US20020044391A1 - Magneto-resistive element magnetic head, and magnetic recording and reproduction apparatus - Google Patents
Magneto-resistive element magnetic head, and magnetic recording and reproduction apparatus Download PDFInfo
- Publication number
- US20020044391A1 US20020044391A1 US10/007,454 US745401A US2002044391A1 US 20020044391 A1 US20020044391 A1 US 20020044391A1 US 745401 A US745401 A US 745401A US 2002044391 A1 US2002044391 A1 US 2002044391A1
- Authority
- US
- United States
- Prior art keywords
- magnetic
- layer
- magneto
- resistive element
- magnetic layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3906—Details related to the use of magnetic thin film layers or to their effects
- G11B5/3909—Arrangements using a magnetic tunnel junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3268—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3268—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
- H01F10/3272—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B2005/3996—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3906—Details related to the use of magnetic thin film layers or to their effects
- G11B5/3916—Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3295—Spin-exchange coupled multilayers wherein the magnetic pinned or free layers are laminated without anti-parallel coupling within the pinned and free layers
Definitions
- the present invention relates to a magneto-resistive element, a magnetic head, and a magnetic recording and reproduction apparatus used for magnetic recording or magneto-optic recording, and more specifically to a magneto-resistive element, a magnetic head, and a magnetic recording and reproduction apparatus using a magnetic substrate.
- an increase in image information used for digital broadcasting or the like requires a further improvement in the magnetic recording density.
- an MIG (metal in gap) head using a metal magnetic film having a high saturation magnetic flux density in the vicinity of the magnetic gap, is being used more and more widely.
- the yoke-type thin film magnetic head includes a yoke formed of a high saturation magnetic flux density material and thus has an advantage of a smaller at a high frequency.
- a magnetic head using a thin film magnetic material has a problem of a significantly poor anti-abrasion characteristic when used for a tape medium.
- the poor anti-abrasion characteristic affects the life of the head.
- a head including a yoke formed of a high saturation magnetic flux density material and including a GMR element as a magneto-resistive element has the following problem.
- a free layer of the GMR element located in a gap in the yoke has a thickness of several nanometers, and thus magnetic saturation is likely to occur. Therefore, a magnetic circuit formed of the yoke has a larger magnetic resistance, and as a result, the efficiency of the head is reduced.
- a magneto-resistive element includes a magnetic substrate; a magnetic layer: and a non-magnetic layer provided between the magnetic substrate and the magnetic layer.
- a relative angle between a magnetization direction of the magnetic substrate and a magnetization direction of the magnetic layer changes in accordance with a change in an external magnetic field.
- the magnetic substrate includes a free layer in which magnetization rotation with respect to an external magnetic field is possible.
- the magnetic layer includes a fixed layer in which magnetization rotation with respect to the external magnetic field is more difficult to occur than in the free layer.
- the magneto-resistive element further includes a hard magnetic layer with a large coercive force provided so as to face the magnetic substrate with the magnetic layer interposed therebetween.
- the magneto-resistive element further includes an anti-ferromagnetic layer provided so as to face the magnetic substrate with the magnetic layer interposed therebetween.
- the magneto-resistive element further includes a synthetic anti-ferromagnetic layer provided so as to face the magnetic substrate with the magnetic layer interposed therebetween, the synthetic anti-ferromagnetic layer being magnetically coupled with the anti-ferromagnetic layer.
- the magneto-resistive element further includes a soft magnetic layer with a high saturation magnetic flux density provided between the magnetic substrate and the non-magnetic layer.
- the magneto-resistive element further includes an anti-ferromagnetic layer provided between the magnetic substrate and the non-magnetic layer.
- the magnetic substrate contains ferrite.
- the magnetic substrate contains an oxide
- the magnetic substrate contains a single crystalline oxide.
- the magnetic layer contains magnetite.
- the magnetic layer contains at least one element selected from the group consisting of O, N, P, C and B.
- the non-magnetic layer includes a tunnel layer.
- the non-magnetic layer includes a metal non-magnetic layer.
- a magneto-resistive element includes a magnetic substrate; a first magnetic layer; a second magnetic layer provided so as to face the magnetic substrate with the first magnetic layer interposed therebetween; and a first non-magnetic layer provided between the first magnetic layer and the second magnetic layer.
- a relative angle between a magnetization direction of the first magnetic layer and a magnetization direction of the second magnetic layer changes in accordance with a change in an external magnetic field.
- the magnetic substrate and the first magnetic layer are magnetically coupled with each other.
- the magnetic substrate and the first magnetic layer are coupled with each other by ferromagnetic coupling by which a magnetization direction of the magnetic substrate and a magnetization direction of the first magnetic layer are parallel to each other.
- the magnetic substrate and the first magnetic layer are coupled with each other by ferromagnetic coupling by which a magnetization direction of the magnetic substrate and a magnetization direction of the first magnetic layer are anti-parallel to each other.
- the magnetic substrate and the first magnetic layer are coupled with each other by static magnetic coupling.
- the magneto-resistive element further includes an underlying layer provided between the magnetic substrate and the first magnetic layer.
- the underlying layer includes a second non-magnetic layer.
- the underlying layer includes an anti-ferromagnetic layer.
- the underlying layer has a thickness in the range of 0.5 nm to 50 nm including 0.5 nm and 50 nm.
- the first magnetic layer includes a free layer in which magnetization rotation with respect to an external magnetic field is possible.
- the second magnetic layer includes a fixed layer in which magnetization rotation with respect to the external magnetic field is more difficult to occur than in the free layer.
- the magneto-resistive element further includes a hard magnetic layer with a large coercive force provided so as to face the magnetic substrate with the second magnetic layer interposed therebetween.
- the magneto-resistive element further includes an anti-ferromagnetic layer provided so as to face the magnetic substrate with the second magnetic layer interposed therebetween.
- the magneto-resistive element further includes a synthetic anti-ferromagnetic layer provided so as to face the magnetic substrate with the second magnetic layer interposed therebetween, the synthetic anti-ferromagnetic layer being magnetically coupled with the anti-ferromagnetic layer.
- the magneto-resistive element further includes a soft magnetic layer with a high saturation magnetic flux density provided between the magnetic substrate and the first magnetic layer.
- the magnetic substrate contains ferrite.
- the magnetic substrate contains an oxide
- the magnetic substrate contains a single crystalline oxide.
- the first magnetic layer contains magnetite.
- the first magnetic layer contains at least one element selected from the group consisting of O, N, P, C and B.
- the first non-magnetic layer includes a tunnel layer.
- the first non-magnetic layer includes a metal non-magnetic layer.
- the magneto-resistive element further includes a flux guide provided so as to face the magnetic substrate with the second magnetic layer interposed therebetween.
- the magneto-resistive element further includes a non-magnetic conductive layer provided so as to face the magnetic substrate with the flux guide interposed therebetween.
- the first magnetic layer includes a magnetic layer with a high spin polarization.
- the first magnetic layer further includes a non-magnetic layer for anti-ferromagnetic exchange coupling.
- the first magnetic layer further includes a magnetic layer for anti-ferromagnetic exchange coupling provided so as to face the magnetic layer with a high spin polarization with the non-magnetic layer for anti-ferromagnetic exchange coupling interposed therebetween.
- the first magnetic layer further includes an anti-ferromagnetic layer provided so as to face the non-magnetic layer for anti-ferromagnetic exchange coupling with the magnetic layer for anti-ferromagnetic exchange coupling interposed therebetween.
- a magnetic head includes a magneto-resistive element including a magnetic substrate, a magnetic layer, and a non-magnetic layer provided between the magnetic substrate and the magnetic layer: and also includes a yoke.
- the yoke has a magnetic gap formed of a non-magnetic material.
- the magnetic substrate acts as a portion of the yoke.
- the yoke includes a magnetic member having a saturation magnetic flux density higher than a saturation magnetic flux density of the magnetic substrate at least in the vicinity of the magnetic gap, the magnetic head further comprising an electromagnetic coil wound around the yoke.
- a magnetic head includes a magneto-resistive element including a magnetic substrate, a first magnetic layer, a second magnetic layer provided so as to face the magnetic substrate with the first magnetic layer interposed therebetween, and a first nonmagnetic layer provided between the first magnetic layer and the second magnetic layer; and also includes a yoke.
- the yoke has a magnetic gap formed of a non-magnetic material.
- the magnetic substrate acts as a portion of the yoke.
- the yoke includes a magnetic member having a saturation magnetic flux density higher than a saturation magnetic flux density of the magnetic substrate at least in the vicinity of the magnetic gap, the magnetic head further comprising an electromagnetic coil wound around the yoke.
- a magnetic recording and reproduction apparatus includes one of the above-described magnetic head for reproducing data from a recording medium so as to generate a signal and for recording data represented by a signal on the recording medium; an arm for mounting the magnetic head; a driving section for driving the arm; and a signal processing section for processing the signal.
- the recording medium is surface-treated with a DLC film.
- the yoke has a surface facing the recording medium, and the surface is surface-treated with a DLC film.
- a magnetic recording and reproduction apparatus includes any of the above-described magnetic heads: a rotatable drum for mounting the magnetic head on an external circumferential surface thereof; and a tape guiding mechanism for guiding the magnetic tape to the rotatable drum so as to place the magnetic tape into contact with the external circumferential surface.
- the magnetic head records data on and reproduce data from the magnetic tape.
- the yoke has a surface facing the magnetic tape, and the surface is surface-treated with a DLC film.
- the present invention provides the following effects.
- a magneto-resistive element utilizing the soft magnetic characteristics of the magnetic substrate is provided.
- the magnetic substrate contains, for example, an oxide
- magnetite is unlikely to diffused to, for example, the magnetic substrate.
- the magnetic substrate contains, for example, a single crystalline oxide
- epitaxial growth of the layers is realized.
- the magnetic layer contains at least one element selected from the group consisting of O, N, P, C and B, especially when the magnetic substrate contains an oxide, reaction deteriorating magnetic characteristics, for example, interdiffusion, arc suppressed.
- the magneto-resistive element includes a non-magnetic layer having a tunnel layer and thus utilizes a tunneling magnetic effect, even when the magnetic substrate is conductive, the MR (magnetic resistance) is not lowered by the shunt effect, unlike the conventional GMR element.
- a tunneling magnetic effect element utilizing the magnetic characteristics of the magnetic substrate can be provided.
- the magneto-resistive element includes a non-magnetic layer including a metal non-magnetic layer and thus utilizes a GMR effect, and further when, for example, the magnetic substrate is highly resistive, the IMR is not lowered by the shunt effect.
- a GMR element utilizing the magnetic characteristics of the magnetic substrate can be provided.
- the magnetic head Since the yoke includes a magnetic substrate having superb magnetic characteristics, the magnetic head has superior anti-abrasion characteristics which is inherent in the magnetic substrate.
- the soft magnetic layer with a high saturation magnetic flux density is provided in the vicinity of the magnetic gap of the yoke (recording gap), data can be recorded on a magnetic recording medium in a magnetic field for recording generated by the magnetic coil.
- the magnetic head has excellent anti-abrasion characteristics due to a magneto-resistive element having satisfactory reproduction characteristics in a magnetic recording and reproduction apparatus according to the present invention, the DLC film for increasing the resistance of the magnetic head so as to prevent the leak current from flowing to the magnetic recording and reproduction apparatus, specifically, the magnetic head. Therefore, reduction in the magneto-resistive effect caused by the leak current is suppressed.
- the invention described herein makes possible the advantages of providing a magneto-resistive element, a magnetic head, and a magnetic recording and reproduction apparatus having a satisfactory anti-abrasion characteristic and a sufficiently high head efficiency.
- FIG. 1 shows a structure of a magnetic head according to one example of the present invention
- FIG. 2 is a cross-sectional view of a magneto-resistive element included in the magnetic head shown in FIG. 1;
- FIG. 3 shows a structure of a magnetic head according to another example of the present invention.
- FIG. 4 is a cross-sectional view of a magneto-resistive element included in the magnetic head shown in FIG. 3:
- FIG. 5 is an isometric view of a magneto-resistive element according to still another example of the present invention.
- FIG. 6 is a cross-sectional view of the magneto-resistive element shown in FIG. 5;
- FIG. 7 shows a structure of a magnetic head according to still another example of the present invention.
- FIG. 8 show a structure of the magnetic head shown In FIG. 7 seen from a magnetic recording medium
- FIG. 9 shows a structure of a magnetic head according to still another example of the present invention.
- FIG. 10 is a cross-sectional view of a magneto-resistive element according to still another example of the present invention.
- FIG. 11 is a cross-sectional view of a magneto-resistive element according to still another example of the present invention.
- FIG. 12 is a cross-sectional view of a magneto-resistive element according to still another example of the present invention.
- FIG. 13 is a cross-sectional view of a magneto-resistive element according to still another example of the present invention.
- FIG. 14 is a cross-sectional view of a magneto-resistive element according to still another example of the present invention.
- FIG. 15 is an isometric view of a magnetic recording and reproduction apparatus according to one example of the present invention.
- FIG. 16 is a schematic view of a magnetic recording and reproduction apparatus according to another example of the present invention.
- FIG. 17 is a perspective view of a rotatable drum in the information recording and reproduction apparatus shown in FIG. 16;
- FIGS. 18A through 18F show a process for producing a magnetic head according to the present invention.
- FIG. 1 shows a structure of a magnetic head 100 according to a first example of the present invention.
- the magnetic head 100 includes a yoke 111 .
- the yoke 111 includes a pair of magnetic substrates 201 A and 201 B, which are generally C-shaped with a recess.
- the magnetic substrates 201 A and 201 B are located so that the recesses face each other.
- the magnetic substrates 201 A and 201 B are formed of ferrite, and may contain at least one of an oxide and a single crystalline oxide.
- the yoke 111 has a gap 204 formed of a non-magnetic material between the magnetic substrates 201 A and 201 B at one end thereof.
- the magnetic head 100 includes a multi-layer film 113 provided on a portion of a surface of the magnetic substrate 201 A opposite to the magnetic substrate 201 B.
- reference numeral 121 represents a magnetic recording medium.
- FIG. 2 is a cross-sectional view of a magneto-resistive element 150 .
- the magneto-resistive element 150 includes the magnetic substrate 201 A, a soft magnetic layer with a high saturation magnetic flux density 212 , anti-ferromagnetic layers 233 , the multi-layer film 113 . interlayer insulating layers 217 and an electrode 216 .
- the magnetic substrate 201 A also acts as a portion of the yoke 111 .
- the soft magnetic layer with a high saturation magnetic flux density 212 and the anti-ferromagnetic layers 233 are laminated between the surface of the magnetic substrate 201 A and the multi-layer film 113 although not shown in FIG. 1.
- the soft magnetic layer with a high saturation magnetic flux density 212 Is provided on the surface of the magnetic substrate 201 A, and the anti-ferromagnetic layers 233 are provided on portions of a surface of the soft magnetic layer with a high saturation magnetic flux density 212 so as to expose a portion of the soft magnetic layer with a high saturation magnetic flux density 212 .
- the soft magnetic layer with a high saturation magnetic flux density 212 has a saturation magnetic flux density of 1.0 T (Tesla) or higher.
- the magnetic substrate 201 A includes a free layer (not shown) in which magnetization rotation can easily be performed with respect to an external magnetic field.
- the non-magnetic layer 213 is provided so as to cover a portion of each anti-ferromagnetic layer 233 and the portion of the soft magnetic layer with a high saturation magnetic flux density 212 which is exposed by the anti-ferromagnetic layers 233 .
- the non-magnetic layer 213 includes a tunneling layer.
- the non-magnetic layer 213 may include a metal non-magnetic material.
- the non-magnetic layer 213 is topped by a magnetic layer 214 and an anti-ferromagnetic layer 215 provided in this order.
- the magnetic layer 214 magnetization rotation with respect to the external magnetic field is more difficult to occur than in the free layer, due to the exchange bias from the anti-ferromagnetic layer 215 .
- the magnetic layer 214 includes a fixed layer.
- the magnetic layer 214 may include magnetite, or may be formed of at least one element selected from the group consisting of O, N, P, C and s.
- the multi-layer film 113 includes the non-magnetic layer 213 , the magnetic layer 214 , and the anti-ferromagnetic layer 215 .
- Portions of the anti-ferromagnetic layers 233 which are not covered with the non-magnetic layer 213 are topped by inter-layer insulating layers 217 , which are provided so as to cover side surfaces of the multi-layer film 113 .
- the multi-layer film 113 is buried between the inter-layer insulating layers 217 .
- Electrodes of the inter-layer insulating layers 217 and a surface of the multi-layer film 113 are substantially entirely covered with the electrode 216 .
- the multi-layer film 113 is in contact with the electrode 216 . Due to the electrode 216 provided in this manner, a current flows vertically to surfaces of the layers in the multi-layer film 113 .
- the magneto-resistive element 150 acts as a TMR (tunnel magneto-resistive) element.
- TMR tunnel magneto-resistive
- the magneto-resistive element 150 acts as a vertical current-type GMR element.
- the anti-ferromagnetic layer 215 may be replaced with a hard magnetic layer with a large coercive force 219 having a large magnetic anisotropy formed of, for example, a CoPt alloy, a CoPtCr alloy, or an FePt alloy.
- the hard magnetic layer with a large coercive force 219 has a magnetic force of, for example, 100 Oe (oersted) or higher.
- the anti-ferromagnetic layer 215 may be replaced with a synthetic anti-ferromagnetic layer 218 .
- the synthetic anti-ferromagnetic layer 218 includes two magnetic layers and a non-magnetic layer interposed between the two magnetic layers.
- the magnetization direction of the two magnetic layers are stably anti-parallel due to an anti-ferromagnetic exchange coupling through the non-magnetic layer interposed therebetween.
- the synthetic anti-ferromagnetic layer 218 may be provided between the anti-ferromagnetic layer 215 and the magnetic layer 214 .
- the magneto-resistive element 150 having the above-described structure operates, for example, as follows with reference to FIGS. 1 and 2.
- the magnetic substrate 201 A includes a free layer in which magnetization rotation with respect to the external magnetic field is possible. Therefore, the magnetization direction of the magnetic substrate 201 A changes in accordance with a change in the external magnetic field.
- the magnetic layer 214 includes a fixed layer in which magnetization rotation with respect to the external magnetic field is more difficult to occur than in the free layer. Therefore, even when the external magnetic field is changed, the magnetization rotation of the magnetic layer 214 does not change. Accordingly, the relative angle between the magnetization direction of the magnetic substrate 201 A and the magnetization direction of the magnetic layer 214 changes; and in accordance with the change in the relative angle, the magnetic resistance of the magneto-resistive element 150 changes.
- FIG. 3 shows a structure of a magnetic head 200 according to a second example of the present invention. Identical elements previously discussed with respect to FIGS. 1 and 2 bear identical reference numerals and the detailed descriptions thereof will be omitted.
- the magnetic head 200 includes a yoke 111 .
- the yoke 111 includes a pair of magnetic substrates 201 A and 201 B.
- the magnetic substrates 201 A and 201 B are generally C-shaped with a recess.
- the magnetic substrates 201 A and 201 B are located so that the recesses face each other.
- the magnetic substrates 201 A and 201 B are formed of ferrite.
- the magnetic substrates 201 A and 201 B may contain at least one of an oxide and a single crystalline oxide.
- the yoke 111 has a gap 204 formed of a non-magnetic material between the magnetic substrates 201 A and 201 B at one end thereof.
- the magnetic head 200 further includes a magnetic layer 102 provided on a surface of the magnetic substrate 201 A opposite to the magnetic substrate 201 B, and a multi-layer film 203 provided on a portion of a surface of the magnetic layer 102 opposite to the magnetic substrate 201 A.
- FIG. 4 is a cross-sectional view of a magneto-resistive element 250 .
- the magneto-resistive element 250 includes the magnetic substrate 201 A, a soft magnetic layer with a high saturation magnetic flux density 212 , anti-ferromagnetic layers 233 , the magnetic layer 102 , the multi-layer film 203 , interlayer insulating layers 217 and an electrode 216 .
- the magnetic substrate 201 A also acts as a portion of the yoke 111 .
- the soft magnetic layer with a high saturation magnetic flux density 212 , and the anti-ferromagnetic layers 233 are laminated between the surface of the magnetic substrate 201 A and the magnetic layer 102 although not shown in FIG. 3.
- the soft magnetic layer with a high saturation magnetic flux density 212 is provided on a surface of the magnetic substrate 201 A, and the anti-ferromagnetic layers 233 are provided on portions of a surface of the soft magnetic layer with a high saturation magnetic flux density 212 so as to expose a portion of the soft magnetic layer with a high saturation magnetic flux density 212 .
- the magnetic layer 102 is provided so as to cover the anti-ferromagnetic layers 233 and the portion of the soft magnetic layer with a high saturation magnetic flux density 212 which is exposed by the anti-ferromagnetic layers 233 .
- the magnetic layer 102 includes a free layer in which magnetization rotation with respect to the external magnetic field is possible.
- the magnetic layer 102 and the magnetic substrate 201 A are magnetically coupled to each other by a ferromagnetic coupling by which the magnetization directions thereof are parallel to each other.
- the magnetic layer 102 and the magnetic substrate 201 A may be coupled to each other by an anti-ferromagnetic coupling by which the magnetization directions thereof are anti-parallel to each other, or may be coupled to each other by a static magnetic coupling.
- a non-magnetic layer 213 A is provided on a portion of a surface of the magnetic layer 102 .
- the non-magnetic layer 213 A is topped by a magnetic layer 214 and an anti-ferromagnetic layer 215 provided in this order.
- magnetization rotation with respect to the external magnetic field is more difficult to occur than in the free layer, due to the exchange bras from the anti-ferromagnetic layer 215 .
- the magnetic layer 214 includes a fixed layer.
- the magnetic layer 214 may contain magnetite, or may be formed of at least one element selected from the group consisting of O, N, P, C and B.
- the multi-layer film 203 includes the non-magnetic layer 213 A, the magnetic layer 214 , and the anti-ferromagnetic layer 215 .
- the anti-ferromagnetic layer 215 may be replaced with a hard magnetic layer with a large coercive force 219 having a large magnetic anisotropy formed of, for example, a CoPt alloy, a CoPtCr alloy, or an FePt alloy.
- the hard magnetic layer with a large coercive force 219 has a magnetic force of, for example, 100 Oe (oersted) or higher.
- the anti-ferromagnetic layer 215 may be replaced with a synthetic anti-ferromagnetic layer 218 .
- the synthetic anti-ferromagnetic layer 218 includes two magnetic layers and a non-magnetic layer interposed between the two magnetic layers.
- the magnetization direction of the two magnetic layers are stably anti-parallel due to an anti-ferromagnetic exchange coupling through the nonmagnetic layer interposed therebetween.
- the synthetic anti-ferromagnetic layer 218 may be provided between the anti-ferromagnetic layer 215 and the magnetic layer 214 .
- Portions of the magnetic layer 102 which are not covered with the non-magnetic layer 213 A are topped by inter-layer insulating layers 217 , which are provided so as to cover side surfaces of the multi-layer film 203 , The multi-layer film 203 is buried between the inter-layer insulating layers 217 .
- Electrode 216 Surface of the inter-layer insulating layers 217 and a surface of the multi-layer film 203 are substantially entirely covered with the electrode 216 .
- the multi-layer film 203 is in contact with the electrode 216 . Due to the electrode 216 provided in this manner, a current flows vertically to surfaces of the layers in the multi-layer film 203 .
- the multi-layer film 203 includes a tunneling element.
- a multi-layer film acting as a part of a GMR element may be used in magnetic heads shown in each of FIGS. 1, 3, 7 and 9 .
- FIG. 5 is an isometric view of a magneto-resistive element 350 according to a third example of the present invention. Identical elements previously discussed with respect to FIGS. 3 and 4 bear identical reference numerals and the detailed descriptions thereof will be omitted.
- the magneto-resistive element 350 is usable in the magnetic head 200 Shown in FIG. 3.
- the magneto-resistive element 350 includes a magnetic substrate 201 A, a soft magnetic layer with a high saturation magnetic flux density 212 , a multi-layer film 403 acting as a part of a GMR element, hard bias layers 220 , and electrodes 216 .
- the magnetic substrate 201 A is formed of ferrite.
- the soft magnetic layer with a high saturation magnetic flux density 212 is provided on a surface of the magnetic substrate 201 A.
- the multi-layer film 403 acting as a part of a GMR element is provided on a portion of a surface of the soft magnetic layer with a high saturation magnetic flux density 212 .
- the hard bias layers 220 are provided so as to cover side surfaces of the multi-layer film 403 .
- the hard bias layers 220 are respectively topped by the electrodes 216
- FIG. 6 is a cross-sectional view of the magneto-resistive element 350 shown in FIG. 5 taken along plane A.
- the multi-layer film 403 includes a magnetic layer 402 acting as a free layer, a non-magnetic layer 413 , a magnetic layer 414 acting as a fixed layer, and an anti-ferromagnetic layer 415 laminated in this order.
- the multi-layer film 403 is provided on the soft magnetic layer with a high saturation magnetic flux density 212 .
- An exchange bias magnetic field is generated between magnetic layer 414 and the anti-ferromagnetic layer 415 .
- the magneto-resistive element 350 having the above-described structure operates, for example, as follows.
- a current flowing from one of the electrodes 216 flows through the corresponding hard bias layer 220 and then flows parallel to surfaces of the layers of the multi-layer film 403 . Then, the current flows through the other hard bias layer 220 and flows out to the other electrode 216 .
- the multi-layer film 403 is a part of a GMR element, in which a current flows parallel to the surfaces of the layers therein.
- the magnetic substrate 201 A also acts as a portion of the yoke 111 of the magnetic head 200 shown in FIG. 3.
- a synthetic anti-ferromagnetic layer (not shown) magnetically coupled with the anti-ferromagnetic layer 415 may be provided on the opposite side from the magnetic substrate 201 A with respect to the magnetic layer 414 .
- the magnetic substrate 201 A may contain at least one of an oxide and a single crystalline oxide.
- the magnetic layer 402 may contain magnetite, or may be formed of at least one element selected from the group consisting of O, N, P, C and B.
- the non-magnetic layer 413 may include a metal non-magnetic material.
- An insulating layer 221 may be provided as shown in FIG. 5, or between the soft magnetic layer with a high saturation magnetic flux density 212 and the hard bias layers 220 .
- FIG. 7 shows a structure of a magnetic head 300 according to a fourth example of the present invention. Identical elements previously discussed with respect to FIGS. 3 and 4 bear identical reference numerals and the detailed descriptions thereof will be omitted.
- the magnetic head 300 includes a yoke 307 .
- the yoke 307 includes two magnetic substrates 301 and 306 .
- the magnetic substrate 301 is generally C-shaped with a recess and is referred to also as a “C-shaped core”.
- the magnetic substrate 306 is generally I-shaped and is referred to also as an “I-shaped core”.
- the I-shaped core is located so as to face the recess of the C-shaped core 301 .
- the magnetic substrates 301 and 306 are formed of ferrite.
- the yoke 307 has a gap 304 formed of a non-magnetic material between the magnetic substrates 301 and 306 at one end thereof.
- the yoke 307 includes a soft magnetic layer with a high saturation magnetic flux density 212 provided on each of a surface of the I-shaped core 306 facing the C-shaped core 301 and on a surface of the C-shaped core 301 facing the I-shaped core 306 .
- the magnetic head 300 includes a multi-layer film 203 on a portion of a surface of the soft magnetic layer with a high saturation magnetic flux density 212 which is provided on the I-shaped core 306 , the portion facing the recess of the C-shaped core 301 .
- An electromagnetic coil 305 is provided to surround a portion corresponding to the recess of the C-shaped core 301 .
- FIG. 8 is a view of the magnetic head 300 seen in the direction of arrow 122 in FIG. 7.
- the magnetic substrates 301 and 306 are both generally triangular in the vicinity of the gap 304 (more specifically, on the surfaces of the magnetic substrates 301 and 306 facing the magnetic recording medium 121 (FIG. 7).
- the C-shaped core 301 has a face 301 A facing the gap 304 and side faces 301 B extending from the face 301 A.
- the I-shaped core 306 has a face 306 A facing the gap 304 and side faces 306 B extending from the face 306 A.
- the soft magnetic layer with a high saturation magnetic flux density 212 is also formed on the faces 301 A, 301 B, 306 A and 306 B. In the examples in this specification and any other example of the present invention, the soft magnetic layers with a high saturation magnetic flux density 212 have a saturation magnetic flux density higher than that of the magnetic substrate 301 and 306 .
- FIG. 9 shows a structure of a magnetic head 400 according to a fifth example of the present invention. Identical elements previously discussed with respect to FIGS. 3 and 4 bear identical reference numerals and the detailed descriptions thereof will be omitted.
- the magnetic head 400 includes a yoke 111 .
- the yoke 111 includes a pair of magnetic substrates 201 A and 201 B.
- the magnetic substrates 201 A and 201 B are generally C-shaped with a recess.
- the magnetic substrates 201 A and 201 B are located so that the recesses face each other.
- the yoke 111 has a gap 204 formed of a non-magnetic material between the magnetic substrates 201 A and 201 B at one end thereof.
- the magnetic head 400 includes an insulating layer 701 provided on a surface of the magnetic substrate 201 A opposite to the magnetic substrate 201 B.
- the magnetic head 400 further includes a multi-layer film 203 provided on a portion of a surface of the insulating layer 701 opposite to the magnetic substrate 201 A.
- FIG. 10 is a cross-sectional view of a magneto-resistive element 250 A according to a sixth example of the present invention.
- the magneto-resistive element 250 A is usable in any magnetic head according to the present invention.
- the magneto-resistive element 250 A includes a magnetic substrate 201 A and the following layers provided on the magnetic substrate 2 O 1 A.
- a first magnetic layer 601 is provided on a portion of a surface of the magnetic substrate 201 A.
- a non-magnetic layer 602 and a second magnetic layer 603 are sequentially provided in this order.
- the second magnetic layer 603 includes a free layer in which magnetization rotation with respect to the external magnetic field is possible.
- the first magnetic layer 601 includes a fixed layer in which magnetization rotation is more difficult to occur than in the second magnetic layer 603 .
- a multi-layer film 203 A includes the first magnetic layer 601 , the non-magnetic layer 602 , and the second magnetic layer 603 .
- the magneto-resistive element 250 A includes one multi-layer film 203 A.
- the magneto-resistive element 250 A may include a plurality of separate multi-layer films 203 A provided in a direction normal to the paper of FIG. 10. In this case, a higher S/N ratio is provided since the multi-layer films 203 A, which are substantially equidistant from an external magnetic field, can mutually cancel noise components generated therein.
- the flux guide 604 is formed of a soft magnetic having a magnetic permeability of 10 or higher, for example, NiFe, FeSiAl, or CoNiFe.
- the flux guide 604 preferably has a thickness of 1 ⁇ m or less so as to allow flux to go into the inside of the multi-layer film 203 A in a depth or height direction (vertical to surfaces of the layers of the multi-layer film 203 A).
- a non-magnetic conductive layer 605 and an upper electrode 606 are sequentially provided on the flux guide 604 in this order.
- the upper electrode 606 is preferably formed of a magnetic material such as, for example, NiFe, and is produced by vapor deposition or plating.
- the upper electrode 606 and the magnetic substrate 201 A acting as a lower electrode act to shield an undesirable external magnetic field (for example, an external magnetic field based on flux other than the flux generated by a recording bit of the magnetic recording medium 121 from which data is to be read).
- the non-magnetic conductive layer 605 provided between the flux guide 604 and the upper electrode 606 acts to completely separate the undesirable external Magnetic field from a desirable external field guided by the flux guide 604 (for example, an external magnetic field based on the flux generated by a recording bit of the magnetic recording medium 121 from which data is to be read).
- the magneto-resistive element 250 A operates, for example, as follows.
- An external magnetic field generated from the magnetic recording medium 121 passes through the flux guide 604 interposed between the interlayer insulating layers 607 and the non-magnetic layer 605 , and reaches the second magnetic layer 603 .
- the second magnetic layer 603 includes the free layer in which magnetization rotation with respect to the external magnetic field is possible, the magnetization direction of the second magnetic layer 603 changes in accordance with a change in the external magnetic field.
- the first magnetic layer 601 includes the fixed layer in which magnetization rotation with respect to the external magnetic field is more difficult to occur than in the second magnetic layer 603 . Therefore, even when the external magnetic field is changed, the magnetization rotation of the first magnetic layer 601 does not change. Accordingly, the relative angle between the magnetization direction of the first magnetic layer 601 and the magnetization direction of the second magnetic layer 603 changes; and in accordance with the change in the relative angle, the magnetic resistance of the magneto-resistive element 203 A changes.
- a non-magnetic conductive layer may be provided between the first magnetic layer 601 and the magnetic substrate 201 A acting as a lower electrode.
- FIG. 10 shows only a reproduction element section.
- a recording element section using the upper electrode 606 as a part of a recording magnetic pole may be provided on the upper electrode 606 .
- FIG. 11 is a detailed cross-sectional view of the magneto-resistive element 250 A shown in FIG. 10.
- FIG. 11 shows a structure of the first magnetic layer 601 in detail.
- the first magnetic layer 601 includes a non-magnetic layer 804 provided on a portion of the surface of the magnetic substrate 201 A.
- the first magnetic layer 601 also includes an anti-ferromagnetic layer 802 , a magnetic layer for anti-ferromagnetic exchange coupling 803 , a non-magnetic layer for anti-ferromagnetic exchange coupling 801 , and a magnetic layer with a high spin polarization 805 , which are sequentially provided on the non-magnetic layer 804 in this order.
- the non-magnetic layer 602 is provided on the magnetic layer with a high spin polarization 805 .
- the anti-ferromagnetic layer 802 is in contact with the magnetic substrate 201 A (acting as a lower electrode) through the non-magnetic layer 804 (underlying layer) for the purpose of, for example, preventing the anti-ferromagnetic layer 802 from magnetically coupling with the magnetic substrate 201 A and improving the crystallinity of the anti-ferromagnetic layer 802 .
- the magnetic layer with a high spin polarization 805 is magnetically fixed by being anti-ferromagnetically coupled with the magnetic layer for anti-ferromagnetic exchange coupling 803 , which is in contact with the anti-ferromagnetic layer 802 , through the non-magnetic layer for anti-ferromagnetic exchange coupling 801 .
- the non-magnetic layer for anti-ferromagnetic exchange coupling 801 is formed of, for example, Ru, Ir, Cu, or Rh. When formed of Ru, the non-magnetic layer for anti-ferromagnetic exchange coupling 801 has a thickness of 0.6 nm or more and 0.9 nm or less.
- the anti-ferromagnetic layer 802 is formed of a material having a Neel temperature of 300 K or higher, for example, PtMn or IrM.
- the magnetic layer for anti-ferromagnetic exchange coupling 803 contains a metal magnetic element at 50% or higher which is selected from the group consisting of Fe, Co and Ni.
- FIG. 12 is a cross-sectlonal view of a magneto-resistive element 250 B according to a seventh example of the present invention.
- the magneto-resistive element 250 B is usable in any magnetic head according to the present invention. Identical elements previously discussed with respect to FIG. 10 bear identical reference numerals and the detailed descriptions thereof will be omitted.
- the magneto-resistive element 250 B includes a flux guide 604 provided on a surf ace of the multi-layer film 203 A facing the magnetic substrate 201 A.
- a non-magnetic conductive layer 605 is provided on a surface of the magnetic substrate 201 A.
- the flux guide 604 is provided so as to entirely cover a surface of the non-magnetic conductive layer 605 .
- a second magnetic layer 603 is provided on a portion of a surface of the flux guide 604 .
- On the second magnetic layer 603 a non-magnetic layer 602 and a first magnetic layer 601 are sequentially provided in this order.
- a multi-layer film 203 A includes the first magnetic layer 601 , the non-magnetic layer 602 , and the second magnetic layer 603 .
- Portions of the surface of the flux guide 604 which are not covered with the multi-layer film 203 A are topped by inter-layer insulating layers 607 , which are provided so as to cover side surfaces of the multi-layer film 203 A. Surfaces of the inter-layer insulating layers 607 and a surface of the first magnetic layer 601 are covered with an upper electrode 606 .
- FIG. 13 is a cross-sectional view of a magneto-resistive element 250 C according to an eighth example of the present invention.
- the magneto-resistive element 250 C is usable in any magnetic head according to the present invention.
- Identical elements previously discussed with respect to FIG. 10 bear identical reference numerals and the detailed descriptions thereof will be omitted.
- the magneto-resistive element 250 C includes two multi-layer films 203 A (including a first magnetic layer 601 , a non-magnetic layer 602 and a second magnetic layer 603 ) provided along a longitudinal direction of the flux guide 604 .
- the two multi-layer films 203 A are substantially equidistant from the flux guide 604 .
- two multi-layer films 223 A are provided.
- three or more multi-layer films 203 A may be provided along the longitudinal direction of the flux guide 604 .
- FIG. 14 is a cross-sectional view of a magneto-resistive element 250 D according to a ninth example of the present invention.
- the magneto-resistive element 250 D is usable in any magnetic head according to the present invention.
- Identical elements previously discussed with respect to FIG. 10 bear identical reference numerals and the detailed descriptions thereof will be omitted.
- the magneto-resistive element 250 D includes two multi-layer films 203 A (Including a first magnetic layer 601 , a non-magnetic layer 602 and a second magnetic layer 603 ) provided along a direction vertical to the longitudinal direction of the flux guide 604 .
- two multi-layer films 203 A are provided.
- three or more multi-layer films 203 A may be provided in a direction vertical to the longitudinal direction of the flux guide 604 .
- the anti-ferromagnetic layers, the magnetic layers and electrodes in the above examples can be easily produced by vacuum deposition, for example, IBD (ion beam deposition), sputtering, MBE or ion plating.
- vacuum deposition is performed using the compound as a target.
- the compound used for the non-magnetic layer can be easily produced by a usual method, for example, by reactive vapor deposition, reactive sputtering, ion assisting, CVD, or leaving an element to react with a reactive gas atmosphere having an appropriate partial pressure at an appropriate temperature for a prescribed time period.
- a magneto-resistive element according to the present invention can be produced by a physical or chemical etching method, for example, ion milling, RIE (reactive ion etching), EB (electron beam), or FIB (focused ion beam).
- a film produced in a fine process is flattened by CMP or photolithography using a fine processing technique appropriate to a required line width.
- the produced film can be flattened by cluster ion beam etching performed in vacuum. This is effective for improving the MR ratio.
- the magnetic substrates included in a magneto-resistive element according to the present invention can have surfaces thereof smoothed by a lapping technique, for example, MCL (mechanochemical lapping).
- the magnetic substrates can be shaped as desired by fine processing such as, for example, dicing sawing, laser processing or discharge processing.
- fine processing such as, for example, dicing sawing, laser processing or discharge processing.
- two magnetic substrates can be bonded together by bonding using low melting point glass or low melting point alloys.
- FIG. 15 is an isometric view of a magnetic recording and reproduction apparatus 700 using a magnetic head having a magneto-resistive element according to the present invention.
- the magnetic recording and reproduction apparatus 700 is, for example, an HDD.
- the magnetic recording and reproduction apparatus 700 includes a magnetic head 701 , an arm 705 for mounting the magnetic head 701 , a driving section 702 for driving the arm 705 , and a signal processing section 704 for processing a signal generated to represent data reproduced from a magnetic recording medium 703 by the magnetic head 701 and a signal which represents data to be recorded on the magnetic recording medium 703 by the magnetic head 701 .
- the magnetic recording medium 703 is surface-treated with a DLC (diamond-like carbon) film.
- the driving section 702 drives the arm 705 so as to locate the magnetic head 701 at a prescribed position above the magnetic recording medium 703 .
- the magnetic head 701 reads data recorded on the magnetic recording medium 703 .
- the signal processing section 704 performs processing for reproducing data read from the magnetic recording medium 705 by the magnetic head 701 .
- the signal processing section 704 performs processing for recording data on the magnetic recording medium 703
- the magnetic head 701 records the data processed by the signal processing section 704 on the magnetic recording medium 703 .
- FIG. 16 is a schematic view of another magnetic recording and reproduction apparatus 800 using a magnetic head having a magneto-resistive element according to the present invention.
- the magnetic recording and reproduction apparatus 800 is, for example, a VTR.
- the magnetic recording and reproduction apparatus 800 includes a rotatable drum 813 , a supply reel 807 , a winding reel 822 , rotatable posts 808 , 810 , 811 , 816 , 817 and 819 , Inclining posts 812 and 815 , a capstan 818 , a pinch roller 820 , and a tension arm 809 for supporting a tension post.
- a magnetic head 805 according to the present invention is provided on an external circumferential surface of the rotatable drum 813 .
- FIG. 17 is a perspective view of the rotatable drum 813 .
- the rotatable drum 813 includes a lower drum 806 and an upper rotatable drum 802 .
- the magnetic head 505 is provided on an external circumferential surface of the upper rotatable drum 802 .
- a lead 804 is provided on an external circumferential surface of the lower drum 806 .
- a magnetic tape (not shown in FIG. 17) runs along the lead 804 , i.e., in an inclining state with respect to a rotation axis of the upper rotatable drum 802 .
- the magnetic head 805 rotates in an inclining state with respect to the running direction of the magnetic tape.
- the external circumferential surface of the upper drum 802 has a plurality of grooves 801 formed therein, so that the magnetic tape runs stably in close contact with the upper rotatable drum 802 . Air confined in the magnetic tape and the upper rotatable drum 802 is discharged from the grooves 801 .
- the magnetic tape (represented by reference numeral 821 in FIG. 16) which is wound around the supply reel 807 is driven by the capstan 818 and the pinch roller 820 in pressure contact with the capstan 818 and guided by the inclining posts 812 and 815 .
- the magnetic tape 821 is pressed on the magnetic head 805 mounted on the rotatable drum 813 .
- the magnetic tape 821 passes through the pinch roller 820 and the capstan 815 and then wound around the winding reel 822 .
- the rotatable drum 813 is of an upper rotatable drum system.
- the magnetic head 805 according to the present invention is provided so as to project from the external circumferential surface of the rotatable drum 813 by about 20 ⁇ m.
- a magnetic recording and reproduction apparatus uses a yoke-type magnetic head. Therefore, the shape of the MR element, which is problematically changed in a helical scan system, is not changed. Also due to the yoke-type magnetic head, the undesirable possibility that, for example, the electrostatic destruction of the MR element is caused by the contacting and sliding movement, and the MR element is corroded by chemically reactive substances derived from the magnetic tape, the outside air or the like is very low. Therefore, the magnetic recording and reproduction apparatus can have a high reliability.
- a magnetic head according to the present invention uses a GMR element or TMR element and thus has superior characteristics (for example, MR ratio) to those of the conventional magnetic heads. Therefore, the magnetic head can provide a high recording density.
- FIGS. 18A through 18F illustrate a process for producing the magnetic head 200 shown in FIG. 3 according to the present invention.
- a ferrite substrate 101 was prepared.
- the ferrite substrate 101 was processed to form tracks, thereby forming a ferrite substrate 101 A shown in FIG. 18B.
- a heat-resistant glass layer e.g., Pyrex glass
- a Cr layer were formed so as to form a magnetic gap.
- two ferrite substrates 101 A were put together by glass bonding at 500 C
- a magnetic layer 102 formed of magnetite Fe 3 O 4
- the temperature of the ferrite substrates 101 A was 300° C.
- an alumina layer was formed to a thickness of 1 nm. Then, on the alumina layer, a multi-layer film including layers of FeCo(3)/Ru(0.7)/FeCo(3)/PtMn(30)/Ta(5) were formed.
- the numerical figures in the parentheses represent the thicknesses of the respective layers in units of nanometers.
- the multi-layer film was milled to form mesa-shaped portions by photolithography, so as to leave the magnetic layer 102 to have a thickness of 20 nm. Interlayer insulating layers of alumina were formed.
- a resist layer provided on the Ta layer was lifted-off, and portions of the Ta layer exposed by the lifting-off of the resist layer were removed by milling.
- the multi-layer films 203 (included in a TMR element) shown in FIG. 18E were formed.
- an upper electrode including layers of Ta(3)/Cu(500)/Pt(5) was formed.
- PtMn was magnetized in a magnetic field having a magnetic force of 5 k Oe along the magnetic path direction of the yoke in vacuum at 280° C. Then, the combined ferrite substrates 201 A with the multi-layer films 203 were cut into chips using a dicing saw. Thus, as shown in FIG. 18F, the magnetic head 200 (FIG. 3) including a yoke having two magnetic substrates 201 A and 201 B and also including the magnetic layer 102 having a thickness of 20 nm was produced.
- Another magnetic head (not shown; referred to by 200 A for the sake of convenience) including a yoke having ferrite substrates 201 A and 201 B was produced by a similar process for producing the magnetic head 200 A, however, the magnetic layer 102 was not formed, and an alumina layer having a thickness of 1 nm was directly formed on one of the two ferrite substrates.
- the ferrite substrate 201 A acts as an electrode.
- the magnetic heads 200 and 200 A and the conventional magnetic head were each wound around by 10 turns of wire passing through a yoke window ( 201 C in FIG. 18F in the case of the magnetic head 200 ), and tested for reproduction characteristics of a magnetic head coated with a DLC film. All the magnetic heads had a magnetic gap of 200 nm.
- the conventional magnetic head had a bit error rate of 10 ⁇ 5 .
- the magnetic heads 200 and 200 A according to the present invention each had a bit error rate of 10 ⁇ 7 , which is smaller than that of the conventional magnetic head by 2 orders of magnitude.
- the magnetic heads 200 and 200 A both exhibited superior anti-abrasion characteristics to that of the conventional magnetic head.
- a surface of each of magnetic heads 200 and 200 A facing the magnetic tape may be coated with a DLC film.
- the magnetic head 300 shown in FIG. 7 including the yoke 307 which includes the C-shaped core 301 and the I-shaped core 306 was produced.
- the magnetic head 300 includes the multi-layer film 203 which is a part of a TMR element.
- An alumina layer to act as a reaction prevention layer was formed to a thickness of 2 nm on a surface of the C-shaped core 301 facing the I-shaped core and a surface of the I-shaped core 306 facing the C-shaped core.
- the soft magnetic layer with a high saturation magnetic flux density 212 of FeTaN was formed to a thickness of 5 ⁇ m on each of the alumina layers.
- a multi-layer film 203 was formed as follows. First, layers of CoFe(3)/Al(0.4) were formed on the soft magnetic layer with a high saturation magnetic flux density 212 . The resultant laminate was oxidized for 1 minute at 200 Torr in an oxygen atmosphere. Next, an Al(0.3) layer was formed and then oxidized for 1 minute at 200 Torr in an oxygen atmosphere. Then, on the /Al(0.3) layer, layers of CoFe(3)/Ru(0.7)/CoFe(3)/PtMn(30)/Ta(3)/Pt(20) were formed. PtMn was magnetized in the magnetic path direction, and the multi-layer film was processed by milling to have a mesa shape, so as to leave the soft magnetic layer with a high saturation magnetic flux density 212 (FeTaN).
- the I-shaped core 306 and the C-shaped core 301 were put together by metal bonding.
- the electromagnetic coil 305 was provided around the C-shaped core 301 .
- the magnetic head 300 shown in FIG. 7 was produced.
- the magnetic head 300 includes the yoke 307 having the two magnetic substrates 301 and 306 and also including the soft magnetic layer with a high saturation magnetic flux density 212 (FeTaN).
- the C-shaped core 301 and the I-shaped core 306 both have a triangular shape on the surfaces thereof facing the magnetic recording medium 121 (FIG. 7).
- the soft magnetic layer with a high saturation magnetic flux density 212 is also provided on the faces 301 A, 301 B, 306 A and 306 B defining the triangular shape of the C-shaped core 301 and the I-shaped core 306 .
- the magnetic head 300 and the conventional magnetic head were tested for reproduction characteristics of a magnetic head coated with a DLC film. Both magnetic heads had a magnetic gap of 200 nm.
- the conventional magnetic head had a bit error rate of 10 ⁇ 5.5 .
- the magnetic head 300 according to the present invention had a bit error rate of 10 ⁇ 8 , which is smaller than that of the conventional magnetic head.
- the magnetic head 300 exhibited superior anti-abrasion characteristics to that of the conventional magnetic head.
- a surface of the magnetic head 300 facing the magnetic tape may be coated with a DLC film.
- the magnetic head 300 as shown in FIG. 7 including the yoke 307 which includes the C-shaped core 301 and the I-shaped core 306 was produced.
- the magnetic head 300 includes the multi-layer film 203 , as shown in FIG. 4, which is a part of a TMR element.
- An alumina layer to act as a reaction prevention layer was formed to a thickness of 2 nm on a surface of the C-shaped core 301 facing the I-shaped core 306 .
- the soft magnetic layer with a high saturation magnetic flux density 212 of FeAlN was formed to a thickness of 5 ⁇ m on the alumina layer at a substrate temperature of 200° C.
- Another alumina layer to act as a reaction prevention layer was formed to a thickness of 2 nm on a surface of the I-shaped core 306 facing the C-shaped core 301 .
- the soft magnetic layer with a high saturation magnetic flux density 212 of FeAlN was formed to a thickness of 5 ⁇ m on the alumina layer at a substrate temperature of 200° C.
- a hard bias layer of CoPtCr was formed by patterning using EB exposure and lifting-off. Then, a multi-layer film 203 was formed as follows.
- the multi-layer film was processed by milling to have a mesa shape, so as to leave the soft magnetic layer with a high saturation magnetic flux density 212 (FeAlN).
- the magneto-resistive element (TMR element) as shown in FIG. 4 was produced.
- a direction normal to the paper is the magnetic path direction.
- PtMn is anisotropic in the direction normal to the paper.
- CoPtCr is anisotropic in the direction parallel to the longitudinal direction of the magnetic substrate 201 A.
- the I-shaped core 306 and the C-shaped core 301 were put together by metal bonding.
- the electromagnetic coil 305 was provided around the C-shaped core 301 .
- the magnetic head 300 shown in FIG. 7 was produced.
- the magnetic head 300 and the conventional magnetic head were tested for reproduction characteristics of a magnetic head coated with a DLC film. Both magnetic heads had a magnetic gap of 200 nm.
- the conventional magnetic head had a bit error rate of 10 ⁇ 5.5 .
- the magnetic head 300 according to the present invention had a bit error rate of 10 ⁇ 8.5 , which is smaller than that of the conventional magnetic head.
- the magnetic head 300 exhibited superior anti-abrasion characteristics to that of the conventional magnetic head.
- a surface of the magnetic head 300 facing the magnetic tape may be coated with a DLC film.
- the magnetic layer (soft magnetic layer with a high saturation magnetic flux density 212 ) is formed of a nitride magnetic material (FeTaN, FeAlN).
- the magnetic layer is formed of magnetite, which is an oxide magnetic material.
- the magnetic layer may be formed of, for example, a carbide magnetic material such as, for example, FeTaC, FeHfC, or FeHfPtC: a boride magnetic material such as, for example, FeSiB; or a phosphide.
- a magnetic head which was resistant to magnetic deterioration caused by a reaction between the substrate and the magnetic layer during heat treatment, was produced
- the reaction prevention layer is formed of an alumina layer having a thickness of 2 nm.
- the underlying layer may be formed of a non-magnetic layer, an anti-ferromagnetic layer, or a hard magnetic layer with a large coercive force having a thickness of 0.5 nm or more and 50 nm or less.
- the anti-ferromagnetic layer is provided in lower side portions of the magnetic layer.
- the anti-ferromagnetia layer may be provided on substantially the entire bottom surface of the magnetic layer. In such a structure, a bit error rate as low as that of the magnetic heads in the examples was provided.
- the magnetic layer 102 obtained a single magnetic domain by anti-ferromagnetic coupling caused between the magnetic substrate 201 A and the magnetic layer 102 .
- the magnetic layer 102 obtained a single magnetic domain by static magnetic coupling caused between the magnetic substrate 201 A and the magnetic layer 102 .
- a magnetic head including a magneto-resistive element using such a soft magnetic layer with a high saturation magnetic flux density 212 provided a bit error rate superior to that of the conventional MIG head.
- the non-magnetic (tunneling) layer 213 is formed of alumina.
- the non-magnetic (tunneling) layer 213 may be formed of an oxide, a nitride, a carbide, a boride or a semiconductor. In such cases, satisfactory magnetic heads were obtained.
- the magnetic substrate 201 A is formed of ferrite using a spinel-type oxide.
- the magnetic substrate 201 A may be formed of a garnet-type oxide. In this case, a magnetic head having satisfactory characteristics was obtained.
- MnZn ferrite was especially preferable.
- the magnetic head 300 as shown in FIG. 7 including the yoke 307 which includes the C-shaped core 301 and the I-shaped core 306 was produced.
- the magnetic head 300 includes the multi-layer film 403 , as shown in FIGS. 5 and 6, which is a part of a GMR element.
- An alumina layer to act as a reaction prevention layer was formed to a thickness of 1.5 nm on a surface of the C-shaped core 301 facing the I-shaped core 306 .
- the soft magnetic layer with a high saturation magnetic flux density 212 of FeAlN was formed to a thickness of 5 ⁇ m on the alumina layer.
- the soft magnetic layer with a high saturation magnetic flux density 212 of FeAlN was formed on a surface of the I-shaped core 306 facing the C-shaped core 301 .
- a top portion having a depth of about 5 nm of the soft magnetic layer with a high saturation magnetic flux density 212 was etched by ECR etching, thereby flattening a surface thereof.
- a multi-layer film (included in a GMR element) including layers of NiFe(5)/CoFe(1)/Cu(3)/CoFe(3) /Ru(0.8)/CoFe(3)/PtMn(20)/Ta(3) was formed by magnetron sputtering.
- the CoFe/PtMn layers were provided with anisotropy by performing annealing in a magnetic field having a magnetic force of 5 k Oe in the magnetic path direction at 280° C. for 5 hours.
- the NiFe/CoFe layers were provided with anisotropy by application of a magnetic field having a magnetic force of 100 Oe in a direction vertical to the magnetic path at 200° C. for 1 hour
- the multi-layer film (included in a GMR element) was processed to have a mesa shape as shown in FIG. 6 by photolithography and argon milling, so as to leave the soft magnetic layer with a high saturation magnetic flux density 212 (FeAlN).
- the hard bias layer 220 of CoPtCr was formed while applying a magnetic field of 300 Oe in a direction vertical to the magnetic path. Then, as the electrode 216 , layers of Cr/Au were formed. In FIG. 6, a direction normal to the paper is the magnetic path direction. CoFe/PtMn are anisotropic in the direction normal to the paper. CoPtCr is anisotropic in the direction parallel to the longitudinal direction of the magnetic substrate 201 A.
- the I-shaped core 306 and the C-shaped core 301 were put together by metal bonding.
- the electromagnetic coil 305 was provided around the C-shaped core 301 .
- the magnetic head 300 shown in FIG. 7 was produced.
- the magnetic head 300 and the convent ional magnetic head were tested for reproduction characteristics of a magnetic head coated with a DLC film. Both magnetic heads had a magnetic gap of 200 nm.
- the conventional magnetic head had a bit error rate of 10 ⁇ 6 .
- the magnetic head 300 according to the present invention had a bit error rate of 10 ⁇ 8 , which is smaller than that of the conventional magnetic head.
- the magnetic head 300 exhibited superior anti-abrasion characteristics to that of the conventional magnetic head.
- a surface of the magnetic head 300 facing the magnetic tape may be coated with a DLC film.
- the magnetic head 400 includes the multi-layer film 203 which is a part of a TMR element or a CMR element.
- An insulating layer 701 of alumina was formed to a thickness of 20 nm on the magnetic substrate 201 A using IBD in order to insulate the multi-layer film 203 from the magnetic substrate 201 A.
- multi-layer film 203 was formed as follows. For forming a TMR element, layers of NiFe(6)/Co(1)/Al(0.4) were formed, and the resultant laminate was oxidized for 1 minute at 200 Torr in an oxygen atmosphere. A layer of Al(0.3) was formed, and then layers of CoFe(2.5)/PtMn(20)/Ta(3)/Pt(20) were formed.
- the magnetic head 400 shown in FIG. 9 was produced.
- the magnetic head 400 includes the multi-layer film 203 , which is a part of a TMR element or a GMR element.
- the TMR element causes an electric current to flow vertically to the surfaces of the layers thereof.
- the GMR element causes an electric current to flow parallel to the surfaces of the layers thereof.
- a Conventional ferrite head having a structure similar to that of the magnetic head 400 except for having no multi-layer film was produced.
- the conventional ferrite head was wound around by 10 turns of wire passing through a yoke window.
- the magnetic head 400 and the conventional magnetic head were tested for reproduction characteristics of a magnetic head coated with a DLC film. Both magnetic heads had a magnetic gap of 200 nm.
- the conventional magnetic head had a bit error rate of 10 ⁇ 5 .
- the magnetic head 400 according to the present invention had a bit error rate of 10 ⁇ 7 , which is smaller than that of the conventional magnetic head.
- the magnetic head 400 exhibited superior anti-abrasion characteristics to that of the conventional magnetic head.
- a surface of the magnetic head 300 facing the magnetic tape may be coated with a DLC film.
- the present invention provides a magneto-resistive element, a magnetic head and a magnetic recording and reproduction apparatus having superb anti-abrasion characteristics and head characteristics by providing the magneto-resistive element on a magnetic substrate.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Hall/Mr Elements (AREA)
- Magnetic Heads (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/441,794 US6798620B2 (en) | 2000-11-15 | 2003-05-20 | Magneto-resistive element, magnetic head, and magnetic recording and reproduction apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-348862 | 2000-11-15 | ||
JP2000348862 | 2000-11-15 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/441,794 Division US6798620B2 (en) | 2000-11-15 | 2003-05-20 | Magneto-resistive element, magnetic head, and magnetic recording and reproduction apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020044391A1 true US20020044391A1 (en) | 2002-04-18 |
Family
ID=18822365
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/007,454 Abandoned US20020044391A1 (en) | 2000-11-15 | 2001-11-08 | Magneto-resistive element magnetic head, and magnetic recording and reproduction apparatus |
US10/441,794 Expired - Fee Related US6798620B2 (en) | 2000-11-15 | 2003-05-20 | Magneto-resistive element, magnetic head, and magnetic recording and reproduction apparatus |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/441,794 Expired - Fee Related US6798620B2 (en) | 2000-11-15 | 2003-05-20 | Magneto-resistive element, magnetic head, and magnetic recording and reproduction apparatus |
Country Status (2)
Country | Link |
---|---|
US (2) | US20020044391A1 (zh) |
CN (1) | CN1223998C (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030223157A1 (en) * | 2002-06-03 | 2003-12-04 | Seagate Technology Llc | Side flux guide for current perpendicular to plane reader |
US20050222850A1 (en) * | 2004-04-02 | 2005-10-06 | International Business Machines Corporation | Business Practices Alignment Methods |
US20110063756A1 (en) * | 2007-06-20 | 2011-03-17 | Seagate Technology Llc | Magnetic write device with a cladded write assist element |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7446987B2 (en) * | 2004-12-17 | 2008-11-04 | Headway Technologies, Inc. | Composite hard bias design with a soft magnetic underlayer for sensor applications |
US7515388B2 (en) * | 2004-12-17 | 2009-04-07 | Headway Technologies, Inc. | Composite hard bias design with a soft magnetic underlayer for sensor applications |
US7616411B2 (en) * | 2006-03-28 | 2009-11-10 | Hitachi Global Storage Technologies Netherlands B.V. | Current perpendicular to plane (CPP) magnetoresistive sensor having a flux guide structure and synthetic free layer |
US9196270B1 (en) | 2006-12-07 | 2015-11-24 | Western Digital (Fremont), Llc | Method for providing a magnetoresistive element having small critical dimensions |
US8316527B2 (en) * | 2008-04-01 | 2012-11-27 | Western Digital (Fremont), Llc | Method for providing at least one magnetoresistive device |
US8349195B1 (en) | 2008-06-27 | 2013-01-08 | Western Digital (Fremont), Llc | Method and system for providing a magnetoresistive structure using undercut free mask |
EP3319134B1 (en) * | 2016-11-02 | 2021-06-09 | IMEC vzw | An sot-stt mram device and a method of forming an mtj |
JP7482046B2 (ja) * | 2021-01-04 | 2024-05-13 | 株式会社東芝 | 磁気センサ及び検査装置 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07134804A (ja) | 1993-09-17 | 1995-05-23 | Fujitsu Ltd | 記録再生装置及び記録再生方法 |
US5634259A (en) | 1994-03-17 | 1997-06-03 | Fujitsu Limited | Method of manufacturing a magnetic head |
US5594608A (en) | 1994-06-22 | 1997-01-14 | Storage Technology Corporation | Magnetic tape head with a high saturation flux density magnetic pole interposed between a nonmagnetic closure section and a magnetic ferrite substrate |
US5493467A (en) | 1994-12-27 | 1996-02-20 | International Business Machines Corporation | Yoke spin valve MR read head |
US5867350A (en) | 1995-03-29 | 1999-02-02 | Sony Corporation | Magneto-resistance effect head with insulated bias conductor embedded in shield groove |
US6038106A (en) | 1995-05-10 | 2000-03-14 | International Business Machines Corporation | Piggyback magneto-resistive read/write tape head with optimized process for same gap read/write |
US5753092A (en) | 1996-08-26 | 1998-05-19 | Velocidata, Inc. | Cylindrical carriage sputtering system |
EP0897022B1 (en) | 1996-11-20 | 2008-04-02 | Kabushiki Kaisha Toshiba | Sputtering target |
JPH10162320A (ja) | 1996-11-26 | 1998-06-19 | Nec Corp | 磁気抵抗効果型ヘッドおよびその使用方法 |
DE69820524T2 (de) | 1997-05-09 | 2004-09-23 | Kabushiki Kaisha Toshiba, Kawasaki | Magnetisches Element und Magnetkopf oder Speicherelement die dieses Element verwenden |
JPH1125425A (ja) | 1997-06-27 | 1999-01-29 | Sony Corp | 磁気ヘッド |
JP2001507806A (ja) | 1997-10-29 | 2001-06-12 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | スピン−トンネル接合から成る磁界センサー |
US6313973B1 (en) | 1998-06-30 | 2001-11-06 | Kabushiki Kaisha Toshiba | Laminated magnetorestrictive element of an exchange coupling film, an antiferromagnetic film and a ferromagnetic film and a magnetic disk drive using same |
US6052263A (en) | 1998-08-21 | 2000-04-18 | International Business Machines Corporation | Low moment/high coercivity pinned layer for magnetic tunnel junction sensors |
US6275363B1 (en) | 1999-07-23 | 2001-08-14 | International Business Machines Corporation | Read head with dual tunnel junction sensor |
US6519124B1 (en) | 2000-03-27 | 2003-02-11 | Tdk Corporation | Magnetic tunnel junction read head using a hybrid, low-magnetization flux guide |
JP3462832B2 (ja) * | 2000-04-06 | 2003-11-05 | 株式会社日立製作所 | 磁気抵抗センサ並びにこれを用いた磁気ヘッド及び磁気記録再生装置 |
US6381106B1 (en) | 2000-04-12 | 2002-04-30 | International Business Machines Corporation | Top spin valve sensor that has a free layer structure with a cobalt iron boron (cofeb) layer |
JP3474523B2 (ja) * | 2000-06-30 | 2003-12-08 | Tdk株式会社 | 薄膜磁気ヘッドおよびその製造方法 |
US6680827B2 (en) * | 2000-08-07 | 2004-01-20 | Tdk Corporation | Dual spin valve CPP MR with flux guide between free layers thereof |
US6680830B2 (en) * | 2001-05-31 | 2004-01-20 | International Business Machines Corporation | Tunnel valve sensor and flux guide with improved flux transfer therebetween |
US6631055B2 (en) * | 2001-06-08 | 2003-10-07 | International Business Machines Corporation | Tunnel valve flux guide structure formed by oxidation of pinned layer |
US6657825B2 (en) * | 2001-08-02 | 2003-12-02 | International Business Machines Corporation | Self aligned magnetoresistive flux guide read head with exchange bias underneath free layer |
-
2001
- 2001-11-08 US US10/007,454 patent/US20020044391A1/en not_active Abandoned
- 2001-11-15 CN CNB011374535A patent/CN1223998C/zh not_active Expired - Fee Related
-
2003
- 2003-05-20 US US10/441,794 patent/US6798620B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030223157A1 (en) * | 2002-06-03 | 2003-12-04 | Seagate Technology Llc | Side flux guide for current perpendicular to plane reader |
US6801410B2 (en) * | 2002-06-03 | 2004-10-05 | Seagate Technology Llc | Side flux guide for current perpendicular to plane magnetoresistive transducer |
US20050222850A1 (en) * | 2004-04-02 | 2005-10-06 | International Business Machines Corporation | Business Practices Alignment Methods |
US20110063756A1 (en) * | 2007-06-20 | 2011-03-17 | Seagate Technology Llc | Magnetic write device with a cladded write assist element |
US8582236B2 (en) * | 2007-06-20 | 2013-11-12 | Seagate Technology Llc | Magnetic write device with a cladded write assist element |
Also Published As
Publication number | Publication date |
---|---|
CN1353414A (zh) | 2002-06-12 |
CN1223998C (zh) | 2005-10-19 |
US6798620B2 (en) | 2004-09-28 |
US20030193758A1 (en) | 2003-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6034847A (en) | Apparatus and thin film magnetic head with magnetic membrane layers of different resistivity | |
US6233116B1 (en) | Thin film write head with improved laminated flux carrying structure and method of fabrication | |
US7072155B2 (en) | Magnetoresistive sensor including magnetic domain control layers having high electric resistivity, magnetic head and magnetic disk apparatus | |
US6141190A (en) | Magnetoresistive effect head | |
US6190764B1 (en) | Inductive write head for magnetic data storage media | |
US6466416B1 (en) | Magnetic head, method for making the same and magnetic recording/reproducing device using the same | |
US6903906B2 (en) | Magnetic head with a lamination stack to control the magnetic domain | |
US20010014001A1 (en) | Magnetoresistance effect magnetic head and magnetic effect reproducing apparatus | |
JPH05135331A (ja) | 磁気デイスク装置 | |
US6798620B2 (en) | Magneto-resistive element, magnetic head, and magnetic recording and reproduction apparatus | |
US7012790B2 (en) | Magnetic head with yoke and multiple magnetic layers | |
KR100502752B1 (ko) | 자기 저항 소자 , 자기 저항 헤드, 및 자기기록/재생 장치 | |
US6731478B2 (en) | Magnetoresistive effect head | |
US20090002899A1 (en) | Magnetoresistive element, magnetoresistive head, and magnetic disk apparatus | |
JP3570677B2 (ja) | 磁気ヘッド | |
JP2001195706A (ja) | 記録ヘッド、記録ヘッドの製造方法、及び複合ヘッド並びに磁気記録再生装置 | |
JPH10241125A (ja) | 薄膜磁気ヘッド及び記録再生分離型磁気ヘッドとそれを用いた磁気記憶再生装置 | |
US6940700B2 (en) | Magnetic head and magnetic reproducing apparatus | |
JP3934881B2 (ja) | 垂直通電型磁気抵抗効果素子、垂直通電型磁気抵抗効果ヘッドおよび磁気記録再生装置 | |
JP2005286223A (ja) | 磁気抵抗効果素子および再生ヘッド | |
JPH07153022A (ja) | 薄膜磁気ヘッド | |
JP2003223705A (ja) | 薄膜磁気ヘッド、薄膜磁気ヘッド組立体及び記憶装置 | |
JP2005038556A (ja) | 薄膜磁気ヘッド、hga及び磁気記録装置 | |
JP2000036110A (ja) | 薄膜磁気ヘッドおよびその製造方法 | |
JP2002050006A (ja) | 複合型磁気ヘッド |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIRAMOTO, MASAYOSHI;MATSUKAWA, NOZOMU;ODAGAWA, AKIHIRO;AND OTHERS;REEL/FRAME:012367/0315;SIGNING DATES FROM 20011029 TO 20011030 |
|
AS | Assignment |
Owner name: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUGITA, YASUNARI;REEL/FRAME:013614/0596 Effective date: 20021118 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |