JPH0259192A - Laser beam equipment with large power - Google Patents

Laser beam equipment with large power

Info

Publication number
JPH0259192A
JPH0259192A JP63211384A JP21138488A JPH0259192A JP H0259192 A JPH0259192 A JP H0259192A JP 63211384 A JP63211384 A JP 63211384A JP 21138488 A JP21138488 A JP 21138488A JP H0259192 A JPH0259192 A JP H0259192A
Authority
JP
Japan
Prior art keywords
beams
laser
wave guide
laser beam
oscillators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63211384A
Other languages
Japanese (ja)
Inventor
Takashi Ishide
孝 石出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63211384A priority Critical patent/JPH0259192A/en
Publication of JPH0259192A publication Critical patent/JPH0259192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To obtain a laser beam equipment capable of producing a large power easily and at a low cost by adding up laser beams obtained from plural laser beam oscillators with small power each having different optical axes and reforming them into laser beams having the same optical axis. CONSTITUTION:A wave guide system 30 has plural incident holes 24 of beams these beam paths are concentrated upon one path at the branch point 25 of the wave guide in the central part of the wave guide system to connect with the outgoing hole 26. The laser beams 21 obtained from plural oscillators with small power are injected by reflective mirrors 2 into the wave guide system 30 through the direction of incident holes 24. The beams 21 are condensed by condenser optical systems 23 into the incident holes 24. The original system 23 is composed of a single lens of ZnSe for the CO2 laser beam. The beams 21 condensed at the incident hole 24 repeats multiple reflections in the wave guide 30 and advanced toward the side of the emitting hole 26. Besides, the loss of beam in the wave guide 30 of the beams emitted from the wave guide system 30 is about 15% per one laser beam 21.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、大出力レーザ装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a high output laser device.

〔従来の技術〕[Conventional technology]

従来、CO2レーザでは連続発振出力は20 kW程度
が限界であった。また、Nd;YAGレーザでは、YA
Gロッド製作寸法に限界があシ、1本のロッドから取り
出せるレーザ出力は300W程度で、高出力化を図るた
めには第3図に示す如(YAGロッドを直列に接続する
ようにしていた。同図で11はNd ;YAG o y
ド、12はKrランデ、13は全反射ミラー 14は半
透過ミラーである。しかし、ロッド11の本数が増すに
つれ、レーザビームのアライメントが困難となり、実用
上は第4図に発振出力とビーム拡がシ角の関係を示すよ
うに4本ロッドによる1、2 kWが大出力化の限界と
なっていた。
Conventionally, the continuous wave output of CO2 lasers has been limited to about 20 kW. In addition, in Nd; YAG laser, YA
There is a limit to the manufacturing dimensions of the G rod, and the laser output that can be extracted from one rod is about 300 W. In order to increase the output, YAG rods were connected in series as shown in Figure 3. In the same figure, 11 is Nd; YAG o y
12 is a Kr rande, 13 is a total reflection mirror, and 14 is a semi-transmission mirror. However, as the number of rods 11 increases, it becomes difficult to align the laser beam, and in practice, as shown in Figure 4, which shows the relationship between oscillation output and beam expansion angle, 1 or 2 kW with four rods is a large output. This had become the limit of its development.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の発振器内での高出力化は、Co2レーザでは光学
部品にZn5e等による透過型のものを用いているため
、ある一定限度を越えると部品に熱歪を生じ、熱レンズ
効果によりビーム発散角が変化し、集光性能が劣化する
という問題を生じている。またさらに高出力化すると、
透明光学部品ではビーム吸収によって破壊が生じること
となる。
In order to increase the output in a conventional oscillator, Co2 lasers use transmission type optical components such as Zn5e, so if a certain limit is exceeded, thermal distortion occurs in the components, and the beam divergence angle decreases due to the thermal lens effect. This causes a problem in that the light collection performance deteriorates. Furthermore, if the output is increased even further,
Transparent optical components will be destroyed by beam absorption.

これに対しYAGレーザでは、ロンドを複数本直列に接
続することで高出力化を図っているが、レーザ出力の増
加につれてビームの拡がυ角も第4図に示した如く増加
するため、レーザ光のアライメント上、直列に接続でき
るロッド数は4本が限度であり、これにより発振出力が
1.2kW程度と限定されてしまい、さらなる高出力化
に対応することができない。
On the other hand, in YAG lasers, high output is achieved by connecting multiple rondos in series, but as the laser output increases, the beam spreads and the υ angle also increases as shown in Figure 4. Due to optical alignment, the number of rods that can be connected in series is limited to four, which limits the oscillation output to about 1.2 kW, making it impossible to support higher output.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、複数の入射孔及び1個の出射孔を有する分岐
Cu導波路を用い、複数の発振器より発振された小出力
ビームを導波路内でたし合せてから取出すことにより高
出力化を行なうか、あるいは1個の発振器から得られる
発振ビームをアクシコンレン−eKよりリング状ビーム
に整形し、中空ミラー、中空レンズにより集光する一方
、他の発振器より得られる発振ビームをそれぞれ集光レ
ンズにより集光するようにして複数の発振器より得られ
たビームを同一光軸上でたし合せ高出力化するようにし
たものである。
The present invention uses a branched Cu waveguide having multiple entrance holes and one exit hole, and increases the output by combining small output beams oscillated by multiple oscillators within the waveguide and then taking them out. Alternatively, the oscillation beam obtained from one oscillator is shaped into a ring-shaped beam by an axicon lens and focused by a hollow mirror and a hollow lens, while the oscillation beam obtained from other oscillators is shaped into a ring-shaped beam by a condensing lens. The beams obtained from a plurality of oscillators are condensed and combined on the same optical axis to achieve high output.

〔作用〕[Effect]

上記の如く導波路を用いたものでは複数の発振器より得
られ九ビームは複数の入射孔から金コートされた導波路
内を多重反射しつつ進行し、集合点で加算されて高出力
化され、1個の出射孔から出射されて加工等に供され、
また一方、アクシコンレンズを用いたものでは2枚のア
クシコンレンズを用いて発振ビームを中空化することに
より、中空化部に他の発振器から得られたビームを導び
き、中空ビームは中空集光レンズで集光し、中空部に入
射するビームは通常のレンズを用いて集光し1両者によ
り高出力化を行なう。
In the device using a waveguide as described above, nine beams obtained from multiple oscillators travel through the gold-coated waveguide from multiple entrance holes while undergoing multiple reflections, and are summed at a gathering point to increase the output. The light is emitted from one emitting hole and used for processing, etc.
On the other hand, in the case of using an axicon lens, by making the oscillation beam hollow using two axicon lenses, the beam obtained from another oscillator is guided to the hollow part, and the hollow beam is focused into the hollow part. The light is focused by an optical lens, and the beam that enters the hollow part is focused by a normal lens to achieve high output.

〔実施例〕〔Example〕

以下図面を参照して本発明の一実施例を説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はその構成を示すもので、21が発振ビーム、2
2が反射ミラー 23が集光レンズ光学系、24がビー
ム入射孔、25が導波路分岐点、26がビーム出射孔、
27が水流入口、28が水流出口、29が金コート面、
30が導波路系である。導波路系31は複数のビーム入
射孔24を有し、このビーム通路は導波路系中央部の導
波路分岐点25で1本に集められ、出射孔26へと通じ
ている。この導波路系30へは、複数の発振器より得ら
れたレーザビーム21が、反射ミラー22により入射孔
24方向に向けて入射される。このレーザー一ム21は
、集光レンズ光学系23により入射孔24へ集光される
。この集光レンズ光学系23はCo2レーザの場合はZ
n5e製単レンズにより構成され、YAGレーザの場合
は、石英系(BSC7)のレンズ複数枚により構成され
る。導波路入射孔24に集光されたビーム21は導波路
30内で多重反射をくシ返しつつ出射孔26側へと進行
する。
Figure 1 shows its configuration, where 21 is the oscillation beam, 2
2 is a reflecting mirror, 23 is a condensing lens optical system, 24 is a beam entrance hole, 25 is a waveguide branch point, 26 is a beam exit hole,
27 is the water inlet, 28 is the water outlet, 29 is the gold coated surface,
30 is a waveguide system. The waveguide system 31 has a plurality of beam entrance holes 24 , and the beam paths are converged into one at a waveguide branch point 25 in the center of the waveguide system and communicate with an exit hole 26 . Laser beams 21 obtained from a plurality of oscillators are incident on this waveguide system 30 by a reflecting mirror 22 toward the entrance hole 24 . This laser beam 21 is condensed into an entrance hole 24 by a condensing lens optical system 23 . This condensing lens optical system 23 is Z in the case of a Co2 laser.
It is composed of a single lens made of n5e, and in the case of a YAG laser, it is composed of a plurality of quartz-based (BSC7) lenses. The beam 21 focused on the waveguide entrance hole 24 repeats multiple reflections within the waveguide 30 and travels toward the exit hole 26 side.

導波路系3Qは銅製であり、導波路3o内面は反射率を
高めるため金によりコーティング(29)されて込る。
The waveguide system 3Q is made of copper, and the inner surface of the waveguide 3o is coated (29) with gold to increase reflectance.

また導波路3σでのビーム吸収による発熱を抑えるため
、導波路30の外周は水冷構造とし、水の流入口27、
流出口28を持つ。この導波路30系より出射されたビ
ームの導波路30内でのビーム損失は、1本のレーザビ
ームに対し約15係程度である。
In addition, in order to suppress heat generation due to beam absorption in the waveguide 3σ, the outer periphery of the waveguide 30 has a water-cooled structure, and the water inlet 27,
It has an outlet 28. The beam loss within the waveguide 30 of the beam emitted from this waveguide 30 system is about a factor of 15 for one laser beam.

第2図は他の構成例としてアクシコンレンズにより、中
空ビームを作り高出力化した例である。
FIG. 2 shows another configuration example in which a hollow beam is created using an axicon lens and the output is increased.

発振器出力鏡41より得られたレーザビーム31は、凹
型アクシコンレンズ43によりリング状ビーム44に分
割される。この分割されたビーム44は凸型アクシコン
レンズ45によりコリメートされ、拡がりの少ないレー
ザビーム46となる。
A laser beam 31 obtained from an oscillator output mirror 41 is split into a ring-shaped beam 44 by a concave axicon lens 43 . This divided beam 44 is collimated by a convex axicon lens 45 and becomes a laser beam 46 with little spread.

このレーザー−ム46は、中空ミラー47により加工面
方向に向けられて中空集光ビーム49となり、中空集光
レンズ48により中空集光ぎ一ム49は加工面20に集
光される。一方し−デピーム31は、通常の反射ミラー
32により加工面方向に向けられ、集光レンズ33によ
り、中空ミラー47、中空集光レンズ48の中空部を通
過しつつ集光されて集光ビーム12として中空集光レン
ズ48の集光点と同一の位置、すなわち加工面50にお
いて集光される。これにより高出力化が得られる。
This laser beam 46 is directed toward the processing surface by a hollow mirror 47 to become a hollow condensed beam 49, and the hollow condensing beam 49 is focused onto the processing surface 20 by a hollow condenser lens 48. On the other hand, the depim 31 is directed toward the processing surface by a normal reflecting mirror 32, and is condensed by a condensing lens 33 while passing through the hollow portions of a hollow mirror 47 and a hollow condensing lens 48 to form a condensed beam 12. The light is focused at the same position as the focusing point of the hollow focusing lens 48, that is, at the processing surface 50. This results in high output.

〔発明の効果〕〔Effect of the invention〕

以上に詳記した如く本発明によれば、発振出力を高める
ことなく高出力を得るために高出力化限界が高く、複数
台の発振器を用いた光学系による33・・・集光レンズ
(光学系)、24・・・ビーム入射孔、25・・・導波
路分岐点、26・・・ビーム出射孔、27・・・水流入
口、28・・・水流出口、29・・・今コート面、30
・・・導波路系、41・・・出力ミラー 42・・・集
光ビーム、43・・・凹型アクシコンレンズ、44.4
6・・・中空ビーム、45・・・凸型アクシコンレンズ
、47・・・中空反射ミラー 48・・・中空集光レン
ズ、49・・・中空集光げ−ム、50・・・加工面。
As described in detail above, according to the present invention, in order to obtain high output without increasing the oscillation output, the limit for increasing the output is high, and the optical system using a plurality of oscillators is used. system), 24... Beam entrance hole, 25... Waveguide branch point, 26... Beam exit hole, 27... Water inlet, 28... Water outlet, 29... Now coated surface, 30
... Waveguide system, 41 ... Output mirror 42 ... Focused beam, 43 ... Concave axicon lens, 44.4
6...Hollow beam, 45...Convex axicon lens, 47...Hollow reflecting mirror 48...Hollow condenser lens, 49...Hollow condenser beam, 50...Processed surface .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例を示すもので、第
1図(a)は構成を示す図、s1図(b)は同図(&)
のA−A線に沿って示す矢視図、第2図は他の構成例を
示す図、第3図は従来のYAGレーザ装置の構成を示す
図、第4図は第3図の発振出力とビーム拡がり角の関係
を示す図である。 11−Nd ;YAG 口yド、12−・Krランデ、
13・・・全反射ミラー 14・・・半透過ミラー 2
1.31・・・発振ビーム、22.32・・・反射ミラ
ー 23゜出願人代理人  弁理士 鈴 江 武 彦(
a) (b) 第2図 第1図
1 and 2 show one embodiment of the present invention, FIG. 1(a) is a diagram showing the configuration, and FIG. s1(b) is the same diagram (&)
Fig. 2 is a diagram showing another configuration example, Fig. 3 is a diagram showing the configuration of a conventional YAG laser device, and Fig. 4 is the oscillation output of Fig. 3. FIG. 3 is a diagram showing the relationship between the beam divergence angle and the beam divergence angle. 11-Nd; YAG mouth, 12-・Kr Lande,
13... Total reflection mirror 14... Semi-transmission mirror 2
1.31...Oscillation beam, 22.32...Reflection mirror 23゜Applicant's representative Patent attorney Takehiko Suzue (
a) (b) Figure 2 Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)異なる光軸を有する複数の小出力レーザ発振器と
、 これらレーザ発振器から得られるレーザビームをたし合
せ、同一光軸を持つレーザビームに再編成する光学部と を具備したことを特徴とする大出力レーザ装置。
(1) It is characterized by being equipped with a plurality of low-power laser oscillators having different optical axes, and an optical section that adds the laser beams obtained from these laser oscillators and reorganizes them into laser beams having the same optical axis. A high output laser device.
(2)上記光学部はレーザビームの入射側に複数のビー
ム入射孔を有し、導波路途中でビームを合成し、一個の
出射孔よりビームを出射することを特徴とした請求項(
1)記載の大出力レーザ装置。
(2) The optical section has a plurality of beam entrance holes on the laser beam incidence side, and the beams are combined in the middle of the waveguide, and the beam is emitted from one exit hole (
1) The high output laser device described.
(3)上記光学部はアクシコンレンズを用い、中空レー
ザビーム強度分布を作って中空部に異なるレーザ発振器
より発振されたレーザビームを導いてビームのたし合せ
を行なうことを特徴とした請求項(1)記載の大出力レ
ーザ装置。
(3) A claim characterized in that the optical section uses an axicon lens to create a hollow laser beam intensity distribution, guide laser beams emitted from different laser oscillators into the hollow portion, and combine the beams. (1) The high output laser device described.
JP63211384A 1988-08-25 1988-08-25 Laser beam equipment with large power Pending JPH0259192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63211384A JPH0259192A (en) 1988-08-25 1988-08-25 Laser beam equipment with large power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63211384A JPH0259192A (en) 1988-08-25 1988-08-25 Laser beam equipment with large power

Publications (1)

Publication Number Publication Date
JPH0259192A true JPH0259192A (en) 1990-02-28

Family

ID=16605070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63211384A Pending JPH0259192A (en) 1988-08-25 1988-08-25 Laser beam equipment with large power

Country Status (1)

Country Link
JP (1) JPH0259192A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001260232A (en) * 1999-12-23 2001-09-25 Leister Process Technologies Method and apparatus for heating at least two elements by laser beam of high energy density
JP2002059284A (en) * 2000-05-31 2002-02-26 Sumitomo Heavy Ind Ltd Device and method for laser beam machining
JP2003103389A (en) * 2001-09-27 2003-04-08 Toyoda Mach Works Ltd Converging device for semiconductor laser beam
CN104692640A (en) * 2013-12-10 2015-06-10 Lts有限公司 Method for cutting substrate
WO2017115406A1 (en) * 2015-12-28 2017-07-06 Dmg森精機株式会社 Head for additive processing, processing machine, and processing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001260232A (en) * 1999-12-23 2001-09-25 Leister Process Technologies Method and apparatus for heating at least two elements by laser beam of high energy density
JP2002059284A (en) * 2000-05-31 2002-02-26 Sumitomo Heavy Ind Ltd Device and method for laser beam machining
JP4589546B2 (en) * 2000-05-31 2010-12-01 住友重機械工業株式会社 Laser processing apparatus and processing method
JP2003103389A (en) * 2001-09-27 2003-04-08 Toyoda Mach Works Ltd Converging device for semiconductor laser beam
CN104692640A (en) * 2013-12-10 2015-06-10 Lts有限公司 Method for cutting substrate
JP2015112644A (en) * 2013-12-10 2015-06-22 エルティーエス カンパニー,リミテッド Substrate cutting method
WO2017115406A1 (en) * 2015-12-28 2017-07-06 Dmg森精機株式会社 Head for additive processing, processing machine, and processing method
JPWO2017115406A1 (en) * 2015-12-28 2018-03-08 Dmg森精機株式会社 Additional processing head, processing machine and processing method
US11173662B2 (en) 2015-12-28 2021-11-16 Dmg Mori Co., Ltd. Additive-manufacturing head, manufacturing machine, and manufacturing method

Similar Documents

Publication Publication Date Title
JP3589299B2 (en) Beam shaping device
US5798877A (en) Optical system for improving the symmetry of the beam emitted from a broad area laser diode
US5210643A (en) Wave combining apparatus for semiconductor lasers
US5715270A (en) High efficiency, high power direct diode laser systems and methods therefor
US5299222A (en) Multiple diode laser stack for pumping a solid-state laser
JPH0412039B2 (en)
JP2831960B2 (en) Method and apparatus for focusing the energy of a laser diode beam
US6873633B2 (en) Solid-state laser
JPH0259192A (en) Laser beam equipment with large power
JP7398649B2 (en) Laser processing equipment and laser processing method
CN112952549B (en) Semiconductor laser coupling system
JPH03261191A (en) Laser amplifying system
JPS6281614A (en) Photocoupler
JP3055312B2 (en) Laser beam uniform irradiation optical system
JPH07287189A (en) Optical path changer and laser device using the same
JP2001255491A (en) Laser converging optical system
JPH1177344A (en) Optical machining device
JP2877891B2 (en) Laser focusing method in photochemical reaction
JPH03155518A (en) Laser beam source
JPH0241607Y2 (en)
JPH0483386A (en) Solid state laser oscillator
JPH05341334A (en) Wavelength conversion device
JPH06281877A (en) Energy dividing device for laser machining
JPH07154018A (en) Laser beam transmitter
JPH06268299A (en) Pumping light source for laser