US1921065A - Electron emitter and process of making same - Google Patents
Electron emitter and process of making same Download PDFInfo
- Publication number
- US1921065A US1921065A US218998A US21899827A US1921065A US 1921065 A US1921065 A US 1921065A US 218998 A US218998 A US 218998A US 21899827 A US21899827 A US 21899827A US 1921065 A US1921065 A US 1921065A
- Authority
- US
- United States
- Prior art keywords
- core
- oxide
- electro
- barium
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title description 9
- 239000010410 layer Substances 0.000 description 43
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 28
- 229910052788 barium Inorganic materials 0.000 description 26
- 229910052751 metal Inorganic materials 0.000 description 23
- 239000002184 metal Substances 0.000 description 23
- 229910045601 alloy Inorganic materials 0.000 description 19
- 239000000956 alloy Substances 0.000 description 19
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 18
- 229910052712 strontium Inorganic materials 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 14
- 238000000576 coating method Methods 0.000 description 14
- 230000001590 oxidative effect Effects 0.000 description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 150000001342 alkaline earth metals Chemical class 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- HWLDNSXPUQTBOD-UHFFFAOYSA-N platinum-iridium alloy Chemical compound [Ir].[Pt] HWLDNSXPUQTBOD-UHFFFAOYSA-N 0.000 description 2
- 239000003870 refractory metal Substances 0.000 description 2
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910000600 Ba alloy Inorganic materials 0.000 description 1
- 229910000566 Platinum-iridium alloy Inorganic materials 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910001278 Sr alloy Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000002910 rare earth metals Chemical group 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/04—Manufacture of electrodes or electrode systems of thermionic cathodes
- H01J9/042—Manufacture, activation of the emissive part
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/261—In terms of molecular thickness or light wave length
Definitions
- This invention relates to electron emitters and the process of making them.
- An object of-this invention is to increase the elciency and thermionic activity 'of oxidecoated cathodes.
- Another object of the invention is to increase the uniformity of the coating of cathodes of the oxide coated type.
- a cathode is produced in which an electro-positive element is combined with an electro-negative metal or alloy to form a core.
- a comparatively thin and uniform layer of oxide of the electro-positive element contained in the core may be formed thereon or an oxide layer of a combination of elements may be formed upon the core.
- An adsorbed layer of the electropositive element is then formed on the exterior of the oxide layer. to produce a highly efficient 20 active cathode for electron discharge devices.
- a platinum Iridium lament core is alloyed with alkaline earth metals, such as barium and strontium in vacuum.
- the alloy core is then treated in an oxidizing atmosphere to form a layer or layers of oxide of barium and strontium on the core and thereafter heated in vacuum to such a temperature that some of the metallic barium and strontium will diffuse through the oxide layer and form a thin nlm orv monomolecular layer of active metal on the oxide layer.
- Fig. 1 shows a filamentary cathode or emitter produced in accordance with this invention
- Fig. 2 is an enlarged cross-sectional view on the line 2 2 of a portion of the cathode shown in Fig. 1, illustrating the relative thickness of the different materials in the cathode;
- Fig. 3 illustrates one embodiment of the invention in a three-electrode discharge device.
- the cathode or electron emitter made in accordance withthis invention comprises a metallic core 10 preferably consisting of an alloy of electro-negative metal and one or more elements of the electro-positive group.
- a metallic core 10 preferably consisting of an alloy of electro-negative metal and one or more elements of the electro-positive group.
- Such a core may be made in accordance with this invention by heating platinum or a platinum iridium alloy and a supply of electropositive elements in an evacuated vessel or a reducing atmosphere.
- the electro-positive material may consist of one or more elements of the alkali group, alkaline earth group or metals of the rare earth group.
- a desirable material which may be obtained in a relatively pure state consists of metallic barium or a combination of metallic barium and strontium.
- Barium is particularly desirable since thisA metal has a low work function while the addition of strontium to barium-increases the ability of the barium to adhere to the oxide layer at high temperatures.
- the alloy produced in this manner may then be drawn into wire form suitable for a cathode core.
- the drawing operation is preferably performed in a non-oxidizing atmosphere.
- the alloy core 10 is heated in an oxidizing atmosphere to diffuse some of the barium and strontium to the surface of the core where it forms a coating of barium and strontium oxide 11.
- the core may be produced on the core by repeated diffusion of the metallic barium and strontium from the core and oxidizing the surface layer.
- all of the barium and strontium is not diffused from the core, but only suicient diffusion takes place to secure a desirable coating of oxide on the core base 10. It is desirable that this oxide coating be neither too thick nor too thin; 10 to 100 molecular layers is suicient.
- oxide coating produced on the core in accordance with this invention is distinctly oxide and no'particles of metallic barium or strontium are contained therein. Furthermore, the oxide coating produced in this manner is more uniform over the whole surface of the core 10.
- the coated cathode is placed in a vessel which has been highly evacuated and the cathode is heated to such a temperature that some of the barium or barium and strontium in the core is diffused through the oxide onto the surface of the filament and forms an adsorbed layer 12 of thermionically active metal containing principally metallic barium or metallic barium and metallic strontium.
- the layer of pure metal 12 on the oxide 110 layer 1l be a continuous layer or lm.
- the barium or barium and strontium may cover the surface in an atomic or molecular form or else form colloidal particles on the oxide coating.
- the relative thicknesses of the materials in the cathode core is shown more clearly in Fig.
- the metallic layer 12 is a relatively thin film compared with the oxide coating 1l and the diameter of the core 10.
- the combination of the metal coating 12 and the layers of oxide 11 is responsible for the increased thermionic activity of a filament made in accordance with this invention.
- the life of the cathode may be increased by the vcontinuous diiusion of additional barium or barium and strontium from the core and their adsorption on the oxide coating.
- the barium in the core acts as a reservoir to replenish the active layer 12 upon the oxide layer 11.
- a suitable thermionically active cathode may also be produced by combining the electro-positive material such as metallic barium and strontium with any other electro-negative metal in wire form by forming an alloy on the Wire.
- the oxidation and diffusion steps heretofore described may then be applied to the alloy Wire core to form an improved cathode or electron emitter in accordance with this invention.
- the cathode of this invention may also be produced by forming oxides of alkaline earth metal on any suitable core for a cathode and thereafter forming a thin layer of pure metals of the alkaline earth group on the oxidecoating by heating in a vacuum or a deducing atmosphere.
- FIG. 3 One type of electron discharge device to which this invention is applicable is shown in Fig. 3. It comprises an enclosing vessel 13 having a reentrant stem 14 terminating in a press 15 in which are sealed the leading-in wires for the electrodes.
- a glass arbor 16 is fused to the side of the stem and extends substantially parallel to the axis thereof.
- a cathode of electron emitter 1'7. produced in accordance with this invention, is resiliently supported from the arbor 16.
- a grid electrode 18 and an anode or plate electrode 19 are supported in cooperative relationto the cathode 17 by wires extending from the arbor 16.
- the invention is applicable to other types of electron discharge devices than that shown in Fig. 3, and it is to be limited only by the scope of the appended claims.
- An electron emitter comprising acathode core containing an alloy of an electro-negative element and an electro-positive element, an oxide layer on said core, and an adsorbed film of said electro-positive element on said oxide layer.
- An electron emitter comprising a cathode core containing an alloy of an electro-negative metal and an electro-positive metal, an oxide layer of an electro-positive metal thereon, and a thin film of said electro-positive metal superimposed on said oxide layer.
- An electron emitter comprising a cathode core containing an alloy of a refractory metal and a metal of the alkaline earth group, a layer of oxide of said metal on said core, and a molecular layer of said metal on said oxide layer.
- a cathode comprising a core of an alloy of a refractory metal and a metal of the alkaline earth group, a layer of alkaline earth oxide on said core, and an adsorbed thermionically active layer of said metal on said oxide layer.
- a cathode comprising an alloy core of electro-negative and electro-positive metals, a layer of oxide of the electro-positive metal thereon, and a filmy of active electro-positive metal on said oxide.
- a cathode comprising an alloy core consisting of platinum and barium, a layer of barium oxide on said core oxide, and a coating of metallic barium on said oxide layer.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Solid Thermionic Cathode (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE352966D BE352966A (en)) | 1927-09-12 | ||
NL27285D NL27285C (en)) | 1927-09-12 | ||
US218998A US1921065A (en) | 1927-09-12 | 1927-09-12 | Electron emitter and process of making same |
GB17102/28A GB297028A (en) | 1927-09-12 | 1928-06-13 | Electron emitters and process of making same |
FR658058D FR658058A (fr) | 1927-09-12 | 1928-07-25 | Perfectionnements aux éléments émetteurs d'électrons pour dispositifs à décharge électronique et à leur procédé de fabrication |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US218998A US1921065A (en) | 1927-09-12 | 1927-09-12 | Electron emitter and process of making same |
Publications (1)
Publication Number | Publication Date |
---|---|
US1921065A true US1921065A (en) | 1933-08-08 |
Family
ID=22817366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US218998A Expired - Lifetime US1921065A (en) | 1927-09-12 | 1927-09-12 | Electron emitter and process of making same |
Country Status (5)
Country | Link |
---|---|
US (1) | US1921065A (en)) |
BE (1) | BE352966A (en)) |
FR (1) | FR658058A (en)) |
GB (1) | GB297028A (en)) |
NL (1) | NL27285C (en)) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5022883A (en) * | 1990-11-06 | 1991-06-11 | The United States Of America As Represented By The Secretary Of The Army | Method of making a long life high current density cathode from aluminum oxide and tungsten oxide powders |
-
0
- NL NL27285D patent/NL27285C/xx active
- BE BE352966D patent/BE352966A/xx unknown
-
1927
- 1927-09-12 US US218998A patent/US1921065A/en not_active Expired - Lifetime
-
1928
- 1928-06-13 GB GB17102/28A patent/GB297028A/en not_active Expired
- 1928-07-25 FR FR658058D patent/FR658058A/fr not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5022883A (en) * | 1990-11-06 | 1991-06-11 | The United States Of America As Represented By The Secretary Of The Army | Method of making a long life high current density cathode from aluminum oxide and tungsten oxide powders |
Also Published As
Publication number | Publication date |
---|---|
FR658058A (fr) | 1929-05-30 |
BE352966A (en)) | |
NL27285C (en)) | |
GB297028A (en) | 1929-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3155864A (en) | Dispenser cathode | |
US3558966A (en) | Directly heated dispenser cathode | |
JPH054772B2 (en)) | ||
US2041802A (en) | Electron emitter | |
US1921065A (en) | Electron emitter and process of making same | |
US3041209A (en) | Method of making a thermionic cathode | |
US1981652A (en) | Method of coating electrodes | |
US2142331A (en) | Electron emitting cathode | |
US2246131A (en) | Electron emitting body | |
JPH0719530B2 (ja) | 陰極線管 | |
US2874077A (en) | Thermionic cathodes | |
US1735080A (en) | Electron-emitting cathode | |
US2246162A (en) | Thermionic cathode treatment | |
US2959702A (en) | Lamp and mount | |
US1921066A (en) | Cathode for electron discharge devices and method of making the same | |
JPH073434A (ja) | 酸化物陰極およびその製造方法 | |
US2798010A (en) | Method of manufacturing indirectly heated cathodes | |
US1699639A (en) | Oxide cathode | |
US1957486A (en) | Electron emitter | |
US1716545A (en) | Geobqe m | |
JP3715790B2 (ja) | 放電管用含浸型陰極の製造方法 | |
US3099577A (en) | Method of manufacturing oxide cathodes and cathodes manufactured by such methods | |
US3530559A (en) | Anode electrode fabrication | |
US2102760A (en) | Photoelectric tube | |
US2047371A (en) | Photoelectric tube |