US11946974B2 - Parallel battery relay diagnostic device and method - Google Patents

Parallel battery relay diagnostic device and method Download PDF

Info

Publication number
US11946974B2
US11946974B2 US17/626,678 US202017626678A US11946974B2 US 11946974 B2 US11946974 B2 US 11946974B2 US 202017626678 A US202017626678 A US 202017626678A US 11946974 B2 US11946974 B2 US 11946974B2
Authority
US
United States
Prior art keywords
switch
battery
battery packs
state
cell module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US17/626,678
Other languages
English (en)
Other versions
US20220260637A1 (en
Inventor
Jong Il Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Energy Solution Ltd
Original Assignee
LG Energy Solution Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Energy Solution Ltd filed Critical LG Energy Solution Ltd
Assigned to LG ENERGY SOLUTION, LTD. reassignment LG ENERGY SOLUTION, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PARK, JONG IL
Publication of US20220260637A1 publication Critical patent/US20220260637A1/en
Application granted granted Critical
Publication of US11946974B2 publication Critical patent/US11946974B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • G01R31/3278Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches of relays, solenoids or reed switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/512Connection only in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a device and method for diagnosing a relay of a plurality of battery packs connected in parallel.
  • the secondary battery is a battery capable of recharging and discharging, and in its meaning, includes all of the existing Ni/Cd battery, the Ni/MH battery, and the like and a recent lithium-ion battery.
  • lithium-ion batteries have the advantage of having much higher energy density than the existing Ni/Cd batteries and Ni/MH batteries.
  • lithium-ion batteries may be manufactured in a small size and light weight, and accordingly, may be used as power sources for mobile devices.
  • the lithium-ion batteries have expanded their range of use to power sources for electric vehicles, making the batteries attract attention as a next-generation energy storage medium.
  • the secondary battery is generally used as a battery pack including a battery module in which a plurality of battery cells are connected in series and/or in parallel.
  • the state and operation of the battery pack are managed and controlled by a battery management system.
  • the battery pack uses a pre-charge circuit that includes a pre-charge relay and a pre-charge resistor to protect a positive relay.
  • the pre-charge circuits are redundantly used, resulting in an increase in manufacturing cost and unnecessarily complex control logic to be applied.
  • the present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to provide a battery relay diagnostic device and method capable of reducing cost and simplifying a control logic by minimizing a configuration of a pre-charge circuit of battery packs connected in parallel, and preventing misdiagnosis by performing diagnosis according to a state of each relay in consideration of the effect of interference from other battery packs connected in parallel.
  • a battery relay diagnostic device for diagnosing a battery system including a plurality of battery packs connected in parallel, and a charge and discharge controller connected between the plurality of battery packs and a load part and controlling charge and discharge of the plurality of battery packs
  • the battery pack includes a battery cell module including a plurality of battery cells, and a switching unit including a first switch provided between a positive ((+)) terminal of the battery cell module and a load part and a second switch provided a negative (( ⁇ )) terminal of the battery cell module and the load part
  • the battery relay diagnostic device includes a switching controller controlling a current applied to the battery cell module by controlling on/off of the switching unit and a diagnostic unit performing diagnosis on the first switch and the second switch based on an on/off state of the first switch and the second switch.
  • a battery relay diagnostic method is a diagnostic method for a battery system including a plurality of battery packs, the battery system including a charge and discharge controller connected between the battery packs connected in parallel and a load part and controlling charge and discharge of battery cell modules included in the battery packs, and the battery packs including the battery cell module including a plurality of battery cells and a switching unit including a first switch provided between a positive ((+)) terminal of the battery cell module and the load part and a second switch provided between a negative (( ⁇ )) terminal of the battery cell module and the load part, and the method includes performing diagnosis on the first switch and the second switch based on an on/off state of the first switch and the second switch.
  • the battery relay diagnostic device and method it is possible to reduce cost and simplify control logic by minimizing the configuration of the pre-charge circuit of battery packs connected in parallel, and to prevent misdiagnosis by performing diagnosis according to a state of each relay in consideration of the effect of interference from other battery packs connected in parallel.
  • FIG. 1 a block diagram illustrating a configuration of a single battery control system.
  • FIG. 2 is a block diagram illustrating a configuration of a battery system including a battery relay diagnostic device according to an embodiment of the present disclosure.
  • FIG. 3 A is a diagram illustrating a relay configuration of a battery system in the related art
  • FIG. 3 B is a diagram illustrating a relay control method for the battery system in the related art.
  • FIG. 4 A is a diagram illustrating a relay configuration of a battery system according to an embodiment of the present disclosure and an interference when relays are off
  • FIG. 4 B is a diagram illustrating a relay control method for the battery system when positive and negative relays are off.
  • FIG. 5 A is a diagram illustrating a relay configuration of a battery system according to an embodiment of the present disclosure and an interference when relays are on
  • FIG. 5 B is a diagram illustrating a relay control method for the battery system when positive and negative relays are on.
  • FIG. 6 is a flowchart illustrating a battery relay diagnostic method according to an embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating a hardware configuration of a battery relay diagnostic device according to an embodiment of the present disclosure.
  • first”, “second”, “the first”, or “the second” may modify various components, regardless of order and/or importance, but do not limit the components.
  • a first element could be termed a second element, and similarly, in reverse, a second element could be termed a first element.
  • FIG. 1 is a block diagram illustrating a configuration of a single battery control system.
  • a battery control system including a battery pack 1 according to an embodiment of the present disclosure and an upper-level controller 2 included in an upper-level system is schematically illustrated.
  • the battery pack 1 may be made of one or more battery cells, and may include a rechargeable battery module 10 , a switching unit 14 connected to a (+) terminal or a ( ⁇ ) terminal of the battery module 10 in series to control a charge and discharge current flow of the battery module 10 , and a battery management system 20 for controlling and managing by monitoring voltage, current, temperature, or the like of the battery pack 1 to prevent over-charging, over-discharging, or the like.
  • the switching unit 14 is a switching element for controlling a current flow for charging or discharging of the battery module 10 , and generally uses a relay, but may include a semiconductor switching element.
  • a relay for example, at least one relay or one metal-oxide-semiconductor field-effect transistor (MOSFET) may be used.
  • MOSFET metal-oxide-semiconductor field-effect transistor
  • the battery management system (BMS) 20 may monitor the voltage, current, temperature, or the like, of the battery pack 1 in order to ensure the safety of the battery, and to this end, may directly receive the values or use a sensor 12 to measure the current, voltage, temperature, or the like, of the battery pack.
  • the BMS 20 may be an interface for receiving values obtained by measuring the above-mentioned various parameters, and may include a plurality of terminals, a circuit connected to the terminals to process input values, or the like.
  • the BMS 20 may control ON/OFF of the switching element 14 , for example, a relay or a MOSFET, and may be connected to the battery module 10 to monitor the status of the battery module 10 .
  • the switching element 14 for example, a relay or a MOSFET
  • the upper-level controller 2 may transmit a control signal for the battery module to the BMS 20 . Accordingly, the operation of the BMS 20 may be controlled based on the signal applied from the upper-level controller.
  • the battery cell described in the present disclosure may be included in a battery pack used in an energy storage system (ESS), a vehicle, or the like. However, it is not limited to the above-mentioned uses.
  • the configuration of the battery pack 1 and the configuration of the BMS 20 are known, and thus a more detailed description will be omitted.
  • FIG. 2 is a block diagram illustrating a configuration of a battery system including a battery relay diagnostic device according to an embodiment of the present disclosure.
  • a battery system 200 may include a plurality of battery packs 210 , a charge and discharge controller 220 , and a battery relay diagnostic device 230 .
  • the plurality of battery packs 210 may be connected in parallel, and each may be connected to the charge and discharge controller 220 . Only one charge and discharge controller 220 may be provided regardless of the number of battery packs 210 connected in parallel.
  • each of the battery packs 210 may include a battery cell module 212 and a switching unit 214 .
  • the battery cell module 212 may include a plurality of battery cells connected in series or in parallel.
  • the switching unit 214 may include a first switch provided between a (+) terminal of the battery cell module 212 and a load part and a second switch provided between a ( ⁇ ) terminal of the battery cell module and the load part.
  • the charge and discharge controller 220 may control charge and discharge of a plurality of battery packs 210 connected in parallel.
  • the charge and discharge controller 220 may include a charge/discharge switching unit 222 and a pre-charge unit 224 .
  • the charge and discharge controller 220 may include only one pre-charge circuit.
  • the charge/discharge switching unit 222 may include a positive relay connected to the (+) side of the battery pack 210 connected to others in parallel and a negative relay connected to the ( ⁇ ) side of the battery pack 210 connected to others in parallel.
  • the charge/discharge switching unit 222 may control the positive relay and the negative relay to control a current flow applied between the battery pack 210 and a load part.
  • the pre-charge unit 224 may include a pre-charge circuit in which a pre-charge resistor and a pre-charge relay are connected in series, and may be connected in parallel to the positive relay of the charge/discharge switching unit 222 .
  • the pre-charge unit 224 may protect the positive relay by controlling a speed during initial charging of the battery pack 210 .
  • the battery relay diagnostic device 230 may diagnose the battery pack 210 included in the battery pack 210 about whether it operates normally.
  • the battery relay diagnostic device 230 may include a switching controller 232 , a diagnostic unit 234 , and an alarm unit 236 .
  • the switching controller 232 may control the current applied to the battery cell module 212 by controlling on/off of the switching unit 214 and the charge/discharge switching unit 222 of the battery pack 210 . That is, according to the present disclosure, by diagnosing the switching unit 214 of the battery pack 210 , the switching controller 232 may control on/off of the first switch provided between the (+) terminal of the battery cell module 212 and the load part and the second switch provided between the ( ⁇ ) terminal of the battery cell module and the load part, thereby controlling the current applied to the battery cell module 212 , and the diagnostic unit 234 may diagnose the first switch and the second switch about whether they operate normally.
  • the diagnostic unit 234 may perform diagnosis on the first switch and the second switch based on the on/off states of the first switch and the second switch.
  • the diagnostic unit 234 may perform diagnosis on the first switch and the second switch in an order determined in consideration of interference between the plurality of battery packs 210 connected in parallel as will be described later.
  • the diagnostic unit 234 may perform diagnosis by simultaneously measuring a voltage across the first switch for the plurality of battery packs 210 when both the first switch and the second switch are in an off state, and may perform diagnosis by sequentially measuring a voltage across a terminal of the first switch close to a (+) side of the battery cell module 212 and a terminal of the second switch close to the load part for each of the plurality of battery packs 210 .
  • the diagnostic unit 234 may perform diagnosis by simultaneously measuring the voltage across the terminal of the first switch close to the (+) side of the battery cell module 212 and the terminal of the second switch close to the load part for the plurality of battery packs 210 when the first switch is in the off state and the second switch is in the on state. In addition, the diagnostic unit 234 may perform diagnosis by sequentially measuring the voltage across the first switch for each of the plurality of battery packs when both the first switch and the second switch are in the on state.
  • the alarm unit 236 may generate a warning notification when it is determined that an abnormality occurs in at least one of the first switch and the second switch of the plurality of battery packs 210 by the diagnostic unit 234 .
  • the battery relay diagnostic device of the present disclosure it is possible to reduce cost and simplify control logic by minimizing the configuration of the pre-charge circuit of battery packs connected in parallel, and to prevent misdiagnosis by performing diagnosis depending on a state of each relay in consideration of the effect of interference from other battery packs connected in parallel.
  • FIG. 3 A is a diagram illustrating a relay configuration of a battery system in the related art
  • FIG. 3 B is a diagram illustrating a relay control method for the battery system in the related art.
  • the battery system in the related art generally includes a single pack structure and eliminates the pre-charge circuit to reduce costs. Therefore, as illustrated in FIG. 3 B , the battery management system (BMS) performs diagnosis on relays by measuring the voltages at each of points A, B, and C after waking up, regardless of the on/off state of each relay.
  • BMS battery management system
  • FIG. 4 A is a diagram illustrating a relay configuration of a battery system according to an embodiment of the present disclosure and an interference when relays are off
  • FIG. 4 B is a diagram illustrating a relay control method for the battery system when the first switch and the second switch are off.
  • interference may occur between battery packs connected in parallel, and diagnosis is performed by classifying each battery pack according to the on/off state of the relay.
  • the battery pack voltage is applied to points A of a first pack and a second pack of FIG. 4 A and a B voltage is OV, which does not affect both battery packs, and thus the measurement of the B voltage may be simultaneously performed for a plurality of battery packs.
  • FIG. 5 A is a diagram illustrating a relay configuration of a battery system according to an embodiment of the present disclosure and an interference when relays are on
  • FIG. 5 B is a diagram illustrating a relay control method for the battery system when the first switch and the second switch are on.
  • a C voltage and a D voltage of a first pack and a second pack of FIG. 5 A are ground voltages and OV is applied, which does not affect the battery packs, and thus the measurement of the C voltage may be simultaneously performed for a plurality of battery packs.
  • the battery relay diagnostic device As described above, with the battery relay diagnostic device according to an embodiment of the present disclosure, it is possible to solve the problem of misdiagnosis by the influence between battery packs by performing diagnosis simultaneously or sequentially in consideration of interference by the on/off states of the relays of each battery pack.
  • FIG. 6 is a flowchart illustrating a battery relay diagnostic method according to an embodiment of the present disclosure.
  • a battery relay diagnostic method is a diagnostic method for a battery system including a charge and discharge controller connected between a plurality of battery packs connected in parallel and a load part and controlling charge and discharge of battery cell modules included in the battery packs, and the battery packs including the battery cell module including a plurality of battery cells and a switching unit including a first switch provided between a positive (+) terminal of the battery cell module and the load part and a second switch provided between a negative ( ⁇ ) terminal of the battery cell module and the load part.
  • the charge and discharge controller may include only one pre-charge circuit.
  • the battery relay diagnostic method may be a diagnostic method of performing diagnosis based on the on/off state of relays included in the battery pack (e.g., whether or not there is interference between the battery packs).
  • a voltage across the first switch are simultaneously measured for the plurality of battery packs when both the first switch and the second switch are open and are in the off state (S 610 ).
  • the battery relay diagnostic method may include generating a warning notification when the diagnostic unit determines that an abnormality occurs in at least one of the first switch and the second switch in the plurality of battery packs.
  • the battery relay diagnostic method of the present disclosure it is possible to reduce cost and simplify control logic by minimizing the configuration of the pre-charge circuit of battery packs connected in parallel, and to prevent misdiagnosis by performing diagnosis according to a state of each relay in consideration of the effect of interference from other battery packs connected in parallel.
  • FIG. 7 is a diagram illustrating a hardware configuration of a battery relay diagnostic device according to an embodiment of the present disclosure.
  • a battery relay diagnostic device 700 may include a microcontroller (MCU) 710 controlling various processes and configurations, a memory 720 in which operating system programs and various programs (e.g., a battery relay diagnostic algorithm program capable of diagnosing the state of the first switch and the second switch, and a battery switching control program capable of controlling a switch in the battery pack) are recorded, an input/output interface 730 for providing an input interface and an output interface through which data of the battery cell module and/or the switching element, such as voltage, current, and temperature, can flow, and a communication interface 740 capable of communicating with the outside through a wired or wireless communication network.
  • the computer program according to the present disclosure may be recorded in the memory 720 and processed by the microcontroller 710 , so that it may be implemented as a module that performs each functional block illustrated in FIG. 2 .
  • the present disclosure has been described as a structure without the pre-charge circuit in the battery pack; however, the principle applied to the present disclosure is to be applied in the same way even for a battery with a pre-charge.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Protection Of Static Devices (AREA)
US17/626,678 2019-12-20 2020-12-09 Parallel battery relay diagnostic device and method Active 2041-01-17 US11946974B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2019-0172452 2019-12-20
KR1020190172452A KR20210080070A (ko) 2019-12-20 2019-12-20 병렬 배터리 릴레이 진단 장치 및 방법
PCT/KR2020/017934 WO2021125678A1 (fr) 2019-12-20 2020-12-09 Dispositif et procédé de diagnostic de relais de batterie parallèle

Publications (2)

Publication Number Publication Date
US20220260637A1 US20220260637A1 (en) 2022-08-18
US11946974B2 true US11946974B2 (en) 2024-04-02

Family

ID=76477760

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/626,678 Active 2041-01-17 US11946974B2 (en) 2019-12-20 2020-12-09 Parallel battery relay diagnostic device and method

Country Status (6)

Country Link
US (1) US11946974B2 (fr)
EP (1) EP3974850A4 (fr)
JP (1) JP7315142B2 (fr)
KR (1) KR20210080070A (fr)
CN (1) CN114097159B (fr)
WO (1) WO2021125678A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976506A (zh) * 2022-05-19 2022-08-30 盐城国投中科新能源科技有限公司 一种启动锂电池系统并联装置及其使用方法

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040061503A1 (en) 2002-01-10 2004-04-01 Panasonic Ev Energy Co., Ltd. Method for inspecting relay contacts for contact weld in battery power source device
JP4934628B2 (ja) 2008-04-09 2012-05-16 日立オートモティブシステムズ株式会社 二重系電源装置
KR20120107302A (ko) 2011-03-21 2012-10-02 주식회사 엘지화학 배터리 팩 연결 제어 장치 및 방법
US20130009648A1 (en) 2011-07-04 2013-01-10 Sb Limotive Co., Ltd. Battery management system and method of controlling the same
KR20130020455A (ko) 2011-08-19 2013-02-27 한국과학기술원 전기 차량의 전력 공급 신뢰성을 위한 배터리팩 이중 병렬 장치 및 제어 방법
EP2645518A2 (fr) 2012-03-28 2013-10-02 Hitachi Ltd. Détecteur de soudage de relais de système de batterie et système de batterie utilisant le détecteur
KR20140007599A (ko) 2012-07-09 2014-01-20 에스케이이노베이션 주식회사 병렬 팩 배터리 시스템의 릴레이 융착 관리 장치 및 그 방법
JP2014093806A (ja) 2012-11-01 2014-05-19 Suzuki Motor Corp 車両用電源装置
JP5508180B2 (ja) 2010-08-02 2014-05-28 日立ビークルエナジー株式会社 蓄電装置、蓄電装置の充放電方法、蓄電装置の運転方法および車両
JP2014143796A (ja) 2013-01-22 2014-08-07 Toshiba Corp 電源装置
KR101460845B1 (ko) 2011-12-21 2014-11-11 주식회사 엘지화학 배터리 팩 전압 평형 방법 및 장치
US20140354054A1 (en) 2013-05-29 2014-12-04 Denso Corporation Control apparatus
US20150054517A1 (en) 2013-08-26 2015-02-26 Fujitsu Limited Diagnosis apparatus and diagnosis method for relay circuit
KR101498458B1 (ko) 2014-10-31 2015-03-12 건아정보기술 주식회사 복수의 레이저빔을 이용하여 객체 및 속도 감지를 병행하는 차량용 방범 촬영시스템
US20150222117A1 (en) 2014-02-04 2015-08-06 Samsung Sdi Co., Ltd. Battery tray, battery rack, energy system, and method of operating the battery tray
JP5768780B2 (ja) 2012-08-07 2015-08-26 株式会社豊田自動織機 蓄電装置モジュール用制御装置
CN104878295A (zh) 2015-06-25 2015-09-02 潘应生 一种铜铁合金及表面处理工艺
US20150346282A1 (en) 2014-05-30 2015-12-03 Samsung Electronics Co., Ltd. Method and apparatus for detecting state of relay
KR101602434B1 (ko) 2012-11-09 2016-03-21 주식회사 엘지화학 충전시 발생하는 셀 밸런싱 스위치의 오진단 방지 장치 및 오진단 방지 방법
US20160250928A1 (en) * 2013-11-06 2016-09-01 Kawasaki Jukogyo Kabushiki Kaisha Vehicle and electric power supply unit incorporated in vehicle
JP2016219229A (ja) 2015-05-20 2016-12-22 日産自動車株式会社 電源装置、及び、電源装置の異常を診断する診断方法
JP2018050400A (ja) 2016-09-21 2018-03-29 オートモーティブエナジーサプライ株式会社 電源システムの充電停止方法
US20180278066A1 (en) 2017-03-27 2018-09-27 Denso Ten Limited Battery monitoring system and battery monitoring apparatus
CN109219754A (zh) 2016-09-09 2019-01-15 株式会社Lg化学 用于检测电池组的故障的设备和方法
CN110199454A (zh) 2017-09-25 2019-09-03 株式会社Lg化学 电池管理装置以及包括电池管理装置的电池组和车辆
JP6569623B2 (ja) 2016-08-09 2019-09-04 トヨタ自動車株式会社 蓄電システム
JP2019164897A (ja) 2018-03-19 2019-09-26 株式会社デンソーテン 電池監視装置、電池監視システム、および電池監視方法
JP2019204787A (ja) 2019-06-26 2019-11-28 日産自動車株式会社 電源装置、及び、電源装置の異常を診断する診断方法
US20200185936A1 (en) * 2018-12-07 2020-06-11 Yazaki Corporation Power supply system
US20210005938A1 (en) * 2018-03-26 2021-01-07 Envision Aesc Japan Ltd. Power Supply Device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017223229A1 (de) * 2017-12-19 2019-06-19 Volkswagen Aktiengesellschaft Elektrisches System und Verfahren zur Diagnose der Funktionsfähigkeit von Leistungsrelais in einem elektrischen System

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040061503A1 (en) 2002-01-10 2004-04-01 Panasonic Ev Energy Co., Ltd. Method for inspecting relay contacts for contact weld in battery power source device
JP4934628B2 (ja) 2008-04-09 2012-05-16 日立オートモティブシステムズ株式会社 二重系電源装置
JP5508180B2 (ja) 2010-08-02 2014-05-28 日立ビークルエナジー株式会社 蓄電装置、蓄電装置の充放電方法、蓄電装置の運転方法および車両
KR20120107302A (ko) 2011-03-21 2012-10-02 주식회사 엘지화학 배터리 팩 연결 제어 장치 및 방법
US20120268070A1 (en) 2011-03-21 2012-10-25 Jong-Min Park Apparatus and method for controlling connection of battery packs
US20130009648A1 (en) 2011-07-04 2013-01-10 Sb Limotive Co., Ltd. Battery management system and method of controlling the same
KR20130020455A (ko) 2011-08-19 2013-02-27 한국과학기술원 전기 차량의 전력 공급 신뢰성을 위한 배터리팩 이중 병렬 장치 및 제어 방법
KR101460845B1 (ko) 2011-12-21 2014-11-11 주식회사 엘지화학 배터리 팩 전압 평형 방법 및 장치
US20130257440A1 (en) 2012-03-28 2013-10-03 Hitachi, Ltd. Relay Welding Detector of Battery System and Battery System Which Uses the Detector
EP2645518A2 (fr) 2012-03-28 2013-10-02 Hitachi Ltd. Détecteur de soudage de relais de système de batterie et système de batterie utilisant le détecteur
KR20140007599A (ko) 2012-07-09 2014-01-20 에스케이이노베이션 주식회사 병렬 팩 배터리 시스템의 릴레이 융착 관리 장치 및 그 방법
JP5768780B2 (ja) 2012-08-07 2015-08-26 株式会社豊田自動織機 蓄電装置モジュール用制御装置
JP2014093806A (ja) 2012-11-01 2014-05-19 Suzuki Motor Corp 車両用電源装置
KR101602434B1 (ko) 2012-11-09 2016-03-21 주식회사 엘지화학 충전시 발생하는 셀 밸런싱 스위치의 오진단 방지 장치 및 오진단 방지 방법
JP2014143796A (ja) 2013-01-22 2014-08-07 Toshiba Corp 電源装置
US20140354054A1 (en) 2013-05-29 2014-12-04 Denso Corporation Control apparatus
JP5751282B2 (ja) 2013-05-29 2015-07-22 株式会社デンソー 制御装置
US20150054517A1 (en) 2013-08-26 2015-02-26 Fujitsu Limited Diagnosis apparatus and diagnosis method for relay circuit
US20160250928A1 (en) * 2013-11-06 2016-09-01 Kawasaki Jukogyo Kabushiki Kaisha Vehicle and electric power supply unit incorporated in vehicle
KR20150091890A (ko) 2014-02-04 2015-08-12 삼성에스디아이 주식회사 배터리 트레이, 배터리 랙, 에너지 저장 시스템, 및 배터리 트레이의 동작 방법
US20150222117A1 (en) 2014-02-04 2015-08-06 Samsung Sdi Co., Ltd. Battery tray, battery rack, energy system, and method of operating the battery tray
US20150346282A1 (en) 2014-05-30 2015-12-03 Samsung Electronics Co., Ltd. Method and apparatus for detecting state of relay
KR101498458B1 (ko) 2014-10-31 2015-03-12 건아정보기술 주식회사 복수의 레이저빔을 이용하여 객체 및 속도 감지를 병행하는 차량용 방범 촬영시스템
JP2016219229A (ja) 2015-05-20 2016-12-22 日産自動車株式会社 電源装置、及び、電源装置の異常を診断する診断方法
CN104878295A (zh) 2015-06-25 2015-09-02 潘应生 一种铜铁合金及表面处理工艺
JP6569623B2 (ja) 2016-08-09 2019-09-04 トヨタ自動車株式会社 蓄電システム
CN109219754A (zh) 2016-09-09 2019-01-15 株式会社Lg化学 用于检测电池组的故障的设备和方法
US20190267679A1 (en) 2016-09-09 2019-08-29 Lg Chem, Ltd. Apparatus and method for detecting failure of battery pack
JP2018050400A (ja) 2016-09-21 2018-03-29 オートモーティブエナジーサプライ株式会社 電源システムの充電停止方法
JP2018163100A (ja) 2017-03-27 2018-10-18 株式会社デンソーテン 電池監視システムおよび電池監視装置
US20180278066A1 (en) 2017-03-27 2018-09-27 Denso Ten Limited Battery monitoring system and battery monitoring apparatus
CN110199454A (zh) 2017-09-25 2019-09-03 株式会社Lg化学 电池管理装置以及包括电池管理装置的电池组和车辆
US20190379217A1 (en) 2017-09-25 2019-12-12 Lg Chem, Ltd. Battery Management Apparatus, and Battery Pack and Automobile Including Same
JP2019164897A (ja) 2018-03-19 2019-09-26 株式会社デンソーテン 電池監視装置、電池監視システム、および電池監視方法
US20210005938A1 (en) * 2018-03-26 2021-01-07 Envision Aesc Japan Ltd. Power Supply Device
US20200185936A1 (en) * 2018-12-07 2020-06-11 Yazaki Corporation Power supply system
JP2019204787A (ja) 2019-06-26 2019-11-28 日産自動車株式会社 電源装置、及び、電源装置の異常を診断する診断方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Extended European Search Report for European Application No. 20902610.3, dated Nov. 28, 2022.
International Search Report for PCT/KR2020/017934 dated Mar. 18, 2021.

Also Published As

Publication number Publication date
CN114097159A (zh) 2022-02-25
JP2022535114A (ja) 2022-08-04
WO2021125678A1 (fr) 2021-06-24
US20220260637A1 (en) 2022-08-18
CN114097159B (zh) 2024-07-19
EP3974850A4 (fr) 2022-12-28
JP7315142B2 (ja) 2023-07-26
KR20210080070A (ko) 2021-06-30
EP3974850A1 (fr) 2022-03-30

Similar Documents

Publication Publication Date Title
WO2013094057A1 (fr) Dispositif de commande de batterie et système de batterie
EP3982140B1 (fr) Dispositif de gestion de batterie et procédé de gestion de batterie
US20230138465A1 (en) Battery valve and battery including the same
US20230246250A1 (en) Slave BMS, Master BMS, and Battery Pack for Diagnosing Cause of Communication Error
US20220329086A1 (en) System and method for managing battery
KR20210031336A (ko) 배터리 진단 장치 및 방법
US10545185B2 (en) Apparatus and method for diagnosing current sensor
CN113826021A (zh) 用于诊断电池单体的设备和方法
JP2020523578A (ja) リレー駆動回路診断装置
KR20180026947A (ko) 전력 공급 회로 및 이를 포함하는 배터리 팩
US11796599B2 (en) Battery diagnosis apparatus, battery diagnosis method and energy storage system
KR102256100B1 (ko) 배터리 팩
US11293985B2 (en) Switch diagnosing apparatus and method
KR20240142392A (ko) 배터리 진단 시스템 및 방법
US11946974B2 (en) Parallel battery relay diagnostic device and method
KR20210048319A (ko) 차량용 배터리 시스템 및 그 제어방법
JP2018519532A (ja) バッテリパック状態の並列モニタリング装置
KR102433850B1 (ko) Bms 인식 시스템 및 방법
JP2001352688A (ja) 組電池の電圧調整装置及び組電池の電圧調整方法
US20240047976A1 (en) Battery control system and method
EP4303600A1 (fr) Circuit de détermination de tension
KR20240055537A (ko) 배터리 관리 장치 및 그것의 동작 방법, 배터리 시스템
KR20240045915A (ko) 배터리 셀 진단 장치 및 그것의 동작 방법
JP2023516649A (ja) バッテリー管理装置及び方法、バッテリー管理システム
KR20210053104A (ko) 배터리 전압 측정 장치 및 방법

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: LG ENERGY SOLUTION, LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PARK, JONG IL;REEL/FRAME:058647/0947

Effective date: 20210809

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE