US20020033247A1 - Use of PCMs in heat sinks for electronic components - Google Patents

Use of PCMs in heat sinks for electronic components Download PDF

Info

Publication number
US20020033247A1
US20020033247A1 US09/876,227 US87622701A US2002033247A1 US 20020033247 A1 US20020033247 A1 US 20020033247A1 US 87622701 A US87622701 A US 87622701A US 2002033247 A1 US2002033247 A1 US 2002033247A1
Authority
US
United States
Prior art keywords
heat
phase change
change material
absorbing
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/876,227
Inventor
Mark Neuschutz
Ralf Glausch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10114998A external-priority patent/DE10114998A1/en
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Assigned to MERCK PATENT GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG reassignment MERCK PATENT GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GLAUSCH, RALF, NEUSCHUETZ, MARK
Publication of US20020033247A1 publication Critical patent/US20020033247A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • H01L23/4275Cooling by change of state, e.g. use of heat pipes by melting or evaporation of solids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to the use of phase change materials in cooling devices for electrical and electronic components.
  • heat peaks or deficits often have to be avoided, i.e. temperature control must be provided. This is usually achieved using heat exchangers. In the simplest case, they may consist merely of a heat conduction plate, which dissipates the heat and releases it to the ambient air, or alternatively contain heat transfer media, which firstly transport the heat from one location or medium to another.
  • the convection at the cooling fins is almost always supported by fans.
  • Heat sinks of this type must always be designed for the most unfavorable case of high outside temperatures and full load of the component in order to avoid overheating, which would reduce the service life and reliability of the components.
  • the maximum working temperature for CPUs is between 60 and 90° C., depending on the design.
  • heat sinks In which the heat emitted by electronic components is absorbed in phase change materials, for example in the form of heat of melting, have been described (U.S. Pat. No. 4,673,030, EP 1 16503A, U.S. Pat. No. 4,446,916). These PCM heat sinks serve for short-term replacement of dissipation of the energy into the environment and cannot (and must not) be re-used.
  • Known storage media for the storage of sensible heat are, for example, water or stones/concrete or phase change materials (PCMs), such as salts, salt hydrates or mixtures thereof, or organic compounds (for example paraffin) for the storage of heat in the form of heat of melting (latent heat).
  • PCMs phase change materials
  • salts salt hydrates or mixtures thereof
  • organic compounds for example paraffin
  • the charging of a heat storage system basically requires a higher temperature than can be obtained during discharging, since a temperature difference is necessary for the transport/flow of heat.
  • the quality of the heat is dependent on the temperature at which it is available: the higher the temperature, the better the heat can be dissipated. For this reason, it is desirable for the temperature level during storage to drop as little as possible.
  • Latent heat storage therefore has the advantage over sensible heat storage that the temperature loss is restricted to the loss during heat transport from and to the storage system.
  • the storage media employed hitherto in latent heat storage systems are usually substances which have a solid-liquid phase transition in the temperature range which is essential for the use, i.e. substances which melt during use.
  • U.S. Pat. No. 5,728,316 recommends salt mixtures based on magnesium nitrate and lithium nitrate for the storage and utilization of thermal energy.
  • the heat storage here is carried out in the melt at above the melting point of 75° C.
  • phase change materials are solid-solid phase change materials. Since these substances remain solid during the entire use, there is no longer a requirement for encapsulation. Loss of the storage medium or contamination of the environment by the melt of the storage medium in latent heat storage systems can thus be excluded. This group of phase change materials is finding many new areas of application.
  • PCM heat sinks described above are not suitable for absorbing the peak output of components having an irregular output profile since they do not ensure optimized discharge of the PCM or also absorb the base load.
  • the present invention enables cooling electronic and electrical components effectively and absorbing temperature peaks.
  • the invention provides devices for cooling heat-generating electrical and electronic components having an irregular output profile, comprising a heat-conducting unit and a heat-absorbing unit which contains a phase change material (PCM).
  • PCM phase change material
  • This invention relates to devices for cooling electrical and electronic components (e.g., microprocessors in desktop and laptop computers both on the motherboard and on the graphics card, power-supply parts and other components which emit heat during operation) which have a non-uniform output profile.
  • electrical and electronic components e.g., microprocessors in desktop and laptop computers both on the motherboard and on the graphics card, power-supply parts and other components which emit heat during operation
  • Cooling devices are, for example, heat sinks.
  • Conventional heat sinks can be improved by the use of PCMs if the heat flow from the electronic component to the heat sink is not interrupted. An interruption in this sense exists if the PCM, owing to the design of the heat sink, firstly has to absorb the heat before the heat can be dissipated via the cooling fins—which results in an impairment of the performance of the heat sink for a given design.
  • PCMs in the manner according to the invention allows the use of heat sinks of lower capacity since extreme heat peaks do not have to be dissipated.
  • phase change materials are those whose phase change temperature T PC is suitably below the critical maximum temperature for the component.
  • PCMs are suitable. Suitable for use of the PCMs in a heat transfer medium are encapsulated materials or solid-solid PCMs which are insoluble in the heat transfer medium.
  • FIG. 1 represents a conventional heat sink.
  • FIGS. 2 - 5 represent various embodiments of the heat-dissipating devices according to the invention.
  • the PCM ( 4 ) is arranged in or on the heat sink ( 1 ) in such a way that significant heat flow from the CPU ( 2 ) on the support ( 3 ) to the PCM ( 4 ) only occurs if the heat sink exceeds the phase change temperature T PC of the PCM. It is thus ensured that the PCM only absorbs the output peaks.
  • PCMs are suitable for this application.
  • PCMs whose phase change temperature is between about ⁇ 100° C. and 150° C.
  • PCMs for use in electrical and electronic components, PCMs in the range of about 40° C. to 95° C. are preferred.
  • the materials can be selected from paraffins (C 20 -C 45 ), inorganic salts, salt hydrates and mixtures thereof, carboxylic acids and/or sugar alcohols. A non-limiting selection is shown in Table 1.
  • solid-solid PCMs such as diethylammonium chloride, dipropylammonium chloride, dibutylammonium chloride, dipentylammonium chloride, dihexylammonium chloride, dioctylammonium chloride, didecylammonium chloride, didodecylammonium chloride, dioctadecylammonium chloride, diethylammonium bromide, dipropylammonium bromide, dibutylammonium bromide, dipentylammonium bromide, dihexylammonium bromide, dioctylammonium bromide, didecylammonium bromide, didodecylammonium bromide, dioctadecylammonium bromide, diethylammonium nitrate, dipropylammonium nitrate, dibutylam
  • Particularly suitable PCMs for use in electrical and electronic components are those whose T PC is between 40° C. and 95° C., such as, for example, didecylammonium chloride, didodecylammonium chloride, dioctadecylammonium chloride, diethylammonium bromide, didecylammonium bromide, didodecylammonium bromide, dioctadecylammonium bromide, diethylammonium nitrate, dioctylammonium nitrate, didecylammonium nitrate and didodecylammonium nitrate.
  • didecylammonium chloride didodecylammonium chloride, dioctadecylammonium chloride, diethylammonium bromide, didecylammonium bromide, didodecylammonium bromide
  • the PCMs preferably comprise at least one auxiliary.
  • the at least one auxiliary is preferably a substance or composition having good thermal conductivity, in particular a metal powder, metal granules or graphite.
  • the heat storage material is preferably in the form of an intimate mixture with the auxiliary, the entire composition preferably being in the form of either a loose bed or moldings.
  • moldings here is taken to mean, in particular, all structures which can be produced by compaction methods, such as pelleting, tabletting, roll compaction or extrusion.
  • the moldings here can adopt a very wide variety of spatial shapes, such as, for example, spherical, cubic or cuboid shapes.
  • the mixtures or moldings described here may comprise paraffin as an additional auxiliary.
  • Paraffin is employed in particular if intimate contact between the heat storage composition and a component is to be established during use.
  • latent heat storage systems can be installed with a precise fit in this way for the cooling of electronic components.
  • the handling of, in particular, a molding described above is simple; the paraffin melts during use, expels air at the contact surfaces and so ensures close contact between the heat storage material and the component. Compositions of this type are therefore preferably used in devices for cooling electronic components.
  • binders preferably a polymeric binder
  • the crystallites of the heat storage material are preferably in finely divided form in the binder.
  • the preferably polymeric binders which may be present can be the polymers which are suitable as binder in accordance with the application.
  • the polymeric binder is preferably selected from curable polymers or polymer precursors, which in turn are preferably selected from the group consisting of polyurethanes, nitrile rubber, chloroprene, polyvinyl chloride, silicones, ethylene-vinyl acetate copolymers and polyacrylates.
  • nucleating agents such as, for example, borax or various metal oxides, are preferably employed in addition.
  • the heat transfer in the heat sink may also be implemented in the form of a heat pipe (for example U.S. Pat. No. 5,770,903 for motor cooling incl. PCM).
  • a heat sink with heat pipe (FIG. 3)
  • the interior of the heat sink ( 1 ) then has, for example, a cavity ( 6 ), which is partially filled with a liquid and/or gaseous medium.
  • the liquid/gaseous heat transfer medium ( 5 ) is selected from the group consisting of the halogenated hydrocarbons (for example ethyl bromide, trichloroethylene or freons) and their equivalents.
  • halogenated hydrocarbons for example ethyl bromide, trichloroethylene or freons
  • the cavity also contains PCM particles ( 4 ), which absorb heat as soon as the internal temperature in the heat pipe reaches the phase change temperature T PC .
  • FIG. 4 A further possibility has been found through a mixed form (FIG. 4).
  • the CPU ( 2 ) is again mounted on a support ( 3 ).
  • cooling fins ( 7 ) are run through the cavity ( 6 ), which is in turn partially filled with a liquid/gaseous heat transfer medium ( 5 ). Continuous cooling fins are preferred.
  • the cavity besides the liquid/gaseous heat transfer medium, here too contains PCM particles ( 4 ), which absorb heat as soon as the internal temperature in the heat pipe reaches the phase change temperature T PC .
  • the PCM can be compression molded into any desired shapes.
  • the material can be compression molded in pure form, compression molded after comminution (for example grinding), or compression molded in mixtures with other binders and/or auxiliaries.
  • the moldings can be stored, transported and employed in a variety of ways without problems.
  • the moldings can be inserted directly into electronic components (FIG. 5).
  • the CPU ( 2 ) is mounted on a support ( 3 ).
  • the moldings are installed between the cooling fins in such a way that they are in intimate contact with the surfaces of the cooling fins.
  • the thickness of the moldings is selected so that a frictional connection is formed between the fins and the molding.
  • the moldings can also be inserted between cooling fins/heat exchangers before the latter are connected to form a stack.
  • Cooling ribs 2 Central processing unit (CPU) 3 Support 4 Phase change material (PCM) 5 Liquid/gaseous heat exchange medium 6 Cavity 7 Cooling fins in cavity Z Entire component
  • a heat sink as shown in FIG. 2 is designed for a processor whose maximum operating temperature is 75° C.
  • a phase change material having a T PC of between 60° C. and 65° C. is selected in the cavities in the heat sink.
  • Sodium hydroxide monohydrate having a T PC of 64° C. is used.
  • a heat sink as shown in FIG. 3 is designed for a processor having a maximum operating temperature of 75° C.
  • the cavities of the heat sink contain trichloroethylene as heat transfer fluid.
  • the PCM used is an encapsulated paraffin. Nonacosane, which has a T PC of 63° C., is used. However, solid-solid PCMs are also suitable as phase change material here. Didoceylammonium nitrate is suitable for this processor as it has a T PC of 66° C.

Abstract

The present invention relates to the use of phase change materials in devices for cooling electrical and electronic components.

Description

  • The present invention relates to the use of phase change materials in cooling devices for electrical and electronic components. [0001]
  • In industrial processes, heat peaks or deficits often have to be avoided, i.e. temperature control must be provided. This is usually achieved using heat exchangers. In the simplest case, they may consist merely of a heat conduction plate, which dissipates the heat and releases it to the ambient air, or alternatively contain heat transfer media, which firstly transport the heat from one location or medium to another. [0002]
  • The state of the art (FIG. 1) for the cooling of electronic components, such as, for example, microprocessors (central processing units=CPUs) ([0003] 2), are heat sinks made from extruded aluminium, which absorb the heat from the electronic component, which is mounted on support (3), and release it to the environment via cooling fins (1). The convection at the cooling fins is almost always supported by fans.
  • Heat sinks of this type must always be designed for the most unfavorable case of high outside temperatures and full load of the component in order to avoid overheating, which would reduce the service life and reliability of the components. The maximum working temperature for CPUs is between 60 and 90° C., depending on the design. [0004]
  • As the clock speed of CPUs becomes ever faster, the amount of heat they emit jumps with each new generation. While hitherto peak outputs of a maximum of 30 watts had to be dissipated, it is expected that cooling capacities of up to 90 watts will be necessary. These outputs can no longer be dissipated using conventional cooling systems. [0005]
  • For extreme ambient conditions, as occur, for example, in remote-controlled missiles, heat sinks, in which the heat emitted by electronic components is absorbed in phase change materials, for example in the form of heat of melting, have been described (U.S. Pat. No. 4,673,030, [0006] EP 1 16503A, U.S. Pat. No. 4,446,916). These PCM heat sinks serve for short-term replacement of dissipation of the energy into the environment and cannot (and must not) be re-used.
  • Known storage media for the storage of sensible heat are, for example, water or stones/concrete or phase change materials (PCMs), such as salts, salt hydrates or mixtures thereof, or organic compounds (for example paraffin) for the storage of heat in the form of heat of melting (latent heat). [0007]
  • It is known that when a substance melts, i.e. is converted from the solid phase into the liquid phase, heat is consumed, i.e. absorbed, and is stored as latent heat so long as the substance remains in the liquid state, and that this latent heat is liberated again on solidification, i.e. on conversion from the liquid phase into the solid phase. [0008]
  • The charging of a heat storage system basically requires a higher temperature than can be obtained during discharging, since a temperature difference is necessary for the transport/flow of heat. The quality of the heat is dependent on the temperature at which it is available: the higher the temperature, the better the heat can be dissipated. For this reason, it is desirable for the temperature level during storage to drop as little as possible. [0009]
  • In the case of storage of sensible heat (for example by heating water), the input of heat is associated with constant heating of the storage material (and the opposite during discharging), while latent heat is stored and discharged at the melting point of the PCM. Latent heat storage therefore has the advantage over sensible heat storage that the temperature loss is restricted to the loss during heat transport from and to the storage system. [0010]
  • The storage media employed hitherto in latent heat storage systems are usually substances which have a solid-liquid phase transition in the temperature range which is essential for the use, i.e. substances which melt during use. [0011]
  • Thus, the literature discloses the use of paraffins as storage medium in latent heat storage systems. International patent application WO 93/15625 describes shoe soles which contain PCM-containing microcapsules. The PCMs proposed here are either paraffins or crystalline 2,2-dimethyl-1,3-propanediol or 2-hydroxymethyl-2-methyl-1,3-propanediol. The application WO 93/24241 describes fabrics having a coating comprising microcapsules of this type and binders. Preference is given here to paraffinic hydrocarbons having from 13 to 28 carbon atoms. European Patent EP-B-306 202 describes fibers having heat-storage properties in which the storage medium is a paraffinic hydrocarbon or a crystalline plastic, and the storage material is integrated into the basic fiber material in the form of microcapsules. [0012]
  • U.S. Pat. No. 5,728,316 recommends salt mixtures based on magnesium nitrate and lithium nitrate for the storage and utilization of thermal energy. The heat storage here is carried out in the melt at above the melting point of 75° C. [0013]
  • In the said storage media in latent heat storage systems, a transition into the liquid state takes place during use. This is accompanied by problems in the case of industrial use of storage media in latent heat storage systems since sealing or encapsulation is always necessary in order to prevent leakage of liquid resulting in loss of substance or contamination of the environment. Especially in the case of use in or on flexible structures, such as, for example, fibers, fabrics or foams, this generally requires microencapsulation of the heat storage materials. [0014]
  • In addition, the vapor pressure of many potentially suitable compounds increases greatly during melting, and consequently the volatility of the melts often stands in the way of long-term use of the storage materials. On industrial use of melting PCMs, problems frequently arise due to considerable volume changes during melting of many substances. [0015]
  • A new area of phase change materials is therefore provided with a particular focus. These are solid-solid phase change materials. Since these substances remain solid during the entire use, there is no longer a requirement for encapsulation. Loss of the storage medium or contamination of the environment by the melt of the storage medium in latent heat storage systems can thus be excluded. This group of phase change materials is finding many new areas of application. [0016]
  • U.S. Pat. No. 5,831,831, JP 10135381 A and SU 570131A describe the use of similar PCM heat sinks in non-military applications. A common feature of the inventions is the omission of conventional heat sinks (for example with cooling fins and fans). [0017]
  • The PCM heat sinks described above are not suitable for absorbing the peak output of components having an irregular output profile since they do not ensure optimized discharge of the PCM or also absorb the base load. [0018]
  • The present invention enables cooling electronic and electrical components effectively and absorbing temperature peaks. [0019]
  • The invention provides devices for cooling heat-generating electrical and electronic components having an irregular output profile, comprising a heat-conducting unit and a heat-absorbing unit which contains a phase change material (PCM). [0020]
  • This invention relates to devices for cooling electrical and electronic components (e.g., microprocessors in desktop and laptop computers both on the motherboard and on the graphics card, power-supply parts and other components which emit heat during operation) which have a non-uniform output profile. [0021]
  • Cooling devices are, for example, heat sinks. Conventional heat sinks can be improved by the use of PCMs if the heat flow from the electronic component to the heat sink is not interrupted. An interruption in this sense exists if the PCM, owing to the design of the heat sink, firstly has to absorb the heat before the heat can be dissipated via the cooling fins—which results in an impairment of the performance of the heat sink for a given design. [0022]
  • There are various ways of ensuring that the PCM only absorbs the output peaks. [0023]
  • Electrical and electronic components are usually cooled using heat sinks (FIG. 1) having cooling fins. [0024]
  • It has been found that it is advantageous to arrange the PCM in or on the heat sink in such a way that a significant heat flow to the PCM only occurs if the heat sink exceeds the phase change temperature T[0025] PC of the PCM (FIG. 2, FIG. 3, FIG. 4 and FIG. 5).
  • It has been found that on reaching this temperature, the cooling capacity of the cooling fins is supplemented by the heat absorption by the PCM. This causes a jump in the efficiency of the heat sink. It is thus achieved that the electrical or electronic component is not overheated. [0026]
  • The use of PCMs in the manner according to the invention allows the use of heat sinks of lower capacity since extreme heat peaks do not have to be dissipated. [0027]
  • It has been found that particularly suitable phase change materials are those whose phase change temperature T[0028] PC is suitably below the critical maximum temperature for the component.
  • Depending on the desired maximum temperature, all known PCMs are suitable. Suitable for use of the PCMs in a heat transfer medium are encapsulated materials or solid-solid PCMs which are insoluble in the heat transfer medium.[0029]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 represents a conventional heat sink. [0030]
  • FIGS. [0031] 2-5 represent various embodiments of the heat-dissipating devices according to the invention.
  • A general example of the invention is explained in greater detail below. [0032]
  • The devices according to the invention are described with reference to an example of the cooling of CPUs (central processing units) for computers. [0033]
  • In the device according to the invention (FIG. 2), the PCM ([0034] 4) is arranged in or on the heat sink (1) in such a way that significant heat flow from the CPU (2) on the support (3) to the PCM (4) only occurs if the heat sink exceeds the phase change temperature TPC of the PCM. It is thus ensured that the PCM only absorbs the output peaks.
  • In principle, all known PCMs are suitable for this application. For example, it is possible to use PCMs whose phase change temperature is between about −100° C. and 150° C. For use in electrical and electronic components, PCMs in the range of about 40° C. to 95° C. are preferred. In this case, the materials can be selected from paraffins (C[0035] 20-C45), inorganic salts, salt hydrates and mixtures thereof, carboxylic acids and/or sugar alcohols. A non-limiting selection is shown in Table 1.
    TABLE 1
    Melting point Melting
    Material [° C.] enthalpy [J/g] Group
    Heneicosane 40 213 Paraffins
    Docosane 44 252 Paraffins
    Tricosane 48 234 Paraffins
    Sodium thiosulfate 48 210 Salt hydrates
    pentahydrate
    Myristic acid 52 190 Carboxylic acids
    Tetracosane 53 255 Paraffins
    Hexacosane 56 250 Paraffins
    Sodium acetate 58 265 Salt hydrates
    trihydrate
    Nonacosane 63 239 Paraffins
    Sodium hydroxide 64 272 Salt hydrates
    monohydrate
    Stearic acid 69 200 Carboxylic acids
    Mixture of lithium 75 180 Salt hydrates
    nitrate and
    magnesium nitrate
    hexahydrate
    Trisodium 75 216 Salt hydrates
    phosphate
    dodecahydrate
    Magnesium nitrate 89 160 Salt hydrates
    hexahydrate
    Xylitol 93-95 270 Sugar alcohols
  • Also suitable are solid-solid PCMs such as diethylammonium chloride, dipropylammonium chloride, dibutylammonium chloride, dipentylammonium chloride, dihexylammonium chloride, dioctylammonium chloride, didecylammonium chloride, didodecylammonium chloride, dioctadecylammonium chloride, diethylammonium bromide, dipropylammonium bromide, dibutylammonium bromide, dipentylammonium bromide, dihexylammonium bromide, dioctylammonium bromide, didecylammonium bromide, didodecylammonium bromide, dioctadecylammonium bromide, diethylammonium nitrate, dipropylammonium nitrate, dibutylammonium nitrate, dipentylammonium nitrate, dihexylammonium nitrate, dioctylammonium nitrate, didecylammonium nitrate, dioctylammonium chlorate, dioctylammonium acetate, dioctylammonium formate, didecylammonium chlorate, didecylammonium acetate, didecylammonium formate, didodecylammonium chlorate, didodecylammonium formate, didodecylammonium hydrogensulfate, didodecylammonium propionate, dibutylammonium 2-nitrobenzoate, diundecylammonium nitrate and didodecylammonium nitrate. [0036]
  • Particularly suitable PCMs for use in electrical and electronic components are those whose T[0037] PC is between 40° C. and 95° C., such as, for example, didecylammonium chloride, didodecylammonium chloride, dioctadecylammonium chloride, diethylammonium bromide, didecylammonium bromide, didodecylammonium bromide, dioctadecylammonium bromide, diethylammonium nitrate, dioctylammonium nitrate, didecylammonium nitrate and didodecylammonium nitrate.
  • Besides the actual heat storage material, the PCMs preferably comprise at least one auxiliary. The at least one auxiliary is preferably a substance or composition having good thermal conductivity, in particular a metal powder, metal granules or graphite. The heat storage material is preferably in the form of an intimate mixture with the auxiliary, the entire composition preferably being in the form of either a loose bed or moldings. The term moldings here is taken to mean, in particular, all structures which can be produced by compaction methods, such as pelleting, tabletting, roll compaction or extrusion. The moldings here can adopt a very wide variety of spatial shapes, such as, for example, spherical, cubic or cuboid shapes. In addition, the mixtures or moldings described here may comprise paraffin as an additional auxiliary. Paraffin is employed in particular if intimate contact between the heat storage composition and a component is to be established during use. For example, latent heat storage systems can be installed with a precise fit in this way for the cooling of electronic components. During installation of the heat storage system, the handling of, in particular, a molding described above is simple; the paraffin melts during use, expels air at the contact surfaces and so ensures close contact between the heat storage material and the component. Compositions of this type are therefore preferably used in devices for cooling electronic components. [0038]
  • In addition, binders, preferably a polymeric binder, may be present as auxiliaries. In this case, the crystallites of the heat storage material are preferably in finely divided form in the binder. The preferably polymeric binders which may be present can be the polymers which are suitable as binder in accordance with the application. The polymeric binder is preferably selected from curable polymers or polymer precursors, which in turn are preferably selected from the group consisting of polyurethanes, nitrile rubber, chloroprene, polyvinyl chloride, silicones, ethylene-vinyl acetate copolymers and polyacrylates. The suitable methods for incorporation of the heat storage materials into these polymeric binders are well known to the person skilled in the art in this area. One of ordinary skill has no difficulties in finding, where appropriate, the requisite additives, such as, for example, emulsifiers, which stabilize a mixture of this type. [0039]
  • For liquid-solid PCMs, nucleating agents, such as, for example, borax or various metal oxides, are preferably employed in addition. [0040]
  • Besides ensuring good heat transfer through metals (aluminium, copper, etc.) or other heat conduction structures (metal powders, graphite, etc.), the heat transfer in the heat sink may also be implemented in the form of a heat pipe (for example U.S. Pat. No. 5,770,903 for motor cooling incl. PCM). [0041]
  • In a heat sink with heat pipe (FIG. 3), the interior of the heat sink ([0042] 1) then has, for example, a cavity (6), which is partially filled with a liquid and/or gaseous medium. The liquid/gaseous heat transfer medium (5) is selected from the group consisting of the halogenated hydrocarbons (for example ethyl bromide, trichloroethylene or freons) and their equivalents. The design of a heat pipe and the choice of a suitable medium presents no problems to the person skilled in the art.
  • Besides this medium, the cavity also contains PCM particles ([0043] 4), which absorb heat as soon as the internal temperature in the heat pipe reaches the phase change temperature TPC.
  • It has been found that encapsulated or microencapsulated PCMs and solid-solid PCMs which are insoluble in the medium are particularly suitable. All known PCMs can be used. [0044]
  • Surprisingly, it has been found that, due to the good mixing of the PCM/medium suspension, the dynamics of the heat sink are particularly great. [0045]
  • A further possibility has been found through a mixed form (FIG. 4). The CPU ([0046] 2) is again mounted on a support (3). In order to improve the heat conduction, cooling fins (7) are run through the cavity (6), which is in turn partially filled with a liquid/gaseous heat transfer medium (5). Continuous cooling fins are preferred. As in the previous variants, the cavity, besides the liquid/gaseous heat transfer medium, here too contains PCM particles (4), which absorb heat as soon as the internal temperature in the heat pipe reaches the phase change temperature TPC.
  • The PCM can be compression molded into any desired shapes. The material can be compression molded in pure form, compression molded after comminution (for example grinding), or compression molded in mixtures with other binders and/or auxiliaries. The moldings can be stored, transported and employed in a variety of ways without problems. For example, the moldings can be inserted directly into electronic components (FIG. 5). Here too, the CPU ([0047] 2) is mounted on a support (3). The moldings are installed between the cooling fins in such a way that they are in intimate contact with the surfaces of the cooling fins. The thickness of the moldings is selected so that a frictional connection is formed between the fins and the molding. The moldings can also be inserted between cooling fins/heat exchangers before the latter are connected to form a stack.
  • However, these types of cooling with the aid of PCMs for absorbing heat peaks are not restricted to use in computers. These systems can be used in power switches and power circuits for mobile communications, transmission circuits for mobile telephones and fixed transmitters, control circuits for electromechanical actuators in industrial electronics and in motor vehicles, high-frequency circuits for satellite communications and radar applications, single-board computers, and for actuators and control units for domestic appliances and industrial electronics. [0048]
  • These cooling devices can be applied to all applications in which heat, e.g., heat peaks, are to be absorbed (for example motors for elevators, in electrical substations and in internal-combustion engines). [0049]
    TABLE 2
    Explanation of the symbols in the figures
    Symbol Explanation
    1 Cooling ribs
    2 Central processing unit (CPU)
    3 Support
    4 Phase change material (PCM)
    5 Liquid/gaseous heat exchange medium
    6 Cavity
    7 Cooling fins in cavity
    Z Entire component
  • Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever. [0050]
  • In the foregoing and in the following examples, all temperatures are set forth uncorrected in degrees Celsius; and, unless otherwise indicated, all parts and percentages are by weight. [0051]
  • The entire disclosure of all applications, patents and publications, cited above and below, and of corresponding German application Nos. DE 100 27 803.5, filed Jun. 8, 2000, and DE 101 14 998.0, filed Mar. 26, 2001, are is hereby incorporated by reference. [0052]
  • EXAMPLES Example 1
  • A heat sink as shown in FIG. 2 is designed for a processor whose maximum operating temperature is 75° C. A phase change material having a T[0053] PC of between 60° C. and 65° C. is selected in the cavities in the heat sink. Sodium hydroxide monohydrate having a TPC of 64° C. is used.
  • Example 2
  • A heat sink as shown in FIG. 3 is designed for a processor having a maximum operating temperature of 75° C. The cavities of the heat sink contain trichloroethylene as heat transfer fluid. The PCM used is an encapsulated paraffin. Nonacosane, which has a T[0054] PC of 63° C., is used. However, solid-solid PCMs are also suitable as phase change material here. Didoceylammonium nitrate is suitable for this processor as it has a TPC of 66° C.
  • The preceding examples can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples. [0055]
  • From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions. [0056]

Claims (16)

1. A device for cooling heat-generating electrical or electronic components having a non-uniform output profile, comprising a heat-conducting unit (1) and a heat-absorbing unit which contains a phase change material (4), wherein the phase change material is arranged in such a way that heat flow from the electrical or electronic component to the heat-conducting unit (1) is not interrupted and a significant heat flow to the phase change material only occurs if the temperature of the heat-conducting unit (1) exceeds phase change temperature TPC of the phase change material.
2. The device according to claim 1, wherein the phase change material-containing unit (4) contains at least one cavity (6) into which the phase change material has been introduced, where the cavities (6) are formed by the heat-absorbing unit (4).
3. The device according to claim 1, wherein the phase change material-containing unit (4) additionally contains a liquid/gaseous heat transfer medium (5).
4. The device according to claim 3, wherein the liquid/gaseous heat transfer medium (5) is a halogenated hydrocarbon.
5. The device according to claim 1, wherein a solid-solid phase change material is employed.
6. The device according to claim 1, wherein the phase change material is encapsulated.
7. The device according to claim 1, wherein the heat-conducting unit (1) has surface area-increasing structures.
8. The device according to claim 1, wherein the heat-conducting unit (1) has cooling fins.
9. A component (Z), comprising a cooling device according to claim 1, a heat-generating electronic component (2), wherein units (1), (4) and component (2) are arranged in such a way that the heat flow between the heat-generating electronic component (2) and the heat-conducting unit (1) takes place in direct contact.
10. A component (Z) according to claim 9, wherein the electronic component (2) is a computer CPU or memory chip.
11. A computer containing a component (Z) according to claim 9.
12. An electronic data processing system containing a device according to claim 1.
13. A mobile communication power switch or power circuit, a mobile telephone or fixed transmitter transmission circuit, an electromechanical actuator control circuit, a satellite communication or radar application high frequency circuit, or a domestic appliance or industrial electronic actuator or control unit, comprising a device according to claim 1.
14. A device for absorbing heat, comprising a heat sink and a heat absorbing component containing a phase change material, wherein heat flows from the heat sink to the heat absorbing component when the heat sink temperature exceeds the phase change temperature of the phase change material.
15. A device for absorbing heat, comprising a heat sink means and a heat absorbing means containing a phase change material, wherein heat flows from the heat sink means to the heat absorbing means when the heat sink temperature exceeds the phase change temperature of the phase change material.
16. A device for absorbing heat, comprising, in contact with a heat-generating electric or electronic component, a heat sink and a heat absorbing component containing a phase change material, wherein heat flows from the heat sink to the heat absorbing component when the heat sink temperature exceeds the phase change temperature of the phase change material.
US09/876,227 2000-06-08 2001-06-08 Use of PCMs in heat sinks for electronic components Abandoned US20020033247A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10027803.5 2000-06-08
DE10027803 2000-06-08
DE10114998.0 2001-03-26
DE10114998A DE10114998A1 (en) 2000-06-08 2001-03-26 Use of PCM in coolers for electronic batteries

Publications (1)

Publication Number Publication Date
US20020033247A1 true US20020033247A1 (en) 2002-03-21

Family

ID=26005968

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/876,227 Abandoned US20020033247A1 (en) 2000-06-08 2001-06-08 Use of PCMs in heat sinks for electronic components

Country Status (6)

Country Link
US (1) US20020033247A1 (en)
EP (1) EP1162659A3 (en)
JP (1) JP2002057262A (en)
CN (1) CN1329361A (en)
CA (1) CA2349870A1 (en)
TW (1) TW533455B (en)

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1416534A1 (en) * 2002-10-30 2004-05-06 Tyco Electronics AMP GmbH Integrated circuit system with a latent heat storage module
US20040084658A1 (en) * 2002-10-28 2004-05-06 Oswin Ottinger Material mixtures for heat storage systems and production method
US20040159422A1 (en) * 2003-02-18 2004-08-19 Jon Zuo Heat pipe having a wick structure containing phase change materials
US20040264543A1 (en) * 2003-06-24 2004-12-30 Halliburton Energy Services, Inc. Method and apparatus for managing the temperature of thermal components
US20050007740A1 (en) * 2001-11-24 2005-01-13 Mark Neuschuetz Optimised application of pcms in chillers
US20050207120A1 (en) * 2004-03-16 2005-09-22 Industrial Technology Research Institute Thermal module with heat reservoir and method of applying the same on electronic products
US20050258394A1 (en) * 2004-05-18 2005-11-24 Sgl Carbon Ag Latent heat storage material, latent heat storage unit containing the material, processes for producing the material and the unit and processes for using the material
WO2006002606A1 (en) * 2004-06-30 2006-01-12 Infineon Technologies Ag Semiconductor component comprising a housing and a semiconductor chip that is partially embedded in a plastic housing substance and method for producing the same
US20060101831A1 (en) * 2004-11-16 2006-05-18 Halliburton Energy Services, Inc. Cooling apparatus, systems, and methods
US20060102353A1 (en) * 2004-11-12 2006-05-18 Halliburton Energy Services, Inc. Thermal component temperature management system and method
US20060191681A1 (en) * 2004-12-03 2006-08-31 Storm Bruce H Rechargeable energy storage device in a downhole operation
US20060191687A1 (en) * 2004-12-03 2006-08-31 Storm Bruce H Switchable power allocation in a downhole operation
US20060231233A1 (en) * 2005-04-14 2006-10-19 Farid Mohammed M Microchannel heat exchanger with micro-encapsulated phase change material for high flux cooling
US20070025085A1 (en) * 2005-07-29 2007-02-01 Hon Hai Precision Industry Co., Ltd. Heat sink
US20070055330A1 (en) * 2005-09-08 2007-03-08 Rutherford Brock T Superficial heat modality for therapeutic use
US20070090737A1 (en) * 2005-10-20 2007-04-26 Foxconn Technology Co., Ltd. Light-emitting diode assembly and method of fabrication
US20070171615A1 (en) * 2006-01-24 2007-07-26 Wan-Lin Xia Heat dissipation device
US20070175609A1 (en) * 2006-02-01 2007-08-02 Christ Martin U Latent heat storage devices
US20070222112A1 (en) * 2006-03-24 2007-09-27 Christ Martin U Process for manufacture of a latent heat storage device
US7316262B1 (en) * 2004-01-26 2008-01-08 Rini Technologies, Inc. Method and apparatus for absorbing thermal energy
US20080164603A1 (en) * 2007-01-08 2008-07-10 Sturcken Keith K Method and Apparatus for Providing Thermal Management on High-Power Integrated Circuit Devices
US20080230203A1 (en) * 2005-05-12 2008-09-25 Christ Martin U Latent Heat Storage Material and Process for Manufacture of the Latent Heat Storage Material
US20090109623A1 (en) * 2007-10-31 2009-04-30 Forcecon Technology Co., Ltd. Heat-radiating module with composite phase-change heat-radiating efficiency
US20090219726A1 (en) * 2008-03-02 2009-09-03 Matt Weaver Thermal storage system using phase change materials in led lamps
US20090308505A1 (en) * 2005-05-19 2009-12-17 Didier Busatto Quenching Fluid
US20100038053A1 (en) * 2008-08-15 2010-02-18 Maxik Fredric S Sustainable endothermic heat stripping method and apparatus
US20100089551A1 (en) * 2007-02-08 2010-04-15 Quadbeck-Seeger Hans-Juergen Aminoplastic-based, liquid-impregnated foamed plastic part and uses thereof
US20100201241A1 (en) * 2009-02-10 2010-08-12 Matthew Weaver Thermal storage system using encapsulated phase change materials in led lamps
WO2011025487A1 (en) * 2009-08-27 2011-03-03 Hewlett-Packard Development Company, L.P. Heat storage by phase-change material
US20110134645A1 (en) * 2010-02-12 2011-06-09 Lumenetix, Inc. Led lamp assembly with thermal management system
US20110290451A1 (en) * 2010-05-26 2011-12-01 Joinset Co., Ltd. Heat cooler
US8220545B2 (en) 2004-12-03 2012-07-17 Halliburton Energy Services, Inc. Heating and cooling electrical components in a downhole operation
US20120250333A1 (en) * 2009-10-26 2012-10-04 Wen-Chiang Chou Insulating and Dissipating Heat Structure of an Electronic Part
US20130075646A1 (en) * 2011-09-26 2013-03-28 Basf Se Heat storage composition comprising sodium sulfate decahydrate and superabsorbent
US20130105106A1 (en) * 2011-10-31 2013-05-02 Dharendra Yogi Goswami Systems And Methods For Thermal Energy Storage
US20130114209A1 (en) * 2011-11-04 2013-05-09 Ming-Hsiung Lai Heat management device and electronic apparatus
CN103256841A (en) * 2013-04-25 2013-08-21 上海卫星工程研究所 Novel energy storage cooling device
US8632227B2 (en) 2008-03-02 2014-01-21 Lumenetix, Inc. Heat removal system and method for light emitting diode lighting apparatus
US20140054077A1 (en) * 2011-11-21 2014-02-27 Panasonic Corporation Electrical component resin, semiconductor device, and substrate
US20140090808A1 (en) * 2011-05-17 2014-04-03 Sharp Kabushiki Kaisha Heat-transfer device
WO2014189525A1 (en) * 2013-05-24 2014-11-27 International Engine Intellectual Property Company, Llc Electric-electronic actuator
US8937384B2 (en) 2012-04-25 2015-01-20 Qualcomm Incorporated Thermal management of integrated circuits using phase change material and heat spreaders
US20150109736A1 (en) * 2012-07-30 2015-04-23 Toyota Motor Engineering & Manufacturing North America, Inc. Electronic Device Assemblies and Vehicles Employing Dual Phase Change Materials
US20150249044A1 (en) * 2014-03-01 2015-09-03 Manish Arora Circuit board with phase change material
US20150285564A1 (en) * 2014-04-03 2015-10-08 Raytheon Company Encapsulated phase change material heat sink and method
US20160095256A1 (en) * 2014-09-30 2016-03-31 Subtron Technology Co., Ltd. Heat dissipation module
US20160313068A1 (en) * 2013-12-06 2016-10-27 Continental Automotive Gmbh Heat Pipe Having Displacement Bodies
US9562604B2 (en) * 2015-04-22 2017-02-07 Ford Global Technologies, Llc Axle heat absorber
FR3040777A1 (en) * 2015-09-04 2017-03-10 Thales Sa OPTICAL DETECTION ASSEMBLY COMPRISING AN IMPROVED THERMAL CONTROL OPTICAL DETECTOR, OBSERVATION INSTRUMENT AND SATELLITE COMPRISING SUCH AN OPTICAL SENSING ASSEMBLY
US20170103937A1 (en) * 2015-10-09 2017-04-13 Taiwan Semiconductor Manufacturing Company, Ltd. Cooling Devices, Packaged Semiconductor Devices, and Methods of Packaging Semiconductor Devices
US20170103936A1 (en) * 2015-10-09 2017-04-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dbc structure using a support incorporating a phase change material
US20170290205A1 (en) * 2016-04-04 2017-10-05 Hamilton Sundstrand Corporation Immersion cooling systems and methods
US20180042139A1 (en) * 2016-08-02 2018-02-08 Qualcomm Incorporated Multi-layer heat dissipating device comprising heat storage capabilities, for an electronic device
DE102016123408A1 (en) * 2016-12-05 2018-06-07 Valeo Schalter Und Sensoren Gmbh Head-up display with a heat buffer for a motor vehicle
US10012423B2 (en) 2013-08-30 2018-07-03 Yandex Europe Ag Cooling device
US10123456B2 (en) 2015-10-28 2018-11-06 Raytheon Company Phase change material heat sink using additive manufacturing and method
US20180331016A1 (en) * 2015-11-11 2018-11-15 Industry Foundation Of Chonnam National University Three-dimensional heat-absorbing device
US10241422B2 (en) 2015-03-24 2019-03-26 Asml Netherlands B.V. Lithography apparatus and a method of manufacturing a device
US10415474B2 (en) * 2017-01-31 2019-09-17 General Electric Company Method and system for phase change material component cooling
EP3547358A1 (en) 2018-03-29 2019-10-02 Elta Systems Ltd. Phase change cooling for electrical circuitry
US10785839B2 (en) * 2016-06-27 2020-09-22 Kevin Joseph Hathaway Thermal ballast
US10866038B2 (en) 2018-10-25 2020-12-15 United Arab Emirates University Heat sinks with vibration enhanced heat transfer for non-liquid heat sources
CN112943702A (en) * 2021-02-09 2021-06-11 鞍钢股份有限公司 Phase change energy storage cooling device for preventing draught fan from overheating
WO2021240072A1 (en) 2020-05-29 2021-12-02 Aalto University Foundation Sr Phase change polysaccharide-based bio-complexes with tunable thermophysical properties and preparation method thereof
US11435144B2 (en) * 2019-08-05 2022-09-06 Asia Vital Components (China) Co., Ltd. Heat dissipation device
US11535783B2 (en) 2017-09-01 2022-12-27 Rogers Corporation Fusible phase-change powders for thermal management, methods of manufacture thereof, and articles containing the powders
US20230110020A1 (en) * 2021-10-08 2023-04-13 Simmonds Precision Products, Inc. Heatsinks
CN117042420A (en) * 2023-10-09 2023-11-10 北京航空航天大学 Electronic equipment heat dissipation system and method with sugar alcohol type PCM energy storage unit

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040087725A (en) * 2003-04-07 2004-10-15 유수남 freezer Device
FR2893766A1 (en) * 2005-11-23 2007-05-25 Pascal Henri Pierre Fayet Photovoltaic generator for use on e.g. ground, has radiative cooling panel, cases, radiator having convection cooling fins, and latent heat composite thermal capacitor, where panel, faces of cases and radiator permit to evacuate heat
DE102008040281A1 (en) * 2008-07-09 2010-01-14 Robert Bosch Gmbh Device and method for cooling components
CN101865864B (en) * 2010-06-08 2012-07-04 华东理工大学 System for testing phase transformation cooling effect of electronic components
US20120206880A1 (en) * 2011-02-14 2012-08-16 Hamilton Sundstrand Corporation Thermal spreader with phase change thermal capacitor for electrical cooling
KR101270578B1 (en) 2011-05-13 2013-06-03 전자부품연구원 LED Lighting Apparatus And Cooling Apparatus Thereof
JP2013157573A (en) * 2012-01-31 2013-08-15 Toshiba Corp Thermal storage cooler
WO2013130424A1 (en) * 2012-02-27 2013-09-06 Double Cool Ltd. Thermoelectric air conditioner
CN102833990A (en) * 2012-09-24 2012-12-19 山东大学 Heat dissipation device and heat dissipation method for temperature control through thermo-chemical method
DE202012012963U1 (en) * 2012-10-29 2014-07-17 Airbus Defence and Space GmbH Elektroantriebsbaueinheit
US9036352B2 (en) * 2012-11-30 2015-05-19 Ge Aviation Systems, Llc Phase change heat sink for transient thermal management
FR3011067B1 (en) 2013-09-23 2016-06-24 Commissariat Energie Atomique APPARATUS COMPRISING A FUNCTIONAL COMPONENT LIKELY TO BE OVERHEAD WHEN OPERATING AND A COMPONENT COOLING SYSTEM
CN106940148B (en) * 2016-11-26 2019-09-06 西南电子技术研究所(中国电子科技集团公司第十研究所) It is heat sink to become gradient fractal lattice sandwich reinforced transformation
JP7015837B2 (en) * 2016-12-29 2022-02-03 華為技術有限公司 Heat dissipation device and terminal device with it
WO2020011397A1 (en) 2018-07-11 2020-01-16 Linde Aktiengesellschaft Tube sheet arrangement for a heat exchanger, heat exchanger, and method for producing a tube sheet arrangement
EP3821191A1 (en) 2018-07-11 2021-05-19 Linde GmbH Temperature compensating element, pipe and method for producing a pipe
EP3821190A1 (en) 2018-07-11 2021-05-19 Linde GmbH Heat exchanger and method for producing a heat exchanger
DE102020112968A1 (en) 2020-05-13 2021-11-18 Bayerische Motoren Werke Aktiengesellschaft Electronic computing device for a motor vehicle and motor vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2523688B2 (en) * 1987-09-29 1996-08-14 株式会社東芝 Semiconductor package
JPH05218250A (en) * 1992-02-06 1993-08-27 Mitsubishi Heavy Ind Ltd Heat dissipating apparatus with variable heat transfer rate
US5315154A (en) * 1993-05-14 1994-05-24 Hughes Aircraft Company Electronic assembly including heat absorbing material for limiting temperature through isothermal solid-solid phase transition
EP0732743A3 (en) * 1995-03-17 1998-05-13 Texas Instruments Incorporated Heat sinks
US5770903A (en) * 1995-06-20 1998-06-23 Sundstrand Corporation Reflux-cooled electro-mechanical device

Cited By (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050007740A1 (en) * 2001-11-24 2005-01-13 Mark Neuschuetz Optimised application of pcms in chillers
US20040084658A1 (en) * 2002-10-28 2004-05-06 Oswin Ottinger Material mixtures for heat storage systems and production method
US7704405B2 (en) * 2002-10-28 2010-04-27 Sgl Carbon Se Material mixtures for heat storage systems and production method
US6963131B2 (en) * 2002-10-30 2005-11-08 Tyco Electronics Amp Gmbh Integrated circuit system with a latent heat storage module
US20040145048A1 (en) * 2002-10-30 2004-07-29 Michael Frisch Integrated circuit system with a latent heat storage module
EP1416534A1 (en) * 2002-10-30 2004-05-06 Tyco Electronics AMP GmbH Integrated circuit system with a latent heat storage module
US20050269063A1 (en) * 2003-02-18 2005-12-08 Jon Zuo Heat pipe having a wick structure containing phase change materials
US6889755B2 (en) * 2003-02-18 2005-05-10 Thermal Corp. Heat pipe having a wick structure containing phase change materials
US20040159422A1 (en) * 2003-02-18 2004-08-19 Jon Zuo Heat pipe having a wick structure containing phase change materials
US20040264543A1 (en) * 2003-06-24 2004-12-30 Halliburton Energy Services, Inc. Method and apparatus for managing the temperature of thermal components
US7246940B2 (en) * 2003-06-24 2007-07-24 Halliburton Energy Services, Inc. Method and apparatus for managing the temperature of thermal components
US7316262B1 (en) * 2004-01-26 2008-01-08 Rini Technologies, Inc. Method and apparatus for absorbing thermal energy
US20050207120A1 (en) * 2004-03-16 2005-09-22 Industrial Technology Research Institute Thermal module with heat reservoir and method of applying the same on electronic products
US7235301B2 (en) * 2004-05-18 2007-06-26 Sgl Carbon Ag Latent heat storage material, latent heat storage unit containing the material, processes for producing the material and the unit and processes for using the material
US20050258394A1 (en) * 2004-05-18 2005-11-24 Sgl Carbon Ag Latent heat storage material, latent heat storage unit containing the material, processes for producing the material and the unit and processes for using the material
US7781900B2 (en) 2004-06-30 2010-08-24 Infineon Technologies Ag Semiconductor device comprising a housing and a semiconductor chip partly embedded in a plastic housing composition, and method for producing the same
DE102004031889B4 (en) * 2004-06-30 2012-07-12 Infineon Technologies Ag Semiconductor component with a housing and a semi-embedded in a plastic housing material semiconductor chip and method for producing the same
WO2006002606A1 (en) * 2004-06-30 2006-01-12 Infineon Technologies Ag Semiconductor component comprising a housing and a semiconductor chip that is partially embedded in a plastic housing substance and method for producing the same
US20080111231A1 (en) * 2004-06-30 2008-05-15 Manuel Carmona Semiconductor Device Comprising a Housing and a Semiconductor Chip Partly Embedded in a Plastic Housing Composition, and Method for Producing the Same
US20060102353A1 (en) * 2004-11-12 2006-05-18 Halliburton Energy Services, Inc. Thermal component temperature management system and method
US20060101831A1 (en) * 2004-11-16 2006-05-18 Halliburton Energy Services, Inc. Cooling apparatus, systems, and methods
US8024936B2 (en) 2004-11-16 2011-09-27 Halliburton Energy Services, Inc. Cooling apparatus, systems, and methods
US8220545B2 (en) 2004-12-03 2012-07-17 Halliburton Energy Services, Inc. Heating and cooling electrical components in a downhole operation
US7699102B2 (en) 2004-12-03 2010-04-20 Halliburton Energy Services, Inc. Rechargeable energy storage device in a downhole operation
US20060191681A1 (en) * 2004-12-03 2006-08-31 Storm Bruce H Rechargeable energy storage device in a downhole operation
US20060191687A1 (en) * 2004-12-03 2006-08-31 Storm Bruce H Switchable power allocation in a downhole operation
US7717167B2 (en) 2004-12-03 2010-05-18 Halliburton Energy Services, Inc. Switchable power allocation in a downhole operation
US8109324B2 (en) * 2005-04-14 2012-02-07 Illinois Institute Of Technology Microchannel heat exchanger with micro-encapsulated phase change material for high flux cooling
US20060231233A1 (en) * 2005-04-14 2006-10-19 Farid Mohammed M Microchannel heat exchanger with micro-encapsulated phase change material for high flux cooling
US20080230203A1 (en) * 2005-05-12 2008-09-25 Christ Martin U Latent Heat Storage Material and Process for Manufacture of the Latent Heat Storage Material
US7923112B2 (en) 2005-05-12 2011-04-12 Sgl Carbon Se Latent heat storage material and process for manufacture of the latent heat storage material
US20090308505A1 (en) * 2005-05-19 2009-12-17 Didier Busatto Quenching Fluid
US8070885B2 (en) * 2005-05-19 2011-12-06 Shell Oil Company Quenching fluid
US20070025085A1 (en) * 2005-07-29 2007-02-01 Hon Hai Precision Industry Co., Ltd. Heat sink
US20070055330A1 (en) * 2005-09-08 2007-03-08 Rutherford Brock T Superficial heat modality for therapeutic use
US20070090737A1 (en) * 2005-10-20 2007-04-26 Foxconn Technology Co., Ltd. Light-emitting diode assembly and method of fabrication
US20070171615A1 (en) * 2006-01-24 2007-07-26 Wan-Lin Xia Heat dissipation device
US20070175609A1 (en) * 2006-02-01 2007-08-02 Christ Martin U Latent heat storage devices
US8171984B2 (en) 2006-02-01 2012-05-08 Sgl Carbon Ag Latent heat storage devices
US8580171B2 (en) 2006-03-24 2013-11-12 Sgl Carbon Ag Process for manufacture of a latent heat storage device
US20070222112A1 (en) * 2006-03-24 2007-09-27 Christ Martin U Process for manufacture of a latent heat storage device
US20080164603A1 (en) * 2007-01-08 2008-07-10 Sturcken Keith K Method and Apparatus for Providing Thermal Management on High-Power Integrated Circuit Devices
US7491577B2 (en) * 2007-01-08 2009-02-17 Bae Systems Information And Electronic Systems Integration Inc. Method and apparatus for providing thermal management on high-power integrated circuit devices
US20100089551A1 (en) * 2007-02-08 2010-04-15 Quadbeck-Seeger Hans-Juergen Aminoplastic-based, liquid-impregnated foamed plastic part and uses thereof
US20090109623A1 (en) * 2007-10-31 2009-04-30 Forcecon Technology Co., Ltd. Heat-radiating module with composite phase-change heat-radiating efficiency
US9102857B2 (en) * 2008-03-02 2015-08-11 Lumenetix, Inc. Methods of selecting one or more phase change materials to match a working temperature of a light-emitting diode to be cooled
EP2258147A4 (en) * 2008-03-02 2012-08-08 Lumenetix Inc Thermal storage system using phase change materials in led lamps
US20090219726A1 (en) * 2008-03-02 2009-09-03 Matt Weaver Thermal storage system using phase change materials in led lamps
US8632227B2 (en) 2008-03-02 2014-01-21 Lumenetix, Inc. Heat removal system and method for light emitting diode lighting apparatus
EP2258147A1 (en) * 2008-03-02 2010-12-08 Lumenetix, Inc. Thermal storage system using phase change materials in led lamps
US20100038053A1 (en) * 2008-08-15 2010-02-18 Maxik Fredric S Sustainable endothermic heat stripping method and apparatus
US8631855B2 (en) * 2008-08-15 2014-01-21 Lighting Science Group Corporation System for dissipating heat energy
US8427036B2 (en) 2009-02-10 2013-04-23 Lumenetix, Inc. Thermal storage system using encapsulated phase change materials in LED lamps
US20100201241A1 (en) * 2009-02-10 2010-08-12 Matthew Weaver Thermal storage system using encapsulated phase change materials in led lamps
US7969075B2 (en) * 2009-02-10 2011-06-28 Lumenetix, Inc. Thermal storage system using encapsulated phase change materials in LED lamps
US9019704B2 (en) 2009-08-27 2015-04-28 Hewlett-Packard Development Company, L.P. Heat storage by phase-change material
WO2011025487A1 (en) * 2009-08-27 2011-03-03 Hewlett-Packard Development Company, L.P. Heat storage by phase-change material
US20120250333A1 (en) * 2009-10-26 2012-10-04 Wen-Chiang Chou Insulating and Dissipating Heat Structure of an Electronic Part
US20110134645A1 (en) * 2010-02-12 2011-06-09 Lumenetix, Inc. Led lamp assembly with thermal management system
US8783894B2 (en) 2010-02-12 2014-07-22 Lumenetix, Inc. LED lamp assembly with thermal management system
US8123389B2 (en) 2010-02-12 2012-02-28 Lumenetix, Inc. LED lamp assembly with thermal management system
US20110290451A1 (en) * 2010-05-26 2011-12-01 Joinset Co., Ltd. Heat cooler
US20140090808A1 (en) * 2011-05-17 2014-04-03 Sharp Kabushiki Kaisha Heat-transfer device
US20130075646A1 (en) * 2011-09-26 2013-03-28 Basf Se Heat storage composition comprising sodium sulfate decahydrate and superabsorbent
US8741169B2 (en) * 2011-09-26 2014-06-03 Basf Se Heat storage composition comprising sodium sulfate decahydrate and superabsorbent
US20130105106A1 (en) * 2011-10-31 2013-05-02 Dharendra Yogi Goswami Systems And Methods For Thermal Energy Storage
US20130114209A1 (en) * 2011-11-04 2013-05-09 Ming-Hsiung Lai Heat management device and electronic apparatus
US20140054077A1 (en) * 2011-11-21 2014-02-27 Panasonic Corporation Electrical component resin, semiconductor device, and substrate
US9265144B2 (en) * 2011-11-21 2016-02-16 Panasonic Intellectual Property Management Co., Ltd. Electrical component resin, semiconductor device, and substrate
US8937384B2 (en) 2012-04-25 2015-01-20 Qualcomm Incorporated Thermal management of integrated circuits using phase change material and heat spreaders
US20150109736A1 (en) * 2012-07-30 2015-04-23 Toyota Motor Engineering & Manufacturing North America, Inc. Electronic Device Assemblies and Vehicles Employing Dual Phase Change Materials
US9478478B2 (en) * 2012-07-30 2016-10-25 Toyota Motor Engineering & Manufacturing North America, Inc. Electronic device assemblies and vehicles employing dual phase change materials
CN103256841A (en) * 2013-04-25 2013-08-21 上海卫星工程研究所 Novel energy storage cooling device
WO2014189525A1 (en) * 2013-05-24 2014-11-27 International Engine Intellectual Property Company, Llc Electric-electronic actuator
US20160126809A1 (en) * 2013-05-24 2016-05-05 International Engine Intellectual Property Company, Llc Electric-Electronic Actuator
US10012423B2 (en) 2013-08-30 2018-07-03 Yandex Europe Ag Cooling device
US20160313068A1 (en) * 2013-12-06 2016-10-27 Continental Automotive Gmbh Heat Pipe Having Displacement Bodies
US11742259B2 (en) 2014-03-01 2023-08-29 Advanced Micro Devices, Inc. Circuit board with phase change material
US11049794B2 (en) * 2014-03-01 2021-06-29 Advanced Micro Devices, Inc. Circuit board with phase change material
US20150249044A1 (en) * 2014-03-01 2015-09-03 Manish Arora Circuit board with phase change material
US20150285564A1 (en) * 2014-04-03 2015-10-08 Raytheon Company Encapsulated phase change material heat sink and method
US10151542B2 (en) * 2014-04-03 2018-12-11 Raytheon Company Encapsulated phase change material heat sink and method
US20160095256A1 (en) * 2014-09-30 2016-03-31 Subtron Technology Co., Ltd. Heat dissipation module
US10241422B2 (en) 2015-03-24 2019-03-26 Asml Netherlands B.V. Lithography apparatus and a method of manufacturing a device
US9562604B2 (en) * 2015-04-22 2017-02-07 Ford Global Technologies, Llc Axle heat absorber
FR3040777A1 (en) * 2015-09-04 2017-03-10 Thales Sa OPTICAL DETECTION ASSEMBLY COMPRISING AN IMPROVED THERMAL CONTROL OPTICAL DETECTOR, OBSERVATION INSTRUMENT AND SATELLITE COMPRISING SUCH AN OPTICAL SENSING ASSEMBLY
US10867883B2 (en) * 2015-10-09 2020-12-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives DBC structure using a support incorporating a phase change material
US20170103936A1 (en) * 2015-10-09 2017-04-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dbc structure using a support incorporating a phase change material
US20170103937A1 (en) * 2015-10-09 2017-04-13 Taiwan Semiconductor Manufacturing Company, Ltd. Cooling Devices, Packaged Semiconductor Devices, and Methods of Packaging Semiconductor Devices
US11004771B2 (en) * 2015-10-09 2021-05-11 Taiwan Semiconductor Manufacturing Company, Ltd. Cooling devices, packaged semiconductor devices, and methods of packaging semiconductor devices
US20190252294A1 (en) * 2015-10-09 2019-08-15 Taiwan Semiconductor Manufacturing Company, Ltd. Cooling Devices, Packaged Semiconductor Devices, and Methods of Packaging Semiconductor Devices
US10269682B2 (en) * 2015-10-09 2019-04-23 Taiwan Semiconductor Manufacturing Company, Ltd. Cooling devices, packaged semiconductor devices, and methods of packaging semiconductor devices
US10123456B2 (en) 2015-10-28 2018-11-06 Raytheon Company Phase change material heat sink using additive manufacturing and method
US20180331016A1 (en) * 2015-11-11 2018-11-15 Industry Foundation Of Chonnam National University Three-dimensional heat-absorbing device
US10674641B2 (en) * 2016-04-04 2020-06-02 Hamilton Sundstrand Corporation Immersion cooling systems and methods
US20170290205A1 (en) * 2016-04-04 2017-10-05 Hamilton Sundstrand Corporation Immersion cooling systems and methods
US10785839B2 (en) * 2016-06-27 2020-09-22 Kevin Joseph Hathaway Thermal ballast
US9918407B2 (en) * 2016-08-02 2018-03-13 Qualcomm Incorporated Multi-layer heat dissipating device comprising heat storage capabilities, for an electronic device
TWI643298B (en) * 2016-08-02 2018-12-01 美商高通公司 Multi-layer heat dissipating device and apparatuses
US20180042139A1 (en) * 2016-08-02 2018-02-08 Qualcomm Incorporated Multi-layer heat dissipating device comprising heat storage capabilities, for an electronic device
DE102016123408A1 (en) * 2016-12-05 2018-06-07 Valeo Schalter Und Sensoren Gmbh Head-up display with a heat buffer for a motor vehicle
US10415474B2 (en) * 2017-01-31 2019-09-17 General Electric Company Method and system for phase change material component cooling
US11535783B2 (en) 2017-09-01 2022-12-27 Rogers Corporation Fusible phase-change powders for thermal management, methods of manufacture thereof, and articles containing the powders
US10748837B2 (en) 2018-03-29 2020-08-18 Elta Systems Ltd. Heatsink for electrical circuitry
EP3547358A1 (en) 2018-03-29 2019-10-02 Elta Systems Ltd. Phase change cooling for electrical circuitry
US10890387B2 (en) 2018-10-25 2021-01-12 United Arab Emirates University Heat sinks with vibration enhanced heat transfer
US11732982B2 (en) 2018-10-25 2023-08-22 United Arab Emirates University Heat sinks with vibration enhanced heat transfer
US10866038B2 (en) 2018-10-25 2020-12-15 United Arab Emirates University Heat sinks with vibration enhanced heat transfer for non-liquid heat sources
US11435144B2 (en) * 2019-08-05 2022-09-06 Asia Vital Components (China) Co., Ltd. Heat dissipation device
WO2021240072A1 (en) 2020-05-29 2021-12-02 Aalto University Foundation Sr Phase change polysaccharide-based bio-complexes with tunable thermophysical properties and preparation method thereof
CN112943702A (en) * 2021-02-09 2021-06-11 鞍钢股份有限公司 Phase change energy storage cooling device for preventing draught fan from overheating
US20230110020A1 (en) * 2021-10-08 2023-04-13 Simmonds Precision Products, Inc. Heatsinks
CN117042420A (en) * 2023-10-09 2023-11-10 北京航空航天大学 Electronic equipment heat dissipation system and method with sugar alcohol type PCM energy storage unit

Also Published As

Publication number Publication date
JP2002057262A (en) 2002-02-22
EP1162659A2 (en) 2001-12-12
CN1329361A (en) 2002-01-02
CA2349870A1 (en) 2001-12-08
EP1162659A3 (en) 2005-02-16
TW533455B (en) 2003-05-21

Similar Documents

Publication Publication Date Title
US20020033247A1 (en) Use of PCMs in heat sinks for electronic components
US20050007740A1 (en) Optimised application of pcms in chillers
US20050104029A1 (en) Use of paraffin-containing powders as phase-change materials (pcm) in polymer composites in cooling devices
KR20010111034A (en) Use of pcms in heat sinks for electronic components
US7191820B2 (en) Phase-change heat reservoir device for transient thermal management
US6997241B2 (en) Phase-change heat reservoir device for transient thermal management
EP1333710B1 (en) Method and apparatus for absorbing thermal energy
CN111132520A (en) Electronic device
CN112437572A (en) Power adapter
KR101617601B1 (en) Electronic devices assembled with heat absorbing and/or thermally insulating composition
WO2012139338A1 (en) Lithium battery electric core module and design method of battery package cooling system
JP2004319658A (en) Electronic cooler
JP2010251677A (en) Heat sink
CN1364251A (en) Cooling device for electronic components
CN111446220A (en) Radiator for short-time junction temperature protection of thyristor and protection time obtaining method thereof
CN210694775U (en) Radiator based on phase-change material
JP2004200428A (en) Cooling device
KR20040061286A (en) Hybrid heat exchanger having tec and heat pipe
CN102833990A (en) Heat dissipation device and heat dissipation method for temperature control through thermo-chemical method
CN1318536C (en) Heat sink and phase change conducting strip
CN219960737U (en) Video camera
JP2003110070A (en) Cooler
CN202799547U (en) Radiating device for controlling temperature through thermochemical method
CN117295313A (en) Graphite foam heat conduction pad
JP2005093847A (en) Cooling system

Legal Events

Date Code Title Description
AS Assignment

Owner name: MERCK PATENT GESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NEUSCHUETZ, MARK;GLAUSCH, RALF;REEL/FRAME:012231/0740

Effective date: 20010903

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION