US20010019045A1 - Method and a device for heating at least two elements by means of laser beams of high energy density - Google Patents

Method and a device for heating at least two elements by means of laser beams of high energy density Download PDF

Info

Publication number
US20010019045A1
US20010019045A1 US09/746,285 US74628501A US2001019045A1 US 20010019045 A1 US20010019045 A1 US 20010019045A1 US 74628501 A US74628501 A US 74628501A US 2001019045 A1 US2001019045 A1 US 2001019045A1
Authority
US
United States
Prior art keywords
laser
laser beam
mask
laser beams
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/746,285
Other versions
US6417481B2 (en
Inventor
Jie-Wei Chen
Christiane Leister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leister Process Technologies
Original Assignee
Leister Process Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leister Process Technologies filed Critical Leister Process Technologies
Assigned to LEISTER PROCESS TECHNOLOGIES reassignment LEISTER PROCESS TECHNOLOGIES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, JIE-WEI, LEISTER, CHRISTIANE
Publication of US20010019045A1 publication Critical patent/US20010019045A1/en
Granted legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1674Laser beams characterised by the way of heating the interface making use of laser diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1696Laser beams making use of masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • B29C66/2424Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain
    • B29C66/24243Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a quadrilateral
    • B29C66/24244Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a quadrilateral forming a rectangle
    • B29C66/24245Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a quadrilateral forming a rectangle forming a square
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/244Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being non-straight, e.g. forming non-closed contours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/306Applying a mark during joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • B29K2995/0027Transparent for light outside the visible spectrum

Definitions

  • the present invention concerns a method for heating at least two elements by means of laser beams, so as to either join or separate the elements.
  • the present invention relates in particular to a laser joining method for joining various workpieces made of plastic or plastic and other materials, with the upper workpiece facing the laser source comprising a material which is transparent to the laser beam, and the second workpiece comprising a material which is absorbent to the laser beam, so that the adjoining contact surfaces of the two workpieces melt and connect to each other during subsequent cooling under pressure; with a mask being arranged between the laser source and the workpieces to be connected so as to connect the workpieces in a particular joining area of the contact surface, with the structures of said mask being larger than the wavelength of the laser beam applied, with the laser source being set to the contact surface in such a way that a curtain-like laser beam is formed and that a line results at the contact surface, and that the laser beam and the mask are moved relative to each other.
  • the invention also relates to a device for carrying out the method.
  • the laser beam is directed so as to be perpendicular to the joining area of the contact surface in order to achieve as exact a projection as possible, in particular in the case of small structures, and to preclude any unnecessary shadow effects. Because of the design of such lasers in the form of diode stacks, the laser beam impinges on the mask at an angle. Due to the resulting inaccuracies, such an angle is not acceptable for the mask joining method.
  • European patent application 99121031.1 which is also pending, describes a method for heating such components by means of laser beams with the wiring paths on or in a printed circuit board.
  • the connection can take place by means of a solder or solely by respective heating of the parts to be joined without the use of solder (so-called microjoining).
  • a mask of material which is impermeable to laser beams is arranged between the laser source and the components, with the areas to be joined having been removed on said mask. All heating regions are then irradiated individually or simultaneously by means of one or several laser beams, so that the heating regions of the components are heated and joined or separated.
  • a line-shaped laser beam can be selected which moves in relation to the components and the carrier. While with this method, heating of the components usually takes place more slowly than with the above-mentioned laser joining method, the provision of the required energy density can also pose a problem.
  • the object of the present invention proposes an option for providing adequate energy density in order to achieve adequate heating for the purpose of joining or separating at least two elements made from the same or from different materials, including metals, alloys, plastics, ceramics, and organic or inorganic substances.
  • the object of the invention to provide a high-quality area joint in the region of the joining zone of objects adjoining in a plane, with at least one object being made of plastic, and with the joining zone being well defined.
  • this object is met by the method of the present invention. Further advantageous embodiments of the method are described herein. Furthermore, this object is met by a device of the present invention. Further advantageous embodiments of the device are provided herein.
  • laser beams of at least two diode lasers are brought together, and that subsequently, differing laser line lengths are generated by means of a zoom optics arrangement.
  • This comprises for example a cylinder lens which can be moved in the direction of radiation, so as to be able to vary the distance to the mask.
  • the relative movement between the laser beam and the components can either be achieved by moving the laser beam, for example by means of a movable deviation mirror, or by moving the components on an x-y table.
  • a first laser beam aligned perpendicularly to the surface of the mask is joined by at least one secondary laser beam arranged perpendicularly to the first laser beam, with such joining or admixing taking place via a beam splitter for each secondary laser beam, and with the resulting laser beam being directed onto the mask.
  • a well-defined beam splitter is used which is highly transparent to one laser beam and highly reflective to the respective secondary laser beam impinging perpendicularly on the first laser beam.
  • laser beams either of different wavelengths or of the same wavelength but of different polarisation are used.
  • laser sources are arranged in close proximity (spacing approx. 1 mm) to each other.
  • This close design can also limit the angle problem if the focal length of the focal line is sufficiently long. With this arrangement, at present an output of 200 W can be achieved.
  • This method and device thus make it possible to join plastic plates, molded parts or foils together or to other materials, for example metals, alloys, plastics, ceramics, semiconductor materials, organic or inorganic substances, with such joining occurring at short cycle times and providing high quality; or to surface-join finely-structured workpieces to the desired zone precisely, without damage to the structure, by not only providing adequate energy density in spite of the output of the individual lasers being insufficient, but also by making it possible to vary the line length. In this way high flexibility is achieved.
  • FIG. 1 is a schematic diagram, by way of an example, of an arrangement with two laser sources arranged perpendicularly to each other;
  • FIG. 2 is a schematic diagram for the arrangement according to FIG. 1 with several parallel laser sources perpendicular to a first laser source;
  • FIG. 3 is a schematic diagram showing another design of the laser source with parallel semiconductor lasers.
  • FIG. 1 shows an example of an arrangement for plane welding of plastic plates 4 , 5 which are to be welded only in a certain joining area 6 by means of a laser beam 2 and a mask 3 . Accordingly, the arrangement could also be configured for joining or separating components (SMD on carriers etc.).
  • the arrangement comprises a first laser source 1 ′, for example one or several semiconductor lasers (diode lasers), arranged in line, with the laser radiation emitted from said semiconductor lasers being collimated directly by a collimator lens 13 ′.
  • the laser source 1 ′ is placed such that the laser beam 2 , in the manner of a beam curtain, is brought perpendicularly through the apertures 9 of the mask 3 into the joining area 6 of the contact zone 7 between the two plastic plates 4 , 5 .
  • the laser beam 2 ′ passes through a beam splitter 10 which is highly transparent to the laser beam 2 ′.
  • a corresponding laser beam 2 ′′ also collimated by means of a collimator lens 13 ′′, passes to the beam splitter 10 where it impinges on a surface 11 which is highly reflective to this laser beam 2 ′′, thus uniting it with the other laser beam 2 ′ to form laser beam 2 .
  • the wavelength of laser beam 2 ′ differs from that of laser beam 2 ′′.
  • the wavelengths of laser beams 2 ′, 2 ′′ are identical but the polarisation is different.
  • said laser beams are to be arranged in conjunction with the beam splitters 10 ′- 10 ′′′, as diagrammatically shown in FIG. 2. The conditions for wavelengths or polarisation apply accordingly.
  • the laser beam 2 impinges on a cylinder lens 12 which can be moved in the direction of radiation, so as to generate different line lengths. Line lengths are indicated by dashed lines.
  • the energetically effective laser line 8 is radiated onto the contact surface 7 .
  • the plastic plate 4 is constructed so as to allow transmission of laser radiation, while the plastic plate 5 is absorbent.
  • the laser beam 2 is continuously moved relative to the mask 3 or the plastic plates 4 , 5 , so that the plastic plates 4 , 5 in the joining area 6 directly below the laser line 8 assume a fused state and subsequently solidify, after cooling.
  • FIG. 3 diagrammatically shows an embodiment comprising several laser sources 14 ′- 14 ′′′, arranged parallel in respect of each other, so that the laser beams 2 ′- 2 ′′′ which are generated, are aligned in close proximity to each other so as to avoid any angle error if at all possible.
  • the spacing of the laser sources is approx. 1 mm, but to avoid angle errors, the number of laser sources used is limited to a maximum thickness of the parallel beams 2 ′- 2 ′′′ of approx. 5 mm.
  • the parallel rays 2 ′- 2 ′′ are collimated onto the contact surface 7 by means of a convergent lens 15 ′.
  • the above-mentioned relative movement required can either take place by moving the plastic plates 4 , 5 or the laser beam 2 .
  • This can for example be realised with the additional use of a deviation mirror which can be moved into the beam path in front of the cylinder lens or convergent lens.

Abstract

A process and a device for joining or separating various workpieces, in particular made of plastic or plastic and other materials, by means of curtain-like laser beams. To join workpieces in a particular joining area of the contact surface, a mask, made of a laser-impermeable material, is arranged between the laser source and the workpieces to be joined. The laser beam and the mask are moved relative to each other. To generate high energy density in the joining area, laser beams of at least two diode lasers are brought together, and subsequently, differing laser line lengths are generated by means of a zoom optics arrangement. Via a beam splitter, a first laser beam aligned perpendicularly to the surface of the mask, is joined by at least one secondary laser beam arranged perpendicularly to the first laser beam, and the resulting laser beam is directed onto the mask. Laser beams either of different wavelengths or of the same wavelength but of different polarisation are used. In another arrangement, several laser beams are focussed parallel to each other onto the joining area by means of a lens. The method and the device not only provide adequate energy density in spite of the output of the individual lasers being insufficient per se, but also makes possible flexible adjustment of the line length.

Description

    BACKGROUND OF THE INVENTION
  • The present invention concerns a method for heating at least two elements by means of laser beams, so as to either join or separate the elements. [0001]
  • The present invention relates in particular to a laser joining method for joining various workpieces made of plastic or plastic and other materials, with the upper workpiece facing the laser source comprising a material which is transparent to the laser beam, and the second workpiece comprising a material which is absorbent to the laser beam, so that the adjoining contact surfaces of the two workpieces melt and connect to each other during subsequent cooling under pressure; with a mask being arranged between the laser source and the workpieces to be connected so as to connect the workpieces in a particular joining area of the contact surface, with the structures of said mask being larger than the wavelength of the laser beam applied, with the laser source being set to the contact surface in such a way that a curtain-like laser beam is formed and that a line results at the contact surface, and that the laser beam and the mask are moved relative to each other. The invention also relates to a device for carrying out the method. [0002]
  • This method is described in the pending European patent application 99101816.9. This method of joining masks for microstructured components requires very high movement speeds of the laser beam and the components to be joined. In order to achieve the necessary melt temperature, a very high energy density of the laser irradiation is also required. However, currently available laser diode series of semiconductor lasers only achieve an output of max. 60-80 W. Yet there are diode stacks whose output is in the kW range, whose laser beam can also be brought to form a line, by means of a suitable optical arrangement. Advantageously the laser beam is directed so as to be perpendicular to the joining area of the contact surface in order to achieve as exact a projection as possible, in particular in the case of small structures, and to preclude any unnecessary shadow effects. Because of the design of such lasers in the form of diode stacks, the laser beam impinges on the mask at an angle. Due to the resulting inaccuracies, such an angle is not acceptable for the mask joining method. [0003]
  • To place or remove, for example surface mount device (SMD) semiconductor components onto a carrier, European patent application 99121031.1, which is also pending, describes a method for heating such components by means of laser beams with the wiring paths on or in a printed circuit board. The connection can take place by means of a solder or solely by respective heating of the parts to be joined without the use of solder (so-called microjoining). According to the method, a mask of material which is impermeable to laser beams is arranged between the laser source and the components, with the areas to be joined having been removed on said mask. All heating regions are then irradiated individually or simultaneously by means of one or several laser beams, so that the heating regions of the components are heated and joined or separated. Inter alia a line-shaped laser beam can be selected which moves in relation to the components and the carrier. While with this method, heating of the components usually takes place more slowly than with the above-mentioned laser joining method, the provision of the required energy density can also pose a problem. [0004]
  • It is thus the object of the present invention to propose an option for providing adequate energy density in order to achieve adequate heating for the purpose of joining or separating at least two elements made from the same or from different materials, including metals, alloys, plastics, ceramics, and organic or inorganic substances. In particular it is the object of the invention to provide a high-quality area joint in the region of the joining zone of objects adjoining in a plane, with at least one object being made of plastic, and with the joining zone being well defined. [0005]
  • SUMMARY OF THE INVENTION
  • According to the invention this object is met by the method of the present invention. Further advantageous embodiments of the method are described herein. Furthermore, this object is met by a device of the present invention. Further advantageous embodiments of the device are provided herein. [0006]
  • Accordingly, to generate high energy density in the joining area, laser beams of at least two diode lasers are brought together, and that subsequently, differing laser line lengths are generated by means of a zoom optics arrangement. This comprises for example a cylinder lens which can be moved in the direction of radiation, so as to be able to vary the distance to the mask. The relative movement between the laser beam and the components can either be achieved by moving the laser beam, for example by means of a movable deviation mirror, or by moving the components on an x-y table. [0007]
  • According to a preferred embodiment, a first laser beam aligned perpendicularly to the surface of the mask, is joined by at least one secondary laser beam arranged perpendicularly to the first laser beam, with such joining or admixing taking place via a beam splitter for each secondary laser beam, and with the resulting laser beam being directed onto the mask. To this effect a well-defined beam splitter is used which is highly transparent to one laser beam and highly reflective to the respective secondary laser beam impinging perpendicularly on the first laser beam. Preferably laser beams either of different wavelengths or of the same wavelength but of different polarisation are used. With this method and the respective device, a performance of 200-300 W can presently be achieved. [0008]
  • According to another preferred embodiment, several laser beams are focussed parallel to each other onto the joining area by means of a lens. To this effect the laser sources are arranged in close proximity (spacing approx. 1 mm) to each other. This close design can also limit the angle problem if the focal length of the focal line is sufficiently long. With this arrangement, at present an output of 200 W can be achieved. [0009]
  • This method and device thus make it possible to join plastic plates, molded parts or foils together or to other materials, for example metals, alloys, plastics, ceramics, semiconductor materials, organic or inorganic substances, with such joining occurring at short cycle times and providing high quality; or to surface-join finely-structured workpieces to the desired zone precisely, without damage to the structure, by not only providing adequate energy density in spite of the output of the individual lasers being insufficient, but also by making it possible to vary the line length. In this way high flexibility is achieved. [0010]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Below, the invention is explained in more detail by means of embodiments in conjunction with the accompanying drawings, as follows: [0011]
  • FIG. 1 is a schematic diagram, by way of an example, of an arrangement with two laser sources arranged perpendicularly to each other; [0012]
  • FIG. 2 is a schematic diagram for the arrangement according to FIG. 1 with several parallel laser sources perpendicular to a first laser source; and [0013]
  • FIG. 3 is a schematic diagram showing another design of the laser source with parallel semiconductor lasers. [0014]
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • FIG. 1 shows an example of an arrangement for plane welding of [0015] plastic plates 4, 5 which are to be welded only in a certain joining area 6 by means of a laser beam 2 and a mask 3. Accordingly, the arrangement could also be configured for joining or separating components (SMD on carriers etc.). The arrangement comprises a first laser source 1′, for example one or several semiconductor lasers (diode lasers), arranged in line, with the laser radiation emitted from said semiconductor lasers being collimated directly by a collimator lens 13′. The laser source 1′ is placed such that the laser beam 2, in the manner of a beam curtain, is brought perpendicularly through the apertures 9 of the mask 3 into the joining area 6 of the contact zone 7 between the two plastic plates 4, 5. Before that, the laser beam 2′ passes through a beam splitter 10 which is highly transparent to the laser beam 2′. From the laser source 1″ arranged perpendicularly in relation to the first laser beam 2′, a corresponding laser beam 2″, also collimated by means of a collimator lens 13″, passes to the beam splitter 10 where it impinges on a surface 11 which is highly reflective to this laser beam 2″, thus uniting it with the other laser beam 2′ to form laser beam 2. The wavelength of laser beam 2′ differs from that of laser beam 2″. In another option, the wavelengths of laser beams 2′, 2″ are identical but the polarisation is different. Insofar as several laser beams are arranged parallel to the laser source 1″ so as to increase energy density, said laser beams are to be arranged in conjunction with the beam splitters 10′-10″′, as diagrammatically shown in FIG. 2. The conditions for wavelengths or polarisation apply accordingly.
  • Subsequently the [0016] laser beam 2 impinges on a cylinder lens 12 which can be moved in the direction of radiation, so as to generate different line lengths. Line lengths are indicated by dashed lines.
  • The energetically effective laser line [0017] 8 is radiated onto the contact surface 7. As is required for this method, the plastic plate 4 is constructed so as to allow transmission of laser radiation, while the plastic plate 5 is absorbent. The laser beam 2 is continuously moved relative to the mask 3 or the plastic plates 4, 5, so that the plastic plates 4, 5 in the joining area 6 directly below the laser line 8 assume a fused state and subsequently solidify, after cooling.
  • FIG. 3 diagrammatically shows an embodiment comprising [0018] several laser sources 14′-14″′, arranged parallel in respect of each other, so that the laser beams 2′-2″′ which are generated, are aligned in close proximity to each other so as to avoid any angle error if at all possible. The spacing of the laser sources is approx. 1 mm, but to avoid angle errors, the number of laser sources used is limited to a maximum thickness of the parallel beams 2′-2″′ of approx. 5 mm. The parallel rays 2′-2″ are collimated onto the contact surface 7 by means of a convergent lens 15′.
  • The above-mentioned relative movement required can either take place by moving the [0019] plastic plates 4, 5 or the laser beam 2. This can for example be realised with the additional use of a deviation mirror which can be moved into the beam path in front of the cylinder lens or convergent lens.

Claims (12)

What is claimed is:
1. A method which comprises: selective heating of at least two materials by means of laser beams, with a mask made of a material impermeable to radiation arranged between a radiation source and the materials; removing regions from said mask, with the laser radiation being admitted through said regions to selected heating regions of the materials arranged below the mask; wherein all heating regions are heated by irradiation, thus leading to joining or separation of the materials, with a relative movement between one or several laser beams and the materials being carried out, and wherein for generating a high energy density, laser beams from at least two diode lasers are brought together into the heating region and with different laser line lengths being subsequently generated by means of zoom optics.
2. A method according to
claim 1
, wherein a first laser beam is aligned perpendicularly to the surface of the mask, is joined by at least one secondary laser beam arranged perpendicularly to the first laser beam, with such joining or admixing taking place via a beam splitter for each secondary laser beam, and with a resulting laser beam being directed onto the joining area.
3. A method according to
claim 2
, wherein laser beams either of different wavelengths or of the same wavelength but of different polarisation are used.
4. A method according to
claim 1
, wherein several laser beams are focussed parallel to each other onto the joining area by means of a lens.
5. A method which comprises: joining various workpieces made of one of (1) plastic and (2) plastic and other materials, with an upper workpiece facing a laser source for a laser beam; wherein said upper workpiece is a material which is transparent to the laser beam, and a second workpiece comprises a material which is absorbent to the laser beam so that the adjoining contact surfaces of the two workpieces melt and connect during subsequent cooling under pressure; arranging a mask made of a laser impermeable material between the laser source and the workpieces to be connected so as to connect the workpieces in a particular joining area of the contact surface; wherein the structures of said mask are larger than the wavelength of the laser beam applied; and wherein the laser source is set to the contact surface in such a way that a curtain-like laser beam is formed and that a line results at the contact surface, and that the laser beam and the mask are moved relative to each other; and wherein for generating high energy density in the joining area, laser beams of at least two diode lasers are brought together, and that subsequently, different laser line lengths are generated by means of zoom optics.
6. A method according to
claim 5
, wherein a first laser beam is aligned perpendicularly to the surface of the mask, is joined by at least one secondary laser beam arranged perpendicularly to the first laser beam, with such joining or admixing taking place via a beam splitter for each secondary laser beam, and with a resulting laser beam being directed onto the joining area.
7. A method according to
claim 6
, wherein laser beams either of different wavelengths or of the same wavelength but of different polarisation are used.
8. A method according to
claim 5
, wherein several laser beams are focussed parallel to each other onto the joining area by means of a lens.
9. A device for selective heating of at least two materials which comprises: laser beams, with a mask made of a material impermeable to radiation arranged between a radiation source and the materials, with regions having been removed from said mask, with the laser radiation passing through said regions to selected heating regions of the materials arranged below the mask, with all heating regions being heated by irradiation, thus leading to the joining or separation of the materials, and with relative movement between one or several laser beams and the materials taking place; including at least two diode lasers for generating high energy density at the contact surface of a laser beam concentration device for bringing together the laser beams, as well as an adjacent zoom optics arrangement for generating different laser line lengths.
10. A device according to
claim 9
, including a first diode laser which generates a laser beam perpendicularly to the surface of the mask, at least a further diode laser perpendicular to the first diode laser which generates a laser beam impinging perpendicularly on the first laser beam, and a beam splitter as a laser beam concentration device.
11. A device according to
claim 10
, wherein the diode lasers emit laser beams either of different wavelengths or of the same wavelength but of different polarization.
12. A device according to
claim 9
, including several diode lasers which are arranged parallel to each other and arranging a convergent lens in the beam path as a laser beam concentration device and at the same time a zoom optics arrangement, said convergent lens focussing the laser beams onto the contact surface.
US09/746,285 1999-12-23 2001-02-26 Method and a device for heating at least two elements by means of laser beams of high energy density Granted US20010019045A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP99125782.5 1999-12-23
EP99125782A EP1112802B1 (en) 1999-12-23 1999-12-23 Method and device for heating at least two elements by means of high energy density laser beam

Publications (1)

Publication Number Publication Date
US20010019045A1 true US20010019045A1 (en) 2001-09-06

Family

ID=8239718

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/746,285 Expired - Fee Related US6417481B2 (en) 1999-12-23 2000-12-22 Method and a device for heating at least two elements by means of laser beams of high energy density
US09/746,285 Granted US20010019045A1 (en) 1999-12-23 2001-02-26 Method and a device for heating at least two elements by means of laser beams of high energy density
US10/139,700 Expired - Fee Related US6608280B2 (en) 1999-12-23 2002-05-04 device for heating at least two elements by means of laser beams of high energy density

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/746,285 Expired - Fee Related US6417481B2 (en) 1999-12-23 2000-12-22 Method and a device for heating at least two elements by means of laser beams of high energy density

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/139,700 Expired - Fee Related US6608280B2 (en) 1999-12-23 2002-05-04 device for heating at least two elements by means of laser beams of high energy density

Country Status (11)

Country Link
US (3) US6417481B2 (en)
EP (1) EP1112802B1 (en)
JP (1) JP3706302B2 (en)
KR (1) KR100413648B1 (en)
CN (1) CN1144646C (en)
AT (1) ATE242676T1 (en)
DE (1) DE59905945D1 (en)
ES (1) ES2200460T3 (en)
HK (1) HK1038328B (en)
MY (1) MY124937A (en)
SG (1) SG92769A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1479507A1 (en) * 2003-05-22 2004-11-24 Leister Process Technologies Process and device for welding through a mask moving plastic sheets with laser beams
US20060237401A1 (en) * 2005-04-21 2006-10-26 Amesbury Marjan S Laser welding system
US20090242523A1 (en) * 2008-03-28 2009-10-01 Sumitomo Electric Industries, Ltd. Laser processing method
US8303290B2 (en) 2004-11-22 2012-11-06 Sidel Participations Method and installation for the production of containers
US8546277B2 (en) 2007-03-02 2013-10-01 Sidel Participations Heating plastics via infrared radiation
US8662876B2 (en) 2007-06-11 2014-03-04 Sidel Participations Installation for heating the bodies of preforms for blow-moulding containers
CN115534277A (en) * 2022-09-27 2022-12-30 江苏新美星包装机械股份有限公司 Heating device and heating method for plastic preforms

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE192692T1 (en) * 1999-01-28 2000-05-15 Leister Process Tech LASER JOINING METHOD AND DEVICE FOR CONNECTING VARIOUS PLASTIC WORKPIECES OR PLASTIC WITH OTHER MATERIALS
US20030071269A1 (en) * 2001-10-15 2003-04-17 Tseng Ampere A. Apparatus and method for laser selective bonding technique for making sealed or enclosed microchannel structures
JP4043859B2 (en) * 2002-06-18 2008-02-06 浜松ホトニクス株式会社 Resin welding apparatus and resin welding method
JP4214730B2 (en) * 2002-07-26 2009-01-28 パナソニック電工株式会社 Sealing method and sealing structure of sealed relay
US6867388B2 (en) * 2003-04-08 2005-03-15 Branson Ultrasonics Corporation Electronic masking laser imaging system
EP1508397B1 (en) * 2003-08-21 2006-06-07 Leister Process Technologies Method and apparatus for simultaneous heating of materials
US20050099449A1 (en) * 2003-11-07 2005-05-12 Tim Frasure Methods and structures for disassembling inkjet printhead components and control therefor
US20050186377A1 (en) * 2004-02-19 2005-08-25 Hurst William S. Solventless plastic bonding of medical devices and container components through infrared heating
US6822192B1 (en) 2004-04-19 2004-11-23 Acme Services Company, Llp Laser engraving of ceramic articles
US8378258B2 (en) * 2004-08-02 2013-02-19 Ipg Microsystems Llc System and method for laser machining
US7820937B2 (en) * 2004-10-27 2010-10-26 Boston Scientific Scimed, Inc. Method of applying one or more electromagnetic beams to form a fusion bond on a workpiece such as a medical device
US10857722B2 (en) 2004-12-03 2020-12-08 Pressco Ip Llc Method and system for laser-based, wavelength specific infrared irradiation treatment
US7425296B2 (en) * 2004-12-03 2008-09-16 Pressco Technology Inc. Method and system for wavelength specific thermal irradiation and treatment
US7897891B2 (en) * 2005-04-21 2011-03-01 Hewlett-Packard Development Company, L.P. Laser welding system
KR101174322B1 (en) * 2005-08-19 2012-08-16 리모 파텐트페어발퉁 게엠베하 운트 코. 카게 Laser array
US9138913B2 (en) * 2005-09-08 2015-09-22 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
DE102006042280A1 (en) 2005-09-08 2007-06-06 IMRA America, Inc., Ann Arbor Transparent material scribing comprises using single scan of focused beam of ultrashort laser pulses to simultaneously create surface groove in material and modified region(s) within bulk of material
JP4514722B2 (en) * 2006-02-20 2010-07-28 富士通セミコンダクター株式会社 Film pasting method, film pasting apparatus, and semiconductor device manufacturing method
DE202006016155U1 (en) * 2006-10-21 2006-12-21 Mühlbauer Ag Machine for producing vacuum channels in bases of blisters in blister tapes used for packing electronic components comprises laser producing several beams which burn channels simultaneously in blisters along section of tape
JP5193677B2 (en) * 2008-05-15 2013-05-08 株式会社ミツトヨ Laser processing equipment
US8232502B2 (en) * 2008-07-08 2012-07-31 Acme Services Company, Llp Laser engraving of ceramic articles
KR100882843B1 (en) 2008-11-12 2009-02-10 유로비젼 (주) Method for clamping of plastic laser bonding
JP5912431B2 (en) * 2010-11-22 2016-04-27 花王株式会社 Manufacturing method of sheet fusion body
CN106881872A (en) * 2016-12-29 2017-06-23 平湖波科激光有限公司 The multiwavelength laser welding method and multi-wave length laser device of laminated plastics

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069080A (en) * 1976-06-11 1978-01-17 W. R. Grace & Co. Method and apparatus of bonding superposed sheets of polymeric material in a linear weld
US4374911A (en) * 1978-04-28 1983-02-22 International Business Machines Corporation Photo method of making tri-level density photomask
US4289378A (en) * 1978-06-21 1981-09-15 Ernst Remy Apparatus for adjusting the focal point of an operating laser beam focused by an objective
CH638641A5 (en) * 1978-11-17 1983-09-30 Univ Bern Inst Fuer Angewandte SEMICONDUCTOR COMPONENT, METHOD FOR THE PRODUCTION AND USE OF THE SEMICONDUCTOR COMPONENT.
JPS60214931A (en) * 1984-04-10 1985-10-28 Toyota Motor Corp Bonding of different synthetic resin materials
JPS62148610A (en) * 1985-11-19 1987-07-02 株式会社 新和製作所 Production of fiber bundle for brush
JPS62183992A (en) * 1986-02-10 1987-08-12 Mitsubishi Heavy Ind Ltd Laser beam machining equipment
JPH0259192A (en) * 1988-08-25 1990-02-28 Mitsubishi Heavy Ind Ltd Laser beam equipment with large power
JP2657957B2 (en) * 1990-04-27 1997-09-30 キヤノン株式会社 Projection device and light irradiation method
JPH04110916A (en) * 1990-08-31 1992-04-13 Sony Corp Multiplexing device for semiconductor laser
KR940017014A (en) * 1992-12-29 1994-07-25 이헌조 Method and apparatus for homogenizing laser beam
WO1994029069A1 (en) * 1993-06-04 1994-12-22 Seiko Epson Corporation Apparatus and method for laser machining, and liquid crystal panel
CA2175678A1 (en) * 1993-12-17 1995-05-22 Jeffrey B. Hill Ablative imaging by proximity lithography
US5893959A (en) * 1994-03-31 1999-04-13 Marquardt Gmbh Workpiece of plastic and production process for such a workpiece
DE19513354A1 (en) * 1994-04-14 1995-12-14 Zeiss Carl Surface processing equipment
JP3148519B2 (en) * 1994-06-24 2001-03-19 シャープ株式会社 Manufacturing method of liquid crystal display element
JPH09234579A (en) * 1996-02-28 1997-09-09 Semiconductor Energy Lab Co Ltd Laser beam irradiating device
US6331692B1 (en) * 1996-10-12 2001-12-18 Volker Krause Diode laser, laser optics, device for laser treatment of a workpiece, process for a laser treatment of workpiece
DE59609070D1 (en) * 1996-10-20 2002-05-16 Inpro Innovations Gmbh Method and arrangement for temperature-controlled surface treatment, in particular for hardening workpiece surfaces using laser radiation
US6064034A (en) * 1996-11-22 2000-05-16 Anolaze Corporation Laser marking process for vitrification of bricks and other vitrescent objects
JP4038741B2 (en) * 1997-06-13 2008-01-30 株式会社Ihi Laser water jet combined cutting device
US6078021A (en) * 1997-08-29 2000-06-20 Chang; Dale U. Apparatus and method of laser welding inside bellows joints and spacer for manufacturing bellows
KR100338146B1 (en) * 1998-01-26 2002-08-28 엘지.필립스 엘시디 주식회사 Laser annealing apparatus
ATE192692T1 (en) * 1999-01-28 2000-05-15 Leister Process Tech LASER JOINING METHOD AND DEVICE FOR CONNECTING VARIOUS PLASTIC WORKPIECES OR PLASTIC WITH OTHER MATERIALS

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1479507A1 (en) * 2003-05-22 2004-11-24 Leister Process Technologies Process and device for welding through a mask moving plastic sheets with laser beams
US7297222B2 (en) 2003-05-22 2007-11-20 Leister Process Technologies Method and device for the mask welding of moving plastic films by lasers
US8354051B2 (en) 2004-11-22 2013-01-15 Sidel Participations Method and installation for the production of containers
US8303290B2 (en) 2004-11-22 2012-11-06 Sidel Participations Method and installation for the production of containers
US7538295B2 (en) * 2005-04-21 2009-05-26 Hewlett-Packard Development Company, L.P. Laser welding system
GB2440086B (en) * 2005-04-21 2008-12-17 Hewlett Packard Development Co Laser welding system and methods with an array of laser diodes with a common lens spaced apart from the laser array
GB2440086A (en) * 2005-04-21 2008-01-16 Hewlett Packard Development Co Laser welding system and methods with an array of laser diodes with a common lens spaced apart from the laser array
US20090200278A1 (en) * 2005-04-21 2009-08-13 Amesbury Marjan S Laser welding system
US8017886B2 (en) 2005-04-21 2011-09-13 Hewlett-Packard Development Company, L.P. Laser welding system
WO2006115808A1 (en) * 2005-04-21 2006-11-02 Hewlett-Packard Development Company, L.P. Laser welding system and methods with an array of laser diodes with a common lens spaced apart from the laser array
US20060237401A1 (en) * 2005-04-21 2006-10-26 Amesbury Marjan S Laser welding system
US8546277B2 (en) 2007-03-02 2013-10-01 Sidel Participations Heating plastics via infrared radiation
US8662876B2 (en) 2007-06-11 2014-03-04 Sidel Participations Installation for heating the bodies of preforms for blow-moulding containers
US20090242523A1 (en) * 2008-03-28 2009-10-01 Sumitomo Electric Industries, Ltd. Laser processing method
CN115534277A (en) * 2022-09-27 2022-12-30 江苏新美星包装机械股份有限公司 Heating device and heating method for plastic preforms

Also Published As

Publication number Publication date
KR20010062329A (en) 2001-07-07
JP3706302B2 (en) 2005-10-12
ATE242676T1 (en) 2003-06-15
US20020125234A1 (en) 2002-09-12
US6608280B2 (en) 2003-08-19
EP1112802B1 (en) 2003-06-11
CN1303756A (en) 2001-07-18
DE59905945D1 (en) 2003-07-17
US6417481B2 (en) 2002-07-09
HK1038328A1 (en) 2002-03-15
SG92769A1 (en) 2002-11-19
JP2001260232A (en) 2001-09-25
CN1144646C (en) 2004-04-07
ES2200460T3 (en) 2004-03-01
EP1112802A1 (en) 2001-07-04
KR100413648B1 (en) 2003-12-31
MY124937A (en) 2006-07-31
HK1038328B (en) 2005-02-04

Similar Documents

Publication Publication Date Title
US6608280B2 (en) device for heating at least two elements by means of laser beams of high energy density
JP2657957B2 (en) Projection device and light irradiation method
JP3642969B2 (en) Laser processing apparatus and method
JP2003164985A (en) Method for simultaneous batch melting of material by laser beam and device
JP2005088585A (en) Method and apparatus for joining components by laser beam
JP2001096386A (en) Method of and equipment for positioning focal point of laser beam
JP2000317667A (en) Composite head for laser beam welding
CN114007803A (en) Laser processing device and method, chip transfer device and method
US6369351B1 (en) Method for processing and for joining, especially, for soldering a component or a component arrangement using electromagnetic radiation
JPH01245992A (en) Multiwavelength laser beam machine
JPH08184781A (en) Projecting device and manufacture of orifice plate using it
JP3940217B2 (en) Laser drill device and laser drilling method
JPH11309594A (en) Laser beam machining device and its working parts
KR101283557B1 (en) Laser machining device
JP2007090438A (en) Laser beam machining method
US20060243714A1 (en) Selective processing of laminated target by laser
TW486402B (en) A method and a device for heating at least two elements by means of laser beams of high energy density
JP3715242B2 (en) Laser processing method and laser processing apparatus
Bachmann Application adapted diode laser systems: a result of the German national research project MDS
JP2003080388A (en) Laser beam machining device
JP2021082769A (en) Chip separation apparatus
JPS63212084A (en) Laser beam machine
JPH04237589A (en) Laser beam machine
JP2004098121A (en) Method and apparatus for laser beam machining
JPH11197868A (en) Laser beam projecting device