US20010040727A1 - Optical device and zoom binoculars - Google Patents
Optical device and zoom binoculars Download PDFInfo
- Publication number
- US20010040727A1 US20010040727A1 US09/725,307 US72530700A US2001040727A1 US 20010040727 A1 US20010040727 A1 US 20010040727A1 US 72530700 A US72530700 A US 72530700A US 2001040727 A1 US2001040727 A1 US 2001040727A1
- Authority
- US
- United States
- Prior art keywords
- zoom
- actuation
- focusing ring
- lever
- binoculars
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/16—Housings; Caps; Mountings; Supports, e.g. with counterweight
- G02B23/18—Housings; Caps; Mountings; Supports, e.g. with counterweight for binocular arrangements
Definitions
- the present invention relates to an optical device and to binoculars incorporating a zoom function, of which the magnification ratio can be varied.
- binoculars which incorporates left and right lens bodies and a main body which connects these lens bodies together, with a focusing ring being provided to the main body for focus adjustment.
- a focusing ring being provided to the main body for focus adjustment.
- the main body of the binoculars described above further includes a zoom lever.
- zoom binoculars furnished with a zoom function which is capable of changing the observation magnification ratio
- the main body of the binoculars described above further includes a zoom lever.
- the observer actuates the zoom lever while observing a subject for observation, he is able to vary the mutual spacing between several lens groups included in the eyepiece lenses, and thereby, as will be described hereinafter, he can change the observation magnification ratio.
- FIG. 4 is a partial sectional view of prior art zoom binoculars as seen from above.
- a top cover is removed and the binoculars are shown as partly cut away in order to view the internal construction.
- eyepiece lenses 7 and structures surrounding them are shown in sectional view, and a focusing ring 5 and structures surrounding it are shown as exposed. Since the construction of the binoculars is almost symmetrical on the left and right sides of its central axis 4 , in the following description, reference numerals will be affixed in the figure to parts on only the one or the other of its sides.
- a pair of left and right lens bodies 1 and 2 are connected together by a main body 3 .
- the lens bodies 1 and 2 are of the Porro prism type, and objective lenses 8 , which are arranged closer together than eyepiece lenses 7 , are housed within a front portion of the main body 3 .
- each of the eyepiece lenses 7 of the zoom optical system comprises, along its optical axis 10 , a first lens group 11 which is termed the front lens, a second lens group 12 which is termed the middle lens, and a third lens group 13 which is termed the rear lens.
- the front lens 11 and the middle lens 12 are respectively assembled within an front lens frame 14 and a middle lens frame 15 .
- the space between this front lens frame 14 and this middle lens frame 15 is varied so as to be greater for high magnification ratio and smaller for low magnification ratio.
- a finger of the user of the binoculars engaging an actuation point 6 a of a wiper shaped zoom lever (hereinafter termed a zoom lever) 6 and thereby rotating it in an arcing manner around a support point 6 b.
- the actuation point 6 a of the zoom lever 6 is at a position closer to the focusing ring 5 than is the support point 6 b.
- the optical axes 10 and a central axis 4 are parallel.
- a zoom cam plate 19 which lies underneath it is rotated around a rotation shaft 19 d, and a pair of linking pins 17 b and 18 b, which are respectively engaged in a pair of cam grooves (not shown in the figure) formed in this cam plate 19 , are moved parallel to the central axis 4 .
- the linking pin 17 b is fixed to an front lens lever (not shown in the figure) which is linked to the front lens frame 14
- the linking pin 18 b is fixed to a middle lens lever (also not shown in the figure) which is linked to the middle lens frame 15 . Accordingly, when the zoom lever 6 is rotated, the front lens frame 14 and the middle lens frame 15 can be moved in parallel with the central axis 4 , i.e. in parallel with the optical axes 10 , while varying the relative distance between them.
- the front lens lever and the middle lens lever slide in a pair of left and right parallel grooves 16 which act as guides.
- the parallel grooves 16 are formed as two-stepped grooves, of which one step portion serves to guide the front lens lever while the other step portion serves to guide the middle lens lever, with the lengths of these grooves being denoted by “l” in the figure.
- a linking pin which is fixed to the to middle lens lever slides in and is guided by a straight groove 21 a which is provided in a cam plate press member 21 which presses against the zoom cam plate 19 from above.
- the front lens lever and the middle lens lever are enabled to move in straight lines without any play by these guides provided at these three points.
- Binoculars are often used outdoors for observing sports events or for bird watching, and it is desirable for zoom operation and focus operation etc. to be possible even when the operator is wearing gloves, in particular when the binoculars are being used in cold weather.
- the objective of the present invention is to provide an optical device and zoom binoculars which possess enhanced operability, so that, for example, when an operator is turning a focusing ring, his finger does not inadvertently come into contact with the actuation point of a zoom lever, and conversely, when the operator is moving the zoom lever, his finger does not inadvertently come into contact with the focusing ring.
- an optical device comprises: an optical system of which a magnification ratio can be altered; a focusing ring which is actuated in order to set the optical system to a focus position; and a zoom actuation member which is actuated in order to change the magnification ratio of the optical system.
- the zoom actuation member is rotated about a support point by actuation force which is applied at an actuation point, and the actuation point is at a position farther removed from the focusing ring, than is the support point.
- Zoom binoculars according to the present invention comprises: left and right lens bodies; a main body which is positioned between the left and right lens bodies; a focusing ring provided to the main body, which is actuated for focusing; and a zoom actuation member provided to the main body in a vicinity of the focusing ring, which is actuated in order to change an observation magnification ratio of the zoom binoculars.
- the zoom actuation member is rotated about a support point by actuation force which is applied at an actuation point, and the actuation point is at a position farther removed from the focusing ring, than is the support point.
- the zoom actuation member is positioned more towards eyepiece lenses of the left and right lens bodies, than is the focusing ring.
- the focusing ring and the zoom actuation member are provided in sequence along a direction of optical axes of eyepiece lenses of the left and right lens bodies.
- FIG. 1 is a partial sectional view of zoom binoculars according to the preferred embodiment of the present invention as seen from above.
- FIG. 2 is a plan view showing the main body structure of this zoom binoculars according to the preferred embodiment of the present invention.
- FIG. 3A is a plan view showing the main body structure of the zoom binoculars according to the preferred embodiment of the present invention.
- FIG. 3B is a sectional view taken along the line A-A viewing in the direction of the arrows in FIG. 3A.
- FIG. 4 is a partial sectional view of prior art zoom binoculars as seen from above.
- FIG. 1 is a partial sectional view of the zoom binoculars as seen from above, and corresponds to FIG. 4 relating to the prior art.
- FIG. 2 is a plan view, showing a central portion of the main body of the zoom binoculars with a zoom lever and a cam plate press member removed therefrom.
- FIG. 3A is a plan view of this central portion of the main body of the zoom binoculars, with a zoom cam plate (which is one of the elements shown in FIG. 2) further removed.
- FIG. 3B is a sectional view of parallel grooves 116 taken along the line A-A viewing in the direction of the arrows in FIG. 1 and FIG. 3A.
- a pair of left and right lens bodies 1 and 2 are connected together by a main body 3 .
- the lens bodies 1 and 2 are of the Porro prism type, and objective lenses 8 , which are arranged closer together than eyepiece lenses 7 , are housed within a front portion of the main body 3 .
- Each of the eyepiece lenses 7 of the zoom optical system comprises, along its optical axis 10 , a first lens group 11 which is termed the front lens, a second lens group 12 which is termed the middle lens, and a third lens group 13 which is termed the rear lens.
- the front lens 11 and the middle lens 12 are respectively assembled within an front lens frame 14 and a middle lens frame 15 .
- the space between this front lens frame 14 and this middle lens frame 15 is varied so as to be greater for high magnification ratio and smaller for low magnification ratio.
- a finger of the user of the binoculars engaging an actuation point 106 a of a wiper shaped zoom lever (hereinafter termed a zoom lever) 106 and thereby rotating it in an arcing manner around a support point 106 b.
- the actuation point 106 a of the zoom lever 106 is at a position further from a focusing ring 5 than is the support point 106 b. It should be noted that the optical axes 10 and a central axis 4 are parallel.
- notched portions 14 a are fixedly provided to the front lens frame 14 , extending inwards towards the central axis 4 .
- claw portions (projections) 17 a are fixedly provided to the front lens lever 17 , extending outward from the central axis 4 . These claw portions 17 a are engaged into these notched portions 14 a, and thereby, when the front lens lever 17 slides along parallel grooves 116 (described hereinafter) which are provided in the main body 3 , the front lens frame 14 also move.
- notched portions 15 a are fixedly provided to the middle lens frame 15 , extending inwards towards the central axis 4 .
- claw portions 18 a are fixedly provided to the middle lens lever 18 , extending outward from the central axis 4 . These claw portions 18 a are engaged into these notched portions 15 a, and thereby, when the middle lens lever 18 slides along the parallel grooves 116 described hereinafter, the middle lens frame 15 also move.
- the front lens linking pin 17 b is fixed in the front lens lever 17
- the middle lens linking pin 18 b is fixed in the middle lens lever 18 .
- the front lens linking pin 17 b is engaged into a cam groove 119 a which is formed in the zoom cam plate 119
- the middle lens linking pin 18 b is engaged into a cam groove 119 b which is also formed therein.
- a pin 119 c which is fixed in the zoom cam plate 119 is inserted into a slot (not shown) which is provided in the vicinity of the actuation point 106 a of the zoom lever 106 .
- the pin 119 c When the zoom lever 106 is rotated, the pin 119 c also rotates in the same direction, and thereby the zoom cam plate 119 rotates around the rotation shaft 119 d, so that the front lens linking pin 17 b and the middle lens linking pin 18 b are moved in parallel with the central axis 4 .
- FIG. 3B is a partial sectional view for showing the structure of the parallel grooves 116 , and is a sectional view of the parallel grooves 116 taken along the line A-A viewing in the direction of the arrows in FIG. 1 and FIG. 3A.
- the parallel grooves 116 are made as two-stepped grooves.
- One groove step portion 116 a serves to guide the front lens lever 17
- the other groove step portion 116 b serves to guide the middle lens lever 18 .
- the parallel grooves 116 are made of length L, where the length L is longer than the length 1 of the parallel grooves in the prior art binoculars shown in FIG. 4. Since the grooves 116 are elongated in this manner, a sufficient stroke is ensured for the middle lens lever 18 when zooming is being performed, and sliding without play is possible even though the straight groove 21 a shown in FIG. 4 is not present.
- a first distinguishing feature of this preferred embodiment is that the positional relationship of the actuation point 106 a and the support point 106 b of the zoom lever 106 is the reverse of that shown in FIG. 4. Due to this, unintentional change of the observation magnification ratio when the operator of the binoculars is turning the focusing ring to adjust the focus and his finger accidentally contacts the actuation point of the zoom lever, and disturbance of the focus when he is changing the observation magnification ratio by moving the zoom lever and his finger accidentally contacts the focusing ring, are both prevented.
- a second distinguishing feature of this preferred embodiment is that, along with the omission of the straight groove 21 a, the parallel grooves 116 are made longer than the grooves of the FIG. 4 prior art construction, both towards the eyepiece lenses and towards the objective lenses. In other words, the parallel grooves 116 are made longer so that sliding without any play is possible even without any straight groove.
- the actuation point 106 a of the zoom lever 106 is positioned far away from the focusing ring 5 , and further the guide function of the front lens lever 17 and the middle lens lever 18 is entirely implemented by the parallel grooves 116 .
- the parallel grooves 116 By doing this, a sufficient stroke for the middle lens lever 18 when zoom operation is performed is ensured, and sliding without any play is possible even without any straight groove.
- the present invention has been described with reference to a preferred embodiment which is zoom binoculars, it is not necessarily limited to this application.
- the present invention can also be applied to any optical system (optical device) in which there are included in near proximity to one another a focusing ring which is operated in order to adjust the focus, and a zoom lever which is adjusted in order to vary the observation magnification ratio.
- optical system optical device
- a zoom lever which is adjusted in order to vary the observation magnification ratio
Landscapes
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Telescopes (AREA)
- Lens Barrels (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000002298A JP2001194594A (ja) | 2000-01-11 | 2000-01-11 | ズーム双眼鏡 |
JP2000-002298 | 2000-01-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20010040727A1 true US20010040727A1 (en) | 2001-11-15 |
Family
ID=18531426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/725,307 Abandoned US20010040727A1 (en) | 2000-01-11 | 2000-11-29 | Optical device and zoom binoculars |
Country Status (4)
Country | Link |
---|---|
US (1) | US20010040727A1 (enrdf_load_stackoverflow) |
JP (1) | JP2001194594A (enrdf_load_stackoverflow) |
CN (1) | CN1207602C (enrdf_load_stackoverflow) |
DE (1) | DE10101076A1 (enrdf_load_stackoverflow) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11048073B2 (en) * | 2019-04-17 | 2021-06-29 | Bushnell, Inc. | System and method for binocular tripod adapter with automatic locking engagement |
-
2000
- 2000-01-11 JP JP2000002298A patent/JP2001194594A/ja active Pending
- 2000-11-29 US US09/725,307 patent/US20010040727A1/en not_active Abandoned
- 2000-12-08 CN CNB001345133A patent/CN1207602C/zh not_active Expired - Fee Related
-
2001
- 2001-01-11 DE DE10101076A patent/DE10101076A1/de not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
DE10101076A1 (de) | 2001-08-02 |
CN1357776A (zh) | 2002-07-10 |
CN1207602C (zh) | 2005-06-22 |
JP2001194594A (ja) | 2001-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6412958B2 (en) | Binoculars and optical device provided with via-rotation-drawable type eye cup | |
JPH09222569A (ja) | 光学機器の目当て機構 | |
US20010040727A1 (en) | Optical device and zoom binoculars | |
US6542294B2 (en) | Binocular | |
JP3461224B2 (ja) | 高倍率ズームレンズ | |
US4273423A (en) | Zoom lens barrel assembly for constant magnification | |
JP4796864B2 (ja) | 遮光装置 | |
US11624892B2 (en) | Lens apparatus and image pickup apparatus | |
US6574056B2 (en) | Eye cup moving mechanism of optical device | |
US6493153B2 (en) | Mechanism for moving optical element of an optical system | |
US6870669B2 (en) | Variable-powered binoculars | |
JPH08211454A (ja) | ズームカメラの視度調整機構 | |
US5884106A (en) | Zoom finder for a camera | |
JP4532852B2 (ja) | 偏光顕微鏡及び偏光観察用中間鏡筒 | |
JP2019070721A (ja) | レンズ鏡筒とその製造方法、およびこれを備えた光学機器 | |
JP2001324681A (ja) | 光学機器の目当て機構 | |
JP2002182094A (ja) | レンズ鏡筒およびカメラ | |
JPH0833510B2 (ja) | 焦点距離が切換可能なレンズ構体 | |
JPH0622828Y2 (ja) | 倍率切換ファインダー | |
JPH1039189A (ja) | 双眼鏡の視度調整機構 | |
US20040156628A1 (en) | Switching/moving structure of a zoom lens | |
JPH0626900Y2 (ja) | 倍率切換ファインダー | |
JP4181453B2 (ja) | 双眼鏡 | |
JP2005164883A (ja) | 移動端末機 | |
JP2003015052A (ja) | 光学素子切換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NIKON CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AIKAWA, YASUYUKI;REEL/FRAME:011330/0715 Effective date: 20001121 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |