US20020018798A1 - Coating for metallic implant materials - Google Patents
Coating for metallic implant materials Download PDFInfo
- Publication number
- US20020018798A1 US20020018798A1 US09/885,287 US88528701A US2002018798A1 US 20020018798 A1 US20020018798 A1 US 20020018798A1 US 88528701 A US88528701 A US 88528701A US 2002018798 A1 US2002018798 A1 US 2002018798A1
- Authority
- US
- United States
- Prior art keywords
- coating
- collagen
- metallic implant
- calcium phosphate
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/34—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
Definitions
- the invention relates to a biomimetically produced bone-analogous coating, comprising an organic and inorganic main constituent, for metallic implant materials of any desired surface geometry and to a process for its preparation.
- the main components of this coating are collagen and calcium phosphate phases which form the organic and inorganic main constituent of the bone.
- the coating according to the invention is suitable to a particular extent as a matrix for the inclusion of further inductive substances such as growth factors, adhesion proteins or pharmacological active compounds.
- the polarization of the implant leads to an alkalization of the electrolyte near to the surface (2H 2 O+2e ⁇ ⁇ H 2 +2OH ⁇ ), by means of which a precipitation reaction is induced in front of the sample surface and the precipitation product formed is deposited on the metallic implant surface.
- a further approach to the field of surface modification of implant materials consists in achieving a ‘biologization’ of implant surfaces by utilizing organic compounds occurring in surrounding tissue for the surface modification.
- immobilized proteins and protein sequences are used which exert their action in the immobilized state (collagen, adhesion proteins, RGD sequences) or proteins which are released over a certain period of time.
- RGD sequences a largely general, positive action on the biocompatibility of the implant surface (collagen, certain adhesion proteins) or the adhesion of certain cell types is aimed at (extended RGD sequences) [Schaffner et al., J. of Mat. Sci.: Mat. in Med. 10, 837-39 (1999)].
- WO 99/30672 (Uni Tubingen) describes a coating for prostheses of organic polymer material in whose surface hydroxyapatite or collagen can be included.
- the polymer material here is only the adhesion promoter; a composite of collagen and a calcium phosphate phase which is similar to bone cannot be referred to.
- WO 92/13984 Queen's University of Springfield
- the electrolyte also contains biological non-toxic compounds such as collagen or impurities.
- the coating is a uniform microporous ceramic material made of associated nonorientated crystallites. This layer can also contain biologically active compounds as precipitation products.
- the coating described accordingly differs markedly from a mineralized collagen/calcium phosphate matrix.
- Implants for use in the maxillary area or joint replacement are preferably manufactured from metallic materials in order to meet the mechanical demands.
- the immediate surface which can differ greatly from the basic material in its properties, is often neglected.
- the properties of the surface especially are of crucial importance for the interactions between implant and surrounding tissue.
- conformational changes of adsorbed proteins can contribute significantly to formation of a fibrous intermediate layer, which in turn can result in an inadequate stability of the implant.
- a teaching of the present invention starts from the object of modifying implant surfaces specifically with biochemical information in order to achieve a rapid osteointegration with formation of high-grade bony tissue after implantation.
- a bone-analogous coating comprising organic and inorganic main constituents, for implant materials of any desired surface geometry, the coating comprising a collagen matrix mineralized with calcium phosphate.
- Suitable implant materials are generally conductive materials such as conductive polymers or metals used in dental technology or in the endoprosthesis and trauma fields. Titanium and titanium alloys such as TiAl 6 V 4 are particularly preferred.
- the coating according to the invention is produced under conditions which make possible the inclusion of organic components.
- the invention therefore utilizes electrochemically assisted processes, which can be carried out under almost physiological pH and temperature conditions and thus make possible the inclusion of biomolecules.
- the main components of the layer consist of collagen and hydroxyapatite, the organic and inorganic main component of the bone.
- the mineralised collagen matrix is constructed in the form of layers. This has the advantage that by means of this the production of graded layers having a varying degree of mineralization of the collagen matrix is also possible.
- the preferred overall thickness of the matrix coating is about 0.04 ⁇ m-150 ⁇ m, especially about 3-8 ⁇ m.
- the preferred range for the typical dimensions of the hydroxyapatite crystals is about 300-500 nm in length and 50-60 nm in diameter.
- the inorganic main constituent or the calcium phosphate phase preferably contain amorphous calcium phosphate (Ca 9 (PO 4 ) 6 .nH 2 O), hydroxyapatite (Ca 10 (PO 4 ) 6 (OH 2 ), octacalcium phosphate (Ca 8 H 2 (PO 4 ) 6 .H 2 O) or brushite (CaHPO 4 .2H 2 O).
- amorphous calcium phosphate Ca 9 (PO 4 ) 6 .nH 2 O
- hydroxyapatite Ca 10 (PO 4 ) 6 (OH 2 )
- octacalcium phosphate Ca 8 H 2 (PO 4 ) 6 .H 2 O
- brushite CaHPO 4 .2H 2 O
- the calcium phosphate phase can additionally be doped with ions such as fluoride, silver, magnesium or carbonate.
- type I collagen is preferred, which is responsible in the bone for the elastic properties and in the mineralized state brings about the high strength of the bone together with the hydroxyapatite crystallites.
- the collagen can also be a mixture of the types I to III.
- the types I to III belong to the group of fibril-forming collagens.
- Gelatin can additionally be added to the collagen.
- collagen which can also be derived from recombinant production, the inclusion of other matrix proteins is also possible.
- a further advantage of the invention involves the possibility of utilizing the layers described as a matrix for bone-specific proteins (BMP, TGF ⁇ etc.).
- BMP bone-specific proteins
- TGF ⁇ vascular endothelial growth factor
- pharmacological active compounds such as antibiotics
- the invention further relates to a metallic implant made of a parent substance and of an outer layer carried by this, the outer layer being a coating according to the invention.
- the invention also relates to a process for the electrochemically assisted coating of metallic implant materials of any desired surface with collagen and calcium phosphate phases (CPP), comprising
- CPP calcium phosphate phases
- the preferred ranges for current density and temperature are, respectively about ⁇ 0.2 to ⁇ 50 mA/cm 2 and about 30-40° C., more preferably a current density of about ⁇ 1 to ⁇ 10 mA/cm 2 and a temperature of about 37° C.
- the coating can be carried out in an electrolysis cell in which the metallic implant is cathodically polarized.
- the layer deposition takes place near to physiological pH and temperature conditions.
- the electrolyte comprises a Ca 2+ /H x PO 4 (3 ⁇ x) ⁇ -containing solution, which can additionally contain collagen or other substances (growth factors, antibiotics).
- the implant surface can have any desired surface geometry (structure; rough, polished, etched), a chemical modification (generation of functional groups), a calcium phosphate layer, a protein layer and a layer prepared according to Patent No. WO 98/17844 (TU Dresden) or DE-19504386 (TU Dresden) or a combination thereof.
- a mineralized collagen layer can be produced on the titanium surface.
- the degree of the mineralization i.e. the nature of the calcium phosphate phases (CPP) and degree of coating, are specified here by the electrochemical parameters. This process can be assisted by the addition of groups of substances influencing mineralization (e.g. bone sialoprotein, osteopontin).
- the coating process comprises firstly carrying out a coating of the sample with calcium phosphate phases (CPP) in an electrochemical process via galvanostatic polarization in an electrolyte solution comprising calcium ions and phosphate ions at defined current density and temperature, followed by a coating of the sample, coated with calcium phosphate phases (CPP), by immersion in a collagen solution at a pH of less than 8 and a temperature of about 4 to 40° C. for a few minutes, and subsequently coating of the collagen/CPP-coated sample with further calcium phosphate phases (CPP) in a fresh electrochemical process by means of galvanostatic polarization under defined current density and temperature.
- CCPP calcium phosphate phases
- the process steps mentioned beforehand can preferably also proceed a number of times under alternating conditions, i.e. a sequence of the process steps a) and b) according to the scheme a-b-a-b-a-b etc.
- the metallic implant material to be coated being electrochemically polarized cathodically in a collagen solution comprising calcium ions and phosphate ions.
- a process is even more preferred in which a cathodic current flow of ⁇ 0.5 to ⁇ 30 mA/cm 2 flows for approximately 30 minutes during the galvanostatic polarization in process step b).
- the sample is then immersed in a collagen solution which is prepared in the following manner: acid-soluble freeze-dried calf skin collagen type I is dissolved in 0.01 M acetic acid and adjusted to a concentration of 0.1 mg/ml at 4° C.
- the collagen molecules are reconstituted in two process steps: pH adjustment to 7.4 using double-concentrated phosphate buffer and temperature increase to 36° C. After 3 hours, the solution consists of native reconstituted fibrils. The sample remains in this solution for 10 minutes, then it is rinsed with deionized water.
- the sample coated with collagen is incorporated as a working electrode in a three-electrode arrangement, consisting of a saturated calomel electrode as reference electrode and a platinum sheet as counter-electrode in a thermostated electrolysis cell.
- the electrolyte solution used is a stock solution which is prepared in the following way: 10 ml of stock solution of CaCl 2 and NH 4 H 2 PO 4 in each case, in the concentrations 33 mM and 20 mM, are diluted and mixed so that 200 ml result; 1.67 mM in calcium ions and 1.0 mM in phosphate ions. The pH is adjusted to 6.4 using dilute NH 4 OH solution.
- a cylinder of TiAl 6 V 4 is prepared as in Example 1.
- the construction of the electrolysis cell and the electrolyte for calcium phosphate deposition are identical to that in Example 1.
- coating with CPP is carried out by means of galvanostatic polarization under cathodic current flow at ⁇ 10 mA/cm 2 .
- cathodic polarization is interrupted, and the sample is taken out of the electrolyte solution and rinsed with deionized water.
- a crystalline CPP, hydroxyapatite is now present on the TiAl 6 V 4 surface.
- the sample is now immersed in a collagen solution which is identical to that in Example 1.
- the sample coated with hydroxyapatite remains in this solution for 10 minutes, then it is rinsed with deionized water and again incorporated into the electrolysis cell. After connection to the potentiostat, deposition of hydroxyapatite again takes place by means of galvanostatic polarization under cathodic current flow at ⁇ 10 mA/cm 2 . After 20 min, the sample is taken out and rinsed with deionized water. The deposited layer appears whitish. Electron-microscopic examination shows a closed layer which consists of agglomerates of small needles. A network of mineralized collagen fibrils is situated on this layer. IR-spectroscopic and X-ray diffraction investigations furnish proof that the mineral phase consists of hydroxyapatite. The characteristic amide bands in the IR spectrum furthermore show that the collagen is not present in denatured form, but on the contrary a good agreement exists between the mineralized layer and a spectrum for native bone.
- a cylinder of TiAl 6 V 4 is prepared as in Example 1.
- the construction of the electrolysis cell is identical to that in Example 1.
- a collagen solution containing native assembled collagen fibrils is prepared as in Example 1. This solution is centrifuged at 5 000 g and 4° C. for 15 min, and the pellet is taken up with deionized water and dispersed by shaking. The solution is then centrifuged at 5 000 g and 4° C. again for 15 min. The pellet obtained in the centrifugation is now taken up in the electrolyte for calcium phosphate deposition described in Example 1 and homogenized by means of a disperser.
- This solution is used as an electrolyte for a simultaneously carried-out process for the deposition and mineralization of collagen.
- mineralization is carried out by means of galvanostatic polarization under cathodic current flow at ⁇ 10 mA/cm 2 . After 30 minutes, the cathodic polarization is complete, and the sample is taken out of the electrolyte solution and rinsed with deionized water.
- the deposited layer appears whitish. Electron-microscopic examination shows a composite of collagen fibrils and CPP. IR-spectroscopic and X-ray diffraction investigations furnish proof that the mineralization of the fibrils takes place mainly by means of the crystalline phase hydroxyapatite. The more readily soluble amorphous calcium phosphate phase is partially found. The characteristic amide bands in the IR spectrum furthermore show that the collagen is not present in denatured form, but on the contrary a good agreement exists between the mineralized layer and a spectrum for native bone.
- a cylinder of TiAl 6 V 4 is prepared as in Example 1.
- the construction of the electrolysis cell and the electrolyte for the calcium phosphate deposition are identical to that in Example 1.
- coating with CPP by means of galvanostatic polarization is carried out under cathodic current flow at ⁇ 10 mA/cm 2 .
- cathodic polarization is interrupted, and the sample is taken out of the electrolyte solution and rinsed with deionized water.
- a crystalline CPP, hydroxyapatite is now present on the TiAl 6 V 4 surface.
- the sample is now immersed in a collagen solution which is identical to that in Example 1.
- the sample coated with hydroxyapatite remains in this solution for 10 minutes, then it is rinsed with deionized water and again incorporated into the electrolysis cell. After connection to the potentiostat, partial mineralization of the collagen is carried out under cathodic current flow at ⁇ 10 mA/cm 2 for 15 min. Finally, the sample is rinsed with deionized water. The deposited layer appears whitish.
- the binding of integrin-specific cell-selective peptide sequences to the immobilized collagen layer is carried out. The binding is carried out covalently by means of a thiol anchor and SMPB (sulfosuccinimidyl 4-(pmaleimidophenyl)butyrate) to the phosphate groups of the collagen.
- SMPB sulfosuccinimidyl 4-(pmaleimidophenyl)butyrate
- Electron-microscopic examination shows a homogeneous layer of hydroxyapatite needles, on which a partially mineralized network of collagen fibrils is present.
- the activity of the RGD sequences is evident from adhesion and proliferation experiments using MC3T3-E1 cells. Relative to comparable pure collagen layers, the RGDcoated surfaces show increased cell adherence and cell proliferation beginning after shorter times.
- FIG. 1 [0048]FIG. 1
- [0049] shows the cell proliferation of MC 3 T 3 mouse osteoblasts on hydroxyapatite and on the bone-analogous collagen/hydroxyapatite matrix, in each case on TiAl 6 V 4 substrates.
- the absorption is proportional to the cell count (WST-1 test).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/414,284 US7229545B2 (en) | 2000-06-21 | 2003-04-16 | Process for the coating for metallic implant materials |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10029520A DE10029520A1 (de) | 2000-06-21 | 2000-06-21 | Beschichtung für metallische Implantatmaterialien |
DEDE10029520.7 | 2000-06-21 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/414,284 Division US7229545B2 (en) | 2000-06-21 | 2003-04-16 | Process for the coating for metallic implant materials |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020018798A1 true US20020018798A1 (en) | 2002-02-14 |
Family
ID=7645842
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/885,287 Abandoned US20020018798A1 (en) | 2000-06-21 | 2001-06-21 | Coating for metallic implant materials |
US10/414,284 Expired - Fee Related US7229545B2 (en) | 2000-06-21 | 2003-04-16 | Process for the coating for metallic implant materials |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/414,284 Expired - Fee Related US7229545B2 (en) | 2000-06-21 | 2003-04-16 | Process for the coating for metallic implant materials |
Country Status (7)
Country | Link |
---|---|
US (2) | US20020018798A1 (es) |
EP (1) | EP1166804B1 (es) |
JP (1) | JP4970665B2 (es) |
AT (1) | ATE246525T1 (es) |
CA (1) | CA2351009C (es) |
DE (2) | DE10029520A1 (es) |
ES (1) | ES2203565T3 (es) |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040032297A (ko) * | 2002-10-09 | 2004-04-17 | (주)아미티에 | 생분해성 골접합용 코팅 임플란트 |
US20040236432A1 (en) * | 2003-05-13 | 2004-11-25 | Suong-Hyu Hyon | Bone-adherent implant with shock-absorbing property and manufacturing method thereof |
US20050079198A1 (en) * | 2003-08-15 | 2005-04-14 | Berthold Nies | Chitosan-coated metallic article, and process for the production thereof |
EP1618904A1 (en) * | 2004-06-30 | 2006-01-25 | Friadent GmbH | Implant with a biofunctionalized surface and method for its production |
US7067169B2 (en) | 2003-06-04 | 2006-06-27 | Chemat Technology Inc. | Coated implants and methods of coating |
US20060216494A1 (en) * | 2002-11-25 | 2006-09-28 | Helga Furedi-Milhofer | Organic-inorganic nanocomposite coatings for implant materials and methods of preparation thereof |
US20070110890A1 (en) * | 2005-11-14 | 2007-05-17 | Berckmans Bruce Iii | Deposition of discrete nanoparticles on an implant surface |
US20070190101A1 (en) * | 2004-03-31 | 2007-08-16 | Chunlin Yang | Flowable bone grafts |
US20070196419A1 (en) * | 2004-03-13 | 2007-08-23 | Marianne Teller | Composite Materials Based On Polysilicic Acid And Method For The Production Thereof |
US20070289876A1 (en) * | 2006-06-15 | 2007-12-20 | Benli Luan | Bioceramic coating of a metal-containing substrate |
US20080312748A1 (en) * | 2007-06-18 | 2008-12-18 | Zimmer, Inc. | Process for forming a ceramic layer |
US20090012615A1 (en) * | 2006-01-13 | 2009-01-08 | Fell Barry M | Surgically implantable prosthesis with active component |
US20090098310A1 (en) * | 2007-10-10 | 2009-04-16 | Zimmer, Inc. | Method for bonding a tantalum structure to a cobalt-alloy substrate |
US20090130456A1 (en) * | 2007-11-06 | 2009-05-21 | Mei Wei | Ceramic/structural protein composites and method of preparation thereof |
US20090130168A1 (en) * | 2007-11-06 | 2009-05-21 | Mei Wei | Ceramic/structural protein composites and method of preparation thereof |
US20090187256A1 (en) * | 2008-01-21 | 2009-07-23 | Zimmer, Inc. | Method for forming an integral porous region in a cast implant |
US20090191507A1 (en) * | 2008-01-28 | 2009-07-30 | Biomet 3I, Llc | Implant surface with increased hydrophilicity |
US20090198286A1 (en) * | 2008-02-05 | 2009-08-06 | Zimmer, Inc. | Bone fracture fixation system |
US20090216336A1 (en) * | 2004-11-23 | 2009-08-27 | Marco Springer | Bioresorbable, mineralised material for filling osseous defects |
WO2009111300A3 (en) * | 2008-02-29 | 2009-12-10 | Smith & Nephew, Inc. | Gradient coating for biomedical applications |
US20100094430A1 (en) * | 2006-10-12 | 2010-04-15 | Susan Pran Krumdieck | Device |
US7718616B2 (en) | 2006-12-21 | 2010-05-18 | Zimmer Orthobiologics, Inc. | Bone growth particles and osteoinductive composition thereof |
US20110008407A1 (en) * | 2008-02-29 | 2011-01-13 | Smith & Nephew, Inc. | Coating and coating method |
US20110089041A1 (en) * | 2009-10-19 | 2011-04-21 | Biomet Manufacturing Corp. | Methods of depositing discrete hydroxyapatite regions on medical implants |
US20110143127A1 (en) * | 2009-12-11 | 2011-06-16 | Biomet Manufacturing Corp. | Methods for coating implants |
US20110165199A1 (en) * | 2000-12-22 | 2011-07-07 | Thorne Kevin J | Composition and Process for Bone Growth and Repair |
US20110230973A1 (en) * | 2007-10-10 | 2011-09-22 | Zimmer, Inc. | Method for bonding a tantalum structure to a cobalt-alloy substrate |
US20110233169A1 (en) * | 2010-03-29 | 2011-09-29 | Biomet 3I, Llc | Titanium nano-scale etching on an implant surface |
US8309521B2 (en) | 2007-06-19 | 2012-11-13 | Zimmer, Inc. | Spacer with a coating thereon for use with an implant device |
KR101230016B1 (ko) | 2005-10-18 | 2013-03-05 | 주식회사 워랜텍 | 생분해성 고분자, 성장인자 및 수성 용매를 포함하는임플란트 코팅용 조성물 및 전기분사법을 이용한 코팅 방법 |
US8613938B2 (en) | 2010-11-15 | 2013-12-24 | Zimmer Orthobiologics, Inc. | Bone void fillers |
US20140005796A1 (en) * | 2010-11-17 | 2014-01-02 | Zimmer, Inc. | Ceramic monoblock implants with osseointegration fixation surfaces |
US9078832B2 (en) | 2012-03-22 | 2015-07-14 | The University Of Connecticut | Biomimetic scaffold for bone regeneration |
US9131995B2 (en) | 2012-03-20 | 2015-09-15 | Biomet 3I, Llc | Surface treatment for an implant surface |
US9138508B2 (en) | 2006-02-27 | 2015-09-22 | Globus Medical, Inc. | Bone graft materials derived from mineralized gelatin |
KR102110512B1 (ko) * | 2019-12-12 | 2020-05-13 | 이영욱 | 임플란트 시술방법용 상악동 내막 재생 촉진 픽스츄어 |
CN115518206A (zh) * | 2022-10-18 | 2022-12-27 | 华中科技大学同济医学院附属协和医院 | 一种自矿化gbr膜及其制备方法 |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10142879A1 (de) * | 2001-09-03 | 2003-03-27 | Merck Patent Gmbh | Verwendung von Kollagen bei der Beschichtung von Zahnimplantaten |
DE10143410A1 (de) * | 2001-09-05 | 2003-03-27 | Rossendorf Forschzent | Biomaterial und Verfahren zu dessen Herstellung |
US7776600B2 (en) * | 2002-04-18 | 2010-08-17 | Carnegie Mellon University | Method of manufacturing hydroxyapatite and uses therefor in delivery of nucleic acids |
JP4472267B2 (ja) * | 2003-05-02 | 2010-06-02 | 株式会社ジーシー | 骨結合を得るためのチタン製インプラント及びその表面処理方法 |
CU23352A1 (es) * | 2003-10-16 | 2009-03-16 | Centro Nacional De Investigaciones Cientificas | Biomateriales compuestos para implantes óseos |
EP1735022B1 (de) * | 2004-04-15 | 2009-07-08 | Nexilis AG | Osteogenes matrixkomposit, verfahren zu dessen herstellung sowie implantat und scaffold für das tissue engineering mit einer beschichtung aus einem osteogenen matrixkomposit |
DE102004021244A1 (de) * | 2004-04-30 | 2005-11-24 | Immundiagnostik Ag | Bioaktive Werkstoffe und Verfahren zur Verbesserung der Einwachseigenschaften von Knochenimplantaten |
WO2006004778A2 (en) * | 2004-06-30 | 2006-01-12 | Dentsply International Inc. | Implant with a biofunctionalized surface and method for its production |
US20060045902A1 (en) * | 2004-09-01 | 2006-03-02 | Serbousek Jon C | Polymeric wrap for in vivo delivery of osteoinductive formulations |
JP4356683B2 (ja) * | 2005-01-25 | 2009-11-04 | セイコーエプソン株式会社 | デバイス実装構造とデバイス実装方法、液滴吐出ヘッド及びコネクタ並びに半導体装置 |
US8535722B2 (en) * | 2005-03-16 | 2013-09-17 | North Carolina State University | Functionally graded biocompatible coating and coated implant |
US8491936B2 (en) * | 2005-03-16 | 2013-07-23 | North Carolina State University | Functionally graded biocompatible coating and coated implant |
US8012338B2 (en) * | 2006-02-10 | 2011-09-06 | Syracuse University | Method for preparing biomedical surfaces |
US7892577B2 (en) * | 2006-02-27 | 2011-02-22 | Globus Medical, Inc. | Bone graft materials derived from mineralized gelatin |
US20080051834A1 (en) * | 2006-08-28 | 2008-02-28 | Mazzocca Augustus D | High strength suture coated with collagen |
US8048857B2 (en) | 2006-12-19 | 2011-11-01 | Warsaw Orthopedic, Inc. | Flowable carrier compositions and methods of use |
WO2009073548A1 (en) * | 2007-11-30 | 2009-06-11 | Purdue Research Foundation | Aligned collagen and method therefor |
US9616153B2 (en) | 2008-04-17 | 2017-04-11 | Warsaw Orthopedic, Inc. | Rigid bone graft substitute |
US20090263507A1 (en) * | 2008-04-18 | 2009-10-22 | Warsaw Orthopedic, Inc. | Biological markers and response to treatment for pain, inflammation, neuronal or vascular injury and methods of use |
US8613943B2 (en) | 2009-01-23 | 2013-12-24 | Royal College Of Surgeons In Ireland | Process for producing a multi-layered scaffold suitable for osteochondral repair |
US20140335142A1 (en) * | 2009-04-02 | 2014-11-13 | Smith & Nephew Orthopaedics Ag | Method of surface treatment of an implant, an implant treated by said method and an electrolyte solution for use in said method |
US8696759B2 (en) | 2009-04-15 | 2014-04-15 | DePuy Synthes Products, LLC | Methods and devices for implants with calcium phosphate |
US20100268227A1 (en) * | 2009-04-15 | 2010-10-21 | Depuy Products, Inc. | Methods and Devices for Bone Attachment |
ES2672806T3 (es) | 2009-07-03 | 2018-06-18 | Armbruster Biotechnology Gmbh | Injerto óseo y material biocompuesto |
US8475536B2 (en) * | 2010-01-29 | 2013-07-02 | DePuy Synthes Products, LLC | Methods and devices for implants with improved cement adhesion |
ES2637799T3 (es) | 2011-11-15 | 2017-10-17 | Ashwin-Ushas Corporation, Inc. | Dispositivo electrocrómico con polímeros complementarios |
JPWO2013157638A1 (ja) * | 2012-04-19 | 2015-12-21 | 国立研究開発法人物質・材料研究機構 | HAp/Col複合体によって被覆された生体材料 |
US9207515B2 (en) | 2013-03-15 | 2015-12-08 | Ashwin-Ushas Corporation, Inc. | Variable-emittance electrochromic devices and methods of preparing the same |
US9463264B2 (en) * | 2014-02-11 | 2016-10-11 | Globus Medical, Inc. | Bone grafts and methods of making and using bone grafts |
DE102014105732B3 (de) * | 2014-04-23 | 2015-04-09 | Syntellix Ag | Verfahren zur Oberflächenbehandlung eines biokorrodierbaren Implantats und nach dem Verfahren erhaltenes Implantat |
US9632059B2 (en) | 2015-09-03 | 2017-04-25 | Ashwin-Ushas Corporation, Inc. | Potentiostat/galvanostat with digital interface |
US9482880B1 (en) | 2015-09-15 | 2016-11-01 | Ashwin-Ushas Corporation, Inc. | Electrochromic eyewear |
EP3231453B1 (de) | 2016-04-14 | 2019-12-25 | Immundiagnostik AG | Bone-sialopreotein(bsp)-funktionalisierte knochenersatzkörper |
JP7267881B2 (ja) * | 2019-09-11 | 2023-05-02 | 京セラ株式会社 | 生体インプラント |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4713076A (en) * | 1984-04-19 | 1987-12-15 | Klaus Draenert | Coating composition and anchorage component for surgical implants |
US5066122A (en) * | 1990-11-05 | 1991-11-19 | Welch Allyn, Inc. | Hooking cap for borescope |
US5167961A (en) * | 1988-06-02 | 1992-12-01 | Ed. Geistlich Sohne Ag Fur Chemische Industrie | Process for preparing high purity bone mineral |
US5279831A (en) * | 1990-04-05 | 1994-01-18 | Norian Corporation | Hydroxyapatite prosthesis coatings |
US5508267A (en) * | 1991-10-22 | 1996-04-16 | Isis Innovation Limited | Bioactive material |
US5573771A (en) * | 1988-08-19 | 1996-11-12 | Osteomedical Limited | Medicinal bone mineral products |
US5776193A (en) * | 1995-10-16 | 1998-07-07 | Orquest, Inc. | Bone grafting matrix |
US6300315B1 (en) * | 1999-08-28 | 2001-10-09 | Ceramedical, Inc. | Mineralized collagen membrane and method of making same |
US6384197B1 (en) * | 1998-03-24 | 2002-05-07 | Merck Patent Gesellschaft | Process for the preparation of mineralized collagen fibrils and their use as bone substitute material |
US6384195B1 (en) * | 1988-10-20 | 2002-05-07 | Polymasc Pharmaceuticals Plc. | Process for fractionating polyethylene glycol (PEG) —protein adducts and an adduct of PEG and granulocyt-macrophage colony stimulating factor |
US6524718B1 (en) * | 1996-10-24 | 2003-02-25 | Merck Patent Gmbh | Metallic object with a thin polyphase oxide coating and process for the manufacture thereof |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54115645A (en) * | 1978-02-28 | 1979-09-08 | Ngk Insulators Ltd | Electrochemical treatment |
DE3409372A1 (de) * | 1984-03-14 | 1985-09-19 | Dr. Ruhland Nachf. GmbH, 8425 Neustadt | Material zum vitalisieren von implantatoberflaechen |
US4780450A (en) * | 1985-12-20 | 1988-10-25 | The University Of Maryland At Baltimore | Physically stable composition and method of use thereof for osseous repair |
US5306500A (en) * | 1988-11-21 | 1994-04-26 | Collagen Corporation | Method of augmenting tissue with collagen-polymer conjugates |
JPH0629126B2 (ja) * | 1989-03-29 | 1994-04-20 | 京都大学長 | 生体活性水酸アパタイト膜のコーティング法 |
US5205921A (en) * | 1991-02-04 | 1993-04-27 | Queen's University At Kingston | Method for depositing bioactive coatings on conductive substrates |
BE1006963A3 (fr) * | 1993-04-01 | 1995-02-07 | Cockerill Rech & Dev | Procede de depot par electropolymerisation d'un film d'un materiau composite sur une surface conductrice d'electricite. |
US5458863A (en) * | 1994-11-25 | 1995-10-17 | Klassen; Robert D. | Cold process for hydroxyapatite coatings |
US6376573B1 (en) * | 1994-12-21 | 2002-04-23 | Interpore International | Porous biomaterials and methods for their manufacture |
DE19504386C2 (de) * | 1995-02-10 | 1997-08-28 | Univ Dresden Tech | Verfahren zur Herstellung einer gradierten Beschichtung aus Calciumphosphatphasen und Metalloxidphasen auf metallischen Implantaten |
DE19755334A1 (de) | 1997-12-15 | 1999-06-24 | Wilhelm Dr Aicher | Beschichtungsmaterial für Prothesen und hiermit beschichtetes Prothesenteil |
DE19811900C2 (de) * | 1998-03-18 | 2003-12-11 | Kallies Feinchemie Ag | Biokompatibles Kompositmaterial, Verfahren zu seiner Herstellung und seine Verwendung |
DE19812713A1 (de) * | 1998-03-24 | 1999-09-30 | Merck Patent Gmbh | Verfahren zur Herstellung von mineralisierten Kollagenfibrillen und deren Verwendung als Knochenersatzwerkstoff |
US6428978B1 (en) * | 1998-05-08 | 2002-08-06 | Cohesion Technologies, Inc. | Methods for the production of gelatin and full-length triple helical collagen in recombinant cells |
US6113993A (en) * | 1998-10-28 | 2000-09-05 | Battelle Memorial Institute | Method of coating a substrate with a calcium phosphate compound |
US6506217B1 (en) * | 1999-03-29 | 2003-01-14 | Arnett Facial Reconstruction Courses, Inc. | Moldable post-implantation bone filler and method |
-
2000
- 2000-06-21 DE DE10029520A patent/DE10029520A1/de not_active Withdrawn
-
2001
- 2001-05-25 EP EP01112667A patent/EP1166804B1/de not_active Expired - Lifetime
- 2001-05-25 DE DE50100456T patent/DE50100456D1/de not_active Expired - Lifetime
- 2001-05-25 AT AT01112667T patent/ATE246525T1/de active
- 2001-05-25 ES ES01112667T patent/ES2203565T3/es not_active Expired - Lifetime
- 2001-06-19 JP JP2001184719A patent/JP4970665B2/ja not_active Expired - Fee Related
- 2001-06-19 CA CA2351009A patent/CA2351009C/en not_active Expired - Fee Related
- 2001-06-21 US US09/885,287 patent/US20020018798A1/en not_active Abandoned
-
2003
- 2003-04-16 US US10/414,284 patent/US7229545B2/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4713076A (en) * | 1984-04-19 | 1987-12-15 | Klaus Draenert | Coating composition and anchorage component for surgical implants |
US5167961A (en) * | 1988-06-02 | 1992-12-01 | Ed. Geistlich Sohne Ag Fur Chemische Industrie | Process for preparing high purity bone mineral |
US5573771A (en) * | 1988-08-19 | 1996-11-12 | Osteomedical Limited | Medicinal bone mineral products |
US6384195B1 (en) * | 1988-10-20 | 2002-05-07 | Polymasc Pharmaceuticals Plc. | Process for fractionating polyethylene glycol (PEG) —protein adducts and an adduct of PEG and granulocyt-macrophage colony stimulating factor |
US5279831A (en) * | 1990-04-05 | 1994-01-18 | Norian Corporation | Hydroxyapatite prosthesis coatings |
US5066122A (en) * | 1990-11-05 | 1991-11-19 | Welch Allyn, Inc. | Hooking cap for borescope |
US5508267A (en) * | 1991-10-22 | 1996-04-16 | Isis Innovation Limited | Bioactive material |
US5776193A (en) * | 1995-10-16 | 1998-07-07 | Orquest, Inc. | Bone grafting matrix |
US6524718B1 (en) * | 1996-10-24 | 2003-02-25 | Merck Patent Gmbh | Metallic object with a thin polyphase oxide coating and process for the manufacture thereof |
US6384197B1 (en) * | 1998-03-24 | 2002-05-07 | Merck Patent Gesellschaft | Process for the preparation of mineralized collagen fibrils and their use as bone substitute material |
US6300315B1 (en) * | 1999-08-28 | 2001-10-09 | Ceramedical, Inc. | Mineralized collagen membrane and method of making same |
Cited By (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110165199A1 (en) * | 2000-12-22 | 2011-07-07 | Thorne Kevin J | Composition and Process for Bone Growth and Repair |
US8690874B2 (en) | 2000-12-22 | 2014-04-08 | Zimmer Orthobiologics, Inc. | Composition and process for bone growth and repair |
KR20040032297A (ko) * | 2002-10-09 | 2004-04-17 | (주)아미티에 | 생분해성 골접합용 코팅 임플란트 |
US20060216494A1 (en) * | 2002-11-25 | 2006-09-28 | Helga Furedi-Milhofer | Organic-inorganic nanocomposite coatings for implant materials and methods of preparation thereof |
US20040236432A1 (en) * | 2003-05-13 | 2004-11-25 | Suong-Hyu Hyon | Bone-adherent implant with shock-absorbing property and manufacturing method thereof |
US7341756B2 (en) | 2003-06-04 | 2008-03-11 | Chemat Technology, Inc. | Coated implants and methods of coating |
US7067169B2 (en) | 2003-06-04 | 2006-06-27 | Chemat Technology Inc. | Coated implants and methods of coating |
US20060141002A1 (en) * | 2003-06-04 | 2006-06-29 | Jiankai Liu | Coated implants and methods of coating |
US7648726B2 (en) | 2003-06-04 | 2010-01-19 | Chemat Technology, Inc. | Coated implants and methods of coating |
US20080152785A1 (en) * | 2003-06-04 | 2008-06-26 | Jiankai Liu | Coated implants and methods of coating |
US20050079198A1 (en) * | 2003-08-15 | 2005-04-14 | Berthold Nies | Chitosan-coated metallic article, and process for the production thereof |
US20070196419A1 (en) * | 2004-03-13 | 2007-08-23 | Marianne Teller | Composite Materials Based On Polysilicic Acid And Method For The Production Thereof |
US20070190101A1 (en) * | 2004-03-31 | 2007-08-16 | Chunlin Yang | Flowable bone grafts |
EP1618904A1 (en) * | 2004-06-30 | 2006-01-25 | Friadent GmbH | Implant with a biofunctionalized surface and method for its production |
US20090216336A1 (en) * | 2004-11-23 | 2009-08-27 | Marco Springer | Bioresorbable, mineralised material for filling osseous defects |
KR101230016B1 (ko) | 2005-10-18 | 2013-03-05 | 주식회사 워랜텍 | 생분해성 고분자, 성장인자 및 수성 용매를 포함하는임플란트 코팅용 조성물 및 전기분사법을 이용한 코팅 방법 |
US9763751B2 (en) | 2005-11-14 | 2017-09-19 | Biomet 3I, Llc | Deposition of discrete nanoparticles on an implant surface |
US8486483B2 (en) | 2005-11-14 | 2013-07-16 | Biomet 3I, Llc | Deposition of discrete nanoparticles on an implant surface |
US20070112353A1 (en) * | 2005-11-14 | 2007-05-17 | Berckmans Bruce Iii | Deposition of discrete nanoparticles on an implant surface |
US7771774B2 (en) | 2005-11-14 | 2010-08-10 | Biomet 3l, LLC | Deposition of discrete nanoparticles on an implant surface |
US20070110890A1 (en) * | 2005-11-14 | 2007-05-17 | Berckmans Bruce Iii | Deposition of discrete nanoparticles on an implant surface |
US20090012615A1 (en) * | 2006-01-13 | 2009-01-08 | Fell Barry M | Surgically implantable prosthesis with active component |
US8080059B2 (en) | 2006-01-13 | 2011-12-20 | Fell Barry M | Surgically implantable prosthesis with active component |
US9138508B2 (en) | 2006-02-27 | 2015-09-22 | Globus Medical, Inc. | Bone graft materials derived from mineralized gelatin |
US7767250B2 (en) | 2006-06-15 | 2010-08-03 | National Research Council Of Canada | Bioceramic coating of a metal-containing substrate |
US20070289876A1 (en) * | 2006-06-15 | 2007-12-20 | Benli Luan | Bioceramic coating of a metal-containing substrate |
US20100094430A1 (en) * | 2006-10-12 | 2010-04-15 | Susan Pran Krumdieck | Device |
US7718616B2 (en) | 2006-12-21 | 2010-05-18 | Zimmer Orthobiologics, Inc. | Bone growth particles and osteoinductive composition thereof |
US20100196489A1 (en) * | 2006-12-21 | 2010-08-05 | Zimmer Orthobiologics, Inc. | Bone growth particles and osteoinductive composition thereof |
US8742072B2 (en) | 2006-12-21 | 2014-06-03 | Zimmer Orthobiologics, Inc. | Bone growth particles and osteoinductive composition thereof |
US8663337B2 (en) | 2007-06-18 | 2014-03-04 | Zimmer, Inc. | Process for forming a ceramic layer |
US8133553B2 (en) | 2007-06-18 | 2012-03-13 | Zimmer, Inc. | Process for forming a ceramic layer |
US20080312748A1 (en) * | 2007-06-18 | 2008-12-18 | Zimmer, Inc. | Process for forming a ceramic layer |
US8309521B2 (en) | 2007-06-19 | 2012-11-13 | Zimmer, Inc. | Spacer with a coating thereon for use with an implant device |
US8608049B2 (en) | 2007-10-10 | 2013-12-17 | Zimmer, Inc. | Method for bonding a tantalum structure to a cobalt-alloy substrate |
US8602290B2 (en) | 2007-10-10 | 2013-12-10 | Zimmer, Inc. | Method for bonding a tantalum structure to a cobalt-alloy substrate |
US20090098310A1 (en) * | 2007-10-10 | 2009-04-16 | Zimmer, Inc. | Method for bonding a tantalum structure to a cobalt-alloy substrate |
US20110230973A1 (en) * | 2007-10-10 | 2011-09-22 | Zimmer, Inc. | Method for bonding a tantalum structure to a cobalt-alloy substrate |
US20110233263A1 (en) * | 2007-10-10 | 2011-09-29 | Zimmer, Inc. | Method for bonding a tantalum structure to a cobalt-alloy substrate |
US20090130168A1 (en) * | 2007-11-06 | 2009-05-21 | Mei Wei | Ceramic/structural protein composites and method of preparation thereof |
US20090130456A1 (en) * | 2007-11-06 | 2009-05-21 | Mei Wei | Ceramic/structural protein composites and method of preparation thereof |
US9149563B2 (en) | 2007-11-06 | 2015-10-06 | The University Of Connecticut | Calcium phosphate/structural protein composites and method of preparation thereof |
US8084095B2 (en) | 2007-11-06 | 2011-12-27 | The University Of Connecticut | Ceramic/structural protein composites and method of preparation thereof |
US20090187256A1 (en) * | 2008-01-21 | 2009-07-23 | Zimmer, Inc. | Method for forming an integral porous region in a cast implant |
US20090191507A1 (en) * | 2008-01-28 | 2009-07-30 | Biomet 3I, Llc | Implant surface with increased hydrophilicity |
US9198742B2 (en) | 2008-01-28 | 2015-12-01 | Biomet 3I, Llc | Implant surface with increased hydrophilicity |
US8309162B2 (en) | 2008-01-28 | 2012-11-13 | Biomet 3I, Llc | Implant surface with increased hydrophilicity |
US8852672B2 (en) | 2008-01-28 | 2014-10-07 | Biomet 3I, Llc | Implant surface with increased hydrophilicity |
US20090198286A1 (en) * | 2008-02-05 | 2009-08-06 | Zimmer, Inc. | Bone fracture fixation system |
WO2009111300A3 (en) * | 2008-02-29 | 2009-12-10 | Smith & Nephew, Inc. | Gradient coating for biomedical applications |
US20110014258A1 (en) * | 2008-02-29 | 2011-01-20 | Smith & Nephew, Inc. | Gradient coating for biomedical applications |
US9839720B2 (en) | 2008-02-29 | 2017-12-12 | Smith & Nephew, Inc. | Coating and coating method |
US8821911B2 (en) | 2008-02-29 | 2014-09-02 | Smith & Nephew, Inc. | Coating and coating method |
US9011965B2 (en) | 2008-02-29 | 2015-04-21 | Smith & Nephew, Inc. | Gradient coating for biomedical applications |
US20110008407A1 (en) * | 2008-02-29 | 2011-01-13 | Smith & Nephew, Inc. | Coating and coating method |
AU2009222165B2 (en) * | 2008-02-29 | 2015-07-09 | Smith & Nephew, Inc. | Gradient coating for biomedical applications |
US20110089041A1 (en) * | 2009-10-19 | 2011-04-21 | Biomet Manufacturing Corp. | Methods of depositing discrete hydroxyapatite regions on medical implants |
US20110143127A1 (en) * | 2009-12-11 | 2011-06-16 | Biomet Manufacturing Corp. | Methods for coating implants |
US9283056B2 (en) | 2010-03-29 | 2016-03-15 | Biomet 3I, Llc | Titanium nano-scale etching on an implant surface |
US9757212B2 (en) | 2010-03-29 | 2017-09-12 | Biomet 3I, Llc | Titanium nano-scale etching on an implant surface |
US10765494B2 (en) | 2010-03-29 | 2020-09-08 | Biomet 3I, Llc | Titanium nano-scale etching on an implant surface |
US9034201B2 (en) | 2010-03-29 | 2015-05-19 | Biomet 3I, Llc | Titanium nano-scale etching on an implant surface |
US8641418B2 (en) | 2010-03-29 | 2014-02-04 | Biomet 3I, Llc | Titanium nano-scale etching on an implant surface |
US10182887B2 (en) | 2010-03-29 | 2019-01-22 | Biomet 3I, Llc | Titanium nano-scale etching on an implant surface |
US20110233169A1 (en) * | 2010-03-29 | 2011-09-29 | Biomet 3I, Llc | Titanium nano-scale etching on an implant surface |
US8613938B2 (en) | 2010-11-15 | 2013-12-24 | Zimmer Orthobiologics, Inc. | Bone void fillers |
US20140005796A1 (en) * | 2010-11-17 | 2014-01-02 | Zimmer, Inc. | Ceramic monoblock implants with osseointegration fixation surfaces |
US9248020B2 (en) * | 2010-11-17 | 2016-02-02 | Zimmer, Inc. | Ceramic monoblock implants with osseointegration fixation surfaces |
US9131995B2 (en) | 2012-03-20 | 2015-09-15 | Biomet 3I, Llc | Surface treatment for an implant surface |
US9078832B2 (en) | 2012-03-22 | 2015-07-14 | The University Of Connecticut | Biomimetic scaffold for bone regeneration |
KR102110512B1 (ko) * | 2019-12-12 | 2020-05-13 | 이영욱 | 임플란트 시술방법용 상악동 내막 재생 촉진 픽스츄어 |
CN115518206A (zh) * | 2022-10-18 | 2022-12-27 | 华中科技大学同济医学院附属协和医院 | 一种自矿化gbr膜及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP1166804A2 (de) | 2002-01-02 |
ES2203565T3 (es) | 2004-04-16 |
US20040033249A1 (en) | 2004-02-19 |
CA2351009A1 (en) | 2001-12-21 |
DE10029520A1 (de) | 2002-01-17 |
DE50100456D1 (de) | 2003-09-11 |
EP1166804B1 (de) | 2003-08-06 |
EP1166804A3 (de) | 2002-01-16 |
JP4970665B2 (ja) | 2012-07-11 |
ATE246525T1 (de) | 2003-08-15 |
JP2002035107A (ja) | 2002-02-05 |
CA2351009C (en) | 2010-08-03 |
US7229545B2 (en) | 2007-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7229545B2 (en) | Process for the coating for metallic implant materials | |
Schliephake et al. | Chemical and biological functionalization of titanium for dental implants | |
Da Silva et al. | Transformation of monetite to hydroxyapatite in bioactive coatings on titanium | |
EP1385449B1 (de) | Biologisch funktionalisierte, metabolisch induktive implantatoberflächen | |
Lopez-Heredia et al. | An electrodeposition method of calcium phosphate coatings on titanium alloy | |
WO2006004778A2 (en) | Implant with a biofunctionalized surface and method for its production | |
Łukaszewska-Kuska et al. | Hydroxyapatite coating on titanium endosseous implants for improved osseointegration: Physical and chemical considerations. | |
US20060216494A1 (en) | Organic-inorganic nanocomposite coatings for implant materials and methods of preparation thereof | |
CN101984144B (zh) | 一种医用钛植入体表面组装矿化胶原梯度涂层的方法 | |
US6764769B2 (en) | Apatite-coated metallic material, process for its preparation, and its use | |
Góes et al. | Apatite coating on anionic and native collagen films by an alternate soaking process | |
He et al. | In Vivo Effect of Titanium Implants with Porous Zinc-Containing Coatings Prepared by Plasma Electrolytic Oxidation Method on Osseointegration in Rabbits. | |
Abdal-hay et al. | In situ hydrothermal transformation of titanium surface into lithium-doped continuous nanowire network towards augmented bioactivity | |
Sen et al. | Preparation and osteoinduction of active micro-arc oxidation films on Ti-3Zr-2Sn-3Mo-25Nb alloy | |
Sridhar | Nanobioceramic coatings for biomedical applications | |
CN110042392A (zh) | 一种医用植入体表面兼具优良生物相容性和抗菌性复合涂层的制备方法 | |
WO2008146113A2 (en) | Process for coating a surface of a metal element to increase osteointegration thereof and prosthetic device including said element | |
KR101933701B1 (ko) | 생체적합성세라믹스 코팅층, 그 코팅층을 포함하는 티타늄재구조체 및 그 구조체 제조방법 | |
CN115137875B (zh) | 一种高效的双相磷酸钙涂层方法 | |
CN101856512B (zh) | 可降解泡沫铁基磷酸钙-壳聚糖复合骨植入材料 | |
US20100198345A1 (en) | Calcium phosphate coated implantable medical devices, and electrophoretic deposition processes for making same | |
Alipal et al. | In vitro surface efficacy of CaP-based anodised titanium for bone implants | |
Park et al. | Effect of surface-activated PLLA scaffold on apatite formation in simulated body fluid | |
EP1618904B1 (en) | Implant with a biofunctionalized surface and method for its production | |
Sun et al. | Highly efficient biphasic calcium-phosphate coating procedure with an enhanced coating yield and protein incorporation rate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MERCK PATENT GESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SEWING, ANDREAS;DARD, MICHEL;ROEBLER, SOPHIE;AND OTHERS;REEL/FRAME:012242/0270 Effective date: 20010904 |
|
AS | Assignment |
Owner name: BIOMET DEUTSCHLAND GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MERCK PATENTGESELLSCHAFT MIT BESCHRANKTER HAFTUNG;REEL/FRAME:014797/0110 Effective date: 20040628 Owner name: BIOMET DEUTSCHLAND GMBH,GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MERCK PATENTGESELLSCHAFT MIT BESCHRANKTER HAFTUNG;REEL/FRAME:014797/0110 Effective date: 20040628 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |