US20020036517A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
US20020036517A1
US20020036517A1 US09/812,823 US81282301A US2002036517A1 US 20020036517 A1 US20020036517 A1 US 20020036517A1 US 81282301 A US81282301 A US 81282301A US 2002036517 A1 US2002036517 A1 US 2002036517A1
Authority
US
United States
Prior art keywords
address
data
repeater
transmission destination
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/812,823
Other versions
US6384633B1 (en
Inventor
Hiroyuki Shiraki
Yusuke Shiozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Assigned to FUJITSU LIMITED reassignment FUJITSU LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHIOZAKI, YUSUKE, SHIRAKI, HIROYUKI
Publication of US20020036517A1 publication Critical patent/US20020036517A1/en
Application granted granted Critical
Publication of US6384633B1 publication Critical patent/US6384633B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/20Repeater circuits; Relay circuits
    • H04L25/24Relay circuits using discharge tubes or semiconductor devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4004Coupling between buses
    • G06F13/4027Coupling between buses using bus bridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates to a semiconductor device having a repeater performing buffering operation at some midpoint in a multiplex bus in which an address and data are transmitted by a time division method.
  • FIG. 1 is a circuit diagram showing a part of an example of a conventional semiconductor device.
  • 1 indicates a CPU which outputs addresses and data by the time division method
  • 2 indicates a multiplex bus which transmits the address and data which are output from the CPU 1 by the time division method
  • 3 indicates a repeater which includes only a buffer circuit which is provided at some midpoint in the multiplex bus 2
  • 4 - 1 indicates a data transmission destination among a plurality of data transmission destinations which are connected to a part 2 - 1 of the multiplex bus 2 which is placed ahead of the repeater 3
  • 4 - 2 indicates a data transmission destination among a plurality of data transmission destinations which are connected to a part 2 - 2 of the multiplex bus 4 - 2 which is placed before the repeater 3 .
  • FIGS. 2A and 2B show circuit diagrams for explaining the operation of the conventional semiconductor device shown in FIG. 1.
  • an address ADDRESS 1 which indicates the data transmission destination 4 - 1 and data DATA 1 to be transmitted to the data transmission destination 4 - 1 are sent from the CPU 1 by the time division method
  • the address ADDRESS 1 and the data DATA 1 are sent to the data transmission destination 4 - 1 through the multiplex bus part 2 - 2 , the repeater 3 and the multiplex bus part 2 - 1 shown in FIG. 2A.
  • the repeater 3 transmits the address and the data to the multiplex bus part 2 - 1 by the time division method.
  • the repeater performs unnecessary operation that it changes logic values on the part 2 - 1 from an address value to a data value. Therefore, power is consumed uselessly.
  • a semiconductor device having a repeater performing buffering operation at some midpoint in a multiplex bus over which an address and data are transmitted by a time division method, the repeater including:
  • the repeater when the address does not indicate the data transmission destination which is placed ahead of the repeater, the repeater transmits only the address.
  • the operation in which the logic values on the multiplex bus which is located ahead of the repeater are changed from an address value to a data value is not performed.
  • power conventionally consumed can be decreased in the present invention.
  • FIG. 1 is a circuit diagram showing a part of an example of a conventional semiconductor device
  • FIGS. 2A and 2B are circuit diagrams for explaining the operation of the conventional semiconductor device shown in FIG. 1;
  • FIG. 3 is a circuit diagram showing a part of an embodiment of the present invention.
  • FIG. 4 is a circuit diagram showing the configuration of a repeater provided in the embodiment of the present invention.
  • FIG. 5 is a timing chart for explaining the operation of the embodiment of the present invention.
  • FIGS. 6A and 6B are circuit diagrams for explaining the operation of the embodiment of the present invention.
  • FIG. 3 is a circuit diagram showing a part of an embodiment of the present invention.
  • a repeater 5 is provided, and the CPU 1 applies an address/data switch signal to the repeater 5 .
  • the circuit configuration of the repeater 5 is different from that of the repeater 3 which is provided in the conventional semiconductor device shown in FIG. 1 and has only the buffer circuit.
  • the other parts of the circuit of this embodiment is the same as the conventional semiconductor device shown in FIG. 1.
  • FIG. 4 is a circuit diagram showing the configuration of the repeater 5 .
  • 6 indicates a buffer circuit which performs buffering of an address and data which are transmitted by the time division method on the multiplex bus part 2 - 2
  • 7 indicates an AND circuit which performs AND operation between a clock signal CLK and the address/data switch signal
  • 8 indicates a D flip-flop circuit which latches the address in the address and data output from the buffer circuit 6 .
  • the D flip-flop circuit 8 is configured such that an output from the buffer circuit 6 is applied to a data input terminal group D and an output from the AND circuit 7 is applied to the clock input terminal CK.
  • 9 indicates an address decoder.
  • the address output from a positive phase output terminal group Q of the D flip-flop circuit 8 is applied to the address decoder 9 , and the address decoder 9 outputs the applied address to an output terminal group OUT, decodes the applied address and outputs the decoded address as a select signal SEL.
  • the select signal SEL is set at H level when the applied address indicates the data transmission destination (for example, the data transmission destination 4 - 1 ) connected to the multiplex bus part 2 - 1 which is ahead of the repeater 5 .
  • the select signal SEL is set at L level.
  • [0022] 10 indicates a selector.
  • the output from the buffer circuit 6 is applied to an input terminal group IN-A for a signal to be selected of the selector 10
  • the address output from the address decoder 9 is applied to another input terminal group IN-B for a signal to be selected of the selector 10 .
  • the select signal SEL is at H level
  • the selector 10 selects the output from the buffer 6 applied to the input terminal group IN-A.
  • the select signal SEL is at L level
  • the output from the address decoder 9 applied to the input terminal group IN-B is selected.
  • FIG. 5 is a timing chart for explaining the operation of the embodiment of the present invention.
  • CPU 1 outputs, to the multiplex bus part 2 - 2 , ADDRESS 1 (an address indicating the data transmission destination 4 - 1 ), DATA 1 (data to be sent to the data transmission destination 4 - 1 ), ADDRESS 1 , DATA 1 , ADDRESS 2 (an address indicating the data transmission destination 4 - 2 ), DATA 2 (data to be sent to the data transmission destination 4 - 2 ), ADDRESS 2 and DATA 2 in this order.
  • the output data of the buffer circuit 6 is shown in F of FIG. 5.
  • ADDRESS (i) indicates an ith address cycle period
  • DATA (i) indicates an ith data cycle period.
  • the address/data switch signal is set at H level during periods when an address is output from the CPU 1 (address cycle period), and the address/data switch signal is set at L level during periods when data is output from the CPU 1 (data cycle period).
  • the clock signal CLK is set at H level in the first half of the address cycle period and in the first half of the data cycle period, and the clock signal CLK is set at L level in the latter half of the address cycle period and in the latter half of the data cycle period.
  • the output of the AND circuit 7 is at H level in the first half of the address cycle period, and is at L level in the latter half of the address cycle period and in the data cycle period.
  • the address output from the positive phase output terminal group Q of the D flip-flop circuit 8 that is, the address output from the output terminal group OUT of the address decoder 9 is ADDRESS 1 in the first address cycle period, in the first data cycle period, in the second address cycle period and in the second data cycle period, and is ADDRESS 2 in the third address cycle period, in the third data cycle period, in the fourth address cycle period and in the fourth data cycle period.
  • the select signal SEL is at H level during a period when ADDRESS 1 is output from the address decoder 9 and is at L level during a period when ADDRESS 2 is output from the address decoder 9 . Therefore, the output from the selector 10 , that is, the signal on the multiplex bus part 2 - 1 becomes ADDRESS 1 in the first address cycle period, DATA 1 in the first data cycle period, ADDRESS 1 in the second address cycle period, DATA 1 in the second data cycle period, and ADDRESS 2 in the third address cycle period, in the third data cycle period, in the fourth address cycle period and in the fourth data cycle period.
  • the address ADDRESS 1 indicating the data transmission destination 4 - 1 and the data DATA 1 to be sent to the data transmission destination 4 - 1 are output from the CPU 1 by the time division method, the address ADDRESS 1 and the data DATA 1 are transmitted to the data transmission destination 4 - 1 via the multiplex bus part 2 - 2 , the repeater 5 and the multiplex bus part 2 - 1 .
  • the address ADDRESS 2 indicating the data transmission destination 4 - 2 and the data DATA 2 to be sent to the data transmission destination 4 - 2 are output from the CPU 1 by the time division method, the address ADDRESS 2 and the data DATA 2 are transmitted to the data transmission destination 4 - 2 via the multiplex bus part 2 - 2 .
  • the address ADDRESS 2 is transmitted over the multiplex bus part 2 - 1 , however, the data DATA 2 is not transmitted over the part 2 - 1 .
  • the address and the data are transmitted to the designated data transmission destination through the multiplex bus part 2 - 2 .
  • the address is transmitted over the multiplex bus part 2 - 1 , however, the data is not transmitted to the part 2 - 1 .
  • the repeater 5 transmits only the address to the part 2 - 1 . Therefore, the operation of changing a logic value on the part 2 - 1 ahead of the repeater 5 from an address value to a data value is not performed. As a result, power consumption can be decreased.
  • the repeater when the address does not indicate the data transmission destination which is ahead of the repeater, the repeater transmits only the address. Thus, the operation of changing the logic value on the multiplex bus part which exists ahead of the repeater from an address value to a data value is not performed. As a result, power consumption can be decreased.

Abstract

A semiconductor device is provided. The semiconductor device includes a repeater performing buffering operation at some midpoint in a multiplex bus over which an address and data are transmitted by a time division method. The repeater includes a part which transmits only an address when the address does not indicate a data transmission destination which is located ahead of the repeater.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a semiconductor device having a repeater performing buffering operation at some midpoint in a multiplex bus in which an address and data are transmitted by a time division method. [0002]
  • 2. Description of the Related Art [0003]
  • FIG. 1 is a circuit diagram showing a part of an example of a conventional semiconductor device. In FIG. 1, 1 indicates a CPU which outputs addresses and data by the time division method, [0004] 2 indicates a multiplex bus which transmits the address and data which are output from the CPU 1 by the time division method, 3 indicates a repeater which includes only a buffer circuit which is provided at some midpoint in the multiplex bus 2, 4-1 indicates a data transmission destination among a plurality of data transmission destinations which are connected to a part 2-1 of the multiplex bus 2 which is placed ahead of the repeater 3, 4-2 indicates a data transmission destination among a plurality of data transmission destinations which are connected to a part 2-2 of the multiplex bus 4-2 which is placed before the repeater 3.
  • FIGS. 2A and 2B show circuit diagrams for explaining the operation of the conventional semiconductor device shown in FIG. 1. When an [0005] address ADDRESS 1 which indicates the data transmission destination 4-1 and data DATA 1 to be transmitted to the data transmission destination 4-1 are sent from the CPU 1 by the time division method, the address ADDRESS 1 and the data DATA 1 are sent to the data transmission destination 4-1 through the multiplex bus part 2-2, the repeater 3 and the multiplex bus part 2-1 shown in FIG. 2A.
  • When an [0006] address ADDRESS 2 which indicates the data transmission destination 4-2 and data DATA 2 to be transmitted to the data transmission destination 4-2 are sent from the CPU 1 by the time-division method, the address ADDRESS 2 and the data DATA 2 are sent to the data transmission destination 4-2 through the multiplex bus part 2-2. Then, in this case, since the repeater 3 is configured only by the buffer circuit, the address ADDRESS 2 and the data DATA 2 are also sent to the multiplex bus part 2-1 as shown in FIG. 2B.
  • As mentioned above, according to the conventional semiconductor device shown in FIG. 1, even when the address indicating the data transmission destination which is connected to the multiplexed bus part [0007] 2-2 which is before the repeater 3 and the data are output from the CPU 1, the repeater 3 transmits the address and the data to the multiplex bus part 2-1 by the time division method. Thus, there is a problem in that the repeater performs unnecessary operation that it changes logic values on the part 2-1 from an address value to a data value. Therefore, power is consumed uselessly.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a semiconductor device which can decrease power consumed when an address does not indicate a data transmission destination which is placed ahead of the repeater. [0008]
  • The above object is achieved by a semiconductor device having a repeater performing buffering operation at some midpoint in a multiplex bus over which an address and data are transmitted by a time division method, the repeater including: [0009]
  • a part which transmits only an address when the address does not indicate a data transmission destination which is located ahead of the repeater. [0010]
  • According to the present invention, when the address does not indicate the data transmission destination which is placed ahead of the repeater, the repeater transmits only the address. Thus, the operation in which the logic values on the multiplex bus which is located ahead of the repeater are changed from an address value to a data value is not performed. Thus, power conventionally consumed can be decreased in the present invention.[0011]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other objects, features and advantages of the present invention will become more apparent from the following detailed description when read in conjunction with the accompanying drawings, in which: [0012]
  • FIG. 1 is a circuit diagram showing a part of an example of a conventional semiconductor device; [0013]
  • FIGS. 2A and 2B are circuit diagrams for explaining the operation of the conventional semiconductor device shown in FIG. 1; [0014]
  • FIG. 3 is a circuit diagram showing a part of an embodiment of the present invention; [0015]
  • FIG. 4 is a circuit diagram showing the configuration of a repeater provided in the embodiment of the present invention; [0016]
  • FIG. 5 is a timing chart for explaining the operation of the embodiment of the present invention; [0017]
  • FIGS. 6A and 6B are circuit diagrams for explaining the operation of the embodiment of the present invention.[0018]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 3 is a circuit diagram showing a part of an embodiment of the present invention. In the embodiment of the present invention, a [0019] repeater 5 is provided, and the CPU 1 applies an address/data switch signal to the repeater 5. The circuit configuration of the repeater 5 is different from that of the repeater 3 which is provided in the conventional semiconductor device shown in FIG. 1 and has only the buffer circuit. The other parts of the circuit of this embodiment is the same as the conventional semiconductor device shown in FIG. 1.
  • FIG. 4 is a circuit diagram showing the configuration of the [0020] repeater 5. In FIG. 4, 6 indicates a buffer circuit which performs buffering of an address and data which are transmitted by the time division method on the multiplex bus part 2-2, 7 indicates an AND circuit which performs AND operation between a clock signal CLK and the address/data switch signal, 8 indicates a D flip-flop circuit which latches the address in the address and data output from the buffer circuit 6. The D flip-flop circuit 8 is configured such that an output from the buffer circuit 6 is applied to a data input terminal group D and an output from the AND circuit 7 is applied to the clock input terminal CK.
  • In addition, [0021] 9 indicates an address decoder. The address output from a positive phase output terminal group Q of the D flip-flop circuit 8 is applied to the address decoder 9, and the address decoder 9 outputs the applied address to an output terminal group OUT, decodes the applied address and outputs the decoded address as a select signal SEL. The select signal SEL is set at H level when the applied address indicates the data transmission destination (for example, the data transmission destination 4-1) connected to the multiplex bus part 2-1 which is ahead of the repeater 5. When the applied address indicates the data transmission destination (for example, the data transmission destination 4-2) connected to the multiplex bus part 2-2 which is before the repeater 5, the select signal SEL is set at L level.
  • 10 indicates a selector. The output from the [0022] buffer circuit 6 is applied to an input terminal group IN-A for a signal to be selected of the selector 10, and the address output from the address decoder 9 is applied to another input terminal group IN-B for a signal to be selected of the selector 10. When the select signal SEL is at H level, the selector 10 selects the output from the buffer 6 applied to the input terminal group IN-A. When the select signal SEL is at L level, the output from the address decoder 9 applied to the input terminal group IN-B is selected.
  • FIG. 5 is a timing chart for explaining the operation of the embodiment of the present invention. As shown in A of FIG. 5, [0023] CPU 1 outputs, to the multiplex bus part 2-2, ADDRESS 1 (an address indicating the data transmission destination 4-1), DATA 1 (data to be sent to the data transmission destination 4-1), ADDRESS 1, DATA 1, ADDRESS 2 (an address indicating the data transmission destination 4-2), DATA 2 (data to be sent to the data transmission destination 4-2), ADDRESS 2 and DATA 2 in this order. In this case, the output data of the buffer circuit 6 is shown in F of FIG. 5. In FIG. 5, ADDRESS (i) indicates an ith address cycle period, and DATA (i) indicates an ith data cycle period.
  • As shown in B of FIG. 5, the address/data switch signal is set at H level during periods when an address is output from the CPU [0024] 1 (address cycle period), and the address/data switch signal is set at L level during periods when data is output from the CPU 1 (data cycle period). As shown in C of FIG. 3, the clock signal CLK is set at H level in the first half of the address cycle period and in the first half of the data cycle period, and the clock signal CLK is set at L level in the latter half of the address cycle period and in the latter half of the data cycle period.
  • As a result, as shown in D of FIG. 5, the output of the [0025] AND circuit 7 is at H level in the first half of the address cycle period, and is at L level in the latter half of the address cycle period and in the data cycle period. As shown in G of FIG. 5, the address output from the positive phase output terminal group Q of the D flip-flop circuit 8, that is, the address output from the output terminal group OUT of the address decoder 9 is ADDRESS 1 in the first address cycle period, in the first data cycle period, in the second address cycle period and in the second data cycle period, and is ADDRESS 2 in the third address cycle period, in the third data cycle period, in the fourth address cycle period and in the fourth data cycle period.
  • As shown in E of FIG. 5, the select signal SEL is at H level during a period when ADDRESS [0026] 1 is output from the address decoder 9 and is at L level during a period when ADDRESS 2 is output from the address decoder 9. Therefore, the output from the selector 10, that is, the signal on the multiplex bus part 2-1 becomes ADDRESS 1 in the first address cycle period, DATA 1 in the first data cycle period, ADDRESS 1 in the second address cycle period, DATA 1 in the second data cycle period, and ADDRESS 2 in the third address cycle period, in the third data cycle period, in the fourth address cycle period and in the fourth data cycle period.
  • Accordingly, in the embodiment of the present invention, as shown in FIG. 6A, when the address ADDRESS [0027] 1 indicating the data transmission destination 4-1 and the data DATA 1 to be sent to the data transmission destination 4-1 are output from the CPU 1 by the time division method, the address ADDRESS 1 and the data DATA 1 are transmitted to the data transmission destination 4-1 via the multiplex bus part 2-2, the repeater 5 and the multiplex bus part 2-1.
  • In addition, as shown in FIG. 6B, when the address ADDRESS [0028] 2 indicating the data transmission destination 4-2 and the data DATA 2 to be sent to the data transmission destination 4-2 are output from the CPU 1 by the time division method, the address ADDRESS 2 and the data DATA 2 are transmitted to the data transmission destination 4-2 via the multiplex bus part 2-2. In this case, as shown in FIG. 6B, the address ADDRESS 2 is transmitted over the multiplex bus part 2-1, however, the data DATA 2 is not transmitted over the part 2-1.
  • That is, in the embodiment of the present invention, when an address indicating a data transmission destination connected to the multiplex bus part [0029] 2-1 which is placed ahead of the repeater 5 and data are output from the CPU 1 by the time division method, the address and the data are transmitted to the designated data transmission destination through the multiplex bus part 2-2, the repeater 5 and the multiplex bus part 2-1.
  • In addition, when an address indicating a data transmission destination connected to the multiplex bus part [0030] 2-2 which is before the repeater 5 and data are output from the CPU 1 by the time division method, the address and the data are transmitted to the designated data transmission destination through the multiplex bus part 2-2. In this case, the address is transmitted over the multiplex bus part 2-1, however, the data is not transmitted to the part 2-1.
  • Thus, according to the embodiment of the present invention, when an address output from the [0031] CPU 1 does not indicate the part 2-1 which is ahead of the repeater 5, the repeater 5 transmits only the address to the part 2-1. Therefore, the operation of changing a logic value on the part 2-1 ahead of the repeater 5 from an address value to a data value is not performed. As a result, power consumption can be decreased.
  • As mentioned above, according to the present invention, when the address does not indicate the data transmission destination which is ahead of the repeater, the repeater transmits only the address. Thus, the operation of changing the logic value on the multiplex bus part which exists ahead of the repeater from an address value to a data value is not performed. As a result, power consumption can be decreased. [0032]
  • The present invention is not limited to the specifically disclosed embodiments, and variations and modifications may be made without departing from the scope of the invention. [0033]

Claims (6)

What is claimed is:
1. A semiconductor device having a repeater performing buffering operation at some midpoint in a multiplex bus over which an address and data are transmitted by a time division method, said repeater comprising:
a part which transmits only said address when said address does not indicate a data transmission destination which is located ahead of said repeater.
2. The semiconductor device as claimed in claim 1, said part comprising:
an address decoder which decodes said address, and outputs said address and a signal determined by said address; and
a selector which receives said address and said signal, and outputs said address according to said signal.
3. The semiconductor device as claimed in claim 2, wherein said address decoder determines a level of said signal according to a data transmission destination indicated by said address.
4. A semiconductor device having a repeater performing buffering operation at some midpoint in a multiplex bus over which an address and data are transmitted by a time division method, said repeater comprising:
a buffer which outputs said address and said data;
an address decoder which decodes said address, and outputs said address and a signal determined by said address; and
a selector which receives output data from said buffer, said address and said signal from said address decoder, and selects from among said output data and said address according to said signal.
5. The semiconductor device as claimed in claim 4, wherein said address decoder sets said signal at a level when said address does not indicate a data transmission destination which is located ahead of said repeater, and
said selector selects said address output from said address decoder from among said output data and said address when said signal is set at said level.
6. The semiconductor device as claimed in claim 4, said repeater further comprising:
a latch which receives said output data from said buffer, latches said address and outputs said address to said address decoder.
US09/812,823 2000-09-28 2001-03-21 Semiconductor device Expired - Fee Related US6384633B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000295381A JP2002108806A (en) 2000-09-28 2000-09-28 Semiconductor device
JP2000-295381 2000-09-28

Publications (2)

Publication Number Publication Date
US20020036517A1 true US20020036517A1 (en) 2002-03-28
US6384633B1 US6384633B1 (en) 2002-05-07

Family

ID=18777815

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/812,823 Expired - Fee Related US6384633B1 (en) 2000-09-28 2001-03-21 Semiconductor device

Country Status (2)

Country Link
US (1) US6384633B1 (en)
JP (1) JP2002108806A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9389953B2 (en) 2013-03-04 2016-07-12 Samsung Electronics Co., Ltd. Semiconductor memory device and system conducting parity check and operating method of semiconductor memory device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3059737B2 (en) * 1989-12-25 2000-07-04 シャープ株式会社 Semiconductor storage device
JPH06332846A (en) 1993-05-24 1994-12-02 Fuji Xerox Co Ltd Bus repeater
JP3276895B2 (en) * 1997-01-14 2002-04-22 矢崎総業株式会社 Transmission device, reception device, communication device, communication method, and communication system

Also Published As

Publication number Publication date
US6384633B1 (en) 2002-05-07
JP2002108806A (en) 2002-04-12

Similar Documents

Publication Publication Date Title
KR100434833B1 (en) Serial/parallel conversion circuit, data transfer control device and electronic equipment
US7586337B2 (en) Circuit for switching between two clock signals independently of the frequency of the clock signals
US8369443B2 (en) Single-wire asynchronous serial interface
US7082489B2 (en) Data memory controller that supports data bus invert
US20020075173A1 (en) Parallel in serial out circuit for use in data communication system
US6163545A (en) System and method for data transfer across multiple clock domains
US20060277426A1 (en) Memory device, use thereof and method for synchronizing a data word
US6384633B1 (en) Semiconductor device
JP2002182777A (en) Clock switching circuit
US6744837B1 (en) Clock switching circuit
US20060244483A1 (en) Distribution of signals throughout a spine of an integrated circuit
US4887083A (en) Bipolar with eight-zeros substitution and bipolar with six-zeros substitution coding circuit
JPH05120219A (en) Data transmitting circuit
KR100292622B1 (en) Semiconductor memory device and method for coding signal of the same
KR100314675B1 (en) Apparatus for bi-phase in digital television
KR100362911B1 (en) The video decoding processor using huffman code
KR100548533B1 (en) Packet command driving type memory
JP2003196972A (en) Memory device
KR19980039139A (en) Output circuit of semiconductor device
AU7433898A (en) Method and arrangement for connecting processor to asic
KR19990048771A (en) Programming method in word mode in flash memory
JP2004145700A (en) Data transfer mechanism
JP2001167082A (en) Synchronous integration circuit
JPS6143852A (en) Communication system of loop type time division multiplex dataway
JP2004112241A (en) Lsi

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJITSU LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHIRAKI, HIROYUKI;SHIOZAKI, YUSUKE;REEL/FRAME:011629/0512

Effective date: 20010314

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100507