pump. The gaseous effluent then passes the check valve 262 to the gas conduit 236. The manual valve 264 is closed in normal operation condition. The gaseous effluent next enters the scrubbing chamber 210 through the gas conduit 236, meanwhile, a scrubbing liquid such as tap water flows into the scrubbing chamber 210 via the scrubbing liquid supply pipe 242. As the gaseous effluent continues flowing into the scrubbing chamber 210 via the main flow path set forth, the scrubbing liquid will accumulate at the bottom of the scrubbing chamber 210. Because the gas conduit 236 connects the bottom of the scrubbing chamber 210, the scrubbing liquid will flow into the gas conduit 236, but the scrubbing liquid will be blocked by the check valve 262 so that the scrubbing liquid will not flow into the gas conduit 232. The gas effluent passing through the check valve 262 will contact and sufficiently mix with the scrubbing liquid so that most of the soluble components of the gas effluent will solve in the scrubbing water. In case of formation of bubbles which are obstacles to the solution of the soluble components in the scrubbing liquid, the perforate plates 226 a and 226 b having well-distributed openings are used. To eliminate the bubbles effectively, more than two perforate plates could be uitilized. Each of the perforate plates disposed in sequence has a size of openings which is different from the sizes of openings of other perforate plates, and the perforate plates are disposed in sequence of opening size so that the perforate plate having the smallest openings is disposed at the highest level or nearest the filter region 220. The gaseous effluent passing through the perforate plates 226 a and 226 b and leaving the scrubbing liquid surface then are exhausted to the main gas discharge conduit (not shown) through the filter region 220 and the gas conduit 234. The gaseous effluent will contact and remix with the scrubbing liquid flew through the filter media 229 of the filter region 220. Moreover, the scrubbing liquid accumulated on the bottom of the scrubbing chamber 210 will be exhausted back to the filter region 220 through the recirculation pipe 238 by the pump 254.
  • The scrubber of this invention provide a high recirculation efficiency of the harmful gaseous effluent and via twice mixes of the scrubbing liquid and the harmful gaseous effluent so that the standards of environment protection will be met. Furthermore, the scrubber of this invention prevents the problems of factory safety presenting in the conventional fume scrubber. Owing to the high efficiency of the mixing of the harmful gaseous effluent and the scrubbing liquid, the production facilities or processing units need not stop operating as the supply of the scrubbing liquid terminates. [0026]
  • Other embodiments of the invention will appear to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples to be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims. [0027]

Claims (20)

What is claim is:
1. A scrubber for scrubbing gaseous effluents, said scrubber comprising:
a scrubbing chamber comprising:
a filter region therein, said filter region comprising:
a perforate diverter;
a perforate filter under said perforate diverter;
and a plurality of filter media packed between said perforate diverter and said perforate filter;
at least two perforate plates disposed under said perforate filter each having a plurality of openings;
a scrubbing liquid supply pipe connecting the top of said scrubbing chamber to transit a scrubbing liquid into said scrubbing chamber from a scrubbing liquid supply source;
a first gas conduit connecting the top of said scrubbing chamber at a first end of said first gas conduit to exhaust said gaseous effluents from said scrubbing chamber to a main gas discharge conduit;
a manual valve connecting a second end of said first gas conduit;
a second gas conduit connecting said manual valve at a first end of said second gas conduit;
a first pump connecting a second end of said second gas conduit to exhaust said gaseous effluents from processing units into said second gas conduit;
a check valve connecting a third end of said second gas conduit;
a third gas conduit connecting said check valve at a first end of said third gas conduit and the bottom of said scrubbing chamber at a second end of said third gas conduit to transit said gaseous effluents into said scrubbing chamber, wherein only effluents from said second gas conduit to said third gas conduit can pass said check valve;
a recirculation pipe connecting the bottom of said scrubbing chamber at a first end of said recirculation pipe and the top of said scrubbing chamber at a second end of said recirculation pipe;
a second pump disposed in the path of said recirculation pipe to exhaust said scrubbing liquid from the bottom of said scrubbing chamber to said filter region;
a scrubbing liquid drain pipe connecting said scrubbing chamber at a level higher than said perforate plates to drain the excess scrubbing liquid.
2. The scrubber according to claim 1, wherein said perforate diverter comprises a rotatable perforate plate.
3. The scrubber according to claim 1, wherein said filter media comprise plastic packing spheroids formed of open annular loops.
4. The scrubber according to claim 1, wherein said perforate plates are disposed in sequence of opening size so that said perforate plate having the smallest openings is disposed at the highest level.
5. The scrubber according to claim 1, wherein said perforate plates comprise acid-resisting perforate plates.
6. The scrubber according to claim 1, wherein said first pump comprises a dry pump.
7. The scrubber according to claim 1, wherein said scrubbing liquid comprises tap water.
8. A scrubber for scrubbing gaseous effluents, said scrubber comprising:
a scrubbing chamber comprising:
a filter region therein, said filter region comprising:
a perforate diverter;
a perforate filter under said perforate diverter;
and a plurality of filter media packed between said perforate diverter and said perforate filter;
at least two perforate plates disposed under said perforate filter each having a plurality of openings;
a scrubbing liquid supply pipe connecting the top of said scrubbing chamber to transit tap water into said scrubbing chamber from a tap water supply source;
a first gas conduit connecting the top of said scrubbing chamber at a first end of said first gas conduit to exhaust said gaseous effluents from said scrubbing chamber to a main gas discharge conduit;
a manual valve connecting a second end of said first gas conduit;
a second gas conduit connecting said manual valve at a first end of said second gas conduit;
a first pump connecting a second end of said second gas conduit to exhaust said gaseous effluents from processing units into said second gas conduit;
a check valve connecting a third end of said second gas conduit;
a third gas conduit connecting said check valve at a first end of said third gas conduit and the bottom of said scrubbing chamber at a second end of said third gas conduit to transit said gaseous effluents into said scrubbing chamber, and having a purge conduit to transit a purge gas, wherein only effluents from said second gas conduit to said third gas conduit can pass said check valve;
a recirculation pipe connecting the bottom of said scrubbing chamber at a first end of said recirculation pipe and the top of said scrubbing chamber at a second end of said recirculation pipe;
a second pump disposed in the path of said recirculation pipe to exhaust said tap water from the bottom of said scrubbing chamber to said filter region;
a scrubbing liquid drain pipe connecting said scrubbing chamber at a level higher than said perforate plates to drain the excess tap water.
9. The scrubber according to claim 8, wherein said perforate diverter comprises a rotatable perforate plate.
10. The scrubber according to claim 8, wherein said filter media comprise plastic packing spheroids formed of open annular loops.
11. The scrubber according to claim 8, wherein said perforate plates are disposed in sequence of opening size so that said perforate plate having the smallest openings is disposed at the highest level.
12. The scrubber according to claim 8, wherein said perforate plates comprise acid-resisting perforate plates.
13. The scrubber according to claim 8, wherein said first pump comprises a dry pump.
14. The scrubber according to claim 8, wherein said purge gas comprises nitrogen gas.
15. A scrubber for scrubbing gaseous effluents, said scrubber comprising:
a scrubbing chamber comprising:
a filter region therein, said filter region comprising:
a perforate diverter;
a perforate filter under said perforate diverter;
and a plurality of filter media packed between said perforate diverter and said perforate filter;
at least two perforate plates each having a plurality of openings disposed in sequence of opening size and under said perforate filter, wherein said perforate plate having the smallest openings is disposed at the highest level;
a scrubbing liquid supply pipe connecting the top of said scrubbing chamber to transit tap water into said scrubbing chamber from a tap water supply source;
a first gas conduit connecting the top of said scrubbing chamber at a first end of said first gas conduit to exhaust said gaseous effluents from said scrubbing chamber to a main gas discharge conduit;
a manual valve connecting a second end of said first gas conduit;
a second gas conduit connecting said manual valve at a first end of said second gas conduit;
a first pump connecting a second end of said second gas conduit to exhaust said gaseous effluents from processing units into said second gas conduit;
a check valve connecting a third end of said second gas conduit;
a third gas conduit connecting said check valve at a first end of said third gas conduit and the bottom of said scrubbing chamber at a second end of said third gas conduit to transit said gaseous effluents into said scrubbing chamber, and having a purge conduit used to transit a purge gas, wherein only effluents from said second gas conduit to said third gas conduit can pass said check valve;
a recirculation pipe connecting the bottom of said scrubbing chamber at a first end of said recirculation pipe and the top of said scrubbing chamber at a second end of said recirculation pipe;
a second pump disposed in the path of said recirculation pipe to exhaust said tap water from the bottom of said scrubbing chamber to said filter region;
a scrubbing liquid drain pipe connecting said scrubbing chamber at a level higher than said perforate plates to drain the excess tap water.
16. The scrubber according to claim 15, wherein said perforate diverter comprises a rotatable perforate plate.
17. The scrubber according to claim 15, wherein said filter media comprise plastic packing spheroids formed of open annular loops.
18. The scrubber according to claim 15, wherein said perforate plates comprise acid-resisting perforate plates.
19. The scrubber according to claim 15, wherein said first pump comprises a dry pump.
20. The scrubber according to claim 15, wherein said purge gas comprises nitrogen gas.
US09/865,803 2001-05-29 2001-05-29 Wet scrubber Expired - Lifetime US6488269B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/865,803 US6488269B1 (en) 2001-05-29 2001-05-29 Wet scrubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/865,803 US6488269B1 (en) 2001-05-29 2001-05-29 Wet scrubber

Publications (2)

Publication Number Publication Date
US6488269B1 US6488269B1 (en) 2002-12-03
US20020180072A1 true US20020180072A1 (en) 2002-12-05

Family

ID=25346264

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/865,803 Expired - Lifetime US6488269B1 (en) 2001-05-29 2001-05-29 Wet scrubber

Country Status (1)

Country Link
US (1) US6488269B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110940203B (en) * 2019-12-03 2021-07-27 大唐东营发电有限公司 Smoke-discharging heat exchanger for power plant
EP4089266A1 (en) * 2021-05-12 2022-11-16 Alfa Laval Corporate AB Exhaust gas cleaning system and method for cleaning exhaust gas and use of exhaust gas cleaning system
CN113731162B (en) * 2021-08-25 2022-06-14 湖北玖恩智能科技有限公司 Gas flow dispersing device and gas purification equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES368060A1 (en) * 1969-04-15 1971-05-01 Olague Soria Method and apparatus for purifying exhaust gases
US3984219A (en) * 1975-12-31 1976-10-05 Huang Ming Dao Engine exhaust purifier-muffler
IT1087892B (en) * 1977-11-10 1985-06-04 Plasmati Eustachio DOSER DEVICE INCLUDING AN AUTOMATIC MIXER FOR THE PRODUCTION OF THE SOLUTION FORMED BY THE VECTOR FLUID AND THE GAS TO BE DOSED.
US4375977A (en) * 1981-01-23 1983-03-08 Latoka Engineering, Inc. System of gas dehydration using liquid desiccants
US4661130A (en) * 1986-04-07 1987-04-28 Ebeling Harold O Absorber for dehydrating gas using desiccants
US5335785A (en) * 1993-05-19 1994-08-09 Board Of Control Of Michigan Technological University Flotation column with adjustable supported baffles
US5858072A (en) * 1995-02-08 1999-01-12 Motoda Electronics, Co., Ltd Gas suction filtration apparatus
NL1006152C1 (en) * 1996-11-27 1998-05-28 Albert Van Duijn Method and device for mixing a gas with a liquid.

Also Published As

Publication number Publication date
US6488269B1 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
KR100633190B1 (en) Gas panel
KR100706147B1 (en) Gas panel
CN101429651B (en) Multi-port pumping system for substrate processing chambers
JP3648539B2 (en) Exhaust flow treatment system for oxidation treatment of semiconductor manufacturing exhaust
US6635228B1 (en) Falling film plasma reactor
US20030219361A1 (en) Apparatus and method for pretreating effluent gases in a wet environment
KR20030007560A (en) Treatment system for removing hazardous substances from a semiconductor process waste gas stream
US6488269B1 (en) Wet scrubber
TW202423520A (en) Process stop loss reduction system through rapid replacement of apparatus for trapping of reaction by-product for semiconductor process
KR0160391B1 (en) Apparatus for process gas treatment
US5820658A (en) Apparatus and method for processing exhaust gas
TW200832097A (en) Systems and methods for operating and monitoring abatement systems
JPH0647269A (en) Vacuum treating device
KR200178311Y1 (en) Gas scrubber
KR20200016465A (en) Cooling-wet scrubber
CN221182246U (en) Exhaust gas treatment device and semiconductor cleaning equipment
KR100306242B1 (en) Pump having a nitrogen purge system
CN213965960U (en) Exhaust gas treatment device
KR100790282B1 (en) Ventilation System For Semiconductor Manufacturing Equipment And Liquid TEOS Exhausting Method In Trap Employed Therein
JP2001132864A (en) Exhaust changeover unit
KR20030030510A (en) Apparatus for filtering Particle and Fume gas in chamber
KR20020075214A (en) Method and apparatus for reducing PFC emission during semiconductor manufacture
JPS6048121A (en) Device for preventing clogging of spray pipe of liquid slurry
KR200205120Y1 (en) Block assembly type gases supplying device
KR950002278Y1 (en) Gas piping system

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED MICROELECTRONICS CORP., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHUANG, JOHNSON;CHUANG, JACKSON;REEL/FRAME:011853/0378

Effective date: 20010507

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12