JP2010251677A - Heat sink - Google Patents

Heat sink Download PDF

Info

Publication number
JP2010251677A
JP2010251677A JP2009115956A JP2009115956A JP2010251677A JP 2010251677 A JP2010251677 A JP 2010251677A JP 2009115956 A JP2009115956 A JP 2009115956A JP 2009115956 A JP2009115956 A JP 2009115956A JP 2010251677 A JP2010251677 A JP 2010251677A
Authority
JP
Japan
Prior art keywords
heat
heat storage
heat sink
latent heat
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009115956A
Other languages
Japanese (ja)
Inventor
Yoichi Oda
陽一 小田
Masaji Furukawa
正司 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INEX KK
SATSUMA SOKEN KK
Original Assignee
INEX KK
SATSUMA SOKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INEX KK, SATSUMA SOKEN KK filed Critical INEX KK
Priority to JP2009115956A priority Critical patent/JP2010251677A/en
Publication of JP2010251677A publication Critical patent/JP2010251677A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for sequentially dissolving a plurality of latent heat storage agents, having different melting points to be melted at low temperatures with the heat of an heat-generating object, transmitting the heat to the other higher melting point latent heat storage agents while being circulated by convection due to its liquidation, and storing more heat in the solvents based on the melt, by filling the plurality of latent heat storage agents and a liquid having heat transmitting fine powder fillers dispersed therein, in a space of the body of a heat sink having a high thermal conductivity. <P>SOLUTION: A plurality of latent heat storage agents having different melting points between 0 and 130°C and a liquid having heat transmitting fine powder fillers dispersed therein are mixed and filled in a space of the body of a heat sink having a high thermal conductivity, and then the body is sealed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高熱伝導率を有するヒートシンク本体空間に、異なる複数の潜熱蓄熱剤と熱伝導微粉末フィラーを分散させた液体とを混合充填することにより、全体を小型の容積及び構成で発熱体の熱を素早く蓄熱して発熱体を冷却する事ができ、比較的低温での制御ができて強制冷却などが不要となるヒートシンクに関するものである。  The present invention mixes and fills a heat sink body space having high thermal conductivity with a plurality of different latent heat storage agents and a liquid in which a thermally conductive fine powder filler is dispersed, so that the heat generating body can be reduced in size and configuration as a whole. The present invention relates to a heat sink that can quickly store heat to cool a heating element, can be controlled at a relatively low temperature, and does not require forced cooling or the like.

近年、電子機器、特にコンピューター及びLED照明器具の性能向上は目覚ましく、それに伴い、CPUやLEDチップ近傍における発熱対策が重要となってきている。例えば、パソコンでは発熱体の放熱については従来から、ヒートシンクにその熱を伝え空冷ファンを設けて空気の強制対流によって放熱を行っている。ヒートシンクとは多数の放熱フィンを付けて表面積を大きくした金属製ブロックで、発熱体の発熱部に接触、固定して使用され、発熱体から発生する熱を放熱フィンを介して空気中に放熱し、発熱体を冷却するものである。近年はCPUに直付けされた高性能な水冷タイプのヒートシンクなども提案されている。また、比較的低温で融解する潜熱蓄熱剤を熱媒体として熱の移動を行うことで熱交換部を小型化する試みもなされている。  In recent years, performance improvement of electronic devices, particularly computers and LED lighting fixtures, has been remarkable, and accordingly, countermeasures against heat generation in the vicinity of CPUs and LED chips have become important. For example, in a personal computer, heat dissipation from a heating element is conventionally performed by transferring the heat to a heat sink and providing an air cooling fan to dissipate heat by forced air convection. A heat sink is a metal block with a large number of heat sink fins that has a large surface area.It is used by contacting and fixing to the heat generating part of the heat generating element, and dissipates the heat generated from the heat generating element into the air via the heat dissipating fins. The heating element is cooled. In recent years, a high-performance water-cooled heat sink directly attached to the CPU has also been proposed. Attempts have also been made to reduce the size of the heat exchange unit by transferring heat using a latent heat storage agent that melts at a relatively low temperature as a heat medium.

しかしながら、上記ヒートシンクの場合、空気の自然対流により熱の移動を行う為に、大量の熱移動が必要な時は放熱フィンの枚数が増加し大型化する。放熱フィンの熱を空冷ファンにより強制冷却をする手段もあるが、取り付けスペース、騒音、消費電力の増大などの課題が伴う。また、潜熱蓄熱剤を利用するものについては、潜熱蓄熱剤が大きな融解熱を持つ一方、常温では固体でありその熱伝導率が低い為に、融解から対流が始まるまでの時間熱の移動が遅く、発熱体の熱が速やかに伝わらない欠点を有している。  However, in the case of the heat sink, since heat is transferred by natural convection of air, when a large amount of heat transfer is necessary, the number of radiating fins is increased and the size is increased. Although there is a means for forcibly cooling the heat of the radiating fin with an air cooling fan, there are problems such as an increase in installation space, noise, and power consumption. For those using latent heat storage agents, the latent heat storage agent has a large heat of fusion, but at room temperature it is solid and its thermal conductivity is low, so the movement of heat from the time of melting to the start of convection is slow. , It has a drawback that the heat of the heating element is not transmitted quickly.

従来、例えば特許文献1(特開2008−246719号公報)には、「発熱素子を備えたサーマルヘッドと、前記サーマルヘッドを支持するヘッド支持部材とを備えたサーマルプリンターであって、前記ヘッド支持部における前記サーマルヘッドが支持されている一端部と反対側の他端部に、シート状の蓄熱部材を取り付け、前記サーマルヘッドを、前記ヘッド支持部に直接固着したことを特徴とするサーマルプリンター」が提供されている。  Conventionally, for example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2008-246719) discloses that “a thermal printer including a thermal head including a heating element and a head support member that supports the thermal head, the head support. A thermal printer in which a sheet-like heat storage member is attached to the other end of the part opposite to the one end where the thermal head is supported, and the thermal head is directly fixed to the head support part. Is provided.

そして、この特許文献1には「前記蓄熱部材は、基材に複数の蓄熱材が添加されている潜熱型の蓄熱シートからなり、前記各蓄熱材は吸収した熱が所定の温度に達すると融解を開始し、前記蓄熱シートは、各蓄熱材が融解している間、一定の温度に維持されながら蓄熱する」旨説明され、また、「サーマルヘッドの熱は、このサーマルプリンターの内部の空気を加熱することなく、熱伝導プレートを介してシート状の蓄熱部材に蓄えられるので、冷却ファンを設けることなく、サーマルプリンターを効率的に冷却することができる」旨説明されている。  And in this patent document 1, “the heat storage member is composed of a latent heat type heat storage sheet in which a plurality of heat storage materials are added to a base material, and each of the heat storage materials melts when the absorbed heat reaches a predetermined temperature. The heat storage sheet is explained to store heat while being maintained at a constant temperature while each heat storage material is melted, and “the heat of the thermal head is used to store the air inside the thermal printer. Since it is stored in the sheet-like heat storage member via the heat conduction plate without heating, it is described that the thermal printer can be efficiently cooled without providing a cooling fan. "

しかしながら、この特許文献1においては、蓄熱剤がシート状で固定化されているために、蓄熱剤の充てん量が少ない事から大きな容積を必要とする事と発熱体からのシートへの温度吸収が素早く出来ない。又、表1の実施例1、2に示されるように、サーマルプリンターとしての融解温度〜待機温度での所定時間の融解温度(20〜70度)を維持するように蓄熱シートの蓄熱材の溶融温度が設定されており、蓄熱材の溶融温度が広い温度範囲(0〜130℃)に設定されていない。また、蓄熱材を含むものが蓄熱シート状であるため液体の対流が生じるスペースが皆無で、低温から液体の対流がなされ、低温で溶解した潜熱蓄熱剤が液化して対流する事で、局部的な発熱体の熱をヒートシンク全体に拡散されることはできない。また、その熱は液体と共に流動する熱伝導微粉末フィラーを用いて早く熱伝導の高い容器に熱移動し、低い温度でありながら外部に速やかに放熱するものではない。  However, in this patent document 1, since the heat storage agent is fixed in the form of a sheet, since the amount of the heat storage agent is small, a large volume is required and temperature absorption from the heating element to the sheet is reduced. I can't do it quickly. In addition, as shown in Examples 1 and 2 in Table 1, the heat storage material of the heat storage sheet is melted so as to maintain the melting temperature (20 to 70 degrees) for a predetermined time from the melting temperature to the standby temperature as a thermal printer. The temperature is set, and the melting temperature of the heat storage material is not set in a wide temperature range (0 to 130 ° C.). In addition, since the material containing the heat storage material is in the form of a heat storage sheet, there is no space where liquid convection occurs, liquid convection is performed from low temperature, and the latent heat storage agent dissolved at low temperature liquefies and convects, resulting in local The heat of a large heating element cannot be diffused throughout the heat sink. Further, the heat does not quickly dissipate to the outside despite the low temperature, using the heat conductive fine powder filler that flows together with the liquid and quickly transferring heat to the container having high heat conductivity.

また、特許文献2(特開2008−193017号公報)には、「半導体素子と、前記半導体素子が搭載されるヒートシンクと、前記半導体素子に対して前記ヒートシンクの反対側に位置するように前記半導体素子に取り付けられた潜熱蓄熱剤を含む蓄熱部材とを備えた半導体素子の冷却構造」が記載されている。  Patent Document 2 (Japanese Patent Application Laid-Open No. 2008-193017) states that “a semiconductor element, a heat sink on which the semiconductor element is mounted, and the semiconductor so as to be located on the opposite side of the heat sink with respect to the semiconductor element. Semiconductor device cooling structure including a heat storage member including a latent heat storage agent attached to the device is described.

そして、この特許文献2には「ヒートシンクによって、半導体素子の定常的な冷却を行いながら、該半導体素子の発熱量が短時間で急激に増大する場合には、潜熱蓄熱剤の相変化により当該発熱量を吸収することができる。したがって、ヒートシンクが過度に大型化することを抑制しながら半導体素子の冷却性能を向上されることができる」旨説明されている。  And this patent document 2 states, “When the heat generation amount of the semiconductor element increases rapidly in a short time while the semiconductor element is constantly cooled by the heat sink, the heat generation is caused by the phase change of the latent heat storage agent. Therefore, the cooling performance of the semiconductor element can be improved while suppressing the heat sink from becoming too large.

しかしながら、この特許文献2においては、半導体素子の上下に放熱する手段を講じる事から回路設計に大きな制限を与える事になる。ヒートシンクを使用する以上、その熱は強制冷却を必要とする場合においてファンの使用が必要となる欠点を有している。また、蓄熱部材とヒートシンクとの2つを半導体素子に取り付けなければならない。また、潜熱蓄熱剤が、例えばSn/Zn(融点:199℃)や溶解塩NaOH−KOH(融点:170℃)と高く、蓄熱部材も低温から液体の対流がなされ、低温で溶解した潜熱蓄熱剤が液化して対流する事により、局部的な発熱体の熱をヒートシンク全体に拡散させることができない。また、蓄熱剤の溶融温度が広い温度範囲(0〜130℃)に設定することについても記載されていない。さらに、その熱は液体と共に流動する熱伝導微粉末フィラーを用いて素早く熱伝導の高い容器に熱移動し、低い温度でありながら外部に速やかに放熱するものではない。  However, in this patent document 2, since a means for radiating heat above and below the semiconductor element is provided, the circuit design is greatly restricted. As long as a heat sink is used, the heat has the disadvantage of requiring the use of a fan when forced cooling is required. In addition, the heat storage member and the heat sink must be attached to the semiconductor element. Further, the latent heat storage agent is high, for example, Sn / Zn (melting point: 199 ° C.) or dissolved salt NaOH-KOH (melting point: 170 ° C.), and the heat storage member is also convectioned from a low temperature to a liquid, and the latent heat storage agent is dissolved at a low temperature. By liquefying and convection, the heat of the local heating element cannot be diffused throughout the heat sink. Moreover, it does not describe that the melting temperature of the heat storage agent is set in a wide temperature range (0 to 130 ° C.). Further, the heat is quickly transferred to a highly heat-conducting container using a heat conductive fine powder filler that flows together with the liquid, and the heat is not quickly dissipated to the outside at a low temperature.

また、本願出願人の一人が提出した特許文献3(特願2008−265647号特許請求の範囲、明細書、図面)には、「発熱体の発熱部に取り付けられているヒートシンクにおいて、ヒートシンク本体の放熱フィンに対し、潜熱蓄熱材を含み熱伝導性のある蓄熱樹脂が取り付け加工され、前記蓄熱樹脂体は、前記潜熱蓄熱材が熱伝導性樹脂内に練り込まれて板状又はブロック上に一体成形され、当該蓄熱樹脂体に対して前記放熱フィンの先端部側が埋設されていることを特徴とするヒートシンク」を提供している。  Further, Patent Document 3 (Japanese Patent Application No. 2008-265647, claims, specifications, drawings) submitted by one of the applicants of the present application states that “in the heat sink attached to the heat generating portion of the heat generating element, A heat storage resin that includes a latent heat storage material and is thermally conductive is attached to the radiating fin, and the heat storage resin body is integrated into a plate or block by kneading the latent heat storage material into the heat conductive resin. There is provided a heat sink which is molded and has a tip portion side of the radiating fin embedded in the heat storage resin body.

そして、この特許文献3には「潜熱蓄熱材が30〜120℃の範囲で、固相から液相又は液相から気相に変化する材料から構成されている」旨説明され、「表4の結果によると、・・・実施例のヒートシンクは180分でも100℃を下回った。また、表5の結果によると、・・・ヒートシンクは180分でも60℃を下回った」旨説明されている。  And this patent document 3 explains that "the latent heat storage material is composed of a material that changes from a solid phase to a liquid phase or from a liquid phase to a gas phase in a range of 30 to 120 ° C". According to the results, the heat sink of the example was below 100 ° C. even after 180 minutes. Also, according to the results of Table 5, the heat sink was below 60 ° C. even after 180 minutes.

しかしながら、この特許文献3においては、従来と同じ容積以上が必要となる問題がある。また、潜熱蓄熱材の溶融温度が30℃から、潜熱剤が樹脂に練りこまれているのでその体積充填率を70%以上に出来ず、その結果潜熱剤を内包するブロックの大きさにおいて高いため低温(0℃)から融解して対流が生じることができなく、発熱体の熱を低温で融解する潜熱蓄熱剤から順次溶解し、液化する事で対流しつつ他の高い潜熱蓄熱剤に熱を伝達して、その融解によりより多い熱を蓄熱することができない。また、ヒートシンク自体に潜熱蓄熱剤が充填されていないので、その熱は液体と共に流動する熱伝導微粉末フィラーから素早く熱伝導の高いヒートシンク容器に熱移動し、低い温度でありながら外部に速やかに放熱させることもできない。したがって、この特許文献3の表4及び5に示される実施例と本発明の実施例とを比較すると、本発明の実施例の方が6時間で48℃(表2)、6時間で35℃(表3)と潜熱蓄熱効果がより向上していることが理解される。  However, in this patent document 3, there exists a problem which requires more than the same volume as the past. Also, since the latent heat storage material has a melting temperature of 30 ° C. and the latent heat agent is kneaded into the resin, the volume filling rate cannot be increased to 70% or more, and as a result, the size of the block containing the latent heat agent is high. Melting from a low temperature (0 ° C) will not cause convection, and the heat of the heating element will be melted sequentially from the latent heat storage agent that melts at a low temperature and liquefied to heat other high latent heat storage agents while convection. It cannot transmit and store more heat due to its melting. In addition, since the heat sink itself is not filled with a latent heat storage agent, the heat is quickly transferred from the thermally conductive fine powder filler that flows with the liquid to the heat sink container with high thermal conductivity, and quickly dissipated to the outside at a low temperature. I can't let you. Therefore, comparing the examples shown in Tables 4 and 5 of Patent Document 3 with the examples of the present invention, the examples of the present invention are 48 ° C. in 6 hours (Table 2) and 35 ° C. in 6 hours. It is understood that (Table 3) and the latent heat storage effect are further improved.

上述の様に、上記いずれの特許文献1〜3においても、融点の異なる複数の潜熱蓄熱剤と熱伝導微粉末フィラーを分散させた液体とを充填することにより、発熱体の熱を低温で融解する潜熱蓄熱剤から順次溶解し、液化する事で対流しつつ他の高い潜熱蓄熱剤に熱を伝達して、その融解によりより多い熱を蓄熱させ、その熱は液体と共に流動する熱伝導微粉末フィラーから素早く熱伝導の高いヒートシンク容器に熱移動し、低い温度でありながら外部に速やかに放熱される技術は記載されていない。  As described above, in any of the above Patent Documents 1 to 3, the heat of the heating element is melted at a low temperature by filling a plurality of latent heat storage agents having different melting points and a liquid in which a thermally conductive fine powder filler is dispersed. The heat conduction fine powder that melts sequentially from the latent heat storage agent and transfers heat to other high latent heat storage agents while convection by liquefying, storing more heat by melting, and the heat flows with the liquid There is no description of a technique in which heat is quickly transferred from a filler to a heat sink container having high thermal conductivity and rapidly radiated to the outside at a low temperature.

また、低融点の潜熱蓄熱剤から溶解して行き、幅広い温度帯で発熱体の熱を吸収する。したがって、発熱体の温度及び外部環境温度により、必要な温度帯(0℃〜130℃)で個別に潜熱蓄熱剤の対応が可能となる点も記載がない。  In addition, it dissolves from the low melting point latent heat storage agent and absorbs heat from the heating element in a wide temperature range. Therefore, there is no description that the latent heat storage agent can be individually handled in a necessary temperature range (0 ° C. to 130 ° C.) depending on the temperature of the heating element and the external environment temperature.

また、対流を起こす潜熱蓄熱剤の液体と共に移動する熱伝導微粉末フィラーは、異なる高い融点を持つ潜熱蓄熱剤及びヒートシンク容器内部に速やかに熱を移動させることにより、発熱体の熱移動がより速やかとなり内部の熱伝搬量を増加させ、容器に伝わる熱伝搬量を外部により多量に速やかに放出する事が可能となる点も記載されていない。  In addition, the heat conductive fine powder filler that moves with the liquid of the latent heat storage agent that causes convection quickly moves the heat inside the latent heat storage agent and the heat sink container with different high melting points, so that the heat transfer of the heating element becomes faster. In addition, there is no description that it is possible to increase the amount of heat propagation inside and to quickly release the amount of heat propagation transmitted to the container to the outside in a large amount.

さらに、低沸点溶剤により、潜熱蓄熱剤の融解温度近辺で気化し、速やかに容器上部に蒸気として熱の外部移動を促進させ、熱を奪われてから冷却して液化してこのサイクルを繰り返すことにより、潜熱蓄熱剤の液化による対流での熱拡散とは別に、低沸点溶剤の蒸発及び外部温度に近い容器温度での冷却に伴う液化で熱拡散が可能となる点の記載もされていない。即ち、潜熱蓄熱剤の融点と大きく異ならない温度帯において低沸点溶剤の沸点がある為、潜熱蓄熱剤が液化する前後で、低沸点溶剤の気化が著しくなる事で、その気化熱により潜熱蓄熱剤の熱を吸収しつつ熱伝導の高い容器にその熱を伝え、それは低沸点溶剤の沸点より低い温度で速やかに外部に熱を放散させることが出来ない。  Furthermore, the low boiling point solvent vaporizes near the melting temperature of the latent heat storage agent, promptly promotes the external transfer of heat as a vapor to the top of the container, cools and liquefies after the heat is taken away, and repeats this cycle Thus, apart from thermal diffusion by convection due to liquefaction of the latent heat storage agent, there is no description that the thermal diffusion is possible by liquefaction associated with evaporation of the low boiling point solvent and cooling at a container temperature close to the external temperature. That is, since the boiling point of the low boiling point solvent is in a temperature range that is not significantly different from the melting point of the latent heat storage agent, the vaporization of the low boiling point solvent becomes significant before and after the latent heat storage agent is liquefied. The heat is transferred to a container with high heat conductivity while absorbing the heat of the heat, which cannot be rapidly dissipated to the outside at a temperature lower than the boiling point of the low boiling solvent.

特開2008−246719号公報  JP 2008-246719 A 特開2008−193017号公報  JP 2008-193017 A 特願2008−265647号  Japanese Patent Application No. 2008-265647

高熱伝導率を有するヒートシンク本体空間に、融点の異なる複数の潜熱蓄熱剤と熱伝導微粉末フィラーを分散させた液体とを充填することにより、発熱体の熱を低温で融解する潜熱蓄熱剤から順次溶解し、液化する事で対流しつつ他の高い潜熱蓄熱剤に熱を伝達して、その融解によりより多い熱を蓄熱させる。一方、その熱は液体と共に流動する熱伝導微粉末フィラーから素早く熱伝導の高いヒートシンク容器に熱移動し、低い温度でありながら外部に速やかに放熱されるようにする。さらに、潜熱蓄熱効果と低沸点溶剤による低温での気化により、大量の熱を速やかに移動させることで発熱体近傍の温度上昇を抑制し、所定の温度範囲に制御することを可能とする。  By sequentially filling the heat sink body space with high thermal conductivity with a plurality of latent heat storage agents with different melting points and a liquid in which heat conductive fine powder filler is dispersed, the latent heat storage agent that melts the heat of the heating element at a low temperature sequentially. It melts and liquefies to transfer heat to other high latent heat storage agents while convection and store more heat by melting. On the other hand, the heat is quickly transferred from the heat conductive fine powder filler flowing together with the liquid to the heat sink container having high heat conductivity so that the heat is quickly radiated to the outside at a low temperature. Furthermore, due to the latent heat storage effect and vaporization at a low temperature by the low boiling point solvent, a large amount of heat is quickly moved to suppress a temperature rise in the vicinity of the heating element and to be controlled within a predetermined temperature range.

請求項1の発明は、高熱伝導率を有するヒートシンク本体空間に、融点が0〜130℃の範囲で異なる複数の潜熱蓄熱剤と熱伝導微粉末フィラーを分散させた液体とを混合充填して密閉したヒートシンクを提供するものである。  According to the first aspect of the present invention, a heat sink body space having high thermal conductivity is mixed and filled with a plurality of different latent heat storage agents having different melting points in the range of 0 to 130 ° C. and a liquid in which a thermally conductive fine powder filler is dispersed. A heat sink is provided.

この発明においては、発熱体の熱を低温で融解する潜熱蓄熱剤から順次溶解し、液化する事で対流しつつ他の高い潜熱蓄熱剤に熱を伝達して、その融解によりより多い潜熱を蓄熱する事となる。一方、その潜熱は液体と共に流動する熱伝導微粉末フィラーから素早く熱伝導の高いヒートシンク容器に熱移動し、低い温度でありながら外部に速やかに放熱される。したがって、発熱体が急激に熱を放出するにあたり、潜熱蓄熱剤の融点が異なる事で、低温から液体の対流が可能となる事から、低温で溶解した潜熱蓄熱剤が液化して対流する事で、局部的な発熱体の熱をヒートシンク全体に拡散させるという効果を得ることができる。これらの熱は熱伝導の高いヒートシンク容器から外部に速やかに放出される。熱吸収部の局部的な熱を放散するにあたり、潜熱蓄熱剤及び熱伝導微粉末フィラーの対流により速やかな熱拡散を可能にした。  In this invention, the heat of the heating element is sequentially melted from the latent heat storage agent that melts at a low temperature and transferred to other high latent heat storage agents while convection by liquefying, and more latent heat is stored by the melting. Will be. On the other hand, the latent heat is quickly transferred from the heat conductive fine powder filler flowing together with the liquid to the heat sink container having high heat conductivity, and quickly dissipated to the outside at a low temperature. Therefore, when the heating element suddenly releases heat, the melting point of the latent heat storage agent is different, so that liquid convection is possible from low temperature, so that the latent heat storage agent dissolved at low temperature liquefies and convects. The effect of diffusing the heat of the local heating element throughout the heat sink can be obtained. Such heat is quickly released to the outside from the heat sink container having high heat conduction. In dissipating the local heat of the heat absorption part, rapid thermal diffusion was enabled by convection of the latent heat storage agent and the heat conductive fine powder filler.

請求項2の発明は、前記融点の異なる複数の潜熱蓄熱剤が、無機水和塩、有機物化合物、無機系固液蒸気相、溶解共晶塩の少なくともいずれか1つの複数若しくは2つ以上の複数を含む請求項1に記載のヒートシンクを提供するものである。  The invention according to claim 2 is characterized in that the plurality of latent heat storage agents having different melting points are at least one of inorganic hydrate salts, organic compounds, inorganic solid-liquid vapor phases, and dissolved eutectic salts, or a plurality of two or more. A heat sink according to claim 1 is provided.

この発明においては、発熱体が発した熱により、低融点の潜熱蓄熱剤から溶解して行き、幅広い温度帯で発熱体の熱を吸収する。したがって、発熱体の温度及び外部環境温度により、必要な温度帯(0℃〜130℃)で個別に潜熱蓄熱剤の対応が可能となった。  In the present invention, the heat generated by the heating element is dissolved from the low melting point latent heat storage agent and absorbs the heat of the heating element in a wide temperature range. Therefore, the latent heat storage agent can be individually handled in a necessary temperature range (0 ° C. to 130 ° C.) depending on the temperature of the heating element and the external environment temperature.

請求項3の発明は、前記熱伝導微粉末フィラーが、炭素、金属微粉末の少なくともいずれか1つ以上から選ばれる請求項1及び請求項2のいずれかに記載のヒートシンクを提供するものである。  Invention of Claim 3 provides the heat sink in any one of Claim 1 and Claim 2 in which the said heat conductive fine powder filler is chosen from at least any one of carbon and a metal fine powder. .

この発明においては、対流を起こす潜熱蓄熱剤の液体と共に移動する熱伝導微粉末フィラーは、異なる高い融点を持つ潜熱蓄熱剤及びヒートシンク容器内部に速やかに熱を移動させる。したがって、発熱体の熱移動がより速やかとなり内部の熱伝搬量が増加され、容器に伝わる熱伝搬量を外部により多量に速やかに放出させる事が可能となる。  In the present invention, the heat conductive fine powder filler that moves together with the liquid of the latent heat storage agent that causes convection quickly moves the heat into the latent heat storage agent and the heat sink container having different high melting points. Accordingly, the heat transfer of the heating element becomes quicker and the amount of heat propagation inside is increased, so that the amount of heat propagation transmitted to the container can be rapidly released to the outside in a large amount.

請求項4の発明は、前記液体が、低沸点溶剤、水、ポリエチレングリコール又は無機塩水和物の融解したものから得られる液体の少なくともいずれか1つ以上を含む請求項1乃至請求項3のいずれかに記載のヒートシンクを提供するものである。  Invention of Claim 4 WHEREIN: The said liquid contains at least any one or more of the liquid obtained from the low-boiling-point solvent, water, polyethyleneglycol, or the melted thing of inorganic salt hydrate, Any of Claim 1 thru | or 3 The heat sink as described above is provided.

この発明においては、潜熱蓄熱剤の個別の液体は各融点において融解し、液化して対流での熱拡散を行うことができる。低沸点溶剤は、潜熱蓄熱剤の融解温度近辺で気化し、速やかに容器上部に蒸気として熱の外部移動を促進させ、熱を奪われてから冷却して液化する。そして、このサイクルを繰り返す。したがって、潜熱蓄熱剤の液化による対流での熱拡散とは別に、低沸点溶剤の蒸発及び外部温度に近い容器温度での冷却に伴う液化で熱拡散が可能となる。  In the present invention, the individual liquids of the latent heat storage agent can be melted at each melting point and liquefied to perform convection heat diffusion. The low boiling point solvent evaporates in the vicinity of the melting temperature of the latent heat storage agent, promptly promotes the external transfer of heat as a vapor in the upper part of the container, and cools and liquefies after the heat is taken away. Then, this cycle is repeated. Therefore, apart from convection thermal diffusion due to liquefaction of the latent heat storage agent, thermal diffusion is possible by liquefaction associated with evaporation of the low boiling point solvent and cooling at a container temperature close to the external temperature.

本発明を実施する為の実施形態について図1を参照にして説明する。符号1は電子部品(発熱体)、符号2はヒートシンクである。ヒートシンク2はアルミニウム等の熱伝導性にすぐれた材質からなり、電子部品1の発熱部に取り付けられる。このヒートシンク2には空間2aが形成され、この空間2aは融点の異なる複数からなる潜熱蓄熱剤3の低温から液体の対流がなされるに充分な厚み幅Dを有している。この厚み幅Dは 0.5mm以上を必要とする。  An embodiment for carrying out the present invention will be described with reference to FIG. Reference numeral 1 denotes an electronic component (heating element), and reference numeral 2 denotes a heat sink. The heat sink 2 is made of a material having excellent thermal conductivity such as aluminum and is attached to the heat generating portion of the electronic component 1. A space 2 a is formed in the heat sink 2, and the space 2 a has a thickness width D sufficient to allow liquid convection from a low temperature of a plurality of latent heat storage agents 3 having different melting points. This thickness width D requires 0.5 mm or more.

この高熱伝導率を有するヒートシンク本体空間2aに、融点が0〜130℃の範囲で異なる複数の潜熱蓄熱剤と熱伝導微粉末フィラーを分散させた液体とを混合充填して密閉している。好ましくは融点が0〜80℃の範囲、より好ましくは融点が0〜60℃の範囲である。  The heat sink body space 2a having high thermal conductivity is sealed by mixing and filling a plurality of latent heat storage agents having different melting points in the range of 0 to 130 ° C. and a liquid in which a heat conductive fine powder filler is dispersed. The melting point is preferably in the range of 0 to 80 ° C, more preferably in the range of 0 to 60 ° C.

前記融点の異なる複数の潜熱蓄熱剤は、無機水和塩、有機物化合物、無機系固液蒸気相、溶解共晶塩の少なくともいずれか1つの複数若しくは2つ以上の複数から選ばれる。無機水和塩としては塩化カルシウム水和物、硫酸ナトリウム水和物、チオ硫酸ナトリウム水和物、酢酸ナトリウム水和物等。有機物化合物としては各種パラフィン N−デカン等。無機系固液蒸気相としては水等。溶解共晶塩としては水酸化ナトリウム−硝酸ナトリウム、塩化ナトリウム−塩化カリウム−塩化マグネシウム等が使用される。  The plurality of latent heat storage agents having different melting points are selected from at least one of an inorganic hydrate salt, an organic compound, an inorganic solid-liquid vapor phase, and a dissolved eutectic salt, or a plurality of two or more. Inorganic hydrate salts include calcium chloride hydrate, sodium sulfate hydrate, sodium thiosulfate hydrate, sodium acetate hydrate and the like. Examples of organic compounds include various paraffin N-decanes. The inorganic solid-liquid vapor phase is water. As the dissolved eutectic salt, sodium hydroxide-sodium nitrate, sodium chloride-potassium chloride-magnesium chloride and the like are used.

また、前記熱伝導微粉末フィラーは、炭素、金属微粉末のいずれか1つ以上から選ばれる。前記金属微粉末としては、アルミ、銅等を使用する。  The heat conductive fine powder filler is selected from one or more of carbon and metal fine powder. Aluminum, copper or the like is used as the metal fine powder.

さらに、前記液体は、低沸点溶剤、水、ポリエチレングリコール又は無機塩水和物の融解したものから得られる液体から選ばれる。  Further, the liquid is selected from liquids obtained by melting a low boiling point solvent, water, polyethylene glycol, or inorganic salt hydrate.

前記ヒートシンク2本体容器は、例えば、アルミ、銅などの熱伝導性に優れた金属を用い、発熱体との接触部以外はフィン、エンボス加工などの表面加工を施し、表面積を大きくすることで熱交換性をより高めることも可能である。潜熱蓄熱剤は0℃から130℃の範囲で、固相から液相、液相から気相に変化する材料が一般的には選定される。  The heat sink 2 main body container uses, for example, a metal having excellent thermal conductivity such as aluminum or copper, and is subjected to surface processing such as fins and embossing except for the contact portion with the heating element to increase the surface area. It is also possible to increase the exchangeability. A material that changes from a solid phase to a liquid phase and from a liquid phase to a gas phase is generally selected as the latent heat storage agent in the range of 0 ° C to 130 ° C.

上記実施形態における構成の作用としては、融点の異なる複数の潜熱蓄熱剤と熱伝導微粉末フィラーの混合物を、熱伝導率の高いヒートシンク容器内に密閉し、常温付近から容器内部を液状に保持する事により、発熱体からの熱を潜熱蓄熱剤に速やかに移動させ、複数の潜熱蓄熱剤は、それぞれが持つ融点で、温度上昇に伴い順次発熱体の熱吸収を行いながら液化して熱の対流を促進させる  As an effect | action of the structure in the said embodiment, the mixture of the several latent heat storage agent and heat conductive fine powder filler from which melting | fusing point differs is sealed in a heat sink container with high heat conductivity, and the container inside is hold | maintained in liquid form from near normal temperature. As a result, heat from the heating element is quickly transferred to the latent heat storage agent, and each of the plurality of latent heat storage agents is liquefied by liquefying while the heat generation element absorbs heat sequentially as the temperature rises. Promote

また、低沸点溶剤は、潜熱蓄熱剤の融解温度近辺で気化し、速やかに容器上部に蒸気として熱の外部移動を促進させ、熱を奪われてから冷却して液化し、そしてこのサイクルを繰り返す。  Also, the low boiling point solvent vaporizes near the melting temperature of the latent heat storage agent, promptly promotes the external transfer of heat as a vapor to the upper part of the container, cools and liquefies after the heat is taken away, and repeats this cycle .

したがって、液中に分散させた複数の潜熱蓄熱剤の大きな融解潜熱を利用して、常温付近から大量の熱移動が可能となるため、他のフィン付きヒートシンクなどに比較して小容積で、熱容量の大きな発熱体近傍の温度を、所定の温度幅に抑える事が可能となる。また、低沸点溶剤の気化によるヒートシンク容器内壁への熱移動により、ヒートシンク自体の温度はその沸点以下に抑える。  Therefore, a large amount of heat transfer is possible from near room temperature by using the large melting latent heat of multiple latent heat storage agents dispersed in the liquid, so it has a small volume and heat capacity compared to other heat sinks with fins, etc. It is possible to suppress the temperature in the vicinity of the large heating element to a predetermined temperature range. Further, the heat transfer to the inner wall of the heat sink container due to the vaporization of the low boiling point solvent suppresses the temperature of the heat sink itself below the boiling point.

融点の異なる複数の潜熱蓄熱剤は無機塩水和物として酢酸ナトリウム3水和物(融点58℃)、硫酸ナトリウム10水和物(融点32℃)、熱伝導微粉末フィラー(炭素と金属粉末としてアルミ、銅の微粉)、液体(水)及び低融点溶剤としてメタノールを表1に示す割合で内容積250ccのアルミニウム製からなるヒートシンク2の容器に入れて完全に密閉した。10Wの熱量を与えながら、その近傍部(発熱体から4cm離れた場所)及びヒートシンクの表面温度を測定した。又、比較例としてアルミニウムの空容器を同様の方法で測定した。    A plurality of latent heat storage agents having different melting points are inorganic salt hydrates such as sodium acetate trihydrate (melting point 58 ° C), sodium sulfate decahydrate (melting point 32 ° C), heat conductive fine powder filler (aluminum as carbon and metal powder) , Copper fine powder), liquid (water), and methanol as a low melting point solvent in a proportion shown in Table 1 were placed in a container of heat sink 2 made of aluminum having an internal volume of 250 cc and completely sealed. The surface temperature of the vicinity (4 cm away from the heating element) and the surface of the heat sink were measured while applying 10 W of heat. As a comparative example, an empty aluminum container was measured by the same method.

Figure 2010251677
Figure 2010251677

10Wの発熱体を取り付けたヒートシンク(実施例1)及び空容器(比較例1)の発熱体近傍(ヒートシンク表面)の温度(℃)は表2及びグラフ1の通りであった。また、10Wの発熱体を取り付けたヒートシンク(実施例2)及び空容器(比較例2)の発熱体から離れた壁面(発熱体から4cm離れた場所)の温度(℃)は表3及びグラフ2の通りであった。尚、潜熱蓄熱剤:熱伝導微粉末フィラーを分散した液体は100:5〜100:70が好ましい。より好ましくは100:30〜100:50である。また、液体:熱伝導微粉末フィラーは100:5〜100:40が好ましい。より好ましくは100:10〜100:30である。  Table 2 and graph 1 show the temperature (° C.) in the vicinity of the heat sink (heat sink surface) of the heat sink (Example 1) to which the 10 W heat generator was attached and the empty container (Comparative Example 1). Table 3 and graph 2 show the temperature (° C.) of the heat sink (Example 2) with a 10 W heating element and the wall surface (place 4 cm away from the heating element) away from the heating element of the empty container (Comparative Example 2). It was as follows. The liquid in which the latent heat storage agent: heat conduction fine powder filler is dispersed is preferably 100: 5 to 100: 70. More preferably, it is 100: 30-100: 50. The liquid: heat conduction fine powder filler is preferably 100: 5 to 100: 40. More preferably, it is 100: 10-100: 30.

Figure 2010251677
Figure 2010251677

グラフ1Graph 1

Figure 2010251677
Figure 2010251677

Figure 2010251677
Figure 2010251677

グラフ2Graph 2

Figure 2010251677
Figure 2010251677

上記表2及び3、グラフ1及び2から明らかなように、実施例1、2のヒートシンク2における温度制御は極めて良好であり、電子機器1に悪影響を与える可能性が有あるとされる約80度の温度に96時間放置しても到達していないことが理解される。一方、空容器については発熱体温度と殆ど同じ温度にまで到達している。又、発熱部から離れた壁面(発熱体から4cm離れた場所)におけるヒートシンクの温度は50度にも到達せず、強制冷却をせずとも安全上からも充分に使用可能である。  As apparent from Tables 2 and 3 and graphs 1 and 2, the temperature control in the heat sink 2 of Examples 1 and 2 is very good, and it is estimated that there is a possibility that the electronic device 1 may be adversely affected. It is understood that the temperature is not reached even after being allowed to stand at a temperature of 96 hours. On the other hand, the empty container reaches almost the same temperature as the heating element temperature. Further, the temperature of the heat sink on the wall surface away from the heat generating portion (location 4 cm away from the heat generating element) does not reach 50 degrees, and it can be sufficiently used from the viewpoint of safety without forced cooling.

発明の効果The invention's effect

本発明においては、発熱体の熱を低温で融解する潜熱蓄熱剤から順次溶解し、液化する事で対流しつつ他の高い潜熱蓄熱剤に熱を伝達して、その融解によりより多い潜熱を蓄熱する事となる。一方、その潜熱は液体と共に流動する熱伝導微粉末フィラーから素早く熱伝導の高いヒートシンク容器に熱移動し、低い温度でありながら外部に速やかに放熱される。したがって、発熱体が急激に熱を放出するにあたり、潜熱蓄熱剤の融点が異なる事で、低温から液体の対流が可能となる事から、低温で溶解した潜熱蓄熱剤が液化して対流する事で、局部的な発熱体の熱をヒートシンク全体に拡散させるという効果を得ることができる。これらの熱は熱伝導の高いヒートシンク容器から外部に速やかに放出される。熱吸収部の局部的な熱を放散するにあたり、潜熱蓄熱剤及び熱伝導微粉末フィラーの対流により速やかな熱拡散を可能にすることができる。  In the present invention, the heat of the heating element is sequentially dissolved from the latent heat storage agent that melts at a low temperature and transferred to other high latent heat storage agents while convection by liquefying, and more latent heat is stored by the melting. Will be. On the other hand, the latent heat is quickly transferred from the heat conductive fine powder filler flowing together with the liquid to the heat sink container having high heat conductivity, and quickly dissipated to the outside at a low temperature. Therefore, when the heating element suddenly releases heat, the melting point of the latent heat storage agent is different, so that liquid convection is possible from low temperature, so that the latent heat storage agent dissolved at low temperature liquefies and convects. The effect of diffusing the heat of the local heating element throughout the heat sink can be obtained. Such heat is quickly released to the outside from the heat sink container having high heat conduction. In dissipating the local heat of the heat absorption part, rapid thermal diffusion can be achieved by convection of the latent heat storage agent and the heat conductive fine powder filler.

また、本発明においては、発熱体が発した熱により、低融点の潜熱蓄熱剤から溶解して行き、幅広い温度帯で発熱体の熱を吸収する。したがって、発熱体の温度及び外部環境温度により、必要な温度帯(0℃〜130℃)で個別に潜熱蓄熱剤の対応が可能となる。  Moreover, in this invention, it melt | dissolves from a low melting | fusing point latent heat storage agent with the heat | fever which the heat generating body emitted, and absorbs the heat | fever of a heat generating body in a wide temperature range. Accordingly, the latent heat storage agent can be individually handled in a necessary temperature range (0 ° C. to 130 ° C.) depending on the temperature of the heating element and the external environment temperature.

また、本発明においては、対流を起こす潜熱蓄熱剤の液体と共に移動する熱伝導微粉末フィラーは、異なる高い融点を持つ潜熱蓄熱剤及びヒートシンク容器内部に速やかに熱を移動させる。したがって、発熱体の熱移動がより速やかとなり内部の熱伝搬量が増加され、容器に伝わる熱伝搬量を外部により多量に速やかに放出する事が可能となる。  Moreover, in this invention, the heat conductive fine powder filler which moves with the liquid of the latent heat storage agent which causes convection quickly moves heat into the latent heat storage agent and the heat sink container having different high melting points. Accordingly, the heat transfer of the heating element becomes quicker and the amount of heat propagation inside is increased, and the amount of heat propagation transmitted to the container can be quickly released to a large amount outside.

また、本発明においては、潜熱蓄熱剤の個別の液体は各融点において融解し、液化して対流での熱拡散を行うことができる。低沸点溶剤は、潜熱蓄熱剤の融解温度近辺で気化し、速やかに容器上部に蒸気として熱の外部移動を促進させ、熱を奪われてから冷却して液化する。したがって、潜熱蓄熱剤の液化による対流での熱拡散とは別に、低沸点溶剤の蒸発及び外部温度に近い容器温度での冷却に伴う液化で熱拡散が可能となる。  Moreover, in this invention, the individual liquid of a latent heat storage agent can melt | dissolve in each melting | fusing point, can liquefy, and can perform the thermal diffusion by a convection. The low boiling point solvent evaporates in the vicinity of the melting temperature of the latent heat storage agent, promptly promotes the external transfer of heat as a vapor in the upper part of the container, and cools and liquefies after the heat is taken away. Therefore, apart from convection thermal diffusion due to liquefaction of the latent heat storage agent, thermal diffusion is possible by liquefaction associated with evaporation of the low boiling point solvent and cooling at a container temperature close to the external temperature.

本発明のヒートシンクに電子機器(発熱体)を取り付けた概略断面図  Schematic sectional view in which an electronic device (heating element) is attached to the heat sink of the present invention

1 電子機器(発熱体)
2 ヒートシンク
2a ヒートシンクの密閉容器空間
D 厚み幅
1 Electronic equipment (heating element)
2 Heat sink 2a Sealed container space D of heat sink Thickness width

Claims (4)

高熱伝導率を有するヒートシンク本体空間に、融点が0〜130℃の範囲で異なる複数の潜熱蓄熱剤と、熱伝導微粉末フィラーを分散させた液体とを混合充填して密閉したヒートシンク。  A heat sink in which a heat sink body space having high thermal conductivity is sealed by mixing and filling a plurality of latent heat storage agents having different melting points in the range of 0 to 130 ° C. and a liquid in which a thermally conductive fine powder filler is dispersed. 前記融点の異なる複数の潜熱蓄熱剤が、無機水和塩、有機物化合物、無機系固液蒸気相、溶解共晶塩の少なくともいずれか1つの複数若しくは2つ以上の複数を含む請求項1に記載のヒートシンク。  2. The plurality of latent heat storage agents having different melting points include at least one of an inorganic hydrate salt, an organic compound, an inorganic solid-liquid vapor phase, and a dissolved eutectic salt, or a plurality of two or more. Heat sink. 前記熱伝導微粉末フィラーが、炭素、金属微粉末の少なくともいずれか1つ以上から選ばれる請求項1及び請求項2のいずれかに記載のヒートシンク。  The heat sink according to any one of claims 1 and 2, wherein the thermally conductive fine powder filler is selected from at least one of carbon and metal fine powder. 前記液体が、低沸点溶剤、水、ポリエチレングリコール又は無機塩水和物の融解したものから得られる液体の少なくともいずれか1つ以上から選ばれる請求項1乃至請求項3のいずれかに記載のヒートシンク。  The heat sink according to any one of claims 1 to 3, wherein the liquid is selected from at least one of liquids obtained by melting a low boiling point solvent, water, polyethylene glycol, or an inorganic salt hydrate.
JP2009115956A 2009-04-14 2009-04-14 Heat sink Pending JP2010251677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009115956A JP2010251677A (en) 2009-04-14 2009-04-14 Heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009115956A JP2010251677A (en) 2009-04-14 2009-04-14 Heat sink

Publications (1)

Publication Number Publication Date
JP2010251677A true JP2010251677A (en) 2010-11-04

Family

ID=43313652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009115956A Pending JP2010251677A (en) 2009-04-14 2009-04-14 Heat sink

Country Status (1)

Country Link
JP (1) JP2010251677A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020470A (en) * 2013-09-30 2016-02-04 パナソニック株式会社 Thermal storage material composition and method for using thermal storage material composition
JP2018030924A (en) * 2016-08-23 2018-03-01 東ソー株式会社 Heat storage material composition and heating pack containing the same
JP2019199995A (en) * 2018-05-16 2019-11-21 株式会社テックスイージー Temperature regulator for beverage in container
JP2019203689A (en) * 2019-09-06 2019-11-28 株式会社テックスイージー Packaged drink temperature regulator, and heat transfer member
JP7118467B1 (en) 2020-09-18 2022-08-16 株式会社岩谷技研 Shooting method for photographing the subject
US11794906B2 (en) 2021-03-19 2023-10-24 Iwaya Giken Inc. Container for flight craft

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020470A (en) * 2013-09-30 2016-02-04 パナソニック株式会社 Thermal storage material composition and method for using thermal storage material composition
JP2018030924A (en) * 2016-08-23 2018-03-01 東ソー株式会社 Heat storage material composition and heating pack containing the same
CN112074697B (en) * 2018-05-16 2022-06-10 泰克斯机电有限公司 Container-packed beverage temperature adjusting device and heat transfer member
WO2019220998A1 (en) * 2018-05-16 2019-11-21 株式会社テックスイージー Packaged beverage temperature adjustment device, and heat transfer member
CN112074697A (en) * 2018-05-16 2020-12-11 泰克斯机电有限公司 Container-packed beverage temperature adjusting device and heat transfer member
JP2019199995A (en) * 2018-05-16 2019-11-21 株式会社テックスイージー Temperature regulator for beverage in container
CN115265037A (en) * 2018-05-16 2022-11-01 泰克斯机电有限公司 Container-packed beverage temperature adjusting device and heat transfer member
JP2019203689A (en) * 2019-09-06 2019-11-28 株式会社テックスイージー Packaged drink temperature regulator, and heat transfer member
JP7178711B2 (en) 2019-09-06 2022-11-28 株式会社テックスイージー CONTAINER-CONTAINED BEVERAGE TEMPERATURE CONTROLLER, HEAT TRANSFER MEMBER, AND USAGE THEREOF
JP7118467B1 (en) 2020-09-18 2022-08-16 株式会社岩谷技研 Shooting method for photographing the subject
JP2022122803A (en) * 2020-09-18 2022-08-23 株式会社岩谷技研 Imaging method for imaging subject
US11794906B2 (en) 2021-03-19 2023-10-24 Iwaya Giken Inc. Container for flight craft
US11858642B2 (en) 2021-03-19 2024-01-02 Iwaya Giken Inc. Container for flight craft

Similar Documents

Publication Publication Date Title
ES2832652T3 (en) Multilayer heat dissipation device comprising heat storage capacities for an electronic device
US20050007740A1 (en) Optimised application of pcms in chillers
WO2012157521A1 (en) Heat-transfer device
US8631855B2 (en) System for dissipating heat energy
TW533455B (en) Device for cooling heat-generating electrical and electronic components, and an entire component comprising the same
US9924588B2 (en) Thermal energy storage with a phase-change material in a non-metal container
US7191820B2 (en) Phase-change heat reservoir device for transient thermal management
JP5353577B2 (en) heatsink
JP2010251677A (en) Heat sink
US20050104029A1 (en) Use of paraffin-containing powders as phase-change materials (pcm) in polymer composites in cooling devices
US20150060017A1 (en) Cooling apparatus using solid-liquid phase change material
KR20010111034A (en) Use of pcms in heat sinks for electronic components
US6724626B1 (en) Apparatus for thermal management in a portable electronic device
JP6308207B2 (en) Electronic device and cooling device
JP2010067660A (en) Electronic device and component for the same
KR102156851B1 (en) Heat exchanger using PCM
JP2003314936A (en) Cooling device
US10866038B2 (en) Heat sinks with vibration enhanced heat transfer for non-liquid heat sources
TWI492341B (en) Phase change type heat dissipating device
JP2008089253A (en) Heat sink
US10030896B1 (en) Magneto-caloric cooling system
JP3122899U (en) Heat dissipation system
JPWO2006134659A1 (en) Liquid cooling type cooling method and cooling device using latent heat material
CN102833990A (en) Heat dissipation device and heat dissipation method for temperature control through thermo-chemical method
KR102112124B1 (en) Heat conduction system for electric and electronic apparatus cooling