US20010022437A1 - Suspension frame construction - Google Patents

Suspension frame construction Download PDF

Info

Publication number
US20010022437A1
US20010022437A1 US09/801,995 US80199501A US2001022437A1 US 20010022437 A1 US20010022437 A1 US 20010022437A1 US 80199501 A US80199501 A US 80199501A US 2001022437 A1 US2001022437 A1 US 2001022437A1
Authority
US
United States
Prior art keywords
plate
suspension
suspension frame
side plates
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/801,995
Other versions
US6409216B2 (en
Inventor
Tomoyuki Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000075088A external-priority patent/JP3791291B2/en
Priority claimed from JP2000110141A external-priority patent/JP3791295B2/en
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Assigned to SUZUKI MOTOR CORPORATION reassignment SUZUKI MOTOR CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUZUKI, TOMOYUKI
Publication of US20010022437A1 publication Critical patent/US20010022437A1/en
Application granted granted Critical
Publication of US6409216B2 publication Critical patent/US6409216B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/02Attaching arms to sprung part of vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/11Understructures, i.e. chassis frame on which a vehicle body may be mounted with resilient means for suspension, e.g. of wheels or engine; sub-frames for mounting engine or suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/10Independent suspensions
    • B60G2200/14Independent suspensions with lateral arms
    • B60G2200/142Independent suspensions with lateral arms with a single lateral arm, e.g. MacPherson type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/60Subframe construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/70Materials used in suspensions
    • B60G2206/72Steel
    • B60G2206/722Plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/81Shaping
    • B60G2206/8102Shaping by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/82Joining

Definitions

  • the present invention relates to a suspension frame construction for supporting a suspension lower arm, an engine mounting member, and the like.
  • the vehicle body constructions of motor vehicles are broadly divided into a framed construction used for motor trucks and the like and a frameless construction used for passenger cars and the like.
  • the frameless construction incorporates side members and cross members as a part of body in place of a frame to increase the torsional rigidity.
  • a chassis part is usually attached directly to the body, but, on some vehicles, it is attached to a partial frame, what is called a subframe, and then is assembled to the body.
  • the subframe is also referred to as a suspension frame because suspension lower arms are usually attached to both sides of the subframe.
  • the subframe and the like are given a general name of a suspension frame.
  • the suspension frame is assembled to the vehicle body as an assembled part after a suspension lower frame, a stabilizer, and the like are attached thereto.
  • the suspension frame is generally composed of an upper plate, a lower plate, and lower arm mounting brackets as a basic construction.
  • FIGS. 21 to 28 show a construction of a conventional suspension frame (Japanese Patent Provisional Publication No. 7-179180).
  • a suspension frame 100 is supported on a pair of side members 101 , 101 at both sides thereof, and suspension lower arms 102 , 102 are attached to both sides of the suspension frame 100 .
  • a center member 104 Between the suspension frame 100 and a cross member 103 installed on the front is provided a center member 104 , to which an engine 105 is assembled.
  • the suspension frame 100 is usually disposed at the lower part of an engine room isolated by a dash panel 106 , and is fitted with various fittings.
  • the dash panel 106 is fitted with a steering knuckle 107 via brackets 108 .
  • the suspension frame 100 is formed by joining an upper plate 109 and a lower plate 110 , which are formed by pressing a steel plate etc., by welding or other means, and at both sides, right and left, of the suspension frame 100 are provided vehicle body mounting portions h, i and j, and in the central portion thereof are provided engine mounting member mounting portions k. At both sides in the vehicle width direction of the suspension frame 100 , a pair of suspension lower arm mounting portions 100 a and 100 d are provided. In the suspension lower arm mounting portion 100 a on the front side of the vehicle body is provided a lower arm mounting bracket 111 in a cantilever state.
  • the lower arm mounting bracket 111 is formed into a substantially square box shape with one side being open by pressing or other means, and the opposed wall faces 111 a and 111 b thereof are provided with pivotally supporting portions 112 , 112 for the suspension lower arms 102 , 102 .
  • This lower arm mounting bracket 111 which is supported on the outside of the vehicle body mounting portions h, i and j in a cantilever manner, has a construction that provides low rigidity and is disadvantageous in terms of driving stability and vibration noise.
  • a distal end portion 109 a of the upper plate 109 is lapped partially on and joined to the upper face of the lower arm mounting bracket 111 .
  • the distal end of the lower plate 110 is butt-welded to the wall face of the lower arm mounting bracket 111 . Therefore, a reinforcement 113 is installed between the upper plate 109 and the lower plate 110 to reinforce the mounting portion of the lower arm mounting bracket 111 .
  • a flange portion 114 is provided along the open end portion of the lower arm mounting bracket 111 to increase the rigidity of the bracket 111 .
  • the suspension frame 100 is subjected to the severest condition when a longitudinal load is applied thereto (for an actual vehicle, for example, when the brake is applied or when a wheel falls into a pothole).
  • the mounting portion 100 a of the lower arm mounting bracket 111 is put into a deformation mode of being opened to the outside while being twisted as indicated by the arrow ⁇ circle over ( 1 ) ⁇ , and a central portion 100 b of the suspension frame 100 is put into a deformation mode of being sunk as indicated by the broken line ⁇ circle over ( 2 ) ⁇ .
  • the central portion 100 b of the suspension frame 100 is also sunk in the same manner by a load applied by the engine mounting member at the time of sudden start.
  • the rigidity around the opening portion of the lower arm mounting bracket 111 is low in the case where the suspension frame 100 is formed merely by two upper and lower plates joined to each other. Near the opening portion, the vehicle body mounting portions lie. If the rigidity of this portion of the suspension frame 100 is low, therefore, there is a possibility that the first-order natural frequency of the suspension frame 100 resonates with the vehicle body.
  • the present invention has been made to solve the above problems, and accordingly an object thereof is to provide a suspension frame construction capable of increasing rigidity when a braking load, a lateral load, or an engine mounting load is applied to a suspension frame.
  • the present invention provides a suspension frame construction comprising an upper plate and a lower plate joined to each other to form a suspension frame; and front- and rear-side suspension arm support portions provided at both ends, right and left, of the suspension frame, wherein the lower plate is made up of a pair of side plates each provided with a support portion for supporting at least a rear-side arm of a suspension arm and a center plate for connecting the side plates to each other.
  • the present invention is characterized in that the thicknesses of the side plates are made greater than the thickness of the center plate, and a vehicle body mounting portion is provided on the side plate.
  • the present invention is characterized in that the suspension arm support portions are provided on the front and rear of the right and left side plates, and a side wall portion is formed on the outside of the side plate.
  • the present invention is characterized in that bent portions are formed at both ends of the center plate to form a gap between the center plate and the right and left side plates, and the distal lower end of the bent portion is joined to the side plate to form a vertical wall portion for partitioning the interior of the suspension frame.
  • the present invention is characterized in that the vertical wall portion is arranged in a substantially straight line with respect to the side wall portion.
  • the present invention is characterized in that the side wall portion provided on the side plate is formed so as to be close to the vehicle body mounting portion of the suspension frame.
  • the present invention is characterized in that both end portions of the center plate are lapped partially on the right and left side plates, the lapped portion is inclined toward the vertical wall portion, and a gap is formed in the lapped portion.
  • the present invention is characterized in that the inclined portion of the center plate is extended to at least the vehicle body mounting portion of the suspension frame.
  • the present invention provides a suspension frame construction comprising an upper plate and a lower plate joined to each other to form a suspension frame; and front-and rear-side suspension arm support portions provided at both ends, right and left, of the suspension frame, wherein the upper plate is made up of a pair of side plates each provided with a support portion for supporting at least a rear-side arm of a suspension arm and a center plate for connecting the side plates to each other.
  • the present invention provides a suspension frame construction comprising an upper plate and a lower plate joined to each other to form a suspension frame; and suspension arm support portions extending to the substantially front and lateral sides, which are provided at both ends, right and left, of the suspension frame, wherein the upper plate is made up of a pair of side plates each provided with a support portion for supporting at least a rear-side arm of a suspension arm and a center plate for connecting the side plates to each other, an outer wall portion is formed in the suspension arm support portion extending to the substantially front side, and a vertical wall portion continuous with the outer wall portion is provided on the center plate.
  • the present invention is characterized in that the center plate comprises inclined portions provided on the inside of the right and left vertical wall portions, an intermediate portion connected to the lower plate, which is provided between the inclined portions, and lapped portions joined face-to-face to the lower plate, which are each provided between the vertical wall portion and the inclined portion.
  • the present invention is characterized in that the peripheral edge of the side plate is joined to the lower plate, and the lower face of the side plate is joined to the upper end of inclined portion and the upper end of vertical wall portion of the center plate.
  • the present invention is characterized in that the lapped portions of the center plate are joined to the lower plate by penetration welding.
  • FIG. 1 is a schematic perspective view showing an embodiment of a suspension frame construction in accordance with the present invention
  • FIG. 2 is a perspective view of the suspension frame construction shown in FIG. 1;
  • FIG. 3 is a plan view of the suspension frame construction shown in FIG. 2;
  • FIG. 4 is an exploded perspective view of the suspension frame construction shown in FIG. 2;
  • FIG. 5 is a perspective view of a lower plate shown in FIG. 2;
  • FIG. 6 is a perspective view of an assembling portion of a center plate and a side plate
  • FIG. 7 is a plan view of a suspension frame, showing a joint portion of a center plate
  • FIG. 8 is a bottom plan view of FIG. 7;
  • FIG. 9 is a sectional view taken along the line A-A of FIG. 7;
  • FIG. 10 is a perspective view of a suspension lower arm shown in FIG. 1;
  • FIG. 11 is a schematic perspective view showing another embodiment of the suspension frame construction in accordance with the present invention shown in FIG. 1;
  • FIG. 12 is a perspective view of a lower plate in a state in which a center plate and side plates shown in FIG. 11 are connected to each other;
  • FIG. 13 is a sectional view showing a state in which the suspension frame shown in FIG. 13 is assembled
  • FIG. 14 is a schematic perspective view showing still another embodiment of a suspension frame construction in accordance with the present invention.
  • FIG. 15 is a perspective view of the suspension frame construction shown in FIG. 14;
  • FIG. 16 is a plan view of the suspension frame construction shown in FIG. 15;
  • FIG. 17 is an exploded perspective view of the suspension frame construction shown in FIG. 15;
  • FIG. 18 is a plan view of an upper plate and a lower plate shown in FIG. 15;
  • FIG. 19 is a sectional view taken along the line B-B of FIG. 18 in a state in which an upper plate and a lower plate are assembled to each other;
  • FIG. 20 is a perspective view of a suspension lower arm shown in FIG. 14;
  • FIG. 21 is a perspective view of a conventional suspension frame construction
  • FIG. 22 is a plan view of a conventional suspension frame construction
  • FIG. 23 is a side view of FIG. 22;
  • FIG. 24 is a plan view of a conventional suspension frame construction
  • FIG. 25 is a perspective view of a conventional suspension frame construction
  • FIG. 26 is a sectional view taken along the line C-C of FIG. 24;
  • FIG. 27 is a perspective view showing a deformation mode of a conventional suspension frame construction under a braking load.
  • FIG. 28 is a perspective view showing a deformation mode of a conventional suspension frame construction under a lateral load
  • FIG. 1 shows the vehicle body front part of a motor vehicle.
  • a suspension frame 5 is installed to front side members 3 1 and 3 2 , which are disposed on both sides of a vehicle body, via brackets 4 on the lower face side of the engine room 2 .
  • front side members 3 1 and 3 2 On the outside of the front side members 3 1 and 3 2 are provided struts 7 for suspending right and left wheels 6 .
  • the suspension frame 5 is formed into a substantially closed curved surface construction by joining an upper plate 8 and a lower plate 9 ′, which are formed by pressing, to each other by welding or other means.
  • the front and rear end portions of a flat steel plate are bent and extend downward, and suspension lower arm support portions 8 a and 8 b for supporting arms 10 a and 10 b of suspension lower arms 10 1 and 10 2 are provided on both sides, right and left, of the upper plate 8 so as to branch and extend to the substantially front and lateral sides.
  • the upper plate 8 is provided with a falling portion 8 c that extends downward ranging from the face on the vehicle body front side to the inside face of the suspension lower arm support portion 8 a .
  • a flange portion 8 d is provided along the lower edge of the falling portion 8 c.
  • a flange portion 8 e is provided along the lower end of the face on the vehicle body rear side from the peripheral portion of the suspension lower arm support portion 8 b.
  • the lower plate 9 ′ is formed into a three-piece construction composed of a pair of side plates 11 1 and 11 2 and a center plate 12 disposed between these side plates 11 1 and 11 2 .
  • the paired side plates 11 1 and 11 2 and the center plate 12 are joined to each other into a unit.
  • the side plates 11 1 and 11 2 and the center plate 12 each are formed by pressing a steel plate, and the thicknesses of the side plates 11 1 and 11 2 are greater than thickness of the center plate 12 .
  • a band-shaped plate thinner than the conventional lower plate is used for the center plate 12 .
  • the paired side plates 11 1 and 11 2 each are provided, on the right and left sides thereof, with suspension lower arm support portions 11 a and 11 b for supporting the arms 10 a and 10 b of the suspension lower arm 10 1 and 10 2 , like the upper plate 8 , in such a manner as to branch and extend to the substantially front and lateral sides.
  • the suspension lower arm support portions 11 a provided on the paired side plates 11 1 and 11 2 are fitted with right and left lower arm mounting brackets 14 1 and 14 2 , respectively.
  • the lower arm mounting brackets 14 1 and 14 2 support the arms 10 a and 10 b of the suspension lower arms 10 1 and 10 2 , respectively, so as to be swayable.
  • the suspension lower arm support portion 11 a is provided with a notch 11 c for permitting the arms 10 a and 10 b of the suspension lower arms 10 1 and 10 2 to be swayed. Also, a flange portion l d is provided at the front edge on the vehicle body front side of the side plate 11 1 , 11 2 . Also, a flange portion 11 e is provided ranging from the suspension lower arm support portion 11 b to the rear end on the vehicle body rear side.
  • a side wall portion 11 f is erected on the outside of the side plate 11 1 , 11 2 .
  • the side wall portion 11 f is formed by bending the outer edge portion of the side plate 11 1 , 11 2 upward substantially at right angles.
  • the center plate 12 has a slant face portions 12 c that are each formed by bending a side 12 a of the plate slantwise upward with respect to an intermediate portion 12 b .
  • a vertical wall portion 12 d is formed by bending the end portion of the slant face portion 12 c downward substantially at right angles.
  • the vertical wall portion 12 d of the center plate 12 is provided with a flange portion 12 e at the periphery thereof, and the center plate 12 is connected to the side plate 11 1 , 11 2 via this flange portion 12 e.
  • the center plate 12 is assembled to the side plates 11 1 and 11 2 so that the vertical wall portions 12 d on both sides each are continuous substantially straight with the side wall portions 11 f of the side plates 11 1 and 11 2 .
  • the center plate 12 is formed integrally with the side plates 11 1 and 11 2 by welding (w 1 ) the lower ends of the vertical wall portions 12 d to the upper faces of the side plates 11 1 and 11 2 by arc welding and by welding (w 2 ) both edges of the intermediate portion 12 b to the upper faces of the side plates 11 1 and 11 2 by arc welding.
  • a gap 13 Between the slant face portion 12 c of the center plate 12 and the upper face of the side plate 11 1 , 11 2 is formed a gap 13 , so that a closed cross section S 1 is formed.
  • suspension lower arm support portions 5 a and 5 b are formed by joining the upper plate 8 and the lower plate 9 ′ to each other.
  • the suspension lower arm support portion 5 a is formed by supporting the lower arm mounting bracket 14 1 , 14 2 by the suspension lower arm support portion 8 a of the upper plate 8 and the suspension lower arm support portion 11 a of the side plate 11 1 , 11 2.
  • the lower arm mounting bracket 14 1 , 14 2 is formed substantially into a box shape by pressing or other means, and one side of this box shape is opened so as to form a support portion for a sway shaft of the suspension lower arm 10 .
  • a mounting hole 14 b for mounting the sway shaft of the suspension lower arm 10 .
  • the suspension lower arm support portion 5 b is formed by the suspension lower arm support portion 8 b of the upper plate 8 and the suspension lower arm support portion 11 b of the lower plate 9 ′.
  • an engine mounting member mounting portions 15 in a substantially central portion of the suspension frame 5 are provided an engine mounting member mounting portions 15 .
  • the upper plate 8 and the side plate 11 1 , 11 2 of the lower plate 9 ′ are provided with vehicle body mounting portions 8 h , 8 i and 8 j and 11 h , 11 i and 11 j of the suspension frame 5 , respectively.
  • the center plate 12 is provided with a mounting hole 12 i corresponding to the vehicle body mounting portions 8 i and 11 i .
  • collars 16 are fitted in and welded to the vehicle body mounting holes 8 h , 8 i and 8 j and 11 h , 11 i and 11 j .
  • the mounting hole 12 i is also connected by the common collar 16 .
  • the upper plate 8 and the center plate 12 are joined to each other by penetration welding w 3 as shown in FIGS. 7 and 9.
  • the joining of the center plate 12 to the side plates 11 1 and 11 2 and the joining of the center plate 12 to the upper plate 8 can be performed by various joining methods such as arc welding and spot welding.
  • mounting holes 8 g and 11 g respectively, for supporting the rear-side arm 10 b of the suspension lower arm 10 1 , 10 2 as shown in FIG. 10 (see FIG. 4).
  • the front-side arm 10 a of the suspension lower arm 10 1 , 10 2 is supported by a horizontal shaft, and the rear-side arm 10 b thereof is supported by a vertical shaft.
  • the front-side arm 10 a and the rear-side arm 10 b each are provided with a bush 17 , and the suspension lower arm 10 1 , 10 2 is supported on the suspension frame 5 so as to be swayed freely by inserting the support shaft in the center of the bush 17 .
  • the suspension lower arm support portion 5 b of the suspension frame 5 is provided with an increased rigidity by ribs 8 k and 11 k formed in the vehicle width direction in the suspension lower arm support portion 8 b of the upper plate 8 and the suspension lower arm support portion 11 b of the lower plate 9 ′, respectively. Further, the suspension lower arm support portion 8 b of the upper plate 8 is formed a step higher so that the distance between the suspension lower arm support portion 8 b of the upper plate 8 and the suspension lower arm support portion 11 b of the lower plate 9 ′ is increased, by which a support portion for the arm 10 b of the suspension lower arm 10 1 , 10 2 is formed.
  • the lower plate 9 ′ is formed into a three-piece construction composed of the paired side plates 11 1 and 11 2 and the center plate 12 disposed between these side plates 11 1 and 11 2 , and the paired side plates 11 1 and 11 2 and the center plate 12 are joined to each other into a unit.
  • the center plate 12 is thinner and therefore has a lower mass than the conventional lower plate, so that lighter weight of the suspension frame 5 can be achieved.
  • the thicknesses of the side plates 11 1 and 11 2 are made greater than the thickness of the center plate 12 to increase the rigidity of the vehicle body mounting portions. By making the thicknesses of the side plates 11 1 and 11 2 greater, the natural frequency of the suspension frame 5 is increased, and thereby what is called a muffled sound is restrained.
  • the center plate 12 is formed integrally with the side plates 11 1 and 11 2 by welding (w 1 ) the lower ends of the vertical wall portions 12 d to the upper faces of the side plates 11 1 and 11 2 by arc welding and by welding (w 2 ) both edges of the intermediate portion 12 b to the upper faces of the side plates 11 1 and 11 2 by arc welding.
  • the gap 13 between the slant face portion 12 c of the center plate 12 and the upper face of the side plate 11 1 , 11 2 is formed the gap 13 , so that the closed cross section S 1 is formed.
  • the closed curved surface of the suspension frame 5 can be reinforced by the vertical wall portion 12 d , so that an increase in rigidity can be achieved when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame 5 .
  • the vehicle body mounting portions are formed by joining two plates of the side plate 11 1 , 11 2 and the center plate 12 , and the mounting portions are provided on the side of the side plate 11 1 , 11 2 having a higher rigidity, the surface rigidity is increased, so that an increase in rigidity of vehicle body mounting portions can be achieved.
  • the suspension lower arm support portion 5 b of the suspension frame 5 is formed with the ribs 8 k and 11 k in the vehicle width direction in the suspension lower arm support portion 8 b of the upper plate 8 and the suspension lower arm support portion 11 b of the lower plate 9 ′ to increase the rigidity.
  • the suspension lower arm support portion 8 b of the upper plate 8 is formed a step higher so that the distance between the suspension lower arm support portion 8 b of the upper plate 8 and the suspension lower arm support portion 11 b of the lower plate 9 ′ is increased, by which the support portion for the arm 10 b of the suspension lower arm 10 1 , 10 2 is formed.
  • the distance between the upper plate 8 and the lower plate 9 ′ can be increased only in the mounting portion for the arm 10 b of the suspension lower arm 10 1 , 10 2 , so that the rigidity of the suspension frame 5 is not decreased. Since the arm 10 b of the suspension lower arm 10 1 , 10 2 is supported between the upper plate 8 and the lower plate 9 ′, the rigidity can be increased.
  • suspension lower arm support portion 8 b and the suspension lower arm support portion 11 b are joined to each other on the front and rear end sides and are joined by the vertical wall portion 12 d of the center plate 12 at the proximal end side, only a pull-out portion for the arm 10 b of the suspension lower arm 10 1 , 10 2 is open, so that the support portion for the arm 10 b can be constructed strongly.
  • FIGS. 11 to 13 show another embodiment of the present invention. In this embodiment, explanation is made by applying the same reference numerals to the same elements as those shown in FIGS. 1 to 4 .
  • the lower plate 9 ′ is subjected to a change in construction.
  • a lower plate 9 ′′ has a construction such that only the right and left suspension lower arm support portions for supporting the rear-side arm 10 b of the suspension lower arm 10 1 , 10 2 are separated from the intermediate portion.
  • the lower plate 9 ′′ is composed of side plates 18 1 and 18 2 consisting of a suspension lower arm support portion 18 b and a center plate 19 connected to the side plates 18 1 and 18 2 .
  • the center plate 19 is provided with suspension lower arm support portions 19 a at the front ends on both sides.
  • the center plate 19 is provided with side wall portions 19 f in the vehicle body longitudinal direction at both sides.
  • the side wall portion 19 f is provided so as to range from the vicinity of the suspension lower arm support portion 19 a to the rear end, so that it partitions the internal space of the suspension frame 5 into the center plate side and the suspension lower arm support portion side.
  • the side plate 18 1 , 18 2 is joined to the outside lower end of the side wall portion 19 f of the center plate 19 by arc welding or other means.
  • the lower plate 9 ′′ is joined integrally to the upper plate 8 by joining flange portions 19 d and 19 e provided on the front and the rear of center plate 19 and the upper end of the side wall portion 19 f to the upper plate 8 and by joining the side plates 18 1 and 18 2 to the peripheral surfaces of the suspension lower arm support portions 8 b via the peripheral edge portions of the side plates 18 1 and 18 2 by spot welding or other means.
  • the upper plate 8 is formed with the vehicle body mounting holes 8 h , 8 i and 8 j
  • the lower plate 9 ′′ is formed with vehicle body mounting holes 19 h , 19 i and 18 j
  • the vehicle body mounting holes 19 h and 19 i are formed in the center plate 19
  • the vehicle body mounting hole 18 j is formed in the side plate 18 1 , 18 2 .
  • the thicknesses of the side plates 18 1 and 18 2 are made greater than the thickness of the center plate 19 , by which the rigidity of the suspension lower arm support portion 18 b can be increased.
  • FIGS. 14 to 20 show still another embodiment of the present invention.
  • the upper plate has a separated construction.
  • FIG. 14 shows the vehicle body front part of a motor vehicle.
  • the same reference numerals are applied to the same elements as those shown in FIG. 1.
  • a suspension frame 5 ′ is installed to the front side members 3 1 and 3 2 , which are disposed on both sides of the vehicle body, via the brackets 4 on the lower face side of the engine room 2 .
  • the struts 7 are provided on the outside of the front side members 3 1 and 3 2 .
  • the suspension frame 5 ′ is formed into a substantially closed curved surface construction by joining an upper plate 8 ′ and a lower plate 9 , which are formed by pressing, to each other by welding or other means.
  • the suspension lower arm support portions 5 a and 5 b formed by the upper plate 8 ′ and the lower plate 9 are provided so as to branch and extend to the substantially front and lateral sides.
  • the upper plate 8 ′ has a three-piece construction composed of a pair of side plates 21 1 and 21 2 and a center plate 22 disposed between the side plates 21 1 and 21 2 .
  • the paired side plates 21 1 and 21 2 and the center plate 22 are joined to each other into a unit.
  • the side plates 21 1 and 21 2 and the center plate 22 each are formed by pressing a steel plate.
  • the lower plate 9 the rear end portion of a flat steel plate is bent and extend upward, and suspension lower arm support portions 9 a and 9 b for supporting the arms 10 a and 10 b of the suspension lower arms 10 1 and 10 2 are provided on both sides, right and left, of the lower plate 9 so as to branch and extend to the substantially front and lateral sides.
  • the lower plate 9 is provided with a rising portion 9 c at the peripheral edge thereof ranging from the rear end to the suspension lower arm support portion 9 b , and is provided with a flange portion 9 d at the front end peripheral edge thereof.
  • a notch 9 e for supporting the rear-side arm 10 b of the suspension lower arm 10 1 , 10 2 is provided on the front side.
  • an outer wall portion 9 f is erected along the outside edge of the lower plate 9 .
  • the center plate 22 has a slant face portions 22 c that are each formed by bending a side 22 a of the plate slantwise upward with respect to an intermediate portion 22 b .
  • a wall portion 22 d is formed by bending the end portion of the slant face portion 22 c downward substantially at right angles.
  • To the wall portion 22 d is connected a lapped portion 22 e that is lapped on the upper face of the lower plate 9 .
  • a vertical wall portion 22 f At the side of the lapped portion 22 e is erected a vertical wall portion 22 f by bending the plate upward.
  • the vertical wall portion 22 f is provided so as to be continuous with the outer wall portion 9 f of the lower plate 9 substantially straight in the vehicle body longitudinal direction.
  • a flange portion at the upper end of the vertical wall portion 22 f together with a flange portion at the upper end of the outer wall portion 9 f of the lower plate 9 , is joined to the lower face of the side plate 21 1 , 21 2 .
  • the lapped portion 22 e of the center plate 22 is joined to the upper face of the lower plate 9 by penetration welding w 4 .
  • the front end of the vertical wall portion 22 f is joined to the outer wall portion 9 f , and the rear end thereof is joined to the rising portion 9 c at the rear end of the lower plate 9 .
  • the center plate 22 is assembled to the side plates 21 1 and 21 2 so that the vertical wall portions 22 f on both sides are each continuous substantially straight with side wall portions 21 f of the side plates 21 1 and 21 2 .
  • the center plate 22 is disposed on the upper face of the lower plate 9 so that the vertical wall portions 22 f are each continuous substantially straight with the outer wall portions 9 f of the lower plate 9 , and the intermediate portion 22 b thereof is joined to the lower plate 9 by spot welding w 5 or other means.
  • the flange portion provided at the upper end of the vertical wall portion 22 f together with the flange portion provided at the upper end of the outer wall portion 9 f of the lower plate 9 , is joined to the lower face of the side plate 21 1 , 21 2 .
  • the lapped portion 22 e of the center plate 22 is joined to the upper face of the lower plate 9 by penetration welding w 4 .
  • the paired side plates 21 1 and 21 2 each are provided, on the right and left sides thereof, with suspension lower arm support portions 21 a and 21 b for supporting the arms 10 a and 10 b of the suspension lower arm 10 1 and 10 2 , like the upper plate 9 , in such a manner as to branch and extend to the substantially front and lateral sides.
  • the side plate 21 1 , 21 2 is assembled to the center plate 22 by joining an opposed inside edge portion 21 c of the side plate 21 1 , 21 2 to the upper end of the slant face portion 22 c of the center plate 22 and by joining a front flange portion 21 d of the side plate 21 1 , 21 2 to the front flange portion 9 d of the lower plate 9 .
  • the suspension lower arm support portions 9 a and the suspension lower arm support portions 21 a provided on the paired side plates 21 1 and 21 2 are fitted with the right and left lower arm mounting brackets 14 1 and 14 2 , respectively.
  • the lower arm mounting brackets 14 1 and 14 2 support the arms 10 a and 10 b of the suspension lower arms 10 1 and 10 2 , respectively, so as to be swayable.
  • the lower arm mounting bracket 14 1 , 14 2 is formed substantially into a box shape by pressing or other means, and one side of this box shape is opened so as to form the support portion for the sway shaft of the arm 10 a , 10 b of the suspension lower arm 10 1 , 10 2 .
  • the mounting hole 14 b for mounting the sway shaft of the suspension lower arm 10 1 , 10 2 .
  • the engine mounting member mounting portions 15 are provided in a substantially central portion of the suspension frame 5 ′ in a substantially central portion of the suspension frame 5 ′.
  • the side plate 21 1 , 21 2 and the lower plate 9 are provided with vehicle body mounting holes 21 h , 21 i and 21 j and 9 h , 9 i and 9 j of the suspension frame 5 ′, respectively, at the corresponding positions.
  • the center plate 22 is provided with mounting holes 22 i and 22 h corresponding to the vehicle body mounting portions 21 i , 21 h , 9 i , and 9 h.
  • collars 26 are fitted in and welded to the vehicle body mounting holes 21 h , 21 i , 21 j , 9 h , 9 i , 9 j and 22 h .
  • the similar collar 26 can also be used in the mounting hole 22 i .
  • the lower plate 9 and the center plate 22 are joined to each other by penetration welding w 4 as shown in FIG. 17.
  • the joining of the center plate 22 to the side plates 21 1 and 21 2 and the joining of the center plate 22 to the lower plate 9 can be performed by various joining methods such as arc welding and spot welding.
  • the front-side arm 10 a of the suspension lower arm 10 1 , 10 2 is supported by a horizontal shaft, and the rear-side arm 10 b thereof is supported by a vertical shaft.
  • the front-side arm 10 a and the rear-side arm 10 b each are provided with the bush 17
  • the suspension lower arm 10 1 , 10 2 is supported on the suspension frame 5 ′ so as to be swayed freely by inserting the support shaft in the center of the bush 17 .
  • the suspension lower arm support portion 21 b of the side plate 21 1 , 21 2 is formed a step higher so that the distance between the suspension lower arm support portion 21 b of the side plate 21 1 , 21 2 and the suspension lower arm support portion 9 b of the lower plate 9 is increased, by which the support portion for the arm 10 b of the suspension lower arm 10 1 , 10 2 is formed.
  • the upper plate 8 ′ is formed into a three-piece construction composed of the paired side plates 21 1 and 21 2 and the center plate 22 disposed between these side plates 21 1 and 21 2 , and the lower plate 9 is joined to the center plate 22 .
  • the center plate 22 is assembled to the side plates 21 1 and 21 2 so that the vertical wall portion 22 f on both sides are each continuous substantially straight with the side wall portion 21 f of the side plate 21 1 , 21 2 .
  • the center plate 22 is disposed on the upper face of the lower plate 9 so that the vertical wall portions 22 f each are continuous straight with the outer wall portion 9 f of the lower plate 9 , and the intermediate portion 22 b thereof is joined to the lower plate 9 by spot welding w 5 or other means.
  • the lapped portions 22 e of the center plate 22 are joined to the upper face of the lower plate 9 by penetration welding w 4 .
  • the side plates 21 1 and 21 2 are disposed on the lower plate 9 and the center plate 22 , and the opposed inside edge portions 21 c of the side plates 21 1 and 21 2 are each joined to the upper end of the slant face portion 22 c of the center plate 22 by arc welding w 6 or other means, and the front flange portions 21 d of the side plates 21 1 and 21 2 are each joined to the front flange portion 9 d of the lower plate 9 by spot welding w 5 or other means.
  • the flange portion at the upper end of the vertical wall portion 22 f of the center plate 22 and the flange portion at the upper end of the outer wall portion 9 f of the lower plate 9 are joined to the lower face of the side plate 21 1 , 21 2 .
  • the center plate 22 can be made thinner and therefore can have a lower mass than the conventional upper plate, so that lighter weight of the suspension frame 5 ′ can be achieved.
  • the thicknesses of the side plates 21 1 and 21 2 can be made greater than the thickness of the center plate 22 to increase the rigidity of the vehicle body mounting portions. By making the thicknesses of the side plates 21 1 and 21 2 greater, the natural frequency of the suspension frame 5 ′, is increased, and thereby what is called a muffled sound can be restrained.
  • the lower plate 9 Since the lapped portion 22 e of the center plate 22 is joined to the upper face of the lower plate 9 by penetration welding w 4 , the lower plate 9 has a two-layer construction in this portion, and the closed cross-sectional construction is formed between the lower plate 9 and the side plate 21 1 , 21 2 . In particular, therefore, the rigidity of the vehicle body mounting portions increases, so that an increase in rigidity can be achieved when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame 5 ′.
  • the suspension lower arm support portion 21 b of the upper plate 8 ′ is formed a step higher so that the distance between the suspension lower arm support portion 21 b of the upper plate 8 ′ and the suspension lower arm support portion 9 b of the lower plate 9 is increased, by which the support portion for the arm 10 b of the suspension lower arm 10 1 , 10 2 is formed.
  • the distance between the upper plate 8 ′ and the lower plate 9 can be increased only in the mounting portion for the arm 10 b of the suspension lower arm 10 1 , 10 2 , so that the rigidity of the suspension frame 5 ′, is not decreased. Since the arm 10 b of the suspension lower arm 10 1 , 10 2 is supported between the upper plate 8 ′ and the lower plate 9 , the rigidity can be increased.
  • suspension lower arm support portion 21 b and the suspension lower arm support portion 9 b are joined to each other on the front and rear end sides and are joined by the vertical wall portion 22 f of the center plate 22 at the proximal end side, only a pull-out portion for the arm 10 b of the suspension lower arm 10 1 , 10 2 is open, so that the support portion for the arm 10 b can be constructed strongly.
  • the present invention is not limited to the above-described embodiments.
  • the lower plate 9 ′ is divided into three pieces, the paired side plates 111 and 112 and the center plate 12 , in the present invention, the lower plate 9 ′ can be divided into four or more pieces.
  • the lower plate 9 ′′ is divided into three pieces, the side plates 18 1 and 18 2 , which each consist of the suspension lower arm support portion 18 b , and the center plate 19 , in another embodiment, the lower plate 9 ′′ may be divided into five pieces by separating the suspension lower arm support portions 19 a.
  • the vehicle body mounting portion is divided into the thick side plates 11 1 and 11 2 in which all vehicle body mounting portions are provided and the thin center plate 12 , or into the side plates 18 1 and 18 2 in which some vehicle body mounting portions are provided and the center plate 19 .
  • any division mode may be adopted.
  • the upper plate 8 ′ is divided into three pieces, the paired side plates 21 1 and 21 2 and the center plate 22 , in still another embodiment, the upper plate 8 ′ can be divided into four or more pieces. Also, the thicknesses of the side plates 21 1 and 21 2 constituting the upper plate 8 ′ is made greater than the thickness of the center plate 22 , by which the rigidity of the side plates 21 1 , 21 2 in which the vehicle body mounting portions are provided can be increased. In this case, by using a band-shaped plate that is thinner than the conventional upper plate as the center plate 22 constituting the upper plate 8 ′, the total weight can be decreased.
  • a blank material tailored by forming materials with different thicknesses into one piece by laser welding is used as the center plate 22 constituting the upper plate 8 ′, by which lighter weight can be achieved.
  • a thin portion is used as the intermediate portion 22 b of the center plate 22 constituting the upper plate 8 ′.
  • suspension frame construction in accordance with the present invention can achieve the effects described below.
  • the lower plate is made up of a pair of side plates each provided with a support portion for supporting at least a rear-side arm of a suspension arm and a center plate for connecting the side plates to each other. Therefore, the rigidity can be increased when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame. The increase in rigidity under the mounting load can eliminate a mass damper.
  • the thicknesses of the side plates are made greater than the thickness of the center plate, and a vehicle body mounting portion is provided on the side plate. Therefore, in a state in which the weight is kept low, the rigidity can be increased when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame.
  • the suspension arm support portions are provided on the front and rear of the right and left side plates, and a side wall portion is formed on the outside of the side plate. Therefore, the rigidity can be increased when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame.
  • bent portions are formed at both ends of the center plate to form a gap between the center plate and the right and left side plates, and the distal lower end of the bent portion is joined to the side plate to form a vertical wall portion for partitioning the interior of the suspension frame. Therefore, the rigidity of the suspension frame can be increased when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame.
  • the vertical wall portion is arranged in a substantially straight line with respect to the side wall portion. Therefore, the rigidity of the suspension frame can be increased when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame.
  • the side wall portion provided on the side plate is formed so as to be close to the vehicle body mounting portion of the suspension frame. Therefore, the rigidity of the vehicle body mounting portion can be increased.
  • both end portions of the center plate are lapped partially on the right and left side plates, the lapped portion is inclined toward the vertical wall portion, and a gap is formed in the lapped portion. Therefore, the rigidity of the suspension frame can be increased when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame.
  • the inclined portion of the center plate is extended to at least the vehicle body mounting portion of the suspension frame. Therefore, the rigidity of the vehicle body mounting portion can be increased.
  • the upper plate is made up of a pair of side plates each provided with a support portion for supporting at least a rear-side arm of a suspension arm and a center plate for connecting the side plates to each other. Therefore, by adjusting the plate thickness, light weight can be achieved, and also the rigidity can be increased when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame. The increase in rigidity under the mounting load can eliminate a mass damper.
  • the upper plate is made up of a pair of side plates each provided with a support portion for supporting at least a rear-side arm of a suspension arm and a center plate for connecting the side plates to each other, an outer wall portion is formed in the suspension arm support portion extending to the substantially front side, and a vertical wall portion continuous with the outer wall portion is provided on the center plate. Therefore, by adjusting the plate thickness, in a state in which the weight is kept low, the rigidity can be increased when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame.
  • the center plate comprises inclined portions provided on the inside of the right and left vertical wall portions, an intermediate portion connected to the lower plate, which is provided between the inclined portions, and lapped portions joined face-to-face to the lower plate, which are each provided between the vertical wall portion and the inclined portion. Therefore, the lower plate is made have a two-layer construction, and the closed cross-sectional construction can be formed between the vertical wall portion and the inclined portion at the right and left, so that the rigidity and driving stability can be increased, and the rigidity can be increased when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame. The natural frequency is increased, and thereby a muffled sound can be restrained.
  • the peripheral edge of the side plate is joined to the lower plate, and the lower face of the side plate is joined to the upper end of inclined portion and the upper end of vertical wall portion of the center plate. Therefore, the closed cross-sectional construction can be formed, so that the rigidity and driving stability can be increased, and the rigidity of the suspension frame can be increased when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Body Structure For Vehicles (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

There is provided a suspension frame construction capable of increasing rigidity when a braking load, a lateral load, or an engine mounting load is applied to a suspension frame. In a suspension frame construction comprising an upper plate and a lower plate joined to each other to form a suspension frame; and front- and rear-side suspension arm support portions provided at both ends, right and left, of the suspension frame, the lower plate 9 is made up of a pair of side plates 111 and 112 each provided with a support portion for supporting at least a rear-side arm of a suspension arm 101, 102 and a center plate 12 for connecting the side plates 111 and 112 to each other.

Description

    FIELD OF THE INVENTION AND RELATED ART STATEMENT
  • The present invention relates to a suspension frame construction for supporting a suspension lower arm, an engine mounting member, and the like. [0001]
  • Generally, the vehicle body constructions of motor vehicles are broadly divided into a framed construction used for motor trucks and the like and a frameless construction used for passenger cars and the like. The frameless construction incorporates side members and cross members as a part of body in place of a frame to increase the torsional rigidity. A chassis part is usually attached directly to the body, but, on some vehicles, it is attached to a partial frame, what is called a subframe, and then is assembled to the body. [0002]
  • The subframe is also referred to as a suspension frame because suspension lower arms are usually attached to both sides of the subframe. Hereafter, the subframe and the like are given a general name of a suspension frame. [0003]
  • The suspension frame is assembled to the vehicle body as an assembled part after a suspension lower frame, a stabilizer, and the like are attached thereto. The suspension frame is generally composed of an upper plate, a lower plate, and lower arm mounting brackets as a basic construction. [0004]
  • FIGS. [0005] 21 to 28 show a construction of a conventional suspension frame (Japanese Patent Provisional Publication No. 7-179180).
  • A [0006] suspension frame 100 is supported on a pair of side members 101, 101 at both sides thereof, and suspension lower arms 102, 102 are attached to both sides of the suspension frame 100. Between the suspension frame 100 and a cross member 103 installed on the front is provided a center member 104, to which an engine 105 is assembled.
  • The [0007] suspension frame 100 is usually disposed at the lower part of an engine room isolated by a dash panel 106, and is fitted with various fittings. The dash panel 106 is fitted with a steering knuckle 107 via brackets 108.
  • As shown in FIGS. [0008] 24 to 26, the suspension frame 100 is formed by joining an upper plate 109 and a lower plate 110, which are formed by pressing a steel plate etc., by welding or other means, and at both sides, right and left, of the suspension frame 100 are provided vehicle body mounting portions h, i and j, and in the central portion thereof are provided engine mounting member mounting portions k. At both sides in the vehicle width direction of the suspension frame 100, a pair of suspension lower arm mounting portions 100 a and 100 d are provided. In the suspension lower arm mounting portion 100 a on the front side of the vehicle body is provided a lower arm mounting bracket 111 in a cantilever state.
  • The lower [0009] arm mounting bracket 111 is formed into a substantially square box shape with one side being open by pressing or other means, and the opposed wall faces 111 a and 111 b thereof are provided with pivotally supporting portions 112, 112 for the suspension lower arms 102, 102. This lower arm mounting bracket 111, which is supported on the outside of the vehicle body mounting portions h, i and j in a cantilever manner, has a construction that provides low rigidity and is disadvantageous in terms of driving stability and vibration noise.
  • To mount the lower [0010] arm mounting bracket 111, as shown in FIG. 26, a distal end portion 109 a of the upper plate 109 is lapped partially on and joined to the upper face of the lower arm mounting bracket 111. Also, the distal end of the lower plate 110 is butt-welded to the wall face of the lower arm mounting bracket 111. Therefore, a reinforcement 113 is installed between the upper plate 109 and the lower plate 110 to reinforce the mounting portion of the lower arm mounting bracket 111. Further, a flange portion 114 is provided along the open end portion of the lower arm mounting bracket 111 to increase the rigidity of the bracket 111.
  • The [0011] suspension frame 100 is subjected to the severest condition when a longitudinal load is applied thereto (for an actual vehicle, for example, when the brake is applied or when a wheel falls into a pothole).
  • When a braking load is applied to the [0012] suspension frame 100, as shown in FIG. 27, the mounting portion 100 a of the lower arm mounting bracket 111 is put into a deformation mode of being opened to the outside while being twisted as indicated by the arrow {circle over (1)}, and a central portion 100 b of the suspension frame 100 is put into a deformation mode of being sunk as indicated by the broken line {circle over (2)}.
  • The [0013] central portion 100 b of the suspension frame 100 is also sunk in the same manner by a load applied by the engine mounting member at the time of sudden start.
  • On the other hand, as shown in FIG. 28, when a load is applied in the lateral direction, the [0014] mounting portion 100 a of the lower arm mounting bracket 111 is twisted to the inside as indicated by the arrow {circle over (3)}. As a result, one of the lower arm mounting portions 100 d on the vehicle body rear side of the suspension frame 100 is deformed upward as indicated by the arrow {circle over (4)} and the other thereof is deformed downward as indicated by the arrow {circle over (5)}. Also, on both sides of the central portion 100 b of the suspension frame 100, one side is deformed upward as indicated by the arrow {circle over (4)} and the other side is deformed downward as indicated by the arrow {circle over (5)}. Thus, the suspension frame 100 is put into a deformation mode of being wavy.
  • As is apparent from the above-described deformation modes, the rigidity around the opening portion of the lower [0015] arm mounting bracket 111 is low in the case where the suspension frame 100 is formed merely by two upper and lower plates joined to each other. Near the opening portion, the vehicle body mounting portions lie. If the rigidity of this portion of the suspension frame 100 is low, therefore, there is a possibility that the first-order natural frequency of the suspension frame 100 resonates with the vehicle body.
  • OBJECT AND SUMMARY OF THE INVENTION
  • The present invention has been made to solve the above problems, and accordingly an object thereof is to provide a suspension frame construction capable of increasing rigidity when a braking load, a lateral load, or an engine mounting load is applied to a suspension frame. [0016]
  • To solve the above problems, the present invention provides a suspension frame construction comprising an upper plate and a lower plate joined to each other to form a suspension frame; and front- and rear-side suspension arm support portions provided at both ends, right and left, of the suspension frame, wherein the lower plate is made up of a pair of side plates each provided with a support portion for supporting at least a rear-side arm of a suspension arm and a center plate for connecting the side plates to each other. [0017]
  • Also, the present invention is characterized in that the thicknesses of the side plates are made greater than the thickness of the center plate, and a vehicle body mounting portion is provided on the side plate. [0018]
  • Further, the present invention is characterized in that the suspension arm support portions are provided on the front and rear of the right and left side plates, and a side wall portion is formed on the outside of the side plate. [0019]
  • Still further, the present invention is characterized in that bent portions are formed at both ends of the center plate to form a gap between the center plate and the right and left side plates, and the distal lower end of the bent portion is joined to the side plate to form a vertical wall portion for partitioning the interior of the suspension frame. [0020]
  • Also, the present invention is characterized in that the vertical wall portion is arranged in a substantially straight line with respect to the side wall portion. [0021]
  • Further, the present invention is characterized in that the side wall portion provided on the side plate is formed so as to be close to the vehicle body mounting portion of the suspension frame. [0022]
  • Still further, the present invention is characterized in that both end portions of the center plate are lapped partially on the right and left side plates, the lapped portion is inclined toward the vertical wall portion, and a gap is formed in the lapped portion. [0023]
  • Also, the present invention is characterized in that the inclined portion of the center plate is extended to at least the vehicle body mounting portion of the suspension frame. [0024]
  • The present invention provides a suspension frame construction comprising an upper plate and a lower plate joined to each other to form a suspension frame; and front-and rear-side suspension arm support portions provided at both ends, right and left, of the suspension frame, wherein the upper plate is made up of a pair of side plates each provided with a support portion for supporting at least a rear-side arm of a suspension arm and a center plate for connecting the side plates to each other. [0025]
  • Also, the present invention provides a suspension frame construction comprising an upper plate and a lower plate joined to each other to form a suspension frame; and suspension arm support portions extending to the substantially front and lateral sides, which are provided at both ends, right and left, of the suspension frame, wherein the upper plate is made up of a pair of side plates each provided with a support portion for supporting at least a rear-side arm of a suspension arm and a center plate for connecting the side plates to each other, an outer wall portion is formed in the suspension arm support portion extending to the substantially front side, and a vertical wall portion continuous with the outer wall portion is provided on the center plate. [0026]
  • Further, the present invention is characterized in that the center plate comprises inclined portions provided on the inside of the right and left vertical wall portions, an intermediate portion connected to the lower plate, which is provided between the inclined portions, and lapped portions joined face-to-face to the lower plate, which are each provided between the vertical wall portion and the inclined portion. [0027]
  • Still further, the present invention is characterized in that the peripheral edge of the side plate is joined to the lower plate, and the lower face of the side plate is joined to the upper end of inclined portion and the upper end of vertical wall portion of the center plate. [0028]
  • Also, the present invention is characterized in that the lapped portions of the center plate are joined to the lower plate by penetration welding.[0029]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic perspective view showing an embodiment of a suspension frame construction in accordance with the present invention; [0030]
  • FIG. 2 is a perspective view of the suspension frame construction shown in FIG. 1; [0031]
  • FIG. 3 is a plan view of the suspension frame construction shown in FIG. 2; [0032]
  • FIG. 4 is an exploded perspective view of the suspension frame construction shown in FIG. 2; [0033]
  • FIG. 5 is a perspective view of a lower plate shown in FIG. 2; [0034]
  • FIG. 6 is a perspective view of an assembling portion of a center plate and a side plate; [0035]
  • FIG. 7 is a plan view of a suspension frame, showing a joint portion of a center plate; [0036]
  • FIG. 8 is a bottom plan view of FIG. 7; [0037]
  • FIG. 9 is a sectional view taken along the line A-A of FIG. 7; [0038]
  • FIG. 10 is a perspective view of a suspension lower arm shown in FIG. 1; [0039]
  • FIG. 11 is a schematic perspective view showing another embodiment of the suspension frame construction in accordance with the present invention shown in FIG. 1; [0040]
  • FIG. 12 is a perspective view of a lower plate in a state in which a center plate and side plates shown in FIG. 11 are connected to each other; [0041]
  • FIG. 13 is a sectional view showing a state in which the suspension frame shown in FIG. 13 is assembled; [0042]
  • FIG. 14 is a schematic perspective view showing still another embodiment of a suspension frame construction in accordance with the present invention; [0043]
  • FIG. 15 is a perspective view of the suspension frame construction shown in FIG. 14; [0044]
  • FIG. 16 is a plan view of the suspension frame construction shown in FIG. 15; [0045]
  • FIG. 17 is an exploded perspective view of the suspension frame construction shown in FIG. 15; [0046]
  • FIG. 18 is a plan view of an upper plate and a lower plate shown in FIG. 15; [0047]
  • FIG. 19 is a sectional view taken along the line B-B of FIG. 18 in a state in which an upper plate and a lower plate are assembled to each other; [0048]
  • FIG. 20 is a perspective view of a suspension lower arm shown in FIG. 14; [0049]
  • FIG. 21 is a perspective view of a conventional suspension frame construction; [0050]
  • FIG. 22 is a plan view of a conventional suspension frame construction; [0051]
  • FIG. 23 is a side view of FIG. 22; [0052]
  • FIG. 24 is a plan view of a conventional suspension frame construction; [0053]
  • FIG. 25 is a perspective view of a conventional suspension frame construction; [0054]
  • FIG. 26 is a sectional view taken along the line C-C of FIG. 24; [0055]
  • FIG. 27 is a perspective view showing a deformation mode of a conventional suspension frame construction under a braking load; and [0056]
  • FIG. 28 is a perspective view showing a deformation mode of a conventional suspension frame construction under a lateral load;[0057]
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENT
  • Embodiments of the present invention will now be described in detail with reference to the accompanying drawings. [0058]
  • FIG. 1 shows the vehicle body front part of a motor vehicle. [0059]
  • In an [0060] engine room 2 isolated by a dash panel 1, a suspension frame 5 is installed to front side members 3 1 and 3 2, which are disposed on both sides of a vehicle body, via brackets 4 on the lower face side of the engine room 2. On the outside of the front side members 3 1 and 3 2 are provided struts 7 for suspending right and left wheels 6.
  • The construction of the [0061] suspension frame 5 will be described with reference to FIGS. 2 to 9.
  • As shown in FIGS. [0062] 2 to 6, the suspension frame 5 is formed into a substantially closed curved surface construction by joining an upper plate 8 and a lower plate 9′, which are formed by pressing, to each other by welding or other means.
  • For the [0063] upper plate 8, as shown in FIGS. 2 to 4, the front and rear end portions of a flat steel plate are bent and extend downward, and suspension lower arm support portions 8 a and 8 b for supporting arms 10 a and 10 b of suspension lower arms 10 1 and 10 2 are provided on both sides, right and left, of the upper plate 8 so as to branch and extend to the substantially front and lateral sides.
  • The [0064] upper plate 8 is provided with a falling portion 8 c that extends downward ranging from the face on the vehicle body front side to the inside face of the suspension lower arm support portion 8 a. Along the lower edge of the falling portion 8 c is provided a flange portion 8 d.
  • Also, a [0065] flange portion 8 e is provided along the lower end of the face on the vehicle body rear side from the peripheral portion of the suspension lower arm support portion 8 b.
  • On the other hand, as shown in FIGS. 4 and 5, the [0066] lower plate 9′ is formed into a three-piece construction composed of a pair of side plates 11 1 and 11 2 and a center plate 12 disposed between these side plates 11 1 and 11 2. The paired side plates 11 1 and 11 2 and the center plate 12 are joined to each other into a unit. The side plates 11 1 and 11 2 and the center plate 12 each are formed by pressing a steel plate, and the thicknesses of the side plates 11 1 and 11 2 are greater than thickness of the center plate 12. For the center plate 12, a band-shaped plate thinner than the conventional lower plate is used.
  • The paired side plates [0067] 11 1 and 11 2 each are provided, on the right and left sides thereof, with suspension lower arm support portions 11 a and 11 b for supporting the arms 10 a and 10 b of the suspension lower arm 10 1 and 10 2, like the upper plate 8, in such a manner as to branch and extend to the substantially front and lateral sides. The suspension lower arm support portions 11 a provided on the paired side plates 11 1 and 11 2 are fitted with right and left lower arm mounting brackets 14 1 and 14 2, respectively. The lower arm mounting brackets 14 1 and 14 2 support the arms 10 a and 10 b of the suspension lower arms 10 1 and 10 2, respectively, so as to be swayable. The suspension lower arm support portion 11 a is provided with a notch 11 c for permitting the arms 10 a and 10 b of the suspension lower arms 10 1 and 10 2 to be swayed. Also, a flange portion ld is provided at the front edge on the vehicle body front side of the side plate 11 1, 11 2. Also, a flange portion 11 e is provided ranging from the suspension lower arm support portion 11 b to the rear end on the vehicle body rear side.
  • On the outside face of the [0068] suspension frame 5 ranging from the suspension lower arm support portion 11 a to the proximal end portion of the lateral suspension lower arm support portion 11 b, a side wall portion 11 f is erected on the outside of the side plate 11 1, 11 2. The side wall portion 11 f is formed by bending the outer edge portion of the side plate 11 1, 11 2 upward substantially at right angles.
  • As shown in FIGS. [0069] 4 to 6, the center plate 12 has a slant face portions 12 c that are each formed by bending a side 12 a of the plate slantwise upward with respect to an intermediate portion 12 b. A vertical wall portion 12 d is formed by bending the end portion of the slant face portion 12 c downward substantially at right angles. The vertical wall portion 12 d of the center plate 12 is provided with a flange portion 12 e at the periphery thereof, and the center plate 12 is connected to the side plate 11 1, 11 2 via this flange portion 12 e.
  • The [0070] center plate 12 is assembled to the side plates 11 1 and 11 2 so that the vertical wall portions 12 d on both sides each are continuous substantially straight with the side wall portions 11 f of the side plates 11 1 and 11 2. The center plate 12 is formed integrally with the side plates 11 1 and 11 2 by welding (w1) the lower ends of the vertical wall portions 12 d to the upper faces of the side plates 11 1 and 11 2 by arc welding and by welding (w2) both edges of the intermediate portion 12 b to the upper faces of the side plates 11 1 and 11 2 by arc welding. Between the slant face portion 12 c of the center plate 12 and the upper face of the side plate 11 1, 11 2 is formed a gap 13, so that a closed cross section S1 is formed.
  • At both ends, right and left, of the [0071] suspension frame 5, suspension lower arm support portions 5 a and 5 b are formed by joining the upper plate 8 and the lower plate 9′ to each other.
  • The suspension lower [0072] arm support portion 5 a is formed by supporting the lower arm mounting bracket 14 1, 14 2 by the suspension lower arm support portion 8 a of the upper plate 8 and the suspension lower arm support portion 11 a of the side plate 11 1, 11 2.
  • The lower [0073] arm mounting bracket 14 1, 14 2 is formed substantially into a box shape by pressing or other means, and one side of this box shape is opened so as to form a support portion for a sway shaft of the suspension lower arm 10. In each of front and rear wall faces 14 a opposed in the vehicle body longitudinal direction of this box shape, there is provided a mounting hole 14 b for mounting the sway shaft of the suspension lower arm 10.
  • The suspension lower [0074] arm support portion 5 b is formed by the suspension lower arm support portion 8 b of the upper plate 8 and the suspension lower arm support portion 11 b of the lower plate 9′.
  • On the other hand, as shown in FIG. 4, in a substantially central portion of the [0075] suspension frame 5 are provided an engine mounting member mounting portions 15. Also, the upper plate 8 and the side plate 11 1, 11 2 of the lower plate 9′ are provided with vehicle body mounting portions 8 h, 8 i and 8 j and 11 h, 11 i and 11 j of the suspension frame 5, respectively. The center plate 12 is provided with a mounting hole 12 i corresponding to the vehicle body mounting portions 8 i and 11 i. As shown in FIG. 9, collars 16 are fitted in and welded to the vehicle body mounting holes 8 h, 8 i and 8 j and 11 h, 11 i and 11 j. In the portion where the center plate 12 is provided, the mounting hole 12 i is also connected by the common collar 16. In the portion where the central plate 12 is provided, the upper plate 8 and the center plate 12 are joined to each other by penetration welding w3 as shown in FIGS. 7 and 9.
  • The joining of the [0076] center plate 12 to the side plates 11 1 and 11 2 and the joining of the center plate 12 to the upper plate 8 can be performed by various joining methods such as arc welding and spot welding.
  • Further, in the suspension lower [0077] arm support portion 8 b of the upper plate 8 and the suspension lower arm support portion 11 b of the lower plate 9′, there are provided mounting holes 8 g and 11 g, respectively, for supporting the rear-side arm 10 b of the suspension lower arm 10 1, 10 2 as shown in FIG. 10 (see FIG. 4). As shown in FIG. 10, the front-side arm 10 a of the suspension lower arm 10 1, 10 2 is supported by a horizontal shaft, and the rear-side arm 10 b thereof is supported by a vertical shaft. The front-side arm 10 a and the rear-side arm 10 b each are provided with a bush 17, and the suspension lower arm 10 1, 10 2 is supported on the suspension frame 5 so as to be swayed freely by inserting the support shaft in the center of the bush 17.
  • As shown in FIG. 4, the suspension lower [0078] arm support portion 5 b of the suspension frame 5 is provided with an increased rigidity by ribs 8 k and 11 k formed in the vehicle width direction in the suspension lower arm support portion 8 b of the upper plate 8 and the suspension lower arm support portion 11 b of the lower plate 9′, respectively. Further, the suspension lower arm support portion 8 b of the upper plate 8 is formed a step higher so that the distance between the suspension lower arm support portion 8 b of the upper plate 8 and the suspension lower arm support portion 11 b of the lower plate 9′ is increased, by which a support portion for the arm 10 b of the suspension lower arm 10 1, 10 2 is formed.
  • According to the above-described construction, the [0079] lower plate 9′ is formed into a three-piece construction composed of the paired side plates 11 1 and 11 2 and the center plate 12 disposed between these side plates 11 1 and 11 2, and the paired side plates 11 1 and 11 2 and the center plate 12 are joined to each other into a unit. The center plate 12 is thinner and therefore has a lower mass than the conventional lower plate, so that lighter weight of the suspension frame 5 can be achieved. On the other hand, the thicknesses of the side plates 11 1 and 11 2 are made greater than the thickness of the center plate 12 to increase the rigidity of the vehicle body mounting portions. By making the thicknesses of the side plates 11 1 and 11 2 greater, the natural frequency of the suspension frame 5 is increased, and thereby what is called a muffled sound is restrained.
  • The [0080] center plate 12 is formed integrally with the side plates 11 1 and 11 2 by welding (w1) the lower ends of the vertical wall portions 12 d to the upper faces of the side plates 11 1 and 11 2 by arc welding and by welding (w2) both edges of the intermediate portion 12 b to the upper faces of the side plates 11 1 and 11 2 by arc welding. Thus, between the slant face portion 12 c of the center plate 12 and the upper face of the side plate 11 1, 11 2 is formed the gap 13, so that the closed cross section S1 is formed. Therefore, the closed curved surface of the suspension frame 5 can be reinforced by the vertical wall portion 12 d, so that an increase in rigidity can be achieved when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame 5. Also, since the vehicle body mounting portions are formed by joining two plates of the side plate 11 1, 11 2 and the center plate 12, and the mounting portions are provided on the side of the side plate 11 1, 11 2 having a higher rigidity, the surface rigidity is increased, so that an increase in rigidity of vehicle body mounting portions can be achieved.
  • Further, the suspension lower [0081] arm support portion 5 b of the suspension frame 5 is formed with the ribs 8 k and 11 k in the vehicle width direction in the suspension lower arm support portion 8 b of the upper plate 8 and the suspension lower arm support portion 11 b of the lower plate 9′ to increase the rigidity. Further, the suspension lower arm support portion 8 b of the upper plate 8 is formed a step higher so that the distance between the suspension lower arm support portion 8 b of the upper plate 8 and the suspension lower arm support portion 11 b of the lower plate 9′ is increased, by which the support portion for the arm 10 b of the suspension lower arm 10 1, 10 2 is formed. Thus, the distance between the upper plate 8 and the lower plate 9′ can be increased only in the mounting portion for the arm 10 b of the suspension lower arm 10 1, 10 2, so that the rigidity of the suspension frame 5 is not decreased. Since the arm 10 b of the suspension lower arm 10 1, 10 2 is supported between the upper plate 8 and the lower plate 9′, the rigidity can be increased. In particular, since the suspension lower arm support portion 8 b and the suspension lower arm support portion 11 b are joined to each other on the front and rear end sides and are joined by the vertical wall portion 12 d of the center plate 12 at the proximal end side, only a pull-out portion for the arm 10 b of the suspension lower arm 10 1, 10 2 is open, so that the support portion for the arm 10 b can be constructed strongly.
  • FIGS. [0082] 11 to 13 show another embodiment of the present invention. In this embodiment, explanation is made by applying the same reference numerals to the same elements as those shown in FIGS. 1 to 4.
  • In this case, of the [0083] upper plate 8 and the lower plate 9′, which constitute the suspension frame 5, the lower plate 9′ is subjected to a change in construction.
  • A [0084] lower plate 9″ has a construction such that only the right and left suspension lower arm support portions for supporting the rear-side arm 10 b of the suspension lower arm 10 1, 10 2 are separated from the intermediate portion.
  • The [0085] lower plate 9″ is composed of side plates 18 1 and 18 2 consisting of a suspension lower arm support portion 18 b and a center plate 19 connected to the side plates 18 1 and 18 2. The center plate 19 is provided with suspension lower arm support portions 19 a at the front ends on both sides.
  • The [0086] center plate 19 is provided with side wall portions 19 f in the vehicle body longitudinal direction at both sides. The side wall portion 19 f is provided so as to range from the vicinity of the suspension lower arm support portion 19 a to the rear end, so that it partitions the internal space of the suspension frame 5 into the center plate side and the suspension lower arm support portion side.
  • The side plate [0087] 18 1, 18 2 is joined to the outside lower end of the side wall portion 19 f of the center plate 19 by arc welding or other means.
  • The [0088] lower plate 9″ is joined integrally to the upper plate 8 by joining flange portions 19 d and 19 e provided on the front and the rear of center plate 19 and the upper end of the side wall portion 19 f to the upper plate 8 and by joining the side plates 18 1 and 18 2 to the peripheral surfaces of the suspension lower arm support portions 8 b via the peripheral edge portions of the side plates 18 1 and 18 2 by spot welding or other means.
  • In this case, as the vehicle body mounting portions, the [0089] upper plate 8 is formed with the vehicle body mounting holes 8 h, 8 i and 8 j, and the lower plate 9″ is formed with vehicle body mounting holes 19 h, 19 i and 18 j. The vehicle body mounting holes 19 h and 19 i are formed in the center plate 19, and the vehicle body mounting hole 18 j is formed in the side plate 18 1, 18 2.
  • In this embodiment, as in the case of the above described embodiment, the thicknesses of the side plates [0090] 18 1 and 18 2 are made greater than the thickness of the center plate 19, by which the rigidity of the suspension lower arm support portion 18 b can be increased.
  • FIGS. [0091] 14 to 20 show still another embodiment of the present invention. In this embodiment, the upper plate has a separated construction.
  • FIG. 14 shows the vehicle body front part of a motor vehicle. In this figure, the same reference numerals are applied to the same elements as those shown in FIG. 1. [0092]
  • In the [0093] engine room 2 isolated by the dash panel 1, a suspension frame 5′ is installed to the front side members 3 1 and 3 2, which are disposed on both sides of the vehicle body, via the brackets 4 on the lower face side of the engine room 2. On the outside of the front side members 3 1 and 3 2 are provided the struts 7 for suspending the right and left wheels 6.
  • The construction of the [0094] suspension frame 5′ will be described with reference to FIGS. 15 to 20.
  • As shown in FIGS. [0095] 15 to 18, the suspension frame 5′ is formed into a substantially closed curved surface construction by joining an upper plate 8′ and a lower plate 9, which are formed by pressing, to each other by welding or other means. On the right and left of the suspension frame 5′, the suspension lower arm support portions 5 a and 5 b formed by the upper plate 8′ and the lower plate 9 are provided so as to branch and extend to the substantially front and lateral sides.
  • The [0096] upper plate 8′ has a three-piece construction composed of a pair of side plates 21 1 and 21 2 and a center plate 22 disposed between the side plates 21 1 and 21 2. The paired side plates 21 1 and 21 2 and the center plate 22 are joined to each other into a unit. The side plates 21 1 and 21 2 and the center plate 22 each are formed by pressing a steel plate.
  • On the other hand, as shown in FIGS. 17 and 18, for the [0097] lower plate 9, the rear end portion of a flat steel plate is bent and extend upward, and suspension lower arm support portions 9 a and 9 b for supporting the arms 10 a and 10 b of the suspension lower arms 10 1 and 10 2 are provided on both sides, right and left, of the lower plate 9 so as to branch and extend to the substantially front and lateral sides. The lower plate 9 is provided with a rising portion 9 c at the peripheral edge thereof ranging from the rear end to the suspension lower arm support portion 9 b, and is provided with a flange portion 9 d at the front end peripheral edge thereof. In the rising portion 9 c provided at the periphery of the suspension lower arm support portion 9 b, a notch 9 e for supporting the rear-side arm 10 b of the suspension lower arm 10 1, 10 2 is provided on the front side.
  • Also, on the outside face of the [0098] lower plate 9 ranging from the front-side suspension lower arm support portion 9 a to the proximal end portion of the lateral-side suspension lower arm support portion 9 b, an outer wall portion 9 f is erected along the outside edge of the lower plate 9.
  • As shown in FIG. 17, the [0099] center plate 22 has a slant face portions 22 c that are each formed by bending a side 22 a of the plate slantwise upward with respect to an intermediate portion 22 b. A wall portion 22 d is formed by bending the end portion of the slant face portion 22 c downward substantially at right angles. To the wall portion 22 d is connected a lapped portion 22 e that is lapped on the upper face of the lower plate 9. At the side of the lapped portion 22 e is erected a vertical wall portion 22 f by bending the plate upward. The vertical wall portion 22 f is provided so as to be continuous with the outer wall portion 9 f of the lower plate 9 substantially straight in the vehicle body longitudinal direction. A flange portion at the upper end of the vertical wall portion 22 f, together with a flange portion at the upper end of the outer wall portion 9 f of the lower plate 9, is joined to the lower face of the side plate 21 1, 21 2. The lapped portion 22 e of the center plate 22 is joined to the upper face of the lower plate 9 by penetration welding w4. Also, the front end of the vertical wall portion 22 f is joined to the outer wall portion 9 f, and the rear end thereof is joined to the rising portion 9 c at the rear end of the lower plate 9.
  • The [0100] center plate 22 is assembled to the side plates 21 1 and 21 2 so that the vertical wall portions 22 f on both sides are each continuous substantially straight with side wall portions 21 f of the side plates 21 1 and 21 2. The center plate 22 is disposed on the upper face of the lower plate 9 so that the vertical wall portions 22 f are each continuous substantially straight with the outer wall portions 9 f of the lower plate 9, and the intermediate portion 22 b thereof is joined to the lower plate 9 by spot welding w5 or other means.
  • The flange portion provided at the upper end of the [0101] vertical wall portion 22 f, together with the flange portion provided at the upper end of the outer wall portion 9 f of the lower plate 9, is joined to the lower face of the side plate 21 1, 21 2. The lapped portion 22 e of the center plate 22 is joined to the upper face of the lower plate 9 by penetration welding w4.
  • Between the [0102] slant face portion 22 c and the vertical wall portion 22 f of the center plate 22 and the upper face of the side plate 21 1, 21 2 is formed a gap 23, so that a closed cross section S2 is formed.
  • The paired side plates [0103] 21 1 and 21 2 each are provided, on the right and left sides thereof, with suspension lower arm support portions 21 a and 21 b for supporting the arms 10 a and 10 b of the suspension lower arm 10 1 and 10 2, like the upper plate 9, in such a manner as to branch and extend to the substantially front and lateral sides.
  • The side plate [0104] 21 1, 21 2 is assembled to the center plate 22 by joining an opposed inside edge portion 21 c of the side plate 21 1, 21 2 to the upper end of the slant face portion 22 c of the center plate 22 and by joining a front flange portion 21 d of the side plate 21 1, 21 2 to the front flange portion 9 d of the lower plate 9.
  • The suspension lower [0105] arm support portions 9 a and the suspension lower arm support portions 21 a provided on the paired side plates 21 1 and 21 2 are fitted with the right and left lower arm mounting brackets 14 1 and 14 2, respectively. The lower arm mounting brackets 14 1 and 14 2 support the arms 10 a and 10 b of the suspension lower arms 10 1 and 10 2, respectively, so as to be swayable.
  • The lower [0106] arm mounting bracket 14 1, 14 2 is formed substantially into a box shape by pressing or other means, and one side of this box shape is opened so as to form the support portion for the sway shaft of the arm 10 a, 10 b of the suspension lower arm 10 1, 10 2. In each of front and rear wall faces 14 a opposed in the vehicle body longitudinal direction of this box shape, there is provided the mounting hole 14 b for mounting the sway shaft of the suspension lower arm 10 1, 10 2.
  • On the other hand, in a substantially central portion of the [0107] suspension frame 5′ are provided the engine mounting member mounting portions 15. Also, the side plate 21 1, 21 2 and the lower plate 9 are provided with vehicle body mounting holes 21 h, 21 i and 21 j and 9 h, 9 i and 9 j of the suspension frame 5′, respectively, at the corresponding positions. The center plate 22 is provided with mounting holes 22 i and 22 h corresponding to the vehicle body mounting portions 21 i, 21 h, 9 i, and 9 h.
  • Further, in the suspension lower [0108] arm support portion 21 b of the side plate 21 1, 21 2 and the suspension lower arm support portion 9 b of the lower plate 9, there are provided mounting holes 21 g and 9 g, respectively, for supporting the rear-side arm 10 b of the suspension lower arm 10 1, 10 2 (see FIG. 17).
  • As shown in FIG. 19, [0109] collars 26 are fitted in and welded to the vehicle body mounting holes 21 h, 21 i, 21 j, 9 h, 9 i, 9 j and 22 h. Although not shown in the figure, in the portion where the center plate 22 is provided, the similar collar 26 can also be used in the mounting hole 22 i. In the portion where the central plate 22 is provided, the lower plate 9 and the center plate 22 are joined to each other by penetration welding w4 as shown in FIG. 17.
  • The joining of the [0110] center plate 22 to the side plates 21 1 and 21 2 and the joining of the center plate 22 to the lower plate 9 can be performed by various joining methods such as arc welding and spot welding. As shown in FIG. 20, the front-side arm 10 a of the suspension lower arm 10 1, 10 2 is supported by a horizontal shaft, and the rear-side arm 10 b thereof is supported by a vertical shaft. The front-side arm 10 a and the rear-side arm 10 b each are provided with the bush 17, and the suspension lower arm 10 1, 10 2 is supported on the suspension frame 5′ so as to be swayed freely by inserting the support shaft in the center of the bush 17.
  • Also, the suspension lower [0111] arm support portion 21 b of the side plate 21 1, 21 2 is formed a step higher so that the distance between the suspension lower arm support portion 21 b of the side plate 21 1, 21 2 and the suspension lower arm support portion 9 b of the lower plate 9 is increased, by which the support portion for the arm 10 b of the suspension lower arm 10 1, 10 2 is formed.
  • According to the above-described construction, the [0112] upper plate 8′ is formed into a three-piece construction composed of the paired side plates 21 1 and 21 2 and the center plate 22 disposed between these side plates 21 1 and 21 2, and the lower plate 9 is joined to the center plate 22.
  • The [0113] center plate 22 is assembled to the side plates 21 1 and 21 2 so that the vertical wall portion 22 f on both sides are each continuous substantially straight with the side wall portion 21 f of the side plate 21 1, 21 2.
  • The [0114] center plate 22 is disposed on the upper face of the lower plate 9 so that the vertical wall portions 22 f each are continuous straight with the outer wall portion 9 f of the lower plate 9, and the intermediate portion 22 b thereof is joined to the lower plate 9 by spot welding w5 or other means. The lapped portions 22 e of the center plate 22 are joined to the upper face of the lower plate 9 by penetration welding w4. The side plates 21 1 and 21 2 are disposed on the lower plate 9 and the center plate 22, and the opposed inside edge portions 21 c of the side plates 21 1 and 21 2 are each joined to the upper end of the slant face portion 22 c of the center plate 22 by arc welding w6 or other means, and the front flange portions 21 d of the side plates 21 1 and 21 2 are each joined to the front flange portion 9 d of the lower plate 9 by spot welding w5 or other means.
  • Further, the flange portion at the upper end of the [0115] vertical wall portion 22 f of the center plate 22 and the flange portion at the upper end of the outer wall portion 9 f of the lower plate 9 are joined to the lower face of the side plate 21 1, 21 2.
  • According to the above-described construction, the [0116] center plate 22 can be made thinner and therefore can have a lower mass than the conventional upper plate, so that lighter weight of the suspension frame 5′ can be achieved. On the other hand, the thicknesses of the side plates 21 1 and 21 2 can be made greater than the thickness of the center plate 22 to increase the rigidity of the vehicle body mounting portions. By making the thicknesses of the side plates 21 1 and 21 2 greater, the natural frequency of the suspension frame 5′, is increased, and thereby what is called a muffled sound can be restrained.
  • Since the lapped [0117] portion 22 e of the center plate 22 is joined to the upper face of the lower plate 9 by penetration welding w4, the lower plate 9 has a two-layer construction in this portion, and the closed cross-sectional construction is formed between the lower plate 9 and the side plate 21 1, 21 2. In particular, therefore, the rigidity of the vehicle body mounting portions increases, so that an increase in rigidity can be achieved when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame 5′.
  • Also, the suspension lower [0118] arm support portion 21 b of the upper plate 8′ is formed a step higher so that the distance between the suspension lower arm support portion 21 b of the upper plate 8′ and the suspension lower arm support portion 9 b of the lower plate 9 is increased, by which the support portion for the arm 10 b of the suspension lower arm 10 1, 10 2 is formed. Thus, the distance between the upper plate 8′ and the lower plate 9 can be increased only in the mounting portion for the arm 10 b of the suspension lower arm 10 1, 10 2, so that the rigidity of the suspension frame 5′, is not decreased. Since the arm 10 b of the suspension lower arm 10 1, 10 2 is supported between the upper plate 8′ and the lower plate 9, the rigidity can be increased. In particular, since the suspension lower arm support portion 21 b and the suspension lower arm support portion 9 b are joined to each other on the front and rear end sides and are joined by the vertical wall portion 22 f of the center plate 22 at the proximal end side, only a pull-out portion for the arm 10 b of the suspension lower arm 10 1, 10 2 is open, so that the support portion for the arm 10 b can be constructed strongly.
  • The present invention is not limited to the above-described embodiments. For example, although the [0119] lower plate 9′ is divided into three pieces, the paired side plates 111 and 112 and the center plate 12, in the present invention, the lower plate 9′ can be divided into four or more pieces. Also, although the lower plate 9″ is divided into three pieces, the side plates 18 1 and 18 2, which each consist of the suspension lower arm support portion 18 b, and the center plate 19, in another embodiment, the lower plate 9″ may be divided into five pieces by separating the suspension lower arm support portions 19 a.
  • Further, in the above-described embodiments, the vehicle body mounting portion is divided into the thick side plates [0120] 11 1 and 11 2 in which all vehicle body mounting portions are provided and the thin center plate 12, or into the side plates 18 1 and 18 2 in which some vehicle body mounting portions are provided and the center plate 19. However, any division mode may be adopted.
  • Also, although the [0121] upper plate 8′ is divided into three pieces, the paired side plates 21 1 and 21 2 and the center plate 22, in still another embodiment, the upper plate 8′ can be divided into four or more pieces. Also, the thicknesses of the side plates 21 1 and 21 2 constituting the upper plate 8′ is made greater than the thickness of the center plate 22, by which the rigidity of the side plates 21 1, 21 2 in which the vehicle body mounting portions are provided can be increased. In this case, by using a band-shaped plate that is thinner than the conventional upper plate as the center plate 22 constituting the upper plate 8′, the total weight can be decreased.
  • Further, a blank material tailored by forming materials with different thicknesses into one piece by laser welding is used as the [0122] center plate 22 constituting the upper plate 8′, by which lighter weight can be achieved. In this case, it is a matter of course that a thin portion is used as the intermediate portion 22 b of the center plate 22 constituting the upper plate 8′.
  • As described above, the suspension frame construction in accordance with the present invention can achieve the effects described below. [0123]
  • In [0124] claim 1, in a suspension frame construction comprising an upper plate and a lower plate joined to each other to form a suspension frame; and front- and rear-side suspension arm support portions provided at both ends, right and left, of the suspension frame, the lower plate is made up of a pair of side plates each provided with a support portion for supporting at least a rear-side arm of a suspension arm and a center plate for connecting the side plates to each other. Therefore, the rigidity can be increased when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame. The increase in rigidity under the mounting load can eliminate a mass damper.
  • In [0125] claim 2, the thicknesses of the side plates are made greater than the thickness of the center plate, and a vehicle body mounting portion is provided on the side plate. Therefore, in a state in which the weight is kept low, the rigidity can be increased when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame.
  • In [0126] claim 3, the suspension arm support portions are provided on the front and rear of the right and left side plates, and a side wall portion is formed on the outside of the side plate. Therefore, the rigidity can be increased when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame.
  • In [0127] claim 4, bent portions are formed at both ends of the center plate to form a gap between the center plate and the right and left side plates, and the distal lower end of the bent portion is joined to the side plate to form a vertical wall portion for partitioning the interior of the suspension frame. Therefore, the rigidity of the suspension frame can be increased when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame.
  • In [0128] claim 5, the vertical wall portion is arranged in a substantially straight line with respect to the side wall portion. Therefore, the rigidity of the suspension frame can be increased when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame.
  • In [0129] claim 6, the side wall portion provided on the side plate is formed so as to be close to the vehicle body mounting portion of the suspension frame. Therefore, the rigidity of the vehicle body mounting portion can be increased.
  • In [0130] claim 7, both end portions of the center plate are lapped partially on the right and left side plates, the lapped portion is inclined toward the vertical wall portion, and a gap is formed in the lapped portion. Therefore, the rigidity of the suspension frame can be increased when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame.
  • In [0131] claim 8, the inclined portion of the center plate is extended to at least the vehicle body mounting portion of the suspension frame. Therefore, the rigidity of the vehicle body mounting portion can be increased.
  • In [0132] claim 9, in a suspension frame construction comprising an upper plate and a lower plate joined to each other to form a suspension frame; and front- and rear-side suspension arm support portions provided at both ends, right and left, of the suspension frame, the upper plate is made up of a pair of side plates each provided with a support portion for supporting at least a rear-side arm of a suspension arm and a center plate for connecting the side plates to each other. Therefore, by adjusting the plate thickness, light weight can be achieved, and also the rigidity can be increased when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame. The increase in rigidity under the mounting load can eliminate a mass damper.
  • In [0133] claim 10, in a suspension frame construction comprising an upper plate and a lower plate joined to each other to form a suspension frame; and suspension arm support portions extending to the substantially front and lateral sides, which are provided at both ends, right and left, of the suspension frame, the upper plate is made up of a pair of side plates each provided with a support portion for supporting at least a rear-side arm of a suspension arm and a center plate for connecting the side plates to each other, an outer wall portion is formed in the suspension arm support portion extending to the substantially front side, and a vertical wall portion continuous with the outer wall portion is provided on the center plate. Therefore, by adjusting the plate thickness, in a state in which the weight is kept low, the rigidity can be increased when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame.
  • In claim [0134] 11, the center plate comprises inclined portions provided on the inside of the right and left vertical wall portions, an intermediate portion connected to the lower plate, which is provided between the inclined portions, and lapped portions joined face-to-face to the lower plate, which are each provided between the vertical wall portion and the inclined portion. Therefore, the lower plate is made have a two-layer construction, and the closed cross-sectional construction can be formed between the vertical wall portion and the inclined portion at the right and left, so that the rigidity and driving stability can be increased, and the rigidity can be increased when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame. The natural frequency is increased, and thereby a muffled sound can be restrained.
  • In [0135] claim 12, the peripheral edge of the side plate is joined to the lower plate, and the lower face of the side plate is joined to the upper end of inclined portion and the upper end of vertical wall portion of the center plate. Therefore, the closed cross-sectional construction can be formed, so that the rigidity and driving stability can be increased, and the rigidity of the suspension frame can be increased when a braking force, a lateral force, or an engine mounting load is applied to the suspension frame.
  • In [0136] claim 13, the lapped portions of the center plate are joined to the lower plate by penetration welding. Therefore, the surface rigidity can be increased.

Claims (13)

1. A suspension frame construction comprising an upper plate and a lower plate joined to each other to form a suspension frame; and front- and rear-side suspension arm support portions provided at both ends, right and left, of said suspension frame, wherein said lower plate is made up of a pair of side plates each provided with a support portion for supporting at least a rear-side arm of a suspension arm and a center plate for connecting said side plates to each other.
2. The suspension frame construction according to
claim 1
, wherein the thicknesses of said side plates are made greater than the thickness of said center plate, and a vehicle body mounting portion is provided on said side plate.
3. The suspension frame construction according to
claim 1
or
2
, wherein said suspension arm support portions are provided on the front and rear of said right and left side plates, and a side wall portion is formed on the outside of said side plate.
4. The suspension frame construction according to
claim 1
or
2
, wherein bent portions are formed at both ends of said center plate to form a gap between said center plate and said right and left side plates, and the distal lower end of said bent portion is joined to said side plate to form a vertical wall portion for partitioning the interior of said suspension frame.
5. The suspension frame construction according to
claim 4
, wherein said vertical wall portion is arranged in a substantially straight line with respect to said side wall portion.
6. The suspension frame construction according to
claim 3
, wherein said side wall portion provided on said side plate is formed so as to be close to the vehicle body mounting portion of said suspension frame.
7. The suspension frame construction according to
claim 4
, wherein both end portions of said center plate are lapped partially on said right and left side plates, the lapped portion is inclined toward said vertical wall portion, and a gap is formed in said lapped portion.
8. The suspension frame construction according to
claim 7
, wherein the inclined portion of said center plate is extended to at least the vehicle body mounting portion of said suspension frame.
9. A suspension frame construction comprising an upper plate and a lower plate joined to each other to form a suspension frame; and front- and rear-side suspension arm support portions provided at both ends, right and left, of said suspension frame, wherein said upper plate is made up of a pair of side plates each provided with a support portion for supporting at least a rear-side arm of a suspension arm and a center plate for connecting said side plates to each other.
10. A suspension frame construction comprising an upper plate and a lower plate joined to each other to form a suspension frame; and suspension arm support portions extending to the substantially front and lateral sides, which are provided at both ends, right and left, of said suspension frame, wherein said upper plate is made up of a pair of side plates each provided with a support portion for supporting at least a rear-side arm of a suspension arm and a center plate for connecting said side plates to each other, an outer wall portion is formed in said suspension arm support portion extending to the substantially front side, and a vertical wall portion continuous with said outer wall portion is provided on said center plate.
11. The suspension frame construction according to
claim 10
wherein said center plate comprises inclined portions provided on the inside of said right and left vertical wall portions, an intermediate portion connected to said lower plate, which is provided between said inclined portions, and lapped portions joined face-to-face to said lower plate, which are each provided between said vertical wall portion and said inclined portion.
12. The suspension frame construction according to
claim 11
, wherein the peripheral edge of said side plate is joined to said lower plate, and the lower face of said side plate is joined to the upper end of inclined portion and the upper end of vertical wall portion of said center plate.
13. The suspension frame construction according to
claim 11
or
12
, wherein the lapped portions of said center plate are joined to said lower plate by penetration welding.
US09/801,995 2000-03-17 2001-03-08 Suspension frame construction Expired - Fee Related US6409216B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-075088 2000-03-17
JP2000075088A JP3791291B2 (en) 2000-03-17 2000-03-17 Suspension frame structure
JP2000-110141 2000-04-12
JP2000110141A JP3791295B2 (en) 2000-04-12 2000-04-12 Suspension frame structure

Publications (2)

Publication Number Publication Date
US20010022437A1 true US20010022437A1 (en) 2001-09-20
US6409216B2 US6409216B2 (en) 2002-06-25

Family

ID=26587733

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/801,995 Expired - Fee Related US6409216B2 (en) 2000-03-17 2001-03-08 Suspension frame construction

Country Status (2)

Country Link
US (1) US6409216B2 (en)
DE (1) DE10114047B4 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040140659A1 (en) * 2002-12-25 2004-07-22 Shinji Kato Suspension cross member
US20050258613A1 (en) * 2004-05-20 2005-11-24 Kleckner Matthew D Control arm for a vehicle suspension and method of making same
FR2882326A1 (en) * 2005-02-23 2006-08-25 Auto Chassis Internat Snc Snc Engine cradle for motor vehicle, has carrier shell with nut receiving screw which extends partially in housing, where nut is distinct from spacer and is provided so that locking force transmitted by screw is applied on carrier shell
FR2888557A1 (en) * 2005-07-18 2007-01-19 Auto Chassis Internat Snc Snc SUPPORT STRUCTURE OF A FRONT AXLE OF A MOTOR VEHICLE COMPRISING COUPLING MEANS IN THE FORM OF A HOLLOW BODY FROM THE MINI CABLE TO THE LONGERONS, AND A VEHICLE THEREFOR
US20070047082A1 (en) * 2005-08-23 2007-03-01 Seaver Sean P Welded, multiple piece cast control arm
EP1982856A1 (en) * 2001-06-15 2008-10-22 Honda Giken Kogyo Kabushiki Kaisha Automobile body frame structure
US20100078911A1 (en) * 2007-03-29 2010-04-01 Nissan Motor Co., Ltd. Multi-link suspension device and method for suspending wheels
CN103129617A (en) * 2011-11-29 2013-06-05 铃木株式会社 Surrounding structure for suspension frame of vehicle
CN103129621A (en) * 2011-11-29 2013-06-05 铃木株式会社 Peripheral structure of suspension frame
CN103158769A (en) * 2011-12-09 2013-06-19 现代自动车株式会社 Crossmember assembly for vehicles
DE102012201818A1 (en) * 2012-02-07 2013-08-08 Bayerische Motoren Werke Aktiengesellschaft Axle carrier for two-track motor vehicle, has support strut, which is provided between longitudinal carrier of axle carrier and longitudinal carrier of body, in direct vicinity of engine mount spaced from longitudinal carrier of body
FR3000933A1 (en) * 2013-01-15 2014-07-18 Peugeot Citroen Automobiles Sa Cradle for structure of e.g. motor vehicle, has spacers that are positioned in hollow interior volume and attached with upper and lower shells, where one of spacers is attached with shells via flange
US8967672B2 (en) * 2011-08-31 2015-03-03 Mazda Motor Corporation Vehicle-body structure of vehicle and manufacturing method of the same
US20150166104A1 (en) * 2012-07-27 2015-06-18 Honda Motor Co., Ltd. Subframe for vehicle
CN104773205A (en) * 2015-03-10 2015-07-15 奇瑞汽车股份有限公司 Auxiliary frame
US20160068036A1 (en) * 2014-09-05 2016-03-10 Suzuki Motor Corporation Suspension Frame Structure
FR3025771A1 (en) * 2014-09-16 2016-03-18 Renault Sas "FRONT STRUCTURE OF MOTOR VEHICLE WITH SIMPLIFIED CRADLE"
US9630488B2 (en) 2013-06-07 2017-04-25 Bayerische Motoren Werke Aktiengesellschaft Vehicle
EP3165426A1 (en) * 2015-11-09 2017-05-10 Kirchhoff Automotive Deutschland GmbH Assembly for a motor vehicle with a subframe and an impact absorption structure
US9889885B2 (en) * 2014-11-27 2018-02-13 Toyota Jidosha Kabushiki Kaisha Suspension member
US10059377B2 (en) * 2016-08-08 2018-08-28 Toyota Jidosha Kabushiki Kaisha Vehicle frame structure
US20200130445A1 (en) * 2018-10-31 2020-04-30 Nissan North America, Inc. Vehicle front end assembly

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3788175B2 (en) * 2000-03-13 2006-06-21 スズキ株式会社 Suspension frame structure
CA2622168C (en) 2005-09-13 2014-10-14 Ksm Castings Gmbh Front-axle bracket, in particular for motor vehicles
US7717441B2 (en) * 2006-12-12 2010-05-18 International Truck Intellectual Property Company, Llc Suspension mounting crossmember with integrated cab mounts for vehicle having front multilink suspension
DE102009020305A1 (en) * 2008-05-26 2009-12-03 Ksm Castings Gmbh Axle carrier for motor vehicles
US7802816B2 (en) 2008-05-27 2010-09-28 Honda Motor Company Ltd. Control arm support brackets and vehicles using same
KR20100045800A (en) * 2008-10-24 2010-05-04 현대자동차주식회사 Sub-frame mount for suspension
JP5084883B2 (en) * 2009-12-28 2012-11-28 株式会社ヨロズ Suspension subframe
US9174677B2 (en) * 2011-11-15 2015-11-03 Honda Motor Co., Ltd. Automobile subframe
JP5928871B2 (en) * 2011-11-29 2016-06-01 スズキ株式会社 Lower body structure at the front of the vehicle
US8474870B1 (en) 2012-04-27 2013-07-02 Honda Motor Co., Ltd. Vehicle frame assembly
US8500149B1 (en) 2012-08-06 2013-08-06 Honda Motor Co., Ltd. Control arm assembly
US8876132B2 (en) * 2012-09-28 2014-11-04 Ford Global Technologies, Llc Front end assembly for vehicle chassis
CN103786788B (en) * 2012-10-26 2016-01-27 广州汽车集团股份有限公司 A kind of automobile front subframe and corresponding automobile
US9333825B2 (en) * 2013-03-15 2016-05-10 GM Global Technology Operations LLC Vehicle front suspension lower control arm attachment system
US8875834B1 (en) * 2013-04-12 2014-11-04 GM Global Technology Operations LLC Increased stiffness underbody panel
WO2014175414A1 (en) * 2013-04-26 2014-10-30 本田技研工業株式会社 Vehicle subframe
DE102013108695B4 (en) * 2013-08-12 2022-06-30 Kirchhoff Automotive Deutschland Gmbh Subframe for a motor vehicle axle
US9493189B2 (en) * 2014-05-03 2016-11-15 Ford Global Technologies, Llc Subframe for vehicle including lever for detaching subframe from underbody during front impact
JP6344118B2 (en) * 2014-07-28 2018-06-20 スズキ株式会社 Suspension frame structure
US10676132B2 (en) * 2016-07-06 2020-06-09 Toyota Jidosha Kabushiki Kaisha Suspension member
RU195842U1 (en) * 2019-11-29 2020-02-06 Общество с ограниченной ответственностью "Автопродукт" Subframe rear suspension

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3226142B2 (en) 1993-12-24 2001-11-05 スズキ株式会社 Automotive subframe structure
DE4447352C2 (en) * 1994-12-20 1998-09-17 Steripharm Pharmazeutische Pro Process for the preparation of galactose-containing preparations for enteral and parenteral nutrition of patients
JP3470033B2 (en) * 1998-01-22 2003-11-25 本田技研工業株式会社 Car body frame structure

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1982856A1 (en) * 2001-06-15 2008-10-22 Honda Giken Kogyo Kabushiki Kaisha Automobile body frame structure
US7097185B2 (en) * 2002-12-25 2006-08-29 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Suspension cross member
US20040140659A1 (en) * 2002-12-25 2004-07-22 Shinji Kato Suspension cross member
US20050258613A1 (en) * 2004-05-20 2005-11-24 Kleckner Matthew D Control arm for a vehicle suspension and method of making same
FR2882326A1 (en) * 2005-02-23 2006-08-25 Auto Chassis Internat Snc Snc Engine cradle for motor vehicle, has carrier shell with nut receiving screw which extends partially in housing, where nut is distinct from spacer and is provided so that locking force transmitted by screw is applied on carrier shell
FR2888557A1 (en) * 2005-07-18 2007-01-19 Auto Chassis Internat Snc Snc SUPPORT STRUCTURE OF A FRONT AXLE OF A MOTOR VEHICLE COMPRISING COUPLING MEANS IN THE FORM OF A HOLLOW BODY FROM THE MINI CABLE TO THE LONGERONS, AND A VEHICLE THEREFOR
WO2007010157A3 (en) * 2005-07-18 2007-05-18 Auto Chassis Int Snc Structure supporting a motor vehicle front end assembly comprising coupling means in the form of a hollow body of a mini-cradle with side members, and corresponding vehicle
WO2007010157A2 (en) * 2005-07-18 2007-01-25 Auto Chassis International Snc Structure supporting a motor vehicle front end assembly comprising coupling means in the form of a hollow body of a mini-cradle with side members, and corresponding vehicle
US20080315571A1 (en) * 2005-07-18 2008-12-25 Auto Chassis International Snc Structure Supporting a Motor Vehicle Front End Assembly Comprising Coupling Means in the Form of a Hollow Body of a Mini-Cradle With Side Members, and Corresponding Vehicle
US7832748B2 (en) 2005-07-18 2010-11-16 Auto Chassis International Snc Structure supporting a motor vehicle front end assembly comprising coupling means in the form of a hollow body of a mini-cradle with side members, and corresponding vehicle
KR101185173B1 (en) 2005-07-18 2012-09-24 오토 샤시스 인터내셔날 에스엔씨 Structure supporting a motor vehicle front end assembly comprising coupling means in the form of a hollow body of a mini-cradle with side members, and corresponding vehicle
US20070047082A1 (en) * 2005-08-23 2007-03-01 Seaver Sean P Welded, multiple piece cast control arm
US20100078911A1 (en) * 2007-03-29 2010-04-01 Nissan Motor Co., Ltd. Multi-link suspension device and method for suspending wheels
US8056912B2 (en) * 2007-03-29 2011-11-15 Nissan Motor Co., Ltd. Multi-link suspension device and method for suspending wheels
US8967672B2 (en) * 2011-08-31 2015-03-03 Mazda Motor Corporation Vehicle-body structure of vehicle and manufacturing method of the same
CN103129617A (en) * 2011-11-29 2013-06-05 铃木株式会社 Surrounding structure for suspension frame of vehicle
CN103129621A (en) * 2011-11-29 2013-06-05 铃木株式会社 Peripheral structure of suspension frame
CN103158769A (en) * 2011-12-09 2013-06-19 现代自动车株式会社 Crossmember assembly for vehicles
DE102012201818A1 (en) * 2012-02-07 2013-08-08 Bayerische Motoren Werke Aktiengesellschaft Axle carrier for two-track motor vehicle, has support strut, which is provided between longitudinal carrier of axle carrier and longitudinal carrier of body, in direct vicinity of engine mount spaced from longitudinal carrier of body
DE102012201818B4 (en) * 2012-02-07 2020-08-20 Bayerische Motoren Werke Aktiengesellschaft Axle beam of a two-lane motor vehicle
US20150166104A1 (en) * 2012-07-27 2015-06-18 Honda Motor Co., Ltd. Subframe for vehicle
US9216775B2 (en) * 2012-07-27 2015-12-22 Honda Motor Co., Ltd. Subframe for vehicle
FR3000933A1 (en) * 2013-01-15 2014-07-18 Peugeot Citroen Automobiles Sa Cradle for structure of e.g. motor vehicle, has spacers that are positioned in hollow interior volume and attached with upper and lower shells, where one of spacers is attached with shells via flange
US9630488B2 (en) 2013-06-07 2017-04-25 Bayerische Motoren Werke Aktiengesellschaft Vehicle
US9457636B2 (en) * 2014-09-05 2016-10-04 Suzuki Motor Corporation Suspension frame structure
US20160068036A1 (en) * 2014-09-05 2016-03-10 Suzuki Motor Corporation Suspension Frame Structure
FR3025771A1 (en) * 2014-09-16 2016-03-18 Renault Sas "FRONT STRUCTURE OF MOTOR VEHICLE WITH SIMPLIFIED CRADLE"
US9889885B2 (en) * 2014-11-27 2018-02-13 Toyota Jidosha Kabushiki Kaisha Suspension member
CN104773205A (en) * 2015-03-10 2015-07-15 奇瑞汽车股份有限公司 Auxiliary frame
EP3165426A1 (en) * 2015-11-09 2017-05-10 Kirchhoff Automotive Deutschland GmbH Assembly for a motor vehicle with a subframe and an impact absorption structure
US10005495B2 (en) 2015-11-09 2018-06-26 Kirchhoff Automotive Deutschland Gmbh Assembly for a motor vehicle with an auxiliary frame and an impact absorption structure
US10059377B2 (en) * 2016-08-08 2018-08-28 Toyota Jidosha Kabushiki Kaisha Vehicle frame structure
US20200130445A1 (en) * 2018-10-31 2020-04-30 Nissan North America, Inc. Vehicle front end assembly
US10906369B2 (en) * 2018-10-31 2021-02-02 Nissan North America, Inc. Vehicle front end assembly

Also Published As

Publication number Publication date
US6409216B2 (en) 2002-06-25
DE10114047A1 (en) 2001-09-20
DE10114047B4 (en) 2008-10-16

Similar Documents

Publication Publication Date Title
US6409216B2 (en) Suspension frame construction
US6494472B2 (en) Suspension frame construction
US6402172B1 (en) Suspension frame construction
US7857377B2 (en) Tubular B-pillar to stamped rocker joint and method of assembling the same
JP5061512B2 (en) Suspension frame structure
JP5299337B2 (en) Subframe structure of vehicle
JPH0518231Y2 (en)
JP6881396B2 (en) Lower body structure
JP3791291B2 (en) Suspension frame structure
JP3791295B2 (en) Suspension frame structure
JPH08104251A (en) Mounting structure for suspension device
JPS6239375A (en) Center pillar lower end structure of car
JPH06166384A (en) Coupling structure of side body and under body of automobile
JP2002145109A (en) Suspension frame structure
JP4529569B2 (en) Car body rear structure
JPH11115429A (en) Suspension arm structure
WO2023181197A1 (en) Vehicle body structure
JP2006515244A (en) Vertical beam for vehicles
JP4108309B2 (en) Automobile suspension rod support structure
JPH08301139A (en) Arrangement structure for axle beam type suspension for vehicle
JP2006168641A (en) Suspension arm of automobile
US11679626B2 (en) Apex axle truss system
JP4405376B2 (en) Car suspension arm
JP2705313B2 (en) Car body joint structure
JPH0518233Y2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUZUKI MOTOR CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUZUKI, TOMOYUKI;REEL/FRAME:011611/0153

Effective date: 20010209

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140625