US11555029B2 - PD-1/PD-L1 inhibitors - Google Patents

PD-1/PD-L1 inhibitors Download PDF

Info

Publication number
US11555029B2
US11555029B2 US16/891,880 US202016891880A US11555029B2 US 11555029 B2 US11555029 B2 US 11555029B2 US 202016891880 A US202016891880 A US 202016891880A US 11555029 B2 US11555029 B2 US 11555029B2
Authority
US
United States
Prior art keywords
cycloalkyl
alkylc
alkyl
group
heterocyclyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/891,880
Other versions
US20210053946A1 (en
Inventor
Evangelos Aktoudianakis
Aesop Cho
Zhimin Du
Michael Graupe
Lateshkumar Thakorlal Lad
Paulo A. Machicao Tello
Jonathan William Medley
Samuel E. Metobo
Prasenjit Kumar Mukherjee
Devan Naduthambi
Eric Q. Parkhill
Barton W. Phillips
Scott Preston Simonovich
Neil H. Squires
Peiyuan Wang
William J. Watkins
Jie Xu
Kin Shing Yang
Christopher Allen Ziebenhaus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gilead Sciences Inc
Original Assignee
Gilead Sciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gilead Sciences Inc filed Critical Gilead Sciences Inc
Priority to US16/891,880 priority Critical patent/US11555029B2/en
Assigned to GILEAD SCIENCES, INC. reassignment GILEAD SCIENCES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZIEBENHAUS, CHRISTOPHER ALLEN, DU, ZHIMIN, MACHICAO TELLO, Paulo A., PARKHILL, Eric Q., SIMONOVICH, SCOTT PRESTON, LAD, Lateshkumar Thakorlal, YANG, Kin Shing, AKTOUDIANAKIS, EVANGELOS, CHO, AESOP, METOBO, SAMUEL E., MUKHERJEE, Prasenjit Kumar, NADUTHAMBI, DEVAN, SQUIRES, NEIL H., WANG, PEIYUAN, XU, JIE, PHILLIPS, BARTON W., WATKINS, WILLIAM J., GRAUPE, MICHAEL, MEDLEY, Jonathan William
Publication of US20210053946A1 publication Critical patent/US20210053946A1/en
Priority to US18/060,934 priority patent/US20230212155A1/en
Application granted granted Critical
Publication of US11555029B2 publication Critical patent/US11555029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4965Non-condensed pyrazines
    • A61K31/497Non-condensed pyrazines containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/10Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D241/14Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D241/18Oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/10Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D241/14Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D241/20Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems
    • C07D491/107Spiro-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2827Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86

Definitions

  • the present disclosure generally relates to compounds useful as inhibitors of PD-1, PD-L1 or the PD-1/PD-L1 interaction.
  • compounds, compositions comprising such compounds, and methods for their use are provided herein.
  • Programmed death-1 (CD279) is a receptor on T cells that has been shown to suppress activating signals from the T cell receptor when bound by either of its ligands, Programmed death-ligand 1 (PD-L1, CD274, B7-H1) or PD-L2 (CD273, B7-DC).
  • PD-1 expressing T cells contact cells expressing its ligands, functional activities in response to antigenic stimuli, including proliferation, cytokine secretion, and cytotoxicity are reduced.
  • PD-l/PD-Ligand interactions down regulate immune responses during resolution of an infection or tumor, or during the development of self-tolerance.
  • T cell exhaustion B cells also display PD-l/PD-ligand suppression and “exhaustion.”
  • Blockade of the PD-1/PD-L1 ligation using antibodies to PD-L1 has been shown to restore and augment T cell activation in many systems. Patients with advanced cancer benefit from therapy with a monoclonal antibody to PD-L1. Preclinical animal models of tumors and chronic infections have shown that blockade of the PD-1/PD-L1 pathway by monoclonal antibodies can enhance the immune response and result in tumor rejection or control of infection. Antitumor immunotherapy via PD-1/PD-L1 blockade may augment therapeutic immune response to a number of histologically distinct tumors.
  • Interference with the PD-1/PD-L1 interaction has also shown enhanced T cell activity in chronic infection systems.
  • Chronic lymphocytic chorio meningitis virus infection of mice also exhibits improved virus clearance and restored immunity with blockade of PD-L1.
  • Humanized mice infected with HIV-1 show enhanced protection against viremia and viral depletion of CD4+ T cells.
  • Blockade of PD-1/PD-L1 through monoclonal antibodies to PD-L1 can restore in vitro antigen-specific functionality to T cells from HIV patients, HCV patients or HBV patients.
  • agents that block PD-1, PD-L1 and/or the PD-1/PD-L1 interaction are desired.
  • Small molecule agents that block or inhibit PD-1, PD-L1 and/or the PD-1/PD-L1 interaction are particularly desired.
  • Applicants have discovered small molecule compounds that have activity as inhibitors of PD-1, PD-L1 or inhibitors of the interaction of PD-1 with PD-L1, and thus may be useful for treating patients having cancer, HIV, HCV and/or HBV.
  • the present disclosure further provides a compound of formula (I):
  • the present disclosure provides a method of inhibiting PD-1, PD-L1 and/or the PD-1/PD-L1 interaction comprising administering a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, to a patient in need thereof.
  • the present disclosure provides a method of treating cancer comprising administering a therapeutically effective amount of a compound formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof, to a patient in need thereof.
  • One embodiment provides the use of a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, for the treatment of cancer or a condition in a patient that is amenable to treatment by inhibiting PD-1, PD-L1 or the PD-1/PD-L1 interaction comprising administering said compound of formula (I) to said patient in need thereof.
  • a method for treating a cancer wherein the cancer is pancreatic cancer, bladder cancer, colorectal cancer, breast cancer, prostate cancer, renal cancer, hepatocellular cancer, lung cancer, ovarian cancer, cervical cancer, gastric cancer, esophageal cancer, head and neck cancer, melanoma, neuroendocrine cancer, CNS cancer, brain cancer, bone cancer, soft tissue sarcoma, non-small cell lung cancer, small-cell lung cancer or colon cancer, comprising administering a therapeutically effective amount of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof to a patient in need thereof.
  • formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof
  • a method for treating a cancer or a condition in a patient that is amenable to treatment by inhibiting PD-1, PD-L1 or the PD-1/PD-L1 interaction selected from pancreatic cancer, bladder cancer, colorectal cancer, breast cancer, prostate cancer, renal cancer, hepatocellular cancer, lung cancer, ovarian cancer, cervical cancer, gastric cancer, esophageal cancer, head and neck cancer, melanoma, neuroendocrine cancer, CNS cancer, brain cancer, bone cancer, soft tissue sarcoma, non-small cell lung cancer, small-cell lung cancer and colon cancer comprising administering a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof to a patient in need thereof, further comprising administering at least one additional anticancer agent or therapy to a patient in need thereof.
  • PD-1, PD-L1 or the PD-1/PD-L1 interaction selected from pancreatic
  • the additional anticancer agent or therapy is selected from nivolumab, pembrolizumab, atezolizumab, ipilimumab, chemotherapy, radiation therapy, and resection therapy, to a patient in need thereof.
  • hepatitis B virus comprising administering a therapeutically effective amount of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof to a patient in need thereof.
  • a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof for the treatment of cancer or a condition in a patient selected from lymphoma, multiple myeloma, and leukemia.
  • Additional diseases or conditions include, but are not limited to acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), myelodysplastic syndrome (MDS), myeloproliferative disease (MPD), chronic myeloid leukemia (CML), multiple myeloma (MM), non-Hodgkin's lymphoma (NHL), mantle cell lymphoma (MCL), follicular lymphoma, Waldestrom's macroglobulinemia (WM), T-cell lymphoma, B-cell lymphoma and diffuse large B-cell lymphoma (DLBCL).
  • ALL acute lymphocytic leukemia
  • AML acute myeloid leukemia
  • CLL chronic lymphocytic leukemia
  • SLL small lymphocytic lymphoma
  • MDS myelodysplastic syndrome
  • MDS myeloprol
  • the present disclosure provides a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, in combination with at least one additional anti-cancer agent selected from rituxan, doxorubicin, gemcitabine, nivolumab, pembrolizumab, and ipilimumab.
  • the present disclosure provides a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, in combination with at least one additional check-point inhibitor selected from nivolumab, pembrolizumab, atezolizumab, and ipilimumab.
  • the present disclosure provides a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, and a pharmaceutically acceptable carrier or excipient.
  • the present disclosure provides a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, and at least one additional anticancer agent and at least one pharmaceutically acceptable carrier or excipient.
  • the present disclosure provides a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, at least one additional therapeutic agent suitable for treating an HBV infection, and at least one pharmaceutically acceptable carrier or excipient.
  • the present disclosure provides a kit that includes a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, a label and/or instructions for use of the compound in the treatment of cancer or a disease or condition mediated by PD-1, PD-L1 activity or the PD-1/PD-L1 interaction.
  • the present disclosure provides a kit that includes a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, at least one additional anticancer agent, a label(s) and/or instructions for use of the compound(s) in the treatment of a disease or condition mediated by PD-1, PD-L1 activity or PD-1/PD-L1 interaction.
  • the present disclosure provides articles of manufacture that include a compound of formula (I) or a pharmaceutically acceptable salt, or solvate thereof; and a container.
  • the container may be a vial, jar, ampoule, preloaded syringe, or an intravenous bag.
  • the present disclosure provides a compound of formula (I) for use in therapy.
  • the present disclosure provides a compound of formula (I) for use in the manufacture of a medicament for treating cancer.
  • FIG. 1 A and FIG. 1 B show that compound 139 enhances IFN- ⁇ and Granzyme B Production in chronic hepatitis B (CHB) CD8 + T Cells.
  • CHB chronic hepatitis B
  • FIG. 2 A and FIG. 2 B show that compound 139 enhances IFN- ⁇ and Granzyme B Production in chronic hepatitis B (CHB) CD4 + T Cells.
  • CHB chronic hepatitis B
  • FIG. 3 shows the experimental design for mouse PD-L1 knockout and replacement with human PD-L1 in MC38 mouse colorectal tumor cell line.
  • FIG. 4 A and FIG. 4 B show the relationship between PK ( FIG. 4 A ) and TO ( FIG. 4 B ) for compound 139 on Day 6 in a human PD-L1 MC38 C57BL/6 mouse tumor model.
  • FIG. 5 shows the anti-tumor activity of compound 139 in a human PD-L1 MC38 mouse model.
  • a dash (“-”) that is not between two letters or symbols is used to indicate a point of attachment for a substituent. For example, —C(O)NH 2 is attached through the carbon atom.
  • a dash at the front or end of a chemical group is a matter of convenience; chemical groups may be depicted with or without one or more dashes without losing their ordinary meaning. Unless chemically or structurally required, no directionality is indicated or implied by the order in which a chemical group is written or named.
  • C u-v indicates that the following group has from u to v carbon atoms.
  • C 1-6 alkyl indicates that the alkyl group has from 1 to 6 carbon atoms.
  • references to “about” a value or parameter herein includes (and describes) embodiments that are directed to that value or parameter per se.
  • the term “about” includes the indicated amount ⁇ 10%.
  • the term “about” includes the indicated amount ⁇ 5%.
  • the term “about” includes the indicated amount ⁇ 1%.
  • to the term “about X” includes description of “X”.
  • the singular forms “a” and “the” include plural references unless the context clearly dictates otherwise.
  • reference to “the compound” includes a plurality of such compounds and reference to “the assay” includes reference to one or more assays and equivalents thereof known to those skilled in the art.
  • substituted means that any one or more (e.g., one to three, or one to five) hydrogen atoms on the designated atom or group is replaced with one or more (e.g., one to three, or one to five) substituents other than hydrogen, provided that the designated atom's normal valence is not exceeded.
  • the one or more (e.g., one to three, or one to five) substituents include, but are not limited to, alkyl, alkenyl, alkynyl, alkoxy, acyl, amino, amido, amidino, aryl, azido, carbamoyl, carboxyl, carboxyl ester, cyano, guanidino, halo, halo alkyl, heteroalkyl, heteroaryl, heterocycloalkyl, hydroxy, hydrazino, imino, oxo, nitro, alkylsulfinyl, sulfonic acid, alkylsulfonyl, thiocyanate, thiol, thione, or combinations thereof.
  • the above definitions are not intended to include impermissible substitution patterns (e.g., methyl substituted with 5 fluorines or heteroaryl groups having two adjacent oxygen ring atoms). Such impermissible substitution patterns are well known to the skilled artisan.
  • substituted may describe other chemical groups defined herein.
  • substituted aryl includes, but is not limited to, “alkylaryl.” Unless specified otherwise, where a group is described as optionally substituted, any substituents of the group are themselves unsubstituted.
  • a “substituted” group also includes embodiments in which a monoradical substituent is bound to a single atom of the substituted group (e.g., forming a branch), and also includes embodiments in which the substituent may be a diradical bridging group bound to two adjacent atoms of the substituted group, thereby forming a fused ring on the substituted group.
  • Alkyl refers to an unbranched or branched saturated hydrocarbon chain. As used herein, alkyl has 1 to 20 carbon atoms (i.e., C 1-20 alkyl), 1 to 8 carbon atoms (i.e., C 1-8 alkyl), 1 to 6 carbon atoms (i.e., C 1-6 alkyl), or 1 to 4 carbon atoms (i.e., CM alkyl).
  • alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, pentyl, 2-pentyl, isopentyl, neopentyl, hexyl, 2-hexyl, 3-hexyl, and 3-methylpentyl.
  • butyl includes n-butyl (i.e., —(CH 2 ) 3 CH 3 ), sec-butyl (i.e., —CH(CH 3 )CH 2 CH 3 ), isobutyl (i.e., —CH 2 CH(CH 3 ) 2 ) and tert-butyl (i.e., —C(CH 3 ) 3 ); and “propyl” includes n-propyl (i.e., —(CH 2 ) 2 CH 3 ) and isopropyl (i.e., —CH(CH 3 ) 2 ).
  • Alkenyl refers to an aliphatic group containing at least one carbon-carbon double bond and having from 2 to 20 carbon atoms (i.e., C 2-20 alkenyl), 2 to 8 carbon atoms (i.e., C 2-8 alkenyl), 2 to 6 carbon atoms (i.e., C 2-6 alkenyl), or 2 to 4 carbon atoms (i.e., C 2-4 alkenyl).
  • alkenyl groups include ethenyl, propenyl, butadienyl (including 1,2-butadienyl, and 1,3-butadienyl).
  • Alkynyl refers to an aliphatic group containing at least one carbon-carbon triple bond and having from 2 to 20 carbon atoms (i.e., C 2-20 alkynyl), 2 to 8 carbon atoms (i.e., C 2-8 alkynyl), 2 to 6 carbon atoms (i.e., C 2-6 alkynyl), or 2 to 4 carbon atoms (i.e., C 2-4 alkynyl).
  • alkynyl also includes those groups having one triple bond and one double bond.
  • Alkoxy refers to the group “alkyl-O—” or “—O-alkyl”. Examples of alkoxy groups include methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert-butoxy, sec-butoxy, n-pentoxy, n-hexoxy, and 1,2-dimethylbutoxy.
  • Haloalkoxy refers to an alkoxy group as defined above, wherein one or more (e.g., one to three, or one to five) hydrogen atoms are replaced by a halogen.
  • Amino refers to the group —NR y R z wherein R y and R z are independently selected from hydrogen, alkyl, haloalkyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl; each of which may be optionally substituted.
  • Aryl refers to a monoradical or diradical aromatic carbocyclic group having a single ring (e.g., monocyclic) or multiple rings (e.g., bicyclic or tricyclic) including fused ring systems wherein one or more (e.g., one, two, or three) fused rings is/are fully or partially unsaturated.
  • aryl has 6 to 20 ring carbon atoms (i.e., C 6-20 aryl), 6 to 12 carbon ring atoms (i.e., C 6-12 aryl), or 6 to 10 carbon ring atoms (i.e., C 6-10 aryl).
  • Non-limiting examples of aryl groups as used herein include phenyl, naphthyl, fluorenyl, indanyl, tetrahydroindanuyl, and anthryl.
  • Aryl does not encompass or overlap in any way with heteroaryl defined below. If one or more aryl groups are fused with a heteroaryl ring, the resulting ring system is heteroaryl.
  • the classification of mono or diradical indicates whether the aryl group terminates the chain (monoradical) or is within a chain (diradical). The above definition does not preclude additional substituents on the aryl group.
  • the aryl group in “A-aryl-B” is a diradical whereas the aryl group in “A-B-aryl” is monoradical, though additional substituents may be present on each aryl group.
  • alkylsulfinyl refers to the group —S(O)-alkyl, where alkyl is as defined above, and includes optionally substituted alkyl groups as also defined above.
  • alkylsulfonyl refers to the group —S(O) 2 -alkyl, where alkyl is as defined above, and includes optionally substituted alkyl groups as also defined above.
  • cycloalkyl refers to a saturated or partially saturated cyclic alkyl group having a single ring or multiple rings including fused, bridged, and spiro ring systems. As used herein, cycloalkyl has from 3 to ring carbon atoms (i.e., C 3-20 cycloalkyl), 3 to 12 ring carbon atoms (i.e., C 3-12 cycloalkyl), 3 to 10 ring carbon atoms (i.e., C 3-10 cycloalkyl), 3 to 8 ring carbon atoms (i.e., C 3-5 cycloalkyl), or 3 to 6 ring carbon atoms (i.e., C 3-6 cycloalkyl).
  • cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
  • cycloalkenyl refers to the non-aromatic carbocyclic (partially saturated cyclic alkyl) group having at least one double bond.
  • Cyanoalkyl refers to an alkyl group substituted with cyano (CN).
  • Halogen or “halo” includes fluoro, chloro, bromo, and iodo.
  • haloalkyl refers to a monoradical or diradical having the indicated carbon atoms of the alkyl group wherein one or more (e.g., one to three, or one to five) hydrogen atoms have been substituted by a halogen.
  • haloalkyl groups include —CH 2 F, —CHF 2 , —CF 3 , —CH 2 CF 3 , —CHFCH 2 F, —CF 2 —, —CHF—, and the like.
  • haloalkoxy refers to an alkoxy group wherein one or more (e.g., one to three, or one to five) hydrogen atoms of the alkyl group have been substituted by a halogen.
  • haloalkoxy groups include —OCH 2 F, —OCHF 2 , —OCF 3 , —OCH 2 CF 3 , —OCHFCH 2 F, and the like.
  • alkenyl and alkynyl analogs e.g., C 2-4 haloalkenyl, —O—C 2-4 haloalkynyl).
  • Heteroalkyl refers to an alkyl group in which one or more (e.g., one to three, or one to five) of the carbon atoms (and any associated hydrogen atoms) are each independently replaced with the same or different heteroatomic groups.
  • the term “heteroalkyl” includes unbranched or branched saturated chain having carbon and heteroatoms. By way of example, 1, 2 or 3 carbon atoms may be independently replaced with the same or different heteroatomic group.
  • Heteroatomic groups include, but are not limited to, —NR—, —O—, —S—, —S(O)—, —S(O) 2 —, and the like, where R is H, alkyl, aryl, cycloalkyl, heteroalkyl, heteroaryl, or heterocycloalkyl, each of which may be optionally substituted.
  • heteroalkyl groups include —OCH 3 , —CH 2 OCH 3 , —SCH 3 , —CH 2 SCH 3 , —NRCH 3 , and —CH 2 NRCH 3 , where R is hydrogen, alkyl, cycloalkyl, aryl, arylalkyl, heteroalkyl, or heteroaryl, each of which may be optionally substituted.
  • heteroalkyl includes 1 to 10 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms; and 1 to 3 heteroatoms, 1 to 2 heteroatoms, or 1 heteroatom.
  • Heteroaryl refers to a monoradical or diradical aromatic group having a single ring, multiple rings, or multiple fused rings, with one or more ring heteroatoms independently selected from nitrogen, oxygen, and sulfur.
  • the term includes fused ring systems wherein one or more (e.g., one, two, or three) fused rings is/are fully or partially unsaturated.
  • heteroaryl include 1 to 20 ring carbon atoms (i.e., C 1-20 heteroaryl), 3 to 12 ring carbon atoms (i.e., C 3-12 heteroaryl), or 3 to 8 carbon ring atoms (i.e., C 3-8 heteroaryl); and 1 to 5 heteroatoms, 1 to 4 heteroatoms, 1 to 3 ring heteroatoms, 1 to 2 ring heteroatoms, or 1 ring heteroatom independently selected from nitrogen, oxygen, and sulfur.
  • heteroaryl groups include pyrimidinyl, purinyl, pyridyl, pyridazinyl, benzothiazolyl, benzodioxanyl, indolinyl, and pyrazolyl.
  • the classification of mono or diradical indicates whether the heteroaryl group terminates the chain (monoradical) or is within a chain (diradical).
  • the above definition does not preclude additional substituents on the heteroaryl group.
  • the heteroaryl group in “A-heteroaryl-B” is a diradical whereas the heteroaryl group in “A-B-heteroaryl” is monoradical, though additional substituents may be present on each heteroaryl group.
  • Heteroaryl does not encompass or overlap with aryl as defined above.
  • Heterocycloalkyl refers to a saturated or unsaturated cyclic alkyl group, with one or more ring heteroatoms independently selected from nitrogen, oxygen and sulfur.
  • a heterocycloalkyl may be a single ring or multiple rings wherein the multiple rings may be fused, bridged, or spiro.
  • heterocycloalkyl has 2 to 20 ring carbon atoms (i.e., C 2-20 heterocycloalkyl), 2 to 12 ring carbon atoms (i.e., C 2-12 heterocycloalkyl), 2 to 10 ring carbon atoms (i.e., C 2-10 heterocycloalkyl), 2 to 8 ring carbon atoms (i.e., C 2-8 heterocycloalkyl), 3 to 12 ring carbon atoms (i.e., C 3-12 heterocycloalkyl), 3 to 8 ring carbon atoms (i.e., C 3-8 heterocycloalkyl), or 3 to 6 ring carbon atoms (i.e., C 3-6 heterocycloalkyl); having 1 to 5 ring heteroatoms, 1 to 4 ring heteroatoms, 1 to 3 ring heteroatoms, 1 to 2 ring heteroatoms, or 1 ring heteroatom independently selected from nitrogen, sulfur or oxygen.
  • heterocycloalkyl groups include pyrrolidinyl, piperidinyl, piperazinyl, oxetanyl, dioxolanyl, azetidinyl, and morpholinyl.
  • bridged-heterocycloalkyl refers to a four- to ten-membered cyclic moiety connected at two non-adjacent atoms of the heterocycloalkyl with one or more (e.g., 1 or 2) four- to ten-membered cyclic moiety having at least one heteroatom where each heteroatom is independently selected from nitrogen, oxygen, and sulfur.
  • bridged-heterocycloalkyl includes bicyclic and tricyclic ring systems.
  • spiro-heterocycloalkyl refers to a ring system in which a three- to ten-membered heterocycloalkyl has one or more additional ring, wherein the one or more additional ring is three- to ten-membered cycloalkyl or three- to ten-membered heterocycloalkyl, where a single atom of the one or more additional ring is also an atom of the three- to ten-membered heterocycloalkyl.
  • spiro-heterocycloalkyl examples include bicyclic and tricyclic ring systems, such as 2-oxa-7-azaspiro[3.5]nonanyl, 2-oxa-6-azaspiro[3.4]octanyl, and 6-oxa-1-azaspiro[3.3]heptanyl.
  • heterocyclyl refers to a monoradical or diradical saturated or unsaturated group having a single ring or multiple condensed rings, having from 3 to 12 carbon atoms, from 1 to 6 hetero atoms, or from 1 to 4 heteroatoms, selected from nitrogen, sulfur, phosphorus, and/or oxygen within the ring. Where the group does not terminate the molecule, it is a diradical and is construed as such i.e., also referred to as heterocyclylene or heterocyclene.
  • heterocyclyl includes heterocycloalkenyl groups (i.e., the heterocyclyl group having at least one double bond), bridged-heterocyclyl groups, fused-heterocyclyl groups, and spiro-heterocyclyl groups.
  • a heterocyclyl may be a single ring or multiple rings wherein the multiple rings may be fused, bridged, or spiro. Any non-aromatic ring containing at least one heteroatom is considered a heterocyclyl, regardless of the attachment (i.e., can be bound through a carbon atom or a heteroatom).
  • heterocyclyl is intended to encompass any non-aromatic ring containing at least one heteroatom, which ring may be fused to an aryl or heteroaryl ring, regardless of the attachment to the remainder of the molecule.
  • a heterocyclyl may contain one or more (e.g., one or two) oxo and/or thioxo groups.
  • Exemplary hetercyclic groups include, but are not limited to, 2,5-diazaspiro[3.4]octan-6-one (e.g., compound 1), azetidine (e.g., compound 2), 2,6-diazaspiro[3.3]heptane (e.g., compound 4), pyrrolidin-2-one (e.g., compound 6), tetrahydrofuran (e.g., compound 11), pyrrolidine (e.g., compound 17), piperidin-2-one (e.g., compound 36), piperazin-2-one (e.g., compound 41), 5-oxa-2,7-diazaspiro[3.4]octan-6-one (e.g., compound 50), 3-azabicyclo[3.1.0]hexane (e.g., compound 52), 2-azabicyclo[2.1.1]hexane (e.g., compound 53), tetrahydro-2H-pyran (e.g.,
  • acyl refers to a group —C( ⁇ O)R, wherein R is hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein.
  • R is hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein.
  • Examples of acyl include formyl, acetyl, cyclohexylcarbonyl, cyclohexylmethyl-carbonyl, and benzoyl.
  • N-alkylated means an alkyl group is substituted for one of the hydrogen atoms of a mono substituted amine, or a di-substituted amine group or a tri substituted amine group.
  • alkylation is on a tri-substituted amine group an alkonium salt is generated i.e., a positive charge is generated on the nitrogen atom.
  • N-alkylation is commonly associated with alkyl substitution on a ring nitrogen atom.
  • cyano refers to the group —CN.
  • oxo refers to a group ⁇ O.
  • esters or “carboxyl ester” refers to the group —C(O)OR, where R is alkyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl, which may be optionally further substituted, for example, by alkyl, alkoxy, halogen, CF 3 , amino, substituted amino, cyano or —S(O) y R z , in which R z is alkyl, aryl, or heteroaryl, and y is 0, 1 or 2.
  • substituted amino refers to the group —NRR, where each R is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl, each of which may be optionally substituted, or a group as described or exemplified herein, or where both R groups are joined to form a heterocyclic group (e.g., morpholino) as described or exemplified herein, which also may be optionally substituted.
  • R is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl, each of which may be optionally substituted, or a group as described or exemplified herein, or where both R groups are joined to form a heterocyclic group (e.g., morpholino) as described or exemplified herein, which also may be optionally substituted.
  • amido refers to the group —C(O)NRR where each R is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl, each of which may be optionally substituted, or a group as described or exemplified herein, or where both R groups are joined to form a heterocyclic group (e.g., morpholino) as described or exemplified herein, which also may be optionally substituted.
  • R is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl, each of which may be optionally substituted, or a group as described or exemplified herein, or where both R groups are joined to form a heterocyclic group (e.g., morpholino) as described or exemplified herein, which also may be optionally substituted.
  • sulfoxide refers to a group —S(O)R, in which R is alkyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of which may be optionally substituted.
  • sulfone refers to a group —S(O) 2 R, in which R is alkyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of which may be optionally substituted.
  • alkylcycloalkyl As used herein, the terms “alkylcycloalkyl,” “alkylaryl,” “alkylheteroaryl” and “alkylheterocyclyl” are intended to refer to a cycloalkyl, aryl, heteroaryl or heterocyclyl group which is bound to the remainder of the molecule via an alkyl moiety, where the terms “alkyl,” “cycloalkyl,” “aryl,” “heteroaryl” and “heterocyclyl” are as defined herein.
  • Exemplary alkylaryl groups include benzyl, phenethyl, and the like.
  • a divalent group such as a divalent “alkyl” group, a divalent “aryl” group, etc.
  • a divalent group such as a divalent “alkyl” group, a divalent “aryl” group, etc.
  • combinations of groups are referred to herein as one moiety, e.g., arylalkyl, the last mentioned group contains the atom by which the moiety is attached to the rest of the molecule.
  • a group is represented by a bond
  • multiple adjacent groups whether the same or different, when represented by bonds, constitute a single bond.
  • the group “-L 1 -V 1 -L 2 -” constitutes a single bond if each of L 1 , V 1 and L 2 is a bond.
  • a given group (moiety) is described herein as being attached to a second group and the site of attachment is not explicit, the given group may be attached at any available site of the given group or to any available site of the second group.
  • an “alkyl-substituted phenyl”, where the attachment sites are not explicit, may have any available site of the alkyl group attached to any available site of the phenyl group.
  • an “available site” is a site of the group at which hydrogen of the group may be replaced with a substituent.
  • “Isomers” are different compounds that have the same molecular formula. Isomers include stereoisomers, enantiomers and diastereomers.
  • Steps are isomers that differ only in the way the atoms are arranged in space.
  • Enantiomers are a pair of stereoisomers that are non-superimposable mirror images of each other. A 1:1 mixture of a pair of enantiomers is a “racemic” mixture. The term “(+)” is used to designate a racemic mixture where appropriate.
  • “Diastereoisomers” are stereoisomers that have at least two asymmetric atoms, but which are not mirror-images of each other.
  • the compounds of the disclosure may possess one or more asymmetric centers and may be produced as a racemic mixture or as individual enantiomers or diastereoisomers.
  • the number of stereoisomers present in any given compound of a given formula depends upon the number of asymmetric centers present (there are 2 n stereoisomers possible where n is the number of asymmetric centers).
  • the individual stereoisomers may be obtained by resolving a racemic or non-racemic mixture of an intermediate at some appropriate stage of the synthesis or by resolution of the compound by conventional means.
  • the absolute stereochemistry is specified according to the Cahn Ingold Prelog R S system.
  • the stereochemistry at each chiral carbon may be specified by either R or S.
  • a resolved compound whose absolute configuration is unknown may be designated (+) or ( ⁇ ) depending on the direction (dextro- or laevorotary) that it rotates the plane of polarized light at the wavelength of the sodium D line.
  • Tautomeric isomers are in equilibrium with one another.
  • amide containing compounds may exist in equilibrium with imidic acid tautomers. Regardless of which tautomer is shown, and regardless of the nature of the equilibrium among tautomers, the compounds are understood by one of ordinary skill in the art to comprise both amide and imidic acid tautomers. Thus, the amide containing compounds are understood to include their imidic acid tautomers. Likewise, the imidic acid containing compounds are understood to include their amide tautomers.
  • solvate refers to a complex formed by combining a compound of formula (I), or any other formula as disclosed herein and a solvent.
  • hydrate refers to the complex formed by the combining of a compound of formula (I), or any formula disclosed herein, and water.
  • prodrug refers to compounds of formula (I), or derivatives of formula (I) disclosed herein, that include chemical groups which, in vivo, can be converted and/or can be split off from the remainder of the molecule to provide for the active drug.
  • Pharmaceutically acceptable salts or biologically active metabolites thereof of the prodrug of a compound of formula (I) are also within the ambit of the present disclosure.
  • any formula or structure given herein, including formula (I), or any formula disclosed herein, is intended to represent unlabeled forms as well as isotopically labeled forms of the compounds.
  • Isotopically labeled compounds have structures depicted by the formulas given herein except that one or more (e.g., one to three, or one to five) atoms are replaced by an isotope having a selected atomic mass or mass number.
  • isotopes examples include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, fluorine and chlorine, such as, but not limited to 2 H (deuterium, D), 3 H (tritium), 11 C, 13 C, 14 C, 15 N, 18 F, 31 P, 32 P, 35 S, 36 Cl, and 125 I.
  • isotopically labeled compounds of the present disclosure for example those into which radioactive isotopes such as 3 H, 13 C and 14 C are incorporated, are within the ambit of the present disclosure.
  • Such isotopically labelled compounds may be useful in metabolic studies, reaction kinetic studies, detection or imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT) including drug or substrate tissue distribution assays or in treatment of patients.
  • PET positron emission tomography
  • SPECT single-photon emission computed tomography
  • Such isotopically labeled analogs of compounds of the present disclosure may also be useful for treatment of diseases disclosed herein because they may provide improved pharmacokinetic and/or pharmacodynamic properties over the unlabeled forms of the same compounds.
  • Such isotopically leveled forms of or analogs of compounds herein are within the ambit of the present disclosure.
  • One of skill in the art is able to prepare and use such isotopically labeled forms following procedures for isotopically labeling compounds or aspects of compounds to arrive at isotopic or radiolabeled analogs of compounds disclosed herein.
  • pharmaceutically acceptable salt of a given compound refers to salts that retain the biological effectiveness and properties of the given compound, and which are not biologically or otherwise undesirable.
  • Pharmaceutically acceptable base addition salts can be prepared from inorganic and organic bases. Salts derived from inorganic bases include, by way of example only, sodium, potassium, lithium, ammonium, calcium and magnesium salts.
  • Salts derived from organic bases include, but are not limited to, salts of primary, secondary and tertiary amines, such as alkyl amines, dialkyl amines, trialkyl amines, substituted alkyl amines, di(substituted alkyl) amines, tri(substiluted alkyl) amines, alkenyl amines, dialkenyl amines, trialkenyl amines, substituted alkenyl amines, di(substituted alkenyl) amines, tri(substituted alkenyl) amines, cycloalkyl amines, di(cycloalkyl) amines, tri(cycloalkyl) amines, substituted cycloalkyl amines, di-substituted cycloalkyl amine, tri-substituted cycloalkyl amines, cycloalkenyl amines, di(cycloalken
  • Amines are of general structure N(R 30 )(R 31 )(R 32 ), wherein mono-substituted amines have two of the three substituents on nitrogen (R 30 , R 31 , and R 32 ) as hydrogen, di-substituted amines have one of the three substituents on nitrogen (R 30 , R 31 , and R 32 ) as hydrogen, whereas tri-substituted amines have none of the three substituents on nitrogen (R 30 , R 31 , and R 32 ) as hydrogen.
  • R 30 , R 31 , and R 32 are selected from a variety of substituents such as hydrogen, optionally substituted alkyl, aryl, heteroaryl, cycloalkyl, cycloalkenyl, heterocyclyl, and the like.
  • Suitable amines include, by way of example only, isopropyl amine, trimethyl amine, diethyl amine, tri(iso-propyl) amine, tri(n-propyl) amine, ethanolamine, diethanolamine, 2-dimethylamino ethanol, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, ethylenediamine, glucosamine, N-alkylglucamines, theobromine, purines, piperazine, piperidine, morpholine, N-ethylpiperidine, and the like.
  • Salts derived from inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
  • Salts derived from organic acids include acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluene-sulfonic acid, salicylic acid, and the like.
  • “pharmaceutically acceptable carrier” or “pharmaceutically acceptable excipient” includes any and all solvents, dispersion media, coatings, antibacterial, and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, or unless otherwise indicated herein, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
  • anticancer agent is any drug that is effective in the treatment of a malignant, or cancerous disease. Effectiveness may mean inhibition, partial, or full remission, prolongation of life, improvement in quality of life, or cure.
  • anticancer drugs including chemical compositions as disclosed herein or known to one of skill in the art e.g., PD-1, PD-L1, PD-1/PD-L1 interaction inhibitors, alkylating agents, antimetabolites, natural products, and hormones.
  • additional anticancer agent means the use or combination of a second, third, fourth, fifth, etc., anticancer agent(s) in addition to a compound according to formula (I) disclosed herein.
  • anticancer therapy means any currently known therapeutic methods for the treatment of cancer.
  • blockade agent or “check point inhibitors” are classes of immune oncology agents that inhibit PD-1, PD-L1, or the PD-1/PD-L1 interaction.
  • treatment means any administration of a compound or compounds according to the present disclosure to a subject (e.g., a human) having or susceptible to a condition or disease disclosed herein for the purpose of: 1) preventing or protecting against the disease or condition, that is, causing the clinical symptoms not to develop; 2) inhibiting the disease or condition, that is, arresting or suppressing the development of clinical symptoms; or 3) relieving the disease or condition that is causing the regression of clinical symptoms.
  • a subject e.g., a human
  • the term “treatment” or “treating” refers to relieving the disease or condition or causing the regression of clinical symptoms.
  • the term “preventing” refers to the prophylactic treatment of a patient in need thereof.
  • the prophylactic treatment can be accomplished by providing an appropriate dose of a therapeutic agent to a subject at risk of suffering from an ailment, thereby substantially averting onset of the ailment.
  • the presence of a genetic mutation or the predisposition to having a mutation may not be alterable.
  • prophylactic treatment (prevention) as used herein has the potential to avoid/ameliorate the symptoms or clinical consequences of having the disease engendered by such genetic mutation or predisposition.
  • prophylaxis is intended as an element of “treatment” to encompass both “preventing” and “suppressing” as defined herein.
  • protection is meant to include “prophylaxis.”
  • patient typically refers to a “mammal” which includes, without limitation, human, monkeys, rabbits, mice, domestic animals, such as dogs and cats, farm animals, such as cows, horses, or pigs, and laboratory animals.
  • patient refers to a human in need of treatment as defined herein.
  • PD-1 inhibitors PD-L1 inhibitors
  • PD-1/PD-L1 interaction inhibitors methods of using such compounds and compositions comprising such compounds optionally in combination with one or more additional anticancer agents or therapies.
  • group or variable is independently selected the list that follows. It is further contemplated that all embodiments directed to compounds include any pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, solvate, prodrug or tautomer thereof.
  • Q is selected from the group consisting of phenyl, pyridinyl, indazolyl, and thienyl each optionally substituted with 1 to 2 groups independently selected from the group consisting of halo, —OR a , N 3 , NO 2 , —CN, —NR a R b , —S(O) 2 R a , —S(O) 2 NR a R b , —NR a S(O) 2 R a , —NR a C(O)R a , —C(O)NR a R b , —C 1-6 alkyl, —O—C 1-6 alkyl, C 3-8 cycloalkyl, and —C 1-6 alkylC 3-8 cycloalkyl.
  • Q is selected from the group consisting of phenyl, pyridinyl and indanyl each optionally substituted with 1 to 3 groups independently selected from the group consisting of halo, —OR a , N 3 , NO 2 , —CN, —NR a R b , —S(O) 2 R a , —S(O) 2 NR a R b , —NR a S(O) 2 R a , —NR a C(O)R a , —C(O)NR a R b , —C 1-6 alkyl, —O—C 1-6 alkyl, C 3-8 cycloalkyl, and —C 1-6 alkylC 3-8 cycloalkyl.
  • Q is optionally substituted aryl. In one embodiment, Q is optionally substituted phenyl.
  • Q is optionally substituted heteroaryl. In one embodiment, Q is optionally substituted monocyclic heteroaryl. In one embodiment, Q is an optionally substituted 5- or 6-membered heteroaryl. In one embodiment, Q is an optionally substituted 5-membered heteroaryl. In one embodiment, Q is an optionally substituted 6-membered heteroaryl. In one embodiment, Q is optionally substituted pyridyl. In one embodiment, Q is optionally substituted pyrazinyl.
  • substituents on Q are independently selected from the group consisting of OH, halo, CN, —C 1-6 alkyl, —C 1-6 haloalkyl —O—C 1-6 alkyl, —O—C 1-6 haloalkyl, —S(O) 2 C 1-6 alkyl,
  • Q is optionally substituted with 1 to 3 groups independently selected from the group consisting of OH, halo, CN, S(O) 2 R a , —C 1-6 alkyl, and —O—C 1-6 alkyl.
  • Q is optionally substituted with 1 to 3 groups independently selected from the group consisting of OH, halo, CN, S(O) 2 R a , —C 1-6 alkyl, and —O—C 1-6 alkyl.
  • R E and R W are each independently —NR 1 R 2 , —C 1-6 alkylNR 1 R 2 , —O—C 1-6 alkylNR 1 R 2 , —C 1-6 alkylOC 1-6 alkylNR 1 R 2 , —NR 1 —C 1-6 alkylNR 1 R 2 , —C 1-6 alkylN + R 1 R 2 R 3 , —S—C 1-6 alkylNR 1 R 2 , —S(O) 2 R a , —(CH 2 ) u S(O) 2 NR 1 R 2 , —(CH 2 ) u NR a S(O) 2 NR a R b , —S(O) 2 NR a C 1-6 alkylNR 1 R 2 , —NR a S(O) 2 C 1-6 alkylNR 1 R 2 , —(CH 2 ) u C(O)NR a S(O) 2 NR a R b
  • R E and R W are independently selected from —NR 1 R 2 , —C 1-6 alkylNR 1 R 2 , —O—C 1-6 alkylNR 1 R 2 , —C 1-6 alkylOC 1-6 alkylNR 1 R 2 , —NR a —C 1-6 alkyl NR 1 R 2 , —C 1-6 alkylN + R 1 R 2 R 3 , —S—C 1-6 alkylNR 1 R 2 , —C(O)NR 1 R 2 , —S(O) 2 R a , —(CH 2 ) u S(O) 2 NR 1 R 2 , —(CH 2 ) u NR a S(O) 2 NR a R b , —S(O) 2 NR a C 1-6 alkylNR 1 R 2 , —NR a S(O) 2 C 1-6 alkyl NR 1 R 2 , —(CH 2 ) u C(O
  • R E and R W are independently selected from —C(O)NR 1 R 2 , —S(O) 2 R a , —(CH 2 ) u S(O) 2 NR 1 R 2 , —(CH 2 ) u NR a S(O) 2 NR a R b , —S(O) 2 NR a C 1-6 alkylNR 1 R 2 , —NR a S(O) 2 C 1-6 alkylNR 1 R 2 , and —(CH 2 ) u C(O)NR a S(O) 2 NR a R b ; wherein
  • R E and R W are independently selected from —(CH 2 ) u N + R 1 R 2 O ⁇ , —(CH 2 ) u P + R b R c R d , —(CH 2 ) u P + R c R d O ⁇ , —(CH 2 ) u P + O[NR a R b ][NR c R d ], —(CH 2 ) u NR c P(O)(OR c ) 2 , —(CH 2 ) u CH 2 OP(O)(OR c )(OR d ), —(CH 2 ) u OP(O)(OR c )(OR d ), and —(CH 2 ) u OP(O)NR a R b )(OR a ); wherein
  • R E and R W are each independently —NR 1 R 2 , —C 1-6 alkylNR 1 R 2 , —O—C 1-6 alkylNR 1 R 2 , —C 1-6 alkylOC 1-6 alkylNR 1 R 2 , —NR a C 1-6 alkylNR 1 R 2 , or
  • R E and R W are each independently —NR 1 R 2 , —C 1-6 alkylNR 1 R 2 , —O—C 1-6 alkylNR 1 R 2 , —C 1-6 alkylOC 1-6 alkylNR 1 R 2 , —NR a —C 1-6 alkylNR 1 R 2 , or
  • R E and R W are each
  • R E and R W are each independently —NR 1 R 2 , —C 1-6 alkylNR 1 R 2 , or —O—C 1-6 alkylNR 1 R 2 ;
  • R E and R W are each —C 1-6 alkylOC 1-6 alkylNR 1 R 2 ;
  • R E and R W are each —O—C 1-6 alkylNR 1 R 2 ;
  • R E and R W are each —NR 1 R 2 ;
  • R E and R W do not contain an amide group (i.e., —NC(O)— or —C(O)N—). In one embodiment, at least one on R E and R W contains a heterocyclyl moiety which optionally comprises an oxo.
  • R E and R W are each independently —NR 1 R 2 , —C 1-6 alkylNR 1 R 2 , —O—C 1-6 alkylNR 1 R 2 , —C 1-6 alkylOC 1-6 alkylNR 1 R 2 , —NR a —C 1-6 alkyl NR 1 R 2 , —C 1-6 alkylN + R 1 R 2 R 3 , —S—C 1-6 alkylNR 1 R 2 , —C(O)NR 1 R 2 , —S(O) 2 R a , —(CH 2 ) u S(O) 2 NR′R 2 , —(CH 2 ) u NR a S(O) 2 NR a R b , —S(O) 2 NR a C 1-6 alkylNR 1 R 2 , —NR a S(O) 2 C 1-6 alkylNR 1 R 2 ;
  • R W and R E are each independently selected from:
  • each R W and R E is independently selected from:
  • each R W and R E is independently selected from:
  • each R W and R E is independently selected from:
  • each R W and R E is independently selected from:
  • each Z 1 is independently halo or —C 1-6 alkyl. In certain embodiments, each Z 1 is fluoro, chloro, or methyl.
  • each Z 1 is independently halo. In certain embodiments, each Z 1 is chloro.
  • each Z 3 is independently —C 1-6 alkyl, —O—C 1-6 alkyl, or —O—C 3-8 cycloalkyl. In certain embodiments, each Z 3 is methyl, methoxy, or cyclopropoxy.
  • each Z 3 is independently C 1-6 alkoxy. In certain embodiments, each Z 3 is methoxy.
  • neither of R E or R W is an optionally substituted fused 5,6-aromatic or 5,6-heteromatic ring. In certain embodiments, none of Z 1 , Z 3 , R N , R E or R W is an optionally substituted fused 5,6-aromatic or 5,6-heteromatic ring.
  • the compound as provided herein has a molecular weight of less than about 850 g/mol, or less than about 800 g/mol, or less than about 750 g/mol, or less than about 700 g/mol, or between about 500 to about 850 g/mol, or between about 500 to about 600 g/mol, or between about 550 to about 650 g/mol, or between about 600 to about 700 g/mol, or between about 650 to about 750 g/mol, or between about 700 to about 800 g/mol, or between about 750 to about 850 g/mol.
  • PD-1 and its ligand, PD-L1 are monomeric type I transmembrane proteins that play critical roles in T cell inhibition and exhaustion.
  • PD-L1 is composed of two extracellular immunoglobulin (Ig)-like domains whereas PD-1 is composed of a single extracellular Ig like domain and an intracellular tail.
  • Ig immunoglobulin
  • the crystal structure of the PD-1/PD-L1 complex reveals that PD-1 binds to PD-L1 with a 1:1 stoichiometry to form a monomeric complex (see, e.g., Cheng et al. J Biol Chem, 2013; 288(17); 11771-85, Lin et al.
  • phosphatases dephosphorylate TCR-associated proteins, resulting in alteration of downstream signaling including blocking phosphoinositide 3 kinase (PI3K) and Akt kinase activation, disrupting glucose metabolism, and inhibiting IL-2 and IFN- ⁇ secretion (see, e.g., Hofmeyer et al. J Biomed Biotechnol 2011; 2011; 451694, Latchman et al. Nature immunology, 2001; 2(3); 261-8).
  • PI3K blocking phosphoinositide 3 kinase
  • Akt kinase activation
  • Monoclonal antibodies developed for cancer immunotherapy binding to either PD-1 or PD-L1 have demonstrated significant response rates in patients, particularly for melanoma, non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC) and bladder cancer.
  • NSCLC non-small cell lung cancer
  • RNC renal cell carcinoma
  • Many of these studies have shown that blockade of the PD-1/PD-L1 axis leads to an enhancement in T cell cytotoxic activity at the tumor site (see, e.g., Wherry E J. Nat Immunol, 2011; 12(6); 492-9).
  • inhibition of this pathway has also shown promise for the control or elimination of chronic viral infections, such as HBV (see, e.g., Bengsch et al.
  • the present disclosure provides a compound of formula (I) useful as an inhibitor of PD-1, PD-F1 and/or the PD-1/PD-F1 interaction.
  • compounds disclosed herein inhibit the PD-1/PD-F1 interaction by dimerizing PD-F1, or by inducing or stabilizing PD-F1 dimer formation.
  • the present disclosure provides a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of formula (I) and a pharmaceutically acceptable carrier.
  • the present disclosure provides a compound of formula (I) for use in therapy.
  • a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof useful for treating an HBV infection or a condition in a patient that is amenable to treatment by inhibiting PD-1, PD-F1 or the PD-1/PD-F1 interaction.
  • the present disclosure provides a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, at least one additional therapeutic agent suitable for treating an HBV infection, and at least one pharmaceutically acceptable carrier or excipient.
  • the present disclosure provides a compound of formula (I) for use in the manufacture of a medicament for treating or eliminating HBV.
  • Elimination of HBV during acute infection is associated with the emergence of functional HBV-specific CD8 + T cells.
  • chronic infection is marked by the presence of dysfunctional HBV-specific CD8 + T cells that are unable to control viral infection (see, e.g., Boni et al. J Virol, 2007; 81(8); 4215-4225, Ferrari, Liver Int, 2015; 35; Suppl 1:121-8, Fisicaro et al., Gastroenterology, 2010; 138(2); 682-693, 93 e1-4, Guidotti et al. Cell, 2015; 161(3); 486-500).
  • Mechanisms that may contribute to the dysfunction of HBV-specific T cells in CHB include upregulation of inhibitory T cell receptors (e.g. PD-1, CTFA-4 and TIM-3), due to persistent high viral load and antigen levels (see, e.g., Boni et al. J Virol, 2007; 81(8); 4215-4225, Franzese et al. J Virol, 2005; 79(6); 3322-3328, Peppa et al. J Exp Med, 2013; 210(1); 99-114, Wherry E J. Nature immunology 2011; 12(6); 492-499).
  • inhibitory T cell receptors e.g. PD-1, CTFA-4 and TIM-3
  • the present disclosure provides a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, and at least one additional anticancer agent and at least one pharmaceutically acceptable excipient.
  • the present disclosure provides a method of treating cancer in a patient in need thereof, comprising administering a compound of formula (I) in combination with one or more check-point inhibitors selected from nivolumab, pembrolizumab, and artezolizumab.
  • the present disclosure provides a compound of formula (I) for use in the manufacture of a medicament for treating cancer.
  • a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof useful for the treatment of cancer or a condition in a patient that is amenable to treatment by inhibiting PD-1, PD-L1 or the PD-1/PD-L1 interaction.
  • Cancers that may be treated with the compounds of formula (I) disclosed herein include pancreatic cancer, bladder cancer, colorectal cancer, breast cancer, prostate cancer, renal cancer, hepatocellular cancer, lung cancer, ovarian cancer, cervical cancer, gastric cancer, esophageal cancer, head and neck cancer, melanoma, neuroendocrine cancer, CNS cancer, brain cancer, bone cancer, soft tissue sarcoma, non-small cell lung cancer, small-cell lung cancer and colon cancer.
  • a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof useful for the treatment of cancer or a condition in a patient that is amenable to treatment by inhibiting PD-1, PD-L1 or the PD-1/PD-L1 interaction including, but not limited to, lymphoma, multiple myeloma, and leukemia.
  • Additional diseases or conditions include, but are not limited to acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), myelodysplastic syndrome (MDS), myeloproliferative disease (MPD), chronic myeloid leukemia (CML), multiple myeloma (MM), non-Hodgkin's lymphoma (NHL), mantle cell lymphoma (MCL), follicular lymphoma, Waldestrom's macroglobulinemia (WM), T-cell lymphoma, B-cell lymphoma and diffuse large B-cell lymphoma (DLBCL).
  • ALL acute lymphocytic leukemia
  • AML acute myeloid leukemia
  • CLL chronic lymphocytic leukemia
  • SLL small lymphocytic lymphoma
  • MDS myelodysplastic syndrome
  • MDS myeloprol
  • administering refers to the delivery of one or more therapeutic agents to a patient.
  • the administration is a monotherapy wherein a compound of formula (I) is the only active ingredient administered to the patient in need of therapy.
  • the administration is co-administration such that two or more therapeutic agents are delivered together during the course of the treatment.
  • two or more therapeutic agents may be co-formulated into a single dosage form or “combined dosage unit”, or formulated separately and subsequently combined into a combined dosage unit, as is typically for intravenous administration or oral administration as a mono or bilayer tablet or capsule.
  • the compound of formula (I) or a pharmaceutically acceptable salt thereof is administered to a human patient in need thereof in an effective amount, such as, from about 0.1 mg to about 1000 mg per day of said compound.
  • the effective amount is from about 0.1 mg to about 200 mg per day.
  • the effective amount is from about 1 mg to about 100 mg per day.
  • the effective amount is about 1 mg, about 3 mg, about 5 mg, about 10 mg, about 15 mg, about 18 mg, about 20 mg, about 30 mg, about 40 mg, about 60 mg, about 80 mg, or about 100 mg per day.
  • the compound of formula (I) or a pharmaceutically acceptable salt thereof and at least one additional anticancer agent is administered to a human patient in need thereof in an effective amount of each agent, independently from about 0.1 mg to about 1000 mg per compound or formulation per day per compounds. In one embodiment, the effective amount of the combination treatment of a compound of formula (I) and an additional compound is independently from about 0.1 mg to about 200 mg per compound per day. In one embodiment, the effective amount of the combination treatment of a compound of formula (I) and an additional compound is independently from about 1 mg to about 100 mg per compound per day.
  • the effective amount of the combination treatment of a compound of formula (I) and an additional compound is for each component, about 1 mg, about 3 mg, about 5 mg, about 10 mg, about 15 mg, about 18 mg, about 20 mg, about 30 mg, about 40 mg, about 60 mg, about 80 mg, about 100 mg, about 200 mg, or about 500 mg each per day.
  • the compound of formula (I) and/or a combination of the compound of formula (I) and an additional anticancer agent or a pharmaceutically acceptable salt thereof is administered once a day.
  • the compound of formula (I) and/or an additional anticancer agent or a pharmaceutically acceptable salt thereof is administered as a loading dose of from about 10 mg to about 500 mg per compound on the first day and each day or on alternate days or weekly for up to a month followed by a regular regimen of a compound of formula (I) and/or one or more additional anticancer agents or therapies.
  • the maintenance dose may be 1-500 mg daily or weekly for each component of a multi component drug regimen.
  • a qualified care giver or treating physician is aware of what dose regimen is best for a particular patient or particular presenting conditions and will make appropriate treating regimen decisions for that patient.
  • the qualified caregiver is able to tailor a dose regimen of the compound of formula (I) and/or an additional agent(s) as disclosed herein to fit with the particular needs of the patient.
  • the amount of the compound of formula (I), or a pharmaceutically acceptable salt thereof and the amount of an additional agent actually administered will usually be determined by a physician, in light of the relevant circumstances, including the condition(s) to be treated, the chosen route of administration, the actual compound (e.g., salt or free base) administered and its relative activity, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
  • Co-administration may also include administering component drugs e.g., one on more compounds of formula (I) and one or more additional (e.g., a second, third, fourth or fifth) anticancer or other therapeutic agent(s). Such combination of one on more compounds of formula (I) and one or more additional anticancer or other therapeutic agent(s) may be administered simultaneously or in sequence (one after the other) within a reasonable period of time of each administration (e.g., about 1 minute to 24 hours) depending on the pharmacokinetic and/or pharmacodynamics properties of each agent or the combination. Co-administration may also involve treatment with a fixed combination wherein agents of the treatment regimen are combinable in a fixed dosage or combined dosage medium e.g., solid, liquid or aerosol. In one embodiment, a kit may be used to administer the drug or drug components.
  • component drugs e.g., one on more compounds of formula (I) and one or more additional (e.g., a second, third, fourth or fifth) anticancer or other therapeutic agent(s).
  • one embodiment of the present disclosure is a method of treating a disease amenable to treatment with a PD-1, PD-L1 inhibitor or a PD-1/PD-L1 interaction inhibitor e.g., cancer, comprising administering therapeutically effective amounts of formulations of one on more compounds of formula (I) and one or more additional anticancer agents, including for example, via a kit to a patient in need thereof. It will be understood that a qualified care giver will administer or direct the administration of a therapeutically effective amount of any of the compound(s) or combinations of compounds of the present disclosure.
  • Intravenous administration is the administration of substances directly into a vein, or “intravenously.” Compared with other routes of administration, the intravenous (IV) route is a faster way to deliver fluids and medications throughout the body.
  • An infusion pump can allow precise control over the flow rate and total amount of medication delivered. However, in cases where a change in the flow rate would not have serious consequences, or if pumps are not available, the drip is often left to flow simply by placing the bag above the level of the patient and using the clamp to regulate the rate. Alternatively, a rapid infuser can be used if the patient requires a high flow rate and the IV access device is of a large enough diameter to accommodate it.
  • intermittent infusion is used which does not require additional fluid. It can use the same techniques as an intravenous drip (pump or gravity drip), but after the complete dose of medication has been given, the tubing is disconnected from the IV access device.
  • Some medications are also given by IV push or bolus, meaning that a syringe is connected to the IV access device and the medication is injected directly (slowly, if it might irritate the vein or cause a too-rapid effect).
  • compound(s) or combination of compounds described herein may be administered by IV administration alone or in combination with administration of certain components of the treatment regimen by oral or parenteral routes.
  • Oral administration is a route of administration where a substance is taken through the mouth, and includes buccal, sub labial, and sublingual administration, as well as enteral administration and that through the respiratory tract, unless made through e.g., tubing so the medication is not in direct contact with any of the oral mucosa.
  • Typical form for the oral administration of therapeutic agents includes the use of tablets or capsules.
  • compound(s) or combination of compounds described herein may be administered by oral route alone or in combination with administration of certain components of the treatment regimen by IV or parenteral routes.
  • compositions contemplated by the present disclosure comprise, in addition to a carrier, the compound of formula (I), or a pharmaceutically acceptable salt thereof, or a combination of compound of formula (I), or a pharmaceutically acceptable salt thereof, optionally in combination with an additional agent such as for example, ipilimumab, or a pharmaceutically acceptable salt thereof.
  • compositions contemplated by the present disclosure may also be intended for administration by injection and include aqueous solutions, oil suspensions, emulsions (with sesame oil, corn oil, cottonseed oil, or peanut oil) as well as elixirs, mannitol, dextrose, or a sterile aqueous solution, and similar pharmaceutical vehicles.
  • Aqueous solutions in saline are also conventionally used for injection.
  • Ethanol, glycerol, propylene glycol, liquid polyethylene glycol, and the like (and suitable mixtures thereof), cyclodextrin derivatives, and vegetable oils may also be employed.
  • the proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and/or by the use of surfactants.
  • a coating such as lecithin
  • surfactants for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
  • Sterile injectable solutions are prepared by incorporating the component compound(s) in the required amount in the appropriate solvent with various other ingredients as enumerated above or as required, followed by filtered sterilization.
  • dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above.
  • the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient(s) plus any additional desired ingredient from a previously sterile-filtered solution thereof.
  • the active ingredient is usually diluted by an excipient or carrier and/or enclosed or mixed with such a carrier that may be in the form of a capsule, sachet, paper or other container.
  • an excipient serves as a diluent, it can be a solid, semi-solid, or liquid material (as above), which acts as a vehicle, carrier or medium for the active ingredient.
  • compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 20% by weight of the active compounds, soft and hard gelatin capsules, sterile injectable solutions, and sterile packaged powders.
  • excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, sterile water, syrup, and methyl cellulose.
  • the formulations can additionally include: lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy-benzoates; sweetening agents; and flavoring agents.
  • compositions of the disclosure may be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.
  • sustained release formulations are used.
  • Controlled release drug delivery systems for oral administration include osmotic pump systems and dissolutional systems containing polymer-coated reservoirs or drug-polymer matrix formulations.
  • compositions are preferably formulated in a unit dosage form.
  • unit dosage forms or “combined dosage unit” refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of one or more of the active materials (e.g., compound (I), optionally in combination with an additional agent calculated to produce the desired effect, in association with a suitable pharmaceutical excipient in for example, a tablet, capsule, ampoule or vial for injection.
  • each active agent actually administered will be determined by a physician, in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compounds administered and their relative activity, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
  • the principal active ingredient(s) is/are mixed with a pharmaceutical excipient to form a solid pre-formulation composition containing a homogeneous mixture of a compound of the present disclosure.
  • a pharmaceutical excipient for preparing solid compositions such as tablets, the principal active ingredient(s) is/are mixed with a pharmaceutical excipient to form a solid pre-formulation composition containing a homogeneous mixture of a compound of the present disclosure.
  • these pre-formulation compositions as homogeneous, it is meant that the active ingredient(s) are dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules.
  • the tablets or pills comprising compound of formula (I) or a pharmaceutically acceptable salt thereof of the present disclosure optionally in combination with the second agent may be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action, or to protect from the acidic conditions of the stomach.
  • the tablet or pill can comprise an inner dosage and an outer dosage element, the latter being in the form of an envelope over the former.
  • the inner dosage element may comprise the compound (I) and the outer dosage element may comprise the second or additional agent or vice versa.
  • the combined dosage unit may be side by side configuration as in a capsule or tablet where one portion or half of the tablet or capsule is filled with a formulation of the compound of formula (I) while the other portion or half of the table or capsule comprises the additional agent
  • enteric layers or coatings such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.
  • materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.
  • One of ordinary skill in the art is aware of techniques and materials used in the manufacture of dosages of formulations disclosed herein.
  • sustained release formulation or “extended release formulation” is a formulation which is designed to slowly release a therapeutic agent into the body over an extended period of time
  • immediate release formulation is a formulation which is designed to quickly release a therapeutic agent into the body over a shortened period of time.
  • the immediate release formulation may be coated such that the therapeutic agent is only released once it reaches the desired target in the body (e.g., the stomach).
  • One of ordinary skill in the art is able to develop sustained release formulations of the presently disclosed compounds without undue experimentation.
  • compound(s) or combination of compounds described herein may be delivered via sustained released formulations alone or in combination with administration of certain components of the treatment regimen by oral, IV or parenteral routes.
  • a lyophilized formulation may also be used to administer a compound of formula (I) singly or in combination with an additional anticancer agent.
  • a compound of formula (I) singly or in combination with an additional anticancer agent.
  • One of skill in the art is aware of how to make and use lyophilized formulations of drug substances amenable to lyophilization.
  • Spray-dried formulation may also be used to administer a compound of formula (I) singly or in combination with an additional anti-cancer agent.
  • a compound of formula (I) singly or in combination with an additional anti-cancer agent.
  • One of skill in the art is aware of how to make and use spray-dried formulations of drug substances amenable to spray-drying.
  • Other known formulation techniques may also be employed to formulate a compound or combination of compounds disclosed herein.
  • Articles of manufacture comprising a container in which a compound of formula (I) or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable carrier are contained are provided.
  • the article of manufacture may be a bottle, vial, ampoule, single-use disposable applicator, or the like, containing the pharmaceutical composition provided in the present disclosure.
  • the container may be formed from a variety of materials, such as glass or plastic and in one aspect also contains a label on, or associated with, the container which indicates directions for use in the treatment of cancer or inflammatory conditions.
  • the active ingredient may be packaged in any material capable of providing reasonable chemical and physical stability, such as an aluminum foil bag.
  • Unit dosage forms of the pharmaceutical composition comprising a compound of formula (I), or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable carrier are also provided.
  • Any pharmaceutical composition provided in the present disclosure may be used in the articles of manufacture, the same as if each and every composition were specifically and individually listed for use an article of manufacture.
  • kits that includes a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof; a label, and/or instructions for use of the compound in the treatment of a disease or condition mediated by PD-1, PD-L1 activity or PD-1/PD-L1 interaction.
  • the instructions are directed to use of the pharmaceutical composition for the treatment of cancer, including for example, leukemia or lymphoma.
  • the cancer is acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), myelodysplastic syndrome (MDS), myeloproliferative disease (MPD), chronic myeloid leukemia (CML), multiple myeloma (MM), indolent non-Hodgkin's lymphoma (iNHL), refractory iNHL, non-Hodgkin's lymphoma (NHL), mantle cell lymphoma (MCL), follicular lymphoma, Waldestrom's macroglobulinemia (WM), T-cell lymphoma, B-cell lymphoma, and diffuse large B-cell lymphoma (DLBCL).
  • ALL acute lymphocytic leukemia
  • the cancer is T-cell acute lymphoblastic leukemia (T-ALL), or B-cell acute lymphoblastic leukemia (B-ALL).
  • T-ALL T-cell acute lymphoblastic leukemia
  • B-ALL B-cell acute lymphoblastic leukemia
  • the non-Hodgkin lymphoma encompasses the indolent B-cell diseases that include, for example, follicular lymphoma, lymphoplasmacytic lymphoma, Waldenstrom macroglobulinemia, and marginal zone lymphoma, as well as the aggressive lymphomas that include, for example, Burkitt lymphoma, diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL).
  • the cancer is indolent non-Hodgkin's lymphoma (iNHL)
  • the instructions are directed to use of the pharmaceutical composition for the treatment of an autoimmune disease.
  • an autoimmune disease include asthma, rheumatoid arthritis, multiple sclerosis, and lupus.
  • an article of manufacture which includes a compound of formula (I) or a pharmaceutically acceptable salt, prodrug, or solvate thereof; and a container.
  • the container may be a vial, jar, ampoule, preloaded syringe, or an intravenous bag.
  • Formulations of compound(s) of the present disclosure i.e., a compound of formula (I) or the combination of a compound of formula (I) and an additional agent may be accomplished by admixing said compounds or salt thereof with one or more non-toxic, pharmaceutically acceptable vehicles, carriers and/or diluents and/or adjuvants collectively referred to herein as excipients or carrier materials.
  • the compounds of the disclosure may be administered by any suitable route, preferably in the form of a pharmaceutical composition adapted to such route, and in a therapeutically effective dose.
  • the compounds or the combination of compounds for the disclosure may be delivered orally, mucosally, parenterally, including intravascularly, intravenously, intraperitoneally, subcutaneously, intramuscularly, and intranasally in dosage formulations containing conventional pharmaceutical excipients.
  • the combination of a compound formula (I), or a pharmaceutically acceptable salt thereof, and an additional agent useful for the treatment of cancer may be formulated in a fixed dose or combined dose formulation in a tablet, capsule or premixed IV solution.
  • the fixed dose combination preferably comprises of compound formula (I), and an additional anticancer agent.
  • Other fixed dose formulations may include premixed liquids, suspensions, elixirs, aerosolized sprays or patch presentations.
  • fixed dose or combined dose formulations are synonymous with simultaneous co-administration of the active ingredients of the compound (I) and at least one additional agent.
  • the one or more therapeutic agents include, but are not limited to, an inhibitor, agonist, antagonist, ligand, modulator, stimulator, blocker, activator or suppressor of a gene, ligand, receptor, protein, factor such as Abelson murine leukemia viral oncogene homolog 1 gene (ABL, such as ABL1), Acetyl-CoA carboxylase (such as ACC1/2), activated CDC kinase (ACK, such as ACK1), Adenosine deaminase, adenosine receptor (such as A2B, A2a, A3), Adenylate cyclase, ADP ribosyl cyclase-1, adrenocorticotropic hormone receptor (ACTH), Aero
  • a method of treating cancer and/or diseases or symptoms that co-present or are exacerbated or triggered by the cancer comprises administering to a patient in need thereof an effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof, optionally in combination with an additional agent (e.g., a second, third, fourth or fifth active agent) which can be useful for treating a cancer, an allergic disorder and/or an autoimmune and/or inflammatory disease, and/or an acute inflammatory reaction incident to or co-presenting with a cancer.
  • an additional agent e.g., a second, third, fourth or fifth active agent
  • Treatment with the second, third, fourth or fifth active agent may be prior to, concomitant with, or following treatment with a compound of formula (I) or a pharmaceutically acceptable salt thereof.
  • a compound of formula (I) or a pharmaceutically acceptable salt thereof is combined with another active agent in a single dosage form.
  • Suitable antitumor or anticancer therapeutics that may be used in combination with a compound of formula (I) or a pharmaceutically acceptable salt thereof include, but are not limited to, chemotherapeutic agents, for example mitomycin C, carboplatin, taxol, cisplatin, paclitaxel, etoposide, doxorubicin, or a combination comprising at least one of the foregoing chemotherapeutic agents. Radiotherapeutic antitumor agents may also be used, alone or in combination with chemotherapeutic agents.
  • a compound of formula (I) or a pharmaceutically acceptable salt thereof can be useful as chemo-sensitizing agents, and thus, can be useful in combination with other chemotherapeutic drugs, in particular, drugs that induce apoptosis.
  • the present disclosure provides a method for increasing sensitivity of cancer cells to chemotherapy, comprising administering to a patient in need of or undergoing chemotherapy, a chemotherapeutic agent together with a compound of formula (I), or a pharmaceutically acceptable salt thereof in an amount sufficient to increase the sensitivity of cancer cells to the chemotherapeutic agent.
  • the compounds described herein may be used or combined with one or more of a chemotherapeutic agent, an anti-cancer agent, an anti-angiogenic agent, an anti-fibrotic agent, an immunotherapeutic agent, a therapeutic antibody, a bispecific antibody and “antibody-like” therapeutic protein (such as DARTs®, Duobodies®, Bites®, XmAbs®, TandAbs®, Fab derivatives), an antibody-drug conjugate (ADC), a radiotherapeutic agent, an anti-neoplastic agent, an anti-proliferation agent, an oncolytic virus, a gene modifier or editor (such as CRISPR/Cas9, zinc finger nucleases or synthetic nucleases, TALENs), a CAR (chimeric antigen receptor) T-cell immunotherapeutic agent, an engineered T cell receptor (TCR-T), or any combination thereof.
  • a chemotherapeutic agent an anti-cancer agent, an anti-angiogenic agent, an anti-fibrotic agent, an immuno
  • therapeutic agents may be in the forms of compounds, antibodies, polypeptides, or polynucleotides.
  • the application provides a product comprising a compound described herein and an additional therapeutic agent as a combined preparation for simultaneous, separate, or sequential use in therapy.
  • chemotherapeutic agent or “chemotherapeutic” (or “chemotherapy” in the case of treatment with a chemotherapeutic agent) is meant to encompass any non-proteinaceous (i.e., non-peptidic) chemical compound useful in the treatment of cancer.
  • chemotherapeutic agents include but not limited to: alkylating agents such as thiotepa and cyclophosphamide (CYTOXAN®); alkyl sulfonates such as busulfan, improsulfan, and piposulfan; aziridines such as benzodepa, carboquone, meturedepa, and uredepa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, triethylenephosphoramide, triethylenethiophosphoramide, and trimemylolomelamine; acetogenins, especially bullatacin and bullatacinone; a camptothecin, including synthetic analog topotecan; bryostatin, callystatin; CC-1065, including its adozelesin, carzelesin, and bizelesin synthetic analogs; cryptophycins, particularly cryptophycin 1 and cryptophycin 8; dolastatin; duocarmycin,
  • Therapeutic agents may be categorized by their mechanism of action into, for example, the following groups:
  • anti-metabolites/anti-cancer agents such as pyrimidine analogs floxuridine, capecitabine, cytarabine, CPX-351 (liposomal cytarabine, daunorubicin), and TAS-118;
  • antiproliferative/antimitotic agents including natural products, such as vinca alkaloids (vinblastine, vincristine) and microtubule disruptors such as taxane (paclitaxel, docetaxel), vinblastin, nocodazole, epothilones, vinorelbine (NAVELBINE®), and epipodophyllotoxins (etoposide, teniposide);
  • vinca alkaloids vinblastine, vincristine
  • microtubule disruptors such as taxane (paclitaxel, docetaxel), vinblastin, nocodazole, epothilones, vinorelbine (NAVELBINE®), and epipodophyllotoxins (etoposide, teniposide);
  • DNA damaging agents such as actinomycin, amsacrine, busulfan, carboplatin, chlorambucil, cisplatin, cyclophosphamide (CYTOXAN®), dactinomycin, daunorubicin, doxorubicin, epirubicin, iphosphamide, melphalan, merchlorethamine, mitomycin C, mitoxantrone, nitrosourea, procarbazine, taxol, Taxotere, teniposide, etoposide, and triethylenethiophosphoramide;
  • DNA damaging agents such as actinomycin, amsacrine, busulfan, carboplatin, chlorambucil, cisplatin, cyclophosphamide (CYTOXAN®), dactinomycin, daunorubicin, doxorubicin, epirubicin, iphosphamide, melphalan, merchlorethamine
  • DNA-hypomethylating agents such as guadecitabine (SGI-110), ASTX727;
  • antibiotics such as dactinomycin, daunorubicin, doxorubicin, idarubicin, anthracyclines, mitoxantrone, bleomycins, plicamycin (mithramycin);
  • enzymes such as L-asparaginase which systemically metabolizes L-asparagine and deprives cells which do not have the capacity to synthesize their own asparagine;
  • DNAi oligonucleotides targeting Bcl-2 such as PNT2258;
  • HIV latent human immunodeficiency virus
  • asparaginase stimulators such as crisantaspase (Erwinase®) and GRASPA (ERY-001, ERY-ASP), calaspargase pegol;
  • pan-Trk, ROS1 and ALK inhibitors such as entrectinib, TPX-0005;
  • anaplastic lymphoma kinase (ALK) inhibitors such as alectinib, ceritinib;
  • antiproliferative/antimitotic alkylating agents such as nitrogen mustard cyclophosphamide and analogs (melphalan, chlorambucil, hexamethylmelamine, thiotepa), alkyl nitrosoureas (carmustine) and analogs, streptozocin, and triazenes (dacarbazine);
  • antiproliferative/antimitotic antimetabolites such as folic acid analogs (methotrexate);
  • platinum coordination complexes cisplatin, oxiloplatinim, and carboplatin
  • procarbazine hydroxyurea
  • mitotane and aminoglutethimide
  • hormones hormones, hormone analogs (estrogen, tamoxifen, goserelin, bicalutamide, and nilutamide), and aromatase inhibitors (letrozole and anastrozole);
  • anticoagulants such as heparin, synthetic heparin salts, and other inhibitors of thrombin;
  • fibrinolytic agents such as tissue plasminogen activator, streptokinase, urokinase, aspirin, dipyridamole, ticlopidine, and clopidogrel;
  • immunosuppressives such as tacrolimus, sirolimus, azathioprine, and mycophenolate;
  • growth factor inhibitors and vascular endothelial growth factor inhibitors
  • fibroblast growth factor inhibitors such as FPA14;
  • anti-VEGFR antibodies such as IMC-3C5, GNR-011, tanibirumab;
  • anti-VEGF/DDL4 antibodies such as ABT-165;
  • anti-cadherins antibodies such as HKT-288;
  • anti-CD70 antibodies such as AMG-172;
  • anti-leucine-rich repeat containing 15 (LRRC15) antibodies such as ABBV-085, and ARGX-110;
  • angiotensin receptor blockers nitric oxide donors
  • antisense oligonucleotides such as AEG35156, IGNIS-KRAS-2.5Rx, EZN-3042, RX-0201, IONIS-AR-2.5Rx, BP-100 (prexigebersen), IONIS-STAT3-2.5Rx;
  • DNA interference oligonucleotides such as PNT2258, AZD-9150;
  • anti-ANG-2 antibodies such as MEDI3617, and LY3127804;
  • anti-ANG-1/ANG-2 antibodies such as AMG-780
  • anti-MET/EGFR antibodies such as LY3164530
  • anti-EGFR antibodies such as ABT-414, AMG-595, necitumumab, ABBV-221, depatuxizumab mafodotin (ABT-414), tomuzotuximab, ABT-806, vectibix, modotuximab, RM-1929;
  • anti-CSFIR antibodies such as emactuzumab, LY3022855, AMG-820, FPA-008 (cabiralizumab);
  • anti-CD40 antibodies such as RG7876, SEA-CD40, APX-005M, ABBV-428;
  • anti-endoglin antibodies such as TRC105 (carotuximab);
  • anti-CD45 antibodies such as 131I-BC8 (lomab-B);
  • anti-HER3 antibodies such as LJM716, GSK2849330;
  • anti-HER2 antibodies such as margetuximab, MEDI4276, BAT-8001;
  • anti-HLA-DR antibodies such as IMMU-114;
  • anti-IE-3 antibodies such as JNJ-56022473
  • anti-OX40 antibodies such as MEDI6469, MEDI6383, MEDI0562 (tavolixizumab), MOXR0916, PF-04518600, RG-7888, GSK-3174998, INCAGN1949, BMS-986178, GBR-8383, ABBV-368;
  • anti-EphA3 antibodies such as KB-004
  • anti-CD20 antibodies such as obinutuzumab, IGN-002;
  • anti-CD20/CD3 antibodies such as RG7828
  • anti-CD37 antibodies such as AGS67E, otlertuzumab (TRU-016);
  • anti-ENPP3 antibodies such as AGS-16C3F;
  • anti-EGFR-3 antibodies such as LY3076226, B-701;
  • anti-FGFR-2 antibodies such as GAL-F2;
  • anti-C5 antibodies such as ALXN-1210
  • anti-CD27 antibodies such as varlilumab (CDX-1127);
  • anti-TROP-2 antibodies such as IMMU-132
  • anti-NKG2a antibodies such as monalizumab
  • anti-VISTA antibodies such as HMBD-002
  • anti-PVRIG antibodies such as COM-701
  • anti-EpCAM antibodies such as VB4-845;
  • anti-BCMA antibodies such as GSK-2857916
  • anti-CEA antibodies such as RG-7813
  • CD3 antibodies such as MGD015;
  • anti-folate receptor alpha antibodies such as IMGN853
  • MCL-1 inhibitors such as AMG-176, AMG-397, S-64315, and AZD-5991, 483-LM, A-1210477, UMI-77, JKY-5-037;
  • epha2 inhibitors such as MM-310;
  • anti LAG-3 antibodies such as relatlimab (ONO-4482), LAG-525, MK-4280, REGN-3767;
  • raf kinase/VEGFR inhibitors such as RAF-265;
  • poly comb protein (FED) inhibitors such as MAK683;
  • FAP anti-fibroblast activation protein
  • IL-2R antibodies such as RG7461
  • FAP anti-fibroblast activation protein
  • TRAIL-R2 antibodies such as RG7386
  • anti-fucosyl-GM1 antibodies such as BMS-986012
  • p38 MAP kinase inhibitors such as ralimetinib
  • PRMT1 inhibitors such as MS203;
  • Sphingosine kinase 2 (SK2) inhibitors such as opaganib
  • FLT3-ITD inhibitors such as BCI-332
  • Nuclear erythroid 2-related factor 2 stimulators such as omaveloxolone (RTA-408);
  • Tropomyosin receptor kinase (TRK) inhibitors such as LOXO-195, ONCO-7579;
  • anti-ICOS antibodies such as JTX-2011, GSK3359609;
  • TRAIL2 anti-DR5 antibodies, such as DS-8273
  • anti-GD2 antibodies such as APN-301;
  • IL-17 antibodies such as CJM-112;
  • anti-carbonic anhydrase IX antibodies such as TX-250;
  • anti-CD38-attenukine such as TAK573
  • anti-Mucin 1 antibodies such as gatipotuzumab
  • Mucin 1 inhibitors such as GO-203-2C
  • MARCKS protein inhibitors such as BIO-11006;
  • Folate antagonists such as arfolitixorin
  • Galectin-3 inhibitors such as GR-MD-02;
  • Phosphorylated P68 inhibitors such as RX-5902;
  • CD95/TNF modulators such as ofranergene obadenovec
  • PI3K/Akt/mTOR inhibitors such as ABTL-0812;
  • pan-PIM kinase inhibitors such as INCB-053914;
  • IL-12 gene stimulators such as EGEN-001, tavokinogene telseplasmid
  • Heat shock protein HSP90 inhibitors such as TAS-116, PEN-866;
  • VEGF/HGF antagonists such as MP-0250
  • SYK tyrosine kinase/FLT3 tyrosine kinase inhibitors such as TAK-659;
  • SYK tyrosine kinase/JAK tyrosine kinase inhibitors such as ASN-002;
  • FLT3 tyrosine kinase such as FF-10101
  • FMS-like tyrosine kinase-3 ligand such as CDX-301;
  • FLT3/MEK1 inhibitors such as E-6201;
  • IL-24 antagonist such as AD-IL24
  • RIG-I agonists such as RGT-100
  • Aerolysin stimulators such as topsalysin
  • P-Glycoprotein 1 inhibitors such as HM-30181A
  • CSF-1 antagonists such as ARRY-382, BLZ-945;
  • CCR8 inhibitors such as 1-309, SB-649701, HG-1013, RAP-310;
  • anti-Mesothelin antibodies such as SEL-403
  • Thymidine kinase stimulators such as aglatimagene besadenovec
  • Polo-like kinase 1 inhibitors such as PCM-075;
  • TLR-7 agonists such as TMX-101 (imiquimod);
  • NEDD8 inhibitors such as pevonedistat (MLN-4924), TAS-4464;
  • Pleiotropic pathway modulators such as avadomide (CC-122);
  • FoxMl inhibitors such as thiostrepton
  • Anti-MUC1 antibodies such as Mab-AR-20.5;
  • anti-CD38 antibodies such as isatuximab, MOR-202;
  • UBA1 inhibitors such as TAK-243;
  • Src tyrosine kinase inhibitors such as VAL-201;
  • VDAC/HK inhibitors such as VDA-1102
  • BRAF/PI3K inhibitors such as ASN-003;
  • Elf4a inhibitors such as rohinitib, eFT226;
  • TP53 gene stimulators such as ad-p53
  • PD-L1/EGFR inhibitors such as GNS-1480;
  • Retinoic acid receptor alpha (RARa) inhibitors such as SY-1425;
  • SIRT3 inhibitors such as YC8-02
  • Stromal cell-derived factor 1 ligand inhibitors such as olaptesed pegol (NOX-A12);
  • IL-4 receptor modulators such as MDNA-55;
  • Arginase-I stimulators such as pegzilarginase
  • Topoisomerase I inhibitor/hypoxia inducible factor-1 alpha inhibitors such as PEG-SN38 (firtecan pegol);
  • Hypoxia inducible factor-1 alpha inhibitors such as PT-2977, PT-2385;
  • CD122 agonists such as NKTR-214;
  • p53 tumor suppressor protein stimulators such as kevetrin
  • Mdm4/Mdm2 p53-binding protein inhibitors such as ALRN-6924;
  • KSP kinesin spindle protein
  • CD80-fc fusion protein inhibitors such as FPT-155;
  • MML mixed lineage leukemia
  • Liver x receptor agonists such as RGX-104;
  • IL-10 agonists such as AM-0010
  • EGFR/ErbB-2 inhibitors such as varlitinib
  • VEGFR/PDGFR inhibitors such as vorolanib
  • IRAK4 inhibitors such as CA-4948;
  • anti-TLR-2 antibodies such as OPN-305;
  • Calmodulin modulators such as CBP-501;
  • Glucocorticoid receptor antagonists such as relacorilant (CORE-125134);
  • Second mitochondria-derived activator of caspases (SMAC) protein inhibitors such as BI-891065;
  • Lactoferrin modulators such as LTX-315;
  • Kit tyrosine kinase/PDGF receptor alpha antagonists such as DCC-2618;
  • KIT inhibitors such as PLX-9486
  • Exportin 1 inhibitors such as eltanexor
  • EGFR/ErbB2/Ephb4 inhibitors such as tesevatinib
  • anti-CD33 antibodies such as IMGN-779
  • anti-KMA antibodies such as MDX-1097;
  • anti-TIM-3 antibodies such as TSR-022, LY-3321367, MBG-453;
  • anti-CD55 antibodies such as PAT-SC1;
  • anti-PSMA antibodies such as ATL-101
  • anti-CD100 antibodies such as VX-15;
  • anti-EPHA3 antibodies such as fibatuzumab
  • anti-Erbb antibodies such as CDX-3379, HLX-02, seribantumab;
  • anti-APRIL antibodies such as BION-1301;
  • Anti-Tigit antidbodies such as BMS-986207, RG-6058;
  • CHST15 gene inhibitors such as STNM-01;
  • RAS inhibitors such as NECO-100
  • Somatostatin receptor antagonist such as OPS-201
  • CEBPA gene stimulators such as MTL-501;
  • DKK3 gene modulators such as MTG-201;
  • p70s6k inhibitors such as MSC2363318A
  • Methionine aminopeptidase 2 (MetAP2) inhibitors such as M8891, APE-1202;
  • arginine N-methyltransferase 5 inhibitors such as GSK-3326595
  • anti-programmed cell death protein 1 antibodies, such as nivolumab (OPDIVO®, BMS-936558, MDX-1106), pembrolizumab (KEYTRUDA®, MK-3477, SCH-900475, lambrolizumab, CAS Reg. No.
  • pidilizumab PF-06801591, BGB-A317, GLS-010 (WBP-3055), AK-103 (HX-008), MGA-012, BI-754091, REGN-2810 (cemiplimab), AGEN-2034, JS-001, JNJ-63723283, genolimzumab (CBT-501), LZM-009, BCD-100, LY-3300054, SHR-1201, BAT-1306, and anti-programmed death-ligand 1 (anti-PD-L1) antibodies such as BMS-936559, atezolizumab (MPDL3280A), durvalumab (MEDI4736), avelumab, CK-301, (MSB0010718C), MEDI0680, CX-072, CBT-502, PDR-001 (spartalizumab), TSR-042 (dostarlimab), JTX-4014, BGB-A333
  • PD-L1/VISTA antagonists such as CA-170
  • anti-PD-L1/TGF ⁇ antibodies such as M7824
  • anti-transferrin antibodies such as CX-2029;
  • anti-IL-8 Interleukin-8 antibodies, such as HuMax-Inflam;
  • ATM (ataxia telangiectasia) inhibitors such as AZD0156;
  • CHK1 inhibitors such as GDC-0575, LY2606368 (prexasertib), SRA737, RG7741 (CHK1/2);
  • CXCR4 antagonists such as BL-8040, LY2510924, burixafor (TG-0054), X4P-002, X4P-001-IO;
  • EXH2 inhibitors such as GSK2816126
  • HER2 inhibitors such as neratinib, tucatinib (ONT-380);
  • KDM1 inhibitors such as ORY-1001, IMG-7289, INCB-59872, GSK-2879552;
  • CXCR2 antagonists such as AZD-5069
  • GM-CSF antibodies such as lenzilumab
  • DNA dependent protein kinase inhibitors such as MSC2490484A (nedisertib), VX-984, AsiDNA (DT-01);
  • PLC protein kinase C
  • SESD selective estrogen receptor downregulators
  • fulvestrant Faslodex®
  • RG6046 RG6047
  • elacestrant RAD-1901
  • AZD9496 Selective estrogen receptor downregulators
  • SERCAs selective estrogen receptor covalent antagonists
  • SARM selective androgen receptor modulator
  • TGF-beta transforming growth factor-beta
  • galunisertib galunisertib
  • TGF-beta antibodies such as LY3022859, NIS793, and XOMA 089;
  • bispecific antibodies such as MM-141 (IGF-1/ErbB3), MM-111 (Erb2/Erb3), JNJ-64052781 (CD19/CD3), PRS-343 (CD-137/HER2), AFM26 (BCMA/CD16A), JNJ-61186372 (EGFR/cMET), AMG-211 (CEA/CD3), RG7802 (CEA/CD3), ERY-974 (CD3/GPC3) vancizumab (angiopoietins/VEGF), PF-06671008 (Cadherins/CD3), AFM-13 (CD16/CD30), APVG436 (CD123/CD3), flotetuzumab (CD123/CD3), REGN-1979 (CD20/CD3), MCLA-117 (CD3/CLEC12A), MCLA-128 (HER2/HER3), JNJ-0819, JNJ-7564 (CD3/heme), AMG-757 (DLL3-CD
  • mutant selective EGER inhibitors such as PF-06747775, EGF816 (nazartinib), ASP8273, ACEA-0010, and BI-1482694;
  • anti-GITR glucocorticoid-induced tumor necrosis factor receptor-related protein antibodies
  • MEDI1873, FPA-154, INCAGN-1876, TRX-518, BMS-986156, MK-1248, and GWN-323 GITR antibodies
  • DDL3 anti-delta-like protein ligand 3
  • anti-clusterin antibodies such as AB-16B5;
  • EFNA4 anti-Ephrin-A4
  • anti-RANKL antibodies such as denosumab
  • anti-mesothelin antibodies such as BMS-986148, and anti-MSLN-MMAE;
  • NaP2B anti-sodium phosphate cotransporter 2B
  • anti-c-Met antibodies such as ABBV-399
  • adenosine A2A receptor antagonists such as CPI-444, AZD-4635, preladenant, and PBF-509;
  • alpha-ketoglutarate dehydrogenase (KGDH) inhibitors such as CPI-613;
  • XPOl inhibitors such as selinexor (KPT-330);
  • IDH2 isocitrate dehydrogenase 2 (IDH2) inhibitors, such as enasidenib (AG-221);
  • IDH1 inhibitors such as AG-120, and AG-881 (IDH1 and IDH2), IDH-305, and BAY-1436032;
  • interleukin-3 receptor (IL-3R) modulators such as SL-401;
  • Arginine deiminase stimulators such as pegargiminase (ADI-PEG-20);
  • antibody-drug conjugates such as MLN0264 (anti-GCC, guanylyl cyclase C), T-DM1 (trastuzumab emtansine, Kadcycla), milatuzumab-doxorubicin (hCD74-DOX), brentuximab vedotin, DCDT2980S, polatuzumab vedotin, SGN-CD70A, SGN-CD19A, inotuzumab ozogamicin, lorvotuzumab mertansine, SAR3419, isactuzumab govitecan, enfortumab vedotin (ASG-22ME), ASG-15ME, DS-8201 ((trastuzumab deruxtecan), 225Ac-lintuzumab, U3-1402, 177Lu-tetraxetan-tetuloma, tisotumab vedo
  • claudin-18 inhibitors such as claudiximab
  • ⁇ -catenin inhibitors such as CWP-291;
  • anti-CD73 antibodies such as MEDI-9447 (oleclumab), CPX-006, IPH-53, BMS-986179, and NZV-930;
  • CD73 antagonists such as AB-680, PSB-12379, PSB-12441, PSB-12425, and CB-708;
  • CD39/CD73 antagonists such as PBF-1662;
  • CCR chemokine receptor 2
  • PF-04136309 PF-04136309
  • CCX-872 BMS-813160
  • thymidylate synthase inhibitors such as ONX-0801;
  • ALK/ROS1 inhibtors such as lorlatinib
  • tankyrase inhibitors such as G007-LK
  • Mdm2 p53-binding protein inhibitors such as CMG-097, and HDM-201;
  • c-PIM inhibitors such as PIM447
  • BRAE inhibitors such as dabrafenib, vemurafenib, encorafenib (LGX818), and PLX8394;
  • SK2 sphingosine kinase-2
  • Yeliva® sphingosine kinase-2
  • cell cycle inhibitors such as selumetinib (MEK1/2), and sapacitabine;
  • AKT inhibitors such as MK-2206, ipatasertib, afuresertib, AZD5363, and ARQ-092, capivasertib, and triciribine;
  • CTLA-4 cytotoxic T-lymphocyte protein-4 inhibitors, such as tremelimumab, AGEN-1884, and BMS-986218;
  • c-MET inhibitors such as AMG-337, savolitinib, tivantinib (ARQ-197), capmatinib, and tepotinib, ABT-700, AG213, AMG-208, JNJ-38877618 (OMCO-1), merestinib, and HQP-8361;
  • c-Met/VEGFR inhibitors such as BMS-817378, and TAS-115;
  • c-Met/RON inhibitors such as BMS-777607
  • BRAF/EGFR inhibitors such as BGB-283;
  • bcr/abl inhibitors such as rebastinib, asciminib;
  • MNK1/MNK2 inhibitors such as eFT-508;
  • mTOR inhibitor/cytochrome P450 3A4 stimulators such as TYME-88 lysine-specific demethylase-1 (ESDI) inhibitors, such as CC-90011;
  • Pan-RAF inhibitors such as LY3009120, LXH254, and TAK-580;
  • Raf/MEK inhibitors such as RG7304
  • CSF1R/KIT and FLT3 inhibitors such as pexidartinib (PLX3397);
  • kinase inhibitors such as vandetanib
  • E selectin antagonists such as GMI-1271
  • differentiation inducers such as tretinoin
  • EGER epidermal growth factor receptor
  • topoisomerase inhibitors such as doxorubicin, daunorubicin, dactinomycin, eniposide, epirubicin, etoposide, idarubicin, irinotecan, mitoxantrone, pixantrone, sobuzoxane, topotecan, irinotecan, MM-398 (liposomal irinotecan), vosaroxin and GPX-150, aldoxorubicin, AR-67, mavelertinib, AST-2818, avitinib (ACEA-0010), and irofulven (MGI-114);
  • doxorubicin daunorubicin, dactinomycin, eniposide, epirubicin, etoposide, idarubicin, irinotecan, mitoxantrone, pixantrone, sobuzoxane, topotecan, irinote
  • corticosteroids such as cortisone, dexamethasone, hydrocortisone, methylprednisolone, prednisone, and prednisolone;
  • nucleoside analogs such as DFP-10917;
  • Axl inhibitors such as BGB-324 (bemcentinib), and SLC-0211;
  • BET inhibitors such as INCB-054329, INCB057643, TEN-010, AZD-5153, ABT-767, BMS-986158, CC-90010, GSK525762 (molibresib), NHWD-870, ODM-207, GSK-2820151, GSK-1210151A, ZBC246, ZBC260, ZEN3694, FT-1101, RG-6146, CC-90010, mivebresib, BI-894999, PLX-2853, PLX-51107, CPI-0610, and GS-5829;
  • PARP inhibitors such as olaparib, rucaparib, veliparib, talazoparib, ABT-767, and BGB-290;
  • proteasome inhibitors such as ixazomib, carfilzomib (Kyprolis®), marizomib;
  • glutaminase inhibitors such as CB-839;
  • vaccines such as peptide vaccine TG-01 (RAS), GALE-301, GALE-302, nelipepimut-s, SurVaxM, DSP-7888, TPIV-200, PVX-410, VXL-100, DPX-E7, ISA-101, 6MHP, OSE-2101, galinpepimut-S, SVN53-67/M57-KLH, IMU-131; bacterial vector vaccines such as CRS-207/GVAX, axalimogene filolisbac (ADXS11-001); adenovirus vector vaccines such as nadofaragene firadenovec; autologous Gp96 vaccine; dendritic cells vaccines, such as CVactm, stapuldencel-T, eltrapuldencel-T, SL-701, BSK01TM, rocapuldencel-T (AGS-003), DCVAC, CVacTM, stapuldencel-T, eltrapulden
  • anti-DLL4 delta like ligand 4 antibodies, such as demcizumab;
  • STAT-3 inhibitors such as napabucasin (BBI-608);
  • ATPase p97 inhibitors such as CB-5083;
  • SMO smoothened receptor inhibitors
  • Odomzo® sonidegib, formerly LDE-225
  • LEQ506 vismodegib
  • BMS-833923 BMS-833923
  • glasdegib PF-04449913
  • LY2940680 itraconazole
  • interferon alpha ligand modulators such as interferon alpha-2b, interferon alpha-2a biosimilar (Biogenomics), ropeginterferon alfa-2b (AOP-2014, P-1101, PEG IFN alpha-2b), Multiferon (Alfanative, Viragen), interferon alpha 1b, Roferon-A (Canferon, Ro-25-3036), interferon alfa-2a follow-on biologic (Biosidus)(Inmutag, Inter 2A), interferon alfa-2b follow-on biologic (Biosidus—Bioferon, Citopheron, Ganapar, Beijing Kawin Technology—Kaferon), Alfaferone, pegylated interferon alpha-lb, peginterferon alfa-2b follow-on biologic (Amega), recombinant human interferon alpha-lb, recombinant human interferon alpha-2a, recombinant human interferon alpha-2b, veltuzumab
  • interferon gamma ligand modulators such as interferon gamma (OH-6000, Ogamma 100);
  • IF-6 receptor modulators such as tocilizumab, siltuximab, and AS-101 (CB-06-02, IVX-O-101);
  • Telomerase modulators such as, tertomotide (GV-1001, HR-2802, Riavax) and imetelstat (GRN-163, JNJ-63935937);
  • DNA methyltransferases inhibitors such as temozolomide (CCRG-81045), decitabine, guadecitabine (S-110, SGI-110), KRX-0402, RX-3117, RRx-001, and azacitidine;
  • DNA gyrase inhibitors such as pixantrone and sobuzoxane
  • Bcl-2 family protein inhibitors such as ABT-263, venetoclax (ABT-199), ABT-737, and AT-101;
  • Notch inhibitors such as FY3039478 (crenigacestat), tarextumab (anti-Notch2/3), and BMS-906024;
  • anti-myostatin inhibitors such as landogrozumab
  • hyaluronidase stimulators such as PEGPH-20;
  • Wnt pathway inhibitors such as SM-04755, PRI-724, and WNT-974;
  • gamma-secretase inhibitors such as PF-03084014, MK-0752, and RCO-4929097;
  • Grb-2 growth factor receptor bound protein-2 inhibitors, such as BP1001;
  • TRAIF pathway-inducing compounds such as ONC201, and ABBV-621;
  • Focal adhesion kinase inhibitors such as VS-4718, defactinib, and GSK2256098;
  • hedgehog inhibitors such as saridegib, sonidegib (FDE225), glasdegib and vismodegib;
  • Aurora kinase inhibitors such as alisertib (MLN-8237), and AZD-2811, AMG-900, barasertib, and ENMD-2076;
  • HSPB1 modulators heat shock protein 27, HSP27, such as brivudine, and apatorsen;
  • ATR inhibitors such as BAY-937, AZD6738, AZD6783, VX-803, VX-970 (berzosertib) and VX-970;
  • mTOR inhibitors such as sapanisertib and vistusertib (AZD2014), and ME-344;
  • mTOR/PI3K inhibitors such as gedatolisib, GSK2141795, omipalisib, and RG6114;
  • Hsp90 inhibitors such as AUY922, onalespib (AT13387), SNX-2112, SNX5422;
  • mdm2 oncogene inhibitors such as DS-3032b, RG7775, AMG-232, HDM201, and idasanutlin (RG7388);
  • CD137 agonists such as urelumab, utomilumab (PF-05082566);
  • STING agonists such as ADU-S100 (MIW-815), SB-11285, MK-1454, SR-8291, AdVCA0848, GSK-532, SYN-STING, MSA-1, SR-8291;
  • EGER inhibitors such as FGF-401, INCB-054828, BAY-1163877, AZD4547, JNJ-42756493, LY2874455, and Debio-1347;
  • FASN fatty acid synthase
  • anti-KIR monoclonal antibodies such as lirilumab (IPH-2102), and IPH-4102;
  • antigen CD19 inhibitors such as MOR208, MEDI-551, AFM-11, and inebilizumab;
  • CD44 binders such as A6
  • P2A protein phosphatease 2A inhibitors, such as LB-100;
  • CYP17 inhibitors such as seviteronel (VT-464), ASN-001, ODM-204, CFG920, and abiraterone acetate;
  • RXR agonists such as IRX4204
  • hedgehog/smoothened (hh/Smo) antagonists such as taladegib, and patidegib;
  • complement C3 modulators such as Imprime PGG
  • IL-15 agonists such as ALT-803, NKTR-255, and hetIL-15;
  • EZH2 (enhancer of zeste homolog 2) inhibitors, such as tazemetostat, CPI-1205, GSK-2816126;
  • oncolytic viruses such as pelareorep, CG-0070, MV-NIS therapy, HSV-1716, DS-1647, VCN-01, ONCOS-102, TBI-1401, tasadenoturev (DNX-2401), vocimagene amiretrorepvec, RP-1, CVA21, Celyvir, LOAd-703, and OBP-301;
  • DOT1L histone methyltransferase inhibitors, such as pinometostat (EPZ-5676);
  • toxins such as Cholera toxin, ricin, Pseudomonas exotoxin, Bordetella pertussis adenylate cyclase toxin, diphtheria toxin, and caspase activators;
  • DNA plasmids such as BC-819;
  • WEE1 inhibitors such as AZD1775 (adavosertib);
  • Rho kinase (ROCK) inhibitors such as AT13148, and KD025;
  • ERK inhibitors such as GDC-0994, LY3214996, and MK-8353;
  • IAP inhibitors such as ASTX660, debio-1143, birinapant, APG-1387, and LCL-161;
  • RNA polymerase inhibitors such has lurbinectedin (PM-1183), and CX-5461;
  • tubulin inhibitors such as PM-184, BAL-101553 (lisavanbulin), OXI-4503, fluorapacin (AC-0001), and plinabulin;
  • Toll-like receptor 4 (TL4) agonists such as G100, GSK1795091, and PEP A-10;
  • elongation factor 1 alpha 2 inhibitors such as plitidepsin
  • CD95 inhibitors such as APG-101, APCO-010, and asunercept;
  • WT1 inhibitors such as DSP-7888
  • splicing factor 3B subunit 1 (SF3B1) inhibitors such as H3B-8800 PDGFR alpha/KIT mutant-specific inhibitors such as BLU-285;
  • SHP-2 inhibitors such as TN0155 (SHP-099), RMC-4550, JAB-3068, and RMC-4630; or
  • retinoid Z receptor gamma (ROR ⁇ ) agonists such as LYC-55716.
  • chemotherapeutic drugs that can be used in combination with compounds of formula (I), or a pharmaceutically acceptable salt thereof include topoisomerase I inhibitors (camptothesin or topotecan), topoisomerase II inhibitors (e.g., daunomycin and etoposide), alkylating agents (e.g., cyclophosphamide, melphalan and BCNU), tubulin directed agents (e.g., taxol and vinblastine), and biological agents (e.g., antibodies such as anti CD20 antibody, IDEC 8, immunotoxins, and cytokines).
  • topoisomerase I inhibitors camptothesin or topotecan
  • topoisomerase II inhibitors e.g., daunomycin and etoposide
  • alkylating agents e.g., cyclophosphamide, melphalan and BCNU
  • tubulin directed agents e.g., taxol and vinblastine
  • biological agents e.g.,
  • the compound(s) of formula (I), or a pharmaceutically acceptable salt thereof is used in combination with Rituxan® (Rituximab) and/or other agents that work by selectively depleting CD20+ B-cells.
  • Anti-inflammatory agents include but are not limited to NSAIDs, non-specific and COX-2 specific cyclooxgenase enzyme inhibitors, gold compounds, corticosteroids, methotrexate, tumor necrosis factor receptor (TNF) receptors antagonists, immunosuppressants and methotrexate.
  • NSAIDs include, but are not limited to ibuprofen, flurbiprofen, naproxen and naproxen sodium, diclofenac, combinations of diclofenac sodium and misoprostol, sulindac, oxaprozin, diflunisal, piroxicam, indomethacin, etodolac, fenoprofen calcium, ketoprofen, sodium nabumetone, sulfasalazine, tolmetin sodium, and hydroxychloroquine.
  • NSAIDs also include COX-2 specific inhibitors (i.e., a compound that inhibits COX-2 with an IC 50 that is at least 50-fold lower than the IC 50 for COX-1) such as celecoxib, valdecoxib, lumiracoxib, etoricoxib and/or rofecoxib.
  • COX-2 specific inhibitors i.e., a compound that inhibits COX-2 with an IC 50 that is at least 50-fold lower than the IC 50 for COX-1
  • celecoxib valdecoxib
  • lumiracoxib etoricoxib
  • etoricoxib etoricoxib
  • rofecoxib rofecoxib
  • the anti-inflammatory agent is a salicylate.
  • Salicylates include but are not limited to acetylsalicylic acid or aspirin, sodium salicylate, and choline and magnesium salicylates.
  • the anti-inflammatory agent may also be a corticosteroid.
  • the corticosteroid may be chosen from cortisone, dexamethasone, methylprednisolone, prednisolone, prednisolone sodium phosphate, and prednisone.
  • the anti-inflammatory therapeutic agent is a gold compound such as gold sodium thiomalate or auranofin.
  • the anti-inflammatory agent is a metabolic inhibitor such as a dihydrofolate reductase inhibitor, such as methotrexate or a dihydroorotate dehydrogenase inhibitor, such as leflunomide.
  • a metabolic inhibitor such as a dihydrofolate reductase inhibitor, such as methotrexate or a dihydroorotate dehydrogenase inhibitor, such as leflunomide.
  • the compound(s) of formula (I), or a pharmaceutically acceptable salt thereof is used in combination with at least one anti-inflammatory compound that is an anti-C5 monoclonal antibody (such as eculizumab or pexelizumab), a TNF antagonist, such as entanercept, or infliximab, which is an anti-TNF alpha monoclonal antibody.
  • an anti-C5 monoclonal antibody such as eculizumab or pexelizumab
  • a TNF antagonist such as entanercept, or infliximab, which is an anti-TNF alpha monoclonal antibody.
  • the compound(s) of formula (I), or a pharmaceutically acceptable salt thereof is used in combination with at least one active agent that is an immunosuppressant compound such as methotrexate, leflunomide, cyclosporine, tacrolimus, azathioprine, or mycophenolate mofetil.
  • an immunosuppressant compound such as methotrexate, leflunomide, cyclosporine, tacrolimus, azathioprine, or mycophenolate mofetil.
  • the compound(s) of formula (I), or a pharmaceutically acceptable salt thereof is used in combination with one or more phosphatidylinositol 3-kinase (PI3K) inhibitors, including for example, Compounds A, B and C (whose structures are provided below), or a pharmaceutically acceptable salt thereof.
  • PI3K phosphatidylinositol 3-kinase
  • PI3K inhibitors include inhibitors of PI3K ⁇ , PI3K ⁇ , PI3K ⁇ , PI3K ⁇ , and/or pan-PI3K.
  • PI3K inhibitors include, but are not limited to, ACP-319, AEZA-129, AMG-319, AS252424, AZD8186, BAY 10824391, BEZ235, buparlisib (BKM120), BYL719 (alpelisib), CH5132799, copanlisib (BAY 80-6946), duvelisib, GDC-0941, GDC-0980, GSK2636771, GSK2269557, idelalisib (Zydelig®), IPI-145, IPI-443, IPI-549, KAR4141, LY294002, LY3023414, MENU 17, OXY111A, PA799, PX-866, RG7604, rigosertib, RP5090, taselisib, TG100115, TGR-1202 (umbralisib), TGX221, WX-037, X-339, X-4
  • the compound(s) of formula (I) may be used in combination with Spleen Tyrosine Kinase (SYK) Inhibitors.
  • SYK inhibitors include, but are not limited to, 6-(1H-indazol-6-yl)-N-(4-morpholinophenyl)imidazo[1,2-a]pyrazin-8-amine, BAY-61-3606, cerdulatinib (PRT-062607), entospletinib, fostamatinib (R788), HMPL-523, NVP-QAB 205 AA, R112, R343, tamatinib (R406), and those described in U.S. Pat. No. 8,450,321 (Gilead Connecticut) and those described in U.S. 2015/0175616.
  • TKIs may be used in combination with Tyrosine-kinase Inhibitors (TKIs).
  • TKIs may target epidermal growth factor receptors (EGFRs) and receptors for fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and vascular endothelial growth factor (VEGF).
  • EGFRs epidermal growth factor receptors
  • FGF fibroblast growth factor
  • PDGF platelet-derived growth factor
  • VEGF vascular endothelial growth factor
  • TKIs include, but are not limited to, afatinib, ARQ-087, asp5878, AZD3759, AZD4547, bosutinib, brigatinib, cabozantinib, cediranib, crenolanib, dacomitinib, dasatinib, dovitinib, E-6201, erdafitinib, erlotinib, gefitinib, gilteritinib (ASP-2215), FP-1039, HM61713, icotinib, imatinib, KX2-391 (Src), lapatinib, lestaurtinib, midostaurin, nintedanib, ODM-203, osimertinib (AZD-9291), ponatinib, poziotinib, quizartinib, radotinib, rociletinib,
  • TKIs include, but are not limited to, afatinib, ARQ-087 (derazantinib), asp5878, AZD3759, AZD4547, bosutinib, brigatinib, cabozantinib, cediranib, crenolanib, dacomitinib, dasatinib, dovitinib, E-6201, erdafitinib, erlotinib, gefitinib, gilteritinib (ASP-2215), FP-1039, HM61713, icotinib, imatinib, KX2-391 (Src), lapatinib, lestaurtinib, lenvatinib, midostaurin, nintedanib, ODM-203, osimertinib (AZD-9291), ponatinib, poziotinib,
  • the compound(s) of formula (I), or a pharmaceutically acceptable salt thereof is used in combination with one or more inhibitors of lysyl oxidase-like 2 (LOXL) or a substance that binds to LOXL, including for example, a humanized monoclonal antibody (mAb) with an immunoglobulin IgG4 isotype directed against human LOXL2.
  • LOXL inhibitors include inhibitors of LOXL1, LOXL2, LOXL3, LOXL4, and/or LOXL5. Examples of LOXL inhibitors include, but are not limited to, the antibodies described in WO 2009/017833 (Arresto Biosciences).
  • LOXL2 inhibitors include, but are not limited to, the antibodies described in WO 2009/017833 (Arresto Biosciences), WO 2009/035791 (Arresto Biosciences), and WO 2011/097513 (Gilead Biologies).
  • the compounds of formula (I) may be used in combination with Toll-like receptor 8 (TLR8) inhibitors.
  • TLR8 inhibitors include, but are not limited to, E-6887, IMCO-4200, IMC 1-8400 , IMCO-9200, MCT-465, MEDI-9197, motolimod, resiquimod, VTX-1463, and VTX-763.
  • the compounds of formula (I) may be used in combination with Toll-like receptor (TLR9) inhibitors.
  • TLR9 inhibitors include, but are not limited to, AST-008, IMCO-2055, IMCO-2125, lefitolimod, litenimod, MGN-1601, and PUL-042.
  • the compound of formula (I) is useful for the treatment of cancer in combination with a BTK (Bruting's Tyrosine kinase) inhibitor.
  • BTK Brady's Tyrosine kinase
  • An example of such BTK inhibitor is a compound disclosed in U.S. Pat. No. 7,405,295.
  • BTK inhibitors include, but are not limited to, (S)-6-amino-9-(1-(but-2-ynoyl)pyrrolidin-3-yl)-7-(4-phenoxyphenyl)-7H-purin-8(9H)-one, acalabrutinib (AGP-196), BGB-3111, HM71224, ibrutinib, M-2951 (evobrutinib), tirabrutinib (ONCO-4059), PRN-1008, spebrutinib (CC-292), and TAK-020.
  • BTK inhibitors include, but are not limited to, CB988, M7583, vecabrutinib, ARQ-531, SHR-1459, DTRMWXHS-12, and TAS-5315.
  • the compound of formula (I) is useful for the treatment of cancer in combination with a BET inhibitor.
  • a BET inhibitor is a compound disclosed in WO2014/182929, the entire contents of which are incorporated herein by reference.
  • the compound of formula (I) is useful for the treatment of cancer in combination with a TBK (Tank Binding kinase) inhibitor.
  • TBK Target Binding kinase
  • An example of such TBK inhibitor is a compound disclosed in WO2016/049211.
  • the compound of formula (I) is useful for the treatment of cancer in combination with a MMP inhibitor.
  • MMP inhibitors include inhibitors of MMP1 through 10. Additional examples of MMP9 inhibitors include, but are not limited to, marimastat (BB-2516), cipemastat (Ro 32-3555), GS-5745 (andecaliximab) and those described in WO 2012/027721 (Gilead Biologies).
  • the compound of formula (I) is useful for the treatment of cancer in combination with a OX40 inhibitor.
  • OX40 inhibitor is a compound disclosed in U.S. Pat. No. 8,450,460, the entire contents of which are incorporated herein by reference.
  • the compound of formula (I) is useful for the treatment of cancer in combination with a JAK-1 inhibitor.
  • JAK-1 inhibitor is a compound disclosed in WO2008/109943.
  • JAK inhibitors include, but are not limited to, AT9283, AZD1480, baricitinib, BMS-911543, fedratinib, filgotinib (GLPG0634), gandotinib (LY2784544), INCB039110 (itacitinib), lestaurtinib, momelotinib (CYT0387), NS-018, pacritinib (SB1518), peficitinib (ASP015K), ruxolitinib, tofacitinib (formerly tasocitinib), INCB052793, and XL019.
  • the compound of formula (I) is useful for the treatment of cancer in combination with an Indoleamine-pyrrole-2,3-dioxygenase (IDO) inhibitors.
  • IDO Indoleamine-pyrrole-2,3-dioxygenase
  • An example of such IDO inhibitor is a compound disclosed in WO2016/186967.
  • the compounds of formula (I) are useful for the treatment of cancer in combination with IDO1 inhibitors including but not limited to BLV-0801, epacadostat, F-001287, GBV-1012, GBV-1028, GDC-0919, indoximod, NKTR-218, NLG-919-based vaccine, PF-06840003, pyranonaphthoquinone derivatives (SN-35837), resminostat, SBLK-200802, and shIDO-ST.
  • IDO1 inhibitors include, but are not limited to, BMS-986205, EOS-200271, KHK-2455, LY-3381916.
  • the compound of formula (I) is useful for the treatment of cancer in combination with a Mitogen-activated Protein Kinase (MEK) Inhibitors.
  • MEK inhibitors useful for combination treatment with a compound(s) of formula (I) includes antroquinonol, binimetinib, cobimetinib (GDC-0973, XL-518), MT-144, selumetinib (AZD6244), sorafenib, trametinib (GSK1120212), uprosertib and trametinib.
  • Other exemplary MEK inhibitors include PD-0325901, pimasertib, LTT462, AS703988, CC-90003, and refametinib.
  • the compound of formula (I) is useful for the treatment of cancer in combination with an Apoptosis Signal-Regulating Kinase (ASK) Inhibitors:
  • ASK inhibitors include but are not limited to those described in WO 2011/008709 (Gilead Sciences) and WO 2013/112741 (Gilead Sciences) including, for example, selonsertib.
  • the compounds of formula (I) may be combined with Cluster of Differentiation 47 (CD47) inhibitors.
  • CD47 Cluster of Differentiation 47
  • CD47 inhibitors include, but are not limited to anti-CD47 mAbs (Vx-1004), anti-human CD47 mAbs (CNTCO-7108), CC-90002, CC-90002-ST-001, humanized anti-CD47 antibody (Hu5F9-G4), NI-1701, NI-1801, RCT-1938, and TTI-621.
  • CDK inhibitors include inhibitors of CDK 1, 2, 3, 4, 6 and 9, such as abemaciclib, alvocidib (HMR-1275, flavopiridol), AT-7519, FLX-925, FEE001, palbociclib, ribociclib, rigosertib, selinexor, UCN-01, and TG-02.
  • Other exemplary CDK inhibitors include dinaciclib, ibrance, SY1365, CT-7001, SY-1365, G1T38, milciclib, and trilaciclib.
  • the compounds of formula (I) may be combined with Discoidin Domain Receptor (DDR) Inhibitors for the treatment of cancer.
  • DDR inhibitors include inhibitors of DDR1 and/or DDR2. Examples of DDR inhibitors include, but are not limited to, those disclosed in WO 2014/047624 (Gilead Sciences), US 2009-0142345 (Takeda Pharmaceutical), US 2011-0287011 (Oncomed Pharmaceuticals), WO 2013/027802 (Chugai Pharmaceutical), and WO 2013/034933 (Imperial Innovations).
  • HDAC Histone Deacetylase
  • HDAC Histone Deacetylase
  • Additional examples of HDAC inhibitors include, but are not limited to, abexinostat, ACY-241, AR-42, BEBT-908, belinostat, CKD-581, CS-055 (HBI-8000), CUDC-907 (fimepinostat), entinostat, givinostat, mocetinostat, panobinostat, pracinostat, quisinostat (JNJ-26481585), resminostat, ricolinostat, SHP-141, valproic acid (VAL-001), vorinostat.
  • Further examples of HDAC inhibitors include, but are not limited to, tinostamustine, remetinostat, entinostat.
  • the compounds of formula (I) may be combined with a Hematopoietic Progenitor Kinase 1 (HPK1) inhibitor.
  • HPK1 inhibitors include, but are not limited to, those described in WO18183956, WO18183964, WO18167147, and WO 16090300.
  • Anti-hormonal Agents Also included in the definition of “chemotherapeutic agent” are anti-hormonal agents such as anti-estrogens and selective estrogen receptor modulators (SERMs), inhibitors of the enzyme aromatase, anti-androgens, and pharmaceutically acceptable salts, acids or derivatives of any of the above that act to regulate or inhibit hormone action on tumors.
  • SERMs selective estrogen receptor modulators
  • anti-estrogens and SERMs include, for example, tamoxifen (including NOLVADEXTM), raloxifene, droloxifene, 4-hydroxytamoxifen, trioxifene, keoxifene, LY117018, onapristone, and toremifene (FARESTON®).
  • Inhibitors of the enzyme aromatase regulate estrogen production in the adrenal glands include 4(5)-imidazoles, aminoglutethimide, megestrol acetate (MEGACE®), exemestane, formestane, fadrozole, vorozole (RIVISOR®), letrozole (FEMARA®), and anastrozole (ARIMIDEX®).
  • anti-androgens examples include apalutamide, abiraterone, enzalutamide, flutamide, galeterone, nilutamide, bicalutamide, leuprolide, goserelin, ODM-201, APC-100, ODM-204.
  • progesterone receptor antagonist examples include onapristone.
  • Anti-angiogenic agents include, but are not limited to, retinoid acid and derivatives thereof, 2-methoxyestradiol, ANGIOSTATIN®, ENDOSTATIN®, regorafenib, necuparanib, suramin, squalamine, tissue inhibitor of metalloproteinase-1, tissue inhibitor of metalloproteinase-2, plasminogen activator inhibitor-1, plasminogen activator inbibitor-2, cartilage-derived inhibitor, paclitaxel (nab-paclitaxel), platelet factor 4, protamine sulphate (clupeine), sulphated chitin derivatives (prepared from queen crab shells), sulphated polysaccharide peptidoglycan complex (sp-pg), staurosporine, modulators of matrix metabolism including proline analogs such as 1-azetidine-2-carboxylic acid (LACA), cishydroxyproline, d,l-3,4-dehydroproline, thiaproline
  • anti-angiogenesis agents include antibodies, preferably monoclonal antibodies against these angiogenic growth factors: beta-FGF, alpha-FGF, FGF-5, VEGF isoforms, VEGF-C, HGF/SF, and Ang-1/Ang-2.
  • Anti-fibrotic agents include, but are not limited to, the compounds such as beta-aminoproprionitrile (BAPN), as well as the compounds disclosed in U.S. Pat. No. 4,965,288 relating to inhibitors of lysyl oxidase and their use in the treatment of diseases and conditions associated with the abnormal deposition of collagen and U.S. Pat. No. 4,997,854 relating to compounds which inhibit LOX for the treatment of various pathological fibrotic states, which are herein incorporated by reference. Further exemplary inhibitors are described in U.S. Pat. No. 4,943,593 relating to compounds such as 2-isobutyl-3-fluoro-, chloro-, or bromo-allylamine, U.S. Pat. Nos.
  • BAPN beta-aminoproprionitrile
  • Exemplary anti-fibrotic agents also include the primary amines reacting with the carbonyl group of the active site of the lysyl oxidases, and more particularly those which produce, after binding with the carbonyl, a product stabilized by resonance, such as the following primary amines: emylenemamine, hydrazine, phenylhydrazine, and their derivatives; semicarbazide and urea derivatives; aminonitriles such as BAPN or 2-nitroethylamine; unsaturated or saturated haloamines such as 2-bromo-ethylamine, 2-chloroethylamine, 2-trifluoroethylamine, 3-bromopropylamine, and p-halobenzylamines; and selenohomocysteine lactone.
  • primary amines reacting with the carbonyl group of the active site of the lysyl oxidases, and more particularly those which produce, after binding with the carbonyl, a product
  • anti-fibrotic agents are copper chelating agents penetrating or not penetrating the cells.
  • Exemplary compounds include indirect inhibitors which block the aldehyde derivatives originating from the oxidative deamination of the lysyl and hydroxylysyl residues by the lysyl oxidases.
  • Examples include the thiolamines, particularly D-penicillamine, and its analogs such as 2-amino-5-mercapto-5-methylhexanoic acid, D-2-amino-3-methyl-3-((2-acetamidoethyl)dithio)butanoic acid, p-2-amino-3-methyl-3-((2-aminoethyl)dithio)butanoic acid, sodium-4-((p-1-dimethyl-2-amino-2-carboxyethyl)dithio)butane sulphurate, 2-acetamidoethyl-2-acetamidoethanethiol sulphanate, and sodium-4-mercaptobutanesulphinate trihydrate.
  • the immunotherapeutic agents include and are not limited to therapeutic antibodies suitable for treating patients.
  • Some examples of therapeutic antibodies include abagovomab, ABP-980, adecatumumab, afutuzumab, alemtuzumab, altumomab, amatuximab, anatumomab, arcitumomab, bavituximab, bectumomab, bevacizumab, bivatuzumab, blinatumomab, brentuximab, cantuzumab, catumaxomab, CC49, cetuximab, citatuzumab, cixutumumab, clivatuzumab, conatumumab, dacetuzumab, dalotuzumab, daratumumab, detumomab, dinutuximab, drozitumab, duligot
  • the exemplified therapeutic antibodies may be further labeled or combined with a radioisotope particle such as indium-111, yttrium-90 (90Y-clivatuzumab), or iodine-131.
  • a radioisotope particle such as indium-111, yttrium-90 (90Y-clivatuzumab), or iodine-131.
  • Cancer Gene Therapy and Cell Therapy including the insertion of a normal gene into cancer cells to replace a mutated or altered gene; genetic modification to silence a mutated gene; genetic approaches to directly kill the cancer cells; including the infusion of immune cells designed to replace most of the patient's own immune system to enhance the immune response to cancer cells, or activate the patient's own immune system (T cells or Natural Killer cells) to kill cancer cells, or find and kill the cancer cells; genetic approaches to modify cellular activity to further alter endogenous immune responsiveness against cancer.
  • the genome editing system is selected from the group consisting of: a CRISPR/Cas9 system, a zinc finger nuclease system, a TALEN system, a homing endonucleases system, and a meganuclease system.
  • the immune effector cell is a T cell or an NK cell.
  • TCR-T cells are engineered to target tumor derived peptides present on the surface of tumor cells. Cells can be autologous or allogeneic.
  • the CAR comprises an antigen binding domain, a transmembrane domain, and an intracellular signaling domain.
  • the intracellular domain comprises a primary signaling domain, a costimulatory domain, or both of a primary signaling domain and a costimulatory domain.
  • the primary signaling domain comprises a functional signaling domain of one or more proteins selected from the group consisting of CD3 zeta, CD3 gamma, CD3 delta, CD3 epsilon, common FcR gamma (FCERIG), FcR beta (Fc Epsilon Rib), CD79a, CD79b, Fcgamma RIIa, DAP10, and DAP12.
  • the costimulatory domain comprises a functional domain of one or more proteins selected from the group consisting of CD27, CD28, 4-1BB (CD137), OX40, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (FFA-I), CD2, CD7, LIGHT, NKG2C, B7-H3, a ligand that specifically binds with CD83, CD8, ICAM-1, GITR, BAFFR, HVEM (LIGHTR), SFAMF7, NKp80 (KFRFI), CD160, CD19, CD4, CDSalpha, CDSbeta, IF2R beta, IF2R gamma, IF7R alpha, ITGA4, VFA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VFA-6, CD49f, ITGAD, CD 1 ld, ITGAE, CD103, ITGAF, CD 1 la, FFA-1, ITGAM, CD1 lb, ITGAX
  • the transmembrane domain comprises a transmembrane domain of a protein selected from the group consisting of the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, CD154, KIRDS2, OX40, CD2, CD27, LFA-1 (CD1 la, CD18), ICOS (CD278), 4-lBB (CD137), GITR, CD40, BAFFR, HVEM (LIGHTR), SLAMF7, NKpSO (KLRF1), CD160, CD19, IL2R beta, IL2R gamma, IL7R u, ITGA1, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD1 Id, ITGAE, CD103, ITGAL
  • the antigen binding domain binds a tumor antigen.
  • the tumor antigen is selected from the group consisting of: CD19; CD123; CD22; CD30; CD171; CS-1 (also referred to as CD2 subset 1, CRACC, SLAMF7, CD319, and 19A24); C-type lectin-like molecule-1 (CLL-1 or CLECLI); CD33; epidermal growth factor receptor variant III (EGFRvlll); ganglioside G2 (GD2); ganglioside GD3 (aNeuSAc(2-8)aNeuSAc(2-3)bDGaip(1-4)bDGIcp(1-1)Cer); TNF receptor family member B cell maturation (BCMA); Tn antigen ((Tn Ag) or (GalNAcu-Ser/Thr)); pro state-specific membrane antigen (PSMA); Receptor tyrosine kinase-like orphan receptor 1 (RORI); Fms-Like, Ty
  • the tumor antigen is selected from CD150, 5T4, ActRIIA, B7, BMCA, CA-125, CCNA1, CD123, CD126, CD138, CD14, CD148, CD15, CD19, CD20, CD200, CD21, CD22, CD23, CD24, CD25, CD26, CD261, CD262, CD30, CD33, CD362, CD37, CD38, CD4, CD40, CD40L, CD44, CD46, CD5, CD52, CD53, CD54, CD56, CD66a-d, CD74, CD8, CD80, CD92, CE7, CS-1, CSPG4, ED-B fibronectin, EGER, EGFRvIII, EGP-2, EGP-4, EPHa2, ErbB2, ErbB3, ErbB4, EBP, GD2, GD3, HER1-HER2 in combination, HER2-HER3 in combination, HERV-K, HIV-1 envelope glycoprotein gp120, HIV-1 envelope glycoprotein gp41,
  • Non limiting examples of cell therapies include Algenpantucel-L, Sipuleucel-T, (BPX-501) rivogenlecleucel U.S. Pat. No. 9,089,520, WO2016100236, AU-105, ACTR-087, activated allogeneic natural killer cells CNDO-109-AANK, MG-4101, AU-101, BPX-601, FATE-NK100, LFU-835 hematopoietic stem cells, Imilecleucel-T, baltaleucel-T, PNK-007, UCARTCS1, ET-1504, ET-1501, ET-1502, ET-190, CD19-ARTEMIS, ProHema, FT-1050-treated bone marrow stem cell therapy, CD4CARNK-92 cells, CryoStim, Alio Slim, lentiviral transduced huCART-meso cells, CART-22 cells, EGFRt/19-28z/4-lBBL CAR T cells, autologous 4H
  • Additional agents include those where the tumor targeting antigen is:
  • Alpha-fetoprotein such as ET-1402, and AFP-TCR
  • BCMA B cell maturation antigens
  • BCMA B cell maturation antigens
  • bb-2121 UCART-BCMA
  • ET-140 KITE-585
  • MCM-998 LCAR-B38M
  • CART-BCMA SEA-BCMA
  • BB212 UCART-BCMA
  • ET-140 UCART-BCMA
  • P-BCMA-101 P-BCMA-101
  • AUTCO-2 APRIL-CAR
  • Anti-CLL-1 antibodies such as KITE-796;
  • B7 homolog 6 such as CAR-NKp30 and CAR-B7H6;
  • B-lymphocyte antigen CD19 such as TBI-1501, CTL-119 huCART-19 T cells, JCAR-015 U.S. Pat. No. 7,446,190, JCAR-014, JCAR-017, (WO2016196388, WO2016033570, WO2015157386), axicabtagene ciloleucel (KTE-C19), U.S. Pat. Nos.
  • B-lymphocyte antigen CD20 such as ATTCK-20
  • B-lymphocyte cell adhesion such as UCART-22, and JCAR-018 (WO2016090190);
  • NY-ESCO-1 such as GSK-3377794, and TBI-1301;
  • Carbonic anhydrase such as DC-Ad-GMCAIX
  • Caspase 9 suicide gene such as CaspaCIDe DEI, and BPX-501;
  • CCR5 such as SB-728
  • CDwl23 such as MB-102, and UCART-123;
  • CD20m such as CBM-C20.1
  • CD4 such as ICG-122
  • CD30 such as CART30 (CBM-C30.1;
  • CD33 such as CIK-CAR.CD33;
  • CD38 such as T-007, UCART-38
  • CD40 ligand such as BPX-201
  • CEACAM protein 4 modulators such as MG7-CART
  • EBV targeted such as CMD-003;
  • EGER such as autologous 4H11-28z/fIL-12/EFGRt T cell
  • Endonuclease such as PGN-514, PGN-201;
  • Epstein-Barr virus specific T-lymphocytes such as TT-10;
  • Erbb2 such as CST-102, CIDeCAR
  • Ganglioside such as 4SCAR-GD2;
  • Glutamate carboxypeptidase II such as CIK-CAR.PSMA, CART-PSMA-TGF6RDN, and P-PSMA-101;
  • Glypican-3 such as TT-16, and GLYCAR
  • Hemoglobin such as PGN-236
  • Hepatocyte growth factor receptor such as anti-cMet RNA CAR T
  • Human papillomavirus E7 protein such as KITE-439;
  • Immunoglobulin gamma Fc receptor III such as ACTR087;
  • IE-12 such as DC-RTS-IL-12
  • IL-12 agonist/mucin 16 such as JCAR-020
  • IL-13 alpha 2 such as MB-101
  • IL-2 such as CST-101
  • K-Ras GTPase such as anti-KRAS G12V mTCR cell therapy
  • Neural cell adhesion molecule L1 L1CAM (CD171), such as JCAR-023;
  • Latent membrane protein 1/Latent membrane protein 2 such as Ad5f35-LMPd 1-2-transduced autologous dendritic cells
  • Melanoma associated antigen 10 such as MAGE-A10C796T MAGE-A10 TCR;
  • Melanoma associated antigen 3/Melanoma associated antigen 6 such as KITE-718;
  • Mesothelin such as CSG-MESO, and TC-210;
  • NKG2D such as NKR-2
  • Ntrkr1 tyrosine kinase receptor such as JCAR-024;
  • T cell receptors such as BPX-701, and IMCgp100;
  • T-lymphocyte such as TT-12
  • Tumor infiltrating lymphocytes such as LN-144, and LN-145;
  • Wilms tumor protein such as JTCR-016, and WT1-CTL;
  • any of the methods of treatment provided may be used to treat a subject (e.g., human) who has been diagnosed with or is suspected of having cancer.
  • a subject refers to a mammal, including, for example, a human.
  • the subject may be a human who exhibits one or more symptoms associated with cancer or hyperproliferative disease. In some embodiments, the subject may be a human who exhibits one or more symptoms associated with cancer. In some embodiments, the subject is at an early stage of a cancer. In other embodiments, the subject is at an advanced stage of cancer.
  • the subject may be a human who is at risk, or genetically or otherwise predisposed (e.g., risk factor) to developing cancer or hyperproliferative disease who has or has not been diagnosed.
  • an “at risk” subject is a subject who is at risk of developing cancer.
  • the subject may or may not have detectable disease, and may or may not have displayed detectable disease prior to the treatment methods described herein.
  • An at risk subject may have one or more so-called risk factors, which are measurable parameters that correlate with development of cancer, which are described herein.
  • a subject having one or more of these risk factors has a higher probability of developing cancer than an individual without these risk factor(s).
  • risk factors may include, for example, age, sex, race, diet, history of previous disease, presence of precursor disease, genetic (e.g., hereditary) considerations, and environmental exposure.
  • the subjects at risk for cancer include, for example, those having relatives who have experienced the disease, and those whose risk is determined by analysis of genetic or biochemical markers.
  • the subject may be a human who is undergoing one or more standard therapies, such as chemotherapy, radiotherapy, immunotherapy, surgery, or combination thereof.
  • one or more kinase inhibitors may be administered before, during, or after administration of chemotherapy, radiotherapy, immunotherapy, surgery or combination thereof.
  • the subject may be a human who is (i) substantially refractory to at least one chemotherapy treatment, or (ii) is in relapse after treatment with chemotherapy, or both (i) and (ii). In some of embodiments, the subject is refractory to at least two, at least three, or at least four chemotherapy treatments (including standard or experimental chemotherapies).
  • a “therapeutically effective amount” means an amount sufficient to modulate a specific pathway, and thereby treat a subject (such as a human) suffering an indication, or to alleviate the existing symptoms of the indication. Determination of a therapeutically effective amount is within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.
  • a therapeutically effective amount of a JAK inhibitor such as Compound A or ruxolitinib or pharmaceutically acceptable salt thereof
  • a therapeutically effective amount of PI3K inhibitor such as Compound B, Compound C, Compound D, or Compound E and pharmaceutically acceptable salt thereof
  • a therapeutically effective amount of Compound B or Compound C and a therapeutically effective amount of obinutuzumab may (i) reduce the number of cancer cells; (ii) reduce tumor size; (iii) inhibit, retard, slow to some extent, and preferably stop cancer cell infiltration into peripheral organs; (iv) inhibit (e.g., slow to some extent and preferably stop) tumor metastasis; (v) inhibit tumor growth; (vi) prevent or delay occurrence and/or recurrence of a tumor; and/or (vii) relieve to some extent one or more of the symptoms associated with the cancer.
  • the amount is sufficient to ameliorate, palliate, lessen, and/or delay one or more of symptoms of cancer.
  • the cancer is Burkitt's lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma (NHL), indolent non-Hodgkin's lymphoma (iNHL), refractory iNHL, multiple myeloma (MM), chronic myeloid leukemia (CML), acute lymphocytic leukemia (ALL), B-cell ALL, acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), myelodysplastic syndrome (MDS), myeloproliferative disease (MPD), mantle cell lymphoma (MCL), follicular lymphoma (LL), Waldestrom's macroglobulinemia (WM), T-cell lymphoma, B-cell lymphoma, diffuse large B-cell lymphoma (DLBCL), or marginal zone lymphoma (MZL).
  • NHL chronic myeloid
  • the cancer is minimal residual disease (MRD).
  • the cancer is selected from Hodgkin's lymphoma, non-Hodgkin's lymphoma (NHL), indolent non-Hodgkin's lymphoma (iNHL), and refractory iNHL.
  • the cancer is indolent non-Hodgkin's lymphoma (iNHL).
  • the cancer is refractory iNHL.
  • the cancer is chronic lymphocytic leukemia (CLL).
  • the cancer is diffuse large B-cell lymphoma (DLBCL).
  • the cancer is a solid tumor is selected from the group consisting of pancreatic cancer; bladder cancer; colorectal cancer; breast cancer, including metastatic breast cancer; prostate cancer, including androgen-dependent and androgen-independent prostate cancer; kidney or renal cancer, including, e.g., metastatic renal cell carcinoma; hepatocellular cancer; lung cancer, including, e.g., non-small cell lung cancer (NSCLC), bronchioloalveolar carcinoma (BAC), and adenocarcinoma of the lung; ovarian cancer, including, e.g., progressive epithelial or primary peritoneal cancer; cervical cancer; gastric cancer; esophageal cancer; head and neck cancer, including, e.g., squamous cell carcinoma of the head and neck; melanoma; neuroendocrine cancer, including metastatic neuroendocrine tumors; brain tumors, including, e.g., glioma, anaplastic oligodendroglioma, adult
  • the cancer stage includes but is not limited to early, advanced, locally advanced, remission, refractory, reoccurred after remission and progressive.
  • Some chemotherapy agents are suitable for treating lymphoma or leukemia. These agents include aldesleukin, alvocidib, amifostine trihydrate, aminocamptothecin, antineoplaston A10, antineoplaston AS2-1, anti-thymocyte globulin, arsenic trioxide, Bcl-2 family protein inhibitor ABT-263, beta alethine, BMS-345541, bortezomib (VELCADE®), bortezomib (VELCADE®, PS-341), bryostatin 1, bulsulfan, campath-1H, carboplatin, carfilzomib (Kyprolis®), carmustine, caspofungin acetate, CC-5103, chlorambucil, CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone), cisplatin, cladribine, clofarabine, curcumin, CVP (cyclo
  • radioimmunotherapy wherein a monoclonal antibody is combined with a radioisotope particle, such as indium-111, yttrium-90, and iodine-131.
  • a radioisotope particle such as indium-111, yttrium-90, and iodine-131.
  • combination therapies include, but are not limited to, iodine-131 tositumomab (BEXXAR®), yttrium-90 ibritumomab tiuxetan (ZEVALIN®), and BEXXAR® with CHOP.
  • Therapeutic procedures include peripheral blood stem cell transplantation, autologous hematopoietic stem cell transplantation, autologous bone marrow transplantation, antibody therapy, biological therapy, enzyme inhibitor therapy, total body irradiation, infusion of stem cells, bone marrow ablation with stem cell support, in vitro-treated peripheral blood stem cell transplantation, umbilical cord blood transplantation, immunoenzyme technique, low-LET cobalt-60 gamma ray therapy, bleomycin, conventional surgery, radiation therapy, and nonmyeloablative allogeneic hematopoietic stem cell transplantation.
  • Treatment of non-Hodgkin's lymphomas includes using monoclonal antibodies, standard chemotherapy approaches (e.g., CHOP, CVP, FCM, MCP, and the like), radioimmunotherapy, and combinations thereof, especially integration of an antibody therapy with chemotherapy.
  • standard chemotherapy approaches e.g., CHOP, CVP, FCM, MCP, and the like
  • radioimmunotherapy e.g., radioimmunotherapy, and combinations thereof, especially integration of an antibody therapy with chemotherapy.
  • unconjugated monoclonal antibodies for the treatment of NHL/B-cell cancers include rituximab, alemtuzumab, human or humanized anti-CD20 antibodies, lumiliximab, anti-TNF-related apoptosis-inducing ligand (anti-TRAIL), bevacizumab, galiximab, epratuzumab, SGN-40, and anti-CD74.
  • Examples of experimental antibody agents used in treatment of NHL/B-cell cancers include ofatumumab, ha20, PR0131921, alemtuzumab, galiximab, SGN-40, CHIR-12.12, epratuzumab, lumiliximab, apolizumab, milatuzumab, and bevacizumab.
  • Examples of standard regimens of chemotherapy for NHL/B-cell cancers include CHOP, FCM, CVP, MCP, R-CHOP, R-FCM, R-CVP, and R-MCP.
  • radioimmunotherapy for NHL/B-cell cancers examples include yttrium-90 ibritumomab tiuxetan (ZEVALIN®) and iodine-131 tositumomab (BEXXAR®).
  • MCE mantle cell lymphoma
  • combination chemotherapies such as CHOP, hyperCVAD, and FCM.
  • These regimens can also be supplemented with the monoclonal antibody rituximab to form combination therapies R-CHOP, hyperCVAD-R, and R-FCM.
  • Any of the abovementioned therapies may be combined with stem cell transplantation or ICE in order to treat MCE.
  • An alternative approach to treating MCE is immunotherapy.
  • One immunotherapy uses monoclonal antibodies like rituximab.
  • a modified approach to treat MCE is radioimmunotherapy, wherein a monoclonal antibody is combined with a radioisotope particle, such as iodine-131 tositumomab (BEXXAR®) and yttrium-90 ibritumomab tiuxetan (ZEVALIN®).
  • a radioisotope particle such as iodine-131 tositumomab (BEXXAR®) and yttrium-90 ibritumomab tiuxetan (ZEVALIN®).
  • BEXXAR® is used in sequential treatment with CHOP.
  • MCE multi-epidermal endothelial growth factor
  • proteasome inhibitors such as bortezomib (VELCADE® or PS-341)
  • antiangiogenesis agents such as thalidomide
  • Another treatment approach is administering drugs that lead to the degradation of Bcl-2 protein and increase cancer cell sensitivity to chemotherapy, such as oblimersen, in combination with other chemotherapeutic agents.
  • a further treatment approach includes administering mTOR inhibitors, which can lead to inhibition of cell growth and even cell death.
  • mTOR inhibitors include sirolimus, temsirolimus (TORISEL®, CCI-779), CC-115, CC-223, SF-1126, PQR-309 (bimiralisib), voxtalisib, GSK-2126458, and temsirolimus in combination with RITUXAN®, VELCADE®, or other chemotherapeutic agents.
  • Such examples include flavopiridol, palbociclib (PD0332991), R-roscovitine (selicicilib, CYC202), styryl sulphones, obatoclax (GX15-070), TRAIL, Anti-TRAIL death receptors DR4 and DR5 antibodies, temsirolimus (TORISEL®, CCI-779), everolimus (RAD001), BMS-345541, curcumin, SAHA, thalidomide, lenalidomide (REVLIMID®, CC-5013), and geldanamycin (17-AAG).
  • Therapeutic agents used to treat Waldenstrom's Macroglobulinemia include aldesleukin, alemtuzumab, alvocidib, amifostine trihydrate, aminocamptothecin, antineoplaston A10, antineoplaston AS2-1, anti-thymocyte globulin, arsenic trioxide, autologous human tumor-derived HSPPC-96, Bcl-2 family protein inhibitor ABT-263, beta alethine, bortezomib (VELCADE®), bryostatin 1, busulfan, campath-1H, carboplatin, carmustine, caspofungin acetate, CC-5103, cisplatin, clofarabine, cyclophosphamide, cyclosporine, cytarabine, denileukin diftitox, dexamethasone, docetaxel, dolastatin 10, doxorubicin hydrochloride, DT-PACE, enzasta
  • Examples of therapeutic procedures used to treat WM include peripheral blood stem cell transplantation, autologous hematopoietic stem cell transplantation, autologous bone marrow transplantation, antibody therapy, biological therapy, enzyme inhibitor therapy, total body irradiation, infusion of stem cells, bone marrow ablation with stem cell support, in vitro-treated peripheral blood stem cell transplantation, umbilical cord blood transplantation, immunoenzyme techniques, low-LET cobalt-60 gamma ray therapy, bleomycin, conventional surgery, radiation therapy, and nonmyeloablative allogeneic hematopoietic stem cell transplantation.
  • Therapeutic agents used to treat diffuse large B-cell lymphoma include cyclophosphamide, doxorubicin, vincristine, prednisone, anti-CD20 monoclonal antibodies, etoposide, bleomycin, many of the agents listed for WM, and any combination thereof, such as ICE and R-ICE.
  • Examples of therapeutic agents used to treat chronic lymphocytic leukemia include chlorambucil, cyclophosphamide, fludarabine, pentostatin, cladribine, doxorubicin, vincristine, prednisone, prednisolone, alemtuzumab, many of the agents listed for WM, and combination chemotherapy and chemoimmunotherapy, including the following common combination regimens: CVP, R-CVP, ICE, R-ICE, FCR, and FR.
  • Myelofibrosis inhibiting agents include, but are not limited to, hedgehog inhibitors, histone deacetylase (HDAC) inhibitors, and tyrosine kinase inhibitors.
  • hedgehog inhibitors are saridegib and vismodegib.
  • HDAC inhibitors include, but are not limited to, pracinostat and panobinostat.
  • tyrosine kinase inhibitors are lestaurtinib, bosutinib, imatinib, gilteritinib, radotinib, and cabozantinib.
  • Gemcitabine, nab-paclitaxel, and gemcitabine/nab-paclitaxel may be used with a JAK inhibitor and/or PI3K5 inhibitor to treat hyperproliferative disorders.
  • Therapeutic agents used to treat bladder cancer include atezolizumab, carboplatin, cisplatin, docetaxel, doxorubicin, fluorouracil (5-FU), gemcitabine, idosfamide, Interferon alfa-2b, methotrexate, mitomycin, nab-paclitaxel, paclitaxel, pemetrexed, thiotepa, vinblastine, and any combination thereof.
  • Therapeutic agents used to treat breast cancer include albumin-bound paclitaxel, anastrozole, capecitabine, carboplatin, cisplatin, cyclophosphamide, docetaxel, doxorubicin, epirubicin, everolimus, exemestane, fluorouracil, fulvestrant, gemcitabine, Ixabepilone, lapatinib, Letrozole, methotrexate, mitoxantrone, paclitaxel, pegylated liposomal doxorubicin, pertuzumab, tamoxifen, toremifene, trastuzumab, vinorelbine, and any combinations thereof.
  • Triple negative breast cancer combination therapy Therapeutic agents used to treat triple negative breast cancer include cyclophosphamide, docetaxel, doxorubicin, epirubicin, fluorouracil, paclitaxel, and combinations thereof.
  • Therapeutic agents used to treat colorectal cancer include bevacizumab, capecitabine, cetuximab, fluorouracil, irinotecan, leucovorin, oxaliplatin, panitumumab, ziv-aflibercept, and any combinations thereof.
  • Therapeutic agents used to treat castration-resistant prostate cancer include abiraterone, cabazitaxel, docetaxel, enzalutamide, prednisone, sipuleucel-T, and any combinations thereof.
  • Therapeutic agents used to treat esophageal and esophagogastric junction cancer include capecitabine, carboplatin, cisplatin, docetaxel, epirubicin, fluoropyrimidine, fluorouracil, irinotecan, leucovorin, oxaliplatin, paclitaxel, ramucirumab, trastuzumab, and any combinations thereof.
  • Therapeutic agents used to treat gastric cancer include capecitabine, carboplatin, cisplatin, docetaxel, epirubiein, fluoropyrimidine, fluorouracil, Mnotecan, leucovorin, mitomycin, oxaliplatin, paclitaxel, ramucirumab, trastuzumab, and any combinations thereof.
  • Therapeutic agents used to treat head & neck cancer include afatinib, bleomycin, capecitabine, carboplatin, cetuximab, cisplatin, docetaxel, fluorouracil, gemcitabine, hydroxyurea, methotrexate, nivolumab, paclitaxel, pembrolizumab, vinorelbine, and any combinations thereof.
  • Therapeutic agents used to treat hepatobiliary cancer include capecitabine, cisplatin, fluoropyrimidine, 5-fluorourcil, gemecitabine, oxaliplatin, sorafenib, and any combinations thereof.
  • Therapeutic agents used to treat hepatocellular carcinoma include capecitabine, doxorubicin, gemcitabine, sorafenib, and any combinations thereof.
  • Therapeutic agents used to treat non-small cell lung cancer include afatinib, albumin-bound paclitaxel, alectinib, bevacizumab, bevacizumab, cabozantinib, carboplatin, cisplatin, crizotinib, dabrafenib, docetaxel, erlotinib, etoposide, gemcitabine, nivolumab, paclitaxel, pembrolizumab, pemetrexed, ramucirumab, trametinib, trastuzumab, vandetanib, vemurafenib, vinblastine, vinorelbine, and any combinations thereof.
  • NSCLC non-small cell lung cancer
  • Therapeutic agents used to treat small cell lung cancer include bendamustime, carboplatin, cisplatin, cyclophosphamide, docetaxel, doxorubicin, etoposide, gemcitabine, ipillimumab, irinotecan, nivolumab, paclitaxel, temozolomide, topotecan, vincristine, vinorelbine, and any combinations thereof.
  • Therapeutic agents used to treat melanoma cancer include albumin bound paclitaxel, carboplatin, cisplatin, cobiemtinib, dabrafenib, dacrabazine, IL-2, imatinib, interferon alfa-2b, ipilimumab, nitrosourea, nivolumab, paclitaxel, pembrolizumab, pilimumab, temozolomide, trametinib, vemurafenib, vinblastine, and any combinations thereof.
  • Therapeutic agents used to beat ovarian cancer include 5-flourouracil, albumin bound paclitaxel, altretamine, anastrozole, bevacizumab, capecitabine, carboplatin, cisplatin, cyclophosphamide, docetaxel, doxorubicin, etoposide, exemestane, gemcibabine, ifosfamide, irinotecan, letrozole, leuprolide acetate, liposomal doxorubicin, megestrol acetate, melphalan, olaparib, oxaliplatin, paclitaxel, Pazopanib, pemetrexed, tamoxifen, topotecan, vinorelbine, and any combinations thereof.
  • Therapeutic agents used to treat pancreatic cancer include 5-fluorourcil, albumin-bound paclitaxel, capecitabine, cisplatin, docetaxel, erlotinib, fluoropyrimidine, gemcitabine, irinotecan, leucovorin, oxaliplatin, paclitaxel, and any combinations thereof.
  • Therapeutic agents used to treat renal cell carcinoma include axitinib, bevacizumab, cabozantinib, erlotinib, everolimus, lev antinib, nivolumab, pazopanib, sorafenib, sunitinib, temsirolimus, and any combinations thereof.
  • the compound of formula (I) is useful for the treatment of cancer in combination with a standard of care in the treatment of the respective cancer.
  • a standard of care in the treatment of the respective cancer.
  • One of skill in the art is aware of the standard of care as of a given date in the particular field of cancer therapy or with respect to a given cancer.
  • the one or more additional therapeutic agent may be an agent useful for the treatment of cancer, inflammation, autoimmune disease and/or related conditions.
  • the one or more additional therapeutic agent may be a chemotherapeutic agent, an anti-angiogenic agent, an antifibrotic agent, an anti-inflammatory agent, an immune modulating agent, an immunotherapeutic agent, a therapeutic antibody, a radiotherapeutic agent, an anti-neoplastic agent, an anti-cancer agent, an anti-proliferation agent, or any combination thereof.
  • the compound(s) described herein may be used or combined with a chemotherapeutic agent, an anti-angiogenic agent, an anti-fibrotic agent, an anti-inflammatory agent, an immune modulating agent, an immunotherapeutic agent, a therapeutic antibody, a radiotherapeutic agent, an antineoplastic agent or an anti-cancer agent, an anti-proliferation agent, or any combination thereof.
  • a compound(s) of formula (I) optionally in combination with an additional anticancer agent described herein may be used or combined with an anti-neoplastic agent or an anti-cancer agent, anti-fibrotic agent, an anti-anti-inflammatory agent, or an immune modulating agent.
  • kits comprising a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt, or a compound of formula (I) and at least one additional anticancer agent, or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable carrier.
  • the kit comprises instructions for use in the treatment of cancer or inflammatory conditions.
  • the instructions in the kit are directed to use of the pharmaceutical composition for the treatment of cancer selected from pancreatic cancer, bladder cancer, colorectal cancer, breast cancer, prostate cancer, renal cancer, hepatocellular cancer, lung cancer, ovarian cancer, cervical cancer, gastric cancer, esophageal cancer, head and neck cancer, melanoma, neuroendocrine cancer, CNS cancer, brain cancer, bone cancer, soft tissue sarcoma, non-small cell lung cancer, small-cell lung cancer and colon cancer.
  • cancer selected from pancreatic cancer, bladder cancer, colorectal cancer, breast cancer, prostate cancer, renal cancer, hepatocellular cancer, lung cancer, ovarian cancer, cervical cancer, gastric cancer, esophageal cancer, head and neck cancer, melanoma, neuroendocrine cancer, CNS cancer, brain cancer, bone cancer, soft tissue sarcoma, non-small cell lung cancer, small-cell lung cancer and colon cancer.
  • the application also provides method for treating a subject who is undergoing one or more standard therapies, such as chemotherapy, radiotherapy, immunotherapy, surgery, or combination thereof comprising administering or co-administering a compound of formula (I) to said subject.
  • one or more compound(S) of formula (I), or pharmaceutically acceptable salt thereof may be administered before, during, or after administration of a chemotherapy, radiotherapy, immunotherapy, surgery or combination thereof.
  • the subject may be a human who is (i) substantially refractory to at least one chemotherapy treatment, or (ii) in relapse after treatment with chemotherapy, or both (i) and (ii). In some of embodiments, the subject is refractory to at least two, at least three, or at least four chemotherapy treatments (including standard or experimental chemotherapies).
  • the subject is refractory to at least one, at least two, at least three, or at least four chemotherapy treatment (including standard or experimental chemotherapy) selected from fludarabine, rituximab, obinutuzumab, alkylating agents, alemtuzumab and other chemotherapy treatments such as CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone); R-CHOP (rituximab-CHOP); hyperCVAD (hyperfractionated cyclophosphamide, vincristine, doxorubicin, dexamethasone, methotrexate, cytarabine); R-hyperCVAD (rituximab-hyperCVAD); FCM (fludarabine, cyclophosphamide, mitoxantrone); R-FCM (rituximab, fludarabine, cyclophosphamide, mitoxantrone); bortezomi
  • lymphomas are reviewed in Cheson, B. D., Leonard, J. P., “Monoclonal Antibody Therapy for B-Cell Non-Hodgkin's Lymphoma” The New England Journal of Medicine 2008, 359(6), p. 613-626; and Wierda, W. G., “Current and Investigational Therapies for Patients with CEL” Hematology 2006, p. 285-294. Lymphoma incidence patterns in the United States is profiled in Morton, L. M., et al. “Lymphoma Incidence Patterns by WHO Subtype in the United States, 1992-2001” Blood 2006, 107(1), p. 265-276.
  • immunotherapeutic agents treating lymphoma or leukemia include, but are not limited to, rituximab (such as Rituxan), alemtuzumab (such as Campath, MabCampath), anti-CD19 antibodies, anti-CD20 antibodies, anti-MN-14 antibodies, anti-TRAIL, Anti-TRAIL DR4 and DR5 antibodies, anti-CD74 antibodies, apolizumab, bevacizumab, CHIR-12.12, epratuzumab (hLL2-anti-CD22 humanized antibody), galiximab, ha20, ibritumomab tiuxetan, lumiliximab, milatuzumab, ofatumumab, PR0131921, SGN-40, WT-1 analog peptide vaccine, WT1 126-134 peptide vaccine, tositumomab, autologous human tumor-derived HSPPC-96, and veltuzumab.
  • Additional immunotherapy agents includes using cancer vaccine
  • chemotherapy agents for treating lymphoma or leukemia include aldesleukin, alvocidib, antineoplaston AS2-1, antineoplaston A10, anti-thymocyte globulin, amifostine trihydrate, aminocamptothecin, arsenic trioxide, beta alethine, Bcl-2 family protein inhibitor ABT-263, BMS-345541, bortezomib (Velcade®), bryostatin 1, busulfan, carboplatin, campath-1H, CC-5103, carmustine, caspofungin acetate, clofarabine, cisplatin, Cladribine (Leustarin), Chlorambucil (Leukeran), Curcumin, cyclosporine, cyclophosphamide (Cyloxan, Endoxan, Endoxana, cyclostin), cytarabine, denileukin diftitox, dexamethasone, DT PACE
  • the cancer is melanoma.
  • Suitable agents for use in combination with the compounds described herein include, without limitation, dacarbazine (DTIC), optionally, along with other chemotherapy drugs such as carmustine (BCNU) and cisplatin; the “Dartmouth regimen,” which consists of DTIC, BCNU, cisplatin and tamoxifen; a combination of cisplatin, vinblastine, and DTIC, temozolomide or YERVOYTM.
  • Compounds disclosed herein may also be combined with immunotherapy drugs, including cytokines such as interferon alpha, interleukin 2, and tumor necrosis factor (TNF) in the treatment of melanoma.
  • cytokines such as interferon alpha, interleukin 2, and tumor necrosis factor (TNF)
  • Anti-melanoma vaccines are, in some ways, similar to the anti-virus vaccines which are used to prevent diseases caused by viruses such as polio, measles, and mumps.
  • Weakened melanoma cells or parts of melanoma cells called antigens may be injected into a patient to stimulate the body's immune system to destroy melanoma cells.
  • Melanomas that are confined to the arms or legs may also be treated with a combination of agents including one or more compounds described herein, using for example, a hyperthermic isolated limb perfusion technique.
  • This treatment protocol temporarily separates the circulation of the involved limb from the rest of the body and injects high doses of chemotherapy into the artery feeding the limb, thus providing high doses to the area of the tumor without exposing internal organs to these doses that might otherwise cause severe side effects.
  • the fluid is warmed to 102° to 104° F.
  • Melphalan is the drug most often used in this chemotherapy procedure. This can be given with another agent called tumor necrosis factor (TNF) and optionally in combination with a compound of formula (I).
  • TNF tumor necrosis factor
  • the therapeutic treatments can be supplemented or combined with any of the aforementioned therapies with stem cell transplantation or treatment.
  • One example of modified approach is radioimmunotherapy, wherein a monoclonal antibody is combined with a radioisotope particle, such as indium In 111, yttrium Y 90, iodine 1-131.
  • combination therapies include, but are not limited to, Iodine-131 tositumomab (Bexxar®), Yttrium-90 ibritumomab tiuxetan (Zevalin®), Bexxar® with CHOP.
  • Other therapeutic procedures useful in combination with treatment with a compound of formula (I) include peripheral blood stem cell transplantation, autologous hematopoietic stem cell transplantation, autologous bone marrow transplantation, antibody therapy, biological therapy, enzyme inhibitor therapy, total body irradiation, infusion of stem cells, bone marrow ablation with stem cell support, in vitro-treated peripheral blood stem cell transplantation, umbilical cord blood transplantation, immunoenzyme technique, pharmacological study, low-LET cobalt-60 gamma ray therapy, bleomycin, conventional surgery, radiation therapy, and nonmyeloablative allogeneic hematopoietic stem cell transplantation.
  • the application provides pharmaceutical compositions comprising a compound of formula (I) in combination with an MMP9 binding protein and/or one or more additional therapeutic agent, and a pharmaceutically acceptable diluent, carrier or excipient.
  • the pharmaceutical compositions comprise an MMP9 binding protein, one or more additional therapeutic agent, and a pharmaceutically acceptable excipient, carrier or diluent.
  • the pharmaceutical compositions comprise the compound of formula (I) and anti-MMP9 antibody AB0045.
  • the pharmaceutical compositions comprise the compound of formula (I), anti-MMP9 antibody AB0045, at least one additional therapeutic agent that is an immunomodulating agent, and a pharmaceutically acceptable diluent, carrier or excipient.
  • the pharmaceutical compositions comprise the anti-MMP9 antibody AB0045, at least one additional therapeutic agent that is an anti-inflammatory agent, and a pharmaceutically acceptable diluent, carrier or excipient.
  • the pharmaceutical compositions comprise compound of formula (I), the anti-MMP9 antibody AB0045, at least one additional therapeutic agent that is an antineoplastic agent or anti-cancer agent, and a pharmaceutically acceptable diluent, carrier or excipient.
  • MMP9 compounds useful for combination treatment with a compound of formula (I) include but are not limited to marimastat (BB-2516), cipemastat (Ro 32-3555) and those described in WO 2012/027721 (Gilead Biologies).
  • the one or more additional therapeutic agent is an immune modulating agent, e.g., an immunostimulant or an immunosuppressant.
  • an immune modulating agent is an agent capable of altering the function of immune checkpoints, including the CTLA-4, LAG-3, B7-H3, B7-H4, Tim3, BTLA, KIR, A2aR, CD200 and/or PD-1 pathways.
  • the immune modulating agent is immune checkpoint modulating agents.
  • Exemplary immune checkpoint modulating agents include anti-CTLA-4 antibody (e.g., ipilimumab), anti-LAG-3 antibody, anti-B7-H3 antibody, anti-B7-H4 antibody, anti-Tim3 antibody, anti-BTLA antibody, anti-KIR antibody, anti-A2aR antibody, anti CD200 antibody, anti-PD-1 antibody, anti-PD-L1 antibody, anti-CD28 antibody, anti-CD80 or -CD86 antibody, anti-B7RP1 antibody, anti-B7-H3 antibody, anti-HVEM antibody, anti-CD137 or -CD137L antibody, anti-OX40 or —OX40L antibody, anti-CD40 or -CD40L antibody, anti-GAL9 antibody, anti-IE-10 antibody and A2aR drug.
  • CTLA-4 antibody e.g., ipilimumab
  • anti-LAG-3 antibody e.g., anti-B7-H3 antibody, anti-B7-H4 antibody, anti-T
  • the use of either antagonists or agonists of such gene products is contemplated, as are small molecule modulators of such gene products.
  • the immune modulatory agent is an anti-PD-1 or anti-PD-L1 antibody.
  • immune modulating agents include those agents capable of altering the function of mediators in cytokine mediated signaling pathways.
  • the one or more additional therapy or anti-cancer agent is cancer gene therapy or cell therapy.
  • Cancer gene therapy and cell therapy include the insertion of a normal gene into cancer cells to replace a mutated or altered gene; genetic modification to silence a mutated gene; genetic approaches to directly kill the cancer cells; including the infusion of immune cells designed to replace most of the patient's own immune system to enhance the immune response to cancer cells, or activate the patient's own immune system (T cells or Natural Killer cells) to kill cancer cells, or find and kill the cancer cells; genetic approaches to modify cellular activity to further alter endogenous immune responsiveness against cancer.
  • Non limiting examples are Algenpantucel-L (2 pancreatic cell lines), Sipuleucel-T, SGT-53 liposomal nanodelivery (scL) of gene p53; T-cell therapy, such as CD19 CAR-T tisagenlecleucel-T (CTL019) WO2012079000, WO2017049166, axicabtagene ciloleucel (KTE-C19) U.S. Pat. Nos. 7,741,465, 6,319,494, JCAR-015 U.S. Pat. No.
  • the one or more additional therapeutic agent is an immune checkpoint inhibitor.
  • Tumors subvert the immune system by taking advantage of a mechanism known as T-cell exhaustion, which results from chronic exposure to antigens and is characterized by the up-regulation of inhibitory receptors. These inhibitory receptors serve as immune checkpoints in order to prevent uncontrolled immune reactions.
  • PD-1 and co-inhibitory receptors such as cytotoxic T-lymphocyte antigen 4 (CTLA-4, B and T Lymphocyte Attenuator (BTLA; CD272), T cell Immunoglobulin and Mucin domain-3 (Tim-3), Lymphocyte Activation Gene-3 (Lag-3; CD223), and others are often referred to as a checkpoint regulators. They act as molecular determinants to influence whether cell cycle progression and other intracellular signaling processes should proceed based upon extracellular information.
  • CTL-4 cytotoxic T-lymphocyte antigen 4
  • BTLA B and T Lymphocyte Attenuator
  • Tim-3 T cell Immunoglobulin and Mucin domain-3
  • Lag-3 Lymphocyte Activation Gene-3
  • T-cell activation is regulated through a balance of positive and negative signals provided by costimulatory receptors.
  • These surface proteins are typically members of either the TNF receptor or B7 superfamilies.
  • Agonistic antibodies directed against activating co-stimulatory molecules and blocking antibodies against negative co-stimulatory molecules may enhance T-cell stimulation to promote tumor destruction.
  • Programmed Cell Death Protein 1 (PD-1 or CD279), a 55-kD type 1 transmembrane protein, is a member of the CD28 family of T cell co-stimulatory receptors that include immunoglobulin superfamily member CD28, CTLA-4, inducible co-stimulator (ICOS), and BTLA.
  • PD-1 is highly expressed on activated T cells and B cells. PD-1 expression can also be detected on memory T-cell subsets with variable levels of expression.
  • Two ligands specific for PD-1 have been identified: programmed death-ligand 1 (PD-L1, also known as B7-H1 or CD274) and PD-L2 (also known as B7-DC or CD273).
  • PD-L1 and PD-L2 have been shown to down-regulate T cell activation upon binding to PD-1 in both mouse and human systems (Okazaki et al., Int. Immunol., 2007; 19: 813-824).
  • the interaction of PD-1 with its ligands, PD-L1 and PD-L2, which are expressed on antigen-presenting, cells (APCs) and dendritic cells (DCs) transmits negative regulatory stimuli to down-modulate the activated T cell immune response.
  • APCs antigen-presenting, cells
  • DCs dendritic cells
  • the cancer microenvironment manipulates the PD-L1/PD-1 signaling pathway and that induction of PD-L1 expression is associated with inhibition of immune responses against cancer, thus permitting cancer progression and metastasis.
  • the PD-L1/PD-1 signaling pathway is a primary mechanism of cancer immune evasion for several reasons. This pathway is involved in negative regulation of immune responses of activated T effector cells found in the periphery. PD-L1 is up-regulated in cancer microenvironments, while PD-1 is also up-regulated on activated tumor infiltrating T cells, thus possibly potentiating a vicious cycle of inhibition. This pathway is also intricately involved in both innate and adaptive immune regulation through bi-directional signaling. These factors make the PD-1/PD-L1 complex a central point through which cancer can manipulate immune responses and promote its own progression.
  • CTLA-4 belongs to the immunoglobulin superfamily of receptors, which also includes PD-1, BTLA, TIM-3, and V-domain immunoglobulin suppressor of T cell activation (VISTA).
  • Anti-CTLA-4 mAb is a powerful checkpoint inhibitor which removes “the break” from both naive and antigen-experienced cells.
  • TIM-3 has been identified as another important inhibitory receptor expressed by exhausted CD8+ T cells. In mouse models of cancer, it has been shown that the most dysfunctional tumor-infiltrating CD8+ T cells actually co-express PD-1 and LAG-3. LAG-3 is another recently identified inhibitory receptor that acts to limit effector T-cell function and augment the suppressive activity of T regulatory cells.
  • the present disclosure provides the use of immune checkpoint inhibitors of formula (I) disclosed herein in combination with one or more additional immune checkpoint inhibitors.
  • the present disclosure provides the use of immune checkpoint inhibitors of formula (I) disclosed herein in combination with one or more additional immune checkpoint inhibitors and an anti-MMP9 antibody or antigen binding fragment thereof to treat or prevent cancer.
  • the immune checkpoint inhibitors may be an anti-PD-1 and/or an anti-PD-L1 antibody or an anti PD-1/PD-L1 interaction inhibitor.
  • the anti-PD-L1 antibody may be B7-H1 antibody, BMS 936559 antibody, MPDL3280A (atezolizumab) antibody, MEDI-4736 antibody, MSB0010718C antibody or combinations thereof.
  • the anti-PD-1 antibody may be nivolumab antibody, pembrolizumab antibody, pidilizumab antibody or combinations thereof.
  • PD-1 may also be targeted with AMP-224, which is a PD-L2-IgG recombinant fusion protein.
  • Additional antagonists of inhibitory pathways in the immune response include IMP321, a soluble LAG-3 Ig fusion protein and MHC class II agonist, which is used to increase an immune response to tumors.
  • Lirilumab is an antagonist to the KIR receptor and BMS 986016 is an antagonist of LAG3.
  • the TIM-3-Galectin-9 pathway is another inhibitory checkpoint pathway that is also a promising target for checkpoint inhibition.
  • RX518 targets and activates the glucocorticoid-induced tumor necrosis factor receptor (GITR), a member of the TNF receptor superfamily that is expressed on the surface of multiple types of immune cells, including regulatory T cells, effector T cells, B cells, natural killer (NK) cells, and activated dendritic cells.
  • GITR tumor necrosis factor receptor
  • the compound(s) of formula (I) may be used in combination with IMP321, Lirilumab and/or BMS 986016.
  • Anti-PD-1 antibodies that may be used in the compositions and methods described herein include but are not limited to: Nivolumab/MDX-1106/BMS-936558/ONO1152, a fully human IgG4 anti-PD-1 monoclonal antibody; pidilizumab (MDV9300/CT-011), a humanized IgG1 monoclonal antibody; pembrolizumab (MK-3475/pembrolizumab/lambrolizumab), a humanized monoclonal IgG4 antibody; durvalumab (MEDI-4736) and atezolizumab.
  • Nivolumab/MDX-1106/BMS-936558/ONO1152 a fully human IgG4 anti-PD-1 monoclonal antibody
  • pidilizumab MDV9300/CT-011
  • pembrolizumab MK-3475/pembrolizumab/lambrolizumab
  • durvalumab MEDI-4736
  • Anti-PD-L1 antibodies that may be used in compositions and methods described herein include but are not limited to: avelumab; BMS-936559, a fully human IgG4 antibody; atezolizumab (MPDL3280A/RG-7446), a human monoclonal antibody; MEDI4736; MSB0010718C, and MDX1105-01.
  • the compound of formula (I) is administered in combination with the anti-PD-1 antibody nivolumab, pembrolizumab, and/or pidilizumab to a patient in need thereof.
  • the anti-PD-L1 antibody useful for combination treatment with a compound of formula (I) is BMS-936559, atezolizumab, or avelumab.
  • the immune modulating agent inhibits an immune checkpoint pathway.
  • the immune checkpoint pathway is selected from CTLA-4, LAG-3, B7-H3, B7-H4, Tim3, BTLA, KIR, A2aR, CD200 and PD-1. Additional antibodies that may be used in combination with a compound of formula (I) in compositions and methods described herein include the anti-PD-1 and anti-PD-L1 antibodies disclosed in U.S. Pat. Nos. 8,008,449 and 7,943,743, respectively.
  • the one or more additional therapeutic agent is an anti-inflammatory agent.
  • the anti-inflammatory agent is a tumor necrosis factor alpha (TNF- ⁇ ) inhibitor.
  • TNF- ⁇ tumor necrosis factor alpha
  • the terms “TNF alpha,” “TNF- ⁇ ,” and “TNF ⁇ ,” are interchangeable.
  • TNF- ⁇ is a pro-inflammatory cytokine secreted primarily by macrophages but also by a variety of other cell types including lymphoid cells, mast cells, endothelial cells, cardiac myocytes, adipose tissue, fibroblasts, and neuronal tissue.
  • TNF- ⁇ is also known as endotoxin-induced factor in serum, cachectin, and differentiation inducing factor.
  • the tumor necrosis factor (TNF) family includes TNF alpha, TNF beta, CD40 ligand (CD40L), Fas ligand (FasL), TNF-related apoptosis inducing ligand (TRAIL), and LIGHT (homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for HVEM, a receptor expressed by T lymphocytes), some of the most important cytokines involved in, among other physiological processes, systematic inflammation, tumor lysis, apoptosis and initiation of the acute phase reaction.
  • TNF tumor necrosis factor
  • CD40L CD40 ligand
  • Fas ligand Fas ligand
  • TRAIL TNF-related apoptosis inducing ligand
  • LIGHT homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for HVEM, a receptor expressed by T lymphocytes
  • therapeutic agents when employed in combination with a compound(s) disclosed herein, may be used, for example, in those amounts indicated in the referenced manuals e.g., Physicians Desk Reference or in amounts generally known to a qualified care giver, i.e., one of ordinary skill in the art.
  • such other therapeutic agent(s) may be administered prior to, simultaneously with, or following the administration of the compound(s) of formula (I).
  • Certain other therapeutic agents may be combined into a single formulation or kit when amenable to such.
  • tablet, capsule or liquid formulations may be combined with other tablet, capsule or liquid formulations into one fixed or combined dose formulation or regimen. Other combinations may be given separately, contemporaneously or otherwise.
  • a method for treating or preventing an HBV infection in a human having or at risk of having the infection comprising administering to the human a therapeutically effective amount of a compound disclosed herein, or a pharmaceutically acceptable salt thereof, in combination with a therapeutically effective amount of one or more (e.g., one, two, three, four, one or two, one to three, or one to four) additional therapeutic agents.
  • a therapeutically effective amount of a compound disclosed herein, or a pharmaceutically acceptable salt thereof in combination with a therapeutically effective amount of one or more (e.g., one, two, three, four, one or two, one to three, or one to four) additional therapeutic agents.
  • a method for treating an HBV infection in a human having or at risk of having the infection comprising administering to the human a therapeutically effective amount of a compound disclosed herein, or a pharmaceutically acceptable salt thereof, in combination with a therapeutically effective amount of one or more (e.g., one, two, three, four, one or two, one to three, or one to four) additional therapeutic agents.
  • a therapeutically effective amount of a compound disclosed herein, or a pharmaceutically acceptable salt thereof in combination with a therapeutically effective amount of one or more (e.g., one, two, three, four, one or two, one to three, or one to four) additional therapeutic agents.
  • the present disclosure provides a method for treating an HBV infection, comprising administering to a patient in need thereof a therapeutically effective amount of a compound disclosed herein or a pharmaceutically acceptable salt thereof, in combination with a therapeutically effective amount of one or more (e.g., one, two, three, four, one or two, one to three, or one to four) additional therapeutic agents which are suitable for treating an HBV infection.
  • a therapeutically effective amount of a compound disclosed herein or a pharmaceutically acceptable salt thereof in combination with a therapeutically effective amount of one or more (e.g., one, two, three, four, one or two, one to three, or one to four) additional therapeutic agents which are suitable for treating an HBV infection.
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with one, two, three, four, or more additional therapeutic agents. In certain embodiments, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with two additional therapeutic agents. In other embodiments, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with three additional therapeutic agents. In further embodiments, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with four additional therapeutic agents.
  • the one, two, three, four, or more additional therapeutic agents can be different therapeutic agents selected from the same class of therapeutic agents, and/or they can be selected from different classes of therapeutic agents.
  • the components of the composition are administered as a simultaneous or sequential regimen.
  • the combination may be administered in two or more administrations.
  • Co-administration of a compound disclosed herein with one or more additional therapeutic agents generally refers to simultaneous or sequential administration of a compound disclosed herein and one or more additional therapeutic agents, such that therapeutically effective amounts of each agent are present in the body of the patient.
  • Co-administration includes administration of unit dosages of the compounds disclosed herein before or after administration of unit dosages of one or more additional therapeutic agents.
  • the compound disclosed herein may be administered within seconds, minutes, or hours of the administration of one or more additional therapeutic agents.
  • a unit dose of a compound disclosed herein is administered first, followed within seconds or minutes by administration of a unit dose of one or more additional therapeutic agents.
  • a unit dose of one or more additional therapeutic agents is administered first, followed by administration of a unit dose of a compound disclosed herein within seconds or minutes.
  • a unit dose of a compound disclosed herein is administered first, followed, after a period of hours (e.g., 1-12 hours), by administration of a unit dose of one or more additional therapeutic agents.
  • a unit dose of one or more additional therapeutic agents is administered first, followed, after a period of hours (e.g., 1-12 hours), by administration of a unit dose of a compound disclosed herein.
  • a compound disclosed herein is combined with one or more additional therapeutic agents in a unitary dosage form for simultaneous administration to a patient, for example as a solid dosage form for oral administration.
  • a compound of Formula (I) is formulated as a tablet, which may optionally contain one or more other compounds useful for treating hepatitis B virus (HBV).
  • the tablet can contain another active ingredient for treating hepatitis B virus (HBV).
  • such tablets are suitable for once daily dosing.
  • the compounds described herein may be used or combined with one or more of a chemotherapeutic agent, an immunomodulator, an immunotherapeutic agent, a therapeutic antibody, a therapeutic vaccine, a bispecific antibody and “antibody-like” therapeutic protein (such as DARTs®, Duobodies®, Bites®, XmAbs®, TandAbs®, Fab derivatives), an antibody-drug conjugate (ADC), gene modifiers or gene editors (such as CRISPR Cas9, zinc finger nucleases, homing endonucleases, synthetic nucleases, TALENs), cell therapies such as CAR-T (chimeric antigen receptor T-cell), and TCR-T (an engineered T cell receptor) agent or any combination thereof.
  • a chemotherapeutic agent such as DARTs®, Duobodies®, Bites®, XmAbs®, TandAbs®, Fab derivatives
  • ADC antibody-drug conjugate
  • gene modifiers or gene editors such as CRISPR
  • the additional therapeutic agent may be an anti-HBV agent.
  • the additional therapeutic agent may be selected from the group consisting of HBV combination drugs, other drugs for treating hepatitis B virus (HBV), 3-dioxygenase (IDO) inhibitors, antisense oligonucleotide targeting viral mRNA, Apolipoprotein A1 modulator, arginase inhibitors, B- and T-lymphocyte attenuator inhibitors, Bruton's tyrosine kinase (BTK) inhibitors, CCR2 chemokine antagonist, CD137 inhibitors, CD160 inhibitors, CD305 inhibitors, CD4 agonist and modulator, compounds targeting HBcAg, compounds targeting hepatitis B core antigen (HBcAg), covalently closed circular DNA (cccDNA) inhibitors, cyclophilin inhibitors, cytokines, cytotoxic T-lymphocyte-associated protein 4 (ipi4) inhibitors, DNA polymerase inhibitor, Endonu
  • HBV combination drugs
  • hepatitis B virus HBV
  • a method for treating hepatitis B virus (HBV) in a patient in need thereof comprising administering an effective amount of a compound described herein in combination with an effective amount of one or more anti-HCV agents, such as a NS5A inhibitor, a NS5B inhibitor, a NS3 inhibitor, or a combination thereof.
  • HBV hepatitis B virus
  • a method of treating hepatitis B virus (HBV) infection in a human in need thereof comprising administering to the patient an effective amount of a compound described herein in combination with an effective amount of a NS5A inhibitor.
  • the NS5A inhibitor is ledipasvir or velpatasvir.
  • a method of treating hepatitis B virus (HBV) infection in a human in need thereof comprising administering to the patient an effective amount of a compound described herein in combination with an effective amount of a NS5B inhibitor.
  • the NS5B inhibitor is sofosbuvir or mericitabine.
  • a method of treating hepatitis B virus (HBV) infection in a human in need thereof comprising administering to the patient an effective amount of a compound described herein in combination with an effective amount of a NS3 inhibitor.
  • the NS3 inhibitor is voxilaprevir.
  • the patient is administered an effective amount of a compound described herein in combination with an effective amount of both an effective amount of a NS5A inhibitor and an effective amount of a NS5B inhibitor.
  • the NS5A inhibitor is ledipasvir and the NS5B inhibitor is sofosbuvir.
  • the patient is administered an effective amount of a compound described herein in combination with an effective amount of a fixed dose combination of a NS5A inhibitor and a NS5B inhibitor.
  • the patient is administered an effective amount of a compound described herein in combination with an effective amount of a fixed dose combination of ledipasvir and sofosbuvir.
  • the patient is administered an effective amount of a compound of Table 1 in combination with an effective amount of both an effective amount of a NS5A inhibitor and an effective amount of a NS5B inhibitor.
  • the NS5A inhibitor is ledipasvir and the NS5B inhibitor is sofosbuvir.
  • the patient is administered an effective amount of a compound of Table 1 in combination with an effective amount of a fixed dose combination of a NS5A inhibitor and a NS5B inhibitor.
  • the patient is administered an effective amount of a compound of Table 1 in combination with an effective amount of a fixed dose combination of ledipasvir and sofosbuvir (e.g., ledipasvir 90 mg/sofosbuvir 400 mg).
  • the patient is administered an effective amount of a compound of Table 1 in combination with an effective amount of Harvoni®.
  • the patient is administered an effective amount of a compound of Table 1 in combination with an effective amount of a fixed dose combination of velpatasvir and sofosbuvir (e.g., velpatasvir 100 mg/sofosbuvir 400 mg).
  • the patient is administered an effective amount of a compound of Table 1 in combination with an effective amount of Epclusa®.
  • the patient is administered an effective amount of compound 139 in combination with an effective amount of both an effective amount of a NS5A inhibitor and an effective amount of a NS5B inhibitor.
  • the NS5A inhibitor is ledipasvir and the NS5B inhibitor is sofosbuvir.
  • the patient is administered an effective amount of compound 139 in combination with an effective amount of a fixed dose combination of a NS5A inhibitor and a NS5B inhibitor.
  • the patient is administered an effective amount of compound 139 in combination with an effective amount of a fixed dose combination of ledipasvir and sofosbuvir (e.g., ledipasvir 90 mg/sofosbuvir 400 mg).
  • the patient is administered an effective amount of compound 139 in combination with an effective amount of Harvoni®. In some embodiments, the patient is administered an effective amount of compound 139 in combination with an effective amount of a fixed dose combination of velpatasvir and sofosbuvir (e.g., velpatasvir 100 mg/sofosbuvir 400 mg). In some embodiments, the patient is administered an effective amount of compound 139 in combination with an effective amount of Epclusa®.
  • the patient is administered an effective amount of a compound described herein in combination with an effective amount of both an effective amount of a NS5A inhibitor and an effective amount of a NS5B inhibitor, and optionally a NS3 inhibitor.
  • the patient is administered an effective amount of a compound described herein in combination with an effective amount of sofosbuvir, velpatasvir, and voxilaprevir (e.g., sofosbuvir 400 mg/velpatasvir 100 mg/voxilaprevir 100 mg).
  • the patient is administered an effective amount of a compound described herein (e.g., compound 139) in combination with an effective amount of VoseviTM.
  • a compound of Formula (I) is formulated as a tablet, which may optionally contain one or more other compounds useful for treating hepatitis B virus (HBV).
  • the tablet can contain another active ingredient for treating hepatitis B virus (HBV), such as 3-dioxygenase (IDO) inhibitors, Apolipoprotein A1 modulator, arginase inhibitors, B- and T-lymphocyte attenuator inhibitors, Bruton's tyrosine kinase (BTK) inhibitors, CCR2 chemokine antagonist, CD137 inhibitors, CD160 inhibitors, CD305 inhibitors, CD4 agonist and modulator, compounds targeting HBcAg, compounds targeting hepatitis B core antigen (HBcAg), core protein allosteric modulators, covalently closed circular DNA (cccDNA) inhibitors, cyclophilin inhibitors, cytotoxic T-lymphocyte-associated protein 4 (ipi4) inhibitors, DNA polymerase inhibitor
  • IDO 3-di
  • a compound of the present disclosure is combined with one, two, three, four or more additional therapeutic agents selected from HBV combination drugs, HBV vaccines, HBV DNA polymerase inhibitors, immunomodulators toll-like receptor (TLR) modulators, interferon alpha receptor ligands, hyaluronidase inhibitors, hepatitis b surface antigen (HBsAg) inhibitors, cytotoxic T-lymphocyte-associated protein 4 (ipi4) inhibitors, cyclophilin inhibitors, HBV viral entry inhibitors, antisense oligonucleotide targeting viral mRNA, short interfering RNAs (siRNA) and ddRNAi endonuclease modulators, ribonucelotide reductase inhibitors, HBV E antigen inhibitors, covalently closed circular DNA (cccDNA) inhibitors, farnesoid X receptor agonists, HBV antibodies, CCR2 chemokine antagonist
  • combination drugs for the treatment of HBV include TRUVADA® (tenofovir disoproxil fumarate and emtricitabine); ABX-203, lamivudine, and PEG-IFN-alpha; ABX-203 adefovir, and PEG-IFNalpha; and INCO-1800 (INCO-9112 and RG7944).
  • TRUVADA® tenofovir disoproxil fumarate and emtricitabine
  • ABX-203 lamivudine
  • PEG-IFN-alpha ABX-203 adefovir
  • INCO-1800 INCO-1800
  • Examples of other drugs for the treatment of HBV include alpha-hydroxytropolones, amdoxovir, beta-hydroxycytosine nucleosides, AL-034, CCC-0975, elvucitabine, ezetimibe, cyclosporin A, gentiopicrin (gentiopicroside), JNJ-56136379, nitazoxanide, birinapant, NJK14047, NOV-205 (molixan, BAM-205), oligotide, mivotilate, feron, GST-HG-131, levamisole, Ka Shu Ning, alloferon, WS-007, Y-101 (Ti Fen Tai), rSIFN-co, PEG-IIFNm, KW-3, BP-Inter-014, oleanolic acid, HepB-nRNA, cTP-5 (rTP-5), HSK-II-2, HEISCCO-106-1, HEISCCO-106, Hep
  • HBV vaccines include both prophylactic and therapeutic vaccines.
  • HBV prophylactic vaccines include Vaxelis, Hexaxim, Heplisav, Mosquirix, DTwP-HBV vaccine, Bio-Hep-B, D/T/P/HBV/M (LBVP-0101; LBVW-0101), DTwP-Hepb-Hib-IPV vaccine, Heberpenta L, DTwP-HepB-Hib, V-419, CVI-HBV-001, Tetrabhay, hepatitis B prophylactic vaccine (Advax Super D), Hepatrol-07, GSK-223192A, ENGERIX B®, recombinant hepatitis B vaccine (intramuscular, Kangtai Biological Products), recombinant hepatitis B vaccine (Hansenual polymorpha yeast, intramuscular, Hualan Biological Engineering), recombinant hepatitis B surface antigen vaccine, Bimmugen, Eu
  • HBV therapeutic vaccines include HBsAG-HBIG complex, ARB-1598, Bio-Hep-B, NASVAC, abi-HB (intravenous), ABX-203, Tetrabhay, GX-110E, GS-4774, peptide vaccine (epsilonPA-44), Hepatrol-07, NASVAC (NASTERAP), IMP-321, BEVAC, Revac B mcf, Revac B+, MGN-1333, KW-2, CVI-HBV-002, AltraHepB, VGX-6200, FP-02, FP-02.2, TG-1050, NU-500, HBVax, im/TriGrid/antigen vaccine, Mega-CD40L-adjuvanted vaccine, HepB-v, RG7944 (INCO-1800), recombinant VLP-based therapeutic vaccine (HBV infection, VLP Biotech), AdTG-17909, AdTG-17910 AdTG-18202, ChronVac-B, TG-1050
  • HBV DNA polymerase inhibitors examples include adefovir (HEPSERA®), emtricitabine (EMTRIVA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, tenofovir dipivoxil, tenofovir dipivoxil fumarate, tenofovir octadecyloxyethyl ester, CMX-157, besifovir, entecavir (BARACLUDE®), entecavir maleate, telbivudine (TYZEKA®), pradefovir, clevudine, ribavirin, lamivudine (EPIVIR-HBV®), phosphazide, famciclovir, fu
  • immunomodulators examples include rintatolimod, imidol hydrochloride, ingaron, dermaVir, plaquenil (hydroxychloroquine), proleukin, hydroxyurea, mycophenolate mofetil (MPA) and its ester derivative mycophenolate mofetil (MMF), WF-10, ribavirin, IF-12, INCO-9112, polymer polyethyleneimine (PEI), Gepon, VGV-1, MOR-22, BMS-936559, RCO-7011785, RC1-6871765, AIC-649, andIR-103.
  • TLR Toll-Like Receptor
  • TER modulators include modulators of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12, and TLR13.
  • TLR3 modulators include rintatolimod, poly-ICEC, RIBOXXON®, Apoxxim, RIBOXXIM®, IPH-33, MCT-465, MCT-475, GS-9688 and ND-1.1.
  • TLR7 modulators include GS-9620, GSK-2245035, imiquimod, resiquimod, DSR-6434, DSP-3025, IMG-4200, MCT-465, MEDI-9197, 3M-051, SB-9922, 3M-052, Limtop, TMX-30X, TMX-202, RG-7863, RG-7795, RG-7854, and the compounds disclosed in US20100143301 (Gilead Sciences), US20110098248 (Gilead Sciences), and US20090047249 (Gilead Sciences).
  • TLR8 modulators include motolimod, resiquimod, 3M-051, 3M-052, MCT-465, IMG-4200, VTX-763, VTX-1463, and the compounds disclosed in US20140045849 (Janssen), US20140073642 (Janssen), WO2014/056953 (Janssen), WO2014/076221 (Janssen), WO2014/128189 (Janssen), US20140350031 (Janssen), WO2014/023813 (Janssen), US20080234251 (Array Biopharma), US20080306050 (Array Biopharma), US20100029585 (Ventirx Pharma), US20110092485 (Ventirx Pharma), US20110118235 (Ventirx Pharma), US20120082658 (Ventirx Pharma), US20120219615 (Ventirx Pharma), US20140066432 (Ventirx Pharma), US20140088085 (Ventirx Pharma), US201402
  • TLR9 modulators examples include BB-001, BB-006, CYT-003, IMCO-2055, IMCO-2125, IMG-3100, IMC 1-8400 , IR-103, IMCO-9200, agatolimod, DIMS-9054, DV-1079, DV-1179, AZD-1419, leftolimod (MGN-1703), litenimod, and CYT-003-QbG10.
  • interferon alpha receptor ligands include interferon alpha-2b (INTRON A®), pegylated interferon alpha-2a (PEGASYS®), PEGylated interferon alpha-lb, interferon alpha 1b (HAPGEN®), Veldona, Infradure, Roferon-A, YPEG-interferon alfa-2a (YPEG-rhIFNalpha-2a), P-1101, Algeron, Alfarona, Ingaron (interferon gamma), rSIFN-co (recombinant super compound interferon), Ypeginterferon alfa-2b (YPEG-rhIFNalpha-2b), MOR-22, peginterferon alfa-2b (PEG-INTRON®), Bioferon, Novaferon, Inmutag (Inferon), MULTIFERON®, interferon alfa-n1 (HUMOFERON®), interferon beta-la (AVONEX®
  • hyaluronidase inhibitors examples include astodrimer.
  • HsAg Hepatitis B Surface Antigen
  • HBsAg inhibitors examples include HBF-0259, PBHBV-001, PBHBV-2-15, PBHBV-2-1, REP-9AC, REP-9C, REP-9, REP-2139, REP-2139-Ca, REP-2165, REP-2055, REP-2163, REP-2165, REP-2053, REP-2031 and REP-006, and REP-9 AC′.
  • HBsAg secretion inhibitors examples include BM601.
  • Cytotoxic T-lymphocyte-associated protein 4 (ipi4) inhibitors include AGEN-2041, AGEN-1884, ipilumimab, belatacept, PSI-001, PRS-010, Probody mAbs, tremelimumab, and JHL-1155.
  • cyclophilin inhibitors include CPI-431-32, EDP-494, OCB-030, SCY-635, NVP-015, NVP-018, NVP-019, STG-175, and the compounds disclosed in U.S. Pat. No. 8,513,184 (Gilead Sciences), US20140030221 (Gilead Sciences), US20130344030 (Gilead Sciences), and US20130344029 (Gilead Sciences).
  • HBV viral entry inhibitors examples include Myrcludex B.
  • antisense oligonucleotide targeting viral mRNA examples include ISIS-HBVRx, IGNIS-HBVRx, IONIS-GSK6-LRx, GSK-3389404, RG-6004.
  • Short Interfering RNAs siRNA
  • ddRNAi short Interfering RNAs
  • siRNA examples include TKM-HBV (TKM-HepB), ALN-HBV, SR-008, HepB-nRNA, and ARC-520, ARC-521, ARB-1740, ARB-1467.
  • ddRNAi DNA-directed RNA interference
  • endonuclease modulators examples include PGN-514.
  • inhibitors of ribonucleotide reductase include Trimidox.
  • HBV E antigen inhibitors examples include wogonin.
  • cccDNA inhibitors examples include BSBI-25, and CHR-101.
  • HBV antibodies targeting the surface antigens of the hepatitis B virus include GC-1102, XTL-17, XTL-19, KN-003, IV Hepabulin SN, and fully human monoclonal antibody therapy (hepatitis B virus infection, Humabs BioMed).
  • HBV antibodies including monoclonal antibodies and polyclonal antibodies
  • monoclonal antibodies and polyclonal antibodies include Zutectra, Shang Sheng Gan Di, Uman Big (Hepatitis B Hyperimmune), Omri-Hep-B, Nabi-HB, Hepatect CP, HepaGam B, igantibe, Niuliva, CT-P24, hepatitis B immunoglobulin (intravenous, pH4, HBV infection, Shanghai RAAS Blood Products), and Fovepta (BT-088).
  • Fully human monoclonal antibodies such as HBC-34.
  • CCR2 chemokine antagonists examples include propagermanium.
  • thymosin agonists examples include Thymalfasin, recombinant thymosin alpha 1 (GeneScience).
  • cytokines examples include recombinant IL-7, CYT-107, interleukin-2 (IL-2, Immunex), recombinant human interleukin-2 (Shenzhen Neptunus), IE-15, IL-21, IL-24, and celmoleukin.
  • Nucleoprotein modulators may be either HBV core or capsid protein inhibitors.
  • Examples of nucleoprotein modulators include AB-423, AT-130, GLS4, NVR-1221, NVR-3778, BAY 41-4109, morphothiadine mesilate, JNJ-379, RG-7907, ABI-H0731, ABI-H2158 and DVR-23.
  • capsid inhibitors include the compounds disclosed in US20140275167 (Novira Therapeutics), US20130251673 (Novira Therapeutics), US20140343032 (Roche), WO2014037480 (Roche), US20130267517 (Roche), WO2014131847 (Janssen), WO2014033176 (Janssen), WO2014033170 (Janssen), WO2014033167 (Janssen), WO2015/059212 (Janssen), WO2015118057 (Janssen), WO2015011281 (Janssen), WO2014184365 (Janssen), WO2014184350 (Janssen), WO2014161888 (Janssen), WO2013096744 (Novira), US20150225355 (Novira), US20140178337 (Novira), US20150315159 (Novira), US20150197533 (Novira), US20150274652 (Novira), US20150259324, (Novira), US20150132
  • Examples of stimulators of retinoic acid-inducible gene 1 include SB-9200, SB-40, SB-44, ORI-7246, ORI-9350, ORI-7537, ORI-9020, ORI-9198, and ORI-7170, RGT-100.
  • Examples of stimulators of NOD2 include SB-9200.
  • PI3K inhibitors include idelalisib, ACP-319, AZD-8186, AZD-8835, buparlisib, CDZ-173, CLR-457, pictilisib, neratinib, rigosertib, rigosertib sodium, EN-3342, TGR-1202, alpelisib, duvelisib, IPI-549, UCB-5857, taselisib, XL-765, gedatolisib, ME-401, VS-5584, copanlisib, CAI orotate, perifosine, RG-7666, GSK-2636771, DS-7423, panulisib, GSK-2269557, GSK-2126458, CUDC-907, PQR-309, INCB-40093, pilaralisib, BAY-1082439, puquitinib mesylate, SAR-2454
  • IDO inhibitors examples include epacadostat (INCB24360), resminostat (4SC-201), indoximod, F-001287, SN-35837, NLG-919, GDC-0919, GBV-1028, GBV-1012, NKTR-218, and the compounds disclosed in US20100015178 (Incyte), US2016137652 (Flexus Biosciences, Inc.), WO2014073738 (Flexus Biosciences, Inc.), and WO2015188085 (Flexus Biosciences, Inc.).
  • PD-1 inhibitors examples include nivolumab, pembrolizumab, pidilizumab, BGB-108, SHR-1210, PDR-001, PF-06801591, IBI-308, GB-226, STI-1110, and mDX-400.
  • Examples of PD-L1 inhibitors include atezolizumab, avelumab, AMP-224, MEDI-0680, RG-7446, GX-P2, durvalumab, KY-1003, KD-033, MSB-0010718C, TSR-042, ALN-PDL, STI-A1014, CX-072, and BMS-936559.
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with compounds such as those disclosed in WO2018026971, US20180044329, US20180044305, US20180044304, US20180044303, US20180044350, US20180057455, US20180057486, US20180045142, WO20180044963, WO2018044783, WO2018009505, WO20180044329, WO2017066227, WO2017087777, US20170145025, WO2017079669, WO2017070089, US2017107216, WO2017222976, US20170262253, WO2017205464, US20170320875, WO2017192961, WO2017112730, US20170174679, WO2017106634, WO2017202744, WO2017202275, WO2017202273, WO2017202274, WO2017202276, WO2017180769, WO2017118762, WO2016041511,
  • recombinant thymosin alpha-1 examples include NL-004 and PEGylated thymosin alpha-1.
  • BTK inhibitors examples include ABBV-105, acalabrutinib (ACP-196), ARQ-531, BMS-986142, dasatinib, ibrutinib, GDC-0853, PRN-1008, SNS-062, ONCO-4059, BGB-3111, ML-319, MSC-2364447, RDX-022, X-022, AC-058, RG-7845, spebrutinib, TAS-5315, TP-0158, TP-4207, HM-71224, KBP-7536, M-2951, TAK-020, AC-0025, and the compounds disclosed in US20140330015 (Ono Pharmaceutical), US20130079327 (Ono Pharmaceutical), and US20130217880 (Ono Pharmaceutical).
  • KDM5 inhibitors include the compounds disclosed in WO2016057924 (Genentech/Constellation Pharmaceuticals), US20140275092 (Genentech/Constellation Pharmaceuticals), US20140371195 (Epitherapeutics) and US20140371214 (Epitherapeutics), US20160102096 (Epitherapeutics), US20140194469 (Quanticel), US20140171432, US20140213591 (Quanticel), US20160039808 (Quanticel), US20140275084 (Quanticel), WO2014164708 (Quanticel).
  • KDM1 inhibitors examples include the compounds disclosed in U.S. Pat. No. 9,186,337B2 (Oryzon Genomics), and GSK-2879552, RG-6016, ORY-2001.
  • hepatitis B virus replication inhibitors examples include isothiafludine, IQP-HBV, RM-5038, and Xingantie.
  • Arginase inhibitors include CB-1158, C-201, and resminostat.
  • Gene Therapy and Cell Therapy including the genetic modification to silence a gene; genetic approaches to directly kill the infected cells; the infusion of immune cells designed to replace most of the patient's own immune system to enhance the immune response to infected cells, or activate the patient's own immune system to kill infected cells, or find and kill the infected cells; genetic approaches to modify cellular activity to further alter endogenous immune responsiveness against the infection.
  • the genome editing system is selected from the group consisting of: a CRISPR/Cas9 system, a zinc finger nuclease system, a TALEN system, a homing endonucleases system, and a meganuclease system; e.g., cccDNA elimination via targeted cleavage, and altering one or more of the hepatitis B virus (HBV) viral genes.
  • a CRISPR/Cas9 system e.g., a zinc finger nuclease system, a TALEN system, a homing endonucleases system, and a meganuclease system
  • cccDNA elimination via targeted cleavage e.g., cccDNA elimination via targeted cleavage
  • HBV hepatitis B virus
  • Altering e.g., knocking out and/or knocking down
  • the PreC, C, X, PreS1, PreS2, S, P or SP gene refers to (1) reducing or eliminating PreC, C, X, PreS1, PreS2, S, P or SP gene expression, (2) interfering with Precore, Core, X protein, Long surface protein, middle surface protein, S protein (also known as HBs antigen and HBsAg), polymerase protein, and/or Hepatitis B spliced protein function (HBe, HBc, HBx, PreS1, PreS2, S, Pol, and/or HBSP or (3) reducing or eliminating the intracellular, serum and/or intraparenchymal levels of HBe, HBc, HBx, LHBs, MHBs, SHBs, Pol, and/or HBSP proteins. Knockdown of one or more of the PreC, C, X, PreS1, PreS2, S, P and/or SP gene(s) is performed by targeting the gene
  • the immune effector cell is a T cell or an NK cell.
  • the T cell is a CD4+ T cell, a CD8+ T cell, or a combination thereof.
  • Cells can be autologous or allogeneic.
  • T cells expressing HBV-specific T cell receptors are engineered to target HBV derived peptides presented on the surface of virus-infected cells.
  • HBV surface antigen (HBsAg)-specific TCR T-Cells expressing HBV surface antigen (HBsAg)-specific TCR.
  • TCR-T therapy directed to treatment of HBV such as LTCR-H2-1
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with one, two, three, or four additional therapeutic agent selected from the group consisting of adefovir (HEPSERA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, entecavir (BARACLUDE®), telbivudine (TYZEKA®), or lamivudine (EPIVIR-HBV®).
  • HEPSERA® tenofovir disoproxil fumarate
  • VIREAD® tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, entecavir
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with a first additional therapeutic agent selected from the group consisting of adefovir (HEPSERA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, entecavir (BARACLUDE®), telbivudine (TYZEKA®), or lamivudine (EPIVIR-HBV®).
  • HEPSERA® tenofovir disoproxil fumarate
  • VIREAD® tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, entecavir
  • BARACLUDE®
  • compositions comprising a compound disclosed herein, or a pharmaceutically acceptable salt thereof, in combination with one or more (e.g., one, two, three, four, one or two, or one to three, or one to four) additional therapeutic agents and a pharmaceutically acceptable carrier, diluent, or excipient are provided.
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with an HBV DNA polymerase inhibitor.
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with an HBV DNA polymerase inhibitor and at least one additional therapeutic agent selected from the group consisting of: immunomodulators, TER modulators, interferon alpha receptor ligands, hyaluronidase inhibitors, recombinant IL-7, HBsAg inhibitors, HBsAg secretion or assembly inhibitors, compounds targeting HBcAg, cyclophilin inhibitors, HBV vaccines, HBV viral entry inhibitors, NTCP inhibitors, antisense oligonucleotide targeting viral mRNA, siRNA, miRNA gene therapy agents, endonuclease modulators, inhibitors of ribonucleotide reductase, hepatitis B virus E antigen inhibitors, recombinant SRA proteins, src
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with an HBV DNA polymerase inhibitor, one or two additional therapeutic agents selected from the group consisting of immunomodulators, TLR modulators, HBsAg inhibitors, HBsAg secretion or assembly inhibitors, HBV therapeutic vaccines, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins (such as DARTs®, DUOBODIES®, BITES®, XmAbs®, TandAbs®, Fab derivatives, or TCR-like antibodies), cyclophilin inhibitors, stimulators of retinoic acid-inducible gene 1, stimulators of RIG-I like receptors, PD-1 inhibitors, PD-L1 inhibitors, Arginase inhibitors, PI3K inhibitors, IDO inhibitors, and stimulators of NOD2, and one or two additional therapeutic agents selected from the group consisting of HBV viral entry inhibitors,
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with an HBV DNA polymerase inhibitor and at least a second additional therapeutic agent selected from the group consisting of: immunomodulators, TLR modulators, HBsAg inhibitors, HBV therapeutic vaccines, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins (such as DARTs®, DUOBODIES®, BITES®, XmAbs®, TandAbs®, Fab derivatives, or TCR-like antibodies), cyclophilin inhibitors, stimulators of retinoic acid-inducible gene 1, stimulators of RIG-I like receptors, PD-1 inhibitors, PD-L1 inhibitors, Arginase inhibitors, PI3K inhibitors, IDO inhibitors, and stimulators of NOD2.
  • a second additional therapeutic agent selected from the group consisting of: immunomodulators, TLR modulators, HBsAg inhibitors, HBV therapeutic
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with an HBV DNA polymerase inhibitor and at least a second additional therapeutic agent selected from the group consisting of: HBV viral entry inhibitors, NTCP inhibitors, HBx inhibitors, cccDNA inhibitors, HBV antibodies targeting the surface antigens of the hepatitis B virus, siRNA, miRNA gene therapy agents, sshRNAs, KDM5 inhibitors, and nucleoprotein modulators (HBV core or capsid protein inhibitors).
  • a second additional therapeutic agent selected from the group consisting of: HBV viral entry inhibitors, NTCP inhibitors, HBx inhibitors, cccDNA inhibitors, HBV antibodies targeting the surface antigens of the hepatitis B virus, siRNA, miRNA gene therapy agents, sshRNAs, KDM5 inhibitors, and nucleoprotein modulators (HBV core or capsid protein inhibitors).
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with a first additional therapeutic agent selected from the group consisting of adefovir (HEPSERA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, entecavir (BARACLUDE®), telbivudine (TYZEKA®), or lamivudine (EPIVIR-HBV®), and at least a second additional therapeutic agent selected from the group consisting of immunomodulators, TLR modulators, interferon alpha receptor ligands, hyaluronidase inhibitors, recombinant IL-7, HBsAg inhibitors, HBsAg secretion or assembly inhibitors, compounds targeting HBcAg, cycl
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with a first additional therapeutic agent selected from the group consisting of adefovir (HEPSERA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, entecavir (BARACLUDE®), telbivudine (TYZEKA®) or lamivudine (EPIVIR-HBV®) and at least a second additional therapeutic agent selected from the group consisting of peginterferon alfa-2b (PEG-INTRON®), MULTIFERON®, interferon alpha 1b (HAPGEN®), interferon alpha-2b (INTRON A®), pegylated interferon alpha-2a (PEGASYS®), interfer
  • HEPSERA®
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with a first additional therapeutic agent selected from the group consisting of adefovir (HEPSERA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, entecavir (BARACLUDE®), telbivudine (TYZEKA®), or lamivudine (EPIVIR-HBV®), and at least a second additional therapeutic agent selected from the group consisting of immunomodulators, TER modulators, HBsAg inhibitors, HBsAg secretion or assembly inhibitors, HBV therapeutic vaccines, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with a first additional therapeutic agent selected from the group consisting of: adefovir (HEPSERA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, entecavir (BARACLUDE®), telbivudine (TYZEKA®), or lamivudine (EPIVIR-HBV®), and at least a second additional therapeutic agent selected from the group consisting of HBV viral entry inhibitors, NTCP inhibitors, HBx inhibitors, cccDNA inhibitors, HBV antibodies targeting the surface antigens of the hepatitis B virus, siRNA, miRNA gene therapy agents, sshRNAs, KDM5 inhibitors, and nu
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with a first additional therapeutic agent selected from the group consisting of adefovir (HEPSERA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, entecavir (BARACLUDE®), telbivudine (TYZEKA®), or lamivudine (EPIVIR-HBV®); one, two, or three additional therapeutic agents selected from the group consisting of immunomodulators, TER modulators, HBsAg inhibitors, HBsAg secretion or assembly inhibitors, HBV therapeutic vaccines, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with a first additional therapeutic agent selected from the group consisting of adefovir (HEPSERA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, entecavir (BARACLUDE®), telbivudine (TYZEKA®), or lamivudine (EPIVIR-HBV®); one or two additional therapeutic agents selected from the group consisting of immunomodulators, TER modulators, HBsAg inhibitors, HBsAg secretion or assembly inhibitors, HBV therapeutic vaccines, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins (such as
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with a first additional therapeutic agent selected from the group consisting of adefovir (HEPSERA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, entecavir (BARACLUDE®), telbivudine (TYZEKA®), or lamivudine (EPIVIR-HBV®); and one, two, three, or four additional therapeutic agents selected from the group consisting of immunomodulators, TLR7 modulators, TLR8 modulators, HBsAg inhibitors, HBsAg secretion or assembly inhibitors, HBV therapeutic vaccines, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with compounds such as those disclosed in U.S. Publication No. 2010/0143301 (Gilead Sciences), U.S. Publication No. 2011/0098248 (Gilead Sciences), U.S. Publication No. 2009/0047249 (Gilead Sciences), U.S. Pat. No. 8,722,054 (Gilead Sciences), U.S. Publication No. 2014/0045849 (Janssen), U.S. Publication No. 2014/0073642 (Janssen), WO2014/056953 (Janssen), WO2014/076221 (Janssen), WO2014/128189 (Janssen), U.S.
  • a compound as disclosed herein may be combined with one or more (e.g., one, two, three, four, one or two, one to three, or one to four) additional therapeutic agents in any dosage amount of the compound of Formula (I) (e.g., from 10 mg to 1000 mg of compound).
  • one or more e.g., one, two, three, four, one or two, one to three, or one to four
  • additional therapeutic agents in any dosage amount of the compound of Formula (I) (e.g., from 10 mg to 1000 mg of compound).
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with 5-30 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide. In certain embodiments, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with 5-10; 5-15; 5-20; 5-25; 25-30; 20-30; 15-30; or 10-30 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide.
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with 10 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide. In certain embodiments, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with 25 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide.
  • a compound as disclosed herein may be combined with the agents provided herein in any dosage amount of the compound (e.g., from 50 mg to 500 mg of compound) the same as if each combination of dosages were specifically and individually listed.
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with 100-400 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil.
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with 100 mg to 150 mg; 100 mg to 200 mg; 100 mg to 250 mg; 100 mg to 300 mg; 100 mg to 350 mg; 150 mg to 200 mg; 150 mg to 250 mg; 150 mg to 300 mg; 150 mg to 350 mg; 150 mg to 400 mg; 200 mg to 250 mg; 200 mg to 300 mg; 200 mg to 350 mg; 200 mg to 400 mg; 250 mg to 350 mg; 250 mg to 400 mg; 350 mg to 400 or 300 mg to 400 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil.
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with 300 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil. In certain embodiments, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with 250 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil.
  • a compound disclosed herein, or a pharmaceutically acceptable salt thereof is combined with 150 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil.
  • a compound as disclosed herein e.g., a compound of Formula I
  • kits comprising a compound disclosed herein, or a pharmaceutically acceptable salt thereof, in combination with one or more (e.g., one, two, three, four, one or two, or one to three, or one to four) additional therapeutic agents are provided.
  • any pharmaceutical composition provided in the present disclosure may be used in the kits, the same as if each and every composition were specifically and individually listed for use in a kit.
  • the compounds of the disclosure may be prepared using methods disclosed herein and routine modifications thereof which will be apparent given the disclosure herein and methods well known in the art. Conventional and well-known synthetic methods may be used in addition to the teachings herein.
  • the synthesis of typical compounds of formula (I), or a pharmaceutically acceptable salt thereof, e.g., compounds having structures described by one or more of formula (I), or other formulas or compounds disclosed herein, may be accomplished as described in the following examples.
  • Typical embodiments of compounds in accordance with the present disclosure may be synthesized using the general reaction schemes and/or examples described below. It will be apparent given the description herein that the general schemes may be altered by substitution of the starting materials with other materials having similar structures to result in products that are correspondingly different. Descriptions of syntheses follow to provide numerous examples of how the starting materials may vary to provide corresponding products. Starting materials are typically obtained from commercial sources or synthesized using published methods for synthesizing compounds which are embodiments of the present disclosure, inspection of the structure of the compound to be synthesized will provide the identity of each substituent group. The identity of the final product will generally render apparent the identity of the necessary starting materials by a simple process of inspection, given the examples herein.
  • Group labels e.g., R 1 , R a , R b ) used in the reaction schemes herein are for illustrative purposes only and unless otherwise specified do not necessarily match by name or function the labels used elsewhere to describe compounds of formula (I) or aspects or fragments thereof.
  • the compounds of this disclosure can be prepared from readily available starting materials using, for example, the following general methods and procedures. It will be appreciated that where typical or preferred process conditions (i.e., reaction temperatures, times, mole ratios of reactants, solvents, pressures, etc.) are given; other process conditions can also be used unless otherwise stated. Optimum reaction conditions may vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures.
  • protecting groups may be necessary to prevent certain functional groups from undergoing undesired reactions.
  • Suitable protecting groups for various functional groups as well as suitable conditions for protecting and deprotecting particular functional groups are well known in the art. For example, numerous protecting groups are described in T. W. Greene and G. M. Wuts (1999) Protecting Groups in Organic Synthesis, 3rd Edition, Wiley, New York, and references cited therein.
  • the compounds of this disclosure may contain one or more chiral centers. Accordingly, if desired, such compounds can be prepared or isolated as pure stereoisomers, i.e., as individual enantiomers or diastereomers or as stereoisomer-enriched mixtures. All such stereoisomers (and enriched mixtures) are included within the scope of this disclosure, unless otherwise indicated. Pure stereoisomers (or enriched mixtures) may be prepared using, for example, optically active starting materials or stereoselective reagents well-known in the art. Alternatively, racemic mixtures of such compounds can be separated using, for example, chiral column chromatography, chiral resolving agents, and the like.
  • the starting materials for the following reactions are generally known compounds or can be prepared by known procedures or obvious modifications thereof.
  • many of the starting materials are available from commercial suppliers such as Aldrich Chemical Co. (Milwaukee, Wis., USA).
  • Others may be prepared by procedures or obvious modifications thereof, described in standard reference texts such as Fieser and Fieser's Reagents for Organic Synthesis, Volumes 1-15 (John Wiley, and Sons, 1991), Rodd's Chemistry of Carbon Compounds, Volumes 1-5, and Supplemental (Elsevier Science Publishers, 1989) organic Reactions, Volumes 1-40 (John Wiley, and Sons, 1991), March's Advanced Organic Chemistry, (John Wiley, and Sons, 5 th Edition, 2001), and Larock's Comprehensive Organic Transformations (VCH Publishers Inc., 1989).
  • solvent refers to a solvent inert under the conditions of the reaction being described in conjunction therewith (including, for example, benzene, toluene, acetonitrile, tetrahydrofuran (“THE”), dimethylformamide (“DMF”), chloroform, methylene chloride (or dichloromethane), diethyl ether, methanol, pyridine and the like).
  • solvents used in the reactions of the present disclosure are inert organic solvents, and the reactions are carried out under an inert gas, preferably nitrogen.
  • q.s. means adding a quantity sufficient to achieve a stated function, e.g., to bring a solution to the desired volume (i.e., 100%).
  • Scheme 1 shows exemplary synthetic routes for the synthesis of compounds of Formula (I).
  • Q, R E , R W , Z 1 , Z 3 , n, m are as defined herein
  • each R 50 is independently C 1-6 alkyl or two R 50 together with the atom to which they are attached form a ring
  • X is halo
  • each EG is independently a functional group capable of forming a covalent bond with compound 105.
  • compound 100 is coupled with compound 101 under standard metal-catalyzed coupling conditions (e.g., using a palladium(0) catalyst) in a suitable solvent (e.g., DMF) under an inert atmosphere to provide compound 102.
  • a suitable solvent e.g., DMF
  • Compounds of Formula (I) are then provided by contacting compound 102 with appropriately substituted compound 106 under standard metal-catalyzed coupling conditions.
  • compound 102 is contacted with compound 103 under standard metal-catalyzed coupling conditions to provide compound 104.
  • Compound 104 is then reacted with compound 105 under conditions suitable to provide compounds of Formula (I).
  • Exemplary conditions include, but are not limited to, reductive amination (FG is an aldehyde and compound 105 comprises a primary or secondary amine).
  • Symmetric compounds as provided herein, such as those of Formula (Id), may be synthesized according to Scheme 2 below.
  • Q, R E , R W , Z 1 , Z 2 , n, m, are as defined herein, each R 50 is independently C 1-6 alkyl or two R 50 together with the atom to which they are attached form a ring, X is halo, and FG is a functional group capable of forming a covalent bond with compound 105.
  • symmetric compounds of Formula (Id) can be provided by coupling compound 100 with at least a two-fold excess of appropriately substituted compound 101 under standard metal-catalyzed coupling conditions (e.g., using a palladium(0) catalyst) in a suitable solvent (e.g., DMF) under an inert atmosphere.
  • compound 100 is contacted with compound 200 under standard metal-catalyzed coupling conditions to provide compound 201.
  • Compound 201 is then reacted with compound 105 under conditions suitable to provide compounds of Formula (Id).
  • Exemplary conditions include, but are not limited to, reductive amination (FG is an aldehyde and compound 105 comprises a primary or secondary amine).
  • Suitably substituted compounds 100, 101, 103, 106 and 105 for use in the methods provided herein can be purchased from commercial sources or synthesized by known methods. Resolution of the isomers of Formula (I) can be performed as needed using standard chiral separation/resolution conditions (e.g., chromatography, crystallization, etc.).
  • the mixture was heated to 85° C. overnight. After cooling to room temperature, the mixture was diluted with ethyl acetate and water. The organic layer was then washed once with brine, dried over magnesium sulfate, filtered, and concentrated. The azide was used without further purification.
  • To an oven-dried 40 mL vial was added the azide in ethyl acetate at room temperature.
  • the vessel was purged with nitrogen, and Palladium on carbon was added (10 mol %).
  • the vessel was then purged with hydrogen. After stirring for 4 hours, the contents were filtered through celite and concentrated.
  • the crude amine was dissolved in ether and precipitated by the addition of 1.0 equiv. of HCl in dioxane. The solid HCl salt was isolated by filtration.
  • Isopropylmagnesium chloride lithium chloride complex solution (1.3 M in tetrahydrofuran, 59.22 mL, 75.6 mmol) was added via syringe over 5 min to a stirred solution of 5-bromo-2-iodo-3-methoxypyrazine (21 g, 66.69 mmol) in anhydrous tetrahydrofuran (147 mL) under an atmosphere of dry nitrogen at ⁇ 40° C. After 25 min, anhydrous N,N-dimethylformamide (15.54 mL, 200.34 mmol) was added via syringe over 2 min, and the resulting mixture was allowed to warm to ⁇ 18° C. over 25 min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Communicable Diseases (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

Compounds of Formula (I), methods of using said compounds singly or in combination with additional agents and compositions of said compounds for the treatment of cancer are disclosed.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This application is a continuation of U.S. application Ser. No. 16/274,106, filed Feb. 12, 2019, now U.S. Pat. No. 10,710,986, which claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application Nos. 62/630,187, filed Feb. 13, 2018, 62/640,534, filed Mar. 8, 2018, 62/763,116, filed Apr. 19, 2018, and 62/747,029, filed Oct. 17, 2018, each of which are hereby incorporated by reference in their entirety.
FIELD
The present disclosure generally relates to compounds useful as inhibitors of PD-1, PD-L1 or the PD-1/PD-L1 interaction. Provided herein are compounds, compositions comprising such compounds, and methods for their use.
BACKGROUND
Programmed death-1 (CD279) is a receptor on T cells that has been shown to suppress activating signals from the T cell receptor when bound by either of its ligands, Programmed death-ligand 1 (PD-L1, CD274, B7-H1) or PD-L2 (CD273, B7-DC). When PD-1 expressing T cells contact cells expressing its ligands, functional activities in response to antigenic stimuli, including proliferation, cytokine secretion, and cytotoxicity are reduced. PD-l/PD-Ligand interactions down regulate immune responses during resolution of an infection or tumor, or during the development of self-tolerance. Chronic antigen stimulation, such as that which occurs during tumor disease or chronic infections, results in T cells that express elevated levels of PD-1 and are dysfunctional with respect to activity towards the chronic antigen. This is termed “T cell exhaustion.” B cells also display PD-l/PD-ligand suppression and “exhaustion.”
Blockade of the PD-1/PD-L1 ligation using antibodies to PD-L1 has been shown to restore and augment T cell activation in many systems. Patients with advanced cancer benefit from therapy with a monoclonal antibody to PD-L1. Preclinical animal models of tumors and chronic infections have shown that blockade of the PD-1/PD-L1 pathway by monoclonal antibodies can enhance the immune response and result in tumor rejection or control of infection. Antitumor immunotherapy via PD-1/PD-L1 blockade may augment therapeutic immune response to a number of histologically distinct tumors.
Interference with the PD-1/PD-L1 interaction has also shown enhanced T cell activity in chronic infection systems. Chronic lymphocytic chorio meningitis virus infection of mice also exhibits improved virus clearance and restored immunity with blockade of PD-L1. Humanized mice infected with HIV-1 show enhanced protection against viremia and viral depletion of CD4+ T cells. Blockade of PD-1/PD-L1 through monoclonal antibodies to PD-L1 can restore in vitro antigen-specific functionality to T cells from HIV patients, HCV patients or HBV patients.
Accordingly, agents that block PD-1, PD-L1 and/or the PD-1/PD-L1 interaction are desired. Small molecule agents that block or inhibit PD-1, PD-L1 and/or the PD-1/PD-L1 interaction are particularly desired. Applicants have discovered small molecule compounds that have activity as inhibitors of PD-1, PD-L1 or inhibitors of the interaction of PD-1 with PD-L1, and thus may be useful for treating patients having cancer, HIV, HCV and/or HBV.
SUMMARY
The present disclosure provides a compound of formula (I):
Figure US11555029-20230117-C00001
  • wherein:
  • each n is independently 0, 1, 2, 3 or 4;
  • each Z1 is independently halo, —ORa, —NO2, —CN, —NRaRb, —N3, —S(O)2Ra, —C1-6 alkyl, —C1-6 haloalkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6 alkyl, —O—C1-6 haloalkyl, —C3-8 cycloalkyl or —C1-6 alkylC3-8 cycloalkyl;
    • wherein each alkyl, alkenyl, alkynyl, and cycloalkyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, —N3, —ORa, halo, and cyano;
  • Q is aryl, heteroaryl or heterocyclyl, wherein the aryl, heteroaryl and heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of halo, oxo, —ORa, —SRa, N3, NO2, —CN, —NR1R2, —S(O)2Ra, —S(O)2NRaRb, —NRaS(O)2Ra, —NRaC(O)Ra, —C(O)Ra, —C(O)ORa, —C(O)NRaRb, —NRaC(O)ORa, —NRaC(O)NR1R2, —O—C(O)NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb, —C1-6 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6 alkyl, —C3-8 cycloalkyl, —C1-6 alkylC3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl and RN;
    • wherein the alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, N3, —ORa, halo, cyano, —NRaRb, —C(O)Ra, —C(O)ORa, —O—C1-6 alkylCN, —C(O)NRaRb, NRaC(O)Ra, —NRaC(O)ORa, —S(O)2Ra, —NRaS(O)2Rb, —S(O)2NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb and —C3-8 cycloalkyl; and wherein the heteroaryl or heterocyclyl group may be oxidized on a nitrogen atom to form an N-oxide or oxidized on a sulfur atom to form a sulfoxide or sulfone;
  • m is 0, 1 or 2;
  • each Z3 is independently halo, oxo, —ORa, SRa, N3, NO2, —CN, —NR1R2, —S(O)2Ra, —S(O)2NRaRb, —NRaS(O)2Ra, —NRaC(O)Ra, —C(O)Ra, —C(O)ORa, —C(O)NRaRb, —NRaC(O)ORa, —NRaC(O)NR1R2, —O—C(O)NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb, —C1-6 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6 alkyl, —C3-8 cycloalkyl, —C1-6 alkylC1-6cycloalkyl, aryl, heteroaryl, heterocyclyl and RN;
    • wherein the alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, N3, —ORa, halo, cyano, —NRaRb, —C(O)Ra, —C(O)ORa, —O—C1-6 alkylCN, —C(O)NRaRb, NRaC(O)Ra, —NRaC(O)ORa, —S(O)2Ra, —NRaS(O)2Rb, —S(O)2NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb and —C3-8 cycloalkyl;
  • each RN is independently —C1-6 alkyl NR1R2, —O—C1-6 alkyl NR1R2, —C1-6 alkylOC1-6 alkylNR1R2, —NRa—C1-6 alkylNR1R2, —C1-6 alkylC(O)NR1R2, —O—C1-6 alkylC(O)NR1R2, —O—C1-6 alkylC(O)OR1, —S—C1-6 alkylNR1R2, —C1-6 alkylORa, or
Figure US11555029-20230117-C00002
    • wherein
    • L1 is independently a bond, O, NRa, S, S(O), or S(O)2;
    • V is independently selected from the group consisting of a bond, C1-6 alkyl, C2-6 alkenyl, and C2-6alkynyl;
      • wherein the alkyl, alkenyl or alkynyl group is optionally independently substituted with —ORa, halo, cyano, NRaRb and —C3-8 cycloalkyl;
    • L2 is independently a bond, O, NRa, S, S(O), or S(O)2;
    • ring A is independently cycloalkyl, aryl, heteroaryl or heterocyclyl;
      • wherein the cycloalkyl, aryl, heteroaryl, or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, N3, —ORa, halo, cyano, —C1-6 alkyl, —C1-6 haloalkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6 haloalkyl, NRaRb, —C(O)Ra, —C(O)ORa, —O—C1-6 alkylCN, —C(O)NRaRb, —NRaC(O)Ra, —NRaC(O)ORa, —NRaC(O)ORa, —C(O)N(Ra)ORb, —S(O)2Ra, —S(O)2NRaRb, —NRaS(O)2Rb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb, C3-8 cycloalkyl and C1-6 alkylC3-8 cycloalkyl;
        • wherein the alkyl, alkenyl or alkynyl group is optionally independently substituted with —ORa, halo, cyano, NRaRb and —C3-8 cycloalkyl;
  • RE and RW are each independently —NR1R2, —C1-6 alkylNR1R2, —O—C1-6 alkylNR1R2, —C1-6 alkylOC1-6 alkylNR1R2, —NRa—C1-6 alkylNR1R2, —C1-6 alkylN+R1R2R3, —S—C1-6 alkylNR1R2, —C(O)NR1R2, —S(O)2Ra, —(CH2)uS(O)2NR1R2, —(CH2)uNRaS(O)2NRaRb, —S(O)2NRaC1-6 alkylNR1R2, —NRaS(O)2C1-6 alkylNR1R2, —(CH2)uC(O)NRaS(O)2NRaRb, —(CH2)uN+R1R2O4—(CH2)uP+RbRcRd, —(CH2)uP+RcRdO—(CH2)uP+O[NRaRb][NRcRd], —(CH2)uNRcP(O)(ORc)2, —(CH2)uCH2OP(O)(ORc)(ORd), —(CH2)uOP(O)(ORc)(ORd), —(CH2)uOP(O)NRaRb)(ORa), or
Figure US11555029-20230117-C00003
    • wherein:
    • V2 is independently a bond, O, NRa, S, S(O), S(O)2, C(O)NRa, NRaC(O), S(O)2NR1, or NRaS(C>)2;
    • L3 is independently a bond, O, NRa, S, S(O), S(O)2, C(O)NRa, NRaC(O), S(O)2NR1, or NRaS(O)2;
    • ring B is independently cycloalkyl, aryl, heteroaryl or heterocyclyl;
    • T is independently H, —ORa, (CH2)(NR1R2, (CH2)qNRaC(O)Re or (CH2)qC(O)Re;
    • p is independently 0, 1, 2, 3, 4, or 5;
    • q is independently 0, 1, 2, 3, 4, or 5;
    • u is 0, 1, 2, 3 or 4;
    • z is 0, 1, 2 or 3; and
    • wherein the alkyl, cycloalkyl, aryl, heteroaryl or heterocyclyl group of RE and RW is optionally substituted with 1 to 3 substituents independently selected from the group consisting of NRaRb, halo, cyano, oxo, —ORa, —C1-6 alkyl, —C1-6haloalkyl, —C1-6 cyanoalkyl, —C1-6 alkylNRaRb, —C1-6 alkylOH, —C3-8 cycloalkyl and —C1-3 alkylC3-8 cycloalkyl;
    • provided that at least one of V2, L3, ring B and T contains a nitrogen atom;
  • each R1 is independently selected from the group consisting of H, —C1-8 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —C3-6 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —C1-6 alkylheterocyclyl, —C1-6 alkylC(O)ORa, —C2-6 alkenylC(O)ORa, —S(O)2Ra, —S(O)2ORa, —S(O)2NRaRb, —C(O)NRaS(O)2Ra, and C1-6 alkylC3-8 cycloalkyl; wherein each alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORa, —CN, —NO2, halo, C1-6 alkyl, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-6haloalkyl, C3-8 cycloalkyl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —NRaRb, —OC(O)NRaRb, —NRaC(O)ORb, —NRaC(O)Rb, —C1-6 alkylNRaRb, —C(O)NRaRb, —C1-6 alkylC(O)NRaRb, —S(O)2Ra, —S(O)2ORa, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, —C1-6 alkylS(O)2NRaRb, —C(O)NRaS(O)2Rb, —NRaC(O)NRb, —C1-6 alkylC(O)NRaS(O)2Rb, —NRaC(O)Rb, and —C1-6 alkylNRaC(O)Rb;
  • each R2 is independently selected from the group consisting of H, —C1-6 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —C3-6cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —C1-6 alkylheterocyclyl, —C2-6 alkyl-ORa, —C1-6 alkylC(O)ORa, and —C2-6 alkenylC(O)ORa;
    • wherein each alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORa, —CN, halo, C1-6 alkyl, —C1-6 alkylOR8, —C1-6 cyanoalkyl, —C1-6haloalkyl, —C3-8 cycloalkyl, —C4-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, —C(O)NRaRb, C1-6 alkylC(O)NRaRb, —S(O)2Ra, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, —C1-6 alkylS(O)2NRaRb, —C(O)NRaS(O)2Rb and —NRaC(O)Rb;
  • or R1 and R2 combine to form a heterocyclyl group optionally containing 1, 2, or 3 additional heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1 to 3 groups independently selected from the group consisting of oxo, —C1-6 alkyl, —C3-8 cycloalkyl, —C2-6 alkenyl, —C2-6 alkynyl, aryl, heteroaryl, heterocyclyl, —ORa, —CN, halo, —C(O)ORa, —C1-6 cyanoalkyl, —C1-6 alkylOR3, —C1-6haloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, C1-6 alkylC(O)Ra, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, —C(O)NRaRb, —NRaC(O)ORb, —NRaC(O)NRaRb, —NRaS(O)2NRaRb, —NRaS(O)2Rb, —C1-6 alkylC(O)NRaRb, —S(O)2Ra, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, and C1-6 alkylS(O)2NRaRb;
  • each R3 is independently H, —C1-6 alkyl, —C2-6 alkenyl, —C3-6 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —C1-6 alkylheterocyclyl, —C2-6 alkyl-ORa, —C1-6 alkylC(O)ORa, or —C2-6 alkenylC(O)ORa;
  • each Ra is independently selected from the group consisting of H, —C1-6 alkyl, —C1-6haloalkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Rb is independently selected from the group consisting of H, —C1-6 alkyl, —C1-6haloalkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • or Ra and Rb may combine together to form a ring consisting of 3-8 ring atoms that are C, N, O, or S;
  • wherein the ring is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORf, —CN, halo, —C1-6 alkylORf, —C1-6 cyanoalkyl, —C1-6haloalkyl, —C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Rf, —C1-6 alkylC(O)Rf, —C(O)ORf, —C1-6 alkylC(O)ORf, —NRfRg, —C1-6 alkylNRfRg, —C(O)NRfRg, C1-6 alkylC(O)NRfRg, —S(O)2Rf, —C1-6 alkylS(O)2Rf, —S(O)2NRfRg, —C1-6 alkylS(O)2NRfRg, —C(O)NRfS(O)2Rg and —NRfC(O)Rg;
  • each Rc is independently selected from the group consisting of H, OH, —C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl; and
  • each Rd is independently selected from the group consisting of H, —C1-6 alkyl, —C3-C8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Re is independently selected from the group consisting of H, —C1-6 alkyl, —O—C1-6 alkyl, —C3-5 cycloalkyl, aryl, heteroaryl, heterocyclyl, —O—C3-8 cycloalkyl, —O-aryl, —O-heteroaryl, —O-heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —NRfRg, —C1-6 alkylNRfRg, —C(O)NRfRg, —C1-6 alkylC(O)NRfRg, —NHS(O)2Rf, —C1-6 alkylS(O)2Rf, and —C1-6 alkylS(O)2NRfRg;
  • each Rf is independently selected from the group consisting of H, —C1-6 alkyl, —C3-5 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Rg is independently selected from the group consisting of H, —C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof.
The present disclosure further provides a compound of formula (I):
Figure US11555029-20230117-C00004
  • wherein:
  • each n is independently 0, 1, 2, 3 or 4;
  • each Z1 is independently halo, —ORa, —NO2, —CN, —NRaRb, —N3, —S(O)2Ra, —C1-6 alkyl, —C1-6 haloalkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6 alkyl, —O—C1-6haloalkyl, —C3-5 cycloalkyl or —C1-6 alkylC3-8 cycloalkyl;
    • wherein each alkyl, alkenyl, alkynyl, and cycloalkyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, —N3, —ORa, halo, and cyano;
  • Q is aryl, heteroaryl or heterocyclyl, wherein the aryl, heteroaryl and heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of halo, oxo, —ORa, N3, NO2, —CN, —NR1R2, —S(O)2Ra, —S(O)2NRaRb, —NRaS(O)2Ra, —NRaC(O)Ra, —C(O)Ra, —C(O)ORa, —C(O)NRaRb, —NRaC(O)ORa, —NRaC(O)NR1R2, —OC(O)NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb, —C1-6 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6 alkyl, —C3-5 cycloalkyl, —C1-6 alkylC3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl and RN;
    • wherein the alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, N3, —ORa, halo, cyano, —NRaRb, —C(O)Ra, —C(O)ORa, —O—C1-6 alkylCN, —C(O)NRaRb, NRaC(O)Ra, —NRaC(O)ORa, —S(O)2Ra, —NRaS(O)2Rb, —S(O)2NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb and —C3-8 cycloalkyl; and wherein the heteroaryl or heterocyclyl group may be oxidized on a nitrogen atom to form an N-oxide or oxidized on a sulfur atom to form a sulfoxide or sulfone;
  • m is 0, 1 or 2;
  • each Z3 is independently halo, oxo, —ORa, N3, NO2, —CN, —NR1R2, —S(O)2Ra, —S(O)2NRaRb, —NRaS(O)2Ra, —NRaC(O)Ra, —C(O)Ra, —C(O)ORa, —C(O)NRaRb, —NRaC(O)ORa, —NRaC(O)NR1R2, —OC(O)NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb, —C1-6 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6 alkyl, —C3-8 cycloalkyl, —C1-6 alkylC3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl and RN;
    • wherein the alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, N3, —ORa, halo, cyano, —NRaRb, —C(O)Ra, —C(O)ORa, —O—C1-6 alkylCN, —C(O)NRaRb, NRaC(O)Ra, —NRaC(O)ORa, —S(O)2Ra, —NRaS(O)2Rb, —S(O)2NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb and —C3-8 cycloalkyl;
  • each RN is independently —C1-6 alkyl NR1R2, —O—C1-6 alkyl NR1R2, —C1-6 alkylOC1-6 alkylNR1R2, —N—RaC1-6 alkylNR1R2, —C1-6 alkylC(O)NR1R2, —O—C1-6 alkylC(O)NR1R2, —O—C1-6 alkylC(O)OR1, —S—C1-6 alkylNR1R2, —C1-6 alkylOR1, or
Figure US11555029-20230117-C00005
    • wherein
    • L1 is independently a bond, O, NRa, S, S(O), or S(O)2;
    • V is independently selected from the group consisting of a bond, C1-6 alkyl, C2-6 alkenyl, and C2-6alkynyl;
      • wherein the alkyl, alkenyl or alkynyl group is optionally independently substituted with —ORa, halo, cyano, NRaRb and —C3-8 cycloalkyl;
    • L2 is independently a bond, O, NRa, S, S(O), or S(O)2;
    • ring A is independently cycloalkyl, aryl, heteroaryl or heterocyclyl;
      • wherein the cycloalkyl, aryl, heteroaryl, or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, N3, —ORa, halo, cyano, —C1-6 alkyl, —C1-6 haloalkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6haloalkyl, NRaRb, —C(O)Ra, —C(O)ORa, —O—C1-6 alkylCN, —C(O)NRaRb, —NRaC(O)Ra, —NRaC(O)ORa, —NRaC(O)ORa, —C(O)N(Ra)ORb, —S(O)2Ra, —S(O)2NRaRb, —NRaS(O)2Rb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb, C3-8 cycloalkyl and C1-6 alkylC3-8 cycloalkyl;
        • wherein the alkyl, alkenyl or alkynyl group is optionally independently substituted with —ORa, halo, cyano, NRaRb and —C3-8 cycloalkyl;
  • RE and RW are each independently —NR1R2, —C1-6 alkylNR1R2, —O—C1-6 alkyl NR1R2, —C1-6 alkylOC1-6 alkylNR1R2, —NRa—C1-6 alkylNR1R2, —C1-6 alkylN+R1R2R3, —SC1-6 alkylNR1R2, —C(O)NR1R2, —S(O)2Ra, —(CH2)uS(O)2NR1R2, —(CH2)uNRaS(O)2NRaRb, —S(O)2NRaC1-6 alkylNR1R2, —NRaS(O)2C1-6 alkylNR1R2, —(CH2)uC(O)NRaS(O)2NRaRb, —(CH2)uN+R1R2O, —(CH2)uP+RbRcRd, —(CH2)uP+RcRdO, —(CH2)uP+O[NRaRb][NRcRd], —(CH2)uNRcP(O)(ORc)2, —(CH2)uCH2OP(O)(ORc)(ORd), —(CH2)uOP(O)(ORc)(ORd), —(CH2)uOP(O)NRaRb)(ORa), or
Figure US11555029-20230117-C00006
    • wherein:
    • V2 is independently a bond, O, NRa, S, S(O), S(O)2, C(O)NRa, NRaC(O), S(O)2NR1, or NRaS(O)2;
    • L3 is independently a bond, O, NRa, S, S(O), S(O)2, C(O)NRa, NRaC(O), S(O)2NR1, or NRaS(C>)2;
    • ring B is independently cycloalkyl, aryl, heteroaryl or heterocyclyl;
    • T is independently H, —ORa, (CH2)(NR1R2, (CH2)qNRaC(O)Re or (CH2)qC(O)Re;
    • p is independently 0, 1, 2, 3, 4, or 5;
    • q is independently 0, 1, 2, 3, 4, or 5;
    • u is 0, 1, 2, 3 or 4;
    • z is 0, 1, 2 or 3; and
    • wherein the alkyl, cycloalkyl, aryl, heteroaryl or heterocyclyl of RE or RW is optionally substituted with 1 to 3 substituents independently selected from the group consisting of NRaRb, halo, cyano, oxo, —ORa, —C1-6 alkyl, —C1-6haloalkyl, —C1-6 cyanoalkyl, —C1-6 alkylNRaRb, —C1-6 alkylOH, —C3-8 cycloalkyl and —C1-3 alkylC3-8 cycloalkyl;
    • provided that at least one of V2, L3, ring B and T contains a nitrogen atom;
  • each R1 is independently selected from the group consisting of H, —C1-6 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —C3-6cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —C1-6 alkylheterocyclyl, —C1-6 alkylC(O)ORa, —C2-6 alkenylC(O)ORa, —S(O)2Ra, —S(O)2NRaRb, —C(O)NRaS(O)2Ra, and C1-6 alkylC3-8 cycloalkyl;
    • wherein each alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORa, —CN, halo, C1-6 alkyl, —C1-6 alkylOR8, —C1-6 cyanoalkyl, —C1-6haloalkyl, C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —NRaRb, —OC(O)NRaRb, NRaC(O)ORb, —C1-6 alkylNRaRb, —C(O)NRaRb, —C1-6 alkylC(O)NRaRb, —S(O)2Ra, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, —C1-6 alkylS(O)2NRaRb, —C(O)NRaS(O)2Rb, —C1-6 alkylC(O)NRaS(O)2Rb, —NRaC(O)Rb, and —C1-6 alkylNRaC(O)Rb;
  • each R2 is independently selected from the group consisting of H, —C1-6 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —C3-6 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —C1-6 alkylheterocyclyl, —C2-6 alkyl-ORa, —C1-6 alkylC(O)ORa, and —C2-6 alkenylC(O)ORa;
    • wherein each alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORa, —CN, halo, C1-6 alkyl, —C1-6 alkylOR8, —C1-6 cyanoalkyl, —C1-6haloalkyl, —C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, —C(O)NRaRb, C1-6 alkylC(O)NRaRb, —S(O)2Ra, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, —C1-6 alkylS(O)2NRaRb, —C(O)NRaS(O)2Rb and —NRaC(O)Rb;
  • or R1 and R2 combine to form a heterocyclyl group optionally containing 1, 2, or 3 additional heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1 to 3 groups independently selected from the group consisting of oxo, —C1-6 alkyl, —C3-8 cycloalkyl, —C2-6 alkenyl, —C2-6alkynyl, —ORa, —C(O)ORa, —C1-6 cyanoalkyl, —C1-6 alkylORa, —C1-6haloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, C1-6 alkylC(O)Ra, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, —C(O)NRaRb, —C1-6 alkylC(O)NRaRb, —S(O)2Ra, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, and C1-6 alkylS(O)2NRaRb;
  • each R3 is independently H, —C1-6 alkyl, —C2-6 alkenyl, —C3-6 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —C1-6 alkylheterocyclyl, —C2-6 alkyl-ORa, —C1-6 alkylC(O)ORa, or —C2-6 alkenylC(O)ORa;
  • each Ra is independently selected from the group consisting of H, —C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Rb is independently selected from the group consisting of H, —C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • or Ra and Rb may combine together to form a ring consisting of 3-8 ring atoms that are C, N, O, or S; wherein the ring is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORf, —CN, halo, —C1-6 alkylORf, —C1-6 cyanoalkyl, —C1-6 haloalkyl, —C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Rf, —C1-6 alkylC(O)Rf, —C(O)ORf, —C1-6 alkylC(O)ORf, —NRfRg, —C1-6 alkylNRfRg, —C(O)NRfRg, C1-6 alkylC(O)NRfRg, —S(O)2Rf, —C1-6 alkylS(O)2Rf, —S(O)2NRfRg, —C1-6 alkylS(O)2NRfRg, —C(O)NRfS(O)2Rg and —NRfC(O)Rg;
  • each Rc is independently selected from the group consisting of H, OH, —C1-6 alkyl, —C3-5 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Rd is independently selected from the group consisting of H, —C1-6 alkyl, —C3-C8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Re is independently selected from the group consisting of H, —C1-6 alkyl, —O—C1-6 alkyl, —C3-5 cycloalkyl, aryl, heteroaryl, heterocyclyl, —O—C3-5 cycloalkyl, —O-aryl, —O-heteroaryl, —O-heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —NRfRg, —C1-6 alkylNRfRg, —C(O)NRfRg, —C1-6 alkylC(O)NRfRg, —NHS(O)2Rf, —C1-6 alkylS(O)2Rf, and —C1-6 alkylS(O)2NRfRg;
  • each Rf is independently selected from the group consisting of H, —C1-6 alkyl, —C3-5 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Rg is independently selected from the group consisting of H, —C1-6 alkyl, —C3-5 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof.
Also provided herein are compounds of Table 1, or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof.
The present disclosure provides a method of inhibiting PD-1, PD-L1 and/or the PD-1/PD-L1 interaction comprising administering a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, to a patient in need thereof.
The present disclosure provides a method of treating cancer comprising administering a therapeutically effective amount of a compound formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof, to a patient in need thereof.
One embodiment provides the use of a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, for the treatment of cancer or a condition in a patient that is amenable to treatment by inhibiting PD-1, PD-L1 or the PD-1/PD-L1 interaction comprising administering said compound of formula (I) to said patient in need thereof.
In one embodiment, provided is a method for treating a cancer wherein the cancer is pancreatic cancer, bladder cancer, colorectal cancer, breast cancer, prostate cancer, renal cancer, hepatocellular cancer, lung cancer, ovarian cancer, cervical cancer, gastric cancer, esophageal cancer, head and neck cancer, melanoma, neuroendocrine cancer, CNS cancer, brain cancer, bone cancer, soft tissue sarcoma, non-small cell lung cancer, small-cell lung cancer or colon cancer, comprising administering a therapeutically effective amount of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof to a patient in need thereof.
In one embodiment, provided is a method for treating a cancer or a condition in a patient that is amenable to treatment by inhibiting PD-1, PD-L1 or the PD-1/PD-L1 interaction selected from pancreatic cancer, bladder cancer, colorectal cancer, breast cancer, prostate cancer, renal cancer, hepatocellular cancer, lung cancer, ovarian cancer, cervical cancer, gastric cancer, esophageal cancer, head and neck cancer, melanoma, neuroendocrine cancer, CNS cancer, brain cancer, bone cancer, soft tissue sarcoma, non-small cell lung cancer, small-cell lung cancer and colon cancer comprising administering a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof to a patient in need thereof, further comprising administering at least one additional anticancer agent or therapy to a patient in need thereof. In certain embodiments, the additional anticancer agent or therapy is selected from nivolumab, pembrolizumab, atezolizumab, ipilimumab, chemotherapy, radiation therapy, and resection therapy, to a patient in need thereof.
In one embodiment, provided is a method for treating hepatitis B virus (HBV), comprising administering a therapeutically effective amount of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof to a patient in need thereof.
In one embodiment, provided is a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, for the treatment of cancer or a condition in a patient selected from lymphoma, multiple myeloma, and leukemia. Additional diseases or conditions that may be treated include, but are not limited to acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), myelodysplastic syndrome (MDS), myeloproliferative disease (MPD), chronic myeloid leukemia (CML), multiple myeloma (MM), non-Hodgkin's lymphoma (NHL), mantle cell lymphoma (MCL), follicular lymphoma, Waldestrom's macroglobulinemia (WM), T-cell lymphoma, B-cell lymphoma and diffuse large B-cell lymphoma (DLBCL).
In one embodiment, the present disclosure provides a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, in combination with at least one additional anti-cancer agent selected from rituxan, doxorubicin, gemcitabine, nivolumab, pembrolizumab, and ipilimumab.
In one embodiment, the present disclosure provides a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, in combination with at least one additional check-point inhibitor selected from nivolumab, pembrolizumab, atezolizumab, and ipilimumab.
In one embodiment, the present disclosure provides a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, and a pharmaceutically acceptable carrier or excipient.
In one embodiment, the present disclosure provides a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, and at least one additional anticancer agent and at least one pharmaceutically acceptable carrier or excipient.
In one embodiment, the present disclosure provides a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, at least one additional therapeutic agent suitable for treating an HBV infection, and at least one pharmaceutically acceptable carrier or excipient.
In one embodiment, the present disclosure provides a kit that includes a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, a label and/or instructions for use of the compound in the treatment of cancer or a disease or condition mediated by PD-1, PD-L1 activity or the PD-1/PD-L1 interaction.
In one embodiment, the present disclosure provides a kit that includes a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, at least one additional anticancer agent, a label(s) and/or instructions for use of the compound(s) in the treatment of a disease or condition mediated by PD-1, PD-L1 activity or PD-1/PD-L1 interaction.
In one embodiment, the present disclosure provides articles of manufacture that include a compound of formula (I) or a pharmaceutically acceptable salt, or solvate thereof; and a container. In one embodiment, the container may be a vial, jar, ampoule, preloaded syringe, or an intravenous bag.
In one embodiment, the present disclosure provides a compound of formula (I) for use in therapy.
In another embodiment, the present disclosure provides a compound of formula (I) for use in the manufacture of a medicament for treating cancer.
DESCRIPTION OF THE FIGURES
FIG. 1A and FIG. 1B show that compound 139 enhances IFN-γ and Granzyme B Production in chronic hepatitis B (CHB) CD8+ T Cells.
FIG. 2A and FIG. 2B show that compound 139 enhances IFN-γ and Granzyme B Production in chronic hepatitis B (CHB) CD4+ T Cells.
FIG. 3 shows the experimental design for mouse PD-L1 knockout and replacement with human PD-L1 in MC38 mouse colorectal tumor cell line.
FIG. 4A and FIG. 4B show the relationship between PK (FIG. 4A) and TO (FIG. 4B) for compound 139 on Day 6 in a human PD-L1 MC38 C57BL/6 mouse tumor model.
FIG. 5 shows the anti-tumor activity of compound 139 in a human PD-L1 MC38 mouse model.
DETAILED DESCRIPTION Definitions
As used in the present disclosure, the following words and phrases are generally intended to have the meanings as set forth below unless expressly indicated otherwise or the context in which they are used indicates otherwise.
The following description sets forth exemplary methods, parameters and the like. It should be recognized, however, that such description is not intended as a limitation on the scope of the present disclosure but is instead provided as a description of exemplary embodiments.
As used in the present specification, the following words, phrases and symbols are generally intended to have the meanings as set forth below, except to the extent that the context in which they are used indicates otherwise.
A dash (“-”) that is not between two letters or symbols is used to indicate a point of attachment for a substituent. For example, —C(O)NH2 is attached through the carbon atom. A dash at the front or end of a chemical group is a matter of convenience; chemical groups may be depicted with or without one or more dashes without losing their ordinary meaning. Unless chemically or structurally required, no directionality is indicated or implied by the order in which a chemical group is written or named.
A squiggly line on a chemical group as shown below, for example,
Figure US11555029-20230117-C00007

indicates a point of attachment, i.e., it shows the broken bond by which the group is connected to another described group.
The prefix “Cu-v” indicates that the following group has from u to v carbon atoms. For example, “C1-6 alkyl” indicates that the alkyl group has from 1 to 6 carbon atoms.
Reference to “about” a value or parameter herein includes (and describes) embodiments that are directed to that value or parameter per se. In certain embodiments, the term “about” includes the indicated amount ±10%. In other embodiments, the term “about” includes the indicated amount ±5%. In certain other embodiments, the term “about” includes the indicated amount ±1%. Also, to the term “about X” includes description of “X”. Also, the singular forms “a” and “the” include plural references unless the context clearly dictates otherwise. Thus, e.g., reference to “the compound” includes a plurality of such compounds and reference to “the assay” includes reference to one or more assays and equivalents thereof known to those skilled in the art.
The term “substituted” means that any one or more (e.g., one to three, or one to five) hydrogen atoms on the designated atom or group is replaced with one or more (e.g., one to three, or one to five) substituents other than hydrogen, provided that the designated atom's normal valence is not exceeded. The one or more (e.g., one to three, or one to five) substituents include, but are not limited to, alkyl, alkenyl, alkynyl, alkoxy, acyl, amino, amido, amidino, aryl, azido, carbamoyl, carboxyl, carboxyl ester, cyano, guanidino, halo, halo alkyl, heteroalkyl, heteroaryl, heterocycloalkyl, hydroxy, hydrazino, imino, oxo, nitro, alkylsulfinyl, sulfonic acid, alkylsulfonyl, thiocyanate, thiol, thione, or combinations thereof. Polymers or similar indefinite structures arrived at by defining substituents with further substituents appended ad infinitum (e.g., a substituted aryl having a substituted alkyl which is itself substituted with a substituted aryl group, which is further substituted by a substituted heteroalkyl group, etc.) are not intended for inclusion herein, whether the substituents are the same or different. Unless otherwise noted, the maximum number of serial substitutions in compounds described herein is three. For example, serial substitutions of substituted aryl groups with two other substituted aryl groups are limited to ((substituted aryl)substituted aryl) substituted aryl. Similarly, the above definitions are not intended to include impermissible substitution patterns (e.g., methyl substituted with 5 fluorines or heteroaryl groups having two adjacent oxygen ring atoms). Such impermissible substitution patterns are well known to the skilled artisan. When used to modify a chemical group, the term “substituted” may describe other chemical groups defined herein. For example, the term “substituted aryl” includes, but is not limited to, “alkylaryl.” Unless specified otherwise, where a group is described as optionally substituted, any substituents of the group are themselves unsubstituted.
A “substituted” group also includes embodiments in which a monoradical substituent is bound to a single atom of the substituted group (e.g., forming a branch), and also includes embodiments in which the substituent may be a diradical bridging group bound to two adjacent atoms of the substituted group, thereby forming a fused ring on the substituted group.
“Alkyl” refers to an unbranched or branched saturated hydrocarbon chain. As used herein, alkyl has 1 to 20 carbon atoms (i.e., C1-20 alkyl), 1 to 8 carbon atoms (i.e., C1-8 alkyl), 1 to 6 carbon atoms (i.e., C1-6 alkyl), or 1 to 4 carbon atoms (i.e., CM alkyl). Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, pentyl, 2-pentyl, isopentyl, neopentyl, hexyl, 2-hexyl, 3-hexyl, and 3-methylpentyl. When an alkyl residue having a specific number of carbons is named by chemical name or identified by molecular formula, all positional isomers having that number of carbons may be encompassed; thus, for example, “butyl” includes n-butyl (i.e., —(CH2)3CH3), sec-butyl (i.e., —CH(CH3)CH2CH3), isobutyl (i.e., —CH2CH(CH3)2) and tert-butyl (i.e., —C(CH3)3); and “propyl” includes n-propyl (i.e., —(CH2)2CH3) and isopropyl (i.e., —CH(CH3)2).
“Alkenyl” refers to an aliphatic group containing at least one carbon-carbon double bond and having from 2 to 20 carbon atoms (i.e., C2-20 alkenyl), 2 to 8 carbon atoms (i.e., C2-8 alkenyl), 2 to 6 carbon atoms (i.e., C2-6 alkenyl), or 2 to 4 carbon atoms (i.e., C2-4 alkenyl). Examples of alkenyl groups include ethenyl, propenyl, butadienyl (including 1,2-butadienyl, and 1,3-butadienyl).
“Alkynyl” refers to an aliphatic group containing at least one carbon-carbon triple bond and having from 2 to 20 carbon atoms (i.e., C2-20 alkynyl), 2 to 8 carbon atoms (i.e., C2-8 alkynyl), 2 to 6 carbon atoms (i.e., C2-6 alkynyl), or 2 to 4 carbon atoms (i.e., C2-4 alkynyl). The term “alkynyl” also includes those groups having one triple bond and one double bond.
“Alkoxy” refers to the group “alkyl-O—” or “—O-alkyl”. Examples of alkoxy groups include methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert-butoxy, sec-butoxy, n-pentoxy, n-hexoxy, and 1,2-dimethylbutoxy.
“Haloalkoxy” refers to an alkoxy group as defined above, wherein one or more (e.g., one to three, or one to five) hydrogen atoms are replaced by a halogen.
“Amino” refers to the group —NRyRz wherein Ry and Rz are independently selected from hydrogen, alkyl, haloalkyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl; each of which may be optionally substituted.
“Aryl” refers to a monoradical or diradical aromatic carbocyclic group having a single ring (e.g., monocyclic) or multiple rings (e.g., bicyclic or tricyclic) including fused ring systems wherein one or more (e.g., one, two, or three) fused rings is/are fully or partially unsaturated. As used herein, aryl has 6 to 20 ring carbon atoms (i.e., C6-20 aryl), 6 to 12 carbon ring atoms (i.e., C6-12 aryl), or 6 to 10 carbon ring atoms (i.e., C6-10 aryl). Non-limiting examples of aryl groups as used herein include phenyl, naphthyl, fluorenyl, indanyl, tetrahydroindanuyl, and anthryl. Aryl, however, does not encompass or overlap in any way with heteroaryl defined below. If one or more aryl groups are fused with a heteroaryl ring, the resulting ring system is heteroaryl. The classification of mono or diradical indicates whether the aryl group terminates the chain (monoradical) or is within a chain (diradical). The above definition does not preclude additional substituents on the aryl group. For example, as used herein, the aryl group in “A-aryl-B” is a diradical whereas the aryl group in “A-B-aryl” is monoradical, though additional substituents may be present on each aryl group.
The term “alkylsulfinyl” refers to the group —S(O)-alkyl, where alkyl is as defined above, and includes optionally substituted alkyl groups as also defined above.
The term “alkylsulfonyl” refers to the group —S(O)2-alkyl, where alkyl is as defined above, and includes optionally substituted alkyl groups as also defined above.
“cycloalkyl” refers to a saturated or partially saturated cyclic alkyl group having a single ring or multiple rings including fused, bridged, and spiro ring systems. As used herein, cycloalkyl has from 3 to ring carbon atoms (i.e., C3-20 cycloalkyl), 3 to 12 ring carbon atoms (i.e., C3-12 cycloalkyl), 3 to 10 ring carbon atoms (i.e., C3-10 cycloalkyl), 3 to 8 ring carbon atoms (i.e., C3-5 cycloalkyl), or 3 to 6 ring carbon atoms (i.e., C3-6 cycloalkyl). Examples of cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. As used herein the term “cycloalkenyl” refers to the non-aromatic carbocyclic (partially saturated cyclic alkyl) group having at least one double bond.
“Cyanoalkyl” refers to an alkyl group substituted with cyano (CN).
“Halogen” or “halo” includes fluoro, chloro, bromo, and iodo.
The term “haloalkyl” refers to a monoradical or diradical having the indicated carbon atoms of the alkyl group wherein one or more (e.g., one to three, or one to five) hydrogen atoms have been substituted by a halogen. Examples of haloalkyl groups include —CH2F, —CHF2, —CF3, —CH2CF3, —CHFCH2F, —CF2—, —CHF—, and the like. Similarly, the term “haloalkoxy”, e.g., —O—C1-3haloalkyl, refers to an alkoxy group wherein one or more (e.g., one to three, or one to five) hydrogen atoms of the alkyl group have been substituted by a halogen. Examples of haloalkoxy groups include —OCH2F, —OCHF2, —OCF3, —OCH2CF3, —OCHFCH2F, and the like. One of skill in the art is aware that similar definitions apply for the alkenyl and alkynyl analogs (e.g., C2-4haloalkenyl, —O—C2-4haloalkynyl).
“Heteroalkyl” refers to an alkyl group in which one or more (e.g., one to three, or one to five) of the carbon atoms (and any associated hydrogen atoms) are each independently replaced with the same or different heteroatomic groups. The term “heteroalkyl” includes unbranched or branched saturated chain having carbon and heteroatoms. By way of example, 1, 2 or 3 carbon atoms may be independently replaced with the same or different heteroatomic group. Heteroatomic groups include, but are not limited to, —NR—, —O—, —S—, —S(O)—, —S(O)2—, and the like, where R is H, alkyl, aryl, cycloalkyl, heteroalkyl, heteroaryl, or heterocycloalkyl, each of which may be optionally substituted. Examples of heteroalkyl groups include —OCH3, —CH2OCH3, —SCH3, —CH2SCH3, —NRCH3, and —CH2NRCH3, where R is hydrogen, alkyl, cycloalkyl, aryl, arylalkyl, heteroalkyl, or heteroaryl, each of which may be optionally substituted. As used herein, heteroalkyl includes 1 to 10 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms; and 1 to 3 heteroatoms, 1 to 2 heteroatoms, or 1 heteroatom.
“Heteroaryl” refers to a monoradical or diradical aromatic group having a single ring, multiple rings, or multiple fused rings, with one or more ring heteroatoms independently selected from nitrogen, oxygen, and sulfur. The term includes fused ring systems wherein one or more (e.g., one, two, or three) fused rings is/are fully or partially unsaturated. As used herein, heteroaryl include 1 to 20 ring carbon atoms (i.e., C1-20 heteroaryl), 3 to 12 ring carbon atoms (i.e., C3-12 heteroaryl), or 3 to 8 carbon ring atoms (i.e., C3-8 heteroaryl); and 1 to 5 heteroatoms, 1 to 4 heteroatoms, 1 to 3 ring heteroatoms, 1 to 2 ring heteroatoms, or 1 ring heteroatom independently selected from nitrogen, oxygen, and sulfur. Non-limiting examples of heteroaryl groups include pyrimidinyl, purinyl, pyridyl, pyridazinyl, benzothiazolyl, benzodioxanyl, indolinyl, and pyrazolyl. The classification of mono or diradical indicates whether the heteroaryl group terminates the chain (monoradical) or is within a chain (diradical). The above definition does not preclude additional substituents on the heteroaryl group. For example, the heteroaryl group in “A-heteroaryl-B” is a diradical whereas the heteroaryl group in “A-B-heteroaryl” is monoradical, though additional substituents may be present on each heteroaryl group. Heteroaryl does not encompass or overlap with aryl as defined above.
“Heterocycloalkyl” refers to a saturated or unsaturated cyclic alkyl group, with one or more ring heteroatoms independently selected from nitrogen, oxygen and sulfur. A heterocycloalkyl may be a single ring or multiple rings wherein the multiple rings may be fused, bridged, or spiro. As used herein, heterocycloalkyl has 2 to 20 ring carbon atoms (i.e., C2-20 heterocycloalkyl), 2 to 12 ring carbon atoms (i.e., C2-12 heterocycloalkyl), 2 to 10 ring carbon atoms (i.e., C2-10 heterocycloalkyl), 2 to 8 ring carbon atoms (i.e., C2-8 heterocycloalkyl), 3 to 12 ring carbon atoms (i.e., C3-12 heterocycloalkyl), 3 to 8 ring carbon atoms (i.e., C3-8 heterocycloalkyl), or 3 to 6 ring carbon atoms (i.e., C3-6 heterocycloalkyl); having 1 to 5 ring heteroatoms, 1 to 4 ring heteroatoms, 1 to 3 ring heteroatoms, 1 to 2 ring heteroatoms, or 1 ring heteroatom independently selected from nitrogen, sulfur or oxygen. Examples of heterocycloalkyl groups include pyrrolidinyl, piperidinyl, piperazinyl, oxetanyl, dioxolanyl, azetidinyl, and morpholinyl. As used herein, the term “bridged-heterocycloalkyl” refers to a four- to ten-membered cyclic moiety connected at two non-adjacent atoms of the heterocycloalkyl with one or more (e.g., 1 or 2) four- to ten-membered cyclic moiety having at least one heteroatom where each heteroatom is independently selected from nitrogen, oxygen, and sulfur. As used herein, bridged-heterocycloalkyl includes bicyclic and tricyclic ring systems. Also used herein, the term “spiro-heterocycloalkyl” refers to a ring system in which a three- to ten-membered heterocycloalkyl has one or more additional ring, wherein the one or more additional ring is three- to ten-membered cycloalkyl or three- to ten-membered heterocycloalkyl, where a single atom of the one or more additional ring is also an atom of the three- to ten-membered heterocycloalkyl. Examples of spiro-heterocycloalkyl include bicyclic and tricyclic ring systems, such as 2-oxa-7-azaspiro[3.5]nonanyl, 2-oxa-6-azaspiro[3.4]octanyl, and 6-oxa-1-azaspiro[3.3]heptanyl.
The term “heterocyclyl,” “heterocycle,” or “heterocyclic” refers to a monoradical or diradical saturated or unsaturated group having a single ring or multiple condensed rings, having from 3 to 12 carbon atoms, from 1 to 6 hetero atoms, or from 1 to 4 heteroatoms, selected from nitrogen, sulfur, phosphorus, and/or oxygen within the ring. Where the group does not terminate the molecule, it is a diradical and is construed as such i.e., also referred to as heterocyclylene or heterocyclene.
The term “heterocyclyl” includes heterocycloalkenyl groups (i.e., the heterocyclyl group having at least one double bond), bridged-heterocyclyl groups, fused-heterocyclyl groups, and spiro-heterocyclyl groups. A heterocyclyl may be a single ring or multiple rings wherein the multiple rings may be fused, bridged, or spiro. Any non-aromatic ring containing at least one heteroatom is considered a heterocyclyl, regardless of the attachment (i.e., can be bound through a carbon atom or a heteroatom). Further, the term heterocyclyl is intended to encompass any non-aromatic ring containing at least one heteroatom, which ring may be fused to an aryl or heteroaryl ring, regardless of the attachment to the remainder of the molecule. A heterocyclyl may contain one or more (e.g., one or two) oxo and/or thioxo groups.
Exemplary hetercyclic groups include, but are not limited to, 2,5-diazaspiro[3.4]octan-6-one (e.g., compound 1), azetidine (e.g., compound 2), 2,6-diazaspiro[3.3]heptane (e.g., compound 4), pyrrolidin-2-one (e.g., compound 6), tetrahydrofuran (e.g., compound 11), pyrrolidine (e.g., compound 17), piperidin-2-one (e.g., compound 36), piperazin-2-one (e.g., compound 41), 5-oxa-2,7-diazaspiro[3.4]octan-6-one (e.g., compound 50), 3-azabicyclo[3.1.0]hexane (e.g., compound 52), 2-azabicyclo[2.1.1]hexane (e.g., compound 53), tetrahydro-2H-pyran (e.g., compound 55), 2,6-diazaspiro[3.4]octan-7-one (e.g., compound 61), 4,5-dihydro-1H-imidazole (e.g., compound 114), 1,4,5,6-tetrahydropyrimidine (e.g., compound 119), piperidine (e.g., compound 158), 1,2,4-oxadiazol-5(2H)-one (e.g., compound 161), 2,5,7-triazaspiro[3.4]octan-6-one (e.g., compound 168), 2,7-diazaspiro[4.4]nonan-3-one (e.g., compound 193), 1,7-diazaspiro[4.4]nonan-2-one (e.g., compound 197), 2-azaspiro[4.4]nonan-3-one (e.g., compound 202), 1,8-diazaspiro[4.5]decan-2-one (e.g., compound 203), 2-azaspiro[3.3]heptane (e.g., compound 208), oxazolidin-2-one (e.g., compound 210), octahydrocyclopenta[b]pyrrole (e.g., compound 216), octahydrocyclopenta[c]pyrrole (e.g., compound 230), 2-oxa-7-azaspiro[4.4]nonan-1-one (e.g., compound 232), 6-oxa-2-azaspiro[3.4]octane (e.g., compound 234), piperazine (e.g., compound 250), 1,1-dioxotetrahydrothiophene (e.g., compound 286), hexahydropyrrolo[3,4-b]pyrrol-6(1H)-one (e.g., compound 287), 1,3,8-triazaspiro[4.5]decane-2,4-dione (e.g., compound 290), 2-methyl-1,3,7-triazaspiro[4.5]dec-2-en-4-one (e.g., compound 291), 1,3,7-triazaspiro[4.4]nonane-2,4-dione (e.g., compound 292), 1,3,7-triazaspiro[4.5]decane-2,4-dione (e.g., compound 293), 6-azaspiro[3.4]octane (e.g., compound 298), 1-thia-6-azaspiro[3.3]heptane 1,1-dioxide (e.g., compound 301), pyridin-2(1H)-one (e.g., compound 305), isothiazolidine 1,1-dioxide (e.g., compound 306), thietane 1,1-dioxide (e.g., compound 311), hexahydropyrrolo[3,4-b]pyrrol-2(1H)-one (e.g., compound 312), 2,5,7-triazaspiro[3.4]octane-6,8-dione (e.g., compound 313), 3-azabicyclo[3.1.0]hexan-2-one (e.g., compound 324), 5-azaspiro[2.4]heptan-4-one (e.g., compound 331), oxetane (e.g., compound 333), morpholine (e.g., compound 351), 2-thiaspiro[3.3]heptane 2,2-dioxide (e.g., compound 363), hexahydrocyclopenta[b]pyrrol-2(1H)-one (e.g., compound 388), pyrrolidine-2,5-dione (e.g., compound 403), 6,7-dihydro-5H-pyrrolo[3,4-b]pyridine (e.g., compound 414), and 1,3-dioxolane (e.g., compound 433).
“Acyl” refers to a group —C(═O)R, wherein R is hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein. Examples of acyl include formyl, acetyl, cyclohexylcarbonyl, cyclohexylmethyl-carbonyl, and benzoyl.
The term “N-alkylated” means an alkyl group is substituted for one of the hydrogen atoms of a mono substituted amine, or a di-substituted amine group or a tri substituted amine group. When the alkylation is on a tri-substituted amine group an alkonium salt is generated i.e., a positive charge is generated on the nitrogen atom. N-alkylation is commonly associated with alkyl substitution on a ring nitrogen atom.
The term “cyano” refers to the group —CN.
The term “oxo” refers to a group ═O.
The term “carboxy” refers to a group —C(O)OH.
The term “ester” or “carboxyl ester” refers to the group —C(O)OR, where R is alkyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl, which may be optionally further substituted, for example, by alkyl, alkoxy, halogen, CF3, amino, substituted amino, cyano or —S(O)yRz, in which Rz is alkyl, aryl, or heteroaryl, and y is 0, 1 or 2.
The term “substituted amino” refers to the group —NRR, where each R is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl, each of which may be optionally substituted, or a group as described or exemplified herein, or where both R groups are joined to form a heterocyclic group (e.g., morpholino) as described or exemplified herein, which also may be optionally substituted.
The term “amido” refers to the group —C(O)NRR where each R is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl, each of which may be optionally substituted, or a group as described or exemplified herein, or where both R groups are joined to form a heterocyclic group (e.g., morpholino) as described or exemplified herein, which also may be optionally substituted.
The term “sulfoxide” refers to a group —S(O)R, in which R is alkyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of which may be optionally substituted.
The term “sulfone” refers to a group —S(O)2R, in which R is alkyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of which may be optionally substituted.
As used herein, the terms “alkylcycloalkyl,” “alkylaryl,” “alkylheteroaryl” and “alkylheterocyclyl” are intended to refer to a cycloalkyl, aryl, heteroaryl or heterocyclyl group which is bound to the remainder of the molecule via an alkyl moiety, where the terms “alkyl,” “cycloalkyl,” “aryl,” “heteroaryl” and “heterocyclyl” are as defined herein. Exemplary alkylaryl groups include benzyl, phenethyl, and the like.
“Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not.
Certain commonly used alternative chemical names may be used. For example, a divalent group such as a divalent “alkyl” group, a divalent “aryl” group, etc., may also be referred to as an “alkylene” group or an “alkylenyl” group, an “arylene” group or an “arylenyl” group, respectively. Also, unless indicated explicitly otherwise, where combinations of groups are referred to herein as one moiety, e.g., arylalkyl, the last mentioned group contains the atom by which the moiety is attached to the rest of the molecule.
Where a group is represented by a bond, multiple adjacent groups whether the same or different, when represented by bonds, constitute a single bond. For example the group “-L1-V1-L2-” constitutes a single bond if each of L1, V1 and L2 is a bond.
Where a given group (moiety) is described herein as being attached to a second group and the site of attachment is not explicit, the given group may be attached at any available site of the given group or to any available site of the second group. For example, an “alkyl-substituted phenyl”, where the attachment sites are not explicit, may have any available site of the alkyl group attached to any available site of the phenyl group. In this regard, an “available site” is a site of the group at which hydrogen of the group may be replaced with a substituent.
“Isomers” are different compounds that have the same molecular formula. Isomers include stereoisomers, enantiomers and diastereomers.
“Stereoisomers” are isomers that differ only in the way the atoms are arranged in space.
“Enantiomers” are a pair of stereoisomers that are non-superimposable mirror images of each other. A 1:1 mixture of a pair of enantiomers is a “racemic” mixture. The term “(+)” is used to designate a racemic mixture where appropriate.
“Diastereoisomers” are stereoisomers that have at least two asymmetric atoms, but which are not mirror-images of each other.
The compounds of the disclosure may possess one or more asymmetric centers and may be produced as a racemic mixture or as individual enantiomers or diastereoisomers. The number of stereoisomers present in any given compound of a given formula depends upon the number of asymmetric centers present (there are 2n stereoisomers possible where n is the number of asymmetric centers). The individual stereoisomers may be obtained by resolving a racemic or non-racemic mixture of an intermediate at some appropriate stage of the synthesis or by resolution of the compound by conventional means. The individual stereoisomers (including individual enantiomers and diastereoisomers) as well as racemic and non-racemic mixture of stereoisomers are encompassed within the scope of the present disclosure, all of which are intended to be depicted by the structures of this specification unless otherwise specifically indicated.
The absolute stereochemistry is specified according to the Cahn Ingold Prelog R S system. When the compound is a pure enantiomer the stereochemistry at each chiral carbon may be specified by either R or S. A resolved compound whose absolute configuration is unknown may be designated (+) or (−) depending on the direction (dextro- or laevorotary) that it rotates the plane of polarized light at the wavelength of the sodium D line.
Some of the compounds exist as tautomeric isomers. Tautomeric isomers are in equilibrium with one another. For example, amide containing compounds may exist in equilibrium with imidic acid tautomers. Regardless of which tautomer is shown, and regardless of the nature of the equilibrium among tautomers, the compounds are understood by one of ordinary skill in the art to comprise both amide and imidic acid tautomers. Thus, the amide containing compounds are understood to include their imidic acid tautomers. Likewise, the imidic acid containing compounds are understood to include their amide tautomers.
The term “solvate” refers to a complex formed by combining a compound of formula (I), or any other formula as disclosed herein and a solvent.
The term “hydrate” refers to the complex formed by the combining of a compound of formula (I), or any formula disclosed herein, and water.
The term “prodrug” refers to compounds of formula (I), or derivatives of formula (I) disclosed herein, that include chemical groups which, in vivo, can be converted and/or can be split off from the remainder of the molecule to provide for the active drug. Pharmaceutically acceptable salts or biologically active metabolites thereof of the prodrug of a compound of formula (I) are also within the ambit of the present disclosure.
Any formula or structure given herein, including formula (I), or any formula disclosed herein, is intended to represent unlabeled forms as well as isotopically labeled forms of the compounds. Isotopically labeled compounds have structures depicted by the formulas given herein except that one or more (e.g., one to three, or one to five) atoms are replaced by an isotope having a selected atomic mass or mass number. Examples of isotopes that can be incorporated into compounds of the disclosure include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, fluorine and chlorine, such as, but not limited to 2H (deuterium, D), 3H (tritium), 11C, 13C, 14C, 15N, 18F, 31P, 32P, 35S, 36Cl, and 125I. Various isotopically labeled compounds of the present disclosure, for example those into which radioactive isotopes such as 3H, 13C and 14C are incorporated, are within the ambit of the present disclosure. Such isotopically labelled compounds may be useful in metabolic studies, reaction kinetic studies, detection or imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT) including drug or substrate tissue distribution assays or in treatment of patients. Such isotopically labeled analogs of compounds of the present disclosure may also be useful for treatment of diseases disclosed herein because they may provide improved pharmacokinetic and/or pharmacodynamic properties over the unlabeled forms of the same compounds. Such isotopically leveled forms of or analogs of compounds herein are within the ambit of the present disclosure. One of skill in the art is able to prepare and use such isotopically labeled forms following procedures for isotopically labeling compounds or aspects of compounds to arrive at isotopic or radiolabeled analogs of compounds disclosed herein.
The term “pharmaceutically acceptable salt” of a given compound refers to salts that retain the biological effectiveness and properties of the given compound, and which are not biologically or otherwise undesirable. Pharmaceutically acceptable base addition salts can be prepared from inorganic and organic bases. Salts derived from inorganic bases include, by way of example only, sodium, potassium, lithium, ammonium, calcium and magnesium salts. Salts derived from organic bases include, but are not limited to, salts of primary, secondary and tertiary amines, such as alkyl amines, dialkyl amines, trialkyl amines, substituted alkyl amines, di(substituted alkyl) amines, tri(substiluted alkyl) amines, alkenyl amines, dialkenyl amines, trialkenyl amines, substituted alkenyl amines, di(substituted alkenyl) amines, tri(substituted alkenyl) amines, cycloalkyl amines, di(cycloalkyl) amines, tri(cycloalkyl) amines, substituted cycloalkyl amines, di-substituted cycloalkyl amine, tri-substituted cycloalkyl amines, cycloalkenyl amines, di(cycloalkenyl) amines, tri(cycloalkenyl) amines, substituted cycloalkenyl amines, di-substituted cycloalkenyl amine, tri-substituted cycloalkenyl amines, aryl amines, diaryl amines, triaryl amines, heteroaryl amines, diheteroaryl amines, triheteroaryl amines, heterocyclic amines, diheterocyclic amines, triheterocyclic amines, mixed di- and tri-amines where at least two of the substituents on the amine are different and are selected from alkyl, substituted alkyl, alkenyl, substituted alkenyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, and the like. Also included are amines where the two or three substituents, together with the amino nitrogen, form a heterocyclic or heteroaryl group. Amines are of general structure N(R30)(R31)(R32), wherein mono-substituted amines have two of the three substituents on nitrogen (R30, R31, and R32) as hydrogen, di-substituted amines have one of the three substituents on nitrogen (R30, R31, and R32) as hydrogen, whereas tri-substituted amines have none of the three substituents on nitrogen (R30, R31, and R32) as hydrogen. R30, R31, and R32 are selected from a variety of substituents such as hydrogen, optionally substituted alkyl, aryl, heteroaryl, cycloalkyl, cycloalkenyl, heterocyclyl, and the like.
Specific examples of suitable amines include, by way of example only, isopropyl amine, trimethyl amine, diethyl amine, tri(iso-propyl) amine, tri(n-propyl) amine, ethanolamine, diethanolamine, 2-dimethylamino ethanol, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, ethylenediamine, glucosamine, N-alkylglucamines, theobromine, purines, piperazine, piperidine, morpholine, N-ethylpiperidine, and the like.
Pharmaceutically acceptable acid addition salts may be prepared from inorganic and organic acids. Salts derived from inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like. Salts derived from organic acids include acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluene-sulfonic acid, salicylic acid, and the like.
As used herein, “pharmaceutically acceptable carrier” or “pharmaceutically acceptable excipient” includes any and all solvents, dispersion media, coatings, antibacterial, and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, or unless otherwise indicated herein, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
The term “anticancer agent” is any drug that is effective in the treatment of a malignant, or cancerous disease. Effectiveness may mean inhibition, partial, or full remission, prolongation of life, improvement in quality of life, or cure. There are several major classes of anticancer drugs including chemical compositions as disclosed herein or known to one of skill in the art e.g., PD-1, PD-L1, PD-1/PD-L1 interaction inhibitors, alkylating agents, antimetabolites, natural products, and hormones.
The term “additional anticancer agent” as used herein means the use or combination of a second, third, fourth, fifth, etc., anticancer agent(s) in addition to a compound according to formula (I) disclosed herein.
The term “anticancer therapy” means any currently known therapeutic methods for the treatment of cancer.
The term “blockade agent” or “check point inhibitors” are classes of immune oncology agents that inhibit PD-1, PD-L1, or the PD-1/PD-L1 interaction.
The term “treatment” or “treating” means any administration of a compound or compounds according to the present disclosure to a subject (e.g., a human) having or susceptible to a condition or disease disclosed herein for the purpose of: 1) preventing or protecting against the disease or condition, that is, causing the clinical symptoms not to develop; 2) inhibiting the disease or condition, that is, arresting or suppressing the development of clinical symptoms; or 3) relieving the disease or condition that is causing the regression of clinical symptoms. In some embodiments, the term “treatment” or “treating” refers to relieving the disease or condition or causing the regression of clinical symptoms.
As used herein, the term “preventing” refers to the prophylactic treatment of a patient in need thereof. The prophylactic treatment can be accomplished by providing an appropriate dose of a therapeutic agent to a subject at risk of suffering from an ailment, thereby substantially averting onset of the ailment. The presence of a genetic mutation or the predisposition to having a mutation may not be alterable. However, prophylactic treatment (prevention) as used herein has the potential to avoid/ameliorate the symptoms or clinical consequences of having the disease engendered by such genetic mutation or predisposition.
It will be understood by those of ordinary skill in the art that in human medicine, it is not always possible to distinguish between “preventing” and “suppressing” since the ultimate inductive event or events may be unknown, latent, or the patient is not ascertained until well after the occurrence of the event or events. Therefore, as used herein, the term “prophylaxis” is intended as an element of “treatment” to encompass both “preventing” and “suppressing” as defined herein. The term “protection,” as used herein, is meant to include “prophylaxis.”
The term “patient” typically refers to a “mammal” which includes, without limitation, human, monkeys, rabbits, mice, domestic animals, such as dogs and cats, farm animals, such as cows, horses, or pigs, and laboratory animals. In some embodiments, the term patient refers to a human in need of treatment as defined herein.
Compounds
Provided herein are compounds that function as PD-1 inhibitors, PD-L1 inhibitors, and/or PD-1/PD-L1 interaction inhibitors, methods of using such compounds and compositions comprising such compounds optionally in combination with one or more additional anticancer agents or therapies. In all embodiments discussed herein where there is more than one occurrence of a group or variable, it is intended that the group or variable is independently selected the list that follows. It is further contemplated that all embodiments directed to compounds include any pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, solvate, prodrug or tautomer thereof.
In one embodiment, provided is a compound of formula (I):
Figure US11555029-20230117-C00008
  • wherein:
  • each n is independently 0, 1, 2, 3 or 4;
  • each Z1 is independently halo, —ORa, —NO2, —CN, —NRaRb, —N3, —S(O)2Ra, —C1-6 alkyl, —C1-6 haloalkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6 alkyl, —O—C1-6haloalkyl, —C3-8 cycloalkyl or —C1-6 alkylC3-8 cycloalkyl;
    • wherein each alkyl, alkenyl, alkynyl, and cycloalkyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, —N3, —ORa, halo, and cyano;
  • Q is aryl, heteroaryl or heterocyclyl, wherein the aryl, heteroaryl and heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of halo, oxo, —ORa, —SRa, N3, NO2, —CN, —NR1R2, —S(O)2Ra, —S(O)2NRaRb, —NRaS(O)2Ra, —NRaC(O)Ra, —C(O)Ra, —C(O)ORa, —C(O)NRaRb, —NRaC(O)ORa, —NRaC(O)NR1R2, —O—C(O)NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb, —C1-6 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6 alkyl, —C3-5 cycloalkyl, —C1-6 alkylC3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl and RN;
    • wherein the alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, N3, —ORa, halo, cyano, —NRaRb, —C(O)Ra, —C(O)ORa, —O—C1-6 alkylCN, —C(O)NRaRb, NRaC(O)Ra, —NRaC(O)ORa, —S(O)2Ra, —NRaS(O)2Rb, —S(O)2NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb and —C3-8 cycloalkyl; and wherein the heteroaryl or heterocyclyl group may be oxidized on a nitrogen atom to form an N-oxide or oxidized on a sulfur atom to form a sulfoxide or sulfone;
  • m is 0, 1 or 2;
  • each Z3 is independently halo, oxo, —ORa, SRa, N3, NO2, —CN, —NR1R2, —S(O)2Ra, —S(O)2NRaRb, —NRaS(O)2Ra, —NRaC(O)Ra, —C(O)Ra, —C(O)ORa, —C(O)NRaRb, —NRaC(O)ORa, —NRaC(O)NR1R2, —O—C(O)NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb, —C1-6 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6 alkyl, —C3-8 cycloalkyl, —C1-6 alkylC1-6cycloalkyl, aryl, heteroaryl, heterocyclyl and RN;
    • wherein the alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, N3, —ORa, halo, cyano, —NRaRb, —C(O)Ra, —C(O)ORa, —O—C1-6 alkylCN, —C(O)NRaRb, NRaC(O)Ra, —NRaC(O)ORa, —S(O)2Ra, —NRaS(O)2Rb, —S(O)2NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb and —C3-8 cycloalkyl;
  • each RN is independently —C1-6 alkyl NR1R2, —O—C1-6 alkyl NR1R2, —C1-6 alkylOC1-6 alkylNR1R2, —NRa—C1-6 alkylNR1R2, —C1-6 alkylC(O)NR1R2, —O—C1-6 alkylC(O)NR1R2, —O—C1-6 alkylC(O)OR1, —S—C1-6 alkylNR1R2, —C1-6 alkylOR1, or
Figure US11555029-20230117-C00009
    • wherein
    • L1 is independently a bond, O, NRa, S, S(O), or S(O)2;
    • V is independently selected from the group consisting of a bond, C1-6 alkyl, C2-6 alkenyl, and C2-6alkynyl;
      • wherein the alkyl, alkenyl or alkynyl group is optionally independently substituted with —ORa, halo, cyano, NRaRb and —C3-8 cycloalkyl;
    • L2 is independently a bond, O, NRa, S, S(O), or S(O)2;
    • ring A is independently cycloalkyl, aryl, heteroaryl or heterocyclyl;
      • wherein the cycloalkyl, aryl, heteroaryl, or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, N3, —ORa, halo, cyano, —C1-6 alkyl, —C1-6 haloalkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6 haloalkyl, NRaRb, —C(O)Ra, —C(O)ORa, —O—C1-6 alkylCN, —C(O)NRaRb, —NRaC(O)Ra, —NRaC(O)ORa, —NRaC(O)ORa, —C(O)N(Ra)ORb, —S(O)2Ra, —S(O)2NRaRb, —NRaS(O)2Rb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb, C3-8 cycloalkyl and C1-6 alkylC3-8 cycloalkyl;
        • wherein the alkyl, alkenyl or alkynyl group is optionally independently substituted with —ORa, halo, cyano, NRaRb and —C3-8 cycloalkyl;
  • RE and RW are each independently —NR1R2, —C1-6 alkylNR1R2, —O—C1-6 alkyl NR1R2, —C1-6 alkylOC1-6 alkylNR1R2, —NRa—C1-6 alkylNR1R2, —C1-6 alkylN+R1R2R3, —S—C1-6 alkylNR1R2, —C(O)NR1R2, —S(O)2Ra, —(CH2)uS(O)2NR1R2, —(CH2)uNRaS(O)2NRaRb, —S(O)2NRaC1-6 alkylNR1R2, —NRaS(O)2C1-6 alkylNR1R2, —(CH2)uC(O)NRaS(O)2NRaRb, —(CH2)uN+R1R2O, —(CH2)uP+RbRcRd, —(CH2)uP+RcRdO, —(CH2)uP+O[NRaRb][NRcRd], —(CH2)uNRcP(O)(ORc)2, —(CH2)uCH2OP(O)(ORc)(ORd), —(CH2)uOP(O)(ORc)(ORd), —(CH2)uOP(O)NRaRb)(ORa), or
Figure US11555029-20230117-C00010
    • wherein:
    • V2 is independently a bond, O, NRa, S, S(O), S(O)2, C(O)NRa, NRaC(O), S(O)2NR1, or NRaS(O)2;
    • L3 is independently a bond, O, NRa, S, S(O), S(O)2, C(O)NRa, NRaC(O), S(O)2NR1, or NRaS(O)2;
    • ring B is independently cycloalkyl, aryl, heteroaryl or heterocyclyl;
    • T is independently H, —ORa, (CH2)(NR1R2, (CH2)qNRaC(O)Re or (CH2)qC(O)Re;
    • p is independently 0, 1, 2, 3, 4, or 5;
    • q is independently 0, 1, 2, 3, 4, or 5;
    • u is 0, 1, 2, 3 or 4;
    • z is 0, 1, 2 or 3; and
    • wherein the alkyl, cycloalkyl, aryl, heteroaryl or heterocyclyl group of RE and RW is optionally substituted with 1 to 3 substituents independently selected from the group consisting of NRaRb, halo, cyano, oxo, —ORa, —C1-6 alkyl, —C1-6haloalkyl, —C1-6 cyanoalkyl, —C1-6 alkylNRaRb, —C1-6 alkylOH, —C3-8 cycloalkyl and —C1-3 alkylC3-8 cycloalkyl;
    • provided that at least one of V2, L3, ring B and T contains a nitrogen atom;
  • each R1 is independently selected from the group consisting of H, —C1-8 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —C3-6 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —C1-6 alkylheterocyclyl, —C1-6 alkylC(O)ORa, —C2-6 alkenylC(O)ORa, —S(O)2Ra, —S(O)2ORa, —S(O)2NRaRb, —C(O)NRaS(O)2Ra, and C1-6 alkylC3-8 cycloalkyl;
    • wherein each alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORa, —CN, —NO2, halo, C1-6 alkyl, —C1-6 alkylOR1, —C1-6 cyanoalkyl, —C1-6haloalkyl, C3-8 cycloalkyl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —NRaRb, —OC(O)NRaRb, —NRaC(O)ORb, —NRaC(O)Rb, —C1-6 alkylNRaRb, —C(O)NRaRb, —C1-6 alkylC(O)NRaRb, —S(O)2Ra, —S(O)2ORa, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, —C1-6 alkylS(O)2NRaRb, —C(O)NRaS(O)2Rb, —NRaC(O)NRb, —C1-6 alkylC(O)NRaS(O)2Rb, —NRaC(O)Rb, and —C1-6 alkylNRaC(O)Rb;
  • each R2 is independently selected from the group consisting of H, —C1-6 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —C3-6 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —C1-6 alkylheterocyclyl, —C2-6 alkyl-ORa, —C1-6 alkylC(O)ORa, and —C2-6 alkenylC(O)ORa;
    • wherein each alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORa, —CN, halo, C1-6 alkyl, —C1-6 alkylOR8, —C1-6 cyanoalkyl, —C1-6haloalkyl, —C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, —C(O)NRaRb, C1-6 alkylC(O)NRaRb, —S(O)2Ra, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, —C1-6 alkylS(O)2NRaRb, —C(O)NRaS(O)2Rb and —NRaC(O)Rb;
  • or R1 and R2 combine to form a heterocyclyl group optionally containing 1, 2, or 3 additional heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1 to 3 groups independently selected from the group consisting of oxo, —C1-6 alkyl, —C3-8 cycloalkyl, —C2-6 alkenyl, —C2-6 alkynyl, aryl, heteroaryl, heterocyclyl, —OR8, —CN, halo, —C(O)ORa, —C1-6 cyanoalkyl, —C1-6 alkylOR8, —C1-6haloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)R8, C1-6 alkylC(O)R8, —C1-6 alkylC(O)OR8, —NRaRb, —C1-6 alkylNRaRb, —C(O)NRaRb, —NR8C(O)ORb, —NR8C(O)NRaRb, —NR8S(O)2NRaRb, —NRaS(O)2Rb, —C1-6 alkylC(O)NRaRb, —S(O)2R8, —C1-6 alkylS(O)2R8, —S(O)2NRaRb, and C1-6 alkylS(O)2NRaRb;
  • each R3 is independently H, —C1-6 alkyl, —C2-6 alkenyl, —C3-6 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —C1-6 alkylheterocyclyl, —C2-6 alkyl-OR8, —C1-6 alkylC(O)OR8, or —C2-6 alkenylC(O)OR8;
  • each R8 is independently selected from the group consisting of H, —C1-6 alkyl, —C1-6haloalkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Rb is independently selected from the group consisting of H, —C1-6 alkyl, —C1-6haloalkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • or Ra and Rb may combine together to form a ring consisting of 3-8 ring atoms that are C, N, O, or S; wherein the ring is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORf, —CN, halo, —C1-6 alkylORf, —C1-6 cyanoalkyl, —C1-6 haloalkyl, —C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Rf, —C1-6 alkylC(O)Rf, —C(O)ORf, —C1-6 alkylC(O)ORf, —NRfRg, —C1-6 alkylNRfRg, —C(O)NRfRg, C1-6 alkylC(O)NRfRg, —S(O)2Rf, —C1-6 alkylS(O)2Rf, —S(O)2NRfRg, —C1-6 alkylS(O)2NRfRg, —C(O)NRfS(O)2Rg and —NRfC(O)Rg;
  • each Rc is independently selected from the group consisting of H, OH, —C1-6 alkyl, —C3-5 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl; and
  • each Rd is independently selected from the group consisting of H, —C1-6 alkyl, —C3-C8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Re is independently selected from the group consisting of H, —C1-6 alkyl, —O—C1-6 alkyl, —C3-5 cycloalkyl, aryl, heteroaryl, heterocyclyl, —O—C3-5 cycloalkyl, —O-aryl, —O-heteroaryl, —O-heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —NRfRg, —C1-6 alkylNRfRg, —C(O)NRfRg, —C1-6 alkylC(O)NRfRg, —NHS(O)2Rf, —C1-6 alkylS(O)2Rf, and —C1-6 alkylS(O)2NRfRg;
  • each Rf is independently selected from the group consisting of H, —C1-6 alkyl, —C3-5 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Rg is independently selected from the group consisting of H, —C1-6 alkyl, —C3-5 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof.
The present disclosure provides further a compound of formula (I):
Figure US11555029-20230117-C00011
  • wherein:
  • each n is independently 0, 1, 2, 3 or 4;
  • each Z1 is independently halo, —ORa, —NO2, —CN, —NRaRb, —N3, —S(O)2Ra, —C1-6 alkyl, —C1-6 haloalkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6 alkyl, —O—C1-6 haloalkyl, —C3-5 cycloalkyl or —C1-6 alkylC3-8 cycloalkyl;
    • wherein each alkyl, alkenyl, alkynyl, and cycloalkyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, —N3, —ORa, halo, and cyano;
  • Q is aryl, heteroaryl or heterocyclyl, wherein the aryl, heteroaryl and heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of halo, oxo, —ORa, N3, NO2, —CN, —NR1R2, —S(O)2Ra, —S(O)2NRaRb, —NRaS(O)2Ra, —NRaC(O)Ra, —C(O)Ra, —C(O)ORa, —C(O)NRaRb, —NRaC(O)ORa, —NRaC(O)NR1R2, —OC(O)NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb, —C1-6 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6 alkyl, —C3-8 cycloalkyl, —C1-6 alkylC3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl and RN;
    • wherein the alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, N3, —ORa, halo, cyano, —NRaRb, —C(O)Ra, —C(O)ORa, —O—C1-6 alkylCN, —C(O)NRaRb, NRaC(O)Ra, —NRaC(O)ORa, —S(O)2Ra, —NRaS(O)2Rb, —S(O)2NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb and —C3-8 cycloalkyl; and wherein the heteroaryl or heterocyclyl group may be oxidized on a nitrogen atom to form an N-oxide or oxidized on a sulfur atom to form a sulfoxide or sulfone;
  • m is 0, 1 or 2;
  • each Z3 is independently halo, oxo, —ORa, N3, NO2, —CN, —NR1R2, —S(O)2Ra, —S(O)2NRaRb, —NRaS(O)2Ra, —NRaC(O)Ra, —C(O)Ra, —C(O)ORa, —C(O)NRaRb, —NRaC(O)ORa, —NRaC(O)NR1R2, —OC(O)NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb, —C1-6 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6 alkyl, —C3-8 cycloalkyl, —C1-6 alkylC1-8 cycloalkyl, aryl, heteroaryl, heterocyclyl and RN;
    • wherein the alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, N3, —ORa, halo, cyano, —NRaRb, —C(O)Ra, —C(O)ORa, —O—C1-6 alkylCN, —C(O)NRaRb, NRaC(O)Ra, —NRaC(O)ORa, —S(O)2Ra, —NRaS(O)2Rb, —S(O)2NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb and —C3-8 cycloalkyl;
  • each RN is independently —C1-6 alkyl NR1R2, —O—C1-6 alkyl NR1R2, —C1-6 alkylOC1-6 alkylNR1R2, —NRa—C1-6 alkylNR1R2, —C1-6 alkylC(O)NR1R2, —O—C1-6 alkylC(O)NR1R2, —O—C1-6 alkylC(O)OR1, —S—C1-6 alkylNR1R2, —C1-6 alkylORa, or
Figure US11555029-20230117-C00012
    • wherein
    • L1 is independently a bond, O, NRa, S, S(O), or S(O)2;
    • V is independently selected from the group consisting of a bond, C1-6 alkyl, C2-6 alkenyl, and C2-6alkynyl;
      • wherein the alkyl, alkenyl or alkynyl group is optionally independently substituted with —ORa, halo, cyano, NRaRb and —C3-8 cycloalkyl;
    • L2 is independently a bond, O, NRa, S, S(O), or S(O)2;
    • ring A is independently cycloalkyl, aryl, heteroaryl or heterocyclyl;
      • wherein the cycloalkyl, aryl, heteroaryl, or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, N3, —ORa, halo, cyano, —C1-6 alkyl, —C1-6 haloalkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6 haloalkyl, NRaRb, —C(O)Ra, —C(O)ORa, —O—C1-6 alkylCN, —C(O)NRaRb, —NRaC(O)Ra, —NRaC(O)ORa, —NRaC(O)ORa, —C(O)N(Ra)ORb, —S(O)2Ra, —S(O)2NRaRb, —NRaS(O)2Rb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb, C3-8 cycloalkyl and C1-6 alkylC3-8 cycloalkyl;
        • wherein the alkyl, alkenyl or alkynyl group is optionally independently substituted with —ORa, halo, cyano, NRaRb and —C3-8 cycloalkyl;
  • RE and RW are each independently —NR1R2, —C1-6 alkylNR1R2, —O—C1-6 alkyl NR1R2, —C1-6 alkylOC1-6 alkylNR1R2, —NRa—C1-6 alkylNR1R2, —C1-6 alkylN+R1R2R3, —S—C1-6 alkylNR1R2, —C(O)NR1R2, —S(O)2Ra, —(CH2)uS(O)2NR1R2, —(CH2)uNRaS(O)2NRaRb, —S(O)2NRaC1-6 alkylNR1R2, —NRaS(O)2C1-6 alkylNR1R2, —(CH2)uC(O)NRaS(O)2NRaRb, —(CH2)uN+R1R2O, —(CH2)uP+RbRcRd, —(CH2)uP+RcRdO, —(CH2)uP+O[NRaRb][NRcRd], —(CH2)uNRcP(O)(ORc)2, —(CH2)uCH2OP(O)(ORc)(ORd), —(CH2)uOP(O)(ORc)(ORd), —(CH2)uOP(O)NRaRb)(ORa), or
Figure US11555029-20230117-C00013
    • wherein:
    • V2 is independently a bond, O, NRa, S, S(O), S(O)2, C(O)NRa, NRaC(O), S(O)2NR1, or NRaS(O)2;
    • L3 is independently a bond, O, NRa, S, S(O), S(O)2, C(O)NRa, NRaC(O), S(O)2NR1, or NRaS(O)2;
    • ring B is independently cycloalkyl, aryl, heteroaryl or heterocyclyl;
    • T is independently H, —ORa, (CH2)qNR1R2, (CH2)qNRaC(O)Re or (CH2)qC(O)Re;
    • p is independently 0, 1, 2, 3, 4, or 5;
    • q is independently 0, 1, 2, 3, 4, or 5;
    • u is 0, 1, 2, 3 or 4;
    • z is 0, 1, 2 or 3; and
    • wherein the alkyl, cycloalkyl, aryl, heteroaryl or heterocyclyl of RE or RW is optionally substituted with 1 to 3 substituents independently selected from the group consisting of NRaRb, halo, cyano, oxo, —ORa, —C1-6 alkyl, —C1-6 haloalkyl, —C1-6 cyanoalkyl, —C1-6 alkylNRaRb, —C1-6 alkylOH, —C3-8 cycloalkyl and —C1-3 alkylC3-8 cycloalkyl;
    • provided that at least one of V2, L3, ring B and T contains a nitrogen atom;
  • each R1 is independently selected from the group consisting of H, —C1-8 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —C3-6cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —C1-6 alkylheterocyclyl, —C1-6 alkylC(O)ORa, —C2-6 alkenylC(O)ORa, —S(O)2Ra, —S(O)2NRaRb, —C(O)NRaS(O)2Ra, and C1-6 alkylC3-8 cycloalkyl;
    • wherein each alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORa, —CN, halo, C1-6 alkyl, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-6 haloalkyl, C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —NRaRb, —OC(O)NRaRb, NRaC(O)ORb, —C1-6 alkylNRaRb, —C(O)NRaRb, —C1-6 alkylC(O)NRaRb, —S(O)2Ra, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, —C1-6 alkylS(O)2NRaRb, —C(O)NRaS(O)2Rb, —C1-6 alkylC(O)NRaS(O)2Rb, —NRaC(O)Rb, and —C1-6 alkylNRaC(O)Rb;
  • each R2 is independently selected from the group consisting of H, —C1-6 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —C3-6 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —C1-6 alkylheterocyclyl, —C2-6 alkyl-ORa, —C1-6 alkylC(O)ORa, and —C2-6 alkenylC(O)ORa;
    • wherein each alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORa, —CN, halo, C1-6 alkyl, —C1-6 alkylOR8, —C1-6 cyanoalkyl, —C1-6haloalkyl, —C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, —C(O)NRaRb, C1-6 alkylC(O)NRaRb, —S(O)2Ra, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, —C1-6 alkylS(O)2NRaRb, —C(O)NRaS(O)2Rb and —NRaC(O)Rb;
    • or R1 and R2 combine to form a heterocyclyl group optionally containing 1, 2, or 3 additional heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1 to 3 groups independently selected from the group consisting of oxo, —C1-6 alkyl, —C3-5 cycloalkyl, —C2-6 alkenyl, —C2-6 alkynyl, —ORa, —C(O)ORa, —C1-6 cyanoalkyl, —C1-6 alkylORa, —C1-6haloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, C1-6 alkylC(O)Ra, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, —C(O)NRaRb, —C1-6 alkylC(O)NRaRb, —S(O)2Ra, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, and C1-6 alkylS(O)2NRaRb;
  • each R3 is independently H, —C1-6 alkyl, —C2-6 alkenyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —C1-6 alkylheterocyclyl, —C2-6 alkyl-ORa, —C1-6 alkylC(O)ORa, or —C2-6 alkenylC(O)ORa;
  • each Ra is independently selected from the group consisting of H, —C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Rb is independently selected from the group consisting of H, —C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • or Ra and Rb may combine together to form a ring consisting of 3-8 ring atoms that are C, N, O, or S; wherein the ring is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORf, —CN, halo, —C1-6 alkylORf, —C1-6 cyanoalkyl, —C1-6 haloalkyl, —C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Rf, —C1-6 alkylC(O)Rf, —C(O)ORf, —C1-6 alkylC(O)ORf, —NRfRg, —C1-6 alkylNRfRg, —C(O)NRfRg, C1-6 alkylC(O)NRfRg, —S(O)2Rf, —C1-6 alkylS(O)2Rf, —S(O)2NRfRg, —C1-6 alkylS(O)2NRfRg, —C(O)NRfS(O)2Rg and —NRfC(O)Rg;
  • each Rc is independently selected from the group consisting of H, OH, —C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Rd is independently selected from the group consisting of H, —C1-6 alkyl, —C3-C8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Re is independently selected from the group consisting of H, —C1-6 alkyl, —O—C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —O—C3-8 cycloalkyl, —O-aryl, —O-heteroaryl, —O-heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —NRfRg, —C1-6 alkylNRfRg, —C(O)NRfRg, —C1-6 alkylC(O)NRfRg, —NHS(O)2Rf, —C1-6 alkylS(O)2Rf, and —C1-6 alkylS(O)2NRfRg;
  • each Rf is independently selected from the group consisting of H, —C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Rg is independently selected from the group consisting of H, —C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof.
In certain embodiments, provided is a compound of Formula (I):
Figure US11555029-20230117-C00014
  • wherein:
  • each n is independently 0, 1, 2, 3 or 4;
  • each Z1 is independently halo, —ORa, —NO2, —CN, —NRaRb, —N3, —S(O)2Ra, —C1-6 alkyl, —C1-6 haloalkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6 alkyl, —O—C1-6 haloalkyl, monocyclic —C3-8 cycloalkyl or monocyclic —C1-6 alkylC3-8 cycloalkyl;
    • wherein each alkyl, alkenyl, alkynyl, and cycloalkyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, —N3, —ORa, halo, and cyano;
    • Q is monocyclic aryl, monocyclic heteroaryl or monocyclic heterocyclyl, wherein each
  • Q is monocyclic group is optionally substituted with 1 to 4 groups independently selected from the group consisting of halo, oxo, —ORa, N3, NO2, —CN, —NR1R2, —S(O)2Ra, —S(O)2NRaRb, —NRaS(O)2Ra, —NRaC(O)Ra, —C(O)Ra, —C(O)ORa, —C(O)NRaRb, —NRaC(O)ORa, —NRaC(O)NR1R2, —OC(O)NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb, —C1-6 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6 alkyl, monocyclic —C3-5 cycloalkyl, monocyclic —C1-6 alkylC3-8 cycloalkyl, monocyclic aryl, and RN;
    • wherein the alkyl, alkenyl, alkynyl, monocyclic C3-5 cycloalkyl, or monocyclic aryl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, N3, —ORa, halo, cyano, —NRaRb, —C(O)Ra, —C(O)ORa, —O—C1-6 alkylCN, —C(O)NRaRb, NRaC(O)Ra, —NRaC(O)ORa, —S(O)2Ra, —NRaS(O)2Rb, —S(O)2NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb and monocyclic —C3-5 cycloalkyl; and wherein the monocyclic heteroaryl or monocyclic heterocyclyl group may be oxidized on a nitrogen atom to form an N-oxide or oxidized on a sulfur atom to form a sulfoxide or sulfone;
  • m is 0, 1 or 2;
  • each Z3 is independently halo, oxo, —ORa, N3, NO2, —CN, —NR1R2, —S(O)2Ra, —S(O)2NRaRb, —NRaS(O)2Ra, —NRaC(O)Ra, —C(O)Ra, —C(O)ORa, —C(O)NRaRb, —NRaC(O)ORa, —NRaC(O)NR1R2, —OC(O)NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb, —C1-6 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6 alkyl, monocyclic —C3-5 cycloalkyl, monocyclic —C1-6 alkylC3-8 cycloalkyl, monocyclic aryl, and RN;
    • wherein the alkyl, alkenyl, alkynyl, monocyclic C3-5 cycloalkyl, or monocyclic aryl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, N3, —ORa, halo, cyano, —NRaRb, —C(O)Ra, —C(O)ORa, —O—C1-6 alkylCN, —C(O)NRaRb, NRaC(O)Ra, —NRaC(O)ORa, —S(O)2Ra, —NRaS(O)2Rb, —S(O)2NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb and monocyclic —C3-8 cycloalkyl;
  • each RN is independently —C1-6 alkylNR1R2, —O—C1-6 alkyl NR1R2, —C1-6 alkylOC1-6 alkylNR1R2, —NRa—C1-6 alkylNR1R2, —C1-6 alkylC(O)NR1R2, —O—C1-6 alkylC(O)NR1R2, —O—C1-6 alkylC(O)OR1, —S—C1-6 alkylNR1R2, —C1-6 alkylOR1, or
Figure US11555029-20230117-C00015
    • wherein
    • L1 is independently a bond, O, NRa, S, S(O), or S(O)2;
    • V is independently selected from the group consisting of a bond, C1-6 alkyl, C2-6 alkenyl, and C2-6alkynyl;
      • wherein the alkyl, alkenyl or alkynyl group is optionally independently substituted with —ORa, halo, cyano, NRaRb and monocyclic —C3-8 cycloalkyl;
    • L2 is independently a bond, O, NRa, S, S(O), or S(O)2;
    • ring A is independently monocyclic cycloalkyl, monocyclic aryl, monocyclic heteroaryl or monocyclic heterocyclyl;
      • wherein the monocyclic cycloalkyl, monocyclic aryl, monocyclic heteroaryl, or monocyclic heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, N3, —ORa, halo, cyano, —C1-6 alkyl, —C1-6 haloalkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6haloalkyl, NRaRb, —C(O)Ra, —C(O)ORa, —O—C1-6 alkylCN, —C(O)NRaRb, —NRaC(O)Ra, —NRaC(O)ORa, —NRaC(O)ORa, —C(O)N(Ra)ORb, —S(O)2Ra, —S(O)2NRaRb, —NRaS(O)2Rb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb, monocyclic C3-8cycloalkyl and monocyclic C1-6 alkylC3-8 cycloalkyl;
        • wherein the alkyl, alkenyl or alkynyl group is optionally independently substituted with —ORa, halo, cyano, NRaRb and monocyclic —C3-8 cycloalkyl;
  • RE and RW are each independently —NR1R2, —C1-6 alkylNR1R2, —O—C1-6 alkylNR1R2, —C1-6 alkylOC1-6 alkylNR1R2, —NRa—C1-6 alkylNR1R2, —C1-6 alkylN+R1R2R3, —S—C1-6 alkylNR1R2, —C(O)NR1R2, —S(O)2Ra, —(CH2)uS(O)2NR1R2, —(CH2)uNRaS(O)2NRaRb, —S(O)2NRaC1-6 alkylNR1R2, —NRaS(O)2C1-6 alkylNR1R2, —(CH2)uC(O)NRaS(O)2NRaRb, —(CH2)uN+R1R2O, —(CH2)uP+RbRcRd, —(CH2)uP+RcRdO, —(CH2)uP+O[NRaRb][NRcRd], —(CH2)uNRcP(O)(ORc)2, —(CH2)uCH2OP(O)(ORc)(ORd), —(CH2)uOP(O)(ORc)(ORd), —(CH2)uOP(O)NRaRb)(ORa), or
Figure US11555029-20230117-C00016
    • wherein:
    • V2 is independently a bond, O, NRa, S, S(O), S(O)2, C(O)NRa, NRaC(C>), S(O)2NR1, or NRaS(O)2;
    • L3 is independently a bond, O, NRa, S, S(O), S(O)2, C(O)NRa, NRaC(O), S(O)2NR1, or NRaS(O)2;
    • ring B is independently monocyclic cycloalkyl, monocyclic aryl, monocyclic heteroaryl, monocyclic heterocyclyl or spirocyclic heterocyclyl;
    • T is independently H, —ORa, (CH2)(NR1R2, (CH2)qNRaC(O)Re or (CH2)qC(O)Re;
    • p is independently 0, 1, 2, 3, 4, or 5;
    • q is independently 0, 1, 2, 3, 4, or 5;
    • u is 0, 1, 2, 3 or 4;
    • z is 0, 1, 2 or 3; and
    • wherein the alkyl, monocyclic cycloalkyl, monocyclic aryl, monocyclic heteroaryl, monocyclic heterocyclyl or spirocyclic heterocyclyl of RE or RW is optionally substituted with 1 to 3 substituents independently selected from the group consisting of NRaRb, halo, cyano, oxo, —ORa, —C1-6 alkyl, —C1-6haloalkyl, —C1-6 cyanoalkyl, —C1-6 alkylNRaRb, —C1-6 alkylOH, monocyclic —C3-8 cycloalkyl and monocyclic —C1-3 alkylC3-8 cycloalkyl;
    • provided that at least one of V2, L3, ring B and T contains a nitrogen atom;
  • each R1 is independently selected from the group consisting of H, —C1-3 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, monocyclic —C3-6 cycloalkyl, monocyclic aryl, monocyclic heteroaryl, monocyclic heterocyclyl, monocyclic —C1-6 alkylaryl, monocyclic —C1-6 alkylheteroaryl, monocyclic —C1-6 alkylheterocyclyl, —C1-6 alkylC(O)ORa, —C2-6 alkenylC(O)ORa, —S(O)2Ra, —S(O)2NRaRb, —C(O)NRaS(O)2Ra, and monocyclic C1-6 alkylC3-8 cycloalkyl;
    • wherein each alkyl, alkenyl, monocyclic cycloalkyl, monocyclic aryl, monocyclic heteroaryl or monocyclic heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORa, —CN, halo, C1-6 alkyl, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-6haloalkyl, monocyclic C3-8 cycloalkyl, monocyclic —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —NRaRb, —OC(O)NRaRb, NRaC(O)ORb, —C1-6 alkylNRaRb, —C(O)NRaRb, —C1-6 alkylC(O)NRaRb, —S(O)2Ra, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, —C1-6 alkylS(O)2NRaRb, —C(O)NRaS(O)2Rb, —C1-6 alkylC(O)NRaS(O)2Rb, —NRaC(O)Rb, and —C1-6 alkylNRaC(O)Rb;
  • each R2 is independently selected from the group consisting of H, —C1-6 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, monocyclic —C3-6 cycloalkyl, monocyclic aryl, monocyclic heteroaryl, monocyclic heterocyclyl, monocyclic —C1-6 alkylaryl, monocyclic —C1-6 alkylheteroaryl, monocyclic —C1-6 alkylheterocyclyl, —C2-6 alkyl-ORa, —C1-6 alkylC(O)ORa, and —C2-6 alkenylC(O)ORa;
    • wherein each alkyl, alkenyl, monocyclic cycloalkyl, monocyclic aryl, monocyclic heteroaryl or monocyclic heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORa, —CN, halo, C1-6 alkyl, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-6haloalkyl, monocyclic —C3-8 cycloalkyl, monocyclic —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, —C(O)NRaRb, C1-6 alkylC(O)NRaRb, —S(O)2Ra, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, —C1-6 alkylS(O)2NRaRb, —C(O)NRaS(O)2Rb and —NRaC(O)Rb;
  • or R1 and R2, when bound to the same atom, may combine with the atom to which they are attached to form a monocyclic heterocyclyl group optionally containing 1, 2, or 3 additional heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1 to 3 groups independently selected from the group consisting of oxo, —C1-6 alkyl, monocyclic —C3-8 cycloalkyl, —C2-6 alkenyl, —C2-6alkynyl, —ORa, —C(O)ORa, —C1-6 cyanoalkyl, —C1-6 alkylORa, —C1-6haloalkyl, monocyclic —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, C1-6 alkylC(O)Ra, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, —C(O)NRaRb, —C1-6 alkylC(O)NRaRb, —S(O)2Ra, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, and C1-6 alkylS(O)2NRaRb;
  • each R3 is independently H, —C1-6 alkyl, —C2-6 alkenyl, monocyclic —C3-6 cycloalkyl, monocyclic aryl, monocyclic heteroaryl, monocyclic heterocyclyl, —C1-6 alkylaryl, monocyclic —C1-6 alkylheteroaryl, monocyclic —C1-6 alkylheterocyclyl, —C2-6 alkyl-ORa, —C1-6 alkylC(O)ORa, or —C2-6 alkenylC(O)ORa;
  • each Ra is independently selected from the group consisting of H, —C1-6 alkyl, monocyclic —C3-8 cycloalkyl, monocyclic aryl, monocyclic heteroaryl, monocyclic heterocyclyl, monocyclic —C1-3 alkylC3-8 cycloalkyl, monocyclic —C1-6 alkylaryl, monocyclic —C1-6 alkylheteroaryl, and monocyclic —C1-6 alkylheterocyclyl;
  • each Rb is independently selected from the group consisting of H, —C1-6 alkyl, monocyclic —C3-8 cycloalkyl, monocyclic aryl, monocyclic heteroaryl, monocyclic heterocyclyl, monocyclic —C1-3 alkylC3-8 cycloalkyl, monocyclic —C1-6 alkylaryl, monocyclic —C1-6 alkylheteroaryl, and monocyclic —C1-6 alkylheterocyclyl;
  • or Ra and Rb, when bound to the same atom, may combine together to form a monocyclic ring consisting of 3-8 ring atoms that are C, N, O, or S; wherein the ring is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORf, —CN, halo, —C1-6 alkylORf, —C1-6 cyanoalkyl, —C1-6haloalkyl, monocyclic —C3-8 cycloalkyl, monocyclic —C1-3 alkylC3-8 cycloalkyl, —C(O)Rf, —C1-6 alkylC(O)Rf, —C(O)ORf, —C1-6 alkylC(O)ORf, —NRfRg, —C1-6 alkylNRfRg, —C(O)NRfRg, C1-6 alkylC(O)NRfRg, —S(O)2Rf, —C1-6 alkylS(O)2Rf, —S(O)2NRfRg, —C1-6 alkylS(O)2NRfRg, —C(O)NRfS(O)2Rg and —NRfC(O)Rg;
  • each Rc is independently selected from the group consisting of H, OH, —C1-6 alkyl, monocyclic —C3-8 cycloalkyl, monocyclic aryl, monocyclic heteroaryl, monocyclic heterocyclyl, monocyclic —C1-3 alkylC3-8 cycloalkyl, monocyclic —C1-6 alkylaryl, monocyclic —C1-6 alkylheteroaryl, and monocyclic —C1-6 alkylheterocyclyl;
  • each Rd is independently selected from the group consisting of H, —C1-6 alkyl, monocyclic —C3-C8 cycloalkyl, monocyclic aryl, monocyclic heteroaryl, monocyclic heterocyclyl, monocyclic —C1-3 alkylC3-8 cycloalkyl, monocyclic —C1-6 alkylaryl, monocyclic —C1-6 alkylheteroaryl, and monocyclic —C1-6 alkylheterocyclyl;
  • each Re is independently selected from the group consisting of H, —C1-6 alkyl, —O—C1-6 alkyl, monocyclic —C3-8 cycloalkyl, monocyclic aryl, monocyclic heteroaryl, monocyclic heterocyclyl, monocyclic —O—C3-8 cycloalkyl, monocyclic —O-aryl, monocyclic —O-heteroaryl, monocyclic —O-heterocyclyl, monocyclic —C1-3 alkylC3-8 cycloalkyl, monocyclic —C1-6 alkylaryl, monocyclic —C1-6 alkylheteroaryl, —NRfRg, —C1-6 alkylNRfRg, —C(O)NRfRg, —C1-6 alkylC(O)NRfRg, —NHS(O)2Rf, —C1-6 alkylS(O)2Rf, and —C1-6 alkylS(O)2NRfRg;
  • each Rf is independently selected from the group consisting of H, —C1-6 alkyl, monocyclic —C3-8 cycloalkyl, monocyclic aryl, monocyclic heteroaryl, monocyclic heterocyclyl, monocyclic —C1-3 alkylC3-8 cycloalkyl, monocyclic —C1-6 alkylaryl, monocyclic —C1-6 alkylheteroaryl, and monocyclic —C1-6 alkylheterocyclyl;
  • each Rg is independently selected from the group consisting of H, —C1-6 alkyl, monocyclic —C3-8 cycloalkyl, monocyclic aryl, monocyclic heteroaryl, monocyclic heterocyclyl, monocyclic —C1-3 alkylC3-8 cycloalkyl, monocyclic —C1-6 alkylaryl, monocyclic —C1-6 alkylheteroaryl, and monocyclic —C1-6 alkylheterocyclyl;
  • or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof.
Also provided are compounds of Formula (Ia):
Figure US11555029-20230117-C00017
  • or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof,
  • wherein:
  • each X is independently CH, CZ3 or N;
  • each m is independently 0, 1 or 2; and
  • Z1, Z3, RE, RW and n are as defined herein.
Also provided are compounds of Formula (Ib):
Figure US11555029-20230117-C00018
  • or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof, wherein:
  • each m is independently 0, 1 or 2; and
  • Z1, Z3, RE, RW and n are as defined herein.
Also provided are compounds of Formula (Ic):
Figure US11555029-20230117-C00019
Also provided are compounds of Formula (Id):
Figure US11555029-20230117-C00020
  • or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof, wherein:
  • each m is independently 0, 1 or 2; and
  • Z1, Z3, RE, RW and n are as defined herein.
Also provided are compounds of Formula (II):
Figure US11555029-20230117-C00021
  • or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof, wherein:
  • Z1, Z3, RE and RW are as defined herein.
Also provided are compounds of formula (III):
Figure US11555029-20230117-C00022
  • or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof, wherein:
    • each X is independently CH, CZ3 or N;
    • each n is independently 0, 1, 2, 3 or 4;
    • each m is independently 0, 1 or 2;
    • each R5 is independently selected from the group consisting of NRaRb, halo, cyano, —ORa, —C1-6 alkyl, —C1-6haloalkyl, —C1-6 cyanoalkyl, —C1-6 alkylNRaRb, —C1-6 alkylOH, —C3-8 cycloalkyl and —C1-3 alkylC3-8 cycloalkyl; and
    • R1, R2, Z1, Z3, RE and RW are as defined herein.
The present disclosure provides a compound of formula (III):
Figure US11555029-20230117-C00023
  • wherein:
  • each X is independently CH, CZ3 or N;
  • each n is independently 0, 1, 2, 3 or 4;
  • each Z1 is independently halo, —ORa, —NO2, —CN, —NRaRb, —N3, —S(O)2Ra, —C1-6 alkyl, —C1-6 haloalkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6 alkyl, —O—C1-6 haloalkyl, —C3-8 cycloalkyl or —C1-6 alkylC3-8 cycloalkyl;
    • wherein each alkyl, alkenyl, alkynyl, and cycloalkyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, —N3, —ORa, halo, and cyano;
  • each m is independently 0, 1 or 2;
  • each Z3 is independently halo, oxo, —ORa, SRa, N3, NO2, —CN, —NR1R2, —S(O)2Ra, —S(O)2NRaRb, —NRaS(O)2Ra, —NRaC(O)Ra, —C(O)Ra, —C(O)ORa, —C(O)NRaRb, —NRaC(O)ORa, —NRaC(O)NR1R2, —O—C(O)NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb, —C1-6 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6 alkyl, —C3-5 cycloalkyl, —C1-6 alkylC3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl and RN;
    • wherein the alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, N3, —ORa, halo, cyano, —NRaRb, —C(O)Ra, —C(O)ORa, —O—C1-6 alkylCN, —C(O)NRaRb, NRaC(O)Ra, —NRaC(O)ORa, —S(O)2Ra, —NRaS(O)2Rb, —S(O)2NRaRb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb and —C3-5 cycloalkyl;
  • each RN is independently —C1-6 alkyl NR1R2, —O—C1-6 alkyl NR1R2, —C1-6 alkylOC1-6 alkylNR1R2, —NRa—C1-6 alkylNR1R2, —C1-6 alkylC(O)NR1R2, —O—C1-6 alkylC(O)NR1R2, —O—C1-6 alkylC(O)OR1, —S—C1-6 alkylNR1R2, —C1-6 alkylOR1, or
Figure US11555029-20230117-C00024
    • wherein
    • L1 is independently a bond, O, NRa, S, S(O), or S(O)2;
    • V is independently selected from the group consisting of a bond, C1-6 alkyl, C2-6 alkenyl, and C2-6alkynyl;
      • wherein the alkyl, alkenyl or alkynyl group is optionally independently substituted with —ORa, halo, cyano, NRaRb and —C3-5 cycloalkyl;
    • L2 is independently a bond, O, NRa, S, S(O), or S(O)2;
    • ring A is independently cycloalkyl, aryl, heteroaryl or heterocyclyl;
      • wherein the cycloalkyl, aryl, heteroaryl, or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of oxo, —NO2, N3, —ORa, halo, cyano, —C1-6 alkyl, —C1-6 haloalkyl, —C2-6 alkenyl, —C2-6 alkynyl, —O—C1-6 haloalkyl, NRaRb, —C(O)Ra, —C(O)ORa, —O—C1-6 alkylCN, —C(O)NRaRb, —NRaC(O)Ra, —NRaC(O)ORa, —NRaC(O)ORa, —C(O)N(Ra)ORb, —S(O)2Ra, —S(O)2NRaRb, —NRaS(O)2Rb, —NRaS(O)2NRaRb, —C(O)NRaS(O)2NRaRb, C3-8 cycloalkyl and C1-6 alkylC3-8 cycloalkyl;
        • wherein the alkyl, alkenyl or alkynyl group is optionally independently substituted with —ORa, halo, cyano, NRaRb and —C3-8 cycloalkyl;
  • each R1 is independently selected from the group consisting of H, —C1-8 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —C3-6cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —C1-6 alkylheterocyclyl, —C1-6 alkylC(O)ORa, —C2-6 alkenylC(O)ORa, —S(O)2Ra, —S(O)2ORa, —S(O)2NRaRb, —C(O)NRaS(O)2Ra, and C1-6 alkylC3-8 cycloalkyl;
    • wherein each alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORa, —CN, —NO2, halo, C1-6 alkyl, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-6haloalkyl, C3-8 cycloalkyl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —NRaRb, —OC(O)NRaRb, —NRaC(O)ORb, —NRaC(O)Rb, —C1-6 alkylNRaRb, —C(O)NRaRb, —C1-6 alkylC(O)NRaRb, —S(O)2Ra, —S(O)2ORa, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, —C1-6 alkylS(O)2NRaRb, —C(O)NRaS(O)2Rb, —NRaC(O)NRb, —C1-6 alkylC(O)NRaS(O)2Rb, —NRaC(O)Rb, and —C1-6 alkylNRaC(O)Rb;
  • each R2 is independently selected from the group consisting of H, —C1-6 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —C3-6 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —C1-6 alkylheterocyclyl, —C2-6 alkyl-ORa, —C1-6 alkylC(O)ORa, and —C2-6 alkenylC(O)ORa;
    • wherein each alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORa, —CN, halo, C1-6 alkyl, —C1-6 alkylOR8, —C1-6 cyanoalkyl, —C1-6haloalkyl, —C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, —C(O)NRaRb, C1-6 alkylC(O)NRaRb, —S(O)2Ra, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, —C1-6 alkylS(O)2NRaRb, —C(O)NRaS(O)2Rb and —NRaC(O)Rb;
    • or R1 and R2 combine to form a heterocyclyl group optionally containing 1, 2, or 3 additional heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1 to 3 groups independently selected from the group consisting of oxo, —C1-6 alkyl, —C3-8 cycloalkyl, —C2-6 alkenyl, —C2-6 alkynyl, aryl, heteroaryl, heterocyclyl, —ORa, —CN, halo, —C(O)ORa, —C1-6 cyanoalkyl, —C1-6 alkylOR3, —C1-6haloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, C1-6 alkylC(O)Ra, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, —C(O)NRaRb, —NRaC(O)ORb, —NRaC(O)NRaRb, —NRaS(O)2NRaRb, —NRaS(O)2Rb, —C1-6 alkylC(O)NRaRb, —S(O)2Ra, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, and C1-6 alkylS(O)2NRaRb;
  • each R3 is independently H, —C1-6 alkyl, —C2-6 alkenyl, —C3-6 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —C1-6 alkylheterocyclyl, —C2-6 alkyl-ORa, —C1-6 alkylC(O)ORa, or —C2-6 alkenylC(O)ORa;
  • each R5 is independently selected from the group consisting of NRaRb, halo, cyano, —ORa, —C1-6 alkyl, —C1-6haloalkyl, —C1-6 cyanoalkyl, —C1-6 alkylNRaRb, —C1-6 alkylOH, —C3-8 cycloalkyl and —C1-3 alkylC3-8 cycloalkyl;
  • each Ra is independently selected from the group consisting of H, —C1-6 alkyl, —C1-6 haloalkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Rb is independently selected from the group consisting of H, —C1-6 alkyl, —C1-6haloalkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • or Ra and Rb may combine together to form a ring consisting of 3-8 ring atoms that are C, N, O, or S; wherein the ring is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORf, —CN, halo, —C1-6 alkylORf, —C1-6 cyanoalkyl, —C1-6haloalkyl, —C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Rf, —C1-6 alkylC(O)Rf, —C(O)ORf, —C1-6 alkylC(O)ORf, —NRfRg, —C1-6 alkylNRfRg, —C(O)NRfRg, C1-6 alkylC(O)NRfRg, —S(O)2Rf, —C1-6 alkylS(O)2Rf, —S(O)2NRfRg, —C1-6 alkylS(O)2NRfRg, —C(O)NRfS(O)2Rg and —NRfC(O)Rg;
  • each Rc is independently selected from the group consisting of H, OH, —C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Rd is independently selected from the group consisting of H, —C1-6 alkyl, —C3-C8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Rf is independently selected from the group consisting of H, —C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Rg is independently selected from the group consisting of H, —C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
    • or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof.
Figure US11555029-20230117-C00025
  • wherein:
  • each X is independently CH, CZ3 or N;
  • each Z1 is independently halo or —C1-6 alkyl;
  • each n is independently 0, 1, 2, 3 or 4;
  • each Z3 is independently halo or —O—C1-6 alkyl;
  • each m is independently 0, 1 or 2;
  • each R1 is independently selected from the group consisting of H, —C1-8 alkyl, —C1-6 alkenyl, —C1-6 alkynyl, —C1-6cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —C1-6 alkylheterocyclyl, —C1-6 alkylC(O)ORa, —C2-6 alkenylC(O)ORa, —S(O)2Ra, —S(O)2NRaRb, —C(O)NRaS(O)2Ra, and C1-6 alkylC3-8 cycloalkyl;
    • wherein each alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORa, —CN, halo, C1-6 alkyl, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-6haloalkyl, C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —NRaRb, —OC(O)NRaRb, NRaC(O)ORb, —C1-6 alkylNRaRb, —C(O)NRaRb, —C1-6 alkylC(O)NRaRb, —S(O)2Ra, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, —C1-6 alkylS(O)2NRaRb, —C(O)NRaS(O)2Rb, —C1-6 alkylC(O)NRaS(O)2Rb, —NRaC(O)Rb, and —C1-6 alkylNRaC(O)Rb;
  • each R2 is independently selected from the group consisting of H, —C1-6 alkyl, —C1-6 alkenyl, —C1-6 alkynyl, —C1-6 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —C1-6 alkylheterocyclyl, —C2-6 alkylOR3, —C1-6 alkylC(O)ORa, and —C2-6 alkenylC(O)ORa;
    • wherein each alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORa, —CN, halo, C1-6 alkyl, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-6haloalkyl, —C1-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, —C(O)NRaRb, C1-6 alkylC(O)NRaRb, —S(O)2Ra, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, —C1-6 alkylS(O)2NRaRb, —C(O)NRaS(O)2Rb and —NRaC(O)Rb;
  • or R1 and R2 combine to form a heterocyclyl group optionally containing 1, 2, or 3 additional heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1 to 3 groups independently selected from the group consisting of oxo, —C1-6 alkyl, —C3-8 cycloalkyl, —C2-6 alkenyl, —C2-6alkynyl, —ORa, —C(O)ORa, —C1-6 cyanoalkyl, —C1-6 alkylORa, —C1-6 haloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, C1-6 alkylC(O)Ra, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, —C(O)NRaRb, —C1-6 alkylC(O)NRaRb, —S(O)2Ra, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, and C1-6 alkylS(O)2NRaRb;
  • each R5 is independently selected from the group consisting of NRaRb, halo, cyano, —ORa, —C1-6 alkyl, —C1-6 haloalkyl, —C1-6 cyanoalkyl, —C1-6 alkylNRaRb, —C1-6 alkylOH, —C3-5cycloalkyl and —C1-3 alkylC3-8 cycloalkyl;
  • each Ra is independently selected from the group consisting of H, —C1-6 alkyl, —C3-5 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Rb is independently selected from the group consisting of H, —C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • or Ra and Rb may combine together to form a ring consisting of 3-8 ring atoms that are C, N, O, or S; wherein the ring is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORf, —CN, halo, —C1-6 alkylORf, —C1-6 cyanoalkyl, —C1-6 haloalkyl, —C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Rf, —C1-6 alkylC(O)Rf, —C(O)ORf, —C1-6 alkylC(O)ORf, —NRfRg, —C1-6 alkylNRfRg, —C(O)NRfRg, C1-6 alkylC(O)NRfRg, —S(O)2Rf, —C1-6 alkylS(O)2Rf, —S(O)2NRfRg, —C1-6 alkylS(O)2NRfRg, —C(O)NRfS(O)2Rg and —NRfC(O)Rg;
  • each Rf is independently selected from the group consisting of H, —C1-6 alkyl, —C3-5 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Rg is independently selected from the group consisting of H, —C1-6 alkyl, —C3-5 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof.
The present disclosure provides a compound of formula (IIIa):
Figure US11555029-20230117-C00026
  • wherein:
  • each X is independently CH, CZ3 or N;
  • each Z1 is independently halo or —C1-6 alkyl;
  • each Z3 is independently halo or —O—C1-6 alkyl;
  • each R1 is independently selected from the group consisting of H, —C1-8 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —C3-6cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —C1-6 alkylheterocyclyl, —C1-6 alkylC(O)ORa, —C2-6 alkenylC(O)ORa, —S(O)2Ra, —S(O)2ORa, —S(O)2NRaRb, —C(O)NRaS(O)2Ra, and C1-6 alkylC3-8 cycloalkyl;
    • wherein each alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORa, —CN, —NO2, halo, C1-6 alkyl, —C1-6 alkylOR1, —C1-6 cyanoalkyl, —C1-6 haloalkyl, C3-8 cycloalkyl, heteroaryl, heterocyclyl, —C1-6 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —NRaRb, —OC(O)NRaRb, —NRaC(O)ORb, —NRaC(O)Rb, —C1-6 alkylNRaRb, —C(O)NRaRb, —C1-6 alkylC(O)NRaRb, —S(O)2Ra, —S(O)2ORa, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, —C1-6 alkylS(O)2NRaRb, —C(O)NRaS(O)2Rb, —NRaC(O)NRb, —C1-6 alkylC(O)NRaS(O2Rb, —NRaC(O)Rb, and —C1-6 alkylNRaC(O)Rb;
  • each R2 is independently selected from the group consisting of H, —C1-6 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —C3-6 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —C1-6 alkylheterocyclyl, —C2-6 alkylOR8, —C1-6 alkylC(O)ORf, and —C2-6 alkenylC(O)ORa;
    • wherein each alkyl, alkenyl, cycloalkyl, aryl, heteroaryl or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of —OR8, —CN, halo, C1-6 alkyl, —C1-6 alkylOR8, —C1-6 cyanoalkyl, —C1-6 haloalkyl, —C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)R8, —C1-6 alkylC(O)R8, —C(O)OR8, —C1-6 alkylC(O)OR8, —NRaRb, —C1-6 alkylNRaRb, —C(O)NRaRb, C1-6 alkylC(O)NRaRb, —S(O)2R8, —C1-6 alkylS(O)2R8, —S(O)2NRaRb, —C1-6 alkylS(O)2NRaRb, —C(O)NR8S(O)2Rb and —NR8C(O)Rb;
  • or R1 and R2 combine to form a heterocyclyl group optionally containing 1, 2, or 3 additional heteroatoms independently selected from oxygen, sulfur and nitrogen, and optionally substituted with 1 to 3 groups independently selected from the group consisting of oxo, —C1-6 alkyl, —C3-8 cycloalkyl, —C2-6 alkenyl, —C2-6 alkynyl, aryl, heteroaryl, heterocyclyl, —OR8, —CN, halo, —C(O)OR8, —C1-6 cyanoalkyl, —C1-6 alkylOR8, —C1-6haloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)R8, C1-6 alkylC(O)R8, —C1-6 alkylC(O)OR8, —NRaRb, —C1-6 alkylNRaRb, —C(O)NRaRb, —NR8C(O)ORb, —NR8C(O)NRaRb, —NR8S(O)2NRaRb, —NR8S(O)2Rb, —C1-6 alkylC(O)NRaRb, —S(O)2R8, —C1-6 alkylS(O)2R8, —S(O)2NRaRb, and C1-6 alkylS(O)2NRaRb;
  • each R8 is independently selected from the group consisting of H, —C1-6 alkyl, —C1-6haloalkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Rb is independently selected from the group consisting of H, —C1-6 alkyl, —C1-6 haloalkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • or Ra and Rb may combine together to form a ring consisting of 3-8 ring atoms that are C, N, O, or S; wherein the ring is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORf, —CN, halo, —C1-6 alkylORf, —C1-6 cyanoalkyl, —C1-6 haloalkyl, —C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Rf, —C1-6 alkylC(O)Rf, —C(O)ORf, —C1-6 alkylC(O)ORf, —NRfRg, —C1-6 alkylNRfRg, —C(O)NRfRg, C1-6 alkylC(O)NRfRg, —S(O)2Rf, —C1-6 alkylS(O)2Rf, —S(O)2NRfRg, —C1-6 alkylS(O)2NRfRg, —C(O)NRfS(O)2Rg and —NRfC(O)Rg;
  • each Rf is independently selected from the group consisting of H, —C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • each Rg is independently selected from the group consisting of H, —C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
  • or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof.
The present disclosure provides a compound of formula (IIIb):
Figure US11555029-20230117-C00027
  • or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof, wherein:
    • Z1, Z3, R1 and R2 are as defined herein.
The present disclosure provides a compound of formula (life):
Figure US11555029-20230117-C00028
  • or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof, wherein:
    • Z1, Z3, R1 and R2 are as defined herein.
The present disclosure provides a compound of formula (Hid):
Figure US11555029-20230117-C00029
  • or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof, wherein:
    • Z1, Z3, R1 and R2 are as defined herein.
In one embodiment, Q is selected from the group consisting of phenyl, pyridinyl, indazolyl, and thienyl each optionally substituted with 1 to 2 groups independently selected from the group consisting of halo, —ORa, N3, NO2, —CN, —NRaRb, —S(O)2Ra, —S(O)2NRaRb, —NRaS(O)2Ra, —NRaC(O)Ra, —C(O)NRaRb, —C1-6 alkyl, —O—C1-6 alkyl, C3-8 cycloalkyl, and —C1-6 alkylC3-8 cycloalkyl.
In another embodiment, Q is selected from the group consisting of phenyl, pyridinyl and indanyl each optionally substituted with 1 to 3 groups independently selected from the group consisting of halo, —ORa, N3, NO2, —CN, —NRaRb, —S(O)2Ra, —S(O)2NRaRb, —NRaS(O)2Ra, —NRaC(O)Ra, —C(O)NRaRb, —C1-6 alkyl, —O—C1-6 alkyl, C3-8 cycloalkyl, and —C1-6 alkylC3-8 cycloalkyl.
In one embodiment, Q is optionally substituted aryl. In one embodiment, Q is optionally substituted phenyl.
In one embodiment, Q is optionally substituted heteroaryl. In one embodiment, Q is optionally substituted monocyclic heteroaryl. In one embodiment, Q is an optionally substituted 5- or 6-membered heteroaryl. In one embodiment, Q is an optionally substituted 5-membered heteroaryl. In one embodiment, Q is an optionally substituted 6-membered heteroaryl. In one embodiment, Q is optionally substituted pyridyl. In one embodiment, Q is optionally substituted pyrazinyl.
In certain embodiments, Q is
Figure US11555029-20230117-C00030

and m and Z3 are as defined herein.
In certain embodiments, Q is
Figure US11555029-20230117-C00031

and m and Z3 are as defined herein.
In one embodiment, substituents on Q are independently selected from the group consisting of OH, halo, CN, —C1-6 alkyl, —C1-6haloalkyl —O—C1-6 alkyl, —O—C1-6haloalkyl, —S(O)2C1-6 alkyl,
Figure US11555029-20230117-C00032

or a pharmaceutically acceptable salt thereof.
In one embodiment, Q is optionally substituted with 1 to 3 groups independently selected from the group consisting of OH, halo, CN, S(O)2Ra, —C1-6 alkyl, and —O—C1-6 alkyl.
In one embodiment, Q is optionally substituted with 1 to 3 groups independently selected from the group consisting of OH, halo, CN, S(O)2Ra, —C1-6 alkyl, and —O—C1-6 alkyl.
In one embodiment, RE and RW are each independently —NR1R2, —C1-6 alkylNR1R2, —O—C1-6 alkylNR1R2, —C1-6 alkylOC1-6 alkylNR1R2, —NR1—C1-6 alkylNR1R2, —C1-6 alkylN+R1R2R3, —S—C1-6 alkylNR1R2, —S(O)2Ra, —(CH2)uS(O)2NR1R2, —(CH2)uNRaS(O)2NRaRb, —S(O)2NRaC1-6 alkylNR1R2, —NRaS(O)2C1-6 alkylNR1R2, —(CH2)uC(O)NRaS(O)2NRaRb, —(CH2)uN+R1R2O, —(CH2)uP+RbRcRd, —(CH2)uP+RcRdO, —(CH2)uP+O[NRaRb][NRcRd], —(CH2)uNRcP(O)(ORc)2, —(CH2)uCH2OP(O)(ORc)(ORd), —(CH2)uOP(O)(ORc)(ORd), —(CH2)uOP(O)NRaRb)(ORa), or
Figure US11555029-20230117-C00033
    • wherein:
    • V2 is independently a bond, O, NRa, S, S(O), S(O)2, S(O)2NR1, or NRaS(O)2;
    • L3 is independently a bond, O, NRa, S, S(O), S(O)2, S(O)2NR1, or NRaS(O)2;
    • ring B is independently cycloalkyl, aryl, heteroaryl or heterocyclyl;
    • T is independently H, —ORa, (CH2)qNR1R2, (CH2)qNRaC(O)Re or (CH2)qC(O)Re;
    • p is independently 0, 1, 2, 3, 4, or 5;
    • q is independently 0, 1, 2, 3, 4, or 5;
    • u is 0, 1, 2, 3 or 4;
    • z is 0, 1, 2 or 3; and
    • wherein the alkyl, cycloalkyl, aryl, heteroaryl or heterocyclyl of RE or RW is optionally substituted with 1 to 3 substituents independently selected from the group consisting of NRaRb, halo, cyano, oxo, —ORa, —C1-6 alkyl, —C1-6haloalkyl, —C1-6 cyanoalkyl, —C1-6 alkylNRaRb, —C1-6 alkylOH, —C3-8 cycloalkyl and —C1-3 alkylC3-8 cycloalkyl;
    • provided that at least one of V2, L3, ring B and T contains a nitrogen atom.
In one embodiment, RE and RW are independently selected from —NR1R2, —C1-6 alkylNR1R2, —O—C1-6 alkylNR1R2, —C1-6 alkylOC1-6 alkylNR1R2, —NRa—C1-6 alkyl NR1R2, —C1-6 alkylN+R1R2R3, —S—C1-6 alkylNR1R2, —C(O)NR1R2, —S(O)2Ra, —(CH2)uS(O)2NR1R2, —(CH2)uNRaS(O)2NRaRb, —S(O)2NRaC1-6 alkylNR1R2, —NRaS(O)2C1-6 alkyl NR1R2, —(CH2)uC(O)NRaS(O)2NRaRb, —(CH2)uN+R1R2O, —(CH2)uP+RbRcRd, —(CH2)uP+RcRdO, —(CH2)uP+O[NRaRb][NRcRd], —(CH2)uNRcP(O)(ORc)2, —(CH2)uCH2OP(O)(ORc)(ORd), —(CH2)uOP(O)(ORc)(ORd), and —(CH2)uOP(O)NRaRb)(ORa); wherein
    • each R1 is independently selected from H, —C1-6 alkyl, —C3-6cycloalkyl, heterocyclyl, —C2-6 alkyl-ORa, or —C1-6 alkylC(O)ORa;
      • wherein each alkyl, cycloalkyl, or heterocyclyl is optionally substituted with 1 to 2 groups independently selected from —ORa, —CN, halo, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-3haloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —C(O)NRaRb, and —C1-6 alkylC(O)NRaRb;
    • each R2 is independently selected from —C1-6 alkyl, —C3-6 cycloalkyl, heterocyclyl, —C2-6 alkyl-ORa, and —C1-6 alkylC(O)ORa;
      • wherein each alkyl, cycloalkyl, or heterocyclyl is optionally substituted with 1 to 2 groups independently selected from —ORa, —CN, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-3haloalkyl, —C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —C(O)NRaRb, and C1-6 alkylC(O)NRaRb;
    • or R1 and R2 combine to form a heterocyclyl group optionally containing an additional heteroatom selected from oxygen, sulfur or nitrogen, and optionally substituted with 1 to 3 groups independently selected from oxo, —C1-6 alkyl, —ORa, —C(O)ORa, —C(O)Ra, C1-6 alkylC(O)Ra, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, and —C(O)NRaRb;
    • each R3 is independently H, —C1-6 alkyl, —C2-6 alkenyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl;
    • each Ra is independently H or —C1-6 alkyl;
    • each Rb is independently H or —C1-6 alkyl;
    • each Rc is independently selected from H, —C1-6 alkyl, —C3-8 cycloalkyl, and —C1-3 alkylC3-8 cycloalkyl;
    • each Rd is independently selected from H, —C1-6 alkyl, —C3-C8 cycloalkyl, and —C1-3 alkylC3-8 cycloalkyl; and
    • each u is independently 0, 1, 2, or 3.
In one embodiment, RE and RW are independently selected from —C(O)NR1R2, —S(O)2Ra, —(CH2)uS(O)2NR1R2, —(CH2)uNRaS(O)2NRaRb, —S(O)2NRaC1-6 alkylNR1R2, —NRaS(O)2C1-6 alkylNR1R2, and —(CH2)uC(O)NRaS(O)2NRaRb; wherein
    • each R1 is independently selected from H, —C1-6 alkyl, —C3-8 cycloalkyl, heterocyclyl, —C2-6 alkyl-ORa, or —C1-6 alkylC(O)ORa;
      • wherein each alkyl, cycloalkyl, or heterocyclyl is optionally substituted with 1 to 2 groups independently selected from —ORa, —CN, halo, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-3haloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —C(O)NRaRb, and —C1-6 alkylC(O)NRaRb;
    • each R2 is independently selected from —C1-6 alkyl, —C3-6 cycloalkyl, heterocyclyl, —C2-6 alkyl-ORa, and —C1-6 alkylC(O)ORa;
      • wherein each alkyl, cycloalkyl, or heterocyclyl is optionally substituted with 1 to 2 groups independently selected from —ORa, —CN, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-3haloalkyl, —C3-8 cycloalkyl, —C1-6 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —C(O)NRaRb, and C1-6 alkylC(O)NRaRb;
    • or R1 and R2 combine to form a heterocyclyl optionally containing an additional heteroatom selected from oxygen, sulfur or nitrogen, and optionally substituted with 1 to 3 groups independently selected from oxo, —C1-6 alkyl, —ORa, —C(O)ORa, —C(O)Ra, C1-6 alkylC(O)Ra, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, and —C(O)NRaRb;
    • each Ra is independently H or —C1-6 alkyl;
    • each Rb is independently H or —C1-6 alkyl; and
    • each u is independently 0, 1, 2, or 3.
In one embodiment, RE and RW are independently selected from —(CH2)uN+R1R2O, —(CH2)uP+RbRcRd, —(CH2)uP+RcRdO, —(CH2)uP+O[NRaRb][NRcRd], —(CH2)uNRcP(O)(ORc)2, —(CH2)uCH2OP(O)(ORc)(ORd), —(CH2)uOP(O)(ORc)(ORd), and —(CH2)uOP(O)NRaRb)(ORa); wherein
    • each R1 is independently selected from H, —C1-6 alkyl, —C3-6cycloalkyl, heterocyclyl, —C2-6 alkyl-ORa, and —C1-6 alkylC(O)ORa;
      • wherein each alkyl, cycloalkyl, or heterocyclyl is optionally substituted with 1 to 2 groups independently selected from —ORa, —CN, halo, —C1-6 alkylOR1, —C1-6 cyanoalkyl, —C1-3haloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —C(O)NRaRb, and —C1-6 alkylC(O)NRaRb;
    • each R2 is independently selected from —C1-6 alkyl, —C3-6 cycloalkyl, heterocyclyl, —C2-6 alkyl-ORa, and —C1-6 alkylC(O)ORa;
      • wherein each alkyl, cycloalkyl, or heterocyclyl is optionally substituted with 1 to 2 groups independently selected from —ORa, —CN, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-3haloalkyl, —C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —C(O)NRaRb, and C1-6 alkylC(O)NRaRb;
    • or R1 and R2 combine to form a heterocyclyl optionally containing an additional heteroatom selected from oxygen, sulfur or nitrogen, and optionally substituted with 1 to 3 groups independently selected from oxo, —C1-6 alkyl, —ORa, —C(O)ORa, —C(O)Ra, C1-6 alkylC(O)Ra, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, and —C(O)NRaRb;
    • each Ra is independently H or —C1-6 alkyl;
    • each Rb is independently H or —C1-6 alkyl;
    • each Rc is independently selected from H, —C1-6 alkyl, —C3-8 cycloalkyl, and —C1-3 alkylC3-8 cycloalkyl;
    • each Rd is independently selected from H, —C1-6 alkyl, —C3-C8 cycloalkyl, and —C1-3 alkylC3-8 cycloalkyl; and
    • each u is independently 0, 1, 2 or 3.
In one embodiment, RE and RW are each independently —NR1R2, —C1-6 alkylNR1R2, —O—C1-6 alkylNR1R2, —C1-6 alkylOC1-6 alkylNR1R2, —NRaC1-6 alkylNR1R2, or
Figure US11555029-20230117-C00034
    • wherein
    • V2 is independently a bond, O, NRa, S, S(O) or S(O)2;
    • Rc is independently selected from H, OH, —C1-6 alkyl, and —C3-8 cycloalkyl;
    • Rd is independently selected from H, —C1-6 alkyl, and —C3-C8 cycloalkyl;
    • L3 is independently a bond, O, NRa, S, S(O), or S(O)2;
    • ring B is independently cycloalkyl, aryl, heteroaryl, or heterocyclyl;
    • T is independently H, —ORa, (CH2)(NR1R2, (CH2)qNRaC(O)Re or (CH2)qC(O)Re; Re is independently selected from H, —C1-6 alkyl, —O—C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —O—C3-8 cycloalkyl, —O-aryl, —O-heteroaryl, —O-heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —NRfRg, —C1-6 alkylNRfRg, —C(O)NRfRg, —C1-6 alkylC(O)NRfRg, —NHS(O)2Rf, —C1-6 alkylS(O)2Rf, and —C1-6 alkylS(O)2NRfRg;
    • p is independently 0, 1, 2, 3, 4, or 5;
    • q is independently 0, 1, 2, 3, 4, or 5; and
    • z is 0, 1, or 2;
    • and wherein the alkyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl group is optionally substituted with 1 to 3 substituents independently selected from the group consisting of NRaRb, halo, cyano, —ORa, —C1-6 alkyl, —C1-6haloalkyl, —C1-6 cyanoalkyl, —C1-6 alkylNRaRb, —C1-6 alkylOH, —C3-8 cycloalkyl, and —C1-3 alkylC3-8 cycloalkyl;
    • provided that at least one of V2, L3, ring B and T contains a nitrogen atom;
  • each R1 is independently selected from H, —C1-6 alkyl, —C3-8 cycloalkyl, heterocyclyl, —C2-6 alkyl-ORa, or —C1-6 alkylC(O)ORa;
    • wherein each alkyl, cycloalkyl, or heterocyclyl is optionally substituted with 1 to 2 groups independently selected from —ORa, —CN, halo, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-3haloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —C(O)NRaRb, and —C1-6 alkylC(O)NRaRb;
  • each R2 is independently selected from —C1-6 alkyl, —C3-6 cycloalkyl, heterocyclyl, —C2-6 alkyl-ORa, and —C1-6 alkylC(O)ORa;
    • wherein each alkyl, cycloalkyl, or heterocyclyl is optionally substituted with 1 to 2 groups independently selected from —ORa, —CN, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-3haloalkyl, —C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —C(O)NRaRb, and C1-6 alkylC(O)NRaRb;
  • or R1 and R2 combine to form a heterocyclyl group optionally containing an additional heteroatom selected from oxygen, sulfur or nitrogen, and optionally substituted with 1 to 3 groups independently selected from oxo, —C1-6 alkyl, —ORa, —C(O)ORa, —C(O)Ra, C1-6 alkylC(O)Ra, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, and —C(O)NRaRb;
  • each Ra is independently H or —C1-6 alkyl; and
  • each Rb is independently H or —C1-6 alkyl.
In one embodiment, RE and RW are each independently —NR1R2, —C1-6 alkylNR1R2, —O—C1-6 alkylNR1R2, —C1-6 alkylOC1-6 alkylNR1R2, —NRa—C1-6 alkylNR1R2, or
Figure US11555029-20230117-C00035
    • wherein
    • V2 is independently a bond, O, NRa, S, S(O) or S(O)2;
    • L3 is independently a bond, O, NRa, S, S(O), or S(O)2;
    • ring B is independently cycloalkyl, aryl, heteroaryl, or heterocyclyl;
    • T is independently H, —ORa, (CH2)(NR1R2, (CH2)qNRaC(O)Re or (CH2)qC(O)Re;
    • p is independently 0, 1, 2, or 3;
    • q is independently 0, 1, 2, or 3;
    • z is 0, 1, 2, or 3;
    • and wherein the alkyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl group is optionally substituted with 1 to 3 substituents independently selected from the group consisting of NRaRb, halo, cyano, —ORa, —C1-6 alkyl, —C1-6haloalkyl, —C1-6 cyanoalkyl, —C1-6 alkylNRaRb, —C1-6 alkylOH, —C3-8 cycloalkyl, and —C1-3 alkylC3-8 cycloalkyl;
    • provided that at least one of V2, L3, ring B and T contains a nitrogen atom;
  • each R1 is independently selected from H, —C1-6 alkyl, —C3-6cycloalkyl, heterocyclyl, —C2-6 alkyl-ORa, or —C1-6 alkylC(O)ORa;
    • wherein each alkyl, cycloalkyl, or heterocyclyl group is optionally substituted with 1 to 2 groups independently selected from —ORa, —CN, halo, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-3haloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —C(O)NRaRb, and —C1-6 alkylC(O)NRaRb;
  • each R2 is independently selected from —C1-6 alkyl, —C3-6 cycloalkyl, heterocyclyl, —C2-6 alkyl-ORa, and —C1-6 alkylC(O)ORa;
    • wherein each alkyl, cycloalkyl, or heterocyclyl is optionally substituted with 1 to 2 groups independently selected from —ORa, —CN, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-3haloalkyl, —C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —C(O)NRaRb, and C1-6 alkylC(O)NRaRb;
  • or R1 and R2 combine to form a heterocyclyl optionally containing an additional heteroatom selected from oxygen, sulfur or nitrogen, and optionally substituted with 1 to 3 groups independently selected from oxo, —C1-6 alkyl, —ORa, —C(O)ORa, —C(O)Ra, C1-6 alkylC(O)Ra, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, and —C(O)NRaRb;
  • each Ra is independently H or —C1-6 alkyl;
  • each Rb is independently H or —C1-6 alkyl;
  • each Rc is independently selected from H, OH, —C1-6 alkyl, and —C3-8 cycloalkyl;
  • each Rd is independently selected from H, —C1-6 alkyl, and —C3-C8 cycloalkyl;
  • Re is selected from H, —C1-6 alkyl, —O—C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —O—C3-8 cycloalkyl, —O-aryl, —O-heteroaryl, —O-heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —NRfRg, —C1-6 alkylNRfRg, —C(O)NRfRg, —C1-6 alkylC(O)NRfRg, —NHS(O)2Rf, —C1-6 alkylS(O)2Rf, and —C1-6 alkylS(O)2NRfRg;
  • each Rf is independently selected from H, —C1-6 alkyl, and —C3-8 cycloalkyl;
  • each Rg is independently selected from H, —C1-6 alkyl, and —C3-8 cycloalkyl.
In one embodiment, RE and RW are each
Figure US11555029-20230117-C00036
  • wherein
    • V2 is independently a bond, O, NRa, S, S(O) or S(O)2;
    • Rc is independently selected from H, OH, —C1-6 alkyl, and —C3-8 cycloalkyl;
    • Rd is independently selected from H, —C1-6 alkyl, and —C3-C8 cycloalkyl;
    • L3 is independently a bond, O, NRa, S, S(O), or S(O)2;
    • ring B is independently cycloalkyl, aryl, heteroaryl, or heterocyclyl;
    • T is independently H, —ORa, (CH2)(NR1R2, (CH2)qNRaC(O)Re or (CH2)qC(O)Re;
    • Re is selected from H, —C1-6 alkyl, —O—C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl,
    • —O—C3-8 cycloalkyl, —O-aryl, —O-heteroaryl, —O-heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —NRfRg, —C1-6 alkylNRfRg, —C(O)NRfRg, —C1-6 alkylC(O)NRfRg, —NHS(O)2Rf, —C1-6 alkylS(O)2Rf, and —C1-6 alkylS(O)2NRfRg;
    • Rf is independently selected from H, —C1-6 alkyl, and —C3-8 cycloalkyl;
    • Rg is independently selected from H, —C1-6 alkyl, and —C3-8 cycloalkyl;
    • p is independently 0, 1, 2, or 3;
    • q is independently 0, 1, 2, or 3;
    • z is 0, 1, 2, or 3;
    • and wherein the alkyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl group is optionally substituted with 1 to 3 substituents independently selected from the group consisting of NRaRb, halo, cyano, —ORa, —C1-6 alkyl, —C1-6 haloalkyl, —C1-6 cyanoalkyl, —C1-6 alkylNRaRb, —C1-6 alkylOH, —C3-8 cycloalkyl, and —C1-3 alkylC3-8 cycloalkyl;
    • provided that at least one of V2, L3, ring B and T contains a nitrogen atom.
In one embodiment, RE and RW are each independently —NR1R2, —C1-6 alkylNR1R2, or —O—C1-6 alkylNR1R2;
  • each R1 is independently selected from H, —C1-6 alkyl, —C3-8 cycloalkyl, heterocyclyl, —C2-6 alkyl-ORa, or —C1-6 alkylC(O)ORa;
    • wherein each alkyl, cycloalkyl, or heterocyclyl is optionally substituted with 1 to 2 groups independently selected from —ORa, —CN, halo, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-3haloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —C(O)NRaRb, and —C1-6 alkylC(O)NRaRb;
  • each R2 is independently selected from —C1-6 alkyl, —C3-6 cycloalkyl, heterocyclyl, —C2-6 alkyl-ORa, and —C1-6 alkylC(O)ORa;
    • wherein each alkyl, cycloalkyl, or heterocyclyl is optionally substituted with 1 to 2 groups independently selected from —ORa, —CN, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-3haloalkyl, —C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —C(O)NRaRb, and C1-6 alkylC(O)NRaRb;
  • or R1 and R2 combine to form a heterocyclyl optionally containing 1 or 2 additional heteroatoms independently selected from oxygen, sulfur or nitrogen, and optionally substituted with 1 to 3 groups independently selected from oxo, —C1-6 alkyl, —ORa, —C(O)ORa, —C(O)Ra, C1-6 alkylC(O)Ra, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, and —C(O)NRaRb;
  • each Ra is independently H or —C1-6 alkyl;
  • each Rb is independently H or —C1-6 alkyl.
In one embodiment, RE and RW are each —C1-6 alkylOC1-6 alkylNR1R2;
  • each R1 is selected from H, —C1-6 alkyl, —C3-8 cycloalkyl, heterocyclyl, —C2-6 alkyl-ORa, and —C1-6 alkylC(O)ORa;
    • wherein each alkyl, cycloalkyl, or heterocyclyl is optionally substituted with 1 to 2 groups independently selected from —ORa, —CN, halo, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-3haloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —C(O)NRaRb, and —C1-6 alkylC(O)NRaRb;
  • each R2 is selected from —C1-6 alkyl, —C3-8 cycloalkyl, heterocyclyl, —C2-6 alkyl-ORa, and —C1-6 alkylC(O)ORa;
    • wherein each alkyl, cycloalkyl, or heterocyclyl is optionally substituted with 1 to 2 groups independently selected from —ORa, —CN, —C1-6 alkylOR1, —C1-6 cyanoalkyl, —C1-3haloalkyl, —C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —C(O)NRaRb, and C1-6 alkylC(O)NRaRb; or
  • R1 and R2 combine to form a heterocyclyl optionally containing 1 or 2 additional heteroatoms independently selected from oxygen, sulfur or nitrogen, and optionally substituted with 1 to 3 groups independently selected from oxo, —C1-6 alkyl, —ORa, —C(O)ORa, —C(O)Ra, C1-6 alkylC(O)Ra, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, and —C(O)NRaRb;
  • each Ra is independently H or —C1-6 alkyl; and
  • each Rb is independently H or —C1-6 alkyl.
In one embodiment, provided is a compound of formula (I), wherein RE and RW are each —O—C1-6 alkylNR1R2;
  • R1 is selected from H, —C1-6 alkyl, —C3-8 cycloalkyl, heterocyclyl, —C2-6 alkyl-ORa, and —C1-6 alkylC(O)ORa;
    • wherein each alkyl, cycloalkyl, or heterocyclyl is optionally substituted with 1 to 2 groups independently selected from —ORa, —CN, halo, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-3haloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —C(O)NRaRb, and —C1-6 alkylC(O)NRaRb;
  • R2 is selected from —C1-6 alkyl, —C3-6cycloalkyl, heterocyclyl, —C2-6 alkyl-ORa, and —C1-6 alkylC(O)ORa;
    • wherein each alkyl, cycloalkyl, or heterocyclyl is optionally substituted with 1 to 2 groups independently selected from —ORa, —CN, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-3haloalkyl, —C3-8 cycloalkyl, —C1-6 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —C(O)NRaRb, and C1-6 alkylC(O)NRaRb; or
  • R1 and R2 combine to form a heterocyclyl group optionally containing 1 or 2 additional heteroatoms independently selected from oxygen, sulfur or nitrogen, and optionally substituted with 1 to 3 groups independently selected from oxo, —C1-6 alkyl, —ORa, —C(O)ORa, —C(O)Ra, C1-6 alkylC(O)Ra, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, and —C(O)NRaRb;
  • Ra is independently H or —C1-6 alkyl; and
  • Rb is independently H or —C1-6 alkyl.
In one embodiment, RE and RW are each —NR1R2;
  • R1 is selected from H, —C1-6 alkyl, —C3-8 cycloalkyl, heterocyclyl, —C2-6 alkyl-ORa, and —C1-6 alkylC(O)ORa;
    • wherein each alkyl, cycloalkyl, or heterocyclyl is optionally substituted with 1 to 2 groups independently selected from —ORa, —CN, halo, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-3haloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —C(O)NRaRb, and —C1-6 alkylC(O)NRaRb;
  • R2 is selected from —C1-6 alkyl, —C3-8 cycloalkyl, heterocyclyl, —C2-6 alkyl-ORa, and —C1-6 alkylC(O)ORa;
    • wherein each alkyl, cycloalkyl, or heterocyclyl group is optionally substituted with 1 to 2 groups independently selected from —ORa, —CN, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-3haloalkyl, —C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —C(O)NRaRb, and C1-6 alkylC(O)NRaRb;
  • or R1 and R2 combine to form a heterocyclyl group optionally containing an additional heteroatom selected from oxygen, sulfur or nitrogen, and optionally substituted with 1 to 3 groups independently selected from oxo, —C1-6 alkyl, —ORa, —C(O)ORa, —C(O)Ra, C1-6 alkylC(O)Ra, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, and —C(O)NRaRb;
  • Ra is independently H or —C1-6 alkyl; and
  • Rb is independently H or —C1-6 alkyl.
In one embodiment, RE and RW do not contain an amide group (i.e., —NC(O)— or —C(O)N—). In one embodiment, at least one on RE and RW contains a heterocyclyl moiety which optionally comprises an oxo.
In one embodiment, RE and RW are each independently —NR1R2, —C1-6 alkylNR1R2, —O—C1-6 alkylNR1R2, —C1-6 alkylOC1-6 alkylNR1R2, —NRa—C1-6 alkyl NR1R2, —C1-6 alkylN+R1R2R3, —S—C1-6 alkylNR1R2, —C(O)NR1R2, —S(O)2Ra, —(CH2)uS(O)2NR′R2, —(CH2)uNRaS(O)2NRaRb, —S(O)2NRaC1-6 alkylNR1R2, —NRaS(O)2C1-6 alkylNR1R2;
  • each R1 is independently —C1-6 alkylheterocyclyl;
    • wherein each heterocyclyl is independently 2,5-diazaspiro[3.4]octan-6-one, azetidine, 2,6-diazaspiro[3.3]heptane, pyrrolidin-2-one, tetrahydrofuran, pyrrolidine, piperidin-2-one (36), piperazin-2-one, 5-oxa-2,7-diazaspiro[3.4]octan-6-one, 3-azabicyclo[3.1.0]hexane, 2-azabicyclo[2.1.1]hexane, tetrahydro-2H-pyran, 2,6-diazaspiro[3.4]octan-7-one, 4,5-dihydro-1H-imidazole, 1,4,5,6-tetrahydropyrimidine, piperidine, 1,2,4-oxadiazol-5(2H)-one, 2,5,7-triazaspiro[3.4]octan-6-one, 2,7-diazaspiro[4.4]nonan-3-one, 1,7-diazaspiro[4.4]nonan-2-one, 2-azaspiro[4.4]nonan-3-one, 1,8-diazaspiro[4.5]decan-2-one, 2-azaspiro[3.3]heptane, oxazolidin-2-one, octahydrocyclopenta[b]pyrrole, octahydrocyclopenta[c]pyrrole, 2-oxa-7-azaspiro[4.4]nonan-1-one, 6-oxa-2-azaspiro[3.4]octane, piperazine, 1,1-dioxotetrahydrothiophene, hexahydropyrrolo[3,4-b]pyrrol-6(1H)-one, 1,3,8-triazaspiro[4.5]decane-2,4-dione, 2-methyl-1,3,7-triazaspiro[4.5]dec-2-en-4-one, 1,3,7-triazaspiro[4.4]nonane-2,4-dione, 1,3,7-triazaspiro[4.5]decane-2,4-dione, 6-azaspiro[3.4]octane, 1-thia-6-azaspiro[3.3]heptane 1,1-dioxide, pyridin-2(1H)-one, isothiazolidine 1,1-dioxide, thietane 1,1-dioxide, hexahydropyrrolo[3,4-b]pyrrol-2(1H)-one, 2,5,7-triazaspiro[3.4]octane-6,8-dione, 3-azabicyclo[3.1.0]hexan-2-one, 5-azaspiro[2.4]heptan-4-one, oxetane, morpholine, 2-thiaspiro[3.3]heptane 2,2-dioxide, hexahydrocyclopenta[b]pyrrol-2(1H)-one, pyrrolidine-2,5-dione, 6,7-dihydro-5H-pyrrolo[3,4-b]pyridine, or 1,3-dioxolane, and each is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORa, —CN, halo, C1-6 alkyl, —C1-6 alkylOR1, —C1-6 cyanoalkyl, —C1-6 haloalkyl, C3-8 cycloalkyl, —C1-3 alkylC3-8 cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —NRaRb, —OC(O)NRaRb, NRaC(O)ORb, —C1-6 alkylNRaRb, —C(O)NRaRb, —C1-6 alkylC(O)NRaRh, —S(O)2Ra, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, —C1-6 alkylS(O)2NRaRb, —C(O)NRaS(O)2Rb, —C1-6 alkylC(O)NRaS(O)2Rb, —NRaC(O)Rb, and —C1-6 alkylNRaC(O)Rb; and
  • each R2 is H.
In one embodiment, RW and RE are each independently selected from:
Figure US11555029-20230117-C00037
Figure US11555029-20230117-C00038
In one embodiment, each RW and RE is independently selected from:
Figure US11555029-20230117-C00039
Figure US11555029-20230117-C00040
In one embodiment, each RW and RE is independently selected from:
Figure US11555029-20230117-C00041
Figure US11555029-20230117-C00042
In one embodiment, each RW and RE is independently selected from:
Figure US11555029-20230117-C00043
Figure US11555029-20230117-C00044
Figure US11555029-20230117-C00045
Figure US11555029-20230117-C00046
Figure US11555029-20230117-C00047
Figure US11555029-20230117-C00048
Figure US11555029-20230117-C00049
Figure US11555029-20230117-C00050
Figure US11555029-20230117-C00051
In one embodiment, each RW and RE is independently selected from:
Figure US11555029-20230117-C00052
In certain embodiments, each Z1 is independently halo or —C1-6 alkyl. In certain embodiments, each Z1 is fluoro, chloro, or methyl.
In certain embodiments, each Z1 is independently halo. In certain embodiments, each Z1 is chloro.
In certain embodiments, each Z3 is independently —C1-6 alkyl, —O—C1-6 alkyl, or —O—C3-8 cycloalkyl. In certain embodiments, each Z3 is methyl, methoxy, or cyclopropoxy.
In certain embodiments, each Z3 is independently C1-6 alkoxy. In certain embodiments, each Z3 is methoxy.
In certain embodiments, neither of RE or RW is an optionally substituted fused 5,6-aromatic or 5,6-heteromatic ring. In certain embodiments, none of Z1, Z3, RN, RE or RW is an optionally substituted fused 5,6-aromatic or 5,6-heteromatic ring.
In certain embodiments, provided is a compound as shown in Table 1, or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, or tautomer thereof.
In certain embodiments, the compound as provided herein has a molecular weight of less than about 850 g/mol, or less than about 800 g/mol, or less than about 750 g/mol, or less than about 700 g/mol, or between about 500 to about 850 g/mol, or between about 500 to about 600 g/mol, or between about 550 to about 650 g/mol, or between about 600 to about 700 g/mol, or between about 650 to about 750 g/mol, or between about 700 to about 800 g/mol, or between about 750 to about 850 g/mol.
One of skill in the art is aware that each and every embodiment of a group (e.g., RE) disclosed herein may be combined with any other embodiment of each of the remaining groups (e.g., RW, Z1, Z3, etc.) to generate a complete compound of formula (I) as disclosed herein; each of which is deemed within the ambit of the present disclosure.
Formulations and Methods
PD-1 and its ligand, PD-L1, are monomeric type I transmembrane proteins that play critical roles in T cell inhibition and exhaustion. PD-L1 is composed of two extracellular immunoglobulin (Ig)-like domains whereas PD-1 is composed of a single extracellular Ig like domain and an intracellular tail. The crystal structure of the PD-1/PD-L1 complex reveals that PD-1 binds to PD-L1 with a 1:1 stoichiometry to form a monomeric complex (see, e.g., Cheng et al. J Biol Chem, 2013; 288(17); 11771-85, Lin et al. Proc Natl Acad Sci USA, 2008; 105(8); 3011-6, Zak et al. Structure, 2015; 23(12); 2341-8). This arrangement represents a distinct ligand-binding mode and signaling mechanism that differs from other co-inhibitory receptor/ligand interactions such as CTLA-4/B7, where oligomerization plays an important role in signaling (see, e.g., Schwartz et al. Nature, 2001; 410(6828); 604-8). Engagement of PD-1 to PD-L1, along with TCR signaling, leads to phosphorylation of the cytoplasmic domain tyrosines on PD-1 and recruitment of Src-homology 2-containing tyrosine phosphatases (SHP-1 and SHP-2). These phosphatases dephosphorylate TCR-associated proteins, resulting in alteration of downstream signaling including blocking phosphoinositide 3 kinase (PI3K) and Akt kinase activation, disrupting glucose metabolism, and inhibiting IL-2 and IFN-γ secretion (see, e.g., Hofmeyer et al. J Biomed Biotechnol 2011; 2011; 451694, Latchman et al. Nature immunology, 2001; 2(3); 261-8).
Monoclonal antibodies developed for cancer immunotherapy binding to either PD-1 or PD-L1 have demonstrated significant response rates in patients, particularly for melanoma, non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC) and bladder cancer. Many of these studies have shown that blockade of the PD-1/PD-L1 axis leads to an enhancement in T cell cytotoxic activity at the tumor site (see, e.g., Wherry E J. Nat Immunol, 2011; 12(6); 492-9). In addition to cancer, inhibition of this pathway has also shown promise for the control or elimination of chronic viral infections, such as HBV (see, e.g., Bengsch et al. J Hepatol, 2014; 61 (6); 1212-9, Fisicaro et al. Gastroenterology, 2010; 138(2), 682-93, 93 e1-4, Fisicaro et al. Gastroenterology, 2012; 143(6), 1576-85 e4).
Methods
In one embodiment, the present disclosure provides a compound of formula (I) useful as an inhibitor of PD-1, PD-F1 and/or the PD-1/PD-F1 interaction. In some embodiments, compounds disclosed herein inhibit the PD-1/PD-F1 interaction by dimerizing PD-F1, or by inducing or stabilizing PD-F1 dimer formation.
In one embodiment, the present disclosure provides a pharmaceutical composition comprising a compound of formula (I) and a pharmaceutically acceptable carrier.
The present disclosure provides a compound of formula (I) for use in therapy.
In one embodiment, provided is a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, useful for treating an HBV infection or a condition in a patient that is amenable to treatment by inhibiting PD-1, PD-F1 or the PD-1/PD-F1 interaction.
In one embodiment, the present disclosure provides a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, at least one additional therapeutic agent suitable for treating an HBV infection, and at least one pharmaceutically acceptable carrier or excipient.
In another embodiment, the present disclosure provides a compound of formula (I) for use in the manufacture of a medicament for treating or eliminating HBV. Elimination of HBV during acute infection is associated with the emergence of functional HBV-specific CD8+ T cells. In contrast, chronic infection is marked by the presence of dysfunctional HBV-specific CD8+ T cells that are unable to control viral infection (see, e.g., Boni et al. J Virol, 2007; 81(8); 4215-4225, Ferrari, Liver Int, 2015; 35; Suppl 1:121-8, Fisicaro et al., Gastroenterology, 2010; 138(2); 682-693, 93 e1-4, Guidotti et al. Cell, 2015; 161(3); 486-500). Mechanisms that may contribute to the dysfunction of HBV-specific T cells in CHB include upregulation of inhibitory T cell receptors (e.g. PD-1, CTFA-4 and TIM-3), due to persistent high viral load and antigen levels (see, e.g., Boni et al. J Virol, 2007; 81(8); 4215-4225, Franzese et al. J Virol, 2005; 79(6); 3322-3328, Peppa et al. J Exp Med, 2013; 210(1); 99-114, Wherry E J. Nature immunology 2011; 12(6); 492-499). Among all inhibitory immune receptors, PD-1 is most frequently upregulated on HBV-specific T cells. Furthermore, multiple studies have confirmed that the majority of circulating and intrahepatic HBV-specific CD8+ T cells in CHB patients are exhausted and express high levels of PD-1 (see, e.g., Bengsch et al. J Hepatol, 2014; 61(6); 1212-1219, Fisicaro et al., Gastroenterology, 2010; 138(2); 682-693, 93 e1-4). Notably, the defects in effector cytokine production by HBV-specific CD4+ and CD8+ T cells were partially reversed by blocking the PD-1/PD-L1 interaction with an anti-PD-L1 antibody in PBMCs isolated from CHB patients (see, e.g., Bengsch et al. J Hepatol, 2014; 61(6); 1212-1219, Fisicaro et al., Gastroenterology, 2010; 138(2); 682-693, 93 e1-4, Fisicaro et al. Gastroenterology, 2012; 143(6); 1576-1585 e4). Consistent with these pre-clinical data, a clinical study evaluating α-PD-1 therapy in CHB subjects showed significant reductions in HBsAg levels in the majority of subjects which includes three out of twenty patients with reduction in HBsAg levels of over 0.5 log10 and one subject that experienced a functional cure (sustained HBsAg loss and appearance of anti-HBsAb) (see, e.g., Gane et al. “A phase 1 study evaluating anti-PD-1 treatment with or without GS-4774 in HBeAg negative chronic hepatitis B patients”, Abstract PS-044, European Association for the Study of the Liver (EASE); 2017; April 19-23; Amsterdam, The Netherlands). Taken together, these findings demonstrate that inhibiting the PD-1/PD-L1 axis may improve T cell function in CHB patients and increase the rates of functional cure. Disclosed herein are selective and potent PD-L1 small molecule inhibitors that bind specifically to PD-L1 and inhibit the PD-1/PD-L1 interaction by inducing PD-L1 dimerization (see, e.g., Biological Example 2).
In one embodiment, the present disclosure provides a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, and at least one additional anticancer agent and at least one pharmaceutically acceptable excipient.
In one embodiment, the present disclosure provides a method of treating cancer in a patient in need thereof, comprising administering a compound of formula (I) in combination with one or more check-point inhibitors selected from nivolumab, pembrolizumab, and artezolizumab.
In another embodiment, the present disclosure provides a compound of formula (I) for use in the manufacture of a medicament for treating cancer.
In one embodiment, provided is a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, useful for the treatment of cancer or a condition in a patient that is amenable to treatment by inhibiting PD-1, PD-L1 or the PD-1/PD-L1 interaction. Cancers that may be treated with the compounds of formula (I) disclosed herein include pancreatic cancer, bladder cancer, colorectal cancer, breast cancer, prostate cancer, renal cancer, hepatocellular cancer, lung cancer, ovarian cancer, cervical cancer, gastric cancer, esophageal cancer, head and neck cancer, melanoma, neuroendocrine cancer, CNS cancer, brain cancer, bone cancer, soft tissue sarcoma, non-small cell lung cancer, small-cell lung cancer and colon cancer.
In one embodiment, provided is a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof, useful for the treatment of cancer or a condition in a patient that is amenable to treatment by inhibiting PD-1, PD-L1 or the PD-1/PD-L1 interaction including, but not limited to, lymphoma, multiple myeloma, and leukemia. Additional diseases or conditions that may be treated include, but are not limited to acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), myelodysplastic syndrome (MDS), myeloproliferative disease (MPD), chronic myeloid leukemia (CML), multiple myeloma (MM), non-Hodgkin's lymphoma (NHL), mantle cell lymphoma (MCL), follicular lymphoma, Waldestrom's macroglobulinemia (WM), T-cell lymphoma, B-cell lymphoma and diffuse large B-cell lymphoma (DLBCL).
“Administering” or “administration” refers to the delivery of one or more therapeutic agents to a patient. In one embodiment, the administration is a monotherapy wherein a compound of formula (I) is the only active ingredient administered to the patient in need of therapy. In another embodiment, the administration is co-administration such that two or more therapeutic agents are delivered together during the course of the treatment. In one embodiment, two or more therapeutic agents may be co-formulated into a single dosage form or “combined dosage unit”, or formulated separately and subsequently combined into a combined dosage unit, as is typically for intravenous administration or oral administration as a mono or bilayer tablet or capsule.
In one embodiment, the compound of formula (I) or a pharmaceutically acceptable salt thereof is administered to a human patient in need thereof in an effective amount, such as, from about 0.1 mg to about 1000 mg per day of said compound. In one embodiment, the effective amount is from about 0.1 mg to about 200 mg per day. In one embodiment, the effective amount is from about 1 mg to about 100 mg per day. In other embodiments, the effective amount is about 1 mg, about 3 mg, about 5 mg, about 10 mg, about 15 mg, about 18 mg, about 20 mg, about 30 mg, about 40 mg, about 60 mg, about 80 mg, or about 100 mg per day.
In one embodiment, the compound of formula (I) or a pharmaceutically acceptable salt thereof and at least one additional anticancer agent is administered to a human patient in need thereof in an effective amount of each agent, independently from about 0.1 mg to about 1000 mg per compound or formulation per day per compounds. In one embodiment, the effective amount of the combination treatment of a compound of formula (I) and an additional compound is independently from about 0.1 mg to about 200 mg per compound per day. In one embodiment, the effective amount of the combination treatment of a compound of formula (I) and an additional compound is independently from about 1 mg to about 100 mg per compound per day. In other embodiments, the effective amount of the combination treatment of a compound of formula (I) and an additional compound is for each component, about 1 mg, about 3 mg, about 5 mg, about 10 mg, about 15 mg, about 18 mg, about 20 mg, about 30 mg, about 40 mg, about 60 mg, about 80 mg, about 100 mg, about 200 mg, or about 500 mg each per day.
In one embodiment, the compound of formula (I) and/or a combination of the compound of formula (I) and an additional anticancer agent or a pharmaceutically acceptable salt thereof is administered once a day. In yet another embodiment, the compound of formula (I) and/or an additional anticancer agent or a pharmaceutically acceptable salt thereof is administered as a loading dose of from about 10 mg to about 500 mg per compound on the first day and each day or on alternate days or weekly for up to a month followed by a regular regimen of a compound of formula (I) and/or one or more additional anticancer agents or therapies. The maintenance dose may be 1-500 mg daily or weekly for each component of a multi component drug regimen. A qualified care giver or treating physician is aware of what dose regimen is best for a particular patient or particular presenting conditions and will make appropriate treating regimen decisions for that patient. Thus, in another embodiment, the qualified caregiver is able to tailor a dose regimen of the compound of formula (I) and/or an additional agent(s) as disclosed herein to fit with the particular needs of the patient. Thus, it will be understood that the amount of the compound of formula (I), or a pharmaceutically acceptable salt thereof and the amount of an additional agent actually administered will usually be determined by a physician, in light of the relevant circumstances, including the condition(s) to be treated, the chosen route of administration, the actual compound (e.g., salt or free base) administered and its relative activity, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
Co-administration may also include administering component drugs e.g., one on more compounds of formula (I) and one or more additional (e.g., a second, third, fourth or fifth) anticancer or other therapeutic agent(s). Such combination of one on more compounds of formula (I) and one or more additional anticancer or other therapeutic agent(s) may be administered simultaneously or in sequence (one after the other) within a reasonable period of time of each administration (e.g., about 1 minute to 24 hours) depending on the pharmacokinetic and/or pharmacodynamics properties of each agent or the combination. Co-administration may also involve treatment with a fixed combination wherein agents of the treatment regimen are combinable in a fixed dosage or combined dosage medium e.g., solid, liquid or aerosol. In one embodiment, a kit may be used to administer the drug or drug components.
Thus, one embodiment of the present disclosure is a method of treating a disease amenable to treatment with a PD-1, PD-L1 inhibitor or a PD-1/PD-L1 interaction inhibitor e.g., cancer, comprising administering therapeutically effective amounts of formulations of one on more compounds of formula (I) and one or more additional anticancer agents, including for example, via a kit to a patient in need thereof. It will be understood that a qualified care giver will administer or direct the administration of a therapeutically effective amount of any of the compound(s) or combinations of compounds of the present disclosure.
“Intravenous administration” is the administration of substances directly into a vein, or “intravenously.” Compared with other routes of administration, the intravenous (IV) route is a faster way to deliver fluids and medications throughout the body. An infusion pump can allow precise control over the flow rate and total amount of medication delivered. However, in cases where a change in the flow rate would not have serious consequences, or if pumps are not available, the drip is often left to flow simply by placing the bag above the level of the patient and using the clamp to regulate the rate. Alternatively, a rapid infuser can be used if the patient requires a high flow rate and the IV access device is of a large enough diameter to accommodate it. This is either an inflatable cuff placed around the fluid bag to force the fluid into the patient or a similar electrical device that may also heat the fluid being infused. When a patient requires medications only at certain times, intermittent infusion is used which does not require additional fluid. It can use the same techniques as an intravenous drip (pump or gravity drip), but after the complete dose of medication has been given, the tubing is disconnected from the IV access device. Some medications are also given by IV push or bolus, meaning that a syringe is connected to the IV access device and the medication is injected directly (slowly, if it might irritate the vein or cause a too-rapid effect). Once a medicine has been injected into the fluid stream of the IV tubing there must be some means of ensuring that it gets from the tubing to the patient. Usually this is accomplished by allowing the fluid stream to flow normally and thereby carry the medicine into the bloodstream; however, a second fluid injection is sometimes used, as a “flush”, following the injection to push the medicine into the bloodstream more quickly. Thus in one embodiment, compound(s) or combination of compounds described herein may be administered by IV administration alone or in combination with administration of certain components of the treatment regimen by oral or parenteral routes.
“Oral administration” is a route of administration where a substance is taken through the mouth, and includes buccal, sub labial, and sublingual administration, as well as enteral administration and that through the respiratory tract, unless made through e.g., tubing so the medication is not in direct contact with any of the oral mucosa. Typical form for the oral administration of therapeutic agents includes the use of tablets or capsules. Thus in one embodiment, compound(s) or combination of compounds described herein may be administered by oral route alone or in combination with administration of certain components of the treatment regimen by IV or parenteral routes.
Pharmaceutical Formulations
The compound(s) of formula (I) or a pharmaceutically acceptable salt thereof may be administered in a pharmaceutical formulation. Pharmaceutical formulations/compositions contemplated by the present disclosure comprise, in addition to a carrier, the compound of formula (I), or a pharmaceutically acceptable salt thereof, or a combination of compound of formula (I), or a pharmaceutically acceptable salt thereof, optionally in combination with an additional agent such as for example, ipilimumab, or a pharmaceutically acceptable salt thereof.
Pharmaceutical formulations/compositions contemplated by the present disclosure may also be intended for administration by injection and include aqueous solutions, oil suspensions, emulsions (with sesame oil, corn oil, cottonseed oil, or peanut oil) as well as elixirs, mannitol, dextrose, or a sterile aqueous solution, and similar pharmaceutical vehicles. Aqueous solutions in saline are also conventionally used for injection. Ethanol, glycerol, propylene glycol, liquid polyethylene glycol, and the like (and suitable mixtures thereof), cyclodextrin derivatives, and vegetable oils may also be employed. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and/or by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
Sterile injectable solutions are prepared by incorporating the component compound(s) in the required amount in the appropriate solvent with various other ingredients as enumerated above or as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient(s) plus any additional desired ingredient from a previously sterile-filtered solution thereof.
In making pharmaceutical compositions that comprise compound of formula (I), or a pharmaceutically acceptable salt thereof, optionally in combination with an additional agent/therapy useful for the purpose or pharmaceutically acceptable salt thereof, the active ingredient is usually diluted by an excipient or carrier and/or enclosed or mixed with such a carrier that may be in the form of a capsule, sachet, paper or other container. When the excipient serves as a diluent, it can be a solid, semi-solid, or liquid material (as above), which acts as a vehicle, carrier or medium for the active ingredient. Thus, the compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 20% by weight of the active compounds, soft and hard gelatin capsules, sterile injectable solutions, and sterile packaged powders.
Some examples of suitable excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, sterile water, syrup, and methyl cellulose. The formulations can additionally include: lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy-benzoates; sweetening agents; and flavoring agents.
The compositions of the disclosure may be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art. In one embodiment, sustained release formulations are used. Controlled release drug delivery systems for oral administration include osmotic pump systems and dissolutional systems containing polymer-coated reservoirs or drug-polymer matrix formulations.
Certain compositions are preferably formulated in a unit dosage form. The term “unit dosage forms” or “combined dosage unit” refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of one or more of the active materials (e.g., compound (I), optionally in combination with an additional agent calculated to produce the desired effect, in association with a suitable pharmaceutical excipient in for example, a tablet, capsule, ampoule or vial for injection. It will be understood, however, that the amount of each active agent actually administered will be determined by a physician, in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compounds administered and their relative activity, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
For preparing solid compositions such as tablets, the principal active ingredient(s) is/are mixed with a pharmaceutical excipient to form a solid pre-formulation composition containing a homogeneous mixture of a compound of the present disclosure. When referring to these pre-formulation compositions as homogeneous, it is meant that the active ingredient(s) are dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules.
The tablets or pills comprising compound of formula (I) or a pharmaceutically acceptable salt thereof of the present disclosure optionally in combination with the second agent may be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action, or to protect from the acidic conditions of the stomach. For example, the tablet or pill can comprise an inner dosage and an outer dosage element, the latter being in the form of an envelope over the former. In one embodiment, the inner dosage element may comprise the compound (I) and the outer dosage element may comprise the second or additional agent or vice versa. Alternatively, the combined dosage unit may be side by side configuration as in a capsule or tablet where one portion or half of the tablet or capsule is filled with a formulation of the compound of formula (I) while the other portion or half of the table or capsule comprises the additional agent
A variety of materials may be used for such enteric layers or coatings, such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate. One of ordinary skill in the art is aware of techniques and materials used in the manufacture of dosages of formulations disclosed herein.
A “sustained release formulation” or “extended release formulation” is a formulation which is designed to slowly release a therapeutic agent into the body over an extended period of time, whereas an “immediate release formulation” is a formulation which is designed to quickly release a therapeutic agent into the body over a shortened period of time. In some cases the immediate release formulation may be coated such that the therapeutic agent is only released once it reaches the desired target in the body (e.g., the stomach). One of ordinary skill in the art is able to develop sustained release formulations of the presently disclosed compounds without undue experimentation. Thus in one embodiment, compound(s) or combination of compounds described herein may be delivered via sustained released formulations alone or in combination with administration of certain components of the treatment regimen by oral, IV or parenteral routes.
A lyophilized formulation may also be used to administer a compound of formula (I) singly or in combination with an additional anticancer agent. One of skill in the art is aware of how to make and use lyophilized formulations of drug substances amenable to lyophilization.
Spray-dried formulation may also be used to administer a compound of formula (I) singly or in combination with an additional anti-cancer agent. One of skill in the art is aware of how to make and use spray-dried formulations of drug substances amenable to spray-drying. Other known formulation techniques may also be employed to formulate a compound or combination of compounds disclosed herein.
Articles of Manufacture
Articles of manufacture comprising a container in which a compound of formula (I) or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable carrier are contained are provided. The article of manufacture may be a bottle, vial, ampoule, single-use disposable applicator, or the like, containing the pharmaceutical composition provided in the present disclosure. The container may be formed from a variety of materials, such as glass or plastic and in one aspect also contains a label on, or associated with, the container which indicates directions for use in the treatment of cancer or inflammatory conditions.
It should be understood that the active ingredient may be packaged in any material capable of providing reasonable chemical and physical stability, such as an aluminum foil bag.
Unit dosage forms of the pharmaceutical composition comprising a compound of formula (I), or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable carrier are also provided.
Any pharmaceutical composition provided in the present disclosure may be used in the articles of manufacture, the same as if each and every composition were specifically and individually listed for use an article of manufacture.
Also provided is a kit that includes a compound of formula (I) or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers or tautomer thereof; a label, and/or instructions for use of the compound in the treatment of a disease or condition mediated by PD-1, PD-L1 activity or PD-1/PD-L1 interaction.
In one embodiment, the instructions are directed to use of the pharmaceutical composition for the treatment of cancer, including for example, leukemia or lymphoma. In specific embodiments, the cancer is acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), myelodysplastic syndrome (MDS), myeloproliferative disease (MPD), chronic myeloid leukemia (CML), multiple myeloma (MM), indolent non-Hodgkin's lymphoma (iNHL), refractory iNHL, non-Hodgkin's lymphoma (NHL), mantle cell lymphoma (MCL), follicular lymphoma, Waldestrom's macroglobulinemia (WM), T-cell lymphoma, B-cell lymphoma, and diffuse large B-cell lymphoma (DLBCL). In one embodiment, the cancer is T-cell acute lymphoblastic leukemia (T-ALL), or B-cell acute lymphoblastic leukemia (B-ALL). The non-Hodgkin lymphoma encompasses the indolent B-cell diseases that include, for example, follicular lymphoma, lymphoplasmacytic lymphoma, Waldenstrom macroglobulinemia, and marginal zone lymphoma, as well as the aggressive lymphomas that include, for example, Burkitt lymphoma, diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL). In one embodiment, the cancer is indolent non-Hodgkin's lymphoma (iNHL)
In a particular variation, the instructions are directed to use of the pharmaceutical composition for the treatment of an autoimmune disease. Specific embodiments of an autoimmune disease include asthma, rheumatoid arthritis, multiple sclerosis, and lupus.
Also provided is an article of manufacture which includes a compound of formula (I) or a pharmaceutically acceptable salt, prodrug, or solvate thereof; and a container. In one embodiment, the container may be a vial, jar, ampoule, preloaded syringe, or an intravenous bag.
Formulations of compound(s) of the present disclosure i.e., a compound of formula (I) or the combination of a compound of formula (I) and an additional agent may be accomplished by admixing said compounds or salt thereof with one or more non-toxic, pharmaceutically acceptable vehicles, carriers and/or diluents and/or adjuvants collectively referred to herein as excipients or carrier materials. The compounds of the disclosure may be administered by any suitable route, preferably in the form of a pharmaceutical composition adapted to such route, and in a therapeutically effective dose. The compounds or the combination of compounds for the disclosure may be delivered orally, mucosally, parenterally, including intravascularly, intravenously, intraperitoneally, subcutaneously, intramuscularly, and intranasally in dosage formulations containing conventional pharmaceutical excipients.
In one embodiment, the combination of a compound formula (I), or a pharmaceutically acceptable salt thereof, and an additional agent useful for the treatment of cancer may be formulated in a fixed dose or combined dose formulation in a tablet, capsule or premixed IV solution. In another embodiment, the fixed dose combination preferably comprises of compound formula (I), and an additional anticancer agent. Other fixed dose formulations may include premixed liquids, suspensions, elixirs, aerosolized sprays or patch presentations. As used herein fixed dose or combined dose formulations are synonymous with simultaneous co-administration of the active ingredients of the compound (I) and at least one additional agent.
Combination Therapy
Also provided are methods of treatment in which a compound of formula (I) or a pharmaceutically acceptable salt thereof, is given to a patient in combination with one or more additional active agents or therapy. The compound described herein may be used or combined with one or more of the additional therapeutic agents. The one or more therapeutic agents include, but are not limited to, an inhibitor, agonist, antagonist, ligand, modulator, stimulator, blocker, activator or suppressor of a gene, ligand, receptor, protein, factor such as Abelson murine leukemia viral oncogene homolog 1 gene (ABL, such as ABL1), Acetyl-CoA carboxylase (such as ACC1/2), activated CDC kinase (ACK, such as ACK1), Adenosine deaminase, adenosine receptor (such as A2B, A2a, A3), Adenylate cyclase, ADP ribosyl cyclase-1, adrenocorticotropic hormone receptor (ACTH), Aerolysin, AKT1 gene, Alk-5 protein kinase, Alkaline phosphatase, Alpha 1 adrenoceptor, Alpha 2 adrenoceptor, Alpha-ketoglutarate dehydrogenase (KGDH), Aminopeptidase N, AMP activated protein kinase, anaplastic lymphoma kinase (ALK, such as ALK1), Androgen receptor, Angiopoietin (such as ligand-1, ligand-2), Angiotensinogen (ACT) gene, murine thymoma viral oncogene homolog 1 (AKT) protein kinase (such as AKT1, AKT2, AKT3), apolipoprotein A-I (APOA1) gene, Apoptosis inducing factor, apoptosis protein (such as 1, 2), apoptosis signal-regulating kinase (ASK, such as ASK1), Arginase (I), Arginine deiminase, Aromatase, Asteroid homolog 1 (ASTE1) gene, ataxia telangiectasia and Rad 3 related (ATR) serine/threonine protein kinase, Aurora protein kinase (such as 1, 2), Axl tyrosine kinase receptor, Baculoviral IAP repeat containing 5 (BIRC5) gene, Basigin, B-cell lymphoma 2 (BCL2) gene, Bcl2 binding component 3, Bcl2 protein, BCL2L11 gene, BCR (breakpoint cluster region) protein and gene, Beta adrenoceptor, Beta-catenin, B-lymphocyte antigen CD19, B-lymphocyte antigen CD20, B-lymphocyte cell adhesion molecule, B-lymphocyte stimulator ligand, Bone morphogenetic protein-10 ligand, Bone morphogenetic protein-9 ligand modulator, Brachyury protein, Bradykinin receptor, B-Raf proto-oncogene (BRAF), Brc-Abl tyrosine kinase, Bromodomain and external domain (BET) bromodomain containing protein (such as BRD2, BRD3, BRD4), Bruton's tyrosine kinase (BTK), Calmodulin, calmodulin-dependent protein kinase (CaMK, such as CAMKII), Cancer testis antigen 2, Cancer testis antigen NY-ESCO-1, cancer/testis antigen IB (CTAG1) gene, Cannabinoid receptor (such as CB1, CB2), Carbonic anhydrase, casein kinase (CK, such as CKI, CKII), Caspase (such as caspase-3, caspase-7, Caspase-9), caspase 8 apoptosis-related cysteine peptidase CASP8-FADD-like regulator, Caspase recruitment domain protein-15, Cathepsin G, CCR5 gene, CDK-activating kinase (CAK), Checkpoint kinase (such as CHK1, CHK2), chemokine (C—C motif) receptor (such as CCR2, CCR4, CCR5, CCR8), chemokine (C—X—C motif) receptor (such as CXCR4, CXCR1 and CXCR2), Chemokine CC21 ligand, Cholecystokinin CCK2 receptor, Chorionic gonadotropin, c-Kit (tyrosine-protein kinase Kit or CD117), Claudin (such as 6, 18), cluster of differentiation (CD) such as CD4, CD27, CD29, CD30, CD33, CD37, CD40, CD40 ligand receptor, CD40 ligand, CD40LG gene, CD44, CD45, CD47, CD49b, CD51, CD52, CD55, CD58, CD66e, CD70 gene, CD74, CD79, CD79b, CD79B gene, CD80, CD95, CD99, CD117, CD122, CDwl23, CD134, CDwl37, CD158a, CD158M, CD158b2, CD223, CD276 antigen; clusterin (CLU) gene, Clusterin, c-Met (hepatocyte growth factor receptor (HGFR)), Complement C3, Connective tissue growth factor, COP9 signalosome subunit 5, CSF-1 (colony-stimulating factor 1 receptor), CSF2 gene, CTLA-4 (cytotoxic T-lymphocyte protein 4) receptor, Cyclin D1, Cyclin G1, cyclin-dependent kinases (CDK, such as CDK1, CDK1B, CDK2-9), cyclooxygenase (such as 1, 2), CYP2B1 gene, Cysteine palmitoyltransferase porcupine, Cytochrome P450 11B2, Cytochrome P450 17, cytochrome P450 17A1, Cytochrome P450 2D6, cytochrome P450 3A4, Cytochrome P450 reductase, cytokine signalling-1, cytokine signalling-3, Cytoplasmic isocitrate dehydrogenase, Cytosine deaminase, cytosine DNA methyltransferase, cytotoxic T-lymphocyte protein-4, DDR2 gene, Delta-like protein ligand (such as 3, 4), Deoxyribonuclease, Dickkopf-1 ligand, dihydrofolate reductase (DHFR), Dihydropyrimidine dehydrogenase, Dipeptidyl peptidase IV, discoidin domain receptor (DDR, such as DDR1), DNA binding protein (such as HU-beta), DNA dependent protein kinase, DNA gyrase, DNA methyltransferase, DNA polymerase (such as alpha), DNA primase, dUTP pyrophosphatase, L-dopachrome tautomerase, echinoderm microtubule like protein 4, EGFR tyrosine kinase receptor, Elastase, Elongation factor 1 alpha 2, Elongation factor 2, Endoglin, Endonuclease, Endoplasmin, Endosialin, Endostatin, endothelin (such as ET-A, ET-B), Enhancer of zeste homolog 2 (EZH2), Ephrin (EPH) tyrosine kinase (such as Epha3, Ephb4), Ephrin B2 ligand, epidermal growth factor, epidermal growth factor receptors (EGFR), epidermal growth factor receptor (EGFR) gene, Epigen, Epithelial cell adhesion molecule (EpCAM), Erb-b2 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2) tyrosine kinase receptor, Erb-b3 tyrosine kinase receptor, Erb-b4 tyrosine kinase receptor, E-selectin, Estradiol 17 beta dehydrogenase, Estrogen receptor (such as alpha, beta), Estrogen related receptor, Eukaryotic translation initiation factor 5A (EIF5A) gene, Exportin 1, Extracellular signal related kinase (such as 1, 2), Extracellular signal-regulated kinases (ERK), Factor (such as Xa, Vila), farnesoid x receptor (FXR), Fas ligand, Fatty acid synthase (FASN), Ferritin, FGF-2 ligand, FGF-5 ligand, fibroblast growth factor (FGF, such as FGF1, FGF2, FGF4), Fibronectin, Fms-related tyrosine kinase 3 (Flt3), FMS-like tyrosine kinase-3 ligand (FLT3L), focal adhesion kinase (FAK, such as FAK2), folate hydrolase prostate-specific membrane antigen 1 (FOLH1), Folate receptor (such as alpha), Folate, Folate transporter 1, FYN tyrosine kinase, paired basic amino acid cleaving enzyme (FURIN), Beta-glucuronidase, Galactosyltransferase, Galectin-3, Ganglioside GD2, Glucocorticoid, glucocorticoid-induced TNFR-related protein GITR receptor, Glutamate carboxypeptidase II, glutaminase, Glutathione S-transferase P, glycogen synthase kinase (GSK, such as 3-beta), Glypican 3 (GPC3), gonadotropin-releaseing hormone (GNRH), Granulocyte macrophage colony stimulating factor (GM-CSF) receptor, Granulocyte-colony stimulating factor (GCSF) ligand, growth factor receptor-bound protein 2 (GRB2), Grp78 (78 kDa glucose-regulated protein) calcium binding protein, molecular chaperone groEL2 gene, Heme oxygenase 1 (HOI), Heat shock protein (such as 27, 70, 90 alpha, beta), Heat shock protein gene, Heat stable enterotoxin receptor, Hedgehog protein, Heparanase, Hepatocyte growth factor, HERV-H LTR associating protein 2, Hexose kinase, Histamine H2 receptor, Histone methyltransferase (DOT1L), histone deacetylase (HDAC, such as 1, 2, 3, 6, 10, 11), Histone H1, Histone H3, HLA class I antigen (A-2 alpha), HLA class II antigen, Homeobox protein NANOG, HSPB1 gene, Human leukocyte antigen (HLA), Human papillomavirus (such as E6, E7) protein, Hyaluronic acid, Hyaluronidase, Hypoxia inducible factor-1 alpha (HIEla), Imprinted Maternally Expressed Transcript (H19) gene, mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1), tyrosine-protein kinase HCK, I-Kappa-B kinase (IKK, such as IKKbe), IL-1 alpha, IL-1 beta, IE-12, IL-12 gene, IE-15, IE-17, IL-2 gene, IL-2 receptor alpha subunit, IL-2, IE-3 receptor, IL-4, IL-6, IL-7, IE-8, immunoglobulin (such as G, G1, G2, K, M), Immunoglobulin Fc receptor, Immunoglobulin gamma Fc receptor (such as I, III, III A), indoleamine 2,3-dioxygenase (IDO, such as IDO1), indoleamine pyrrole 2,3-dioxygenase 1 inhibitor, insulin receptor, Insulin-like growth factor (such as 1, 2), Integrin alpha-4/beta-1, integrin alpha-4/beta-7, Integrin alpha-5/beta-1, Integrin alpha-V/beta-3, Integrin alpha-V/beta-5, Integrin alpha-V/beta-6, Intercellular adhesion molecule 1 (ICAM-1), interferon (such as alpha, alpha 2, beta, gamma), Interferon inducible protein absent in melanoma 2 (AIM2), interferon type I receptor, Interleukin 1 ligand, Interleukin 13 receptor alpha 2, interleukin 2 ligand, interleukin-1 receptor-associated kinase 4 (IRAK4), Interleukin-2, Interleukin-29 ligand, isocitrate dehydrogenase (such as IDH1, IDH2), Janus kinase (JAK, such as JAK1, JAK2), Jun N terminal kinase, kallikrein-related peptidase 3 (KLK3) gene, Killer cell Ig like receptor, Kinase insert domain receptor (KDR), Kinesin-like protein KIF11, Kirsten rat sarcoma viral oncogene homolog (KRAS) gene, Kisspeptin (KiSS-1) receptor, KIT gene, v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) tyrosine kinase, lactoferrin, Lanosterol-14 demethylase, LDL receptor related protein-1, Leukotriene A4 hydrolase, Listeriolysin, L-Selectin, Luteinizing hormone receptor, Lyase, lymphocyte activation gene 3 protein (LAG-3), Lymphocyte antigen 75, Lymphocyte function antigen-3 receptor, lymphocyte-specific protein tyrosine kinase (LCK), Lymphotactin, Lyn (Lck/Yes novel) tyrosine kinase, lysine demethylases (such as KDM1, KDM2, KDM4, KDM5, KDM6, A/B/C/D), Lysophosphatidate-1 receptor, lysosomal-associated membrane protein family (LAMP) gene, Lysyl oxidase homolog 2, lysyl oxidase protein (LOX), lysyl oxidase-like protein (LOXL, such as LOXL2), Hematopoietic Progenitor Kinase 1 (HPK1), Hepatocyte growth factor receptor (MET) gene, macrophage colony-stimulating factor (MCSF) ligand, Macrophage migration inhibitory fact, MAGEC1 gene, MAGEC2 gene, Major vault protein, MAPK-activated protein kinase (such as MK2), Mas-related G-protein coupled receptor, matrix metalloprotease (MMP, such as MMP2, MMP9), Mcl-1 differentiation protein, Mdm2 p53-binding protein, Mdm4 protein, Melan-A (MART-1) melanoma antigen, Melanocyte protein Pmel 17, melanocyte stimulating hormone ligand, melanoma antigen family A3 (MAGEA3) gene, Melanoma associated antigen (such as 1, 2, 3, 6), Membrane copper amine oxidase, Mesothelin, MET tyrosine kinase, Metabotropic glutamate receptor 1, Metalloreductase STEAP1 (six transmembrane epithelial antigen of the prostate 1), Metastin, methionine aminopeptidase-2, Methyltransferase, Mitochondrial 3 ketoacyl CoA thiolase, mitogen-activate protein kinase (MAPK), mitogen-activated protein kinase (MEK, such as MEK1, MEK2), mTOR (mechanistic target of rapamycin (serine/threonine kinase), mTOR complex (such as 1,2), mucin (such as 1, 5A, 16), mut T homolog (MTH, such as MTH1), Myc proto-oncogene protein, myeloid cell leukemia 1 (MCL1) gene, myristoylated alanine-rich protein kinase C substrate (MARCKS) protein, NAD ADP ribosyltransferase, natriuretic peptide receptor C, Neural cell adhesion molecule 1, Neurokinin 1 (NK1) receptor, Neurokinin receptor, Neuropilin 2, NF kappa B activating protein, NIMA-related kinase 9 (NEK9), Nitric oxide synthase, NK cell receptor, NK3 receptor, NKG2 A B activating NK receptor, Noradrenaline transporter, Notch (such as Notch-2 receptor, Notch-3 receptor, Notch-4 receptor), Nuclear erythroid 2-related factor 2, Nuclear Factor (NF) kappa B, Nucleolin, Nucleophosmin, nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), 2 oxoglutarate dehydrogenase, 2,5-oligoadenylate synthetase, O-methylguanine DNA methyltransferase, Opioid receptor (such as delta), Ornithine decarboxylase, Orotate phosphoribosyltransferase, orphan nuclear hormone receptor NR4A1, Osteocalcin, Osteoclast differentiation factor, Osteopontin, OX-40 (tumor necrosis factor receptor superfamily member 4 TNFRSF4, or CD134) receptor, P3 protein, p38 kinase, p38 MAP kinase, p53 tumor suppressor protein, Parathyroid hormone ligand, peroxisome proliferator-activated receptors (PPAR, such as alpha, delta, gamma), P-Glycoprotein (such as 1), phosphatase and tensin homolog (PTEN), phosphatidylinositol 3-kinase (PI3K), phosphoinositide-3 kinase (PI3K such as alpha, delta, gamma), phosphorylase kinase (PK), PKN3 gene, placenta growth factor, platelet-derived growth factor (PDGF, such as alpha, beta), Platelet-derived growth factor (PDGF, such as alpha, beta), Pleiotropic drug resistance transporter, Plexin B1, PFK1 gene, polo-like kinase (PFK), Polo-like kinase 1, Poly ADP ribose polymerase (PARP, such as PARP1, 2 and 3), Preferentially expressed antigen in melanoma (FRAME) gene, Prenyl-binding protein (PrPB), Probable transcription factor PMF, Progesterone receptor, Programmed cell death 1 (PD-1), Programmed cell death ligand 1 inhibitor (PD-F1), Prosaposin (PSAP) gene, Prostanoid receptor (EP4), prostate specific antigen, Prostatic acid phosphatase, proteasome, Protein E7, Protein farnesyltransferase, protein kinase (PK, such as A, B, C), protein tyrosine kinase, Protein tyrosine phosphatase beta, Proto-oncogene serine/threonine-protein kinase (PIM, such as PIM-1, PIM-2, PIM-3), P-Selectin, Purine nucleoside phosphorylase, purinergic receptor P2X ligand gated ion channel 7 (P2X7), Pyruvate dehydrogenase (PDH), Pyruvate dehydrogenase kinase, Pyruvate kinase (PYK), 5-Alpha-reductase, Raf protein kinase (such as 1, B), RAF1 gene, Ras gene, Ras GTPase, RET gene, Ret tyrosine kinase receptor, retinoblastoma associated protein, retinoic acid receptor (such as gamma), Retinoid X receptor, Rheb (Ras homolog enriched in brain) GTPase, Rho (Ras homolog) associated protein kinase 2, ribonuclease, Ribonucleotide reductase (such as M2 subunit), Ribosomal protein S6 kinase, RNA polymerase (such as I, II), Ron (Recepteur d'Origine Nantais) tyrosine kinase, ROS1 (ROS proto-oncogene 1, receptor tyrosine kinase) gene, Rosl tyrosine kinase, Runt-related transcription factor 3, Gamma-secretase, S100 calcium binding protein A9, Sarco endoplasmic calcium ATPase, Second mitochondria-derived activator of caspases (SMAC) protein, Secreted frizzled related protein-2, Semaphorin-4D, Serine protease, serine/threonine kinase (STK), serine/threonine-protein kinase (TBK, such as TBK1), signal transduction and transcription (STAT, such as STAT-1, STAT-3, STAT-5), Signaling lymphocytic activation molecule (SLAM) family member 7, six-transmembrane epithelial antigen of the prostate (STEAP) gene, SL cytokine ligand, smoothened (SMO) receptor, Sodium iodide cotransporter, Sodium phosphate cotransporter 2B, Somatostatin receptor (such as 1, 2, 3, 4, 5), Sonic hedgehog protein, Son of sevenless (SOS), Specific protein 1 (Spl) transcription factor, Sphingomyelin synthase, Sphingosine kinase (such as 1, 2), Sphingosine-1-phosphate receptor-1, spleen tyrosine kinase (SYK), SRC gene, Src tyrosine kinase, STAT3 gene, Steroid sulfatase, Stimulator of interferon genes (STING) receptor, stimulator of interferon genes protein, Stromal cell-derived factor 1 ligand, SUMO (small ubiquitin-like modifier), Superoxide dismutase, Survivin protein, Synapsin 3, Syndecan-1, Synuclein alpha, T cell surface glycoprotein CD28, tank-binding kinase (TBK), TATA box-binding protein-associated factor RNA polymerase I subunit B (TAF1B) gene, T-cell CD3 glycoprotein zeta chain, T-cell differentiation antigen CD6, T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), T-cell surface glycoprotein CD8, Tec protein tyrosine kinase, Tek tyrosine kinase receptor, telomerase, Telomerase reverse transcriptase (TERT) gene, Tenascin, TGF beta 2 ligand, Thrombopoietin receptor, Thymidine kinase, Thymidine phosphorylase, Thymidylate synthase, Thymosin (such as alpha 1), Thyroid hormone receptor, Thyroid stimulating hormone receptor, Tissue factor, TNF related apoptosis inducing ligand, TNFR1 associated death domain protein, TNF-related apoptosis-inducing ligand (TRAIF) receptor, TNFSF11 gene, TNFSF9 gene, Toll-like receptor (TFR such as 1-13), topoisomerase (such as I, II, III), Transcription factor, Transferase, Transferrin, Transforming growth factor (TGF, such as beta) kinase, Transforming growth factor TGF-β receptor kinase, Transglutaminase, Translocation associated protein, Transmembrane glycoprotein NMB, Trop-2 calcium signal transducer, trophoblast glycoprotein (TPBG) gene, Trophoblast glycoprotein, Tropomyosin receptor kinase (Trk) receptor (such as TrkA, TrkB, TrkC), Tryptophan 5-hydroxylase, Tubulin, Tumor necrosis factor (TNF, such as alpha, beta), Tumor necrosis factor 13C receptor, tumor progression locus 2 (TPF2), Tumor protein 53 (TP53) gene, Tumor suppressor candidate 2 (TUSC2) gene, Tyrosinase, Tyrosine hydroxylase, tyrosine kinase (TK), Tyrosine kinase receptor, Tyrosine kinase with immunoglobulin-like and EGF-like domains (TIE) receptor, Tyrosine protein kinase ABF1 inhibitor, Ubiquitin, Ubiquitin carboxyl hydrolase isozyme F5, Ubiquitin thioesterase-14, Ubiquitin-conjugating enzyme E2I (UBE2I, UBC9), Urease, Urokinase plasminogen activator, Uteroglobin, Vanilloid VR1, Vascular cell adhesion protein 1, vascular endothelial growth factor receptor (VEGFR), V-domain Ig suppressor of T-cell activation (VISTA), VEGF-1 receptor, VEGF-2 receptor, VEGF-3 receptor, VEGF-A, VEGF-B, Vimentin, Vitamin D3 receptor, Proto-oncogene tyrosine-protein kinase Yes, Wee-1 protein kinase, Wilms' tumor antigen 1, Wilms' tumor protein, X-linked inhibitor of apoptosis protein, Zinc finger protein transcription factor or any combination thereof.
Thus, in one embodiment, a method of treating cancer and/or diseases or symptoms that co-present or are exacerbated or triggered by the cancer e.g., an allergic disorder and/or an autoimmune and/or inflammatory disease, and/or an acute inflammatory reaction, comprises administering to a patient in need thereof an effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof, optionally in combination with an additional agent (e.g., a second, third, fourth or fifth active agent) which can be useful for treating a cancer, an allergic disorder and/or an autoimmune and/or inflammatory disease, and/or an acute inflammatory reaction incident to or co-presenting with a cancer. Treatment with the second, third, fourth or fifth active agent may be prior to, concomitant with, or following treatment with a compound of formula (I) or a pharmaceutically acceptable salt thereof. In one embodiment, a compound of formula (I) or a pharmaceutically acceptable salt thereof is combined with another active agent in a single dosage form. Suitable antitumor or anticancer therapeutics that may be used in combination with a compound of formula (I) or a pharmaceutically acceptable salt thereof include, but are not limited to, chemotherapeutic agents, for example mitomycin C, carboplatin, taxol, cisplatin, paclitaxel, etoposide, doxorubicin, or a combination comprising at least one of the foregoing chemotherapeutic agents. Radiotherapeutic antitumor agents may also be used, alone or in combination with chemotherapeutic agents.
A compound of formula (I) or a pharmaceutically acceptable salt thereof can be useful as chemo-sensitizing agents, and thus, can be useful in combination with other chemotherapeutic drugs, in particular, drugs that induce apoptosis. Thus, in one embodiment, the present disclosure provides a method for increasing sensitivity of cancer cells to chemotherapy, comprising administering to a patient in need of or undergoing chemotherapy, a chemotherapeutic agent together with a compound of formula (I), or a pharmaceutically acceptable salt thereof in an amount sufficient to increase the sensitivity of cancer cells to the chemotherapeutic agent.
Anti-Cancer Combination Therapy
The compounds described herein may be used or combined with one or more of a chemotherapeutic agent, an anti-cancer agent, an anti-angiogenic agent, an anti-fibrotic agent, an immunotherapeutic agent, a therapeutic antibody, a bispecific antibody and “antibody-like” therapeutic protein (such as DARTs®, Duobodies®, Bites®, XmAbs®, TandAbs®, Fab derivatives), an antibody-drug conjugate (ADC), a radiotherapeutic agent, an anti-neoplastic agent, an anti-proliferation agent, an oncolytic virus, a gene modifier or editor (such as CRISPR/Cas9, zinc finger nucleases or synthetic nucleases, TALENs), a CAR (chimeric antigen receptor) T-cell immunotherapeutic agent, an engineered T cell receptor (TCR-T), or any combination thereof. These therapeutic agents may be in the forms of compounds, antibodies, polypeptides, or polynucleotides. In one embodiment, the application provides a product comprising a compound described herein and an additional therapeutic agent as a combined preparation for simultaneous, separate, or sequential use in therapy.
As used herein, the term “chemotherapeutic agent” or “chemotherapeutic” (or “chemotherapy” in the case of treatment with a chemotherapeutic agent) is meant to encompass any non-proteinaceous (i.e., non-peptidic) chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include but not limited to: alkylating agents such as thiotepa and cyclophosphamide (CYTOXAN®); alkyl sulfonates such as busulfan, improsulfan, and piposulfan; aziridines such as benzodepa, carboquone, meturedepa, and uredepa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, triethylenephosphoramide, triethylenethiophosphoramide, and trimemylolomelamine; acetogenins, especially bullatacin and bullatacinone; a camptothecin, including synthetic analog topotecan; bryostatin, callystatin; CC-1065, including its adozelesin, carzelesin, and bizelesin synthetic analogs; cryptophycins, particularly cryptophycin 1 and cryptophycin 8; dolastatin; duocarmycin, including the synthetic analogs KW-2189 and CBI-TMI; eleutherobin; 5-azacytidine; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards such as chlorambucil, chlornaphazine, cyclophosphamide, glufosfamide, evofosfamide, bendamustine, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, and uracil mustard; nitrosoureas such as carmustine, chlorozotocin, foremustine, lomustine, nimustine, and ranimustine; antibiotics such as the enediyne antibiotics (e.g., calicheamicin, especially calicheamicin gammall and calicheamicin phill), dynemicin including dynemicin A, bisphosphonates such as clodronate, an esperamicin, neocarzinostatin chromophore and related chromoprotein enediyne antibiotic chromomophores, aclacinomycins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, carrninomycin, carzinophilin, chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin, and deoxydoxorubicin), epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins such as mitomycin C, mycophenolic acid, nogalamycin, olivomycins, peplomycin, porfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, and zorubicin; anti-metabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogs such as demopterin, methotrexate, pteropterin, and trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, and thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, and floxuridine; androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, and testolactone; anti-adrenals such as aminoglutethimide, mitotane, and trilostane; folic acid replinishers such as frolinic acid; radiotherapeutic agents such as Radium-223; trichothecenes, especially T-2 toxin, verracurin A, roridin A, and anguidine; taxoids such as paclitaxel (TAXOL®), abraxane, docetaxel (TAXOTERE®), cabazitaxel, BIND-014, tesetaxel; platinum analogs such as cisplatin and carboplatin, NC-6004 nanoplatin; aceglatone; aldophosphamide glycoside; aminolevulinic acid; eniluracil; amsacrine; hestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elformthine; elliptinium acetate; an epothilone; etoglucid; gallium nitrate; hydroxyurea; lentinan; leucovorin; lonidamine; maytansinoids such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidamol; nitracrine; pentostatin; phenamet; pirarubicin; losoxantrone; fluoropyrimidine; folinic acid; podophyllinic acid; 2-ethylhydrazide; procarbazine; polysaccharide-K (PSK); razoxane; rhizoxin; sizofiran; spirogermanium; tenuazonic acid; trabectedin, triaziquone; 2,2′,2″-tricUorottiemylamine; urethane; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside (“Ara-C”); cyclophosphamide; thiopeta; chlorambucil; gemcitabine (GEMZAR®); 6-thioguanine; mercaptopurine; methotrexate; vinblastine; platinum; etoposide (VP-16); ifosfamide; mitroxantrone; vancristine; vinorelbine (NAVELBINE®); novanttone; teniposide; edatrexate; daunomycin; aminopterin; xeoloda; ibandronate; CPT-11; topoisomerase inhibitor RES 2000; difluoromethylornithine (DEMO); retinoids such as retinoic acid; capecitabine; NUC-1031; FOLFIRI (fluorouracil, leucovorin, and irinotecangand pharmaceutically acceptable salts, acids, or derivatives of any of the above.
The compound described herein may be used or combined with one or more of the additional therapeutic agents. Therapeutic agents may be categorized by their mechanism of action into, for example, the following groups:
anti-metabolites/anti-cancer agents, such as pyrimidine analogs floxuridine, capecitabine, cytarabine, CPX-351 (liposomal cytarabine, daunorubicin), and TAS-118;
purine analogs, folate antagonists (such as pralatrexate), and related inhibitors;
antiproliferative/antimitotic agents including natural products, such as vinca alkaloids (vinblastine, vincristine) and microtubule disruptors such as taxane (paclitaxel, docetaxel), vinblastin, nocodazole, epothilones, vinorelbine (NAVELBINE®), and epipodophyllotoxins (etoposide, teniposide);
DNA damaging agents, such as actinomycin, amsacrine, busulfan, carboplatin, chlorambucil, cisplatin, cyclophosphamide (CYTOXAN®), dactinomycin, daunorubicin, doxorubicin, epirubicin, iphosphamide, melphalan, merchlorethamine, mitomycin C, mitoxantrone, nitrosourea, procarbazine, taxol, Taxotere, teniposide, etoposide, and triethylenethiophosphoramide;
DNA-hypomethylating agents, such as guadecitabine (SGI-110), ASTX727;
antibiotics such as dactinomycin, daunorubicin, doxorubicin, idarubicin, anthracyclines, mitoxantrone, bleomycins, plicamycin (mithramycin);
enzymes such as L-asparaginase which systemically metabolizes L-asparagine and deprives cells which do not have the capacity to synthesize their own asparagine;
antiplatelet agents;
DNAi oligonucleotides targeting Bcl-2, such as PNT2258;
agents that activate or reactivate latent human immunodeficiency virus (HIV), such as panobinostat and romidepsin;
asparaginase stimulators, such as crisantaspase (Erwinase®) and GRASPA (ERY-001, ERY-ASP), calaspargase pegol;
pan-Trk, ROS1 and ALK inhibitors, such as entrectinib, TPX-0005;
anaplastic lymphoma kinase (ALK) inhibitors, such as alectinib, ceritinib;
antiproliferative/antimitotic alkylating agents, such as nitrogen mustard cyclophosphamide and analogs (melphalan, chlorambucil, hexamethylmelamine, thiotepa), alkyl nitrosoureas (carmustine) and analogs, streptozocin, and triazenes (dacarbazine);
antiproliferative/antimitotic antimetabolites, such as folic acid analogs (methotrexate);
platinum coordination complexes (cisplatin, oxiloplatinim, and carboplatin), procarbazine, hydroxyurea, mitotane, and aminoglutethimide;
hormones, hormone analogs (estrogen, tamoxifen, goserelin, bicalutamide, and nilutamide), and aromatase inhibitors (letrozole and anastrozole);
anticoagulants such as heparin, synthetic heparin salts, and other inhibitors of thrombin;
fibrinolytic agents such as tissue plasminogen activator, streptokinase, urokinase, aspirin, dipyridamole, ticlopidine, and clopidogrel;
anti migratory agents;
antisecretory agents (breveldin);
immunosuppressives, such as tacrolimus, sirolimus, azathioprine, and mycophenolate;
growth factor inhibitors, and vascular endothelial growth factor inhibitors;
fibroblast growth factor inhibitors, such as FPA14;
anti-VEGFR antibodies, such as IMC-3C5, GNR-011, tanibirumab;
anti-VEGF/DDL4 antibodies, such as ABT-165;
anti-cadherins antibodies, such as HKT-288;
anti-CD70 antibodies, such as AMG-172;
anti-leucine-rich repeat containing 15 (LRRC15) antibodies, such as ABBV-085, and ARGX-110;
angiotensin receptor blockers, nitric oxide donors;
antisense oligonucleotides, such as AEG35156, IGNIS-KRAS-2.5Rx, EZN-3042, RX-0201, IONIS-AR-2.5Rx, BP-100 (prexigebersen), IONIS-STAT3-2.5Rx;
DNA interference oligonucleotides, such as PNT2258, AZD-9150;
anti-ANG-2 antibodies, such as MEDI3617, and LY3127804;
anti-ANG-1/ANG-2 antibodies, such as AMG-780;
anti-MET/EGFR antibodies, such as LY3164530;
anti-EGFR antibodies, such as ABT-414, AMG-595, necitumumab, ABBV-221, depatuxizumab mafodotin (ABT-414), tomuzotuximab, ABT-806, vectibix, modotuximab, RM-1929;
anti-CSFIR antibodies, such as emactuzumab, LY3022855, AMG-820, FPA-008 (cabiralizumab);
anti-CD40 antibodies, such as RG7876, SEA-CD40, APX-005M, ABBV-428;
anti-endoglin antibodies, such as TRC105 (carotuximab);
anti-CD45 antibodies, such as 131I-BC8 (lomab-B);
anti-HER3 antibodies, such as LJM716, GSK2849330;
anti-HER2 antibodies, such as margetuximab, MEDI4276, BAT-8001;
anti-HLA-DR antibodies, such as IMMU-114;
anti-IE-3 antibodies, such as JNJ-56022473;
anti-OX40 antibodies, such as MEDI6469, MEDI6383, MEDI0562 (tavolixizumab), MOXR0916, PF-04518600, RG-7888, GSK-3174998, INCAGN1949, BMS-986178, GBR-8383, ABBV-368;
anti-EphA3 antibodies, such as KB-004;
anti-CD20 antibodies, such as obinutuzumab, IGN-002;
anti-CD20/CD3 antibodies, such as RG7828;
anti-CD37 antibodies, such as AGS67E, otlertuzumab (TRU-016);
anti-ENPP3 antibodies, such as AGS-16C3F;
anti-EGFR-3 antibodies, such as LY3076226, B-701;
anti-FGFR-2 antibodies, such as GAL-F2;
anti-C5 antibodies, such as ALXN-1210;
anti-CD27 antibodies, such as varlilumab (CDX-1127);
anti-TROP-2 antibodies, such as IMMU-132
anti-NKG2a antibodies, such as monalizumab;
anti-VISTA antibodies, such as HMBD-002;
anti-PVRIG antibodies, such as COM-701;
anti-EpCAM antibodies, such as VB4-845;
anti-BCMA antibodies, such as GSK-2857916
anti-CEA antibodies, such as RG-7813;
anti-cluster of differentiation 3 (CD3) antibodies, such as MGD015;
anti-folate receptor alpha antibodies, such as IMGN853;
MCL-1 inhibitors, such as AMG-176, AMG-397, S-64315, and AZD-5991, 483-LM, A-1210477, UMI-77, JKY-5-037;
epha2 inhibitors, such as MM-310;
anti LAG-3 antibodies, such as relatlimab (ONO-4482), LAG-525, MK-4280, REGN-3767;
raf kinase/VEGFR inhibitors, such as RAF-265;
poly comb protein (FED) inhibitors, such as MAK683;
anti-fibroblast activation protein (FAP)/IL-2R antibodies, such as RG7461;
anti-fibroblast activation protein (FAP)/TRAIL-R2 antibodies, such as RG7386;
anti-fucosyl-GM1 antibodies, such as BMS-986012;
p38 MAP kinase inhibitors, such as ralimetinib;
PRMT1 inhibitors, such as MS203;
Sphingosine kinase 2 (SK2) inhibitors, such as opaganib;
FLT3-ITD inhibitors, such as BCI-332;
Nuclear erythroid 2-related factor 2 stimulators, such as omaveloxolone (RTA-408);
Tropomyosin receptor kinase (TRK) inhibitors, such as LOXO-195, ONCO-7579;
anti-ICOS antibodies, such as JTX-2011, GSK3359609;
anti-DR5 (TRAIL2) antibodies, such as DS-8273;
anti-GD2 antibodies, such as APN-301;
anti-interleukin-17 (IL-17) antibodies, such as CJM-112;
anti-carbonic anhydrase IX antibodies, such as TX-250;
anti-CD38-attenukine, such as TAK573;
anti-Mucin 1 antibodies, such as gatipotuzumab;
Mucin 1 inhibitors, such as GO-203-2C;
MARCKS protein inhibitors, such as BIO-11006;
Folate antagonists, such as arfolitixorin;
Galectin-3 inhibitors, such as GR-MD-02;
Phosphorylated P68 inhibitors, such as RX-5902;
CD95/TNF modulators, such as ofranergene obadenovec;
PI3K/Akt/mTOR inhibitors, such as ABTL-0812;
pan-PIM kinase inhibitors, such as INCB-053914;
IL-12 gene stimulators, such as EGEN-001, tavokinogene telseplasmid;
Heat shock protein HSP90 inhibitors, such as TAS-116, PEN-866;
VEGF/HGF antagonists, such as MP-0250;
SYK tyrosine kinase/FLT3 tyrosine kinase inhibitors, such as TAK-659;
SYK tyrosine kinase/JAK tyrosine kinase inhibitors, such as ASN-002;
FLT3 tyrosine kinase, such as FF-10101;
FMS-like tyrosine kinase-3 ligand (FLT3L), such as CDX-301;
FLT3/MEK1 inhibitors, such as E-6201;
IL-24 antagonist, such as AD-IL24;
RIG-I agonists, such as RGT-100;
Aerolysin stimulators, such as topsalysin;
P-Glycoprotein 1 inhibitors, such as HM-30181A;
CSF-1 antagonists, such as ARRY-382, BLZ-945;
CCR8 inhibitors, such as 1-309, SB-649701, HG-1013, RAP-310;
anti-Mesothelin antibodies, such as SEL-403;
Thymidine kinase stimulators, such as aglatimagene besadenovec;
Polo-like kinase 1 inhibitors, such as PCM-075;
TLR-7 agonists, such as TMX-101 (imiquimod);
NEDD8 inhibitors, such as pevonedistat (MLN-4924), TAS-4464;
Pleiotropic pathway modulators, such as avadomide (CC-122);
FoxMl inhibitors, such as thiostrepton;
Anti-MUC1 antibodies, such as Mab-AR-20.5;
anti-CD38 antibodies, such as isatuximab, MOR-202;
UBA1 inhibitors, such as TAK-243;
Src tyrosine kinase inhibitors, such as VAL-201;
VDAC/HK inhibitors, such as VDA-1102;
BRAF/PI3K inhibitors, such as ASN-003;
Elf4a inhibitors, such as rohinitib, eFT226;
TP53 gene stimulators, such as ad-p53;
PD-L1/EGFR inhibitors, such as GNS-1480;
Retinoic acid receptor alpha (RARa) inhibitors, such as SY-1425;
SIRT3 inhibitors, such as YC8-02;
Stromal cell-derived factor 1 ligand inhibitors, such as olaptesed pegol (NOX-A12);
IL-4 receptor modulators, such as MDNA-55;
Arginase-I stimulators, such as pegzilarginase;
Topoisomerase I inhibitor/hypoxia inducible factor-1 alpha inhibitors, such as PEG-SN38 (firtecan pegol);
Hypoxia inducible factor-1 alpha inhibitors, such as PT-2977, PT-2385;
CD122 agonists such as NKTR-214;
p53 tumor suppressor protein stimulators such as kevetrin;
Mdm4/Mdm2 p53-binding protein inhibitors, such as ALRN-6924;
kinesin spindle protein (KSP) inhibitors, such as filanesib (ARRY-520);
CD80-fc fusion protein inhibitors, such as FPT-155;
Menin and mixed lineage leukemia (MLL) inhibitors such as KCO-539;
Liver x receptor agonists, such as RGX-104;
IL-10 agonists, such as AM-0010;
EGFR/ErbB-2 inhibitors, such as varlitinib;
VEGFR/PDGFR inhibitors, such as vorolanib;
IRAK4 inhibitors, such as CA-4948;
anti-TLR-2 antibodies, such as OPN-305;
Calmodulin modulators, such as CBP-501;
Glucocorticoid receptor antagonists, such as relacorilant (CORE-125134);
Second mitochondria-derived activator of caspases (SMAC) protein inhibitors, such as BI-891065;
Lactoferrin modulators, such as LTX-315;
Kit tyrosine kinase/PDGF receptor alpha antagonists such as DCC-2618;
KIT inhibitors, such as PLX-9486;
Exportin 1 inhibitors, such as eltanexor;
EGFR/ErbB2/Ephb4 inhibitors, such as tesevatinib;
anti-CD33 antibodies, such as IMGN-779;
anti-KMA antibodies, such as MDX-1097;
anti-TIM-3 antibodies, such as TSR-022, LY-3321367, MBG-453;
anti-CD55 antibodies, such as PAT-SC1;
anti-PSMA antibodies, such as ATL-101;
anti-CD100 antibodies, such as VX-15;
anti-EPHA3 antibodies, such as fibatuzumab;
anti-Erbb antibodies, such as CDX-3379, HLX-02, seribantumab;
anti-APRIL antibodies, such as BION-1301;
Anti-Tigit antidbodies, such as BMS-986207, RG-6058;
CHST15 gene inhibitors, such as STNM-01;
RAS inhibitors, such as NECO-100;
Somatostatin receptor antagonist, such as OPS-201;
CEBPA gene stimulators, such as MTL-501;
DKK3 gene modulators, such as MTG-201;
p70s6k inhibitors, such as MSC2363318A;
methionine aminopeptidase 2 (MetAP2) inhibitors, such as M8891, APE-1202;
arginine N-methyltransferase 5 inhibitors, such as GSK-3326595;
anti-programmed cell death protein 1 (anti-PD-1) antibodies, such as nivolumab (OPDIVO®, BMS-936558, MDX-1106), pembrolizumab (KEYTRUDA®, MK-3477, SCH-900475, lambrolizumab, CAS Reg. No. 1374853-91-4), pidilizumab, PF-06801591, BGB-A317, GLS-010 (WBP-3055), AK-103 (HX-008), MGA-012, BI-754091, REGN-2810 (cemiplimab), AGEN-2034, JS-001, JNJ-63723283, genolimzumab (CBT-501), LZM-009, BCD-100, LY-3300054, SHR-1201, BAT-1306, and anti-programmed death-ligand 1 (anti-PD-L1) antibodies such as BMS-936559, atezolizumab (MPDL3280A), durvalumab (MEDI4736), avelumab, CK-301, (MSB0010718C), MEDI0680, CX-072, CBT-502, PDR-001 (spartalizumab), TSR-042 (dostarlimab), JTX-4014, BGB-A333, SHR-1316, CS-1001 (WBP-3155, KN-035, IBI-308, FAZ-053, and MDX1105-01;
PD-L1/VISTA antagonists such as CA-170;
anti-PD-L1/TGFβ antibodies, such as M7824;
anti-transferrin antibodies, such as CX-2029;
anti-IL-8 (Interleukin-8) antibodies, such as HuMax-Inflam;
ATM (ataxia telangiectasia) inhibitors, such as AZD0156;
CHK1 inhibitors, such as GDC-0575, LY2606368 (prexasertib), SRA737, RG7741 (CHK1/2);
CXCR4 antagonists, such as BL-8040, LY2510924, burixafor (TG-0054), X4P-002, X4P-001-IO;
EXH2 inhibitors, such as GSK2816126;
HER2 inhibitors, such as neratinib, tucatinib (ONT-380);
KDM1 inhibitors, such as ORY-1001, IMG-7289, INCB-59872, GSK-2879552;
CXCR2 antagonists, such as AZD-5069;
GM-CSF antibodies, such as lenzilumab;
DNA dependent protein kinase inhibitors, such as MSC2490484A (nedisertib), VX-984, AsiDNA (DT-01);
protein kinase C (PKC) inhibitors, such as LXS-196, and sotrastaurin;
Selective estrogen receptor downregulators (SERD), such as fulvestrant (Faslodex®), RG6046, RG6047, elacestrant (RAD-1901) and AZD9496;
Selective estrogen receptor covalent antagonists (SERCAs), such as H3B-6545;
selective androgen receptor modulator (SARM), such as GTX-024, and darolutamide;
transforming growth factor-beta (TGF-beta) kinase antagonists, such as galunisertib;
anti-transforming growth factor-beta (TGF-beta) antibodies, such as LY3022859, NIS793, and XOMA 089;
bispecific antibodies, such as MM-141 (IGF-1/ErbB3), MM-111 (Erb2/Erb3), JNJ-64052781 (CD19/CD3), PRS-343 (CD-137/HER2), AFM26 (BCMA/CD16A), JNJ-61186372 (EGFR/cMET), AMG-211 (CEA/CD3), RG7802 (CEA/CD3), ERY-974 (CD3/GPC3) vancizumab (angiopoietins/VEGF), PF-06671008 (Cadherins/CD3), AFM-13 (CD16/CD30), APVG436 (CD123/CD3), flotetuzumab (CD123/CD3), REGN-1979 (CD20/CD3), MCLA-117 (CD3/CLEC12A), MCLA-128 (HER2/HER3), JNJ-0819, JNJ-7564 (CD3/heme), AMG-757 (DLL3-CD3), MGD-013 (PD-l/LAG-3), AK-104 (CTLA-4/PD-1), AMG-330 (CD33/CD3), AMG-420 (BCMA/CD3), BI-836880 (VEFG/ANG2), JNJ-63709178 (CD123/CD3), MGD-007 (CD3/gpA33), and MGD-009 (CD3/B7H3);
mutant selective EGER inhibitors, such as PF-06747775, EGF816 (nazartinib), ASP8273, ACEA-0010, and BI-1482694;
anti-GITR (glucocorticoid-induced tumor necrosis factor receptor-related protein) antibodies, such as MEDI1873, FPA-154, INCAGN-1876, TRX-518, BMS-986156, MK-1248, and GWN-323;
anti-delta-like protein ligand 3 (DDL3) antibodies, such as rovalpituzumab tesirine;
anti-clusterin antibodies, such as AB-16B5;
anti-Ephrin-A4 (EFNA4) antibodies, such as PF-06647263;
anti-RANKL antibodies, such as denosumab;
anti-mesothelin antibodies, such as BMS-986148, and anti-MSLN-MMAE;
anti-sodium phosphate cotransporter 2B (NaP2B) antibodies, such as lifastuzumab
anti-c-Met antibodies, such as ABBV-399;
adenosine A2A receptor antagonists, such as CPI-444, AZD-4635, preladenant, and PBF-509;
alpha-ketoglutarate dehydrogenase (KGDH) inhibitors, such as CPI-613;
XPOl inhibitors, such as selinexor (KPT-330);
isocitrate dehydrogenase 2 (IDH2) inhibitors, such as enasidenib (AG-221);
IDH1 inhibitors such as AG-120, and AG-881 (IDH1 and IDH2), IDH-305, and BAY-1436032;
interleukin-3 receptor (IL-3R) modulators, such as SL-401;
Arginine deiminase stimulators, such as pegargiminase (ADI-PEG-20);
antibody-drug conjugates, such as MLN0264 (anti-GCC, guanylyl cyclase C), T-DM1 (trastuzumab emtansine, Kadcycla), milatuzumab-doxorubicin (hCD74-DOX), brentuximab vedotin, DCDT2980S, polatuzumab vedotin, SGN-CD70A, SGN-CD19A, inotuzumab ozogamicin, lorvotuzumab mertansine, SAR3419, isactuzumab govitecan, enfortumab vedotin (ASG-22ME), ASG-15ME, DS-8201 ((trastuzumab deruxtecan), 225Ac-lintuzumab, U3-1402, 177Lu-tetraxetan-tetuloma, tisotumab vedotin, anetumab ravtansine, CX-2009, SAR-566658, W-0101, polatuzumab vedotin, and ABBV-085;
claudin-18 inhibitors, such as claudiximab;
β-catenin inhibitors, such as CWP-291;
anti-CD73 antibodies, such as MEDI-9447 (oleclumab), CPX-006, IPH-53, BMS-986179, and NZV-930;
CD73 antagonists, such as AB-680, PSB-12379, PSB-12441, PSB-12425, and CB-708;
CD39/CD73 antagonists, such as PBF-1662;
chemokine receptor 2 (CCR) inhibitors, such as PF-04136309, CCX-872, and BMS-813160 (CCR2/CCR5) thymidylate synthase inhibitors, such as ONX-0801;
ALK/ROS1 inhibtors, such as lorlatinib;
tankyrase inhibitors, such as G007-LK;
Mdm2 p53-binding protein inhibitors, such as CMG-097, and HDM-201;
c-PIM inhibitors, such as PIM447;
BRAE inhibitors, such as dabrafenib, vemurafenib, encorafenib (LGX818), and PLX8394;
sphingosine kinase-2 (SK2) inhibitors, such as Yeliva® (ABC294640);
cell cycle inhibitors, such as selumetinib (MEK1/2), and sapacitabine;
AKT inhibitors such as MK-2206, ipatasertib, afuresertib, AZD5363, and ARQ-092, capivasertib, and triciribine;
anti-CTLA-4 (cytotoxic T-lymphocyte protein-4) inhibitors, such as tremelimumab, AGEN-1884, and BMS-986218;
c-MET inhibitors, such as AMG-337, savolitinib, tivantinib (ARQ-197), capmatinib, and tepotinib, ABT-700, AG213, AMG-208, JNJ-38877618 (OMCO-1), merestinib, and HQP-8361;
c-Met/VEGFR inhibitors, such as BMS-817378, and TAS-115;
c-Met/RON inhibitors, such as BMS-777607;
BRAF/EGFR inhibitors, such as BGB-283;
bcr/abl inhibitors, such as rebastinib, asciminib;
MNK1/MNK2 inhibitors, such as eFT-508;
mTOR inhibitor/cytochrome P450 3A4 stimulators, such as TYME-88 lysine-specific demethylase-1 (ESDI) inhibitors, such as CC-90011;
Pan-RAF inhibitors, such as LY3009120, LXH254, and TAK-580;
Raf/MEK inhibitors, such as RG7304;
CSF1R/KIT and FLT3 inhibitors, such as pexidartinib (PLX3397);
kinase inhibitors, such as vandetanib;
E selectin antagonists, such as GMI-1271;
differentiation inducers, such as tretinoin;
epidermal growth factor receptor (EGER) inhibitors, such as osimertinib (AZD-9291);
topoisomerase inhibitors, such as doxorubicin, daunorubicin, dactinomycin, eniposide, epirubicin, etoposide, idarubicin, irinotecan, mitoxantrone, pixantrone, sobuzoxane, topotecan, irinotecan, MM-398 (liposomal irinotecan), vosaroxin and GPX-150, aldoxorubicin, AR-67, mavelertinib, AST-2818, avitinib (ACEA-0010), and irofulven (MGI-114);
corticosteroids, such as cortisone, dexamethasone, hydrocortisone, methylprednisolone, prednisone, and prednisolone;
growth factor signal transduction kinase inhibitors;
nucleoside analogs, such as DFP-10917;
Axl inhibitors, such as BGB-324 (bemcentinib), and SLC-0211;
BET inhibitors, such as INCB-054329, INCB057643, TEN-010, AZD-5153, ABT-767, BMS-986158, CC-90010, GSK525762 (molibresib), NHWD-870, ODM-207, GSK-2820151, GSK-1210151A, ZBC246, ZBC260, ZEN3694, FT-1101, RG-6146, CC-90010, mivebresib, BI-894999, PLX-2853, PLX-51107, CPI-0610, and GS-5829;
PARP inhibitors, such as olaparib, rucaparib, veliparib, talazoparib, ABT-767, and BGB-290;
proteasome inhibitors, such as ixazomib, carfilzomib (Kyprolis®), marizomib;
glutaminase inhibitors, such as CB-839;
vaccines, such as peptide vaccine TG-01 (RAS), GALE-301, GALE-302, nelipepimut-s, SurVaxM, DSP-7888, TPIV-200, PVX-410, VXL-100, DPX-E7, ISA-101, 6MHP, OSE-2101, galinpepimut-S, SVN53-67/M57-KLH, IMU-131; bacterial vector vaccines such as CRS-207/GVAX, axalimogene filolisbac (ADXS11-001); adenovirus vector vaccines such as nadofaragene firadenovec; autologous Gp96 vaccine; dendritic cells vaccines, such as CVactm, stapuldencel-T, eltrapuldencel-T, SL-701, BSK01™, rocapuldencel-T (AGS-003), DCVAC, CVac™, stapuldencel-T, eltrapuldencel-T, SL-701, BSK01™, ADXS31-142; oncolytic vaccines such as, talimogene laherparepvec, pexastimogene devacirepvec, GL-ONC1, MG1-MA3, parvovirus H-1, ProstAtak, enadenotucirev, MG1MA3, ASN-002 (TG-1042); therapeutic vaccines, such as CVAC-301, CMP-001, PF-06753512, VBI-1901, TG-4010, ProscaVax™; tumor cell vaccines, such as Vigil® (IND-14205), Oncoquest-L vaccine; live attenuated, recombinant, serotype 1 poliovirus vaccine, such as PVS-RIPO; Adagloxad simolenin; MEDI-0457; DPV-001 a tumor-derived, autophagosome enriched cancer vaccine; RNA vaccines such as, CV-9209, LV-305; DNA vaccines, such as MEDI-0457, MVI-816, INCO-5401; modified vaccinia virus Ankara vaccine expressing p53, such as MVA-p53; DPX-Survivac; BriaVax™; GI-6301; GI-6207; and GI-4000;
anti-DLL4 (delta like ligand 4) antibodies, such as demcizumab;
STAT-3 inhibitors, such as napabucasin (BBI-608);
ATPase p97 inhibitors, such as CB-5083;
smoothened (SMO) receptor inhibitors, such as Odomzo® (sonidegib, formerly LDE-225), LEQ506, vismodegib (GDC-0449), BMS-833923, glasdegib (PF-04449913), LY2940680, and itraconazole;
interferon alpha ligand modulators, such as interferon alpha-2b, interferon alpha-2a biosimilar (Biogenomics), ropeginterferon alfa-2b (AOP-2014, P-1101, PEG IFN alpha-2b), Multiferon (Alfanative, Viragen), interferon alpha 1b, Roferon-A (Canferon, Ro-25-3036), interferon alfa-2a follow-on biologic (Biosidus)(Inmutag, Inter 2A), interferon alfa-2b follow-on biologic (Biosidus—Bioferon, Citopheron, Ganapar, Beijing Kawin Technology—Kaferon), Alfaferone, pegylated interferon alpha-lb, peginterferon alfa-2b follow-on biologic (Amega), recombinant human interferon alpha-lb, recombinant human interferon alpha-2a, recombinant human interferon alpha-2b, veltuzumab-IFN alpha 2b conjugate, Dynavax (SD-101), and interferon alfa-n1 (Humoferon, SM-10500, Sumiferon);
interferon gamma ligand modulators, such as interferon gamma (OH-6000, Ogamma 100);
IF-6 receptor modulators, such as tocilizumab, siltuximab, and AS-101 (CB-06-02, IVX-O-101);
Telomerase modulators, such as, tertomotide (GV-1001, HR-2802, Riavax) and imetelstat (GRN-163, JNJ-63935937);
DNA methyltransferases inhibitors, such as temozolomide (CCRG-81045), decitabine, guadecitabine (S-110, SGI-110), KRX-0402, RX-3117, RRx-001, and azacitidine;
DNA gyrase inhibitors, such as pixantrone and sobuzoxane;
Bcl-2 family protein inhibitors, such as ABT-263, venetoclax (ABT-199), ABT-737, and AT-101;
Notch inhibitors, such as FY3039478 (crenigacestat), tarextumab (anti-Notch2/3), and BMS-906024;
anti-myostatin inhibitors, such as landogrozumab;
hyaluronidase stimulators, such as PEGPH-20;
Wnt pathway inhibitors, such as SM-04755, PRI-724, and WNT-974;
gamma-secretase inhibitors, such as PF-03084014, MK-0752, and RCO-4929097;
Grb-2 (growth factor receptor bound protein-2) inhibitors, such as BP1001;
TRAIF pathway-inducing compounds, such as ONC201, and ABBV-621;
Focal adhesion kinase inhibitors, such as VS-4718, defactinib, and GSK2256098;
hedgehog inhibitors, such as saridegib, sonidegib (FDE225), glasdegib and vismodegib;
Aurora kinase inhibitors, such as alisertib (MLN-8237), and AZD-2811, AMG-900, barasertib, and ENMD-2076;
HSPB1 modulators (heat shock protein 27, HSP27), such as brivudine, and apatorsen;
ATR inhibitors, such as BAY-937, AZD6738, AZD6783, VX-803, VX-970 (berzosertib) and VX-970;
mTOR inhibitors, such as sapanisertib and vistusertib (AZD2014), and ME-344;
mTOR/PI3K inhibitors, such as gedatolisib, GSK2141795, omipalisib, and RG6114;
Hsp90 inhibitors, such as AUY922, onalespib (AT13387), SNX-2112, SNX5422;
murine double minute (mdm2) oncogene inhibitors, such as DS-3032b, RG7775, AMG-232, HDM201, and idasanutlin (RG7388);
CD137 agonists, such as urelumab, utomilumab (PF-05082566);
STING agonists, such as ADU-S100 (MIW-815), SB-11285, MK-1454, SR-8291, AdVCA0848, GSK-532, SYN-STING, MSA-1, SR-8291;
EGER inhibitors, such as FGF-401, INCB-054828, BAY-1163877, AZD4547, JNJ-42756493, LY2874455, and Debio-1347;
fatty acid synthase (FASN) inhibitors, such as TVB-2640;
anti-KIR monoclonal antibodies, such as lirilumab (IPH-2102), and IPH-4102;
antigen CD19 inhibitors, such as MOR208, MEDI-551, AFM-11, and inebilizumab;
CD44 binders, such as A6;
protein phosphatease 2A (PP2A) inhibitors, such as LB-100;
CYP17 inhibitors, such as seviteronel (VT-464), ASN-001, ODM-204, CFG920, and abiraterone acetate;
RXR agonists, such as IRX4204;
hedgehog/smoothened (hh/Smo) antagonists, such as taladegib, and patidegib;
complement C3 modulators, such as Imprime PGG;
IL-15 agonists, such as ALT-803, NKTR-255, and hetIL-15;
EZH2 (enhancer of zeste homolog 2) inhibitors, such as tazemetostat, CPI-1205, GSK-2816126;
oncolytic viruses, such as pelareorep, CG-0070, MV-NIS therapy, HSV-1716, DS-1647, VCN-01, ONCOS-102, TBI-1401, tasadenoturev (DNX-2401), vocimagene amiretrorepvec, RP-1, CVA21, Celyvir, LOAd-703, and OBP-301;
DOT1L (histone methyltransferase) inhibitors, such as pinometostat (EPZ-5676);
toxins such as Cholera toxin, ricin, Pseudomonas exotoxin, Bordetella pertussis adenylate cyclase toxin, diphtheria toxin, and caspase activators;
DNA plasmids, such as BC-819;
PLK inhibitors of PLK 1, 2, and 3, such as volasertib (PLK1);
WEE1 inhibitors, such as AZD1775 (adavosertib);
Rho kinase (ROCK) inhibitors, such as AT13148, and KD025;
ERK inhibitors, such as GDC-0994, LY3214996, and MK-8353;
IAP inhibitors, such as ASTX660, debio-1143, birinapant, APG-1387, and LCL-161;
RNA polymerase inhibitors, such has lurbinectedin (PM-1183), and CX-5461;
tubulin inhibitors, such as PM-184, BAL-101553 (lisavanbulin), OXI-4503, fluorapacin (AC-0001), and plinabulin;
Toll-like receptor 4 (TL4) agonists, such as G100, GSK1795091, and PEP A-10;
elongation factor 1 alpha 2 inhibitors, such as plitidepsin;
CD95 inhibitors, such as APG-101, APCO-010, and asunercept;
WT1 inhibitors, such as DSP-7888;
splicing factor 3B subunit 1 (SF3B1) inhibitors, such as H3B-8800 PDGFR alpha/KIT mutant-specific inhibitors such as BLU-285;
SHP-2 inhibitors, such as TN0155 (SHP-099), RMC-4550, JAB-3068, and RMC-4630; or
retinoid Z receptor gamma (RORγ) agonists, such as LYC-55716.
Examples of other chemotherapeutic drugs that can be used in combination with compounds of formula (I), or a pharmaceutically acceptable salt thereof include topoisomerase I inhibitors (camptothesin or topotecan), topoisomerase II inhibitors (e.g., daunomycin and etoposide), alkylating agents (e.g., cyclophosphamide, melphalan and BCNU), tubulin directed agents (e.g., taxol and vinblastine), and biological agents (e.g., antibodies such as anti CD20 antibody, IDEC 8, immunotoxins, and cytokines).
In some embodiments, the compound(s) of formula (I), or a pharmaceutically acceptable salt thereof is used in combination with Rituxan® (Rituximab) and/or other agents that work by selectively depleting CD20+ B-cells.
Included herein are methods of treatment in which a compound of formula (I), or a pharmaceutically acceptable salt thereof is administered in combination with an anti-inflammatory agent. Anti-inflammatory agents include but are not limited to NSAIDs, non-specific and COX-2 specific cyclooxgenase enzyme inhibitors, gold compounds, corticosteroids, methotrexate, tumor necrosis factor receptor (TNF) receptors antagonists, immunosuppressants and methotrexate.
Examples of NSAIDs include, but are not limited to ibuprofen, flurbiprofen, naproxen and naproxen sodium, diclofenac, combinations of diclofenac sodium and misoprostol, sulindac, oxaprozin, diflunisal, piroxicam, indomethacin, etodolac, fenoprofen calcium, ketoprofen, sodium nabumetone, sulfasalazine, tolmetin sodium, and hydroxychloroquine. Examples of NSAIDs also include COX-2 specific inhibitors (i.e., a compound that inhibits COX-2 with an IC50 that is at least 50-fold lower than the IC50 for COX-1) such as celecoxib, valdecoxib, lumiracoxib, etoricoxib and/or rofecoxib.
In a further embodiment, the anti-inflammatory agent is a salicylate. Salicylates include but are not limited to acetylsalicylic acid or aspirin, sodium salicylate, and choline and magnesium salicylates.
The anti-inflammatory agent may also be a corticosteroid. For example, the corticosteroid may be chosen from cortisone, dexamethasone, methylprednisolone, prednisolone, prednisolone sodium phosphate, and prednisone.
In some embodiments, the anti-inflammatory therapeutic agent is a gold compound such as gold sodium thiomalate or auranofin.
In some embodiments, the anti-inflammatory agent is a metabolic inhibitor such as a dihydrofolate reductase inhibitor, such as methotrexate or a dihydroorotate dehydrogenase inhibitor, such as leflunomide.
In one embodiment, the compound(s) of formula (I), or a pharmaceutically acceptable salt thereof is used in combination with at least one anti-inflammatory compound that is an anti-C5 monoclonal antibody (such as eculizumab or pexelizumab), a TNF antagonist, such as entanercept, or infliximab, which is an anti-TNF alpha monoclonal antibody.
In one embodiment, the compound(s) of formula (I), or a pharmaceutically acceptable salt thereof is used in combination with at least one active agent that is an immunosuppressant compound such as methotrexate, leflunomide, cyclosporine, tacrolimus, azathioprine, or mycophenolate mofetil.
In other embodiments, the compound(s) of formula (I), or a pharmaceutically acceptable salt thereof is used in combination with one or more phosphatidylinositol 3-kinase (PI3K) inhibitors, including for example, Compounds A, B and C (whose structures are provided below), or a pharmaceutically acceptable salt thereof.
Figure US11555029-20230117-C00053
Compounds A, B and C are disclosed in WO2015/017460 and WO2015/100217. PI3K inhibitors include inhibitors of PI3Kγ, PI3Kδ, PI3Kβ, PI3Kα, and/or pan-PI3K. Additional examples of PI3K inhibitors include, but are not limited to, ACP-319, AEZA-129, AMG-319, AS252424, AZD8186, BAY 10824391, BEZ235, buparlisib (BKM120), BYL719 (alpelisib), CH5132799, copanlisib (BAY 80-6946), duvelisib, GDC-0941, GDC-0980, GSK2636771, GSK2269557, idelalisib (Zydelig®), IPI-145, IPI-443, IPI-549, KAR4141, LY294002, LY3023414, MENU 17, OXY111A, PA799, PX-866, RG7604, rigosertib, RP5090, taselisib, TG100115, TGR-1202 (umbralisib), TGX221, WX-037, X-339, X-414, XL147 (SAR245408), XL499, XL756, wortmannin, ZSTK474, and the compounds described in WO 2005/113556 (ICOS), WO 2013/052699 (Gilead Calistoga), WO 2013/116562 (Gilead Calistoga), WO 2014/100765 (Gilead Calistoga), WO 2014/100767 (Gilead Calistoga), and WO 2014/201409 (Gilead Sciences). Further examples of PI3K inhibitors include, but are not limited to, GDC-0032, GDC-0077, INCB50465, RP6530, and SRX3177.
In yet another embodiment, the compound(s) of formula (I) may be used in combination with Spleen Tyrosine Kinase (SYK) Inhibitors. Examples of SYK inhibitors include, but are not limited to, 6-(1H-indazol-6-yl)-N-(4-morpholinophenyl)imidazo[1,2-a]pyrazin-8-amine, BAY-61-3606, cerdulatinib (PRT-062607), entospletinib, fostamatinib (R788), HMPL-523, NVP-QAB 205 AA, R112, R343, tamatinib (R406), and those described in U.S. Pat. No. 8,450,321 (Gilead Connecticut) and those described in U.S. 2015/0175616.
In yet another embodiment, the compounds of formula (I) may be used in combination with Tyrosine-kinase Inhibitors (TKIs). TKIs may target epidermal growth factor receptors (EGFRs) and receptors for fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and vascular endothelial growth factor (VEGF). Examples of TKIs include, but are not limited to, afatinib, ARQ-087, asp5878, AZD3759, AZD4547, bosutinib, brigatinib, cabozantinib, cediranib, crenolanib, dacomitinib, dasatinib, dovitinib, E-6201, erdafitinib, erlotinib, gefitinib, gilteritinib (ASP-2215), FP-1039, HM61713, icotinib, imatinib, KX2-391 (Src), lapatinib, lestaurtinib, midostaurin, nintedanib, ODM-203, osimertinib (AZD-9291), ponatinib, poziotinib, quizartinib, radotinib, rociletinib, sulfatinib (HMPL-012), sunitinib, and TH-4000. In ceerrtain embodiments, TKIs include, but are not limited to, afatinib, ARQ-087 (derazantinib), asp5878, AZD3759, AZD4547, bosutinib, brigatinib, cabozantinib, cediranib, crenolanib, dacomitinib, dasatinib, dovitinib, E-6201, erdafitinib, erlotinib, gefitinib, gilteritinib (ASP-2215), FP-1039, HM61713, icotinib, imatinib, KX2-391 (Src), lapatinib, lestaurtinib, lenvatinib, midostaurin, nintedanib, ODM-203, osimertinib (AZD-9291), ponatinib, poziotinib, quizartinib, radotinib, rociletinib, sulfatinib (HMPL-012), sunitinib, tivoanib, TH-4000, and MEDI-575 (anti-PDGFR antibody). In yet other embodiments, the compound(s) of formula (I), or a pharmaceutically acceptable salt thereof is used in combination with one or more inhibitors of lysyl oxidase-like 2 (LOXL) or a substance that binds to LOXL, including for example, a humanized monoclonal antibody (mAb) with an immunoglobulin IgG4 isotype directed against human LOXL2. LOXL inhibitors include inhibitors of LOXL1, LOXL2, LOXL3, LOXL4, and/or LOXL5. Examples of LOXL inhibitors include, but are not limited to, the antibodies described in WO 2009/017833 (Arresto Biosciences). Examples of LOXL2 inhibitors include, but are not limited to, the antibodies described in WO 2009/017833 (Arresto Biosciences), WO 2009/035791 (Arresto Biosciences), and WO 2011/097513 (Gilead Biologies).
In yet another embodiment, the compounds of formula (I) may be used in combination with Toll-like receptor 8 (TLR8) inhibitors. Examples of TLR8 inhibitors include, but are not limited to, E-6887, IMCO-4200, IMC1-8400, IMCO-9200, MCT-465, MEDI-9197, motolimod, resiquimod, VTX-1463, and VTX-763.
In yet another embodiment, the compounds of formula (I) may be used in combination with Toll-like receptor (TLR9) inhibitors. Examples of TLR9 inhibitors include, but are not limited to, AST-008, IMCO-2055, IMCO-2125, lefitolimod, litenimod, MGN-1601, and PUL-042.
In one embodiment, the compound of formula (I) is useful for the treatment of cancer in combination with a BTK (Bruting's Tyrosine kinase) inhibitor. An example of such BTK inhibitor is a compound disclosed in U.S. Pat. No. 7,405,295. Additional examples of BTK inhibitors include, but are not limited to, (S)-6-amino-9-(1-(but-2-ynoyl)pyrrolidin-3-yl)-7-(4-phenoxyphenyl)-7H-purin-8(9H)-one, acalabrutinib (AGP-196), BGB-3111, HM71224, ibrutinib, M-2951 (evobrutinib), tirabrutinib (ONCO-4059), PRN-1008, spebrutinib (CC-292), and TAK-020. Further examples of BTK inhibitors include, but are not limited to, CB988, M7583, vecabrutinib, ARQ-531, SHR-1459, DTRMWXHS-12, and TAS-5315.
In one embodiment, the compound of formula (I) is useful for the treatment of cancer in combination with a BET inhibitor. An example of such BET inhibitor is a compound disclosed in WO2014/182929, the entire contents of which are incorporated herein by reference.
In one embodiment, the compound of formula (I) is useful for the treatment of cancer in combination with a TBK (Tank Binding kinase) inhibitor. An example of such TBK inhibitor is a compound disclosed in WO2016/049211.
In one embodiment, the compound of formula (I) is useful for the treatment of cancer in combination with a MMP inhibitor. Exemplary MMP inhibitors include inhibitors of MMP1 through 10. Additional examples of MMP9 inhibitors include, but are not limited to, marimastat (BB-2516), cipemastat (Ro 32-3555), GS-5745 (andecaliximab) and those described in WO 2012/027721 (Gilead Biologies).
In one embodiment, the compound of formula (I) is useful for the treatment of cancer in combination with a OX40 inhibitor. An example of such OX40 inhibitor is a compound disclosed in U.S. Pat. No. 8,450,460, the entire contents of which are incorporated herein by reference.
In one embodiment, the compound of formula (I) is useful for the treatment of cancer in combination with a JAK-1 inhibitor. An example of such JAK-1 inhibitor is a compound disclosed in WO2008/109943. Examples of other JAK inhibitors include, but are not limited to, AT9283, AZD1480, baricitinib, BMS-911543, fedratinib, filgotinib (GLPG0634), gandotinib (LY2784544), INCB039110 (itacitinib), lestaurtinib, momelotinib (CYT0387), NS-018, pacritinib (SB1518), peficitinib (ASP015K), ruxolitinib, tofacitinib (formerly tasocitinib), INCB052793, and XL019.
In one embodiment, the compound of formula (I) is useful for the treatment of cancer in combination with an Indoleamine-pyrrole-2,3-dioxygenase (IDO) inhibitors. An example of such IDO inhibitor is a compound disclosed in WO2016/186967. In one embodiment, the compounds of formula (I) are useful for the treatment of cancer in combination with IDO1 inhibitors including but not limited to BLV-0801, epacadostat, F-001287, GBV-1012, GBV-1028, GDC-0919, indoximod, NKTR-218, NLG-919-based vaccine, PF-06840003, pyranonaphthoquinone derivatives (SN-35837), resminostat, SBLK-200802, and shIDO-ST. Other examples of IDO1 inhibitors include, but are not limited to, BMS-986205, EOS-200271, KHK-2455, LY-3381916.
In one embodiment, the compound of formula (I) is useful for the treatment of cancer in combination with a Mitogen-activated Protein Kinase (MEK) Inhibitors. MEK inhibitors useful for combination treatment with a compound(s) of formula (I) includes antroquinonol, binimetinib, cobimetinib (GDC-0973, XL-518), MT-144, selumetinib (AZD6244), sorafenib, trametinib (GSK1120212), uprosertib and trametinib. Other exemplary MEK inhibitors include PD-0325901, pimasertib, LTT462, AS703988, CC-90003, and refametinib.
In one embodiment, the compound of formula (I) is useful for the treatment of cancer in combination with an Apoptosis Signal-Regulating Kinase (ASK) Inhibitors: ASK inhibitors include but are not limited to those described in WO 2011/008709 (Gilead Sciences) and WO 2013/112741 (Gilead Sciences) including, for example, selonsertib.
In one embodiment, the compounds of formula (I) may be combined with Cluster of Differentiation 47 (CD47) inhibitors.
Examples of CD47 inhibitors include, but are not limited to anti-CD47 mAbs (Vx-1004), anti-human CD47 mAbs (CNTCO-7108), CC-90002, CC-90002-ST-001, humanized anti-CD47 antibody (Hu5F9-G4), NI-1701, NI-1801, RCT-1938, and TTI-621.
In one embodiment, the compounds of formula (I) may be combined with Cyclin-dependent Kinase (CDK) Inhibitors. CDK inhibitors include inhibitors of CDK 1, 2, 3, 4, 6 and 9, such as abemaciclib, alvocidib (HMR-1275, flavopiridol), AT-7519, FLX-925, FEE001, palbociclib, ribociclib, rigosertib, selinexor, UCN-01, and TG-02. Other exemplary CDK inhibitors include dinaciclib, ibrance, SY1365, CT-7001, SY-1365, G1T38, milciclib, and trilaciclib.
In one embodiment, the compounds of formula (I) may be combined with Discoidin Domain Receptor (DDR) Inhibitors for the treatment of cancer. DDR inhibitors include inhibitors of DDR1 and/or DDR2. Examples of DDR inhibitors include, but are not limited to, those disclosed in WO 2014/047624 (Gilead Sciences), US 2009-0142345 (Takeda Pharmaceutical), US 2011-0287011 (Oncomed Pharmaceuticals), WO 2013/027802 (Chugai Pharmaceutical), and WO 2013/034933 (Imperial Innovations).
In one embodiment, the compounds of formula (I) may be combined with Histone Deacetylase (HDAC) Inhibitors such as those disclosed in U.S. Pat. No. 8,575,353 and equivalents thereof. Additional examples of HDAC inhibitors include, but are not limited to, abexinostat, ACY-241, AR-42, BEBT-908, belinostat, CKD-581, CS-055 (HBI-8000), CUDC-907 (fimepinostat), entinostat, givinostat, mocetinostat, panobinostat, pracinostat, quisinostat (JNJ-26481585), resminostat, ricolinostat, SHP-141, valproic acid (VAL-001), vorinostat. Further examples of HDAC inhibitors include, but are not limited to, tinostamustine, remetinostat, entinostat.
In one embodiment, the compounds of formula (I) may be combined with a Hematopoietic Progenitor Kinase 1 (HPK1) inhibitor. Examples of Hematopoietic Progenitor Kinase 1 (HPK1) inhibitors include, but are not limited to, those described in WO18183956, WO18183964, WO18167147, and WO 16090300.
Anti-hormonal Agents: Also included in the definition of “chemotherapeutic agent” are anti-hormonal agents such as anti-estrogens and selective estrogen receptor modulators (SERMs), inhibitors of the enzyme aromatase, anti-androgens, and pharmaceutically acceptable salts, acids or derivatives of any of the above that act to regulate or inhibit hormone action on tumors.
Examples of anti-estrogens and SERMs include, for example, tamoxifen (including NOLVADEX™), raloxifene, droloxifene, 4-hydroxytamoxifen, trioxifene, keoxifene, LY117018, onapristone, and toremifene (FARESTON®).
Inhibitors of the enzyme aromatase regulate estrogen production in the adrenal glands. Examples include 4(5)-imidazoles, aminoglutethimide, megestrol acetate (MEGACE®), exemestane, formestane, fadrozole, vorozole (RIVISOR®), letrozole (FEMARA®), and anastrozole (ARIMIDEX®).
Examples of anti-androgens include apalutamide, abiraterone, enzalutamide, flutamide, galeterone, nilutamide, bicalutamide, leuprolide, goserelin, ODM-201, APC-100, ODM-204.
Examples of progesterone receptor antagonist include onapristone.
Anti-Angiogenic Agents:
Anti-angiogenic agents include, but are not limited to, retinoid acid and derivatives thereof, 2-methoxyestradiol, ANGIOSTATIN®, ENDOSTATIN®, regorafenib, necuparanib, suramin, squalamine, tissue inhibitor of metalloproteinase-1, tissue inhibitor of metalloproteinase-2, plasminogen activator inhibitor-1, plasminogen activator inbibitor-2, cartilage-derived inhibitor, paclitaxel (nab-paclitaxel), platelet factor 4, protamine sulphate (clupeine), sulphated chitin derivatives (prepared from queen crab shells), sulphated polysaccharide peptidoglycan complex (sp-pg), staurosporine, modulators of matrix metabolism including proline analogs such as 1-azetidine-2-carboxylic acid (LACA), cishydroxyproline, d,l-3,4-dehydroproline, thiaproline, α,α′-dipyridyl, beta-aminopropionitrile fumarate, 4-propyl-5-(4-pyridinyl)-2(3h)-oxazolone, methotrexate, mitoxantrone, heparin, interferons, 2 macroglobulin-serum, chicken inhibitor of metalloproteinase-3 (ChIMP-3), chymostatin, beta-cyclodextrin tetradecasulfate, eponemycin, fumagillin, gold sodium thiomalate, d-penicillamine, beta-1-anticollagenase-serum, alpha-2-antiplasmin, bisantrene, lobenzarit disodium, n-2-carboxyphenyl-4-chloroanthronilic acid disodium or “CCA”, thalidomide, angiostatic steroid, carboxy aminoimidazole, metalloproteinase inhibitors such as BB-94, inhibitors of S100A9 such as tasquinimod. Other anti-angiogenesis agents include antibodies, preferably monoclonal antibodies against these angiogenic growth factors: beta-FGF, alpha-FGF, FGF-5, VEGF isoforms, VEGF-C, HGF/SF, and Ang-1/Ang-2.
Anti-Fibrotic Agents:
Anti-fibrotic agents include, but are not limited to, the compounds such as beta-aminoproprionitrile (BAPN), as well as the compounds disclosed in U.S. Pat. No. 4,965,288 relating to inhibitors of lysyl oxidase and their use in the treatment of diseases and conditions associated with the abnormal deposition of collagen and U.S. Pat. No. 4,997,854 relating to compounds which inhibit LOX for the treatment of various pathological fibrotic states, which are herein incorporated by reference. Further exemplary inhibitors are described in U.S. Pat. No. 4,943,593 relating to compounds such as 2-isobutyl-3-fluoro-, chloro-, or bromo-allylamine, U.S. Pat. Nos. 5,021,456, 5,059,714, 5,120,764, 5,182,297, 5,252,608 relating to 2-(1-naphthyloxymemyl)-3-fluoroallylamine, and US 2004-0248871, which are herein incorporated by reference.
Exemplary anti-fibrotic agents also include the primary amines reacting with the carbonyl group of the active site of the lysyl oxidases, and more particularly those which produce, after binding with the carbonyl, a product stabilized by resonance, such as the following primary amines: emylenemamine, hydrazine, phenylhydrazine, and their derivatives; semicarbazide and urea derivatives; aminonitriles such as BAPN or 2-nitroethylamine; unsaturated or saturated haloamines such as 2-bromo-ethylamine, 2-chloroethylamine, 2-trifluoroethylamine, 3-bromopropylamine, and p-halobenzylamines; and selenohomocysteine lactone.
Other anti-fibrotic agents are copper chelating agents penetrating or not penetrating the cells. Exemplary compounds include indirect inhibitors which block the aldehyde derivatives originating from the oxidative deamination of the lysyl and hydroxylysyl residues by the lysyl oxidases. Examples include the thiolamines, particularly D-penicillamine, and its analogs such as 2-amino-5-mercapto-5-methylhexanoic acid, D-2-amino-3-methyl-3-((2-acetamidoethyl)dithio)butanoic acid, p-2-amino-3-methyl-3-((2-aminoethyl)dithio)butanoic acid, sodium-4-((p-1-dimethyl-2-amino-2-carboxyethyl)dithio)butane sulphurate, 2-acetamidoethyl-2-acetamidoethanethiol sulphanate, and sodium-4-mercaptobutanesulphinate trihydrate.
Immunotherapeutic Agents: The immunotherapeutic agents include and are not limited to therapeutic antibodies suitable for treating patients. Some examples of therapeutic antibodies include abagovomab, ABP-980, adecatumumab, afutuzumab, alemtuzumab, altumomab, amatuximab, anatumomab, arcitumomab, bavituximab, bectumomab, bevacizumab, bivatuzumab, blinatumomab, brentuximab, cantuzumab, catumaxomab, CC49, cetuximab, citatuzumab, cixutumumab, clivatuzumab, conatumumab, dacetuzumab, dalotuzumab, daratumumab, detumomab, dinutuximab, drozitumab, duligotumab, dusigitumab, ecromeximab, elotuzumab, emibetuzumab, ensituximab, ertumaxomab, etaracizumab, farletuzumab, ficlatuzumab, figitumumab, flanvotumab, futuximab, ganitumab, gemtuzumab, girentuximab, glembatumumab, ibritumomab, igovomab, imgatuzumab, indatuximab, inotuzumab, intetumumab, ipilimumab (YERVOY®, MDX-010, BMS-734016, and MDX-101), iratumumab, labetuzumab, lexatumumab, lintuzumab, lorvotuzumab, lucatumumab, mapatumumab, matuzumab, milatuzumab, minretumomab, mitumomab, mogamulizumab, moxetumomab, naptumomab, narnatumab, necitumumab, nimotuzumab, nofetumomab, OBI-833, obinutuzumab, ocaratuzumab, ofatumumab, olaratumab, onartuzumab, oportuzumab, oregovomab, panitumumab, parsatuzumab, pasudotox, patritumab, pemtumomab, pertuzumab, pintumomab, pritumumab, racotumomab, radretumab, ramucirumab (Cyramza®), rilotumumab, rituximab, robatumumab, samalizumab, satumomab, sibrotuzumab, siltuximab, solitomab, simtuzumab, tacatuzumab, taplitumomab, tenatumomab, teprotumumab, tigatuzumab, tositumomab, trastuzumab, tucotuzumab, ublituximab, veltuzumab, vorsetuzumab, votumumab, zalutumumab, and 3F8. Rituximab can be used for treating indolent B-cell cancers, including marginal-zone lymphoma, WM, CLL and small lymphocytic lymphoma. A combination of Rituximab and chemotherapy agents is especially effective.
The exemplified therapeutic antibodies may be further labeled or combined with a radioisotope particle such as indium-111, yttrium-90 (90Y-clivatuzumab), or iodine-131.
Cancer Gene Therapy and Cell Therapy:
Cancer Gene Therapy and Cell Therapy including the insertion of a normal gene into cancer cells to replace a mutated or altered gene; genetic modification to silence a mutated gene; genetic approaches to directly kill the cancer cells; including the infusion of immune cells designed to replace most of the patient's own immune system to enhance the immune response to cancer cells, or activate the patient's own immune system (T cells or Natural Killer cells) to kill cancer cells, or find and kill the cancer cells; genetic approaches to modify cellular activity to further alter endogenous immune responsiveness against cancer.
Gene Editors:
The genome editing system is selected from the group consisting of: a CRISPR/Cas9 system, a zinc finger nuclease system, a TALEN system, a homing endonucleases system, and a meganuclease system.
CAR-T Cell Therapy and TCR-T Cell Therapy:
A population of immune effector cells engineered to express a chimeric antigen receptor (CAR), wherein the CAR comprises a tumor antigen-binding domain. The immune effector cell is a T cell or an NK cell. TCR-T cells are engineered to target tumor derived peptides present on the surface of tumor cells. Cells can be autologous or allogeneic.
In some embodiments, the CAR comprises an antigen binding domain, a transmembrane domain, and an intracellular signaling domain. In some embodiments, the intracellular domain comprises a primary signaling domain, a costimulatory domain, or both of a primary signaling domain and a costimulatory domain. In some embodiments, the primary signaling domain comprises a functional signaling domain of one or more proteins selected from the group consisting of CD3 zeta, CD3 gamma, CD3 delta, CD3 epsilon, common FcR gamma (FCERIG), FcR beta (Fc Epsilon Rib), CD79a, CD79b, Fcgamma RIIa, DAP10, and DAP12.
In some embodiments, the costimulatory domain comprises a functional domain of one or more proteins selected from the group consisting of CD27, CD28, 4-1BB (CD137), OX40, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (FFA-I), CD2, CD7, LIGHT, NKG2C, B7-H3, a ligand that specifically binds with CD83, CD8, ICAM-1, GITR, BAFFR, HVEM (LIGHTR), SFAMF7, NKp80 (KFRFI), CD160, CD19, CD4, CDSalpha, CDSbeta, IF2R beta, IF2R gamma, IF7R alpha, ITGA4, VFA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VFA-6, CD49f, ITGAD, CD 1 ld, ITGAE, CD103, ITGAF, CD 1 la, FFA-1, ITGAM, CD1 lb, ITGAX, CD1 lc, ITGB1, CD29, ITGB2, CD18, FFA-1, ITGB7, TNFR2, TRANCE/RANKF, DNAM1 (CD226), SFAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGF1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Lyl08), SLAM (SLAMF1, CD150, IPCO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, EAT, GADS, SLP-76, PAG/Cbp, NKp44, NKp30, NKp46, and NKG2D.
In some embodiments, the transmembrane domain comprises a transmembrane domain of a protein selected from the group consisting of the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, CD154, KIRDS2, OX40, CD2, CD27, LFA-1 (CD1 la, CD18), ICOS (CD278), 4-lBB (CD137), GITR, CD40, BAFFR, HVEM (LIGHTR), SLAMF7, NKpSO (KLRF1), CD160, CD19, IL2R beta, IL2R gamma, IL7R u, ITGA1, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD1 Id, ITGAE, CD103, ITGAL, CD1 la, LFA-1, ITGAM, CD1 lb, ITGAX, CD1 lc, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, TNFR2, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPCO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, PAG/Cbp, NKp44, NKp30, NKp46, NKG2D, and NKG2C.
In some embodiments, the antigen binding domain binds a tumor antigen. In some embodiments, the tumor antigen is selected from the group consisting of: CD19; CD123; CD22; CD30; CD171; CS-1 (also referred to as CD2 subset 1, CRACC, SLAMF7, CD319, and 19A24); C-type lectin-like molecule-1 (CLL-1 or CLECLI); CD33; epidermal growth factor receptor variant III (EGFRvlll); ganglioside G2 (GD2); ganglioside GD3 (aNeuSAc(2-8)aNeuSAc(2-3)bDGaip(1-4)bDGIcp(1-1)Cer); TNF receptor family member B cell maturation (BCMA); Tn antigen ((Tn Ag) or (GalNAcu-Ser/Thr)); pro state-specific membrane antigen (PSMA); Receptor tyrosine kinase-like orphan receptor 1 (RORI); Fms-Like, Tyrosine Kinase 3 (FLT3); Tumor-associated glycoprotein 72 (TAG72); CD38; CD44v6; Carcinoembryonic antigen (CEA); Epithelial cell adhesion molecule (EPCAM); B7H3 (CD276); KIT (CD117); Interleukin-13 receptor subunit alpha-2 (IL-13Ra2 or CD213A2); Mesothelin; Interleukin 11 receptor alpha (IL-11Ra); prostate stem cell antigen (PSCA); Protease Serine 21 (Testisin or PRSS21); vascular endothelial growth factor receptor 2 (VEGFR2); Lewis(Y)antigen; CD24; Platelet-derived growth factor receptor beta (PDGFR-beta); Stage-specificembryonic antigen-4 (SSEA-4); CD20; delta like 3 (DLL3); Folate receptor alpha; Receptor tyrosine-protein kinase, ERBB2 (Her2/neu); Mucin 1, cell surface associated (MUC1); epidermal growth factor receptor (EGER); neural cell adhesion molecule (NCAM); Prostase; prostatic acid phosphatase (PAP); elongation factor 2 mutated (ELF2M); Ephrin B2; fibroblast activation protein alpha (FAP); insulin-like growth factor 1 receptor (IGF-I receptor), carbonic anhydrase IX (CAIX); Proteasome (Prosome, Macropain) Subunit, Beta Type, 9 (LMP2); glycoprotein 100 (gp100); oncogene fusion protein consisting of breakpoint cluster region (BCR) and Abelson murineleukemia viral oncogene homolog 1 (Abl) (bcr-abl); tyrosinase; ephrin type-A receptor 2 (EphA2); Fucosyl GM1; sialyl Lewis adhesion molecule (sLe); ganglioside GM3 (aNeuSAc(2-3)bDGalp(1-4)bDGlcp(1-1)Cer); transglutaminase 5 (TGS5); high molecular weight-melanomaassociatedantigen (HMWMAA); o-acetyl-GD2 ganglioside (OAcGD2); Folate receptor beta; tumor endothelial marker 1 (TEM1/CD248); tumor endothelial marker 7-related (TEM7R); six transmembrane epithelial antigen of the prostate I (STEAP1); claudin 6 (CLDN6); thyroid stimulating hormone receptor (TSHR); G protein-coupled receptor class C group 5, member D (GPRCSD); chromosome X open reading frame 61 (CXORF61); CD97; CD179a; anaplastic lymphoma kinase (ALK); Polysialic acid; placenta-specific 1 (PLAC1); hexasaccharide portion of globoH glycoceramide (GloboH); mammary gland differentiation antigen (NY-BR-1); uroplakin 2 (UPK2); Hepatitis A virus cellular receptor 1 (HAVCR1); adrenoceptor beta 3 (ADRB3); pannexin 3 (PANX3); G protein-coupled receptor 20 (GPR20); lymphocyte antigen 6 complex, locus K 9 (LY6K); Olfactory receptor 51E2 (ORS IE2); TCR Gamma Alternate Reading Frame Protein (TARP); Wilms tumor protein (WT1); Cancer/testis antigen 1 (NY-ESCO-1); Cancer/testis antigen 2 (LAGE-la); Melanomaassociated antigen 1 (MAGE-A1); ETS translocation-variant gene 6, located on chromosome 12p (ETV6-AML); sperm protein 17 (SPA17); X Antigen Family, Member 1A (XAGE1); angiopoietin-binding cell surface receptor 2 (Tie 2); melanoma cancer testis antigen-1 (MADCT-1); melanoma cancer testis antigen-2 (MAD-CT-2); Fos-related antigen 1; tumor protein p53, (p53); p53 mutant; prostein; survivin; telomerase; prostate carcinoma tumor antigen-1 (PCTA-1 or Galectin 8), melanoma antigen recognized by T cells 1 (MelanA or MARTI); Rat sarcoma (Ras) mutant; human Telomerase reverse transcriptase (hTERT); sarcoma translocation breakpoints; melanoma inhibitor of apoptosis (MF-IAP); ERG (transmembrane protease, serine 2 (TMPRSS2) ETS fusion gene); N-Acetyl glucosaminyl-transferase V (NA17); paired box protein Pax-3 (PAX3); Androgen receptor; Cyclin B1; v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN); Ras Homolog Family Member C (RhoC); Tyrosinase-related protein 2 (TRP-2); Cytochrome P450 1B1 (CYP IBI); CCCTC-Binding Factor (Zinc Finger Protein)-Like (BORIS or Brother of the Regulator of Imprinted Sites), Squamous Cell Carcinoma Antigen Recognized By T Cells 3 (SART3); Paired box protein Pax-5 (PAX5); proacrosin binding protein sp32 (OY-TES 1); lymphocyte-specific protein tyrosine kinase (FCK); A kinase anchor protein 4 (AKAP-4); synovial sarcoma, X breakpoint 2 (SSX2); Receptor for Advanced Glycation Endproducts (RAGE-I); renal ubiquitous 1 (RUI); renal ubiquitous 2 (RU2); legumain; human papilloma virus E6 (HPV E6); human papilloma virus E7 (HPV E7); intestinal carboxyl esterase; heat shock protein 70-2 mutated (mut hsp70-2); CD79a; CD79b; CD72; Leukocyte-associated immunoglobulin-like receptor 1 (LAIRI); Fc fragment of IgA receptor (FCAR or CD89); Leukocyte immunoglobulin-like receptor subfamily A member 2 (LILRA2); CD300 molecule-like family member f (CD300LF); C-type lectin domain family 12 member A (CLEC12A); bone marrow stromal cell antigen 2 (BST2); EGF-like modulecontaining mucin-like hormone receptor-like 2 (EMR2); lymphocyte antigen 75 (LY75); Glypican-3 (GPC3); Fc receptor-like 5 (FCRL5); and immunoglobulin lambda-like polypeptide 1 (IGLL1).
In some embodiments, the tumor antigen is selected from CD150, 5T4, ActRIIA, B7, BMCA, CA-125, CCNA1, CD123, CD126, CD138, CD14, CD148, CD15, CD19, CD20, CD200, CD21, CD22, CD23, CD24, CD25, CD26, CD261, CD262, CD30, CD33, CD362, CD37, CD38, CD4, CD40, CD40L, CD44, CD46, CD5, CD52, CD53, CD54, CD56, CD66a-d, CD74, CD8, CD80, CD92, CE7, CS-1, CSPG4, ED-B fibronectin, EGER, EGFRvIII, EGP-2, EGP-4, EPHa2, ErbB2, ErbB3, ErbB4, EBP, GD2, GD3, HER1-HER2 in combination, HER2-HER3 in combination, HERV-K, HIV-1 envelope glycoprotein gp120, HIV-1 envelope glycoprotein gp41, HLA-DR, HM1.24, HMW-MAA, Her2, Her2/neu, IGF-1R, IL-11Ralpha, IL-13R-alpha2, IL-2, IL-22R-alpha, IL-6, IL-6R, Ia, Ii, L1-CAM, L1-cell adhesion molecule, Lewis Y, L1-CAM, MAGE A3, MAGE-A1, MART-1, MUC1, NKG2C ligands, NKG2D Ligands, NYESCO-1, OEPHa2, PIGF, PSCA, PSMA, ROR1, T101, TAC, TAG72, TIM-3, TRAIL-R1, TRAIL-R1 (DR4), TRAIL-R2 (DR5), VEGF, VEGFR2, WT-I, a G-protein coupled receptor, alphafetoprotein (AFP), an angiogenesis factor, an exogenous cognate binding molecule (ExoCBM), oncogene product, anti-folate receptor, c-Met, carcinoembryonic antigen (CEA), cyclin (D 1), ephrinB2, epithelial tumor antigen, estrogen receptor, fetal acethycholine e receptor, folate binding protein, gp100, hepatitis B surface antigen, kappa chain, kappa light chain, kdr, lambda chain, livin, melanoma-associated antigen, mesothelin, mouse double minute 2 homolog (MDM2), mucin 16 (MUC16), mutated p53, mutated ras, necrosis antigens, oncofetal antigen, ROR2, progesterone receptor, prostate specific antigen, tEGFR, tenascin, P2-Microgiobuiin, and Fc Receptor-like 5 (FcRL5).
Non limiting examples of cell therapies include Algenpantucel-L, Sipuleucel-T, (BPX-501) rivogenlecleucel U.S. Pat. No. 9,089,520, WO2016100236, AU-105, ACTR-087, activated allogeneic natural killer cells CNDO-109-AANK, MG-4101, AU-101, BPX-601, FATE-NK100, LFU-835 hematopoietic stem cells, Imilecleucel-T, baltaleucel-T, PNK-007, UCARTCS1, ET-1504, ET-1501, ET-1502, ET-190, CD19-ARTEMIS, ProHema, FT-1050-treated bone marrow stem cell therapy, CD4CARNK-92 cells, CryoStim, Alio Slim, lentiviral transduced huCART-meso cells, CART-22 cells, EGFRt/19-28z/4-lBBL CAR T cells, autologous 4H1 l-28z/fIL-12/EFGRt T cell, CCR5-SBC-728-HSPC, CAR4-1BBZ, CH-296, dnTGFbRII-NY-ESOc259T, Ad-RTS-IL-12, IMA-101, IMA-201, CARMA-0508, TT-18, CMD-501, CMD-503, CMD-504, CMD-502, CMD-601, CMD-602, and CSG-005.
Additional agents include those where the tumor targeting antigen is:
Alpha-fetoprotein, such as ET-1402, and AFP-TCR;
Anthrax toxin receptor 1, such as anti-TEM8 CAR T-cell therapy;
B cell maturation antigens (BCMA), such as bb-2121, UCART-BCMA, ET-140, KITE-585, MCM-998, LCAR-B38M, CART-BCMA, SEA-BCMA, BB212, UCART-BCMA, ET-140, P-BCMA-101, and AUTCO-2 (APRIL-CAR);
Anti-CLL-1 antibodies, such as KITE-796;
B7 homolog 6, such as CAR-NKp30 and CAR-B7H6;
B-lymphocyte antigen CD19, such as TBI-1501, CTL-119 huCART-19 T cells, JCAR-015 U.S. Pat. No. 7,446,190, JCAR-014, JCAR-017, (WO2016196388, WO2016033570, WO2015157386), axicabtagene ciloleucel (KTE-C19), U.S. Pat. Nos. 7,741,465, 6,319,494, UCART-19, EBV-CTL, T tisagenlecleucel-T (CTL019), WO2012079000, WO2017049166, CD19CAR-CD28-CD3zeta-EGFRt-expressing T cells, CD19/4-1BBL armored CAR T cell therapy, C-CAR-011, CIK-CAR.CD19, CD19CAR-28-zeta T cells, PCAR-019, MatchCART, DSCAR-01, and IM19 CAR-T;
B-lymphocyte antigen CD20, such as ATTCK-20;
B-lymphocyte cell adhesion, such as UCART-22, and JCAR-018 (WO2016090190);
NY-ESCO-1, such as GSK-3377794, and TBI-1301;
Carbonic anhydrase, such as DC-Ad-GMCAIX;
Caspase 9 suicide gene, such as CaspaCIDe DEI, and BPX-501;
CCR5, such as SB-728;
CDwl23, such as MB-102, and UCART-123;
CD20m such as CBM-C20.1;
CD4, such as ICG-122;
CD30, such as CART30 (CBM-C30.1;
CD33, such as CIK-CAR.CD33;
CD38, such as T-007, UCART-38;
CD40 ligand, such as BPX-201;
CEACAM protein 4 modulators, such as MG7-CART;
Claudin 6, such as CSG-002;
EBV targeted, such as CMD-003;
EGER, such as autologous 4H11-28z/fIL-12/EFGRt T cell;
Endonuclease, such as PGN-514, PGN-201;
Epstein-Barr virus specific T-lymphocytes, such as TT-10;
Erbb2, such as CST-102, CIDeCAR;
Ganglioside (GD2), such as 4SCAR-GD2;
Glutamate carboxypeptidase II, such as CIK-CAR.PSMA, CART-PSMA-TGF6RDN, and P-PSMA-101;
Glypican-3 (GPC3), such as TT-16, and GLYCAR;
Hemoglobin, such as PGN-236;
Hepatocyte growth factor receptor, such as anti-cMet RNA CAR T;
Human papillomavirus E7 protein, such as KITE-439;
Immunoglobulin gamma Fc receptor III, such as ACTR087;
IE-12, such as DC-RTS-IL-12;
IL-12 agonist/mucin 16, such as JCAR-020;
IL-13 alpha 2, such as MB-101;
IL-2, such as CST-101;
K-Ras GTPase, such as anti-KRAS G12V mTCR cell therapy;
Neural cell adhesion molecule L1 L1CAM (CD171), such as JCAR-023;
Latent membrane protein 1/Latent membrane protein 2, such as Ad5f35-LMPd 1-2-transduced autologous dendritic cells;
Melanoma associated antigen 10, such as MAGE-A10C796T MAGE-A10 TCR;
Melanoma associated antigen 3/Melanoma associated antigen 6 (MAGE A3/A6) such as KITE-718;
Mesothelin, such as CSG-MESO, and TC-210;
NKG2D, such as NKR-2;
Ntrkr1 tyrosine kinase receptor, such as JCAR-024;
T cell receptors, such as BPX-701, and IMCgp100;
T-lymphocyte, such as TT-12;
Tumor infiltrating lymphocytes, such as LN-144, and LN-145;
Wilms tumor protein, such as JTCR-016, and WT1-CTL;
Subjects
Any of the methods of treatment provided may be used to treat a subject (e.g., human) who has been diagnosed with or is suspected of having cancer. As used herein, a subject refers to a mammal, including, for example, a human.
In some embodiments, the subject may be a human who exhibits one or more symptoms associated with cancer or hyperproliferative disease. In some embodiments, the subject may be a human who exhibits one or more symptoms associated with cancer. In some embodiments, the subject is at an early stage of a cancer. In other embodiments, the subject is at an advanced stage of cancer.
In certain, the subject may be a human who is at risk, or genetically or otherwise predisposed (e.g., risk factor) to developing cancer or hyperproliferative disease who has or has not been diagnosed. As used herein, an “at risk” subject is a subject who is at risk of developing cancer. The subject may or may not have detectable disease, and may or may not have displayed detectable disease prior to the treatment methods described herein. An at risk subject may have one or more so-called risk factors, which are measurable parameters that correlate with development of cancer, which are described herein. A subject having one or more of these risk factors has a higher probability of developing cancer than an individual without these risk factor(s). These risk factors may include, for example, age, sex, race, diet, history of previous disease, presence of precursor disease, genetic (e.g., hereditary) considerations, and environmental exposure. In some embodiments, the subjects at risk for cancer include, for example, those having relatives who have experienced the disease, and those whose risk is determined by analysis of genetic or biochemical markers.
In addition, the subject may be a human who is undergoing one or more standard therapies, such as chemotherapy, radiotherapy, immunotherapy, surgery, or combination thereof. Accordingly, one or more kinase inhibitors may be administered before, during, or after administration of chemotherapy, radiotherapy, immunotherapy, surgery or combination thereof.
In certain embodiments, the subject may be a human who is (i) substantially refractory to at least one chemotherapy treatment, or (ii) is in relapse after treatment with chemotherapy, or both (i) and (ii). In some of embodiments, the subject is refractory to at least two, at least three, or at least four chemotherapy treatments (including standard or experimental chemotherapies).
As used herein, a “therapeutically effective amount” means an amount sufficient to modulate a specific pathway, and thereby treat a subject (such as a human) suffering an indication, or to alleviate the existing symptoms of the indication. Determination of a therapeutically effective amount is within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. In some embodiments, a therapeutically effective amount of a JAK inhibitor, such as Compound A or ruxolitinib or pharmaceutically acceptable salt thereof, and a therapeutically effective amount of PI3K inhibitor, such as Compound B, Compound C, Compound D, or Compound E and pharmaceutically acceptable salt thereof, may (i) reduce the number of diseased cells; (ii) reduce tumor size; (ill) inhibit, retard, slow to some extent, and preferably stop the diseased cell infiltration into peripheral organs; (iv) inhibit (e.g., slow to some extent and preferably stop) tumor metastasis; (v) inhibit tumor growth; (vi) prevent or delay occurrence and/or recurrence of a tumor; and/or (vii) relieve to some extent one or more of the symptoms associated with cancer or myeloproliferative disease. In other embodiments, a therapeutically effective amount of Compound B or Compound C and a therapeutically effective amount of obinutuzumab may (i) reduce the number of cancer cells; (ii) reduce tumor size; (iii) inhibit, retard, slow to some extent, and preferably stop cancer cell infiltration into peripheral organs; (iv) inhibit (e.g., slow to some extent and preferably stop) tumor metastasis; (v) inhibit tumor growth; (vi) prevent or delay occurrence and/or recurrence of a tumor; and/or (vii) relieve to some extent one or more of the symptoms associated with the cancer. In various embodiments, the amount is sufficient to ameliorate, palliate, lessen, and/or delay one or more of symptoms of cancer.
In some embodiments, the cancer is Burkitt's lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma (NHL), indolent non-Hodgkin's lymphoma (iNHL), refractory iNHL, multiple myeloma (MM), chronic myeloid leukemia (CML), acute lymphocytic leukemia (ALL), B-cell ALL, acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), myelodysplastic syndrome (MDS), myeloproliferative disease (MPD), mantle cell lymphoma (MCL), follicular lymphoma (LL), Waldestrom's macroglobulinemia (WM), T-cell lymphoma, B-cell lymphoma, diffuse large B-cell lymphoma (DLBCL), or marginal zone lymphoma (MZL). In one embodiment, the cancer is minimal residual disease (MRD). In additional embodiment, the cancer is selected from Hodgkin's lymphoma, non-Hodgkin's lymphoma (NHL), indolent non-Hodgkin's lymphoma (iNHL), and refractory iNHL. In certain embodiment, the cancer is indolent non-Hodgkin's lymphoma (iNHL). In some embodiment, the cancer is refractory iNHL. In one embodiment, the cancer is chronic lymphocytic leukemia (CLL). In other embodiment, the cancer is diffuse large B-cell lymphoma (DLBCL).
In certain embodiments, the cancer is a solid tumor is selected from the group consisting of pancreatic cancer; bladder cancer; colorectal cancer; breast cancer, including metastatic breast cancer; prostate cancer, including androgen-dependent and androgen-independent prostate cancer; kidney or renal cancer, including, e.g., metastatic renal cell carcinoma; hepatocellular cancer; lung cancer, including, e.g., non-small cell lung cancer (NSCLC), bronchioloalveolar carcinoma (BAC), and adenocarcinoma of the lung; ovarian cancer, including, e.g., progressive epithelial or primary peritoneal cancer; cervical cancer; gastric cancer; esophageal cancer; head and neck cancer, including, e.g., squamous cell carcinoma of the head and neck; melanoma; neuroendocrine cancer, including metastatic neuroendocrine tumors; brain tumors, including, e.g., glioma, anaplastic oligodendroglioma, adult glioblastoma multiforme, and adult anaplastic astrocytoma; bone cancer; and soft tissue sarcoma, hepatic carcinoma, rectal cancer, penile carcinoma, vulval cancer, thyroid cancer, salivary gland carcinoma, endometrial or uterine carcinoma, hepatoma, hepatocellular cancer, liver cancer, gastric or stomach cancer including gastrointestinal cancer, cancer of the peritoneum, squamous carcinoma of the lung, gastroesophagal cancer, biliary tract cancer, gall bladder cancer, colorectal/appendiceal cancer, squamous cell cancer (e.g., epithelial squamous cell cancer).
Any of the methods of treatment provided may be used to treat cancer at various stages. By way of example, the cancer stage includes but is not limited to early, advanced, locally advanced, remission, refractory, reoccurred after remission and progressive.
Lymphoma or Leukemia Combination Therapy:
Some chemotherapy agents are suitable for treating lymphoma or leukemia. These agents include aldesleukin, alvocidib, amifostine trihydrate, aminocamptothecin, antineoplaston A10, antineoplaston AS2-1, anti-thymocyte globulin, arsenic trioxide, Bcl-2 family protein inhibitor ABT-263, beta alethine, BMS-345541, bortezomib (VELCADE®), bortezomib (VELCADE®, PS-341), bryostatin 1, bulsulfan, campath-1H, carboplatin, carfilzomib (Kyprolis®), carmustine, caspofungin acetate, CC-5103, chlorambucil, CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone), cisplatin, cladribine, clofarabine, curcumin, CVP (cyclophosphamide, vincristine, and prednisone), cyclophosphamide, cyclosporine, cytarabine, denileukin diftitox, dexamethasone, docetaxel, dolastatin 10, doxorubicin, doxorubicin hydrochloride, DT-PACE (dexamethasone, thalidomide, cisplatin, doxorubicin, cyclophosphamide, and etoposide), enzastaurin, epoetin alfa, etoposide, everolimus (RAD001), FCM (fludarabine, cyclophosphamide, and mitoxantrone), FCR (fludarabine, cyclophosphamide, and rituximab), fenretinide, filgrastim, flavopiridol, fludarabine, FR (fludarabine and rituximab), geldanamycin (17-AAG), hyperCVAD (hyperfractionated cyclophosphamide, vincristine, doxorubicin, dexamethasone, methotrexate, and cytarabine), ICE (iphosphamide, carboplatin, and etoposide), ifosfamide, irinotecan hydrochloride, interferon alpha-2b, ixabepilone, lenalidomide (REVLIMID®, CC-5013), lymphokine-activated killer cells, MCP (mitoxantrone, chlorambucil, and prednisolone), melphalan, mesna, methotrexate, mitoxantrone hydrochloride, motexafin gadolinium, mycophenolate mofetil, nelarabine, obatoclax (GX15-070), oblimersen, octreotide acetate, omega-3 fatty acids, Omr-IgG-am (WNIG, Omrix), oxaliplatin, paclitaxel, palbociclib (PD0332991), pegfilgrastim, PEGylated liposomal doxorubicin hydrochloride, perifosin, prednisolone, prednisone, recombinant flt3 ligand, recombinant human thrombopoietin, recombinant interferon alfa, recombinant interleukin-11, recombinant interleukin-12, rituximab, R-CHOP (rituximab and CHOP), R-CVP (rituximab and CVP), R-FCM (rituximab and FCM), R-ICE (rituximab and ICE), and R-MCP (rituximab and MCP), R-roscovitine (seliciclib, CYC202), sargramostim, sildenafil citrate, simvastatin, sirolimus, styryl sulphones, tacrolimus, tanespimycin, temsirolimus (CC1-779), thalidomide, therapeutic allogeneic lymphocytes, thiotepa, tipifarnib, vincristine, vincristine sulfate, vinorelbine ditartrate, SAHA (suberanilohydroxamic acid, or suberoyl, anilide, and hydroxamic acid), vemurafenib (Zelboraf®), venetoclax (ABT-199).
One modified approach is radioimmunotherapy, wherein a monoclonal antibody is combined with a radioisotope particle, such as indium-111, yttrium-90, and iodine-131. Examples of combination therapies include, but are not limited to, iodine-131 tositumomab (BEXXAR®), yttrium-90 ibritumomab tiuxetan (ZEVALIN®), and BEXXAR® with CHOP.
The abovementioned therapies can be supplemented or combined with stem cell transplantation or treatment. Therapeutic procedures include peripheral blood stem cell transplantation, autologous hematopoietic stem cell transplantation, autologous bone marrow transplantation, antibody therapy, biological therapy, enzyme inhibitor therapy, total body irradiation, infusion of stem cells, bone marrow ablation with stem cell support, in vitro-treated peripheral blood stem cell transplantation, umbilical cord blood transplantation, immunoenzyme technique, low-LET cobalt-60 gamma ray therapy, bleomycin, conventional surgery, radiation therapy, and nonmyeloablative allogeneic hematopoietic stem cell transplantation.
Non-Hodgkin's Lymphomas Combination Therapy:
Treatment of non-Hodgkin's lymphomas (NHL), especially those of B cell origin, includes using monoclonal antibodies, standard chemotherapy approaches (e.g., CHOP, CVP, FCM, MCP, and the like), radioimmunotherapy, and combinations thereof, especially integration of an antibody therapy with chemotherapy.
Examples of unconjugated monoclonal antibodies for the treatment of NHL/B-cell cancers include rituximab, alemtuzumab, human or humanized anti-CD20 antibodies, lumiliximab, anti-TNF-related apoptosis-inducing ligand (anti-TRAIL), bevacizumab, galiximab, epratuzumab, SGN-40, and anti-CD74.
Examples of experimental antibody agents used in treatment of NHL/B-cell cancers include ofatumumab, ha20, PR0131921, alemtuzumab, galiximab, SGN-40, CHIR-12.12, epratuzumab, lumiliximab, apolizumab, milatuzumab, and bevacizumab.
Examples of standard regimens of chemotherapy for NHL/B-cell cancers include CHOP, FCM, CVP, MCP, R-CHOP, R-FCM, R-CVP, and R-MCP.
Examples of radioimmunotherapy for NHL/B-cell cancers include yttrium-90 ibritumomab tiuxetan (ZEVALIN®) and iodine-131 tositumomab (BEXXAR®).
Mantle Cell Lymphoma Combination Therapy:
Therapeutic treatments for mantle cell lymphoma (MCE) include combination chemotherapies such as CHOP, hyperCVAD, and FCM. These regimens can also be supplemented with the monoclonal antibody rituximab to form combination therapies R-CHOP, hyperCVAD-R, and R-FCM. Any of the abovementioned therapies may be combined with stem cell transplantation or ICE in order to treat MCE.
An alternative approach to treating MCE is immunotherapy. One immunotherapy uses monoclonal antibodies like rituximab. Another uses cancer vaccines, such as GTOP-99, which are based on the genetic makeup of an individual patient's tumor.
A modified approach to treat MCE is radioimmunotherapy, wherein a monoclonal antibody is combined with a radioisotope particle, such as iodine-131 tositumomab (BEXXAR®) and yttrium-90 ibritumomab tiuxetan (ZEVALIN®). In another example, BEXXAR® is used in sequential treatment with CHOP.
Other approaches to treating MCE include autologous stem cell transplantation coupled with high-dose chemotherapy, administering proteasome inhibitors such as bortezomib (VELCADE® or PS-341), or administering antiangiogenesis agents such as thalidomide, especially in combination with rituximab.
Another treatment approach is administering drugs that lead to the degradation of Bcl-2 protein and increase cancer cell sensitivity to chemotherapy, such as oblimersen, in combination with other chemotherapeutic agents.
A further treatment approach includes administering mTOR inhibitors, which can lead to inhibition of cell growth and even cell death. Non-limiting examples are sirolimus, temsirolimus (TORISEL®, CCI-779), CC-115, CC-223, SF-1126, PQR-309 (bimiralisib), voxtalisib, GSK-2126458, and temsirolimus in combination with RITUXAN®, VELCADE®, or other chemotherapeutic agents.
Other recent therapies for MCE have been disclosed. Such examples include flavopiridol, palbociclib (PD0332991), R-roscovitine (selicicilib, CYC202), styryl sulphones, obatoclax (GX15-070), TRAIL, Anti-TRAIL death receptors DR4 and DR5 antibodies, temsirolimus (TORISEL®, CCI-779), everolimus (RAD001), BMS-345541, curcumin, SAHA, thalidomide, lenalidomide (REVLIMID®, CC-5013), and geldanamycin (17-AAG).
Waldenstrom's Macroglobulinemia Combination Therapy:
Therapeutic agents used to treat Waldenstrom's Macroglobulinemia (WM) include aldesleukin, alemtuzumab, alvocidib, amifostine trihydrate, aminocamptothecin, antineoplaston A10, antineoplaston AS2-1, anti-thymocyte globulin, arsenic trioxide, autologous human tumor-derived HSPPC-96, Bcl-2 family protein inhibitor ABT-263, beta alethine, bortezomib (VELCADE®), bryostatin 1, busulfan, campath-1H, carboplatin, carmustine, caspofungin acetate, CC-5103, cisplatin, clofarabine, cyclophosphamide, cyclosporine, cytarabine, denileukin diftitox, dexamethasone, docetaxel, dolastatin 10, doxorubicin hydrochloride, DT-PACE, enzastaurin, epoetin alfa, epratuzumab (hLL2-anti-CD22 humanized antibody), etoposide, everolimus, fenretinide, filgrastim, fludarabine, ifosfamide, indium-111 monoclonal antibody MN-14, iodine-131 tositumomab, irinotecan hydrochloride, ixabepilone, lymphokine-activated killer cells, melphalan, mesna, methotrexate, mitoxantrone hydrochloride, monoclonal antibody CD19 (such as tisagenlecleucel-T, CART-19, CTL-019), monoclonal antibody CD20, motexafin gadolinium, mycophenolate mofetil, nelarabine, oblimersen, octreotide acetate, omega-3 fatty acids, oxaliplatin, paclitaxel, pegfilgrastim, PEGylated liposomal doxorubicin hydrochloride, pentostatin, perifosine, prednisone, recombinant flt3 ligand, recombinant human thrombopoietin, recombinant interferon alfa, recombinant interleukin-11, recombinant interleukin-12, rituximab, sargramostim, sildenafil citrate (VIAGRA®), simvastatin, sirolimus, tacrolimus, tanespimycin, thalidomide, therapeutic allogeneic lymphocytes, thiotepa, tipifarnib, tositumomab, veltuzumab, vincristine sulfate, vinorelbine ditartrate, vorinostat, WT1 126-134 peptide vaccine, WT-1 analog peptide vaccine, yttrium-90 ibritumomab tiuxetan, yttrium-90 humanized epratuzumab, and any combination thereof.
Examples of therapeutic procedures used to treat WM include peripheral blood stem cell transplantation, autologous hematopoietic stem cell transplantation, autologous bone marrow transplantation, antibody therapy, biological therapy, enzyme inhibitor therapy, total body irradiation, infusion of stem cells, bone marrow ablation with stem cell support, in vitro-treated peripheral blood stem cell transplantation, umbilical cord blood transplantation, immunoenzyme techniques, low-LET cobalt-60 gamma ray therapy, bleomycin, conventional surgery, radiation therapy, and nonmyeloablative allogeneic hematopoietic stem cell transplantation.
Diffuse Large B-Cell Lymphoma Combination Therapy:
Therapeutic agents used to treat diffuse large B-cell lymphoma (DLBCL) include cyclophosphamide, doxorubicin, vincristine, prednisone, anti-CD20 monoclonal antibodies, etoposide, bleomycin, many of the agents listed for WM, and any combination thereof, such as ICE and R-ICE.
Chronic Lymphocytic Leukemia Combination Therapy:
Examples of therapeutic agents used to treat chronic lymphocytic leukemia (CEL) include chlorambucil, cyclophosphamide, fludarabine, pentostatin, cladribine, doxorubicin, vincristine, prednisone, prednisolone, alemtuzumab, many of the agents listed for WM, and combination chemotherapy and chemoimmunotherapy, including the following common combination regimens: CVP, R-CVP, ICE, R-ICE, FCR, and FR.
Myelofibrosis Combination Therapy:
Myelofibrosis inhibiting agents include, but are not limited to, hedgehog inhibitors, histone deacetylase (HDAC) inhibitors, and tyrosine kinase inhibitors. Non-limiting examples of hedgehog inhibitors are saridegib and vismodegib. Examples of HDAC inhibitors include, but are not limited to, pracinostat and panobinostat. Non-limiting examples of tyrosine kinase inhibitors are lestaurtinib, bosutinib, imatinib, gilteritinib, radotinib, and cabozantinib.
Hyperproliferative Disorder Combination Therapy:
Gemcitabine, nab-paclitaxel, and gemcitabine/nab-paclitaxel may be used with a JAK inhibitor and/or PI3K5 inhibitor to treat hyperproliferative disorders.
Bladder Cancer Combination Therapy:
Therapeutic agents used to treat bladder cancer include atezolizumab, carboplatin, cisplatin, docetaxel, doxorubicin, fluorouracil (5-FU), gemcitabine, idosfamide, Interferon alfa-2b, methotrexate, mitomycin, nab-paclitaxel, paclitaxel, pemetrexed, thiotepa, vinblastine, and any combination thereof.
Breast Cancer Combination Therapy:
Therapeutic agents used to treat breast cancer include albumin-bound paclitaxel, anastrozole, capecitabine, carboplatin, cisplatin, cyclophosphamide, docetaxel, doxorubicin, epirubicin, everolimus, exemestane, fluorouracil, fulvestrant, gemcitabine, Ixabepilone, lapatinib, Letrozole, methotrexate, mitoxantrone, paclitaxel, pegylated liposomal doxorubicin, pertuzumab, tamoxifen, toremifene, trastuzumab, vinorelbine, and any combinations thereof. Triple negative breast cancer combination therapy: Therapeutic agents used to treat triple negative breast cancer include cyclophosphamide, docetaxel, doxorubicin, epirubicin, fluorouracil, paclitaxel, and combinations thereof.
Colorectal Cancer Combination Therapy:
Therapeutic agents used to treat colorectal cancer include bevacizumab, capecitabine, cetuximab, fluorouracil, irinotecan, leucovorin, oxaliplatin, panitumumab, ziv-aflibercept, and any combinations thereof.
Castration-Resistant Prostate Cancer Combination Therapy:
Therapeutic agents used to treat castration-resistant prostate cancer include abiraterone, cabazitaxel, docetaxel, enzalutamide, prednisone, sipuleucel-T, and any combinations thereof.
Esophageal and Esophagogastric Junction Cancer Combination Therapy:
Therapeutic agents used to treat esophageal and esophagogastric junction cancer include capecitabine, carboplatin, cisplatin, docetaxel, epirubicin, fluoropyrimidine, fluorouracil, irinotecan, leucovorin, oxaliplatin, paclitaxel, ramucirumab, trastuzumab, and any combinations thereof.
Gastric Cancer Combination Therapy:
Therapeutic agents used to treat gastric cancer include capecitabine, carboplatin, cisplatin, docetaxel, epirubiein, fluoropyrimidine, fluorouracil, Mnotecan, leucovorin, mitomycin, oxaliplatin, paclitaxel, ramucirumab, trastuzumab, and any combinations thereof.
Head & Neck Cancer Combination Therapy:
Therapeutic agents used to treat head & neck cancer include afatinib, bleomycin, capecitabine, carboplatin, cetuximab, cisplatin, docetaxel, fluorouracil, gemcitabine, hydroxyurea, methotrexate, nivolumab, paclitaxel, pembrolizumab, vinorelbine, and any combinations thereof.
Hepatobiliary Cancer Combination Therapy:
Therapeutic agents used to treat hepatobiliary cancer include capecitabine, cisplatin, fluoropyrimidine, 5-fluorourcil, gemecitabine, oxaliplatin, sorafenib, and any combinations thereof.
Hepatocellular Carcinoma Combination Therapy:
Therapeutic agents used to treat hepatocellular carcinoma include capecitabine, doxorubicin, gemcitabine, sorafenib, and any combinations thereof.
Non-Small Cell Lung Cancer Combination Therapy:
Therapeutic agents used to treat non-small cell lung cancer (NSCLC) include afatinib, albumin-bound paclitaxel, alectinib, bevacizumab, bevacizumab, cabozantinib, carboplatin, cisplatin, crizotinib, dabrafenib, docetaxel, erlotinib, etoposide, gemcitabine, nivolumab, paclitaxel, pembrolizumab, pemetrexed, ramucirumab, trametinib, trastuzumab, vandetanib, vemurafenib, vinblastine, vinorelbine, and any combinations thereof.
Small Cell Lung Cancer Combination Therapy:
Therapeutic agents used to treat small cell lung cancer (SCLC) include bendamustime, carboplatin, cisplatin, cyclophosphamide, docetaxel, doxorubicin, etoposide, gemcitabine, ipillimumab, irinotecan, nivolumab, paclitaxel, temozolomide, topotecan, vincristine, vinorelbine, and any combinations thereof.
Melanoma Combination Therapy:
Therapeutic agents used to treat melanoma cancer include albumin bound paclitaxel, carboplatin, cisplatin, cobiemtinib, dabrafenib, dacrabazine, IL-2, imatinib, interferon alfa-2b, ipilimumab, nitrosourea, nivolumab, paclitaxel, pembrolizumab, pilimumab, temozolomide, trametinib, vemurafenib, vinblastine, and any combinations thereof.
Ovarian Cancer Combination Therapy:
Therapeutic agents used to beat ovarian cancer include 5-flourouracil, albumin bound paclitaxel, altretamine, anastrozole, bevacizumab, capecitabine, carboplatin, cisplatin, cyclophosphamide, docetaxel, doxorubicin, etoposide, exemestane, gemcibabine, ifosfamide, irinotecan, letrozole, leuprolide acetate, liposomal doxorubicin, megestrol acetate, melphalan, olaparib, oxaliplatin, paclitaxel, Pazopanib, pemetrexed, tamoxifen, topotecan, vinorelbine, and any combinations thereof.
Pancreatic Cancer Combination Therapy:
Therapeutic agents used to treat pancreatic cancer include 5-fluorourcil, albumin-bound paclitaxel, capecitabine, cisplatin, docetaxel, erlotinib, fluoropyrimidine, gemcitabine, irinotecan, leucovorin, oxaliplatin, paclitaxel, and any combinations thereof.
Renal Cell Carcinoma Combination Therapy:
Therapeutic agents used to treat renal cell carcinoma include axitinib, bevacizumab, cabozantinib, erlotinib, everolimus, lev antinib, nivolumab, pazopanib, sorafenib, sunitinib, temsirolimus, and any combinations thereof.
In one embodiment, the compound of formula (I) is useful for the treatment of cancer in combination with a standard of care in the treatment of the respective cancer. One of skill in the art is aware of the standard of care as of a given date in the particular field of cancer therapy or with respect to a given cancer.
Certain embodiments of the present application include or use one or more additional therapeutic agent. The one or more additional therapeutic agent may be an agent useful for the treatment of cancer, inflammation, autoimmune disease and/or related conditions. The one or more additional therapeutic agent may be a chemotherapeutic agent, an anti-angiogenic agent, an antifibrotic agent, an anti-inflammatory agent, an immune modulating agent, an immunotherapeutic agent, a therapeutic antibody, a radiotherapeutic agent, an anti-neoplastic agent, an anti-cancer agent, an anti-proliferation agent, or any combination thereof. In some embodiments, the compound(s) described herein may be used or combined with a chemotherapeutic agent, an anti-angiogenic agent, an anti-fibrotic agent, an anti-inflammatory agent, an immune modulating agent, an immunotherapeutic agent, a therapeutic antibody, a radiotherapeutic agent, an antineoplastic agent or an anti-cancer agent, an anti-proliferation agent, or any combination thereof.
In one embodiment, a compound(s) of formula (I) optionally in combination with an additional anticancer agent described herein, may be used or combined with an anti-neoplastic agent or an anti-cancer agent, anti-fibrotic agent, an anti-anti-inflammatory agent, or an immune modulating agent.
In one embodiment, provided are kits comprising a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt, or a compound of formula (I) and at least one additional anticancer agent, or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable carrier. In one embodiment, the kit comprises instructions for use in the treatment of cancer or inflammatory conditions. In one embodiment, the instructions in the kit are directed to use of the pharmaceutical composition for the treatment of cancer selected from pancreatic cancer, bladder cancer, colorectal cancer, breast cancer, prostate cancer, renal cancer, hepatocellular cancer, lung cancer, ovarian cancer, cervical cancer, gastric cancer, esophageal cancer, head and neck cancer, melanoma, neuroendocrine cancer, CNS cancer, brain cancer, bone cancer, soft tissue sarcoma, non-small cell lung cancer, small-cell lung cancer and colon cancer.
The application also provides method for treating a subject who is undergoing one or more standard therapies, such as chemotherapy, radiotherapy, immunotherapy, surgery, or combination thereof comprising administering or co-administering a compound of formula (I) to said subject. Accordingly, one or more compound(S) of formula (I), or pharmaceutically acceptable salt thereof, may be administered before, during, or after administration of a chemotherapy, radiotherapy, immunotherapy, surgery or combination thereof.
In one embodiment, the subject may be a human who is (i) substantially refractory to at least one chemotherapy treatment, or (ii) in relapse after treatment with chemotherapy, or both (i) and (ii). In some of embodiments, the subject is refractory to at least two, at least three, or at least four chemotherapy treatments (including standard or experimental chemotherapies).
In one embodiment, the subject is refractory to at least one, at least two, at least three, or at least four chemotherapy treatment (including standard or experimental chemotherapy) selected from fludarabine, rituximab, obinutuzumab, alkylating agents, alemtuzumab and other chemotherapy treatments such as CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone); R-CHOP (rituximab-CHOP); hyperCVAD (hyperfractionated cyclophosphamide, vincristine, doxorubicin, dexamethasone, methotrexate, cytarabine); R-hyperCVAD (rituximab-hyperCVAD); FCM (fludarabine, cyclophosphamide, mitoxantrone); R-FCM (rituximab, fludarabine, cyclophosphamide, mitoxantrone); bortezomib and rituximab; temsirolimus and rituximab; temsirolimus and Velcade®; Iodine-131 tositumomab (Bexxar®) and CHOP; CVP (cyclophosphamide, vincristine, prednisone); R-CVP (rituximab-CVP); ICE (iphosphamide, carboplatin, etoposide); R-ICE (rituximab-ICE); FCR (fludarabine, cyclophosphamide, rituximab); FR (fludarabine, rituximab); and D.T. PACE (dexamethasone, thalidomide, cisplatin, Adriamycin®, cyclophosphamide, etoposide).
Other examples of chemotherapy treatments (including standard or experimental chemotherapies) are described below. In addition, treatment of certain lymphomas is reviewed in Cheson, B. D., Leonard, J. P., “Monoclonal Antibody Therapy for B-Cell Non-Hodgkin's Lymphoma” The New England Journal of Medicine 2008, 359(6), p. 613-626; and Wierda, W. G., “Current and Investigational Therapies for Patients with CEL” Hematology 2006, p. 285-294. Lymphoma incidence patterns in the United States is profiled in Morton, L. M., et al. “Lymphoma Incidence Patterns by WHO Subtype in the United States, 1992-2001” Blood 2006, 107(1), p. 265-276.
Examples of immunotherapeutic agents treating lymphoma or leukemia include, but are not limited to, rituximab (such as Rituxan), alemtuzumab (such as Campath, MabCampath), anti-CD19 antibodies, anti-CD20 antibodies, anti-MN-14 antibodies, anti-TRAIL, Anti-TRAIL DR4 and DR5 antibodies, anti-CD74 antibodies, apolizumab, bevacizumab, CHIR-12.12, epratuzumab (hLL2-anti-CD22 humanized antibody), galiximab, ha20, ibritumomab tiuxetan, lumiliximab, milatuzumab, ofatumumab, PR0131921, SGN-40, WT-1 analog peptide vaccine, WT1 126-134 peptide vaccine, tositumomab, autologous human tumor-derived HSPPC-96, and veltuzumab. Additional immunotherapy agents includes using cancer vaccines based upon the genetic makeup of an individual patient's tumor, such as lymphoma vaccine example is GTOP-99 (MyVax®).
Examples of chemotherapy agents for treating lymphoma or leukemia include aldesleukin, alvocidib, antineoplaston AS2-1, antineoplaston A10, anti-thymocyte globulin, amifostine trihydrate, aminocamptothecin, arsenic trioxide, beta alethine, Bcl-2 family protein inhibitor ABT-263, BMS-345541, bortezomib (Velcade®), bryostatin 1, busulfan, carboplatin, campath-1H, CC-5103, carmustine, caspofungin acetate, clofarabine, cisplatin, Cladribine (Leustarin), Chlorambucil (Leukeran), Curcumin, cyclosporine, cyclophosphamide (Cyloxan, Endoxan, Endoxana, cyclostin), cytarabine, denileukin diftitox, dexamethasone, DT PACE, docetaxel, dolastatin 10, Doxorubicin (Adriamycin®, Adriblastine), doxorubicin hydrochloride, enzastaurin, epoetin alfa, etoposide, Everolimus (RAD001), fenretinide, filgrastim, melphalan, mesna, Flavopiridol, Fludarabine (Fludara), Geldanamycin (17-AAG), ifosfamide, irinotecan hydrochloride, ixabepilone, Lenalidomide (Revlimid®, CC-5013), lymphokine-activated killer cells, melphalan, methotrexate, mitoxantrone hydrochloride, motexafin gadolinium, mycophenolate mofetil, nelarabine, oblimersen (Genasense) Obatoclax (GX15-070), oblimersen, octreotide acetate, omega-3 fatty acids, oxaliplatin, paclitaxel, PD0332991, PEGylated liposomal doxorubicin hydrochloride, pegfilgrastim, Pentstatin (Nipent), perifosine, Prednisolone, Prednisone, R-roscovitine (Selicilib, CYC202), recombinant interferon alfa, recombinant interleukin-12, recombinant interleukin-11, recombinant flt3 ligand, recombinant human thrombopoietin, rituximab, sargramostim, sildenafil citrate, simvastatin, sirolimus, Styryl sulphones, tacrolimus, tanespimycin, Temsirolimus (CC1-779), Thalidomide, therapeutic allogeneic lymphocytes, thiotepa, tipifarnib, Velcade® (bortezomib or PS-341), Vincristine (Oncovin), vincristine sulfate, vinorelbine ditartrate, Vorinostat (SAHA), vorinostat, and FR (fludarabine, rituximab), CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone), CVP (cyclophosphamide, vincristine and prednisone), FCM (fludarabine, cyclophosphamide, mitoxantrone), FCR (fludarabine, cyclophosphamide, rituximab), hyperCVAD (hyperfractionated cyclophosphamide, vincristine, doxorubicin, dexamethasone, methotrexate, cytarabine), ICE (iphosphamide, carboplatin and etoposide), MCP (mitoxantrone, chlorambucil, and prednisolone), R-CHOP (rituximab plus CHOP), R-CVP (rituximab plus CVP), R-FCM (rituximab plus FCM), R-ICE (rituximab-ICE), and R-MCP (Rituximab-MCP).
In some embodiments, the cancer is melanoma. Suitable agents for use in combination with the compounds described herein include, without limitation, dacarbazine (DTIC), optionally, along with other chemotherapy drugs such as carmustine (BCNU) and cisplatin; the “Dartmouth regimen,” which consists of DTIC, BCNU, cisplatin and tamoxifen; a combination of cisplatin, vinblastine, and DTIC, temozolomide or YERVOY™. Compounds disclosed herein may also be combined with immunotherapy drugs, including cytokines such as interferon alpha, interleukin 2, and tumor necrosis factor (TNF) in the treatment of melanoma.
Compounds described here may also be used in combination with vaccine therapy in the treatment of melanoma. Anti-melanoma vaccines are, in some ways, similar to the anti-virus vaccines which are used to prevent diseases caused by viruses such as polio, measles, and mumps. Weakened melanoma cells or parts of melanoma cells called antigens may be injected into a patient to stimulate the body's immune system to destroy melanoma cells.
Melanomas that are confined to the arms or legs may also be treated with a combination of agents including one or more compounds described herein, using for example, a hyperthermic isolated limb perfusion technique. This treatment protocol temporarily separates the circulation of the involved limb from the rest of the body and injects high doses of chemotherapy into the artery feeding the limb, thus providing high doses to the area of the tumor without exposing internal organs to these doses that might otherwise cause severe side effects. Usually the fluid is warmed to 102° to 104° F. Melphalan is the drug most often used in this chemotherapy procedure. This can be given with another agent called tumor necrosis factor (TNF) and optionally in combination with a compound of formula (I).
The therapeutic treatments can be supplemented or combined with any of the aforementioned therapies with stem cell transplantation or treatment. One example of modified approach is radioimmunotherapy, wherein a monoclonal antibody is combined with a radioisotope particle, such as indium In 111, yttrium Y 90, iodine 1-131. Examples of combination therapies include, but are not limited to, Iodine-131 tositumomab (Bexxar®), Yttrium-90 ibritumomab tiuxetan (Zevalin®), Bexxar® with CHOP.
Other therapeutic procedures useful in combination with treatment with a compound of formula (I) include peripheral blood stem cell transplantation, autologous hematopoietic stem cell transplantation, autologous bone marrow transplantation, antibody therapy, biological therapy, enzyme inhibitor therapy, total body irradiation, infusion of stem cells, bone marrow ablation with stem cell support, in vitro-treated peripheral blood stem cell transplantation, umbilical cord blood transplantation, immunoenzyme technique, pharmacological study, low-LET cobalt-60 gamma ray therapy, bleomycin, conventional surgery, radiation therapy, and nonmyeloablative allogeneic hematopoietic stem cell transplantation.
In some embodiments, the application provides pharmaceutical compositions comprising a compound of formula (I) in combination with an MMP9 binding protein and/or one or more additional therapeutic agent, and a pharmaceutically acceptable diluent, carrier or excipient. In one embodiment, the pharmaceutical compositions comprise an MMP9 binding protein, one or more additional therapeutic agent, and a pharmaceutically acceptable excipient, carrier or diluent. In some embodiments, the pharmaceutical compositions comprise the compound of formula (I) and anti-MMP9 antibody AB0045.
In one embodiment, the pharmaceutical compositions comprise the compound of formula (I), anti-MMP9 antibody AB0045, at least one additional therapeutic agent that is an immunomodulating agent, and a pharmaceutically acceptable diluent, carrier or excipient. In certain other embodiments, the pharmaceutical compositions comprise the anti-MMP9 antibody AB0045, at least one additional therapeutic agent that is an anti-inflammatory agent, and a pharmaceutically acceptable diluent, carrier or excipient. In certain other embodiments, the pharmaceutical compositions comprise compound of formula (I), the anti-MMP9 antibody AB0045, at least one additional therapeutic agent that is an antineoplastic agent or anti-cancer agent, and a pharmaceutically acceptable diluent, carrier or excipient. In one embodiment, MMP9 compounds useful for combination treatment with a compound of formula (I) include but are not limited to marimastat (BB-2516), cipemastat (Ro 32-3555) and those described in WO 2012/027721 (Gilead Biologies).
In one embodiment, the one or more additional therapeutic agent is an immune modulating agent, e.g., an immunostimulant or an immunosuppressant. In certain other embodiments, an immune modulating agent is an agent capable of altering the function of immune checkpoints, including the CTLA-4, LAG-3, B7-H3, B7-H4, Tim3, BTLA, KIR, A2aR, CD200 and/or PD-1 pathways. In other embodiments, the immune modulating agent is immune checkpoint modulating agents. Exemplary immune checkpoint modulating agents include anti-CTLA-4 antibody (e.g., ipilimumab), anti-LAG-3 antibody, anti-B7-H3 antibody, anti-B7-H4 antibody, anti-Tim3 antibody, anti-BTLA antibody, anti-KIR antibody, anti-A2aR antibody, anti CD200 antibody, anti-PD-1 antibody, anti-PD-L1 antibody, anti-CD28 antibody, anti-CD80 or -CD86 antibody, anti-B7RP1 antibody, anti-B7-H3 antibody, anti-HVEM antibody, anti-CD137 or -CD137L antibody, anti-OX40 or —OX40L antibody, anti-CD40 or -CD40L antibody, anti-GAL9 antibody, anti-IE-10 antibody and A2aR drug. For certain such immune pathway gene products, the use of either antagonists or agonists of such gene products is contemplated, as are small molecule modulators of such gene products. In one embodiment, the immune modulatory agent is an anti-PD-1 or anti-PD-L1 antibody. In some embodiments, immune modulating agents include those agents capable of altering the function of mediators in cytokine mediated signaling pathways. In some embodiments, the one or more additional therapy or anti-cancer agent is cancer gene therapy or cell therapy. Cancer gene therapy and cell therapy include the insertion of a normal gene into cancer cells to replace a mutated or altered gene; genetic modification to silence a mutated gene; genetic approaches to directly kill the cancer cells; including the infusion of immune cells designed to replace most of the patient's own immune system to enhance the immune response to cancer cells, or activate the patient's own immune system (T cells or Natural Killer cells) to kill cancer cells, or find and kill the cancer cells; genetic approaches to modify cellular activity to further alter endogenous immune responsiveness against cancer. Non limiting examples are Algenpantucel-L (2 pancreatic cell lines), Sipuleucel-T, SGT-53 liposomal nanodelivery (scL) of gene p53; T-cell therapy, such as CD19 CAR-T tisagenlecleucel-T (CTL019) WO2012079000, WO2017049166, axicabtagene ciloleucel (KTE-C19) U.S. Pat. Nos. 7,741,465, 6,319,494, JCAR-015 U.S. Pat. No. 7,446,190, JCAR-014, JCAR-020, JCAR-024, JCAR-023, JTCR-016, JCAR-018 WO2016090190, JCAR-017, (WO2016196388, WO2016033570, WO2015157386), BPX-501 U.S. Pat. No. 9,089,520, WO2016100236, AU-105, UCART-22, ACTR-087, P-BCMA-101; activated allogeneic natural killer cells CNDCO-109-AANK, FATE-NK100, LFU-835 hematopoietic stem cells.
In one embodiment, the one or more additional therapeutic agent is an immune checkpoint inhibitor. Tumors subvert the immune system by taking advantage of a mechanism known as T-cell exhaustion, which results from chronic exposure to antigens and is characterized by the up-regulation of inhibitory receptors. These inhibitory receptors serve as immune checkpoints in order to prevent uncontrolled immune reactions.
PD-1 and co-inhibitory receptors such as cytotoxic T-lymphocyte antigen 4 (CTLA-4, B and T Lymphocyte Attenuator (BTLA; CD272), T cell Immunoglobulin and Mucin domain-3 (Tim-3), Lymphocyte Activation Gene-3 (Lag-3; CD223), and others are often referred to as a checkpoint regulators. They act as molecular determinants to influence whether cell cycle progression and other intracellular signaling processes should proceed based upon extracellular information.
In addition to specific antigen recognition through the T-cell receptor (TCR), T-cell activation is regulated through a balance of positive and negative signals provided by costimulatory receptors. These surface proteins are typically members of either the TNF receptor or B7 superfamilies. Agonistic antibodies directed against activating co-stimulatory molecules and blocking antibodies against negative co-stimulatory molecules may enhance T-cell stimulation to promote tumor destruction.
Programmed Cell Death Protein 1, (PD-1 or CD279), a 55-kD type 1 transmembrane protein, is a member of the CD28 family of T cell co-stimulatory receptors that include immunoglobulin superfamily member CD28, CTLA-4, inducible co-stimulator (ICOS), and BTLA. PD-1 is highly expressed on activated T cells and B cells. PD-1 expression can also be detected on memory T-cell subsets with variable levels of expression. Two ligands specific for PD-1 have been identified: programmed death-ligand 1 (PD-L1, also known as B7-H1 or CD274) and PD-L2 (also known as B7-DC or CD273). PD-L1 and PD-L2 have been shown to down-regulate T cell activation upon binding to PD-1 in both mouse and human systems (Okazaki et al., Int. Immunol., 2007; 19: 813-824). The interaction of PD-1 with its ligands, PD-L1 and PD-L2, which are expressed on antigen-presenting, cells (APCs) and dendritic cells (DCs), transmits negative regulatory stimuli to down-modulate the activated T cell immune response. Blockade of PD-1 suppresses this negative signal and amplifies T cell responses. Numerous studies indicate that the cancer microenvironment manipulates the PD-L1/PD-1 signaling pathway and that induction of PD-L1 expression is associated with inhibition of immune responses against cancer, thus permitting cancer progression and metastasis. The PD-L1/PD-1 signaling pathway is a primary mechanism of cancer immune evasion for several reasons. This pathway is involved in negative regulation of immune responses of activated T effector cells found in the periphery. PD-L1 is up-regulated in cancer microenvironments, while PD-1 is also up-regulated on activated tumor infiltrating T cells, thus possibly potentiating a vicious cycle of inhibition. This pathway is also intricately involved in both innate and adaptive immune regulation through bi-directional signaling. These factors make the PD-1/PD-L1 complex a central point through which cancer can manipulate immune responses and promote its own progression.
The first immune-checkpoint inhibitor to be tested in a clinical trial was ipilimumab (Yervoy, Bristol-Myers Squibb), a CTLA-4 mAb. CTLA-4 belongs to the immunoglobulin superfamily of receptors, which also includes PD-1, BTLA, TIM-3, and V-domain immunoglobulin suppressor of T cell activation (VISTA). Anti-CTLA-4 mAb is a powerful checkpoint inhibitor which removes “the break” from both naive and antigen-experienced cells.
Therapy enhances the antitumor function of CD8+ T cells, increases the ratio of CD8+ T cells to Foxp3+ T regulatory cells, and inhibits the suppressive function of T regulatory cells. TIM-3 has been identified as another important inhibitory receptor expressed by exhausted CD8+ T cells. In mouse models of cancer, it has been shown that the most dysfunctional tumor-infiltrating CD8+ T cells actually co-express PD-1 and LAG-3. LAG-3 is another recently identified inhibitory receptor that acts to limit effector T-cell function and augment the suppressive activity of T regulatory cells. It has recently been revealed that PD-1 and LAG-3 are extensively co-expressed by tumor-infiltrating T cells in mice, and that combined blockade of PD-1 and LAG-3 provokes potent synergistic antitumor immune responses in mouse models of cancer.
Thus in one embodiment, the present disclosure provides the use of immune checkpoint inhibitors of formula (I) disclosed herein in combination with one or more additional immune checkpoint inhibitors. In one embodiment, the present disclosure provides the use of immune checkpoint inhibitors of formula (I) disclosed herein in combination with one or more additional immune checkpoint inhibitors and an anti-MMP9 antibody or antigen binding fragment thereof to treat or prevent cancer. In some embodiments, the immune checkpoint inhibitors may be an anti-PD-1 and/or an anti-PD-L1 antibody or an anti PD-1/PD-L1 interaction inhibitor. In some embodiments, the anti-PD-L1 antibody may be B7-H1 antibody, BMS 936559 antibody, MPDL3280A (atezolizumab) antibody, MEDI-4736 antibody, MSB0010718C antibody or combinations thereof. According to another embodiment, the anti-PD-1 antibody may be nivolumab antibody, pembrolizumab antibody, pidilizumab antibody or combinations thereof.
In addition, PD-1 may also be targeted with AMP-224, which is a PD-L2-IgG recombinant fusion protein. Additional antagonists of inhibitory pathways in the immune response include IMP321, a soluble LAG-3 Ig fusion protein and MHC class II agonist, which is used to increase an immune response to tumors. Lirilumab is an antagonist to the KIR receptor and BMS 986016 is an antagonist of LAG3. The TIM-3-Galectin-9 pathway is another inhibitory checkpoint pathway that is also a promising target for checkpoint inhibition. RX518 targets and activates the glucocorticoid-induced tumor necrosis factor receptor (GITR), a member of the TNF receptor superfamily that is expressed on the surface of multiple types of immune cells, including regulatory T cells, effector T cells, B cells, natural killer (NK) cells, and activated dendritic cells. Thus, in one embodiment, the compound(s) of formula (I) may be used in combination with IMP321, Lirilumab and/or BMS 986016.
Anti-PD-1 antibodies that may be used in the compositions and methods described herein include but are not limited to: Nivolumab/MDX-1106/BMS-936558/ONO1152, a fully human IgG4 anti-PD-1 monoclonal antibody; pidilizumab (MDV9300/CT-011), a humanized IgG1 monoclonal antibody; pembrolizumab (MK-3475/pembrolizumab/lambrolizumab), a humanized monoclonal IgG4 antibody; durvalumab (MEDI-4736) and atezolizumab. Anti-PD-L1 antibodies that may be used in compositions and methods described herein include but are not limited to: avelumab; BMS-936559, a fully human IgG4 antibody; atezolizumab (MPDL3280A/RG-7446), a human monoclonal antibody; MEDI4736; MSB0010718C, and MDX1105-01.
In one embodiment, the compound of formula (I) is administered in combination with the anti-PD-1 antibody nivolumab, pembrolizumab, and/or pidilizumab to a patient in need thereof. In one embodiment, the anti-PD-L1 antibody useful for combination treatment with a compound of formula (I) is BMS-936559, atezolizumab, or avelumab. In one embodiment, the immune modulating agent inhibits an immune checkpoint pathway. In another embodiment, the immune checkpoint pathway is selected from CTLA-4, LAG-3, B7-H3, B7-H4, Tim3, BTLA, KIR, A2aR, CD200 and PD-1. Additional antibodies that may be used in combination with a compound of formula (I) in compositions and methods described herein include the anti-PD-1 and anti-PD-L1 antibodies disclosed in U.S. Pat. Nos. 8,008,449 and 7,943,743, respectively.
In one embodiment, the one or more additional therapeutic agent is an anti-inflammatory agent. In certain other embodiments, the anti-inflammatory agent is a tumor necrosis factor alpha (TNF-α) inhibitor. As used herein, the terms “TNF alpha,” “TNF-α,” and “TNFα,” are interchangeable. TNF-α is a pro-inflammatory cytokine secreted primarily by macrophages but also by a variety of other cell types including lymphoid cells, mast cells, endothelial cells, cardiac myocytes, adipose tissue, fibroblasts, and neuronal tissue. TNF-α is also known as endotoxin-induced factor in serum, cachectin, and differentiation inducing factor. The tumor necrosis factor (TNF) family includes TNF alpha, TNF beta, CD40 ligand (CD40L), Fas ligand (FasL), TNF-related apoptosis inducing ligand (TRAIL), and LIGHT (homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for HVEM, a receptor expressed by T lymphocytes), some of the most important cytokines involved in, among other physiological processes, systematic inflammation, tumor lysis, apoptosis and initiation of the acute phase reaction.
The above therapeutic agents when employed in combination with a compound(s) disclosed herein, may be used, for example, in those amounts indicated in the referenced manuals e.g., Physicians Desk Reference or in amounts generally known to a qualified care giver, i.e., one of ordinary skill in the art. In the methods of the present disclosure, such other therapeutic agent(s) may be administered prior to, simultaneously with, or following the administration of the compound(s) of formula (I). Certain other therapeutic agents may be combined into a single formulation or kit when amenable to such. For example, tablet, capsule or liquid formulations may be combined with other tablet, capsule or liquid formulations into one fixed or combined dose formulation or regimen. Other combinations may be given separately, contemporaneously or otherwise.
Combination Therapy for HBV
In certain embodiments, a method for treating or preventing an HBV infection in a human having or at risk of having the infection is provided, comprising administering to the human a therapeutically effective amount of a compound disclosed herein, or a pharmaceutically acceptable salt thereof, in combination with a therapeutically effective amount of one or more (e.g., one, two, three, four, one or two, one to three, or one to four) additional therapeutic agents. In one embodiment, a method for treating an HBV infection in a human having or at risk of having the infection is provided, comprising administering to the human a therapeutically effective amount of a compound disclosed herein, or a pharmaceutically acceptable salt thereof, in combination with a therapeutically effective amount of one or more (e.g., one, two, three, four, one or two, one to three, or one to four) additional therapeutic agents.
In certain embodiments, the present disclosure provides a method for treating an HBV infection, comprising administering to a patient in need thereof a therapeutically effective amount of a compound disclosed herein or a pharmaceutically acceptable salt thereof, in combination with a therapeutically effective amount of one or more (e.g., one, two, three, four, one or two, one to three, or one to four) additional therapeutic agents which are suitable for treating an HBV infection.
In certain embodiments, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with one, two, three, four, or more additional therapeutic agents. In certain embodiments, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with two additional therapeutic agents. In other embodiments, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with three additional therapeutic agents. In further embodiments, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with four additional therapeutic agents. The one, two, three, four, or more additional therapeutic agents can be different therapeutic agents selected from the same class of therapeutic agents, and/or they can be selected from different classes of therapeutic agents.
Administration of HBV Combination Therapy
In certain embodiments, when a compound disclosed herein is combined with one or more additional therapeutic agents as described above, the components of the composition are administered as a simultaneous or sequential regimen. When administered sequentially, the combination may be administered in two or more administrations.
Co-administration of a compound disclosed herein with one or more additional therapeutic agents generally refers to simultaneous or sequential administration of a compound disclosed herein and one or more additional therapeutic agents, such that therapeutically effective amounts of each agent are present in the body of the patient.
Co-administration includes administration of unit dosages of the compounds disclosed herein before or after administration of unit dosages of one or more additional therapeutic agents. The compound disclosed herein may be administered within seconds, minutes, or hours of the administration of one or more additional therapeutic agents. For example, in some embodiments, a unit dose of a compound disclosed herein is administered first, followed within seconds or minutes by administration of a unit dose of one or more additional therapeutic agents. Alternatively, in other embodiments, a unit dose of one or more additional therapeutic agents is administered first, followed by administration of a unit dose of a compound disclosed herein within seconds or minutes. In some embodiments, a unit dose of a compound disclosed herein is administered first, followed, after a period of hours (e.g., 1-12 hours), by administration of a unit dose of one or more additional therapeutic agents. In other embodiments, a unit dose of one or more additional therapeutic agents is administered first, followed, after a period of hours (e.g., 1-12 hours), by administration of a unit dose of a compound disclosed herein.
In certain embodiments, a compound disclosed herein is combined with one or more additional therapeutic agents in a unitary dosage form for simultaneous administration to a patient, for example as a solid dosage form for oral administration.
In certain embodiments a compound of Formula (I) is formulated as a tablet, which may optionally contain one or more other compounds useful for treating hepatitis B virus (HBV). In certain embodiments, the tablet can contain another active ingredient for treating hepatitis B virus (HBV).
In certain embodiments, such tablets are suitable for once daily dosing.
The compounds described herein may be used or combined with one or more of a chemotherapeutic agent, an immunomodulator, an immunotherapeutic agent, a therapeutic antibody, a therapeutic vaccine, a bispecific antibody and “antibody-like” therapeutic protein (such as DARTs®, Duobodies®, Bites®, XmAbs®, TandAbs®, Fab derivatives), an antibody-drug conjugate (ADC), gene modifiers or gene editors (such as CRISPR Cas9, zinc finger nucleases, homing endonucleases, synthetic nucleases, TALENs), cell therapies such as CAR-T (chimeric antigen receptor T-cell), and TCR-T (an engineered T cell receptor) agent or any combination thereof.
In the above embodiments, the additional therapeutic agent may be an anti-HBV agent. For example, the additional therapeutic agent may be selected from the group consisting of HBV combination drugs, other drugs for treating hepatitis B virus (HBV), 3-dioxygenase (IDO) inhibitors, antisense oligonucleotide targeting viral mRNA, Apolipoprotein A1 modulator, arginase inhibitors, B- and T-lymphocyte attenuator inhibitors, Bruton's tyrosine kinase (BTK) inhibitors, CCR2 chemokine antagonist, CD137 inhibitors, CD160 inhibitors, CD305 inhibitors, CD4 agonist and modulator, compounds targeting HBcAg, compounds targeting hepatitis B core antigen (HBcAg), covalently closed circular DNA (cccDNA) inhibitors, cyclophilin inhibitors, cytokines, cytotoxic T-lymphocyte-associated protein 4 (ipi4) inhibitors, DNA polymerase inhibitor, Endonuclease modulator, epigenetic modifiers, Farnesoid X receptor agonist, gene modifiers or editors, HBsAg inhibitors, HBsAg secretion or assembly inhibitors, HBV antibodies, HBV DNA polymerase inhibitors, HBV replication inhibitors, HBV RNAse inhibitors, HBV vaccines, HBV viral entry inhibitors, HBx inhibitors, Hepatitis B large envelope protein modulator, Hepatitis B large envelope protein stimulator, Hepatitis B structural protein modulator, hepatitis B surface antigen (HBsAg) inhibitors, hepatitis B surface antigen (HBsAg) secretion or assembly inhibitors, hepatitis B virus E antigen inhibitors, hepatitis B virus replication inhibitors, Hepatitis virus structural protein inhibitor, HIV-1 reverse transcriptase inhibitor, Hyaluronidase inhibitor, IAPs inhibitors, IL-2 agonist, IL-7 agonist, Immunoglobulin agonist, Immunoglobulin G modulator, immunomodulators, indoleamine-2, inhibitors of ribonucleotide reductase, Interferon agonist, Interferon alpha 1 ligand, Interferon alpha 2 ligand, Interferon alpha 5 ligand modulator, Interferon alpha ligand, Interferon alpha ligand modulator, interferon alpha receptor ligands, Interferon beta ligand, Interferon ligand, Interferon receptor modulator, Interleukin-2 ligand, ipi4 inhibitors, lysine demethylase inhibitors, histone demethylase inhibitors, KDM5 inhibitors, KDM1 inhibitors, killer cell lectin-like receptor subfamily G member 1 inhibitors, lymphocyte-activation gene 3 inhibitors, lymphotoxin beta receptor activators, microRNA (miRNA) gene therapy agents, modulators of Axl, modulators of B7-H3, modulators of B7-H4, modulators of CD160, modulators of CD161, modulators of CD27, modulators of CD47, modulators of CD70, modulators of GITR, modulators of HEVEM, modulators of ICOS, modulators of Mer, modulators of NKG2A, modulators of NKG2D, modulators of OX40, modulators of SIRPalpha, modulators of TIGIT, modulators of Tim-4, modulators of Tyro, Na+-taurocholate cotransporting polypeptide (NTCP) inhibitors, natural killer cell receptor 2B4 inhibitors, NOD2 gene stimulator, Nucleoprotein inhibitor, nucleoprotein modulators, PD-1 inhibitors, PD-L1 inhibitors, PEG-Interferon Lambda, Peptidylprolyl isomerase inhibitor, phosphatidylinositol-3 kinase (PI3K) inhibitors, recombinant scavenger receptor A (SRA) proteins, recombinant thymosin alpha-1, Retinoic acid-inducible gene 1 stimulator, Reverse transcriptase inhibitor, Ribonuclease inhibitor, RNA DNA polymerase inhibitor, short interfering RNAs (siRNA), short synthetic hairpin RNAs (sshRNAs), SLC10A1 gene inhibitor, SMAC mimetics, Src tyrosine kinase inhibitor, stimulator of interferon gene (STING) agonists, stimulators of NOD1, T cell surface glycoprotein CD28 inhibitor, T-cell surface glycoprotein CD8 modulator, Thymosin agonist, Thymosin alpha 1 ligand, Tim-3 inhibitors, TLR-3 agonist, TLR-7 agonist, TLR-9 agonist, TLR9 gene stimulator, toll-like receptor (TER) modulators, Viral ribonucleotide reductase inhibitor, zinc finger nucleases or synthetic nucleases (TALENs), and combinations thereof.
In some embodiments, provided herein is a method for treating hepatitis B virus (HBV) in a patient in need thereof, comprising administering an effective amount of a compound described herein in combination with an effective amount of one or more anti-HCV agents, such as a NS5A inhibitor, a NS5B inhibitor, a NS3 inhibitor, or a combination thereof.
In some embodiments, provided is a method of treating hepatitis B virus (HBV) infection in a human in need thereof, comprising administering to the patient an effective amount of a compound described herein in combination with an effective amount of a NS5A inhibitor. In some embodiments, the NS5A inhibitor is ledipasvir or velpatasvir. In some embodiments, is provided a method of treating hepatitis B virus (HBV) infection in a human in need thereof, comprising administering to the patient an effective amount of a compound described herein in combination with an effective amount of a NS5B inhibitor. In some embodiments, the NS5B inhibitor is sofosbuvir or mericitabine. In some embodiments, is provided a method of treating hepatitis B virus (HBV) infection in a human in need thereof, comprising administering to the patient an effective amount of a compound described herein in combination with an effective amount of a NS3 inhibitor. In some embodiments, the NS3 inhibitor is voxilaprevir.
In some embodiments, the patient is administered an effective amount of a compound described herein in combination with an effective amount of both an effective amount of a NS5A inhibitor and an effective amount of a NS5B inhibitor. In some embodiments, the NS5A inhibitor is ledipasvir and the NS5B inhibitor is sofosbuvir. In some embodiments, the patient is administered an effective amount of a compound described herein in combination with an effective amount of a fixed dose combination of a NS5A inhibitor and a NS5B inhibitor. In some embodiments, the patient is administered an effective amount of a compound described herein in combination with an effective amount of a fixed dose combination of ledipasvir and sofosbuvir.
In some embodiments, the patient is administered an effective amount of a compound of Table 1 in combination with an effective amount of both an effective amount of a NS5A inhibitor and an effective amount of a NS5B inhibitor. In some embodiments, the NS5A inhibitor is ledipasvir and the NS5B inhibitor is sofosbuvir. In some embodiments, the patient is administered an effective amount of a compound of Table 1 in combination with an effective amount of a fixed dose combination of a NS5A inhibitor and a NS5B inhibitor. In some embodiments, the patient is administered an effective amount of a compound of Table 1 in combination with an effective amount of a fixed dose combination of ledipasvir and sofosbuvir (e.g., ledipasvir 90 mg/sofosbuvir 400 mg). In some embodiments, the patient is administered an effective amount of a compound of Table 1 in combination with an effective amount of Harvoni®. In some embodiments, the patient is administered an effective amount of a compound of Table 1 in combination with an effective amount of a fixed dose combination of velpatasvir and sofosbuvir (e.g., velpatasvir 100 mg/sofosbuvir 400 mg). In some embodiments, the patient is administered an effective amount of a compound of Table 1 in combination with an effective amount of Epclusa®.
In some embodiments, the patient is administered an effective amount of compound 139 in combination with an effective amount of both an effective amount of a NS5A inhibitor and an effective amount of a NS5B inhibitor. In some embodiments, the NS5A inhibitor is ledipasvir and the NS5B inhibitor is sofosbuvir. In some embodiments, the patient is administered an effective amount of compound 139 in combination with an effective amount of a fixed dose combination of a NS5A inhibitor and a NS5B inhibitor. In some embodiments, the patient is administered an effective amount of compound 139 in combination with an effective amount of a fixed dose combination of ledipasvir and sofosbuvir (e.g., ledipasvir 90 mg/sofosbuvir 400 mg). In some embodiments, the patient is administered an effective amount of compound 139 in combination with an effective amount of Harvoni®. In some embodiments, the patient is administered an effective amount of compound 139 in combination with an effective amount of a fixed dose combination of velpatasvir and sofosbuvir (e.g., velpatasvir 100 mg/sofosbuvir 400 mg). In some embodiments, the patient is administered an effective amount of compound 139 in combination with an effective amount of Epclusa®.
In some embodiments, the patient is administered an effective amount of a compound described herein in combination with an effective amount of both an effective amount of a NS5A inhibitor and an effective amount of a NS5B inhibitor, and optionally a NS3 inhibitor. In some embodiments, the patient is administered an effective amount of a compound described herein in combination with an effective amount of sofosbuvir, velpatasvir, and voxilaprevir (e.g., sofosbuvir 400 mg/velpatasvir 100 mg/voxilaprevir 100 mg). In some embodiments, the patient is administered an effective amount of a compound described herein (e.g., compound 139) in combination with an effective amount of Vosevi™.
In certain embodiments, a compound of Formula (I) is formulated as a tablet, which may optionally contain one or more other compounds useful for treating hepatitis B virus (HBV). In certain embodiments, the tablet can contain another active ingredient for treating hepatitis B virus (HBV), such as 3-dioxygenase (IDO) inhibitors, Apolipoprotein A1 modulator, arginase inhibitors, B- and T-lymphocyte attenuator inhibitors, Bruton's tyrosine kinase (BTK) inhibitors, CCR2 chemokine antagonist, CD137 inhibitors, CD160 inhibitors, CD305 inhibitors, CD4 agonist and modulator, compounds targeting HBcAg, compounds targeting hepatitis B core antigen (HBcAg), core protein allosteric modulators, covalently closed circular DNA (cccDNA) inhibitors, cyclophilin inhibitors, cytotoxic T-lymphocyte-associated protein 4 (ipi4) inhibitors, DNA polymerase inhibitor, Endonuclease modulator, epigenetic modifiers, Farnesoid X receptor agonist, HBsAg inhibitors, HBsAg secretion or assembly inhibitors, HBV DNA polymerase inhibitors, HBV replication inhibitors, HBV RNAse inhibitors, HBV viral entry inhibitors, HBx inhibitors, Hepatitis B large envelope protein modulator, Hepatitis B large envelope protein stimulator, Hepatitis B structural protein modulator, hepatitis B surface antigen (HBsAg) inhibitors, hepatitis B surface antigen (HBsAg) secretion or assembly inhibitors, hepatitis B virus E antigen inhibitors, hepatitis B virus replication inhibitors, Hepatitis virus structural protein inhibitor, HIV-1 reverse transcriptase inhibitor, Hyaluronidase inhibitor, IAPs inhibitors, IL-2 agonist, IL-7 agonist, immunomodulators, indoleamine-2 inhibitors, inhibitors of ribonucleotide reductase, Interleukin-2 ligand, ipi4 inhibitors, lysine demethylase inhibitors, histone demethylase inhibitors, KDM1 inhibitors, KDM5 inhibitors, killer cell lectin-like receptor subfamily G member 1 inhibitors, lymphocyte-activation gene 3 inhibitors, lymphotoxin beta receptor activators, modulators of Axl, modulators of B7-H3, modulators of B7-H4, modulators of CD160, modulators of CD161, modulators of CD27, modulators of CD47, modulators of CD70, modulators of GITR, modulators of HEVEM, modulators of ICOS, modulators of Mer, modulators of NKG2A, modulators of NKG2D, modulators of OX40, modulators of SIRPalpha, modulators of TIGIT, modulators of Tim-4, modulators of Tyro, Na+-taurocholate cotransporting polypeptide (NTCP) inhibitors, natural killer cell receptor 2B4 inhibitors, NOD2 gene stimulator, Nucleoprotein inhibitor, nucleoprotein modulators, PD-1 inhibitors, PD-L1 inhibitors, Peptidylprolyl isomerase inhibitor, phosphatidylinositol-3 kinase (PI3K) inhibitors, Retinoic acid-inducible gene 1 stimulator, Reverse transcriptase inhibitor, Ribonuclease inhibitor, RNA DNA polymerase inhibitor, SLC10A1 gene inhibitor, SMAC mimetics, Src tyrosine kinase inhibitor, stimulator of interferon gene (STING) agonists, stimulators of NOD1, T cell surface glycoprotein CD28 inhibitor, T-cell surface glycoprotein CD8 modulator, Thymosin agonist, Thymosin alpha 1 ligand, Tim-3 inhibitors, TLR-3 agonist, TLR-7 agonist, TLR-9 agonist, TLR9 gene stimulator, toll-like receptor (TLR) modulators, Viral ribonucleotide reductase inhibitor, and combinations thereof.
In certain embodiments, a compound of the present disclosure, or a pharmaceutically acceptable salt thereof, is combined with one, two, three, four or more additional therapeutic agents selected from HBV combination drugs, HBV vaccines, HBV DNA polymerase inhibitors, immunomodulators toll-like receptor (TLR) modulators, interferon alpha receptor ligands, hyaluronidase inhibitors, hepatitis b surface antigen (HBsAg) inhibitors, cytotoxic T-lymphocyte-associated protein 4 (ipi4) inhibitors, cyclophilin inhibitors, HBV viral entry inhibitors, antisense oligonucleotide targeting viral mRNA, short interfering RNAs (siRNA) and ddRNAi endonuclease modulators, ribonucelotide reductase inhibitors, HBV E antigen inhibitors, covalently closed circular DNA (cccDNA) inhibitors, farnesoid X receptor agonists, HBV antibodies, CCR2 chemokine antagonists, thymosin agonists, cytokines, nucleoprotein modulators, retinoic acid-inducible gene 1 stimulators, NOD2 stimulators, phosphatidylinositol 3-kinase (PI3K) inhibitors, indoleamine-2, 3-dioxygenase (IDO) pathway inhibitors, PD-1 inhibitors, PD-L1 inhibitors, recombinant thymosin alpha-1, bruton's tyrosine kinase (BTK) inhibitors, KDM inhibitors, HBV replication inhibitors, arginase inhibitors, and other HBV drugs.
HBV Combination Drugs
Examples of combination drugs for the treatment of HBV include TRUVADA® (tenofovir disoproxil fumarate and emtricitabine); ABX-203, lamivudine, and PEG-IFN-alpha; ABX-203 adefovir, and PEG-IFNalpha; and INCO-1800 (INCO-9112 and RG7944).
Other HBV Drugs
Examples of other drugs for the treatment of HBV include alpha-hydroxytropolones, amdoxovir, beta-hydroxycytosine nucleosides, AL-034, CCC-0975, elvucitabine, ezetimibe, cyclosporin A, gentiopicrin (gentiopicroside), JNJ-56136379, nitazoxanide, birinapant, NJK14047, NOV-205 (molixan, BAM-205), oligotide, mivotilate, feron, GST-HG-131, levamisole, Ka Shu Ning, alloferon, WS-007, Y-101 (Ti Fen Tai), rSIFN-co, PEG-IIFNm, KW-3, BP-Inter-014, oleanolic acid, HepB-nRNA, cTP-5 (rTP-5), HSK-II-2, HEISCCO-106-1, HEISCCO-106, Hepbarna, IBPB-006IA, Hepuyinfen, DasKloster 0014-01, ISA-204, Jiangantai (Ganxikang), MIV-210, OB-AI-004, PF-06, picroside, DasKloster-0039, hepulantai, IMB-2613, TCM-800B, reduced glutathione, RC1-6864018, RG-7834, UB-551, and ZH-2N, and the compounds disclosed in US20150210682, (Roche), US 2016/0122344 (Roche), WO2015173164, WO2016023877, US2015252057A (Roche), WO16128335A1 (Roche), WO16120186A1 (Roche), US2016237090A (Roche), WO16107833A1 (Roche), WO16107832A1 (Roche), US2016176899A (Roche), WO16102438A1 (Roche), WO16012470A1 (Roche), US2016220586A (Roche), and US2015031687A (Roche).
HBV Vaccines
HBV vaccines include both prophylactic and therapeutic vaccines. Examples of HBV prophylactic vaccines include Vaxelis, Hexaxim, Heplisav, Mosquirix, DTwP-HBV vaccine, Bio-Hep-B, D/T/P/HBV/M (LBVP-0101; LBVW-0101), DTwP-Hepb-Hib-IPV vaccine, Heberpenta L, DTwP-HepB-Hib, V-419, CVI-HBV-001, Tetrabhay, hepatitis B prophylactic vaccine (Advax Super D), Hepatrol-07, GSK-223192A, ENGERIX B®, recombinant hepatitis B vaccine (intramuscular, Kangtai Biological Products), recombinant hepatitis B vaccine (Hansenual polymorpha yeast, intramuscular, Hualan Biological Engineering), recombinant hepatitis B surface antigen vaccine, Bimmugen, Euforavac, Eutravac, anrix-DTaP—IPV-Hep B, HBAI-20, Infanrix-DTaP—IPV-Hep B-Hib, Pentabio Vaksin DTP—HB-Hib, Comvac 4, Twinrix, Euvax-B, Tritanrix HB, Infanrix Hep B, Comvax, DTP-Hib-HBV vaccine, DTP-HBV vaccine, Yi Tai, Heberbiovac HB, Trivac HB, GerVax, DTwP-Hep B-Hib vaccine, Bilive, Hepavax-Gene, SUPERVAX, Comvac5, Shanvac-B, Hebsulin, Recombivax HB, Revac B mcf, Revac B+, Fendrix, DTwP-HepB-Hib, DNA-001, Shan5, Shan6, rhHBsAG vaccine, HBI pentavalent vaccine, LBVD, Infanrix HeXa, and DTaP-rHB-Hib vaccine.
Examples of HBV therapeutic vaccines include HBsAG-HBIG complex, ARB-1598, Bio-Hep-B, NASVAC, abi-HB (intravenous), ABX-203, Tetrabhay, GX-110E, GS-4774, peptide vaccine (epsilonPA-44), Hepatrol-07, NASVAC (NASTERAP), IMP-321, BEVAC, Revac B mcf, Revac B+, MGN-1333, KW-2, CVI-HBV-002, AltraHepB, VGX-6200, FP-02, FP-02.2, TG-1050, NU-500, HBVax, im/TriGrid/antigen vaccine, Mega-CD40L-adjuvanted vaccine, HepB-v, RG7944 (INCO-1800), recombinant VLP-based therapeutic vaccine (HBV infection, VLP Biotech), AdTG-17909, AdTG-17910 AdTG-18202, ChronVac-B, TG-1050, and Lm HBV.
HBVDNA Polymerase Inhibitors
Examples of HBV DNA polymerase inhibitors include adefovir (HEPSERA®), emtricitabine (EMTRIVA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, tenofovir dipivoxil, tenofovir dipivoxil fumarate, tenofovir octadecyloxyethyl ester, CMX-157, besifovir, entecavir (BARACLUDE®), entecavir maleate, telbivudine (TYZEKA®), pradefovir, clevudine, ribavirin, lamivudine (EPIVIR-HBV®), phosphazide, famciclovir, fusolin, metacavir, SNC-019754, FMCA, AGX-1009, AR-II-04-26, HIP-1302, tenofovir disoproxil aspartate, tenofovir disoproxil orotate, and HS-10234.
Immunomodulators
Examples of immunomodulators include rintatolimod, imidol hydrochloride, ingaron, dermaVir, plaquenil (hydroxychloroquine), proleukin, hydroxyurea, mycophenolate mofetil (MPA) and its ester derivative mycophenolate mofetil (MMF), WF-10, ribavirin, IF-12, INCO-9112, polymer polyethyleneimine (PEI), Gepon, VGV-1, MOR-22, BMS-936559, RCO-7011785, RC1-6871765, AIC-649, andIR-103.
Toll-Like Receptor (TLR) Modulators
TER modulators include modulators of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12, and TLR13. Examples of TLR3 modulators include rintatolimod, poly-ICEC, RIBOXXON®, Apoxxim, RIBOXXIM®, IPH-33, MCT-465, MCT-475, GS-9688 and ND-1.1. Examples of TLR7 modulators include GS-9620, GSK-2245035, imiquimod, resiquimod, DSR-6434, DSP-3025, IMG-4200, MCT-465, MEDI-9197, 3M-051, SB-9922, 3M-052, Limtop, TMX-30X, TMX-202, RG-7863, RG-7795, RG-7854, and the compounds disclosed in US20100143301 (Gilead Sciences), US20110098248 (Gilead Sciences), and US20090047249 (Gilead Sciences). Examples of TLR8 modulators include motolimod, resiquimod, 3M-051, 3M-052, MCT-465, IMG-4200, VTX-763, VTX-1463, and the compounds disclosed in US20140045849 (Janssen), US20140073642 (Janssen), WO2014/056953 (Janssen), WO2014/076221 (Janssen), WO2014/128189 (Janssen), US20140350031 (Janssen), WO2014/023813 (Janssen), US20080234251 (Array Biopharma), US20080306050 (Array Biopharma), US20100029585 (Ventirx Pharma), US20110092485 (Ventirx Pharma), US20110118235 (Ventirx Pharma), US20120082658 (Ventirx Pharma), US20120219615 (Ventirx Pharma), US20140066432 (Ventirx Pharma), US20140088085 (Ventirx Pharma), US20140275167 (Novira Therapeutics), and US20130251673 (Novira Therapeutics). Examples of TLR9 modulators include BB-001, BB-006, CYT-003, IMCO-2055, IMCO-2125, IMG-3100, IMC1-8400, IR-103, IMCO-9200, agatolimod, DIMS-9054, DV-1079, DV-1179, AZD-1419, leftolimod (MGN-1703), litenimod, and CYT-003-QbG10.
Interferon Alpha Receptor Ligands
Examples of interferon alpha receptor ligands include interferon alpha-2b (INTRON A®), pegylated interferon alpha-2a (PEGASYS®), PEGylated interferon alpha-lb, interferon alpha 1b (HAPGEN®), Veldona, Infradure, Roferon-A, YPEG-interferon alfa-2a (YPEG-rhIFNalpha-2a), P-1101, Algeron, Alfarona, Ingaron (interferon gamma), rSIFN-co (recombinant super compound interferon), Ypeginterferon alfa-2b (YPEG-rhIFNalpha-2b), MOR-22, peginterferon alfa-2b (PEG-INTRON®), Bioferon, Novaferon, Inmutag (Inferon), MULTIFERON®, interferon alfa-n1 (HUMOFERON®), interferon beta-la (AVONEX®), Shaferon, interferon alfa-2b (Axxo), Alfaferone, interferon alfa-2b (BioGeneric Pharma), interferon-alpha 2 (CJ), Laferonum, VIPEG, BLAUFERON-A, BLAUFERON-B, Intermax Alpha, Realdiron, Lanstion, Pegaferon, PDferon-B PDferon-B, interferon alfa-2b (IFN, Laboratorios Bioprofarma), alfainterferona 2b, Kalferon, Pegnano, Feronsure, PegiHep, interferon alfa 2b (Zydus-Cadila), interferon alfa 2a, Optipeg A, Realfa 2B, Reliferon, interferon alfa-2b (Amega), interferon alfa-2b (Virchow), ropeginterferon alfa-2b, rHSA-IFN alpha-2a (recombinant human serum albumin intereferon alpha 2a fusion protein), rHSA-IFN alpha 2b, recombinant human interferon alpha-(lb, 2a, 2b), peginterferon alfa-2b (Amega), peginterferon alfa-2a, Reaferon-EC, Proquiferon, Uniferon, Urifron, interferon alfa-2b (Changchun Institute of Biological Products), Anterferon, Shanferon, Layfferon, Shang Sheng Lei Tai, INTEFEN, SINOGEN, Fukangtai, Pegstat, rHSA-IFN alpha-2b, SFR-9216, and Interapo (Interapa).
Hyaluronidase Inhibitors
Examples of hyaluronidase inhibitors include astodrimer.
Hepatitis B Surface Antigen (HBsAg) Inhibitors
Examples of HBsAg inhibitors include HBF-0259, PBHBV-001, PBHBV-2-15, PBHBV-2-1, REP-9AC, REP-9C, REP-9, REP-2139, REP-2139-Ca, REP-2165, REP-2055, REP-2163, REP-2165, REP-2053, REP-2031 and REP-006, and REP-9 AC′.
Examples of HBsAg secretion inhibitors include BM601.
Cytotoxic T-Lymphocyte-Associated Protein 4 (Ipi4) Inhibitors
Examples of Cytotoxic T-lymphocyte-associated protein 4 (ipi4) inhibitors include AGEN-2041, AGEN-1884, ipilumimab, belatacept, PSI-001, PRS-010, Probody mAbs, tremelimumab, and JHL-1155.
Cyclophilin Inhibitors
Examples of cyclophilin inhibitors include CPI-431-32, EDP-494, OCB-030, SCY-635, NVP-015, NVP-018, NVP-019, STG-175, and the compounds disclosed in U.S. Pat. No. 8,513,184 (Gilead Sciences), US20140030221 (Gilead Sciences), US20130344030 (Gilead Sciences), and US20130344029 (Gilead Sciences).
HBV Viral Entry Inhibitors
Examples of HBV viral entry inhibitors include Myrcludex B.
Antisense Oligonucleotide Targeting Viral mRNA
Examples of antisense oligonucleotide targeting viral mRNA include ISIS-HBVRx, IGNIS-HBVRx, IONIS-GSK6-LRx, GSK-3389404, RG-6004.
Short Interfering RNAs (siRNA) and ddRNAi.
Examples of siRNA include TKM-HBV (TKM-HepB), ALN-HBV, SR-008, HepB-nRNA, and ARC-520, ARC-521, ARB-1740, ARB-1467.
Examples of DNA-directed RNA interference (ddRNAi) include BB-HB-331.
Endonuclease Modulators
Examples of endonuclease modulators include PGN-514.
Ribonucelotide Reductase Inhibitors
Examples of inhibitors of ribonucleotide reductase include Trimidox.
HBVE Antigen Inhibitors
Examples of HBV E antigen inhibitors include wogonin.
Covalently Closed Circular DNA (cccDNA) Inhibitors
Examples of cccDNA inhibitors include BSBI-25, and CHR-101.
Farnesoid X Receptor Agonist
Example of farnesoid x receptor agonist such as EYP-001.
HBV Antibodies
Examples of HBV antibodies targeting the surface antigens of the hepatitis B virus include GC-1102, XTL-17, XTL-19, KN-003, IV Hepabulin SN, and fully human monoclonal antibody therapy (hepatitis B virus infection, Humabs BioMed). Examples of HBV antibodies, including monoclonal antibodies and polyclonal antibodies, include Zutectra, Shang Sheng Gan Di, Uman Big (Hepatitis B Hyperimmune), Omri-Hep-B, Nabi-HB, Hepatect CP, HepaGam B, igantibe, Niuliva, CT-P24, hepatitis B immunoglobulin (intravenous, pH4, HBV infection, Shanghai RAAS Blood Products), and Fovepta (BT-088). Fully human monoclonal antibodies such as HBC-34.
CCR2 Chemokine Antagonists
Examples of CCR2 chemokine antagonists include propagermanium.
Thymosin Agonists
Examples of thymosin agonists include Thymalfasin, recombinant thymosin alpha 1 (GeneScience).
Cytokines
Examples of cytokines include recombinant IL-7, CYT-107, interleukin-2 (IL-2, Immunex), recombinant human interleukin-2 (Shenzhen Neptunus), IE-15, IL-21, IL-24, and celmoleukin.
Nucleoprotein Modulators
Nucleoprotein modulators may be either HBV core or capsid protein inhibitors. Examples of nucleoprotein modulators include AB-423, AT-130, GLS4, NVR-1221, NVR-3778, BAY 41-4109, morphothiadine mesilate, JNJ-379, RG-7907, ABI-H0731, ABI-H2158 and DVR-23.
Examples of capsid inhibitors include the compounds disclosed in US20140275167 (Novira Therapeutics), US20130251673 (Novira Therapeutics), US20140343032 (Roche), WO2014037480 (Roche), US20130267517 (Roche), WO2014131847 (Janssen), WO2014033176 (Janssen), WO2014033170 (Janssen), WO2014033167 (Janssen), WO2015/059212 (Janssen), WO2015118057 (Janssen), WO2015011281 (Janssen), WO2014184365 (Janssen), WO2014184350 (Janssen), WO2014161888 (Janssen), WO2013096744 (Novira), US20150225355 (Novira), US20140178337 (Novira), US20150315159 (Novira), US20150197533 (Novira), US20150274652 (Novira), US20150259324, (Novira), US20150132258 (Novira), U.S. Pat. No. 9,181,288 (Novira), WO2014184350 (Janssen), WO2013144129 (Roche).
Retinoic Acid-Inducible Gene 1 Stimulators
Examples of stimulators of retinoic acid-inducible gene 1 include SB-9200, SB-40, SB-44, ORI-7246, ORI-9350, ORI-7537, ORI-9020, ORI-9198, and ORI-7170, RGT-100.
NOD2 Stimulators
Examples of stimulators of NOD2 include SB-9200.
Phosphatidylinositol 3-Kinase (PI3K) Inhibitors
Examples of PI3K inhibitors include idelalisib, ACP-319, AZD-8186, AZD-8835, buparlisib, CDZ-173, CLR-457, pictilisib, neratinib, rigosertib, rigosertib sodium, EN-3342, TGR-1202, alpelisib, duvelisib, IPI-549, UCB-5857, taselisib, XL-765, gedatolisib, ME-401, VS-5584, copanlisib, CAI orotate, perifosine, RG-7666, GSK-2636771, DS-7423, panulisib, GSK-2269557, GSK-2126458, CUDC-907, PQR-309, INCB-40093, pilaralisib, BAY-1082439, puquitinib mesylate, SAR-245409, AMG-319, RP-6530, ZSTK-474, MLN-1117, SF-1126, RV-1729, sonolisib, LY-3023414, SAR-260301, TAK-117, HMPL-689, tenalisib, voxtalisib, and CLR-1401.
Indoleamine-2, 3-Dioxygenase (IDO) Pathway Inhibitors
Examples of IDO inhibitors include epacadostat (INCB24360), resminostat (4SC-201), indoximod, F-001287, SN-35837, NLG-919, GDC-0919, GBV-1028, GBV-1012, NKTR-218, and the compounds disclosed in US20100015178 (Incyte), US2016137652 (Flexus Biosciences, Inc.), WO2014073738 (Flexus Biosciences, Inc.), and WO2015188085 (Flexus Biosciences, Inc.).
PD-1 Inhibitors
Examples of PD-1 inhibitors include nivolumab, pembrolizumab, pidilizumab, BGB-108, SHR-1210, PDR-001, PF-06801591, IBI-308, GB-226, STI-1110, and mDX-400.
PD-L1 Inhibitors
Examples of PD-L1 inhibitors include atezolizumab, avelumab, AMP-224, MEDI-0680, RG-7446, GX-P2, durvalumab, KY-1003, KD-033, MSB-0010718C, TSR-042, ALN-PDL, STI-A1014, CX-072, and BMS-936559.
In a particular embodiment, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with compounds such as those disclosed in WO2018026971, US20180044329, US20180044305, US20180044304, US20180044303, US20180044350, US20180057455, US20180057486, US20180045142, WO20180044963, WO2018044783, WO2018009505, WO20180044329, WO2017066227, WO2017087777, US20170145025, WO2017079669, WO2017070089, US2017107216, WO2017222976, US20170262253, WO2017205464, US20170320875, WO2017192961, WO2017112730, US20170174679, WO2017106634, WO2017202744, WO2017202275, WO2017202273, WO2017202274, WO2017202276, WO2017180769, WO2017118762, WO2016041511, WO2016039749, WO2016142835, WO2016142852, WO2016142886, WO2016142894, and WO2016142833.
Recombinant Thymosin Alpha-1
Examples of recombinant thymosin alpha-1 include NL-004 and PEGylated thymosin alpha-1.
Bruton's Tyrosine Kinase (BTK) Inhibitors
Examples of BTK inhibitors include ABBV-105, acalabrutinib (ACP-196), ARQ-531, BMS-986142, dasatinib, ibrutinib, GDC-0853, PRN-1008, SNS-062, ONCO-4059, BGB-3111, ML-319, MSC-2364447, RDX-022, X-022, AC-058, RG-7845, spebrutinib, TAS-5315, TP-0158, TP-4207, HM-71224, KBP-7536, M-2951, TAK-020, AC-0025, and the compounds disclosed in US20140330015 (Ono Pharmaceutical), US20130079327 (Ono Pharmaceutical), and US20130217880 (Ono Pharmaceutical).
KDM Inhibitors
Examples of KDM5 inhibitors include the compounds disclosed in WO2016057924 (Genentech/Constellation Pharmaceuticals), US20140275092 (Genentech/Constellation Pharmaceuticals), US20140371195 (Epitherapeutics) and US20140371214 (Epitherapeutics), US20160102096 (Epitherapeutics), US20140194469 (Quanticel), US20140171432, US20140213591 (Quanticel), US20160039808 (Quanticel), US20140275084 (Quanticel), WO2014164708 (Quanticel).
Examples of KDM1 inhibitors include the compounds disclosed in U.S. Pat. No. 9,186,337B2 (Oryzon Genomics), and GSK-2879552, RG-6016, ORY-2001.
HBV Replication Inhibitors
Examples of hepatitis B virus replication inhibitors include isothiafludine, IQP-HBV, RM-5038, and Xingantie.
Arginase Inhibitors
Examples of Arginase inhibitors include CB-1158, C-201, and resminostat.
Gene Therapy and Cell Therapy
Gene Therapy and Cell Therapy including the genetic modification to silence a gene; genetic approaches to directly kill the infected cells; the infusion of immune cells designed to replace most of the patient's own immune system to enhance the immune response to infected cells, or activate the patient's own immune system to kill infected cells, or find and kill the infected cells; genetic approaches to modify cellular activity to further alter endogenous immune responsiveness against the infection.
Gene Editors
The genome editing system is selected from the group consisting of: a CRISPR/Cas9 system, a zinc finger nuclease system, a TALEN system, a homing endonucleases system, and a meganuclease system; e.g., cccDNA elimination via targeted cleavage, and altering one or more of the hepatitis B virus (HBV) viral genes. Altering (e.g., knocking out and/or knocking down) the PreC, C, X, PreS1, PreS2, S, P or SP gene refers to (1) reducing or eliminating PreC, C, X, PreS1, PreS2, S, P or SP gene expression, (2) interfering with Precore, Core, X protein, Long surface protein, middle surface protein, S protein (also known as HBs antigen and HBsAg), polymerase protein, and/or Hepatitis B spliced protein function (HBe, HBc, HBx, PreS1, PreS2, S, Pol, and/or HBSP or (3) reducing or eliminating the intracellular, serum and/or intraparenchymal levels of HBe, HBc, HBx, LHBs, MHBs, SHBs, Pol, and/or HBSP proteins. Knockdown of one or more of the PreC, C, X, PreS1, PreS2, S, P and/or SP gene(s) is performed by targeting the gene(s) within HBV cccDNA and/or integrated HBV DNA.
CAR-T Cell Therapy
A population of immune effector cells engineered to express a chimeric antigen receptor (CAR), wherein the CAR comprises an HBV antigen-binding domain. The immune effector cell is a T cell or an NK cell. In some embodiments, the T cell is a CD4+ T cell, a CD8+ T cell, or a combination thereof. Cells can be autologous or allogeneic.
7CA′-7 Cell Therapy
T cells expressing HBV-specific T cell receptors. TCR-T cells are engineered to target HBV derived peptides presented on the surface of virus-infected cells.
T-Cells expressing HBV surface antigen (HBsAg)-specific TCR.
TCR-T therapy directed to treatment of HBV, such as LTCR-H2-1
HBV Combination Therapy
In a particular embodiment, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with one, two, three, or four additional therapeutic agent selected from the group consisting of adefovir (HEPSERA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, entecavir (BARACLUDE®), telbivudine (TYZEKA®), or lamivudine (EPIVIR-HBV®). In a particular embodiment, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with a first additional therapeutic agent selected from the group consisting of adefovir (HEPSERA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, entecavir (BARACLUDE®), telbivudine (TYZEKA®), or lamivudine (EPIVIR-HBV®). In one embodiment, pharmaceutical compositions comprising a compound disclosed herein, or a pharmaceutically acceptable salt thereof, in combination with one or more (e.g., one, two, three, four, one or two, or one to three, or one to four) additional therapeutic agents and a pharmaceutically acceptable carrier, diluent, or excipient are provided.
HBV DNA Polymerase Inhibitor Combination Therapy
In a specific embodiment, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with an HBV DNA polymerase inhibitor. In another specific embodiment, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with an HBV DNA polymerase inhibitor and at least one additional therapeutic agent selected from the group consisting of: immunomodulators, TER modulators, interferon alpha receptor ligands, hyaluronidase inhibitors, recombinant IL-7, HBsAg inhibitors, HBsAg secretion or assembly inhibitors, compounds targeting HBcAg, cyclophilin inhibitors, HBV vaccines, HBV viral entry inhibitors, NTCP inhibitors, antisense oligonucleotide targeting viral mRNA, siRNA, miRNA gene therapy agents, endonuclease modulators, inhibitors of ribonucleotide reductase, hepatitis B virus E antigen inhibitors, recombinant SRA proteins, src kinase inhibitors, HBx inhibitors, cccDNA inhibitors, sshRNAs, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins (such as DARTs®, DUOBODIES®, BITES®, XmAbs®, TandAbs®, Fab derivatives, or TCR-like antibodies), CCR2 chemokine antagonists, thymosin agonists, cytokines, nucleoprotein modulators (HBV core or capsid protein modulators), stimulators of retinoic acid-inducible gene 1, stimulators of RIG-I like receptors, stimulators of NOD2, stimulators of NOD1, Arginase inhibitors, STING agonists, PI3K inhibitors, lymphotoxin beta receptor activators, natural killer cell receptor 2B4 inhibitors, Lymphocyte-activation gene 3 inhibitors, CD160 inhibitors, cytotoxic T-lymphocyte-associated protein 4 (ipi4) inhibitors, CD137 inhibitors, Killer cell lectin-like receptor subfamily G member 1 inhibitors, TIM-3 inhibitors, B- and T-lymphocyte attenuator inhibitors, CD305 inhibitors, PD-1 inhibitors, PD-L1 inhibitors, PEG-Interferon Lambda, recombinant thymosin alpha-1, BTK inhibitors, modulators of TIGIT, modulators of CD47, modulators of SIRPalpha, modulators of ICOS, modulators of CD27, modulators of CD70, modulators of OX40, epigenetic modifiers, modulators of NKG2D, modulators of Tim-4, modulators of B7-H4, modulators of B7-H3, modulators of NKG2A, modulators of GITR, modulators of CD160, modulators of HEVEM, modulators of CD161, modulators of Axl, modulators of Mer, modulators of Tyro, gene modifiers or editors such as CRISPR (including CRISPR Cas9), zinc finger nucleases or synthetic nucleases (TALENs), IAPs inhibitors, SMAC mimetics, KDM5 inhibitors, IDO inhibitors, and hepatitis B virus replication inhibitors.
In another specific embodiment, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with an HBV DNA polymerase inhibitor, one or two additional therapeutic agents selected from the group consisting of immunomodulators, TLR modulators, HBsAg inhibitors, HBsAg secretion or assembly inhibitors, HBV therapeutic vaccines, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins (such as DARTs®, DUOBODIES®, BITES®, XmAbs®, TandAbs®, Fab derivatives, or TCR-like antibodies), cyclophilin inhibitors, stimulators of retinoic acid-inducible gene 1, stimulators of RIG-I like receptors, PD-1 inhibitors, PD-L1 inhibitors, Arginase inhibitors, PI3K inhibitors, IDO inhibitors, and stimulators of NOD2, and one or two additional therapeutic agents selected from the group consisting of HBV viral entry inhibitors, NTCP inhibitors, HBx inhibitors, cccDNA inhibitors, HBV antibodies targeting the surface antigens of the hepatitis B virus, siRNA, miRNA gene therapy agents, sshRNAs, KDM5 inhibitors, and nucleoprotein modulators (HBV core or capsid protein modulators).
In another specific embodiment, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with an HBV DNA polymerase inhibitor and at least a second additional therapeutic agent selected from the group consisting of: immunomodulators, TLR modulators, HBsAg inhibitors, HBV therapeutic vaccines, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins (such as DARTs®, DUOBODIES®, BITES®, XmAbs®, TandAbs®, Fab derivatives, or TCR-like antibodies), cyclophilin inhibitors, stimulators of retinoic acid-inducible gene 1, stimulators of RIG-I like receptors, PD-1 inhibitors, PD-L1 inhibitors, Arginase inhibitors, PI3K inhibitors, IDO inhibitors, and stimulators of NOD2.
In another specific embodiment, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with an HBV DNA polymerase inhibitor and at least a second additional therapeutic agent selected from the group consisting of: HBV viral entry inhibitors, NTCP inhibitors, HBx inhibitors, cccDNA inhibitors, HBV antibodies targeting the surface antigens of the hepatitis B virus, siRNA, miRNA gene therapy agents, sshRNAs, KDM5 inhibitors, and nucleoprotein modulators (HBV core or capsid protein inhibitors).
HBV Drug Combination Therapy
In a particular embodiment, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with a first additional therapeutic agent selected from the group consisting of adefovir (HEPSERA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, entecavir (BARACLUDE®), telbivudine (TYZEKA®), or lamivudine (EPIVIR-HBV®), and at least a second additional therapeutic agent selected from the group consisting of immunomodulators, TLR modulators, interferon alpha receptor ligands, hyaluronidase inhibitors, recombinant IL-7, HBsAg inhibitors, HBsAg secretion or assembly inhibitors, compounds targeting HBcAg, cyclophilin inhibitors, HBV vaccines, HBV viral entry inhibitors, NTCP inhibitors, antisense oligonucleotide targeting viral mRNA, siRNA, miRNA gene therapy agents, endonuclease modulators, inhibitors of ribonucleotide reductase, hepatitis B virus E antigen inhibitors, recombinant SRA proteins, src kinase inhibitors, HBx inhibitors, cccDNA inhibitors, sshRNAs, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins (such as DARTs®, DUOBODIES®, BITES®, XmAbs®, TandAbs®, Fab derivatives, and TCR-like antibodies), CCR2 chemokine antagonists, thymosin agonists, cytokines, nucleoprotein modulators (HBV core or capsid protein modulators), stimulators of retinoic acid-inducible gene 1, stimulators of RIG-I like receptors, stimulators of NOD2, stimulators of NOD1, IDO inhibitors, recombinant thymosin alpha-1, Arginase inhibitors, STING agonists, PI3K inhibitors, lymphotoxin beta receptor activators, natural killer cell receptor 2B4 inhibitors, Lymphocyte-activation gene 3 inhibitors, CD160 inhibitors, ipi4 inhibitors, CD137 inhibitors, killer cell lectin-like receptor subfamily G member 1 inhibitors, TIM-3 inhibitors, B- and T-lymphocyte attenuator inhibitors, epigenetic modifiers, CD305 inhibitors, PD-1 inhibitors, PD-L1 inhibitors, PEG-Interferon Lambd, BTK inhibitors, modulators of TIGIT, modulators of CD47, modulators of SIRPalpha, modulators of ICOS, modulators of CD27, modulators of CD70, modulators of OX40, modulators of NKG2D, modulators of Tim-4, modulators of B7-H4, modulators of B7-H3, modulators of NKG2A, modulators of GITR, modulators of CD160, modulators of HEVEM, modulators of CD161, modulators of Axl, modulators of Mer, modulators of Tyro, gene modifiers or editors such as CRISPR (including CRISPR Cas9), zinc finger nucleases or synthetic nucleases (TALENs), IAPs inhibitors, SMAC mimetics, KDM5 inhibitors, and hepatitis B virus replication inhibitors.
In a particular embodiment, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with a first additional therapeutic agent selected from the group consisting of adefovir (HEPSERA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, entecavir (BARACLUDE®), telbivudine (TYZEKA®) or lamivudine (EPIVIR-HBV®) and at least a second additional therapeutic agent selected from the group consisting of peginterferon alfa-2b (PEG-INTRON®), MULTIFERON®, interferon alpha 1b (HAPGEN®), interferon alpha-2b (INTRON A®), pegylated interferon alpha-2a (PEGASYS®), interferon alfa-n1 (HUMOFERON®), ribavirin, interferon beta-la (AVONEX®), Bioferon, Ingaron, Inmutag (Inferon), Algeron, Roferon-A, Oligotide, Zutectra, Shaferon, interferon alfa-2b (AXXO), Alfaferone, interferon alfa-2b (BioGeneric Pharma), Feron, interferon-alpha 2 (CJ), BEVAC, Laferonum, VIPEG, BLAUFERON-B, BLAUFERON-A, Intermax Alpha, Realdiron, Lanstion, Pegaferon, PDferon-B, interferon alfa-2b (IFN, Laboratorios Bioprofarma), alfainterferona 2b, Kalferon, Pegnano, Feronsure, PegiHep, interferon alfa 2b (Zydus-Cadila), Optipeg A, Realfa 2B, Reliferon, interferon alfa-2b (Amega), interferon alfa-2b (Virchow), peginterferon alfa-2b (Amega), Reaferon-EC, Proquiferon, Uniferon, Urifron, interferon alfa-2b (Changchun Institute of Biological Products), Anterferon, Shanferon, MOR-22, interleukin-2 (IL-2, Immunex), recombinant human interleukin-2 (Shenzhen Neptunus), Layfferon, Ka Shu Ning, Shang Sheng Lei Tai, INTEFEN, SINOGEN, Fukangtai, Alloferon, and celmoleukin.
In a particular embodiment, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with a first additional therapeutic agent selected from the group consisting of adefovir (HEPSERA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, entecavir (BARACLUDE®), telbivudine (TYZEKA®), or lamivudine (EPIVIR-HBV®), and at least a second additional therapeutic agent selected from the group consisting of immunomodulators, TER modulators, HBsAg inhibitors, HBsAg secretion or assembly inhibitors, HBV therapeutic vaccines, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins (such as DARTs®, DUOBODIES®, BITES®, XmAbs®, TandAbs®, Fab derivatives, or TCR-like antibodies), cyclophilin inhibitors, stimulators of retinoic acid-inducible gene 1, stimulators of RIG-I like receptors, Arginase inhibitors, PI3K inhibitors, PD-1 inhibitors, PD-L1 inhibitors, IDO inhibitors, and stimulators of NOD2.
In a particular embodiment, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with a first additional therapeutic agent selected from the group consisting of: adefovir (HEPSERA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, entecavir (BARACLUDE®), telbivudine (TYZEKA®), or lamivudine (EPIVIR-HBV®), and at least a second additional therapeutic agent selected from the group consisting of HBV viral entry inhibitors, NTCP inhibitors, HBx inhibitors, cccDNA inhibitors, HBV antibodies targeting the surface antigens of the hepatitis B virus, siRNA, miRNA gene therapy agents, sshRNAs, KDM5 inhibitors, and nucleoprotein modulators (HBV core or capsid protein modulators).
In a particular embodiment, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with a first additional therapeutic agent selected from the group consisting of adefovir (HEPSERA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, entecavir (BARACLUDE®), telbivudine (TYZEKA®), or lamivudine (EPIVIR-HBV®); one, two, or three additional therapeutic agents selected from the group consisting of immunomodulators, TER modulators, HBsAg inhibitors, HBsAg secretion or assembly inhibitors, HBV therapeutic vaccines, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins (such as DARTs®, DUOBODIES®, BITES®, XmAbs®, TandAbs®, Fab derivatives, or TCR-like antibodies), cyclophilin inhibitors, stimulators of retinoic acid-inducible gene 1, stimulators of RIG-I like receptors, PD-1 inhibitors, PD-L1 inhibitors, Arginase inhibitors, PI3K inhibitors, IDO inhibitors, and stimulators of NOD2; and one or two additional therapeutic agents selected from the group consisting of HBV viral entry inhibitors, NTCP inhibitors, HBx inhibitors, cccDNA inhibitors, HBV antibodies targeting the surface antigens of the hepatitis B virus, siRNA, miRNA gene therapy agents, sshRNAs, KDM5 inhibitors, and nucleoprotein modulators (HBV core or capsid protein modulators).
In a particular embodiment, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with a first additional therapeutic agent selected from the group consisting of adefovir (HEPSERA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, entecavir (BARACLUDE®), telbivudine (TYZEKA®), or lamivudine (EPIVIR-HBV®); one or two additional therapeutic agents selected from the group consisting of immunomodulators, TER modulators, HBsAg inhibitors, HBsAg secretion or assembly inhibitors, HBV therapeutic vaccines, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins (such as DARTs®, DUOBODIES®, BITES®, XmAbs®, TandAbs®, Fab derivatives, or TCR-like antibodies), cyclophilin inhibitors, stimulators of retinoic acid-inducible gene 1, stimulators of RIG-I like receptors, PD-1 inhibitors, PD-L1 inhibitors, Arginase inhibitors, PI3K inhibitors, IDO inhibitors, and stimulators of NOD2; and one or two additional therapeutic agents selected from the group consisting of HBV viral entry inhibitors, NTCP inhibitors, HBx inhibitors, cccDNA inhibitors, HBV antibodies targeting the surface antigens of the hepatitis B virus, siRNA, miRNA gene therapy agents, sshRNAs, KDM5 inhibitors, and nucleoprotein modulators (HBV core or capsid protein modulators).
In a particular embodiment, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with a first additional therapeutic agent selected from the group consisting of adefovir (HEPSERA®), tenofovir disoproxil fumarate (VIREAD®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, entecavir (BARACLUDE®), telbivudine (TYZEKA®), or lamivudine (EPIVIR-HBV®); and one, two, three, or four additional therapeutic agents selected from the group consisting of immunomodulators, TLR7 modulators, TLR8 modulators, HBsAg inhibitors, HBsAg secretion or assembly inhibitors, HBV therapeutic vaccines, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins (such as DARTs®, DUOBODIES®, BITES®, XmAbs®, TandAbs®, Fab derivatives, or TCR-like antibodies), cyclophilin inhibitors, stimulators of retinoic acid-inducible gene 1, stimulators of RIG-I like receptors, PD-1 inhibitors, PD-L1 inhibitors, Arginase inhibitors, PI3K inhibitors, IDO inhibitors, stimulators of NOD2 HBV viral entry inhibitors, NTCP inhibitors, HBx inhibitors, cccDNA inhibitors, siRNA, miRNA gene therapy agents, sshRNAs, KDM5 inhibitors, and nucleoprotein modulators (HBV core or capsid protein modulators).
In a particular embodiment, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with compounds such as those disclosed in U.S. Publication No. 2010/0143301 (Gilead Sciences), U.S. Publication No. 2011/0098248 (Gilead Sciences), U.S. Publication No. 2009/0047249 (Gilead Sciences), U.S. Pat. No. 8,722,054 (Gilead Sciences), U.S. Publication No. 2014/0045849 (Janssen), U.S. Publication No. 2014/0073642 (Janssen), WO2014/056953 (Janssen), WO2014/076221 (Janssen), WO2014/128189 (Janssen), U.S. Publication No. 2014/0350031 (Janssen), WO2014/023813 (Janssen), U.S. Publication No. 2008/0234251 (Array Biopharma), U.S. Publication No. 2008/0306050 (Array Biopharma), U.S. Publication No. 2010/0029585 (Ventirx Pharma), U.S. Publication No. 2011/0092485 (Ventirx Pharma), US2011/0118235 (Ventirx Pharma), U.S. Publication No. 2012/0082658 (Ventirx Pharma), U.S. Publication No. 2012/0219615 (Ventirx Pharma), U.S. Publication No. 2014/0066432 (Ventirx Pharma), U.S. Publication No. 2014/0088085 (Ventirx Pharma), U.S. Publication No. 2014/0275167 (Novira Therapeutics), U.S. Publication No. 2013/0251673 (Novira Therapeutics), U.S. Pat. No. 8,513,184 (Gilead Sciences), U.S. Publication No. 2014/0030221 (Gilead Sciences), U.S. Publication No. 2013/0344030 (Gilead Sciences), U.S. Publication No. 2013/0344029 (Gilead Sciences), US20140275167 (Novira Therapeutics), US20130251673 (Novira Therapeutics), U.S. Publication No. 2014/0343032 (Roche), WO2014037480 (Roche), U.S. Publication No. 2013/0267517 (Roche), WO2014131847 (Janssen), WO2014033176 (Janssen), WO2014033170 (Janssen), WO2014033167 (Janssen), WO2015/059212 (Janssen), WO2015118057 (Janssen), WO2015011281 (Janssen), WO2014184365 (Janssen), WO2014184350 (Janssen), WO2014161888 (Janssen), WO2013096744 (Novira), US20150225355 (Novira), US20140178337 (Novira), US20150315159 (Novira), US20150197533 (Novira), US20150274652 (Novira), US20150259324, (Novira), US20150132258 (Novira), U.S. Pat. No. 9,181,288 (Novira), WO2014184350 (Janssen), WO2013144129 (Roche), US20100015178 (Incyte), US2016137652 (Plexus Biosciences, Inc.), WO2014073738 (Plexus Biosciences, Inc.), WO2015188085 (Plexus Biosciences, Inc.), U.S. Publication No. 2014/0330015 (Ono Pharmaceutical), U.S. Publication No. 2013/0079327 (Ono Pharmaceutical), U.S. Publication No. 2013/0217880 (Ono pharmaceutical), WO2016057924 (Genentech/Constellation Pharmaceuticals), US20140275092 (Genentech/Constellation Pharmaceuticals), US20140371195 (Epitherapeutics) and US20140371214 (Epitherapeutics), US20160102096 (Epitherapeutics), US20140194469 (Quanticel), US20140171432, US20140213591 (Quanticel), US20160039808 (Quanticel), US20140275084 (Quanticel), WO2014164708 (Quanticel), U.S. Pat. No. 9,186,337B2 (Oryzon Genomics), and other drugs for treating hepatitis B virus (HBV), and combinations thereof.
In certain embodiments, a compound as disclosed herein (e.g., any compound of Formula I) may be combined with one or more (e.g., one, two, three, four, one or two, one to three, or one to four) additional therapeutic agents in any dosage amount of the compound of Formula (I) (e.g., from 10 mg to 1000 mg of compound).
In certain embodiments, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with 5-30 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide. In certain embodiments, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with 5-10; 5-15; 5-20; 5-25; 25-30; 20-30; 15-30; or 10-30 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide. In certain embodiments, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with 10 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide. In certain embodiments, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with 25 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide. A compound as disclosed herein (e.g., a compound of Formula I) may be combined with the agents provided herein in any dosage amount of the compound (e.g., from 50 mg to 500 mg of compound) the same as if each combination of dosages were specifically and individually listed.
In certain embodiments, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with 100-400 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil. In certain embodiments, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with 100 mg to 150 mg; 100 mg to 200 mg; 100 mg to 250 mg; 100 mg to 300 mg; 100 mg to 350 mg; 150 mg to 200 mg; 150 mg to 250 mg; 150 mg to 300 mg; 150 mg to 350 mg; 150 mg to 400 mg; 200 mg to 250 mg; 200 mg to 300 mg; 200 mg to 350 mg; 200 mg to 400 mg; 250 mg to 350 mg; 250 mg to 400 mg; 350 mg to 400 or 300 mg to 400 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil. In certain embodiments, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with 300 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil. In certain embodiments, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with 250 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil. In certain embodiments, a compound disclosed herein, or a pharmaceutically acceptable salt thereof, is combined with 150 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil. A compound as disclosed herein (e.g., a compound of Formula I) may be combined with the agents provided herein in any dosage amount of the compound (e.g., from 50 mg to 500 mg of compound) the same as if each combination of dosages were specifically and individually listed.
In one embodiment, kits comprising a compound disclosed herein, or a pharmaceutically acceptable salt thereof, in combination with one or more (e.g., one, two, three, four, one or two, or one to three, or one to four) additional therapeutic agents are provided.
Any pharmaceutical composition provided in the present disclosure may be used in the kits, the same as if each and every composition were specifically and individually listed for use in a kit.
Synthesis
The compounds of the disclosure may be prepared using methods disclosed herein and routine modifications thereof which will be apparent given the disclosure herein and methods well known in the art. Conventional and well-known synthetic methods may be used in addition to the teachings herein. The synthesis of typical compounds of formula (I), or a pharmaceutically acceptable salt thereof, e.g., compounds having structures described by one or more of formula (I), or other formulas or compounds disclosed herein, may be accomplished as described in the following examples.
General Syntheses
Typical embodiments of compounds in accordance with the present disclosure may be synthesized using the general reaction schemes and/or examples described below. It will be apparent given the description herein that the general schemes may be altered by substitution of the starting materials with other materials having similar structures to result in products that are correspondingly different. Descriptions of syntheses follow to provide numerous examples of how the starting materials may vary to provide corresponding products. Starting materials are typically obtained from commercial sources or synthesized using published methods for synthesizing compounds which are embodiments of the present disclosure, inspection of the structure of the compound to be synthesized will provide the identity of each substituent group. The identity of the final product will generally render apparent the identity of the necessary starting materials by a simple process of inspection, given the examples herein. Group labels (e.g., R1, Ra, Rb) used in the reaction schemes herein are for illustrative purposes only and unless otherwise specified do not necessarily match by name or function the labels used elsewhere to describe compounds of formula (I) or aspects or fragments thereof.
Synthetic Reaction Parameters
The compounds of this disclosure can be prepared from readily available starting materials using, for example, the following general methods and procedures. It will be appreciated that where typical or preferred process conditions (i.e., reaction temperatures, times, mole ratios of reactants, solvents, pressures, etc.) are given; other process conditions can also be used unless otherwise stated. Optimum reaction conditions may vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures.
Additionally, as will be apparent to those skilled in the art, conventional protecting groups may be necessary to prevent certain functional groups from undergoing undesired reactions. Suitable protecting groups for various functional groups as well as suitable conditions for protecting and deprotecting particular functional groups are well known in the art. For example, numerous protecting groups are described in T. W. Greene and G. M. Wuts (1999) Protecting Groups in Organic Synthesis, 3rd Edition, Wiley, New York, and references cited therein.
Furthermore, the compounds of this disclosure may contain one or more chiral centers. Accordingly, if desired, such compounds can be prepared or isolated as pure stereoisomers, i.e., as individual enantiomers or diastereomers or as stereoisomer-enriched mixtures. All such stereoisomers (and enriched mixtures) are included within the scope of this disclosure, unless otherwise indicated. Pure stereoisomers (or enriched mixtures) may be prepared using, for example, optically active starting materials or stereoselective reagents well-known in the art. Alternatively, racemic mixtures of such compounds can be separated using, for example, chiral column chromatography, chiral resolving agents, and the like.
The starting materials for the following reactions are generally known compounds or can be prepared by known procedures or obvious modifications thereof. For example, many of the starting materials are available from commercial suppliers such as Aldrich Chemical Co. (Milwaukee, Wis., USA). Others may be prepared by procedures or obvious modifications thereof, described in standard reference texts such as Fieser and Fieser's Reagents for Organic Synthesis, Volumes 1-15 (John Wiley, and Sons, 1991), Rodd's Chemistry of Carbon Compounds, Volumes 1-5, and Supplemental (Elsevier Science Publishers, 1989) organic Reactions, Volumes 1-40 (John Wiley, and Sons, 1991), March's Advanced Organic Chemistry, (John Wiley, and Sons, 5th Edition, 2001), and Larock's Comprehensive Organic Transformations (VCH Publishers Inc., 1989).
The terms “solvent,” “inert organic solvent” or “inert solvent” refer to a solvent inert under the conditions of the reaction being described in conjunction therewith (including, for example, benzene, toluene, acetonitrile, tetrahydrofuran (“THE”), dimethylformamide (“DMF”), chloroform, methylene chloride (or dichloromethane), diethyl ether, methanol, pyridine and the like). Unless specified to the contrary, the solvents used in the reactions of the present disclosure are inert organic solvents, and the reactions are carried out under an inert gas, preferably nitrogen.
The term “q.s.” means adding a quantity sufficient to achieve a stated function, e.g., to bring a solution to the desired volume (i.e., 100%).
Compounds as provided herein may be synthesized according to the general schemes provided below. In the Schemes below, it should be appreciated that each of the compounds shown therein may have protecting groups as required present at any step. Standard protecting groups are well within the pervue of one skilled in the art.
Scheme 1 shows exemplary synthetic routes for the synthesis of compounds of Formula (I). In Scheme 1, Q, RE, RW, Z1, Z3, n, m, are as defined herein, each R50 is independently C1-6 alkyl or two R50 together with the atom to which they are attached form a ring, X is halo, and each EG is independently a functional group capable of forming a covalent bond with compound 105.
Figure US11555029-20230117-C00054
In Scheme 1, compound 100 is coupled with compound 101 under standard metal-catalyzed coupling conditions (e.g., using a palladium(0) catalyst) in a suitable solvent (e.g., DMF) under an inert atmosphere to provide compound 102. Compounds of Formula (I) are then provided by contacting compound 102 with appropriately substituted compound 106 under standard metal-catalyzed coupling conditions. Alternatively, compound 102 is contacted with compound 103 under standard metal-catalyzed coupling conditions to provide compound 104. Compound 104 is then reacted with compound 105 under conditions suitable to provide compounds of Formula (I). Exemplary conditions include, but are not limited to, reductive amination (FG is an aldehyde and compound 105 comprises a primary or secondary amine).
Symmetric compounds as provided herein, such as those of Formula (Id), may be synthesized according to Scheme 2 below. In Scheme 2, Q, RE, RW, Z1, Z2, n, m, are as defined herein, each R50 is independently C1-6 alkyl or two R50 together with the atom to which they are attached form a ring, X is halo, and FG is a functional group capable of forming a covalent bond with compound 105.
Figure US11555029-20230117-C00055
In Scheme 2, symmetric compounds of Formula (Id) can be provided by coupling compound 100 with at least a two-fold excess of appropriately substituted compound 101 under standard metal-catalyzed coupling conditions (e.g., using a palladium(0) catalyst) in a suitable solvent (e.g., DMF) under an inert atmosphere. Alternatively, compound 100 is contacted with compound 200 under standard metal-catalyzed coupling conditions to provide compound 201. Compound 201 is then reacted with compound 105 under conditions suitable to provide compounds of Formula (Id). Exemplary conditions include, but are not limited to, reductive amination (FG is an aldehyde and compound 105 comprises a primary or secondary amine).
Suitably substituted compounds 100, 101, 103, 106 and 105 for use in the methods provided herein can be purchased from commercial sources or synthesized by known methods. Resolution of the isomers of Formula (I) can be performed as needed using standard chiral separation/resolution conditions (e.g., chromatography, crystallization, etc.).
Examples
The compounds were named using the IUPAC naming convention or using ChemBioDraw Ultra Version 14.0. Structures are drawn ChemBioDraw.
When production of starting materials is not particularly described, the compounds are known or may be prepared analogously to methods known in the art or as disclosed in the Examples. One of skill in the art will appreciate that synthetic methodologies described herein are only representative of methods for preparation of the compounds described herein, and that other known methods and variants of methods described herein may be used. The methods or features described in various Examples may be combined or adapted in various ways to provide additional ways of making the compounds described herein.
Exemplary Procedures for Select Intermediates:
Lactam Intermediates:
Figure US11555029-20230117-C00056
To the appropriate alcohol (above), as can be obtained as in PCT Int. Appl. WO 2015/150995, was added triethylamine (2.0 equiv.) and dichloromethane (0.1 M) at room temperature. The mixture was cooled to 0° C., and mesyl chloride (1.1 equiv.) was added dropwise. The mixture was stirred at 0° C. for 1 hour before being quenched with water. The organic layer was separated and washed once with brine, dried over magnesium sulfate, filtered, and concentrated. The residue was purified by silica gel chromatography. The mesylate was dissolved in dimethylformamide (0.5M) at room temperature, and sodium azide (5.0 equiv.) was added. The mixture was heated to 85° C. overnight. After cooling to room temperature, the mixture was diluted with ethyl acetate and water. The organic layer was then washed once with brine, dried over magnesium sulfate, filtered, and concentrated. The azide was used without further purification. To an oven-dried 40 mL vial was added the azide in ethyl acetate at room temperature. The vessel was purged with nitrogen, and Palladium on carbon was added (10 mol %). The vessel was then purged with hydrogen. After stirring for 4 hours, the contents were filtered through celite and concentrated. The crude amine was dissolved in ether and precipitated by the addition of 1.0 equiv. of HCl in dioxane. The solid HCl salt was isolated by filtration.
Pvrazine Intermediate:
Figure US11555029-20230117-C00057
A 30 percent w/w solution of NaOMe in MeOH (168 mL, 896 mmol) was added to a stirring suspension of 3,5-dibromopyrazin-2-amine (200 g, 791 mmol) in dry MeOH (900 mL). The reaction mixture was heated to reflux and stirred for 3 h. The reaction mixture was allowed to cool to room temperature and concentrated to ⅓ volume. The resulted mixture was then partitioned between dichloromethane (DCM) and saturated aqueous NaHCO3 solution. The layers were separated and the organic phase was washed with saturated aqueous NaHCO3 solution. The combined aqueous portions were extracted with DCM. The combined organic portions were washed with brine, dried over Na2SO4, filtered and concentrated to give 5-bromo-3-methoxypyrazin-2-amine. H NMR: (400 MHz, CDCl3) δ 7.64 (s, 1H), 4.79 (s, 2H), 4.00 (s, 3H).
A mixture of 5-bromo-3-methoxypyrazin-2-amine (20 g, 98 mmol), 55% aqueous HI (55%, 200 mL, 1462 mmol) and acetonitrile (200 mL) in water (300 mL) was stirred at 0° C. for 0.5 h. And a solution of sodium nitrite (120 g, 1740 mmol) in H2O (200 mL) was added in a dropwise fashion. The reaction mixture warm to 23° C., and then stirred for 20 h at 50° C. After cooling, the solution was poured into 20% aqueous NaOH and extracted with ethyl acetate (2×200 mL). The combined organic layers were washed with saturated aqueous sodium metabisulfite (200 mL) and brine (200 mL), dried over Na2SO4, filtered and concentrated under vacuum to give the crude product. The crude product was purified by column chromatography on silica gel (CH2C1/hexanes=1:1) to give the desired product 5-bromo-2-iodo-3-methoxypyrazine. H NMR: (400 MHz, DMSO) δ 8.07 (s, 1H), 4.04 (s, 3H).
Isopropylmagnesium chloride lithium chloride complex solution (1.3 M in tetrahydrofuran, 59.22 mL, 75.6 mmol) was added via syringe over 5 min to a stirred solution of 5-bromo-2-iodo-3-methoxypyrazine (21 g, 66.69 mmol) in anhydrous tetrahydrofuran (147 mL) under an atmosphere of dry nitrogen at −40° C. After 25 min, anhydrous N,N-dimethylformamide (15.54 mL, 200.34 mmol) was added via syringe over 2 min, and the resulting mixture was allowed to warm to −18° C. over 25 min. Aqueous citric acid solution (5% w/v, 200 mL) was added slowly, and the resulting heterogeneous mixture was stirred vigorously and warmed to room temperature. After 10 min, ethyl acetate (450 mL) was added. The organic layer was washed with water (2×300 mL), was dried over anhydrous magnesium sulfate, was filtered, and was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (0 to 10% ethyl acetate in hexanes) to provide 5-bromo-3-methoxypyrazine-2-carbaldehyde. H NMR: (400 MHz, CDCl3) δ 10.21 (s, 1H), 8.43 (s, 1H), 4.14 (s, 3H).
2,2′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)
Figure US11555029-20230117-C00058
A mixture of 3-bromo-2-chlorophenol (73.5 g, 0.355 mol, 1.0 eq), B2Pin2 (98 g, 0.391 mol 1.1 eq), KOAc (96.7 g, 0.987 mol, 2.78 eq) and Pd(dppf)Cl2-DCM (25.97 g, 35.5 mmol, 0.1 eq) were suspended in dioxane (1.2 L) was stirred at 80° C. for 15 h under positive pressure of nitrogen. The resulting mixture was cooled to ambient temperature and filtered. The filter cake was washed with dioxane (500 mL). The filtrates were combined.
3-bromo-2-chlorophenol (73.5 g, 0.355 mol, 1.0 eq), K2CO3 (122 g, 0.888 mol, 2.5 eq) and Pd(dppf)Cl2-DCM (8.8 g, 10.65 mmol, 0.03 eq) were added to the filtrate prepared above. The reaction was stirred at 80° C. for 8 h under positive pressure of nitrogen. The resulting mixture was cooled to ambient temperature and filtered. The filter cake was washed with dioxane (500 mL). The filtrate were combined and concentrated. The residue was dissolved with ethyl acetate (2 L). The solution was washed with water, brine, dried over sodium sulfate and concentrated. The crude was purified by silica gel chromatography (PE:EA=5:1) to give 2,2′-dichloro-[1,1′-biphenyl]-3,3′-diol.
To a solution of 2,2′-dichloro-[1,1′-biphenyl]-3,3′-diol (63.8 g, 0.251 mol, 1.0 eq) and DIPEA (121.5 g, 0.944 mol, 3.76 eq) in DCM (2 L) at 0° C. was added Tf2O (166 g, 0.590 mol, 2.35 eq) dropwise slowly. Then the reaction was warmed to rt and stirred for 2 h. The pH of the reaction solution was greater than 7. Water (2 L) was added. The layers were separated, and the organic phase was washed with aqueous solution NaHCO3, and brine, and dried over anhydrous sodium sulfate and concentrated. The crude was purified by silica gel chromatography, eluting with PE/DCM/EtOAc (1:1:0-1:1:0.2) to give 2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl bis(trifluoromethanesulfonate).
A mixture of 2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl bis(trifluoromethanesulfonate) (150 g, 0.289 mol, 1.0 eq), Bin2Pin2 (180 g, 0.722 mol, 2.5 eq) KOAc (113 g, 1.156 mol, 4.0 eq) and Pd(dppf)Cl2-DCM (31.72 g, 0.0434 mol, 0.15 eq) in dioxane (1.5 L) was stirred at 80° C. for 15 h under positive pressure of nitrogen. The resulting mixture was cooled to ambient temperature. DCM (1.5 L) was added, and the mixture was stirred for 15 min at rt. The mixture was filtered and the filter cake was washed with DCM (500 mL). The filtrates were combined and concentrated. The crude was purified by silica gel chromatography (PE:EA, 10:1-5:1) to give 2,2′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane). H NMR (400 MHz, DMSO-t/6) 5 7.63 (d, J=6.7 Hz, 2H), 7.46-7.30 (m, 4H), 1.34 (s, 24H).
6-chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methoxypyridine
Figure US11555029-20230117-C00059
To a solution of aldehyde (3.5 g, 20.4 mmol) in 60 mL DCM at 0° C. was added ethylenediamine (1.50 mL, 22.44 mmol) dropwise. The solution was stirred at 0° C. for 30 minutes, then N-bromosuccinimide (3.99 g, 22.44 mmol) was added in one portion, and the reaction mixture was stirred for 16 hours with gradual warming to ambient temperature. Reaction was taken up in DCM and stirred vigorously with 1:1 sat. sodium thiosulfate and sat sodium carbonate for 15 min. The organic later was dried with MgSO4, filtered and cone to provide 6-chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methoxypyridine.
General Reductive Amination Procedures:
Procedure A—Reductive Amination with DMF/TEA; NaBH(OAc)3
Aldehyde (1 equiv) was suspended in DMF (0.025 M) and to this was added (3S)-4-Amino-3-hydroxybutanoic acid (6 equiv) followed by triethyl amine (6 equiv) and the reaction stirred at room temperature for 90 minutes. To this was added sodium triacetoxyborohydride (6 equiv) and the reaction stirred an additional 4 hours. At this point TEA was added slowly dropwise to the reaction until the solution went clear. Reaction was diluted with 2 mL of water, filtered and purified by reverse phase HPLC (0.1% trifluoroacetic acid in acetonitrile/water) providing the final compound upon lyophilization as the bis-TFA salt.
Procedure B—Reductive Amination with DMF/aq NaOH; NaBH(OAc)3
A solution of aldehyde (1 equiv) in DMF (0.014 M) was added to a solution of the (S)-4-amino-3-hydroxybutanoic acid in 1N NaOH (10 equiv). After 2h sodium triacetoxyborohydride (10 equiv) was added. After 30 min the reaction was complete and TEA was added. Solids were removed by filtration and rinsed with MeOH. Organic phase was removed under reduced pressure, and the crude subjected to purification by reverse phase HPLC (0.1% trifluoroacetic acid in acetonitrile/water) providing the final compound upon lyophilization as the bis-TFA salt.
Procedure C—Reductive Amination with DMF/AcOH; NaCNBH3+NaBH(OAc)3
To a stirred mixture of aldehyde (1 equiv) and (S)-3-aminobutanoic acid (15 equiv) in a 6:1 mixture of DMF/AcOH (0.02 M) at room temperature was added sequentially sodium cyanoborohydride (9 equiv) and sodium triacetoxyborohydride (9 equiv). After 15 min, trifluoroacetic acid was added until the solution went clear. The resulting mixture was purified by reverse phase HPLC (0.1% trifluoroacetic acid in acetonitrile/water) providing the final compound upon lyophilization as the bis-TFA salt.
Procedure D—Reductive amination with DMSO/AcOH; NaBH(OAc)3
To a stirred mixture of aldehyde (1 equiv) and (1R,2R)-2-aminocyclopentane-1-carboxylic acid (15 equiv) in 5:1 mixture of DMSO/AcOH (0.008 M) at room temperature was added sodium triacetoxyborohydride (9 equiv). After 1 h, TFA was added until the solution went clear. The resulting homogeneous mixture was purified by reverse phase HPLC (0.1% trifluoroacetic acid in acetonitrile/water) providing the final compound upon lyophilization as the bis-TFA salt.
Procedure E—Reductive Amination with MeOH/AcOH; 2-Methylpyridine Borane
Aldehyde A (1 equiv) was suspended in a 10:1 mixture of MeOH/AcOH (0.01M) and to this was added (3S)-4-amino-3-hydroxybutyric acid (3 equiv) at room temperature. Mixture was stirred at room temperature under argon for 1 hour. To this solution was added 2-methylpyridine borane (3 equiv) at room temperature and the reaction was stirred for an additional 2 hours. At this point, TFA was added dropwise to the reaction mixture until the solution went clear. Reaction was filtered and purified by reverse phase HPLC (0.1% trifluoroacetic acid in acetonitrile/water) providing the final compound upon lyophilization as the bis-TFA salt.
Procedure F—Reductive Amination with DMF/MeOH/AcOH; 2-Methylpyridine Borane
Aldehyde (1 equiv) was suspended in a 6:3:1 mixture of DMF/MeOH/AcOH (0.01 M) and to this was added (3S)-4-amino-3-hydroxybutyric acid (10 equiv) at room temperature. Mixture was stirred at room temperature under argon for 1 hour. To this solution was added 2-methylpyridine borane (10 equiv) at room temperature and the reaction was stirred for an additional 2 hours. At this point, TFA was added dropwise to the reaction mixture until the solution goes clear. Reaction was filtered and purified by reverse phase HPLC (0.1% trifluoroacetic acid in acetonitrile/water) providing the final compound upon lyophilization as the bis-TFA salt.
Procedure G—Reductive Amination with DCM/EtOH/KOH; Na(OAc)3BH
To aldehyde in DCM (0.05M) was added a pre-sonicated 0.1M solution of KOH (10 equiv) and (3S)-4-amino-3-hydroxybutanoic acid (10 equiv) in EtOH. The reaction was stirred for 1 hour at rt before Na(OAc)3BH (10 equiv) and AcOH (10 equiv) were added. The cloudy reaction was sonicated for 1 min, and stirred at rt for 2h. The reaction was quenched with the addition of 1M HCl until the solution clears. The solution was concentrated in-vacuo, diluted with a mixture of MeCN/H2O/DMF (1:1:1), and purified by purified by reverse phase HPLC (0.1% trifluoroacetic acid in acetonitrile/water) providing the final compound upon lyophilization as the bis-TFA salt.
Procedure H—Reductive Amination with DCM/DMF/DIPEA; Na(OAc)3BH
The di aldehyde 6,6′-(((2,2′-dimethyl-[1,1′-biphenyl]-3,3′-diyl)bis(methylene))bis(oxy))bis(5-chloro-2-methoxynicotinaldehyde) (50 mg, 1 equiv) was taken in a vial and dissolved in DCM (1.5 mL). The (2S,4R)-4-hydroxypiperidine-2-carboxylic acid (125 mg, 10 equiv) was dissolved in mixture of DMF (3 mL), and DIPEA (0.15 mL, 10 equiv) in a another vial. These two solutions were mixed together and sonicated for 5 min, and allowed to stir for 1h at room temperature. To well stirred mixture was added Na(OAc)3BH at once and sonicated for 5 min to bring everything in to solution and allowed to stirred for overnight. The solution was concentrated under reduced pressure. The crude product was diluted with a mixture of MeCN/H2O/(2:1, with 0.1% TFA), solids were removed by filtration and purified by reverse phase HPLC (0.1% trifluoroacetic acid in acetonitrile/water) providing the final compound as the bis-TLA salt.
Procedure 1:
Figure US11555029-20230117-C00060
A 40 mL reaction vial, fitted with a stir bar, was charged with aryl-boronic acid (16 mmol), aryl-bromide (16 mmol), Pd(dppf) (0.8 mmol) and potassium carbonate (32 mmol). DriSolv 1,4-Dioxane (27 mL) and distilled water (3 mL) were then added by syringe, and the mixture de-gassed by bubbling argon for 5 min while mixing. The reaction vial was then sealed with a septum cap and the reaction heated to 85° C. using a heating block, the reaction was monitored by LC/MS. Upon complete consumption of starting material, saturated NaCl in water was added and the reaction mixture was extracted three times with ethyl acetate. The organic layers were collected, volatiles removed and crude mixture purified by silica gel column chromatography. The desired product eluted at 27% EtOAc/Hexanes.
A 100 mL round bottom flask fitted with a stir bar, was charged with Aryl-alcohol (10.37 mmol), N,N-diisopropylethylamine (41 mmol), dichloromethane (100 mL), placed under an atmosphere of argon and cooled to 0° C. with an ice water bath. While mixing triflic anhydride (26 mmol) was added by syringe dropwise and allowed to mix 1 h. The reaction was then quenched with a saturated solution of sodium bicarbonate and extracted three times with ethyl acetate. The organic layers were collected, volatiles removed and crude mixture purified by silica gel column chromatography. The desired product eluted at 14% EtOAc/Hexanes.
A 40 mL screw cap vial, fitted with a stir bar, was charged with aryl-triflate (6.87 mmol), bis(pinacolato)diboron (17.17 mmol), potassium acetate (27.46 mmol) and Pd(dppf) (1.03 mmol). DriSolv 1,4-Dioxane (27 mL) was then added by syringe, and the mixture was de-gassed by bubbling argon through for 5 min while mixing. The vial was then sealed and the mixture heated to 85° C. for 5 h. The reaction was quenched with saturated NaCl in water and extracted three times with ethyl acetate. The organic layers were collected, volatiles removed and crude mixture purified by silica gel column chromatography.
A 40 mL reaction vial, fitted with a stir bar, was charged with aryl-bromide (0.97 mmol), aryl-Bpin (0.46 mmol), Pd(PPh3)4 (23 μmol) and potassium carbonate (1 mmol). DriSolv 1,4-Dioxane (3.6 mL) and distilled water (0.9 mL) were then added by syringe, the mixture was de-gassed by bubbling argon through for 5 min while mixing. The reaction vial was then sealed with a septum cap and the reaction heated to 85° C. using a heating block, the reaction was then monitored by LC/MS. Upon complete consumption of starting material, the reaction was quenched with saturated solution of NaCl in water and extracted three times with ethyl acetate. The organic layers we collected, volatiles removed and product isolated by crashing out of diethyl ether.
A 20 mL reaction vial, fitted with a stir bar, was charged with dialdehyde (0.14 mmol), amine salt (0.5 mmol), trimethylamine (0.57 mmol) and dimethylformamide (1.4 mL) and allotted to mix for 0.5 h. Sodium triacetoxy-borohydride (0.57 mmol) was then added and the reaction allowed to mix overnight. The next day the reaction was quenched with trifluoroacetic acid (0.65 mmol), filtered, diluted with a 1:4 solution DML/water and purified by HPLC. H NMR (400 MHz, Methanol-d4) δ 8.70 (d, J=2.1 Hz, 1H), 8.52 (s, 1H), 8.21 (s, 1H), 7.74 (d, J=7.4 Hz, 1H), 7.68-7.44 (m, 4H), 4.82-4.03 (m, 16H), 2.58 (d, J=8.2 Hz, 4H), 2.46 (d, J=8.0 Hz, 4H). ES/MS m/z: 699.200 M+1
Procedure 2: (S)-5-((((5-(3′-(5-(((1-acetylazetidin-3-yl)amino)methyl)-6-methoxypyrazin-2-yl)-2,2′-dichloro-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)amino)methyl)pyrrolidin-2-one
Figure US11555029-20230117-C00061
A solution of (S)-5-(aminomethyl)pyrrolidin-2-one (3.29 g, 2.8 mmol) and 5-bromo-3-methoxypyrazine-2-carbaldehyde (5.0 g, 2.3 mmol) in dimethylformamide (10 ml) was stirred for 90 minutes. Sodium triacetoxyborohydride (5.59 g, 3.1 mmol), acetic acid (1.78 ml, 3.1 mmol) and dimethylformamide (10 ml) were added. After 16 hours di-tert-butyl dicabonate (7.54 g, 3.5 mmol) and trimethylamine (8.42 ml, 6.0 mmol) were added. After 2 hours the reaction was partitioned with water (100 mL) and ethyl acetate (100 ml). The aqueous phase was extracted with ethyl acetate (2×75 mL). The combined organic phases were washed with brine (2×25 mL) and dried over sodium sulfate. The solvent was removed under reduced pressure. The residue was subjected to flash chromatography (0-20% methanol/dichloro me thane). The fractions containing product were combined and the solvent was removed under reduced pressure providing tert-butyl (S)-((5-bromo-3-methoxypyrazin-2-yl)methyl)((5-oxopyrrolidin-2-yl)methyl)carbamate.
A mixture of 2,2′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2.29 g, 4.8 mmol), tert-butyl (S)-((5-bromo-3-methoxypyrazin-2-yl)methyl)((5-oxopyrrolidin-2-yl)methyl)carbamate (2.00 g, 4.8 mmol), 5-bromo-3-methoxypyrazine-2-carbaldehyde (1.05 g, 4.8 mmol), tetrakis(triphenylphosphine)palladium(0) (1.1 g, 0.96 mmol), potassium carbonate (2.00 g, 14.4 mmol) in dimethylformamide (40 ml) and water (6 ml) was degassed with argon of 10 minutes. The mixture was heated at 100° C. for 2h. The mixture was portioned with water (50 ml) and ethyl acetate (200 ml). The organic phase was washed with 5% lithium chloride (2×50 ml) and brine (50 ml). The organic phase was dried over sodium sulfate and the solvent was removed under reduced pressure. The residue was subjected to flash chromatography (0-20% methanol/dichloromethane). The fractions containing product were combined and the solvent was removed under reduced pressure, providing tert-butyl (S)-((5-(2,2′-dichloro-3′-(5-formyl-6-methoxypyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)((5-oxopyrrolidin-2-yl)methyl)carbamate.
A solution of tert-butyl (S)-((5-(2,2′-dichloro-3′-(5-formyl-6-methoxypyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)((5-oxopyrrolidin-2-yl)methyl)carbamate (10 mg, 0.014 mmol), 1-(3-aminoazetidin-1-yl)ethan-1-one hydrochloride (6.6 mg, 0.058 mmol) and N,N diisopropylethylamine (12.6 μL, 0.072 mmol) in dichloromethane (1 mL) and ethanol (1 mL) was stirred at room temperature for 10 minutes. Sodium tiracetoxyborohydride (30.6 mg, 0.144 mmol) and acetic acid (1 drop) were added. After 30m the solvent was removed under reduced pressure. The residue was taken up in dichloromethane (2 mL) and trifluoroacetic acid (1 mL) were added. After 15 minutes the solvent was removed under reduced pressure. The residue was taken up in methanol (1 mL), water (0.75 mL). The solution was subjected to preperative HPLC (eluant 0.1% trifluoroacetic acid in water/0.1% trifluoroacetic acid in acetonitrile at a gradient of 20-100%). The clean fractions were combined and subjected to lyophilization, providing (S)-5-((((5-(3′-(5-(((1-acetylazetidin-3-yl)amino)methyl)-6-methoxypyrazin-2-yl)-2,2′-dichloro-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)amino)methyl)pyrrolidin-2-one.
Procedure 3: (5S,5'S)-5,5′-(((((2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-5,2-diyl))bis(methylene))bis(azanediyl))bis(methylene))bis(pyrrolidin-2-one)
Figure US11555029-20230117-C00062
A vigorously stirred mixture of 2,2′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (3.50 g, 7.37 mmol), 5-bromo-3-methoxypyrazine-2-carbaldehyde (3.52 g, 16.2 mmol), tetrakis(tripbenylpbosphine)palladium(0) (596 mg, 0.516 mmol), potassium carbonate (5.09 g, 36.8 mmol), water (5.0 mL), and 1,4-dioxane (24 mL) was heated to 100° C. After 40 min, the resulting mixture was cooled to room temperature. Ethyl acetate (125 mL) was added, and the organic layer was washed with a mixture of water and brine (1:1 v:v, 100 mL), was dried over anhydrous sodium sulfate, was filtered through celite, and was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (0 to 50% ethyl acetate in hexanes) to give 5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-2-carbaldehyde) contaminated with pinacol. Dichloromethane (50 mL) was added, and the resulting mixture was stirred at room temperature. (S)-5-(Aminomethyl)pyrrolidin-2-one (2.52 g, 22.1 mmol) was added. After 15 min, acetic acid (1.05 mL, 18.4 mmol) was added via syringe. After 1 min, sodium triacetoxyborohydride (7.81 g, 36.9 mmol) was added. After 75 min, aqueous sodium hydroxide solution (2 M, 63 mL) was added, and the resulting biphasic mixture was stirred vigorously. After 10 min, saturated aqueous sodium carbonate solution (40 mL) was added. After 5 min, water (80 mL) and dichloromethane (40 mL) were added sequentially. The resulting biphasic mixture was agitated, and the layers were separated. The aqueous layer was extracted with dichloromethane (3×125 mL). The combined organic layers were dried over anhydrous sodium sulfate, were filtered through celite, and were concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (0 to 20% methanol in dichloromethane) to give (5S,5′S)-5,5′-(((((2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-5,2-diyl))bis(methylene))bis(azanediyl))bis(methylene))bis(pyrrolidin-2-one). Acetonitrile (15 mL) and methanol (15 mL) were added sequentially to dissolve the gel. Trifluoroacetic acid (1.0 mL) was added, and the resulting mixture was swirled vigorously. After 1 min, the resulting mixture was concentrated under reduced pressure. The residue was lyophilized from a mixture of acetonitrile and water (1:1 v:v, 30 mL) to give (5S,5′S)-5,5′-(((((2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-5,2-diyl))bis(methylene))bis(azanediyl))bis(methylene))bis(pyrrolidin-2-one) bis(2,2,2-trifluoroacetate). A portion of this material (2.1 g) was dissolved in 10% acetonitrile in water (15 mL) and was further purified by reverse phase preparative HPLC (0.1% trifluoroacetic acid in acetonitrile/water) to give (5S,5′S)-5,5′-(((((2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-5,2-diyl))bis(methylene))bis(azanediyl))bis(methylene))bis(pyrrolidin-2-one) bis(2,2,2-trifluoroacetate). H NMR (400 MHz, Methanol-A) 5 8.53 (s, 2H), 7.72 (dd, J=7.6, 1.7 Hz, 2H), 7.58 (t, J=7.6 Hz, 2H), 7.48 (dd, J=7.6, 1.7 Hz, 2H), 4.58-4.47 (m, 4H), 4.18-4.07 (m, 2H), 4.12 (s, 6H), 3.42-3.27 (m, 4H), 2.54-2.25 (m, 6H), 2.08-1.83 (m, 2H); LRMS (ESI-TOF) Calc'd for C34H36Cl2N8O4 [M+H]+: 691.2; found 691.3.
Procedure 4: (1R,1′R,3R,3′R)-3,3′-(((((2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-(methylamino)pyrazine-5,2-diyl))bis(methylene))bis(azanediyl))bis(methylene))bis(cyclobutan-1-ol)
Figure US11555029-20230117-C00063
A vigorously stirred mixture of 2,2′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (750 mg, 1.58 mmol), 3,5-dichloropyrazine-2-carbaldehyde (3.52 g, 16.2 mmol), [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (92 mg, 0.13 mmol), cesium carbonate (3.09 g, 9.47 mmol), water (1.8 mL), and 1,4-dioxane (11 mL) was heated to 100° C. After 60 min, the resulting mixture was cooled to room temperature, was filtered through celite, and was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (0 to 70% ethyl acetate in hexanes) to give 5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-chloropyrazine-2-carbaldehyde).
A stirred mixture of 5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-chloropyrazine-2-carbaldehyde) (55.0 mg, 0.019 mmol) and methylamine solution (2.0 M in tetrahydrofuran, 6.0 mL, 12 mmol) was heated to 70° C. After 60 min, acetic acid (0.5 mL) and water (2.0 mL) were sequentially added. After 30 min, the resulting mixture was cooled to room temperature. Ethyl acetate (15 ml) was added, and the organic layer was washed with water (2×15 mL), was dried over anhydrous sodium sulfate, was filtered, and was concentrated under reduced pressure. The residue was dissolved in dimethylsulfoxide (1.5 mL) and acetic acid (0.15 mL) and stirred at room temperature. (1r,3r)-3-(Aminomethyl)cyclobutan-1-ol hydrochloride (41.8 mg, 0.304 mmol), N,N-diisopropylethylamine (79.4 μL, 0.456 mmol), and sodium triacetoxyborohydride (64.4 mg, 0.304 mmol) were added sequentially, and the resulting mixture was heated to 57° C. After 60 min, the resulting mixture was cooled to room temperature and was purified by reverse phase preparative HPLC (0.1% trifluoroacetic acid in acetonitrile/water) to give (1r,1′r,3r,3′r)-3,3′-(((((2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-(methylamino)pyrazine-5,2-diyl))bis(methylene))bis(azanediyl))bis(methylene))bis(cyclobutan-1-ol).
Procedure 5: 1,1′-(((2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(pyrazine-5,2-diyl))bis(methylene))bis(azetidin-3-ol)
Figure US11555029-20230117-C00064
A vigorously stirred mixture of 2,2′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (150 mg, 0.316 mmol), 5-chloropyrazine-2-carbaldehyde (135 mg, 0.947 mmol), tetrakis(triphenylphsophine)palladium(0) (26 mg, 0.022 mmol), potassium carbonate (218 mg, 1.58 mmol), water (5 mL), and 1,4-dioxane (24 mL) was heated to 100° C. After 60 min, the resulting mixture was cooled to room temperature, was filtered through celite, and was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (0 to 70% ethyl acetate in hexanes) to give 5,5′-(2,2-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(pyrazine-2-carbaldehyde).
Sodium triacetoxyborohydride (82.8 mg, 0.391 mmol) was added to a stirred mixture of 5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(pyrazine-2-carbaldehyde) (17 mg, 0.039 mmol), 3-hydroxyazetidine hydrochloride (42.8 mg, 0.391 mmol), N,N-diisopropylethylamine (102 μL, 0.586 mmol), acetic acid (0.15 mL), and dimethylsulfoxide (1.5 mL) at 57° C. After 60 min, the resulting mixture was cooled to room temperature and was purified by reverse phase preparative HPLC (0.1% trifluoroacetic acid in acetonitrile/water) to give 1,1′-(((2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(pyrazine-5,2-diyl))bis(methylene))bis(azetidin-3-ol).
Procedure 6: 1,1′-(((2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-ethylpyrazine-5,2-diyl))bis(methylene))bis(azetidin-3-ol)
Figure US11555029-20230117-C00065
A stirred mixture of 5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-chloropyrazine-2-carbaldehyde) (84.2 mg, 0.167 mmol), tributyl(vinyl)stannane (390 μL, 1.336 mmol), and tetrakis(triphenylphsophine)palladium(0) (39 mg, 0.033 mmol) in toluene (2.0 mL) was heated to 110° C. After 37 min, the resulting mixture was cooled to room temperature and was purified by flash column chromatography on silica gel (0 to 35% ethyl acetate in hexanes) to give 5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-vinylpyrazine-2-carbaldehyde).
A mixture of 5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-vinylpyrazine-2-carbaldehyde) (53.8 mg, 0.110 mmol) and palladium on carbon (10% wt, 23.5 mg, 0.022 mmol) in ethanol (2.0 mL) and tetrahydrofuran (1.0 mL) was stirred under one atmosphere of hydrogen gas at room temperature. After 90 min, the reaction mixture was filtered through celite and was concentrated under reduced pressure to give 5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-ethylpyrazine-2-carbaldehyde). Sodium triacetoxyborohydride (43.1 mg, 0.204 mmol) was added to a stirred mixture of 5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-ethylpyrazine-2-carbaldehyde) (10 mg, 0.020 mmol), 3-hydroxyazetidine hydrochloride (22.3 mg, 0.204 mmol), N,N-diisopropylethylamine (53.2 μL, 0.305 mmol), acetic acid (0.15 mL), and dimethylsulfoxide (1.5 mL) at 57° C. After 60 min, the resulting mixture was cooled to room temperature and was purified by reverse phase preparative HPLC (0.1% trifluoroacetic acid in acetonitrile/water) to give 1,1′-(((2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-ethylpyrazine-5,2-diyl))bis(methylene))bis(azetidin-3-ol).
Procedure 7: 5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(2-((3-methoxyazetidin-1-yl)methyl)-3-(methylthio)pyrazine)
Figure US11555029-20230117-C00066
Sodium methanethiolate (72.3 mg, 1.03 mmol) was added to a stirred mixture of 5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-chloropyrazine-2-carbaldehyde) (104 mg, 0.206 mmol), in N,N-dimethylformamide (2.0 mL) at room temperature. After 20 min, diethyl ether (20 mL) and ethyl acetate (20 mL) were added. The organic layer was washed sequentially with aqueous sodium hydroxide solution (0.2 M, 30 mL) and water (30 mL), was dried over anhydrous magnesium sulfate, was filtered, and was concentrated under reduced pressure to give 5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-(methylthio)pyrazine-2-carbaldehyde).
5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(2-((3-methoxyazetidin-1-yl)methyl)-3-(methylthio)pyrazine) was synthesized in a manner similar to Procedure 6 using 5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-(methylthio)pyrazine-2-carbaldehyde) in place of 5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-ethylpyrazine-2-carbaldehyde) and using 3-methoxyazetidine hydrochloride in place of 3-hydroxyazetidine hydrochloride.
Procedure 8: 5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(2-((3-methoxyazetidin-1-yl)methyl)-3-methylpyrazine)
Figure US11555029-20230117-C00067
A vigorously stirred mixture of 5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-chloropyrazine-2-carbaldehyde) (60 mg, 0.12 mmol), tetramethyltin (165 μL, 1.19 mmol), and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (8.7 mg, 0.012 mmol) in N,N-dimethylformamide (2.0 mL) was heated to 110° C. After 60 min, the resulting mixture was cooled to room temperature. An aliquot of the reaction mixture (0.4 mL) was removed via syringe and was added to a stirred mixture of 3-methoxyazetidine hydrochloride (26.7 mg, 0.216 mmol) and N,N-diisopropylethylamine (56.4 μL, 0.324 mmol) in N,N-dimethylformamide (1.5 mL) and acetic acid (0.15 mL) at 57° C. Sodium triacetoxyborohydride (45.7 mg, 0.217 mmol) was added. After 60 min, the resulting mixture was cooled to room temperature and was purified by reverse phase preparative HPLC (0.1% trifluoroacetic acid in acetonitrile/water) to give 5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(2-((3-methoxyazetidin-1-yl)methyl)-3-methylpyrazine).
Procedure 9: 1,1′-(((2,2′-dibromo-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-5,2-diyl))bis(methylene))bis(azetidin-3-ol)
Figure US11555029-20230117-C00068
A stirred mixture of 2-chloro-6-methoxypyrazine (2.00 g, 13.8 mmol), hexabutylditin (8.74 mL, 17.3 mmol), and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (304 mg, 0.415 mmol) in toluene (22 mL) was heated to 115° C. After 18 h, the resulting mixture was cooled to room temperature, was filtered through celite, and was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (0 to 10% ethyl acetate in hexanes) to give 2-methoxy-6-(tributylstannyl)pyrazine.
Lithium diisopropylamide solution (2.0 M in tetrahydrofuran/heptane/ethylbenzene, 2.4 mL, 4.8 mmol) was added over 2 min via syringe to a stirred solution of 2-methoxy-6-(tributylstannyl)pyrazine (872 mg, 2.19 mmol) in tetrahydrofuran (18 mL) at −78° C. After 100 min, N,N-dimethylformamide (846 μL, 10.9 mmol) was added via syringe. After 45 min, saturated aqueous ammonium chloride solution (20 mL) and water (20 mL) were sequentially added, and the resulting biphasic mixture was warmed to room temperature with vigorous stirring. Diethyl ether (125 mL) was added, and the organic layer was washed sequentially with water (50 mL) and a mixture of water and saturated aqueous ammonium chloride solution (1:1 v:v, 100 mL), was dried over anhydrous magnesium sulfate, was filtered, and was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (0 to 10% ethyl acetate in hexanes) to give 3-methoxy-5-(tributylstannyl)pyrazine-2-carbaldehyde.
Iodine (79.1 mg, 0.312 mmol) was added to a stirred solution of give 3-methoxy-5-(tributylstannyl)pyrazine-2-carbaldehyde (133 mg, 0.312 mmol) in tetrahydrofuran (2 mL) at room temperature in the dark. After 15 h, sodium thiosulfate (20 mg) was added, and the resulting mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (0 to 20% methanol in dichloromethane) to give 5-iodo-3-methoxypyrazine-2-carbaldehyde.
Figure US11555029-20230117-C00069
n-Butyl lithium solution (1.94 M in cyclohexane, 19.8 mL, 38.5 mmol) was added over 2 min via syringe to a stirred solution of 2,2,6,6-tetramethylpiperidine (6.49 mL, 38.5 mmol) in tetrahydrofuran (64 mL) at 0° C. After 10 min, the resulting mixture was cooled to −78° C. over 15 min. Triisopropyl borate (14.8 mL, 64.1 mmol) was added over 2 min via syringe. After 8 min, a solution of 2,2′-dibromo-1,1′-biphenyl (2.00 g, 6.41 mmol) in tetrahydrofuran (15 mL) at −78° C. was added over 5 min via cannula. After 3.5 h, triisopropyl borate (7.40 mL, 32.1 mmol) was added over 5 min via syringe, and the resulting mixture was allowed to warm to −45° C. over 15.5 h. Aqueous hydrogen chloride solution (1 M, 100 mL) was added, and the resulting biphasic mixture was warmed to rt. The aqueous layer was extracted with ethyl acetate (3×100 mL). The combined organic layers were extracted with aqueous sodium hydroxide solution (4×100 mL). Concentrated hydrochloric acid was added to the combined basic aqueous layers until the combined layers had a pH of 1, and the resulting combined aqueous layers were extracted with ethyl acetate (3×250 mL). The combined organic layers from this extraction were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to give (2,2′-dibromo-[1,1′-biphenyl]-3,3′-diyl)diboronic acid.
A stirred mixture of (2,2′-dibromo-[1,1′-biphenyl]-3,3′-diyl)diboronic acid (40 mg, 0.100 mmol), 5-iodo-3-methoxypyrazine-2-carbaldehyde (52.9 mg, 0.200 mmol), tetrakis(triphenylphsophine)palladium(0) (12 mg, 0.010 mmol), and saturated aqueous sodium carbonate solution (400 μL) in 1,2-dimethoxyethane (2.0 mL) was heated to 100° C. After 2 h, the resulting mixture was cooled to room temperature. Ethyl acetate (30 mL) was added. The organic layer was washed with brine (20 mL), was dried over anhydrous sodium sulfate, was filtered, and was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (0 to 35% ethyl acetate in hexanes) to give 5,5′-(2,2′-dibromo-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-2-carbaldehyde).
Figure US11555029-20230117-C00070
1,1′-(((2,2′-dibromo-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-5,2-diyl))bis(methylene))bis(azetidin-3-ol) was synthesized in a manner similar to Procedure 6 using 5,5′-(2,2′-dibromo-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-2-carbaldehyde) in place of 5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-ethylpyrazine-2-carbaldehyde).
Procedure 10: 2-((5-(2,2′-dichloro-3′-(5-(4,5-dihydro-1H-imidazol-2-yl)-6-methoxypyridin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)-2,6-diazaspiro[3.4]octan-7-one
Figure US11555029-20230117-C00071
A vigorously stirred mixture of 5-(2,2′-dichloro-3′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazine-2-carbaldehyde (35 mg, 0.072 mmol), 6-chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methoxypyridine (32 mg, 0.15 mmol), chloro(2-dicyclohexylphosphino-2′,4′,6′-triisopropyl-1,1′-biphenyl) [2-(2′-amino-1,1′-biphenyl)]palladium(II) (3 mg, 0.004 mmol), and saturated aqueous sodium carbonate solution (180 μL), in 1,4-dioxane (1.5 mL) was heated to 105° C. After 60 min, the resulting mixture was cooled to room temperature. Ethyl acetate (30 mL) was added, and the organic layer was washed with brine (20 mL), was dried over anhydrous sodium sulfate, was filtered, and was concentrated under reduced pressure to give 5-(2,2′-dichloro-3′-(5-(4,5-dihydro-1H-imidazol-2-yl)-6-methoxypyridin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazine-2-carbaldehyde. 2-((5-(2,2′-dichloro-3′-(5-(4,5-dihydro-1H-imidazol-2-yl)-6-methoxypyridin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)-2,6-diazaspiro[3.4]octan-7-one was synthesized in a manner similar to Procedure 6 using 5-(2,2′-dichloro-3′-(5-(4,5-dihydro-1H-imidazol-2-yl)-6-methoxypyridin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazine-2-carbaldehyde in place of 5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-ethylpyrazine-2-carbaldehyde) and using 2,6-diazaspiro[3.4]octan-7-one hydrochloride in place of 3-hydroxyazetidine hydrochloride.
Procedure 11: (5S,5'S)-5,5′-(((((2,2′-dichloro-5-fluoro-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-5,2-diyl))bis(methylene))bis(azanediyl))bis(methylene))bis(pyrrolidin-2-one)
Figure US11555029-20230117-C00072
A stirred mixture of 1,3-dibromo-2-chloro-5-fluorobenzene (1.08 g, 3.75 mmol, (3-bromo-2-chlorophenyl)boronic acid (0.420 g, 1.79 mmol, aqueous sodium carbonate solution (2.0 M, 5.35 mL, 10.71 mmol), and tetrakis(triphenylphosphine)palladium(0) (103.15 mg, 0.089 mmol) in 1,4-dioxane (7 mL) was heated to 105° C. in a heating block. After 60 min, the resulting mixture was allowed to cool to room temperature. Ethyl acetate (30 mL) was added, and the organic layer was washed with brine (20 mL), was dried over anhydrous magnesium sulfate, was filtered, and was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (0 to 10% ethyl acetate in hexane) to give 3,3′-dibromo-2,2′-dichloro-5-fluoro-1,1′-biphenyl.
A stirred mixture of 3,3′-dibromo-2,2′-dichloro-5-fluoro-1,1′-biphenyl (0.443 g, 1.11 mmol), 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (0.705 g, 2.78 mmol), potassium acetate (0.545 g, 5.55 mmol), [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (0.041 g, 0.056 mmol) in dioxane (4 mL) was heated to 100° C. in a heating block. After 90 min, the resulting mixture was allowed to cool to room temperature and filtered through a pad of celite, was rinsed with EtOAc (10 mL), and was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (0 to 50% ethyl acetate in hexane) to give 2,2′-(2,2′-dichloro-5-fluoro-[1,1′-biphenyl]-3,3′-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane).
A stirred mixture of 2,2′-(2,2′-dichloro-5-fluoro-[1,1′-biphenyl]-3,3′-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (53 mg, 0.107 mmol), 5-bromo-3-methoxypyrazine-2-carbaldehyde (49 mg, 0.226 mmol), aqueous sodium carbonate solution (2.0 M, 323 μL, 0.645 mmol), and chloro(2-dicyclohexylphosphino-2′,4′,6′-triisopropyl-1,1′-biphenyl)[2-(2′-amino-1,1′-biphenyl)]palladium(II) (4 mg, 0.005 mmol) in 1,4-dioxane (0.5 mL) was heated to 105° C. in a heating block. After 60 min, the resulting mixture was allowed to cool to room temperature. Ethyl acetate (5 mL) was added, and the organic layer was washed with brine (2 mL), was dried over anhydrous magnesium sulfate, was filtered, and was concentrated under reduced pressure to give 5,5′-(2,2′-dichloro-5-fluoro-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-2-carbaldehyde).
N,N-diisopropylethylamine (76 μL, 0.430 mmol) was added via syringe to a stirred mixture of 5,5′-(2,2′-dichloro-5-fluoro-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-2-carbaldehyde). (15 mg, 0.029 mmol) and (S)-5-(aminomethyl)pyrrolidin-2-one hydrochloride (44 mg, 0.290 mmol) in dimethylsulfoxide (1 mL) at room temperature. After 10 min, sodium triacetoxyborohydride (62 mg, 0.290 mmol) was added as a solid, and the resulting mixture was heated to 60° C. in a heating block. After 30 min, the resulting mixture was allowed to cool to room temperature. The mixture was filtered and was purified by reverse phase preparative HPLC (0.1% trifluoroacetic acid in acetonitrile/water) to give (5S,5'S)-5,5′-(((((2,2′-dichloro-5-fluoro-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-5,2-diyl))bis(methylene))bis(azanediyl))bis(methylene))bis(pyrrolidin-2-one).
Procedure 12: 2-((5-(2,2′-dichloro-3″-methoxy-4″-((7-oxo-2,6-diazaspiro[3.4]octan-2-yl)methyl)-[1,1′:3′,1″-terphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)-2,6-diazaspiro[3.4]octan-7-one
Figure US11555029-20230117-C00073
2-((5-(2,2′-dichloro-3″-methoxy-4″-((7-oxo-2,6-diazaspiro[3.4]octan-2-yl)methyl)-[1,1′:3′,1″-terphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)-2,6-diazaspiro[3.4]octan-7-one was synthesized in a manner similar to 2-((5-(2,2′-dichloro-3′-(5-(4,5-dihydro-1H-imidazol-2-yl)-6-methoxypyridin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)-2,6-diazaspiro[3.4]octan-7-one (Procedure 10) using 4-bromo-2-methoxybenzaldehyde in place of 6-chloro-3-(4,5-dihydro-1H-imidazol-2-yl)-2-methoxypyridine.
Procedure 13: (S)-2′,2″-dichloro-3″-(6-methoxy-5-((((5-oxopyrrolidin-2-yl)methyl)amino)methyl)pyrazin-2-yl)-4-((6-oxo-2,5-diazaspiro[3.4]octan-2-yl)methyl)-[1,1′:3′,1″-terphenyl]-3-carbonitrile
Figure US11555029-20230117-C00074
2,2′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (302 mg, 0.64 mmol) and tert-butyl (S)-((5-bromo-3-methoxypyrazin-2-yl)methyl)((5-oxopyrrolidin-2-yl)methyl)carbamate (220 mg, 0.53 mmol) were suspended in 1,4-dioxane (2 ml) and H2O (0.3 mL), added potassium carbonate (95 mg, 0.69 mmol) and tetrakis(triphenylphosphine)palladium(0) (61 mg, 0.05 mmol). The mixture was heated at 85° C. After 90 min, LCMS showed almost complete conversion. The mixture was filtered through a short be of celite, washed with EtOAc. The filtrate was partitioned between EtOAc and brine. The organic layer was concentrated in vacuo. The residue was purified by silica gel chromatography using Hexanes/EtOAc as the eluent to afford tert-butyl (S)-((5-(2,2′-dichloro-3′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)((5-oxopyrrolidin-2-yl)methyl)carbamate.
tert-butyl (S)-((5-(2,2′-dichloro-3′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)((5-oxopyrrolidin-2-yl)methyl)carbamate (100 mg, 0.15 mmol) and 5-bromo-2-formylbenzonitrile (53 mg, 0.25 mmol) were suspended in 1,4-dioxane (5 mL) and H2O (0.5 mL), added potassium carbonate (22.3 mg, 0.16 mmol) and tetrakis(triphenylphosphine)palladium(0) (34.3 mg, 0.03 mmol). The mixture was heated at 85° C. After 20 min, LCMS showed almost complete conversion. The mixture was filtered through a short be of celite, washed with EtOAc. The filtrate was partitioned between EtOAc and brine. The organic layer was concentrated in vacuo. The residue was purified by silica gel chromatography using Hexanes/EtOAc as the eluent to afford tert-butyl (S)-((5-(2, 2′-dichloro-3″-cyano-4″-formyl-[1,1′:3′,1″-terphenyl]-3-yl)-3-methoxypyrazin-2-yl) methyl) ((5-oxopyrrolidin-2-yl) methyl) carbamate.
The title compound was synthesized according to general reductive amination procedure G.
Procedure 14: (S)-5-((((5-(2, 2′-dichloro-3′-(5-((3-(hydroxymethyl)-3-methylazetidin-1-yl) methyl)-6-methoxypyridin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)amino)methyl)pyrrolidin-2-one
Figure US11555029-20230117-C00075
2,2′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (3.32 g, 7.00 mmol) and 6-chloro-2-methoxynicotinaldehyde (1 g, 5.83 mmol) were suspended in 1,4-dioxane (18 mL) and H2O (2.4 mL), added potassium carbonate (1.05 g, 7.58 mmol) and tetrakis(triphenylphosphine)palladium(0) (0.67 g, 0.58 mmol). The mixture was heated at 84° C. After 90 min, LCMS showed almost complete conversion. The mixture was filtered through a short be of celite, washed with EtOAc. The filtrate was partitioned between EtOAc and brine. The organic layer was concentrated in vacuo. The residue was purified by silica gel chromatography using Hexanes/EtOAc as the eluent to afford 6-(2, 2′-dichloro-3′-(4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl)-[1,1′-biphenyl]-3-yl)-2-methoxynicotinaldehyde. 6-(2, 2′-dichloro-3′-(4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl)-[1,1′-biphenyl]-3-yl)-2-methoxynicotinaldehyde (423 mg, 0.87 mmol) and tert-butyl (S)-((5-bromo-3-methoxypyrazin-2-yl)methyl)((5-oxopyrrolidin-2-yl)methyl)carbamate (330 mg, 0.79 mmol) were suspended in 1,4-dioxane (3 mL) and H2O (0.6 mL), added potassium carbonate (132 mg, 0.95 mmol) and tetrakis(tripbenylpbosphine)palladium(0) (92 mg, 0.08 mmol). The mixture was heated at 84° C. After 90 min, LCMS showed almost complete conversion. The mixture was filtered through a short be of celite, washed with EtOAc. The filtrate was partitioned between EtOAc and brine. The organic layer was concentrated in vacuo. The residue was purified by silica gel chromatography using Hexanes/EtOAc as the eluent to afford tert-butyl (S)-((5-(2, 2′-dichloro-3′-(5-formyl-6-methoxypyridin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)((5-oxopyrrolidin-2-yl)methyl)carbamate.
The title compound was synthesized according to general reductive amination procedure G followed by standard Boc deprotection with TFA.
Procedure 15: (S)-5-((((5-(3′-(5-((R)-1-aminoethyl)-6-methoxypyrazin-2-yl)-2,2′-dichloro-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)amino)methyl)pyrrolidin-2-one
Figure US11555029-20230117-C00076
To an oven-dried 40 mL vial was added 5-bromo-3-methoxypyrazine-2-carbaldehyde, dichloromethane (0.5M), and (R)-2-methylpropane-2-sulfinamide (1.0 equiv.) at room temperature. To the vial was then added titanium tetraethoxide (2.0 equiv.). The mixture was stirred overnight before being diluted with sodium bicarbonate solution. The contents of the vial were filtered through celite, and the filtrate was washed once with water and once with brine. The organic layer was dried over magnesium sulfate, filtered, and concentrated. The residue was purified by silica gel chromatography using hexanes/ethyl acetate gradient to yield (R,E)-N-((5-bromo-3-methoxypyrazin-2-yl)methylene)-2-methylpropane-2-sulfinamide.
To an oven-dried 40 mL vial was added (R,E)-N-((5-bromo-3-methoxypyrazin-2-yl)methylene)-2-methylpropane-2-sulfinamide and dichloromethane (0.1M) at room temperature. The mixture was cooled to −78° C., and methyl magnesium iodide (1M in tetrahydrofuran, 1.6 equiv.) was added dropwise. The mixture was slowly warmed to room temperature and quenched with aqueous ammonium chloride solution, washed once with water, and washed once with brine. The organic layer was dried over magnesium sulfate, filtered, and concentrated. The residue was purified by silica gel chromatography using hexanes/ethyl acetate gradient to yield (R)—N—((R)-1-(5-bromo-3-methoxypyrazin-2-yl)ethyl)-2-methylpropane-2-sulfinamide and (R)—N—((S)-1-(5-bromo-3-methoxypyrazin-2-yl)ethyl)-2-methylpropane-2-sulfinamide.
To an oven-dried 40 mL vial was added (R)—N—((R)-1-(5-bromo-3-methoxypyrazin-2-yl)ethyl)-2-methylpropane-2-sulfinamide, 5-(2,2′-dichloro-3′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazine-2-carbaldehyde (1.0 equiv.), potassium carbonate (2.0 equiv.), Pd(dppf)Cl2 (10 mol %), dimethylformamide (0.2M), and water (10 vol %). The contents of the vial were sparged with nitrogen for 30 seconds then heated to 90° C. for 45 minutes. After cooling to room temperature, the mixture was diluted with ethyl acetate and filtered through celite. The filtrate was washed once with water and once with brine before being dried over magnesium sulfate, filtered, and concentrated. The residue was purified by silica gel chromatography with a methanol/dichloromethane gradient to yield (R)—N—((R)-1-(5-(2,2′-dichloro-3′-(5-formyl-6-methoxypyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)ethyl)-2-methylpropane-2-sulfinamide.
(S)-5-(aminomethyl)pyrrolidin-2-one (3 equiv.) was reacted with (R)—N—((R)-1-(5-(2,2′-dichloro-3′-(5-formyl-6-methoxypyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)ethyl)-2-methylpropane-2-sulfinamide following reductive amination procedure C to yield (R)—N—((R)-1-(5-(2,2′-dichloro-3′-(6-methoxy-5-(((((S)-5-oxopyrrolidin-2-yl)methyl)amino)methyl)pyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)ethyl)-2-methylpropane-2-sulfinamide.
To an oven-dried 20 mL vial was added (R)—N—((R)-1-(5-(2,2′-dichloro-3′-(6-methoxy-5-(((((S)-5-oxopyrrolidin-2-yl)methyl)amino)methyl)pyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)ethyl)-2-methylpropane-2-sulfinamide, methanol and 4M HCl in dioxane (2.0 equiv.). The mixture was stirred at room temperature for 30 minutes before being concentrated and purified by HPLC to yield (S)-5-((((5-(3′-(5-((R)-1-aminoethyl)-6-methoxypyrazin-2-yl)-2,2′-dichloro-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)amino)methyl)pyrrolidin-2-one.
Procedure 16: (S)-5-((((5-(2,2′-dichloro-3′-(5-((2,5-dimethyl-1H-pyrrol-1-yl)methyl)-6-methoxypyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)amino)methyl)pyrrolidin-2-one
Figure US11555029-20230117-C00077
tert-butyl (S)-((5-(2,2′-dichloro-3′-(5-formyl-6-methoxypyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)((5-oxopyrrolidin-2-yl)methyl)carbamate was reacted with (2R,5R)-2,5-dimethylpyrrolidine (3.0 equiv.) following reductive amination procedure C to obtain the undesired tert-butyl (S)-((5-(2,2′-dichloro-3′-(5-((2,5-dimethyl-1H-pyrrol-1-yl)methyl)-6-methoxypyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)((5-oxopyrrolidin-2-yl)methyl)carbamate.
To an oven-dried 40 mL vial was added tert-butyl (S)-((5-(2,2′-dichloro-3′-(5-((2,5-dimethyl-1H-pyrrol-1-yl)methyl)-6-methoxypyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)((5-oxopyrrolidin-2-yl)methyl)carbamate, dichloromethane (0.5M), and trifluoacetic acid (10 equiv.) at room temperature. The mixture was stirred for 30 minutes before being concentrated and purified by HPLC to furnish (S)-5-((((5-(2,2′-dichloro-3′-(5-((2,5-dimethyl-1H-pyrrol-1-yl)methyl)-6-methoxypyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)amino)methyl)pyrrolidin-2-one.
Procedure 17: 2,2′-(((2-bromo-2′-chloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-5,2-diyl))bis(methylene))bis(2,6-diazaspiro[3.4]octan-7-one)
Figure US11555029-20230117-C00078
2,2′-(((2-bromo-2′-chloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-5,2-diyl))bis(methylene))bis(2,6-diazaspiro[3.4]octan-7-one) was synthesized in a manner similar to Procedure 18 using (2-chlorophenyl)boronic acid in place of (2-fluorophenyl)boronic acid.
Procedure 18: 2,2′-(((2-bromo-2′-fluoro-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-5,2-diyl))bis(methylene))bis(2,6-diazaspiro[3.4]octan-7-one)
Figure US11555029-20230117-C00079
A stirred mixture of 1-bromo-2-iodobenzene (0.6 g, 4.29 mmol, (2-fluorophenyl)boronic acid (1.213 g, 4.29 mmol, potassium carbonate (1.48 g, 10.72 mmol), and tetrakis(triphenylphosphine)palladium(0) (0.149 g, 0.129 mmol) in dimethoxyethane (12.88 mL) and water (1.72 mL) was heated to 95° C. in a heating block. After 60 min, the resulting mixture was allowed to cool to room temperature. Ethyl acetate (50 mL) was added, and the organic layer was washed with brine (25 mL), was dried over anhydrous magnesium sulfate, was filtered, and was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (0 to 10% ethyl acetate in hexane) to give 2-bromo-2′-fluoro-1,1′-biphenyl.
N-Butyllithium solution (3.42 mL, 2.5 M in hexane, 8.56 mmol) was added via syringe to a stirred 2,2,6,6-tetramethylpiperidine (1.44 mL, 8.56 mmol) in anhydrous tetrahydrofuran (10.70 mL) at 0° C. The resulting mixture was stirred for 10 min and cooled to −78° C. Triisopropyl borate (3.29 mL, 14.27 mmol) was added and stirred for 8 min. 2-bromo-2′-fluoro-1,1′-biphenyl was added via syringe and the mixture was slowly warmed to room temperature overnight. 1M HCl (25 mL) was added, was extracted with ethyl acetate (3×25 mL), was extracted with 1M NaOH (25 mL), 0.5 N NaOH twice, was acidified with concentrated HCl to pH 1, was extracted with ethyl acetate (3×35 mL), was dried over anhydrous magnesium sulfate, was filtered, and was concentrated under reduced pressure to give (2-bromo-2′-fluoro-[1,1′-biphenyl]-3,3′-diyl)diboronic acid.
A stirred mixture of (2-bromo-2′-fluoro-[1,1′-biphenyl]-3,3′-diyl)diboronic acid (0.263 g, 0.776 mmol, 5-bromo-3-methoxypyrazine-2-carbaldehyde (0.506 g, 2.33 mmol, potassium carbonate (1.48 g, 10.72 mmol), aqueous sodium carbonate solution (2.0 M, 3.16 mL, 6.21 mmol) and chloro(2-dicyclohexylphosphino-2′,4′,6′-triisopropyl-1,1′-biphenyl)[2-(2′-amino-1,1′-biphenyl)]palladium(II) (0.031 g, 0.039 mmol) in dimethoxyethane (4 mL) was heated to 100° C. in a heating block. After 60 min, the resulting mixture was allowed to cool to room temperature. Ethyl acetate (40 mL) was added, and the organic layer was washed with brine (20 mL), was dried over anhydrous magnesium sulfate, was filtered, and was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (0 to 50% ethyl acetate in hexane) to give 5,5′-(2-bromo-2′-fluoro-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-2-carbaldehyde).
N,N-diisopropylethylamine (79 μL, 0.453 mmol) was added via syringe to a stirred mixture of 5,5′-(2-bromo-2′-fluoro-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-2-carbaldehyde). (15.8 mg, 0.030 mmol) and 2,6-diazaspiro[3.4]octan-7-one 4-methylbenzenesulfonate (90 mg, 0.302 mmol) in dimethylsulfoxide (1 mL) at room temperature. After 10 min, sodium triacetoxyborohydride (64 mg, 0.302 mmol) was added as a solid, and the resulting mixture was heated to 60° C. in a heating block. After 30 min, the resulting mixture was allowed to cool to room temperature. The mixture was filtered and was purified by reverse phase preparative HPLC (0.1% trifluoroacetic acid in acetonitrile/water) to give 2,2′-(((2-bromo-2′-fluoro-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-5,2-diyl))bis(methylene))bis(2,6-diazaspiro[3.4]octan-7-one).
Procedure 19: (5S,5'S)-5,5′-(((((2,2′-dichloro-5,5′-difluoro-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-5,2-diyl))bis(methylene))bis(azanediyl))bis(methylene))bis(pyrrolidin-2-one)
Figure US11555029-20230117-C00080
(5S,5′S)-5,5′-(((((2,2′-dichloro-5,5′-difluoro-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-5,2-diyl))bis(methylene))bis(azanediyl))bis(methylene))bis(pyrrolidin-2-one) was synthesized in a manner similar to Procedure 11 using 2-(3-bromo-2-chloro-5-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane in place of (3-bromo-2-chlorophenyl)boronic acid.
Procedure 20: (5S,5'S)-5,5′-(((((2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-(methylamino)pyrazine-5,2-diyl))bis(methylene))bis(methylazanediyl))bis(methylene))bis(pyrrolidin-2-one)
Figure US11555029-20230117-C00081
To an oven-dried 40 mL vial was added (5S,5′S)-5,5′-(((((2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-(methylamino)pyrazine-5,2-diyl))bis(methylene))bis(azanediyl))bis(methylene))bis(pyrrolidin-2-one), paraformaldehyde (10 equiv.), magnesium sulfate (2.0 equiv.), dimethylformamide (0.2 M), and acetic acid (10 equiv.) at room temperature. The mixture was stirred vigorously for 30 minutes before sodium triacetoxyborohydride (10 equiv.) was added. After 30 minutes, sodium borohydride (1.0 equiv.) was added, and the mixture was stirred for an additional 1 hour. The mixture was purified by HPLC to yield (5S,5′S)-5,5′-(((((2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-(methylamino)pyrazine-5,2-diyl))bis(methylene))bis(methylazanediyl))bis(methylene))bis(pyrrolidin-2-one).
Procedure 21: ((5-(2,2′-dichloro-3′-(6-methoxy-5-(((((S)-5-oxopyrrolidin-2-yl)methyl)amino)methyl)pyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)(((S)-5-oxopyrrolidin-2-yl)methyl)sulfamic acid
Figure US11555029-20230117-C00082
Sodium triacetoxyborohydride (122 mg, 0.577 mmol) was added to a stirred mixture of tert-butyl (S)-((5-(2,2′-dichloro-3′-(5-formyl-6-methoxypyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)((5-oxopyrrolidin-2-yl)methyl)carbamate (200 mg, 0.288 mmol), (S)-5-(aminomethyl)pyrrolidin-2-one hydrochloride (87 mg, 0.58 mmol), N,N-diisopropyIethylamine (200 μL, 1.2 mmol), and acetic acid (33 μL, 0.58 mmol) in dichloromethane (4.0 mL) at room temperature. After 75 min, aqueous sodium hydroxide solution (2 M, 1.5 mL) was added, and the resulting mixture was stirred vigorously. After 10 min, saturated aqueous sodium carbonate solution (3.0 mL), water (10 mL), and dichloromethane (15 mL) were added sequentially. The biphasic mixture was agitated, and the layers were separated. The aqueous layer was extracted with dichloromethane (3×15 mL), and the combined organic layers were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (0 to 15% methanol in dichloromethane) to give tert-butyl ((5-(2,2′-dichloro-3′-(6-methoxy-5-(((((S)-5-oxopyrrolidin-2-yl)methyl)amino)methyl)pyrazin-2-yl)-[1, T-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)(((S)-5-oxopyrrolidin-2-yl)methyl)carbamate.
Chlorosulfonic acid (9.6 u L, 0.060 mmol) was added via syringe to a stirred mixture of tert-butyl ((5-(2,2′-dichloro-3′-(6-methoxy-5-(((((S)-5-oxopyrrolidin-2-yl)methyl)amino)methyl)pyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)(((S)-5-oxopyrrolidin-2-yl)methyl)carbamate (43 mg, 0.055 mmol) and triethylamine (27 μL, 0.19 mmol) in dichloromethane (1.0 mL) at 0° C. After 5 min, the resulting mixture was warmed to room temperature. After 40 min, trifluoroacetic acid (1.0 mL) was added. After 30 min, the resulting mixture was concentrated under reduced pressure and was purified by reverse phase preparative HPLC (0.1% trifluoroacetic acid in acetonitrile/water) to give ((5-(2,2′-dichloro-3′-(6-methoxy-5-(((((S)-5-oxopyrrolidin-2-yl)methyl)amino)methyl)pyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)(((S)-5-oxopyrrolidin-2-yl)methyl)sulfamic acid.
Procedure 22: 2,2′-((2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-5,2-diyl))bis(5,5-difluoro-1,4,5,6-tetrahydropyrimidine)
Figure US11555029-20230117-C00083
2,2-Difluoropropane-1,3-diamine dihydrochloride (22.2 mg, 0.121 mmol) was added to a vigorously stirred mixture of 5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-2-carbaldehyde) (10 mg, 0.020 mmol) and potassium carbonate (33.5 mg, 0.242 mmol) in tetrahydrofuran (0.7 mL) and ethanol (1.3 mL) at room temperature, and the resulting mixture was heated to 80° C. After 20 min, the resulting mixture was cooled to room temperature over 5 min, and N-bromosuccinimide (28.8 mg, 0.162 mmol) was added. After 45 min, the resulting mixture was filtered and was purified by reverse phase preparative HPLC (0.1% trifluoroacetic acid in acetonitrile/water) to give 2,2′-((2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-methoxypyrazine-5,2-diyl))bis(5,5-difluoro-1,4,5,6-tetrahydropyrimidine).
Procedure 23: (S)-5-((((6-(2,2′-dichloro-3′-(6-methoxy-5-(((((S)-5-oxopyrrolidin-2-yl)methyl)amino)methyl)pyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-2-methoxypyridin-3-yl)methyl)amino)methyl)pyrrolidin-2-one
Figure US11555029-20230117-C00084
A vigorously stirred mixture of 6-(2,2′-dichloro-3′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1′-biphenyl]-3-yl)-2-methoxynicotinaldehyde (1.00 g, 2.07 mmol), 5-bromo-3-methoxypyrazine-2-carbaldehyde (672 mg, 3.10 mmol), chloro(2-dicyclohexylphosphino-2′,4′,6′-triisopropyl-1,1′-biphenyl) [2-(2′-amino-1,1′-biphenyl)]palladium(II) (81.3 mg, 0.103 mmol), and saturated aqueous sodium carbonate solution (5.16 mL) in 1,4-dioxane (15 mL) was heated to 85° C. After 60 min, the resulting mixture was cooled to room temperature, and ethyl acetate (100 mL) was added. The organic layer was washed with brine (60 mL), was dried over anhydrous sodium sulfate, was filtered, and was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (0 to 50% ethyl acetate in hexanes) to give 5-(2,2′-dichloro-3′-(5-formyl-6-methoxypyridin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazine-2-carbaldehyde.
Sodium triacetoxyborohydride (1.21 g, 5.71 mmol) was added to a vigorously stirred mixture of 5-(2,2′-dichloro-3′-(5-formyl-6-methoxypyridin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazine-2-carbaldehyde (565 mg, 1.14 mmol), (S)-5-(aminomethyl)pyrrolidin-2-one (392 mg, 3.431 mmol), and acetic acid (65 μL, 1.1 mmol) in dichloromethane (25 mL) at room temperature. After 60 min, aqueous sodium hydroxide solution (2 M, 10 mL) was added, and the resulting biphasic mixture was stirred vigorously. After 2 min, saturated aqueous sodium carbonate solution (8 mL), water (50 mL), and brine (20 mL) were added sequentially. The aqueous layer was extracted with dichloromethane (2×100 mL), and the combined organic layers were dried over anhydrous sodium sulfate, were filtered through celite, and were concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (0 to 20% methanol in dichloromethane) to give (S)-5-((((6-(2,2′-dichloro-3′-(6-methoxy-5-(((((S)-5-oxopyrrolidin-2-yl)methyl)amino)methyl)pyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-2-methoxypyridin-3-yl)methyl)amino)methyl)pyrrolidin-2-one. Acetonitrile (15 mL) and methanol (15 mL) were added sequentially to dissolve the gel. Trifluoroacetic acid (0.4 mL) was added, and the resulting mixture was swirled vigorously. After 1 min, the resulting mixture was concentrated under reduced pressure. The residue was lyophilized from a mixture of acetonitrile and water (1:1 v:v, 30 mL) to give (S)-5-((((6-(2,2′-dichloro-3′-(6-methoxy-5-(((((S)-5-oxopyrrolidin-2-yl)methyl)amino)methyl)pyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-2-methoxypyridin-3-yl)methyl)amino)methyl)pyrrolidin-2-one as its bis(2,2,2-trifluoroacetate) salt.
Procedure 24: 2-((5-(2,2′-dichloro-3′-(6-(methylamino)-5-((6-oxo-2,5-diazaspiro[3.4]octan-2-yl)methyl)pyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)-2,5-diazaspiro[3.4]octan-6-one
Figure US11555029-20230117-C00085
A vigorously stirred mixture of 5-(2,2′-dichloro-3′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazine-2-carbaldehyde (526 mg, 1.08 mmol), 3,5-dichloropyrazine-2-carbaldehyde (288 mg, 1.63 mmol), [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (63 mg, 0.087 mmol), and cesium carbonate (1.06 g, 3.25 mmol), in 1,4-dioxane (11 mL) and water (1.8 mL) was heated to 100° C. After 60 min, the resulting mixture was cooled to room temperature, was filtered through celite, and was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (0 to 70% ethyl acetate in hexanes) to give 3-chloro-5-(2,2′-dichloro-3′-(5-formyl-6-methoxypyrazin-2-yl)-[1,1′-biphenyl]-3-yl)pyrazine-2-carbaldehyde.
A stirred mixture of 3-chloro-5-(2,2′-dichloro-3′-(5-formyl-6-methoxypyrazin-2-yl)-[1,1′-biphenyl]-3-yl)pyrazine-2-carbaldehyde (81.0 mg, 0.162 mmol) and methylamine solution (2.0 M in tetrahydrofuran, 3.0 mL, 6.0 mmol) was heated to 70° C. After 60 min, acetic acid (0.4 mL) and water (1.0 mL) were added sequentially, and the resulting biphasic mixture was stirred vigorously. After 15 min, the biphasic mixture was cooled to room temperature, and ethyl acetate (15 mL) was added. The organic layer was washed sequentially with water (15 mL) and a mixture of saturated aqueous sodium bicarbonate solution and brine (1:1 v:v, 15 mL), was dried over anhydrous sodium sulfate, was filtered, and was concentrated under reduced pressure to give 5-(2,2′-dichloro-3′-(5-formyl-6-(methylamino)pyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazine-2-carbaldehyde. 2-((5-(2,2′-Dichloro-3′-(6-(methylamino)-5-((6-oxo-2,5-diazaspiro[3.4]octan-2-yl)methyl)pyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazin-2-yl)methyl)-2,5-diazaspiro[3.4]octan-6-one was synthesized in a manner similar to Procedure 6 using 5-(2,2′-dichloro-3′-(5-formyl-6-(methylamino)pyrazin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazine-2-carbaldehyde in place of 5,5′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(3-ethylpyrazine-2-carbaldehyde) and using 2,5-diazaspiro[3.4]octan-6-one hydrochloride in place of 3-bydroxyazetidine hydrochloride.
Procedure 26: 5-(2,2′-dichloro-3′-(6-methoxy-5-((3-methoxyazetidin-1-yl)methyl)pyridin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxy-2-((3-methoxyazetidin-1-yl)methyl)pyrazine
Figure US11555029-20230117-C00086
A stirred mixture of 2,2′-(2,2′-dichloro-[1,1′-biphenyl]-3,3′-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (1.24 g, 2.54 mmol, 5-bromo-3-methoxypyrazine-2-carbaldehyde (0.500 g, 2.30 mmol, aqueous sodium carbonate solution (2.0 M, 4.61 mL, 9.22 mmol), and tetrakis(triphenylphosphine)palladium(0) (133 mg, 0.115 mmol) in 1,4-dioxane (6 mL) was heated to 105° C. in a heating block. After 60 min, the resulting mixture was allowed to cool to room temperature. Ethyl acetate (30 mL) was added, and the organic layer was washed with brine (20 mL), was dried over anhydrous magnesium sulfate, was filtered, and was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (0 to 40% ethyl acetate in hexane) to give 5-(2,2′-dichloro-3′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazine-2-carbaldehyde.
A stirred mixture of 5-(2,2′-dichloro-3′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazine-2-carbaldehyde (50 mg, 0.103 mmol), 5-chloro-3-methoxypyridine-2-carbaldehyde (22.1 mg, 0.129 mmol), aqueous sodium carbonate solution (2.0 M, 206 μL, 0.412 mmol), and chloro(2-dicyclohexylphosphino-2′,4′,6′-triisopropyl-1,1′-biphenyl)[2-(2′-amino-1,1′-biphenyl)]palladium(II) (4.1 mg, 0.005 mmol) in 1,4-dioxane (0.5 mL) was heated to 105° C. in a heating block. After 60 min, the resulting mixture was allowed to cool to room temperature. Ethyl acetate (5 mL) was added, and the organic layer was washed with brine (2 mL), was dried over anhydrous magnesium sulfate, was filtered, and was concentrated under reduced pressure to give 5-(2,2′-dichloro-3′-(5-formyl-6-methoxypyridin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazine-2-carbaldehyde.
N,N-diisopropylethylamine (42 μL, 0.243 mmol) was added via syringe to a stirred mixture of 5-(2,2′-dichloro-3′-(5-formyl-6-methoxypyridin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxypyrazine-2-carbaldehyde (8 mg, 0.016 mmol) and 3-methoxyazetidine hydrochloride (20 mg, 0.162 mmol) in dimethylsulfoxide (1 mL) at room temperature. After 10 min, sodium triacetoxyborohydride (34.3 mg, 0.162 mmol) was added as a solid, and the resulting mixture was heated to 60° C. in a heating block. After 30 min, the resulting mixture was allowed to cool to room temperature. The mixture was filtered and was purified by reverse phase preparative hplc (0.1% trifluoroacetic acid in acetonitrile/water) to give 5-(2,2′-dichloro-3′-(6-methoxy-5-((3-methoxyazetidin-1-yl)methyl)pyridin-2-yl)-[1,1′-biphenyl]-3-yl)-3-methoxy-2-((3-methoxyazetidin-1-yl)methyl)pyrazine. 1H NMR (400 MHz, Methanol-d4) δ 8.53 (s, 1H), 7.92 (d, J=7.6 Hz, 2H), 7.72 (ddd, J=12.2, 7.7, 1.7 Hz, 2H), 7.60 (q, J=7.6 Hz, 3H), 7.53-7.43 (m, 2H), 7.41 (d, J=7.5 Hz, 2H), 4.76 (s, 2H), 4.52 (s, 2H), 4.15 (s, 3H), 4.12 (d, J=1.4 Hz, 5H), 3.41 (s, 3H), 3.40 (s, 4H).
The following compounds were prepared according to the procedures described herein (and indicated in Table 1 under Procedure) using the appropriate starting material(s) and appropriate protecting group chemistry as needed.
TABLE 1
ES/MS
(m/z,
No. Structure M + H+) Procedure
1
Figure US11555029-20230117-C00087
699.2   1
2
Figure US11555029-20230117-C00088
593.2   1
3
Figure US11555029-20230117-C00089
621.2   1
4
Figure US11555029-20230117-C00090
727.292  1
5
Figure US11555029-20230117-C00091
570.2   1
6
Figure US11555029-20230117-C00092
675.2   1
7
Figure US11555029-20230117-C00093
685.11   2
8
Figure US11555029-20230117-C00094
690.06   2
9
Figure US11555029-20230117-C00095
673.19   2
10
Figure US11555029-20230117-C00096
659.18   2
11
Figure US11555029-20230117-C00097
680.12   2
12
Figure US11555029-20230117-C00098
660.19   2
13
Figure US11555029-20230117-C00099
676.14   2
14
Figure US11555029-20230117-C00100
717.2   2
15
Figure US11555029-20230117-C00101
728.16   2
16
Figure US11555029-20230117-C00102
664.16   2
17
Figure US11555029-20230117-C00103
719.3   2
18
Figure US11555029-20230117-C00104
719.3   2
19
Figure US11555029-20230117-C00105
705.3   2
20
Figure US11555029-20230117-C00106
705.1   2
21
Figure US11555029-20230117-C00107
692.3   2
22
Figure US11555029-20230117-C00108
692.3   2
23
Figure US11555029-20230117-C00109
678.2   2
24
Figure US11555029-20230117-C00110
678.2   2
25
Figure US11555029-20230117-C00111
681.2   2
26
Figure US11555029-20230117-C00112
718.2   2
27
Figure US11555029-20230117-C00113
688.2   2
28
Figure US11555029-20230117-C00114
675.1   2
29
Figure US11555029-20230117-C00115
687.2   3
30
Figure US11555029-20230117-C00116
685.2   3
31
Figure US11555029-20230117-C00117
713.2   3
32
Figure US11555029-20230117-C00118
703.2   2
33
Figure US11555029-20230117-C00119
689.2   2
34
Figure US11555029-20230117-C00120
688.2   2
35
Figure US11555029-20230117-C00121
675.2   2
36
Figure US11555029-20230117-C00122
691.2   2
37
Figure US11555029-20230117-C00123
758.1   2
38
Figure US11555029-20230117-C00124
706     2
39
Figure US11555029-20230117-C00125
677.2   2
40
Figure US11555029-20230117-C00126
696.1   2
41
Figure US11555029-20230117-C00127
677.1   2
42
Figure US11555029-20230117-C00128
702.2   2
43
Figure US11555029-20230117-C00129
701.3   2
44
Figure US11555029-20230117-C00130
680.1   2
45
Figure US11555029-20230117-C00131
665.1   2
46
Figure US11555029-20230117-C00132
622.1   2
47
Figure US11555029-20230117-C00133
706.1   2
48
Figure US11555029-20230117-C00134
716.1   2
49
Figure US11555029-20230117-C00135
688.1   2
50
Figure US11555029-20230117-C00136
705.1   2
51
Figure US11555029-20230117-C00137
665.1   2
52
Figure US11555029-20230117-C00138
690.2   2
53
Figure US11555029-20230117-C00139
690.2   2
54
Figure US11555029-20230117-C00140
692.2   2
55
Figure US11555029-20230117-C00141
692.2   2
56
Figure US11555029-20230117-C00142
721.2   2
57
Figure US11555029-20230117-C00143
663.2   4
58
Figure US11555029-20230117-C00144
495.2   4
59
Figure US11555029-20230117-C00145
742.2  24
60
Figure US11555029-20230117-C00146
608.2  24
61
Figure US11555029-20230117-C00147
714.2  24
62
Figure US11555029-20230117-C00148
714.2  24
63
Figure US11555029-20230117-C00149
690.1  24
64
Figure US11555029-20230117-C00150
793.3  (M + Na)+ 21
65
Figure US11555029-20230117-C00151
769.2   4
66
Figure US11555029-20230117-C00152
635.2   4
67
Figure US11555029-20230117-C00153
741.3   4
68
Figure US11555029-20230117-C00154
371.2  (M + 2H) 2+  4
69
Figure US11555029-20230117-C00155
611.2   4
70
Figure US11555029-20230117-C00156
603.2   4
71
Figure US11555029-20230117-C00157
551.2   4
72
Figure US11555029-20230117-C00158
288.1  (M + 2H) 2+  4
73
Figure US11555029-20230117-C00159
549.2   4
74
Figure US11555029-20230117-C00160
523.2   4
75
Figure US11555029-20230117-C00161
635.3   4
76
Figure US11555029-20230117-C00162
741.3   4
77
Figure US11555029-20230117-C00163
607.2   4
78
Figure US11555029-20230117-C00164
713.3   4
79
Figure US11555029-20230117-C00165
713.3   4
80
Figure US11555029-20230117-C00166
689.2   4
81
Figure US11555029-20230117-C00167
549.1   5
82
Figure US11555029-20230117-C00168
605.2   6
83
Figure US11555029-20230117-C00169
711.3   6
84
Figure US11555029-20230117-C00170
711.3   6
85
Figure US11555029-20230117-C00171
687.3   6
86
Figure US11555029-20230117-C00172
629.2   3
87
Figure US11555029-20230117-C00173
669.2   7
88
Figure US11555029-20230117-C00174
641.1   7
89
Figure US11555029-20230117-C00175
747.2   7
90
Figure US11555029-20230117-C00176
747.2   7
91
Figure US11555029-20230117-C00177
723.2   7
92
Figure US11555029-20230117-C00178
605.2   8
93
Figure US11555029-20230117-C00179
577.2   8
94
Figure US11555029-20230117-C00180
683.2   8
95
Figure US11555029-20230117-C00181
683.2   8
96
Figure US11555029-20230117-C00182
659.3   8
97
Figure US11555029-20230117-C00183
663.3   4
98
Figure US11555029-20230117-C00184
654.3   4 (byproduct)
99
Figure US11555029-20230117-C00185
635.2   4
100
Figure US11555029-20230117-C00186
626.1   4 (byproduct)
101
Figure US11555029-20230117-C00187
741.3   4
102
Figure US11555029-20230117-C00188
732.3   4 (byproduct)
103
Figure US11555029-20230117-C00189
741.2   4
104
Figure US11555029-20230117-C00190
732.3   4 (byproduct)
105
Figure US11555029-20230117-C00191
717.2   4
106
Figure US11555029-20230117-C00192
708.3   4 (byproduct)
107
Figure US11555029-20230117-C00193
645.1   4
108
Figure US11555029-20230117-C00194
617.1   4
109
Figure US11555029-20230117-C00195
723.2   4
110
Figure US11555029-20230117-C00196
723.2   4
111
Figure US11555029-20230117-C00197
699.1   4
112
Figure US11555029-20230117-C00198
697.2  9 
113
Figure US11555029-20230117-C00199
779.2   9
114
Figure US11555029-20230117-C00200
644.2  10
115
Figure US11555029-20230117-C00201
644.2  10
116
Figure US11555029-20230117-C00202
591.2  10
117
Figure US11555029-20230117-C00203
632.2  10
118
Figure US11555029-20230117-C00204
613.2   3
119
Figure US11555029-20230117-C00205
675.3  22
120
Figure US11555029-20230117-C00206
715.3   3
121
Figure US11555029-20230117-C00207
603.3  22
122
Figure US11555029-20230117-C00208
495.2  12
123
Figure US11555029-20230117-C00209
713.2  12
124
Figure US11555029-20230117-C00210
713.2  12
125
Figure US11555029-20230117-C00211
689.3  12
126
Figure US11555029-20230117-C00212
690.2  23
127
Figure US11555029-20230117-C00213
631.4  22
128
Figure US11555029-20230117-C00214
635.2  22
129
Figure US11555029-20230117-C00215
603.3  22
130
Figure US11555029-20230117-C00216
637.3   3
131
Figure US11555029-20230117-C00217
609.2   3
132
Figure US11555029-20230117-C00218
637.4   3
133
Figure US11555029-20230117-C00219
635.1  22
134
Figure US11555029-20230117-C00220
635.1  22
135
Figure US11555029-20230117-C00221
497.3   3
136
Figure US11555029-20230117-C00222
715.2   3
137
Figure US11555029-20230117-C00223
701.2   3
138
Figure US11555029-20230117-C00224
691.2   3
139
Figure US11555029-20230117-C00225
691.3   3
140
Figure US11555029-20230117-C00226
585.2   3
141
Figure US11555029-20230117-C00227
575.2  22
142
Figure US11555029-20230117-C00228
665.174  3
143
Figure US11555029-20230117-C00229
637.064  3
144
Figure US11555029-20230117-C00230
637.054  3
145
Figure US11555029-20230117-C00231
637.141  3
146
Figure US11555029-20230117-C00232
665.107  3
147
Figure US11555029-20230117-C00233
637.089  3
148
Figure US11555029-20230117-C00234
665.169  3
149
Figure US11555029-20230117-C00235
665.105  3
150
Figure US11555029-20230117-C00236
665.13   3
151
Figure US11555029-20230117-C00237
696.151 13
152
Figure US11555029-20230117-C00238
684.135 13
153
Figure US11555029-20230117-C00239
643.123 13
154
Figure US11555029-20230117-C00240
671.204 13
155
Figure US11555029-20230117-C00241
735.972 14
156
Figure US11555029-20230117-C00242
677.123 14
157
Figure US11555029-20230117-C00243
663.07  14
158
Figure US11555029-20230117-C00244
 691.202. 14
159
Figure US11555029-20230117-C00245
677.068 14
160
Figure US11555029-20230117-C00246
691.19  14
161
Figure US11555029-20230117-C00247
691.062 14
162
Figure US11555029-20230117-C00248
677.015 14
163
Figure US11555029-20230117-C00249
704.118 14
164
Figure US11555029-20230117-C00250
649.083 14
165
Figure US11555029-20230117-C00251
679.094 14
166
Figure US11555029-20230117-C00252
676.149 14
167
Figure US11555029-20230117-C00253
676.008 14
168
Figure US11555029-20230117-C00254
703.141 14
169
Figure US11555029-20230117-C00255
675.991 14
170
Figure US11555029-20230117-C00256
663.107 14
171
Figure US11555029-20230117-C00257
663    14
172
Figure US11555029-20230117-C00258
678.078  2
173
Figure US11555029-20230117-C00259
664.044  2
174
Figure US11555029-20230117-C00260
678.077  2
175
Figure US11555029-20230117-C00261
678.143  2
176
Figure US11555029-20230117-C00262
664.136  2
177
Figure US11555029-20230117-C00263
680.043  2
178
Figure US11555029-20230117-C00264
651.916  2
179
Figure US11555029-20230117-C00265
648.076  2
180
Figure US11555029-20230117-C00266
683.908  2
181
Figure US11555029-20230117-C00267
685.985  2
182
Figure US11555029-20230117-C00268
700.069  2
183
Figure US11555029-20230117-C00269
657.987  2
184
Figure US11555029-20230117-C00270
633.983  2
185
Figure US11555029-20230117-C00271
692.17   2
186
Figure US11555029-20230117-C00272
692.18   2
187
Figure US11555029-20230117-C00273
690.19   2
188
Figure US11555029-20230117-C00274
721.19   2
189
Figure US11555029-20230117-C00275
719.26   3
190
Figure US11555029-20230117-C00276
771.27   3
191
Figure US11555029-20230117-C00277
691.35   2
192
Figure US11555029-20230117-C00278
717.3   2
193
Figure US11555029-20230117-C00279
717.2   2
194
Figure US11555029-20230117-C00280
705.16   2
195
Figure US11555029-20230117-C00281
733.48   2
196
Figure US11555029-20230117-C00282
691.13   2
197
Figure US11555029-20230117-C00283
717.3   2
198
Figure US11555029-20230117-C00284
705.2   2
199
Figure US11555029-20230117-C00285
677.08   2
200
Figure US11555029-20230117-C00286
677.1   2
201
Figure US11555029-20230117-C00287
688.32   2
202
Figure US11555029-20230117-C00288
731.33   2
203
Figure US11555029-20230117-C00289
731.21   2
204
Figure US11555029-20230117-C00290
705.28   2
205
Figure US11555029-20230117-C00291
719.25   2
206
Figure US11555029-20230117-C00292
719.34   2
207
Figure US11555029-20230117-C00293
704.22   2
208
Figure US11555029-20230117-C00294
731.25   2
209
Figure US11555029-20230117-C00295
743.16   3
210
Figure US11555029-20230117-C00296
707.23   2
211
Figure US11555029-20230117-C00297
706.24   2
212
Figure US11555029-20230117-C00298
714.25   2
213
Figure US11555029-20230117-C00299
687.24   2
214
Figure US11555029-20230117-C00300
702.25   2
215
Figure US11555029-20230117-C00301
692.25   2
216
Figure US11555029-20230117-C00302
704.25   2
217
Figure US11555029-20230117-C00303
705.25   2
218
Figure US11555029-20230117-C00304
726.2   2
219
Figure US11555029-20230117-C00305
725.25   2
220
Figure US11555029-20230117-C00306
687.24   2
221
Figure US11555029-20230117-C00307
692.25   2
222
Figure US11555029-20230117-C00308
724.22   2
223
Figure US11555029-20230117-C00309
692.25   2
224
Figure US11555029-20230117-C00310
708.25   2
225
Figure US11555029-20230117-C00311
692.25   2
226
Figure US11555029-20230117-C00312
692.25   2
227
Figure US11555029-20230117-C00313
719.26   2
228
Figure US11555029-20230117-C00314
692.25   2
229
Figure US11555029-20230117-C00315
692.25   2
230
Figure US11555029-20230117-C00316
718.27   2
231
Figure US11555029-20230117-C00317
692.25   2
232
Figure US11555029-20230117-C00318
718.23   2
233
Figure US11555029-20230117-C00319
692.25   2
234
Figure US11555029-20230117-C00320
690.24   2
235
Figure US11555029-20230117-C00321
705.25   2
236
Figure US11555029-20230117-C00322
692.25   2
237
Figure US11555029-20230117-C00323
692.25   2
238
Figure US11555029-20230117-C00324
692.25   2
239
Figure US11555029-20230117-C00325
673.09   3
240
Figure US11555029-20230117-C00326
669.17   3
241
Figure US11555029-20230117-C00327
665.14   3
242
Figure US11555029-20230117-C00328
665.2   3
243
Figure US11555029-20230117-C00329
665.16   3
244
Figure US11555029-20230117-C00330
747.21   3
245
Figure US11555029-20230117-C00331
719.16   2
246
Figure US11555029-20230117-C00332
693.15   2
247
Figure US11555029-20230117-C00333
684.15   2
248
Figure US11555029-20230117-C00334
670.16   2
249
Figure US11555029-20230117-C00335
719.99   2
250
Figure US11555029-20230117-C00336
677.27   2
251
Figure US11555029-20230117-C00337
677.27   2
252
Figure US11555029-20230117-C00338
682.28   2
253
Figure US11555029-20230117-C00339
680.2   2
254
Figure US11555029-20230117-C00340
663.28   2
255
Figure US11555029-20230117-C00341
663.32   2
256
Figure US11555029-20230117-C00342
691.16   2
257
Figure US11555029-20230117-C00343
680.12   2
258
Figure US11555029-20230117-C00344
720.01   2
259
Figure US11555029-20230117-C00345
703.18   2
260
Figure US11555029-20230117-C00346
710.05   2
261
Figure US11555029-20230117-C00347
710.11   2
262
Figure US11555029-20230117-C00348
705.09   2
263
Figure US11555029-20230117-C00349
696.1   2
264
Figure US11555029-20230117-C00350
696.07   2
265
Figure US11555029-20230117-C00351
682.09   2
266
Figure US11555029-20230117-C00352
689.05   2
267
Figure US11555029-20230117-C00353
698.08   2
268
Figure US11555029-20230117-C00354
663.95   2
269
Figure US11555029-20230117-C00355
703.2   2
270
Figure US11555029-20230117-C00356
680.12   2
271
Figure US11555029-20230117-C00357
698.05   2
272
Figure US11555029-20230117-C00358
712.1   2
273
Figure US11555029-20230117-C00359
674.13   2
274
Figure US11555029-20230117-C00360
678.1   2
275
Figure US11555029-20230117-C00361
678.12   2
276
Figure US11555029-20230117-C00362
663.81   2
277
Figure US11555029-20230117-C00363
696.25   2
278
Figure US11555029-20230117-C00364
696.17   2
279
Figure US11555029-20230117-C00365
696.13   2
280
Figure US11555029-20230117-C00366
696.04   2
281
Figure US11555029-20230117-C00367
693.14   2
282
Figure US11555029-20230117-C00368
698.15   2
283
Figure US11555029-20230117-C00369
666.06   2
284
Figure US11555029-20230117-C00370
684.05   2
285
Figure US11555029-20230117-C00371
719.2   2
286
Figure US11555029-20230117-C00372
742.2   2
287
Figure US11555029-20230117-C00373
703.16   2
288
Figure US11555029-20230117-C00374
665.12   2
289
Figure US11555029-20230117-C00375
690.17   2
290
Figure US11555029-20230117-C00376
746.09   2
291
Figure US11555029-20230117-C00377
744.15   2
292
Figure US11555029-20230117-C00378
732.13   2
293
Figure US11555029-20230117-C00379
746.06   2
294
Figure US11555029-20230117-C00380
746.05   2
295
Figure US11555029-20230117-C00381
678.22   2
296
Figure US11555029-20230117-C00382
678.05   2
297
Figure US11555029-20230117-C00383
678.07   2
298
Figure US11555029-20230117-C00384
718.19   2
299
Figure US11555029-20230117-C00385
678.23   2
300
Figure US11555029-20230117-C00386
708.2   2
301
Figure US11555029-20230117-C00387
724.11   2
302
Figure US11555029-20230117-C00388
651.04   2
303
Figure US11555029-20230117-C00389
705.15   2
304
Figure US11555029-20230117-C00390
681.1   2
305
Figure US11555029-20230117-C00391
715.08   2
306
Figure US11555029-20230117-C00392
727.03   2
307
Figure US11555029-20230117-C00393
704.65   2
308
Figure US11555029-20230117-C00394
758.14   2
309
Figure US11555029-20230117-C00395
678.17   2
310
Figure US11555029-20230117-C00396
678.17   2
311
Figure US11555029-20230117-C00397
712.08   2
312
Figure US11555029-20230117-C00398
703.14   2
313
Figure US11555029-20230117-C00399
708.08   2
314
Figure US11555029-20230117-C00400
705.15   2
315
Figure US11555029-20230117-C00401
608.2  15
316
Figure US11555029-20230117-C00402
608.2  15
317
Figure US11555029-20230117-C00403
719.7   3
318
Figure US11555029-20230117-C00404
594.2   2
319
Figure US11555029-20230117-C00405
717.3  20
320
Figure US11555029-20230117-C00406
689.3   4
321
Figure US11555029-20230117-C00407
791.2   3
322
Figure US11555029-20230117-C00408
666.2   2
323
Figure US11555029-20230117-C00409
652.2   2
324
Figure US11555029-20230117-C00410
715.2   3
325
Figure US11555029-20230117-C00411
781.3  2 
326
Figure US11555029-20230117-C00412
719.3   3
327
Figure US11555029-20230117-C00413
719.3   3
328
Figure US11555029-20230117-C00414
799.3   3
329
Figure US11555029-20230117-C00415
744.3   2
330
Figure US11555029-20230117-C00416
855.2   3
331
Figure US11555029-20230117-C00417
743.3  3 
332
Figure US11555029-20230117-C00418
692.2   2
333
Figure US11555029-20230117-C00419
719.3   2
334
Figure US11555029-20230117-C00420
694.2   2
335
Figure US11555029-20230117-C00421
694.2   2
336
Figure US11555029-20230117-C00422
694.2   2
337
Figure US11555029-20230117-C00423
769.2   2
338
Figure US11555029-20230117-C00424
701.2   2
339
Figure US11555029-20230117-C00425
694.2   2
340
Figure US11555029-20230117-C00426
652.2   2
341
Figure US11555029-20230117-C00427
678.2   2
342
Figure US11555029-20230117-C00428
664.2   2
343
Figure US11555029-20230117-C00429
664.2   2
344
Figure US11555029-20230117-C00430
652.2   2
345
Figure US11555029-20230117-C00431
652.2   2
346
Figure US11555029-20230117-C00432
652.2   2
347
Figure US11555029-20230117-C00433
652.2   2
348
Figure US11555029-20230117-C00434
705.2   2
349
Figure US11555029-20230117-C00435
711.2   2
350
Figure US11555029-20230117-C00436
710.2   2
351
Figure US11555029-20230117-C00437
719.3   2
352
Figure US11555029-20230117-C00438
672.2  16
353
Figure US11555029-20230117-C00439
678.2   2
354
Figure US11555029-20230117-C00440
678.2   2
355
Figure US11555029-20230117-C00441
678.2   2
356
Figure US11555029-20230117-C00442
678.2   2
357
Figure US11555029-20230117-C00443
726.2  2
358
Figure US11555029-20230117-C00444
726.2   2
359
Figure US11555029-20230117-C00445
664.2   2
360
Figure US11555029-20230117-C00446
664.2   2
361
Figure US11555029-20230117-C00447
705.2   2
362
Figure US11555029-20230117-C00448
705.2   2
363
Figure US11555029-20230117-C00449
738.2   2
364
Figure US11555029-20230117-C00450
678.2   2
365
Figure US11555029-20230117-C00451
678.2   2
366
Figure US11555029-20230117-C00452
706.3   2
367
Figure US11555029-20230117-C00453
724.2   2
368
Figure US11555029-20230117-C00454
703.2   2
369
Figure US11555029-20230117-C00455
691.2   2
370
Figure US11555029-20230117-C00456
715.2   2
371
Figure US11555029-20230117-C00457
703.2   2
372
Figure US11555029-20230117-C00458
705.2   2
373
Figure US11555029-20230117-C00459
679.2   2
374
Figure US11555029-20230117-C00460
638.2   2
375
Figure US11555029-20230117-C00461
707.3   2
376
Figure US11555029-20230117-C00462
707.3   2
377
Figure US11555029-20230117-C00463
666.2   2
378
Figure US11555029-20230117-C00464
666.2   2
379
Figure US11555029-20230117-C00465
650.2   2
380
Figure US11555029-20230117-C00466
664.2   2
381
Figure US11555029-20230117-C00467
678.2   2
382
Figure US11555029-20230117-C00468
641.2   3
383
Figure US11555029-20230117-C00469
665.2   3
384
Figure US11555029-20230117-C00470
641.2   3
385
Figure US11555029-20230117-C00471
525.2  15
386
Figure US11555029-20230117-C00472
525.2  15
387
Figure US11555029-20230117-C00473
717.299  2
388
Figure US11555029-20230117-C00474
765.483 (m/z M + Na+)  3
389
Figure US11555029-20230117-C00475
761.156 17
390
Figure US11555029-20230117-C00476
761.161 17
391
Figure US11555029-20230117-C00477
653.12  17
392
Figure US11555029-20230117-C00478
736.104 17
393
Figure US11555029-20230117-C00479
743.096 18
394
Figure US11555029-20230117-C00480
743.268 18
395
Figure US11555029-20230117-C00481
637.69  18
396
Figure US11555029-20230117-C00482
717.045 18
397
Figure US11555029-20230117-C00483
727.327 19
398
Figure US11555029-20230117-C00484
709.596 11
399
Figure US11555029-20230117-C00485
627.114 11
400
Figure US11555029-20230117-C00486
637.4   3
401
Figure US11555029-20230117-C00487
553.308  3
402
Figure US11555029-20230117-C00488
525.282  3
403
Figure US11555029-20230117-C00489
705.2   2
404
Figure US11555029-20230117-C00490
726.2   2
405
Figure US11555029-20230117-C00491
725.2   2
406
Figure US11555029-20230117-C00492
725.2   2
407
Figure US11555029-20230117-C00493
703.2   2
408
Figure US11555029-20230117-C00494
726.3   2
409
Figure US11555029-20230117-C00495
718.3   2
410
Figure US11555029-20230117-C00496
725.2   2
411
Figure US11555029-20230117-C00497
718.4   2
412
Figure US11555029-20230117-C00498
715.2   2
413
Figure US11555029-20230117-C00499
721.3   2
414
Figure US11555029-20230117-C00500
727.1   2
415
Figure US11555029-20230117-C00501
771.3   2
416
Figure US11555029-20230117-C00502
705     2
417
Figure US11555029-20230117-C00503
699.1   2
418
Figure US11555029-20230117-C00504
685.1   2
419
Figure US11555029-20230117-C00505
752.2   2
420
Figure US11555029-20230117-C00506
686.1   2
421
Figure US11555029-20230117-C00507
711.2   2
422
Figure US11555029-20230117-C00508
685.1   2
423
Figure US11555029-20230117-C00509
694.2   2
424
Figure US11555029-20230117-C00510
711.2   2
425
Figure US11555029-20230117-C00511
685.1   2
426
Figure US11555029-20230117-C00512
664.1   2
427
Figure US11555029-20230117-C00513
678.2   2
428
Figure US11555029-20230117-C00514
698.2   2
429
Figure US11555029-20230117-C00515
673     2
430
Figure US11555029-20230117-C00516
678.2   2
431
Figure US11555029-20230117-C00517
664.2   2
432
Figure US11555029-20230117-C00518
696.0   2
433
Figure US11555029-20230117-C00519
680.1   2
434
Figure US11555029-20230117-C00520
719.20   3
435
Figure US11555029-20230117-C00521
691.2   2
436
Figure US11555029-20230117-C00522
496.3  26
437
Figure US11555029-20230117-C00523
714.3  26
438
Figure US11555029-20230117-C00524
636.226 26
439
Figure US11555029-20230117-C00525
608.242 26
440
Figure US11555029-20230117-C00526
660.1  26
441
Figure US11555029-20230117-C00527
714.3   2
442
Figure US11555029-20230117-C00528
692.2   2
443
Figure US11555029-20230117-C00529
692.198  2
444
Figure US11555029-20230117-C00530
676.16   2
445
Figure US11555029-20230117-C00531
676.14   2
446
Figure US11555029-20230117-C00532
664.16   2
447
Figure US11555029-20230117-C00533
690.09   2
448
Figure US11555029-20230117-C00534
651.13   2
449
Figure US11555029-20230117-C00535
611.16   2
450
Figure US11555029-20230117-C00536
737.2  12
451
Figure US11555029-20230117-C00537
765.2  12
452
Figure US11555029-20230117-C00538
719.2   2
453
Figure US11555029-20230117-C00539
692.2   2
454
Figure US11555029-20230117-C00540
671.2   3
455
Figure US11555029-20230117-C00541
745.2   3
456
Figure US11555029-20230117-C00542
657.2   3
457
Figure US11555029-20230117-C00543
706.2   2
458
Figure US11555029-20230117-C00544
687.2   2
459
Figure US11555029-20230117-C00545
692.2   2
460
Figure US11555029-20230117-C00546
753.2   3
461
Figure US11555029-20230117-C00547
689.1   2
462
Figure US11555029-20230117-C00548
715.1   2
463
Figure US11555029-20230117-C00549
722.1   2
464
Figure US11555029-20230117-C00550
691.1   2
465
Figure US11555029-20230117-C00551
691.1   2
466
Figure US11555029-20230117-C00552
749.2   3
467
Figure US11555029-20230117-C00553
749.1   3
468
Figure US11555029-20230117-C00554
719.2   3
469
Figure US11555029-20230117-C00555
662.2   2
470
Figure US11555029-20230117-C00556
720.1   2
471
Figure US11555029-20230117-C00557
720.1   2
472
Figure US11555029-20230117-C00558
705.2   2
473
Figure US11555029-20230117-C00559
705.1   2
474
Figure US11555029-20230117-C00560
661.2   3
475
Figure US11555029-20230117-C00561
691.2   3
476
Figure US11555029-20230117-C00562
693.2   3
477
Figure US11555029-20230117-C00563
689.2   3
478
Figure US11555029-20230117-C00564
693.2   3
479
Figure US11555029-20230117-C00565
665.2   3
480
Figure US11555029-20230117-C00566
691.2   3
481
Figure US11555029-20230117-C00567
691.2   2
482
Figure US11555029-20230117-C00568
690.2   2
483
Figure US11555029-20230117-C00569
706.2   2
484
Figure US11555029-20230117-C00570
692.2   2
485
Figure US11555029-20230117-C00571
676.2   2
486
Figure US11555029-20230117-C00572
678.2   2
487
Figure US11555029-20230117-C00573
678.2   2
488
Figure US11555029-20230117-C00574
716.3  13
489
Figure US11555029-20230117-C00575
767.2  12
490
Figure US11555029-20230117-C00576
781.2  12
491
Figure US11555029-20230117-C00577
765.2  12
492
Figure US11555029-20230117-C00578
631.2  12
493
Figure US11555029-20230117-C00579
737.2  12
494
Figure US11555029-20230117-C00580
737.2  12
495
Figure US11555029-20230117-C00581
713.2  12
496
Figure US11555029-20230117-C00582
659.2   4
497
Figure US11555029-20230117-C00583
698.139 26
498
Figure US11555029-20230117-C00584
674.085 26
499
Figure US11555029-20230117-C00585
721.151  3
500
Figure US11555029-20230117-C00586
721.142  3
501
Figure US11555029-20230117-C00587
706.114  2
502
Figure US11555029-20230117-C00588
706.132  2
508
Figure US11555029-20230117-C00589
705.16   2
509
Figure US11555029-20230117-C00590
678.133  2
510
Figure US11555029-20230117-C00591
678.119  2
511
Figure US11555029-20230117-C00592
678.164  2
512
Figure US11555029-20230117-C00593
665.2   2
513
Figure US11555029-20230117-C00594
691.2   2
514
Figure US11555029-20230117-C00595
691.14   2
515
Figure US11555029-20230117-C00596
714.23   2
516
Figure US11555029-20230117-C00597
678.22   2
517
Figure US11555029-20230117-C00598
691.25   2
518
Figure US11555029-20230117-C00599
709.15   3
519
Figure US11555029-20230117-C00600
669.23   3
520
Figure US11555029-20230117-C00601
700.16   2
521
Figure US11555029-20230117-C00602
700.25   2
522
Figure US11555029-20230117-C00603
682.1   2
523
Figure US11555029-20230117-C00604
694.18   2
524
Figure US11555029-20230117-C00605
680.14   2
525
Figure US11555029-20230117-C00606
773.26   3
526
Figure US11555029-20230117-C00607
669.21   3
527
Figure US11555029-20230117-C00608
663.63   3
528
Figure US11555029-20230117-C00609
732.22   2
529
Figure US11555029-20230117-C00610
680.48   2
530
Figure US11555029-20230117-C00611
722.38   2
531
Figure US11555029-20230117-C00612
747.32   3
532
Figure US11555029-20230117-C00613
691.15   3
533
Figure US11555029-20230117-C00614
693.18   3
534
Figure US11555029-20230117-C00615
719.45   2
535
Figure US11555029-20230117-C00616
691.21   2
536
Figure US11555029-20230117-C00617
714.07   2
537
Figure US11555029-20230117-C00618
743.2   3
538
Figure US11555029-20230117-C00619
720.31   3
539
Figure US11555029-20230117-C00620
705.22   2
540
Figure US11555029-20230117-C00621
720.19   3
541
Figure US11555029-20230117-C00622
705.2   2
542
Figure US11555029-20230117-C00623
717.19   2
543
Figure US11555029-20230117-C00624
705.3   2
544
Figure US11555029-20230117-C00625
689.13   3
545
Figure US11555029-20230117-C00626
690.1   2
546
Figure US11555029-20230117-C00627
791.12   3
547
Figure US11555029-20230117-C00628
741.17   2
548
Figure US11555029-20230117-C00629
689.17   3
549
Figure US11555029-20230117-C00630
690.19   2
550
Figure US11555029-20230117-C00631
659.14   3
551
Figure US11555029-20230117-C00632
674.14   2
552
Figure US11555029-20230117-C00633
692.21   2
553
Figure US11555029-20230117-C00634
696.07   2
554
Figure US11555029-20230117-C00635
721.14   3
555
Figure US11555029-20230117-C00636
691.18   3
556
Figure US11555029-20230117-C00637
763.11   3
557
Figure US11555029-20230117-C00638
706.19   2
558
Figure US11555029-20230117-C00639
691.19   2
559
Figure US11555029-20230117-C00640
727.13   2
560
Figure US11555029-20230117-C00641
698.11   2
561
Figure US11555029-20230117-C00642
665.12   3
562
Figure US11555029-20230117-C00643
693.14   3
563
Figure US11555029-20230117-C00644
693.13   3
564
Figure US11555029-20230117-C00645
678.12   2
565
Figure US11555029-20230117-C00646
692.12   2
566
Figure US11555029-20230117-C00647
692.12   2
567
Figure US11555029-20230117-C00648
692.13   2
568
Figure US11555029-20230117-C00649
763.03   3
569
Figure US11555029-20230117-C00650
763.03   3
570
Figure US11555029-20230117-C00651
819.11   3
571
Figure US11555029-20230117-C00652
764.92   3
572
Figure US11555029-20230117-C00653
715.01   2
573
Figure US11555029-20230117-C00654
741.14   2
574
Figure US11555029-20230117-C00655
712.12   2
575
Figure US11555029-20230117-C00656
739.06   3
576
Figure US11555029-20230117-C00657
763.1   3
577
Figure US11555029-20230117-C00658
715.06   2
578
Figure US11555029-20230117-C00659
679.12   2
579
Figure US11555029-20230117-C00660
665.13   3
580
Figure US11555029-20230117-C00661
705.18   2
581
Figure US11555029-20230117-C00662
693.1   2
582
Figure US11555029-20230117-C00663
535.1  10
583
Figure US11555029-20230117-C00664
535.1  10
584
Figure US11555029-20230117-C00665
536.1  10
585
Figure US11555029-20230117-C00666
594.9   2
586
Figure US11555029-20230117-C00667
567.2   2
587
Figure US11555029-20230117-C00668
567.2   2
588
Figure US11555029-20230117-C00669
670.1   3
589
Figure US11555029-20230117-C00670
680.9   2
590
Figure US11555029-20230117-C00671
772.3   3
591
Figure US11555029-20230117-C00672
607.1   2
592
Figure US11555029-20230117-C00673
581.2   2
593
Figure US11555029-20230117-C00674
596.2   2
594
Figure US11555029-20230117-C00675
553     2
595
Figure US11555029-20230117-C00676
607     2
596
Figure US11555029-20230117-C00677
567     2
597
Figure US11555029-20230117-C00678
620.2   2
598
Figure US11555029-20230117-C00679
706     2
599
Figure US11555029-20230117-C00680
706     2
600
Figure US11555029-20230117-C00681
695.1   2
601
Figure US11555029-20230117-C00682
719.2   3
602
Figure US11555029-20230117-C00683
740.216 13
603
Figure US11555029-20230117-C00684
701.2  13
604
Figure US11555029-20230117-C00685
740.201 13
605
Figure US11555029-20230117-C00686
726.2  13
606
Figure US11555029-20230117-C00687
714.2  13
607
Figure US11555029-20230117-C00688
738.198 12
608
Figure US11555029-20230117-C00689
780.2  12
609
Figure US11555029-20230117-C00690
752.198 12
610
Figure US11555029-20230117-C00691
752.2  12
611
Figure US11555029-20230117-C00692
646.12  12
612
Figure US11555029-20230117-C00693
766.2  12
613
Figure US11555029-20230117-C00694
738.14  12
614
Figure US11555029-20230117-C00695
674.1  26
615
Figure US11555029-20230117-C00696
568.0  26
616
Figure US11555029-20230117-C00697
648.2  26
617
Figure US11555029-20230117-C00698
726.2  26
618
Figure US11555029-20230117-C00699
698.1  26
619
Figure US11555029-20230117-C00700
592.0  26
620
Figure US11555029-20230117-C00701
715.0   2
621
Figure US11555029-20230117-C00702
635.1   3
622
Figure US11555029-20230117-C00703
663.2   2
623
Figure US11555029-20230117-C00704
691.1   2
624
Figure US11555029-20230117-C00705
665.2   3
625
Figure US11555029-20230117-C00706
678.2   2
626
Figure US11555029-20230117-C00707
665.3   3
627
Figure US11555029-20230117-C00708
678.2   2
628
Figure US11555029-20230117-C00709
704.1  13
629
Figure US11555029-20230117-C00710
623.11   2
630
Figure US11555029-20230117-C00711
593.2  14
631
Figure US11555029-20230117-C00712
663.1  14
632
Figure US11555029-20230117-C00713
716.1  14
633
Figure US11555029-20230117-C00714
702.1  14
634
Figure US11555029-20230117-C00715
725.2   3
635
Figure US11555029-20230117-C00716
718.2  26
636
Figure US11555029-20230117-C00717
740.2  26
637
Figure US11555029-20230117-C00718
740.2  26
638
Figure US11555029-20230117-C00719
716.3  26
639
Figure US11555029-20230117-C00720
690.2  14
640
Figure US11555029-20230117-C00721
677.2  14
641
Figure US11555029-20230117-C00722
644.168 10
642
Figure US11555029-20230117-C00723
605.182 10
643
Figure US11555029-20230117-C00724
646.196 10
644
Figure US11555029-20230117-C00725
646.211 10
645
Figure US11555029-20230117-C00726
632.19  10
646
Figure US11555029-20230117-C00727
647.195 10
647
Figure US11555029-20230117-C00728
647.209 10
648
Figure US11555029-20230117-C00729
692.175  2
649
Figure US11555029-20230117-C00730
698.096 26
650
Figure US11555029-20230117-C00731
712.055 26
651
Figure US11555029-20230117-C00732
712.082 26
652
Figure US11555029-20230117-C00733
691.07  13
653
Figure US11555029-20230117-C00734
730.12  13
654
Figure US11555029-20230117-C00735
760.96  13
655
Figure US11555029-20230117-C00736
745.1  13
656
Figure US11555029-20230117-C00737
677.33  14
657
Figure US11555029-20230117-C00738
723.1   3
658
Figure US11555029-20230117-C00739
691.14   2
659
Figure US11555029-20230117-C00740
705.17   2
660
Figure US11555029-20230117-C00741
719.8   3
661
Figure US11555029-20230117-C00742
691.16   3
662
Figure US11555029-20230117-C00743
723.389  1
663
Figure US11555029-20230117-C00744
747.2   3
NMR data for select compounds is shown below in Table 2.
TABLE 2
No. NMR
1 1H NMR (400 MHz, Methanol-d4) δ 8.70 (d, J = 2.1 Hz, 1H), 8.52 (s, 1H), 8.21 (s, 1H),
7.74 (d, J = 7.4 Hz, 1H), 7.68-7.44 (m, 4H), 4.82-4.03 (m, 16H), 2.58 (d, J = 8.2 Hz,
4H), 2.46 (d, J = 8.0 Hz, 4H).
2 1H NMR (400 MHz, Methanol-d4) δ 8.67 (d, J = 2.3 Hz, 1H), 8.49 (s, 1H), 8.19 (td, J = 7.2,
2.7 Hz, 1H), 7.71 (dd, J = 7.3, 2.2 Hz, 1H), 7.65-7.42 (m, 4H), 4.72 (s, 9H), 4.34 (d, J = 34.3 Hz,
1H), 4.14 (d, J = 21.4 Hz, 9H).
3 1H NMR (400 MHz, Methanol-d4) δ 8.67 (s, 1H), 8.49 (s, 1H), 8.19 (s, 1H), 7.71 (d, J = 7.1 Hz,
1H), 7.65-7.41 (m, 4H), 4.72 (s, 6H), 4.39 (s, 6H), 4.14 (d, J = 21.3 Hz, 8H), 3.37 (s,
6H).
4 1H NMR (400 MHz, Methanol-d4) δ 8.66 (s, 1H), 8.49 (s, 1H), 8.20 (d, J = 7.2 Hz, 1H),
7.71 (d, J = 8.0 Hz, 1H), 7.66-7.43 (m, 4H), 4.79-4.02 (m, 24H), 1.86 (s, 6H).
5 1H NMR (400 MHz, Methanol-d4) δ 8.77-8.66 (m, 1H), 8.53 (s, 1H), 8.26-8.14 (m, 1H),
7.80-7.67 (m, 1H), 7.66-7.43 (m, 4H), 4.49 (d, J = 6.5 Hz, 4H), 4.18 (s, 3H), 4.13 (s,
3H), 3.95-3.83 (m, 4H).
6 1H NMR (400 MHz, Methanol-d4) δ 8.80-8.66 (m, 1H), 8.62-8.51 (m, 1H),
8.31-8.11 (m, 1H), 7.83-7.40 (m, 5H), 4.66-4.43 (m, 4H), 4.23-4.05 (m, 7H), 3.05 (d, J = 6.2 Hz,
2H), 2.52-2.32 (m, 5H), 1.97 (d, J = 8.9 Hz, 2H).
7 1H NMR (400 MHz, DMSO-d6) δ 9.25 (s, 1H), 9.15 (s, 1H), 8.57 (d, J = 0.8 Hz, 1H),
8.50 (s, 1H), 7.75 (dt, J = 7.6, 1.6 Hz, 2H), 7.63 (dq, J = 7.6, 4.0 Hz, 3H), 7.55 (ddd, J = 7.5, 5.7,
1.8 Hz, 2H), 4.46 (s, 2H), 4.22 (d, J = 7.0 Hz, 2H), 4.01 (d, J = 7.8 Hz, 6H), 3.93 (m, 1H),
3.20 (s, 2H), 2.48-2.42 (m, 5H), 2.25-2.09 (m, 3H), 1.81 (m, 1H), 1.78 (s, 1H).
8 1H NMR (400 MHz, DMSO-d6) δ 9.23 (s, 1H), 8.56 (d, J = 7.4 Hz, 2H), 7.76 (dt, J = 7.7,
2.0 Hz, 2H), 7.68-7.59 (m, 3H), 7.56 (dd, J = 7.9, 1.8 Hz, 2H), 4.46 (s, 2H), 4.33 (s, 2H),
4.02 (s, 6H), 3.94 (t, J = 6.9 Hz, 1H), 3.22 (s, 3H), 3.17 (s, 1H), 2.25-2.13 (m, 2H),
2.14 (s, 6H), 1.80 (dd, J = 11.9, 6.3 Hz, 1H).
9 1H NMR (400 MHz, DMSO-d6) δ 9.26 (s, 1H), 9.14 (s, 1H), 8.57 (s, 1H), 8.48 (s, 1H),
7.74 (ddd, J = 8.6, 7.6, 1.8 Hz, 2H), 7.68-7.58 (m, 3H), 7.55 (ddd, J = 7.6, 5.1, 1.8 Hz,
2H), 4.68 (s, 2H), 4.55 (s, 2H), 4.46 (s, 2H), 4.01 (d, J = 9.2 Hz, 6H), 3.94 (s, 1H), 3.19 (s,
2H), 2.24-2.09 (m, 3H), 1.85-1.74 (m, 1H), 1.69 (s, 3H).
10 1H NMR (400 MHz, DMSO-d6) δ 9.24 (s, 1H), 9.12 (s, 1H), 8.57 (s, 1H), 8.48 (s, 1H),
7.74 (ddd, J = 9.2, 7.6, 1.8 Hz, 2H), 7.68-7.51 (m, 6H), 4.65 (s, 2H), 4.46 (s, 2H), 4.40 (s,
2H), 4.02 (s, 2H), 3.99 (s, 3H), 3.94 (s, 2H), 3.20 (s, 2H), 2.25-2.09 (m, 4H), 1.78 (s, 1H).
11 1H NMR (400 MHz, DMSO-d6) δ 9.54 (s, 2H), 9.21 (s, 2H), 8.57 (d, J = 2.4 Hz, 2H),
7.75 (dd, J = 7.7, 1.8 Hz, 2H), 7.68-7.59 (m, 3H), 7.56 (dd, J = 7.6, 1.8 Hz, 2H), 5.62 (s, 1H),
4.47 (s, 5H), 4.09-3.95 (m, 6H), 3.96-3.83 (m, 2H), 3.70 (s, 1H), 3.50 (dd, J = 9.4, 3.8 Hz,
1H), 3.19 (s, 2H), 2.24-2.09 (m, 3H), 1.78 (s, 1H).
12 1H NMR (400 MHz, DMSO-d6) δ 9.90 (s, 2H), 9.21 (s, 2H), 8.56 (d, J = 7.1 Hz, 2H),
7.76 (dt, J = 7.6, 1.9 Hz, 2H), 7.68-7.59 (m, 3H), 7.56 (dd, J = 7.6, 1.8 Hz, 2H), 4.46 (s, 2H),
4.32 (s, 2H), 4.02 (s, 6H), 3.94 (s, 1H), 3.19 (s, 2H), 2.67 (s, 1H), 2.26-2.09 (m, 3H),
2.03 (s, 3H), 1.85-1.75 (m, 1H).
13 1H NMR (400 MHz, DMSO-d6) δ 9.25 (s, 2H), 9.14 (s, 1H), 8.55 (d, J = 16.1 Hz, 2H),
7.79-7.52 (m, 9H), 4.46 (s, 3H), 4.32 (s, 1H), 4.01 (m, 6H), 3.43 (s, 1H), 3.25 (d, J = 6.7 Hz,
2H), 2.52 (s, 1H), 2.25-2.19 (m, 2H), 2.23-2.09 (m, 3H), 1.80 (dd, J = 11.8, 6.3 Hz, 1H).
14 1H NMR (400 MHz, DMSO-d6) δ 10.48 (s, 1H), 9.23 (s, 1H), 9.13 (s, 1H), 8.57 (s, 1H),
8.50 (s, 1H), 7.74 (td, J = 7.4, 1.8 Hz, 2H), 7.68-7.56 (m, 3H), 7.56 (ddd, J = 7.6, 3.0, 1.8 Hz,
2H), 5.04 (s, 1H), 4.88 (d, J = 8.4 Hz, 1H), 4.78 (d, J = 14.9 Hz, 2H), 4.59 (s, 1H),
4.44 (d, J = 18.7 Hz, 5H), 4.35 (s, 1H), 4.02 (s, 2H), 3.94 (s, 1H), 3.92 (d, J = 6.7 Hz, 1H),
3.52 (t, J = 7.1 Hz, 1H), 3.29-3.10 (m, 2H) 2.29-2.09 (m, 5H), 1.94 (dd, J = 14.1, 7.1 Hz, 2H),
1.80 (dd, J = 12.1, 6.5 Hz, 1H).
15 1H NMR (400 MHz, DMSO-d6) δ 9.22 (s, 1H), 9.11 (s, 1H), 8.57 (s, 1H), 8.50 (s, 1H),
7.75 (dd, J = 7.6, 1.8 Hz, 2H), 7.68-7.51 (m, 6H), 4.46 (s, 2H), 4.22 (s, 2H), 4.02 (s, 3),
3.99 (s, 3H), 3.94 (t, J = 5.7 Hz, 1H), 3.20 (s, 2H), 2.25-2.09 (m, 8H), 1.80 (dd, J = 11.7,
6.4 Hz, 1H).
16 1H NMR (400 MHz, DMSO-d6) δ 10.50 (s, 1H), 9.23 (s, 1H), 9.12 (s, 1H), 8.57 (s, 1H),
8.51 (d, J = 1.7 Hz, 1H), 7.74 (td, J = 7.4, 1.8 Hz, 2H), 7.68-7.52 (m, 5H), 6.07 (s, 1H),
4.75-4.67 (m, 2H), 4.46 (s, 2H), 4.12 (dd, J = 25.4, 6.6 Hz, 2H), 4.02 (d, J = 4.9 Hz, 6H),
3.94 (t, J = 6.2 Hz, 1H), 3.20 (s, 2H), 2.25-2.09 (m, 3H), 1.80 (dd, J = 11.8, 6.5 Hz, 1H),
1.44 (d, J = 18.5 Hz, 3H).
17 1H NMR (400 MHz, Methanol-d4) δ 8.54 (s, 1H), 8.52 (s, 1H), 7.72 (ddd, J = 7.7, 1.8, 0.9 Hz,
2H), 7.58 (td, J = 7.6, 1.3 Hz, 2H), 7.49 (ddd, J = 7.6, 2.5, 1.8 Hz, 2H), 4.53 (d, J = 4.0 Hz,
2H), 4.51-4.38 (m, 3H), 4.12 (d, J = 3.1 Hz, 7H), 3.69-3.56 (m, 2H),
3.41-3.33 (m, 4H), 2.50-2.35 (m, 3H), 2.22 (dt, J = 12.9, 7.8 Hz, 1H), 2.14 (s, 3H), 2.10-1.92 (m,
3H), 1.88-1.77 (m, 1H).
21 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 8.55 (s, 1H), 7.73 (ddd, J = 7.7, 3.3, 1.7 Hz,
2H), 7.63-7.56 (m, 2H), 7.50 (dd, J = 7.8, 1.8 Hz, 2H), 4.90 (s, 1H), 4.61-4.48 (m,
3H), 4.16-4.07 (m, 7H), 4.04-3.93 (m, 1H), 3.88-3.76 (m, 2H), 3.67 (dd, J = 11.1, 7.2 Hz,
1H), 3.37 (d, J = 12.9 Hz, 5H), 2.51-2.28 (m, 5H), 2.25-2.15 (m, 1H), 2.09 (dd, J = 14.4,
7.3 Hz, 1H), 2.02-1.86 (m, 3H).
23 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 8.54 (s, 1H), 7.73 (ddd, J = 7.7, 4.3, 1.7 Hz,
2H), 7.59 (t, J = 7.7 Hz, 2H), 7.49 (dd, J = 7.7, 1.7 Hz, 2H), 4.94 (d, J = 15.4 Hz, 1H),
4.62-4.55 (m, 1H), 4.54 (d, J = 3.9 Hz, 2H), 4.13 (d, J = 0.8 Hz, 7H), 3.99 (dd, J = 11.7,
3.3 Hz, 1H), 3.92-3.77 (m, 3H), 3.44-3.33 (m, 3H), 2.51-2.37 (m, 3H), 2.36-1.89 (m, 7H).
24 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 8.54 (s, 1H), 7.73 (ddd, J = 7.7, 4.4, 1.7 Hz,
2H), 7.59 (t, J = 7.6 Hz, 2H), 7.49 (dd, J = 7.6, 1.7 Hz, 2H), 4.94 (d, J = 15.4 Hz, 1H),
4.62-4.55 (m, 1H), 4.53 (d, J = 3.9 Hz, 2H), 4.13 (s, 7H), 3.99 (dd, J = 11.7, 3.2 Hz, 1H),
3.91-3.77 (m, 3H), 3.44-3.33 (m, 4H), 2.51-2.36 (m, 3H), 2.36-1.89 (m, 6H).
28 1H (MeOH-d4, 400 MHz, d): 8.58 (s, 1H); 8.56 (s, 1H); 8.55 (s, 1H); 7.74 (dd, 2H);
7.61 (td, 2H); 7.50 (dt, 2H); 4.61 (d, 2H); 4.56 (dd, 2H); 4.14 (s, 3H); 4.13 (s, 3H); 3.37 (m,
2H); 2.50-2.38 (m, 3H); 2.02 (d, 2H); 2.00 (m, 2H).
30 1H (MeOH-d4, 400 MHz, d): 8.54 (s, 2H); 7.74 (dd, 2H); 7.68 (d, 2H); 7.61 (t, 2H);
7.50 (dd, 2H); 6.46 (d, 2H); 4.49 (s, 4H); 4.41 (s, 4H); 4.13 (s, 6H); 3.94 (s, 6H).
32 1H (MeOH-d4, 400 MHz, d): 8.58 (s, 1H); 8.56 (s, 1H); 8.17 (s, 1H); 7.75 (dd, 2H);
7.62 (td, 2H); 7.48 (dt, 2H); 4.60-4.45 (m, 8H); 4.14 (s, 3H); 4.13 (s, 3H); 4.20-4.08 (m, 1H);
3.38 (m, 2H); 2.60-2.40 (m, 3H); 2.00-1.85 (m, 1H); 1.55 (t, 3H).
33 1H (MeOH-d4, 400 MHz, d): 8.57 (s, 1H); 8.55 (s, 1H); 7.79 (s, 1H); 7.75 (dd, 2H);
7.62 (td, 2H); 7.48 (dt, 2H); 4.60 (broad s, 4H), 4.15 (broad s, 6H); 4.17-4.12 (m, 2H); 3.60 (t,
2H); 3.38 (t, 1H); 3.28 (t, 2H); 2.50-2.38 (m, 3H); 2.05-1.95 (m, 2H).
35 1H (MeOH-d4, 400 MHz, d): 8.52 (s, 1H); 8.51 (s, 1H); 7.98 (s, 1H); 7.72 (dd, 2H);
7.57 (td, 2H); 7.48 (dt, 2H); 4.58 (s, 2H); 4.52 (broad s, 4H), 4.11 (s, 3H); 4.10 (s, 3H);
4.17-4.12 (m, 2H); 3.38 (m, 2H); 2.50-2.38 (m, 3H); 2.05-1.95 (m, 2H).
43 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 3.1 Hz, 2H), 7.71 (dd, J = 7.7, 1.7 Hz,
2H), 7.57 (t, J = 7.6 Hz, 2H), 7.47 (dd, J = 7.6, 1.7 Hz, 2H), 4.63-4.43 (m, 4H), 4.11 (s,
7H), 3.71 (td, J = 6.8, 1.1 Hz, 2H), 3.61 (td, J = 6.7, 1.1 Hz, 2H), 3.36 (h, J = 5.4 Hz, 2H),
2.53-2.26 (m, 3H), 2.05-1.89 (m, 1H).
44 1H NMR (400 MHz, DMSO-d6) δ 9.20 (d, J = 46.7 Hz, 4H), 8.55 (d, J = 13.3 Hz, 2H),
7.75 (dt, J = 7.6, 1.6 Hz, 2H), 7.69-7.59 (m, 3H), 7.56 (dt, J = 7.6, 2.2 Hz, 2H), 6.36 (t, J = 5.7 Hz,
1H), 5.81 (s, 2H), 4.43 (dd, J = 14.8, 8.9 Hz, 5H), 4.02 (d, J = 4.5 Hz, 7H), 3.93 (d, J = 6.9 Hz,
1H), 3.33 (q, J = 5.7 Hz, 2H), 3.27-3.02 (m, 5H), 2.27-2.09 (m, 3H), 1.79 (tt, J = 11.1,
5.5 Hz, 1H).
45 1H NMR (400 MHz, DMSO-d6) δ 9.19 (d, J = 49.3 Hz, 5H), 8.56 (d, J = 8.4 Hz, 2H),
7.75 (dd, J = 7.6, 1.7 Hz, 2H), 7.69-7.50 (m, 7H), 7.12 (s, 1H), 4.62-4.34 (m, 5H), 4.02 (d, J = 3.7 Hz,
7H), 3.93 (d, J = 6.3 Hz, 1H), 3.34-3.08 (m, 6H), 2.58 (t, J = 7.0 Hz, 3H),
2.28-2.06 (m, 3H), 1.90-1.67 (m, 1H).
46 1H NMR (400 MHz, Methanol-d4) δ 8.54 (d, J = 11.8 Hz, 2H), 7.72 (ddd, J = 7.7, 5.9, 1.7 Hz,
2H), 7.58 (td, J = 7.7, 1.0 Hz, 2H), 7.48 (dt, J = 7.6, 1.5 Hz, 2H), 4.59 (s, 2H), 4.52 (d,
J = 3.8 Hz, 2H), 4.12 (s, 7H), 3.36 (h, J = 5.5 Hz, 2H), 3.05 (s, 6H), 2.52-2.29 (m, 3H),
2.04-1.90 (m, 1H).
47 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 2.3 Hz, 2H), 7.75-7.67 (m, 2H), 7.57 (t,
J = 7.7 Hz, 2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.63-4.45 (m, 6H), 4.11 (d, J = 1.0 Hz,
7H), 3.64-3.32 (m, 5H), 2.53-2.23 (m, 3H), 2.06-1.88 (m, 1H).
49 1H NMR (400 MHz, Methanol-d4) δ 8.52 (s, 1H), 8.51 (s, 1H), 7.74-7.67 (m, 4H),
7.57 (td, J = 7.7, 0.7 Hz, 2H), 7.47 (dd, J = 7.6, 1.7 Hz, 2H), 4.52 (d, J = 3.8 Hz, 2H), 4.48 (s,
2H), 4.11 (d, J = 3.8 Hz, 7H), 3.50-3.39 (m, 2H), 3.39-3.32 (m, 2H), 3.05 (t, J = 7.8 Hz,
2H), 2.52-2.30 (m, 3H), 2.05-1.88 (m, 1H).
50 1H NMR (400 MHz, Methanol-d4) δ 8.52 (s, 1H), 8.48 (s, 1H), 7.70 (ddd, J = 7.7, 4.2, 1.7 Hz,
2H), 7.57 (td, J = 7.7, 1.5 Hz, 2H), 7.47 (dd, J = 7.6, 1.8 Hz, 2H), 4.80 (s, 2H), 4.70 (s,
4H), 4.52 (d, J = 3.8 Hz, 2H), 4.11 (d, J = 2.3 Hz, 7H), 3.90 (s, 2H), 3.42-3.33 (m, 2H),
3.05 (s, 1H), 2.52-2.30 (m, 3H), 2.07-1.86 (m, 1H).
72 1H NMR (400 MHz, Methanol-d4) δ 8.01 (s, 2H), 7.63 (dd, J = 7.7, 1.7 Hz, 2H), 7.51 (t, J = 7.7 Hz,
2H), 7.41 (dd, J = 7.6, 1.7 Hz, 2H), 4.52-4.42 (m, 4H), 4.45 (s, 4H), 4.18 (q, J = 10.0,
9.5 Hz, 4H), 3.02 (s, 6H), 2.76-2.63 (m, 2H), 2.63-2.48 (m, 2H).
73 1H NMR (400 MHz, Methanol-d4) δ 8.05 (s, 1H), 8.01 (s, 1H), 7.68-7.59 (m, 2H),
7.56-7.47 (m, 2H), 7.45-7.38 (m, 2H), 4.53-4.42 (m, 2H), 4.46 (s, 2H), 4.23-4.13 (m, 2H),
4.21 (s, 2H), 3.02 (s, 3H), 3.02 (s, 3H), 2.88 (s, 3H), 2.75-2.62 (m, 1H), 2.60-2.50 (m, 1H).
74 1H NMR (400 MHz, Methanol-d4) δ 8.05 (s, 2H), 7.64 (dd, J = 7.7, 1.7 Hz, 2H), 7.52 (t, J = 7.6 Hz,
2H), 7.42 (dd, J = 7.6, 1.7 Hz, 2H), 4.21 (s, 4H), 3.02 (s, 6H), 2.88 (s, 6H).
76 1H NMR (400 MHz, Methanol-d4) δ 8.01 (s, 2H), 7.62 (dd, J = 7.6, 1.8 Hz, 2H), 7.51 (t, J = 7.6 Hz,
2H), 7.41 (dd, J = 7.6, 1.7 Hz, 2H), 4.77-4.07 (m, 20H), 3.01 (s, 6H), 1.86 (s, 6H).
77 1H NMR (400 MHz, Methanol-d4) δ 8.02 (s, 2H), 7.63 (dd, J = 7.7, 1.7 Hz, 2H), 7.51 (t, J = 7.6 Hz,
2H), 7.41 (dd, J = 7.6, 1.7 Hz, 2H), 4.81-3.88 (m, 14H), 3.01 (s, 6H).
78 1H NMR (400 MHz, Methanol-d4) δ 8.02 (s, 2H), 7.62 (dd, J = 7.6, 1.8 Hz, 2H), 7.51 (t, J = 7.6 Hz,
2H), 7.41 (dd, J = 7.6, 1.8 Hz, 2H), 4.73-4.13 (m, 12H), 3.91-3.59 (m, 4H),
3.02 (s, 6H), 2.90-2.67 (m, 4H).
79 1H NMR (400 MHz, Methanol-d4) δ 8.02 (s, 2H), 7.64-7.60 (m, 2H), 7.52 (t, J = 7.6 Hz,
2H), 7.41 (dd, J = 7.6, 1.7 Hz, 2H), 4.94-4.06 (m, 12H), 3.02 (s, 6H), 2.57 (t, J = 7.9 Hz,
4H), 2.42 (t, J = 7.9 Hz, 4H).
82 1H NMR (400 MHz, Methanol-d4) δ 8.75 (s, 2H), 7.67 (dd, J = 7.6, 1.7 Hz, 2H), 7.58 (t, J = 7.6 Hz,
2H), 7.49 (dd, J = 7.6, 1.7 Hz, 2H), 4.97-3.83 (m, 14), 2.92 (q, J = 7.5 Hz, 4H),
1.38 (t, J = 7.5 Hz, 6H).
83 1H NMR (400 MHz, Methanol-d4) δ 8.76 (s, 2H), 7.71-7.66 (m, 2H), 7.58 (t, J = 7.7 Hz,
2H), 7.49 (dd, J = 7.4, 1.8 Hz, 2H), 4.88 (s, 4H), 4.64-4.29 (m, 8H), 3.90-3.60 (m, 4H),
2.97-2.72 (m, 8H), 1.39 (t, J = 7.5 Hz, 6H).
84 1H NMR (400 MHz, Methanol-d4) δ 8.77 (s, 2H), 7.68 (dd, J = 7.6, 1.7 Hz, 2H), 7.59 (t, J = 7.6 Hz,
2H), 7.50 (dd, J = 7.6, 1.7 Hz, 2H), 4.88 (s, 4H), 4.78-4.23 (m, 8H), 2.92 (q, J = 7.5 Hz,
4H), 2.58 (t, J = 7.9 Hz, 4H), 2.42 (t, J = 7.8 Hz, 4H), 1.40 (t, J = 7.5 Hz, 6H).
88 1H NMR (400 MHz, Methanol-d4) δ 8.60 (s, 2H), 7.73 (dd, J = 7.7, 1.8 Hz, 2H), 7.59 (t, J = 7.6 Hz,
2H), 7.50 (dd, J = 7.6, 1.7 Hz, 2H), 4.83-3.91 (m, 14), 2.69 (s, 6H).
89 1H NMR (400 MHz, Methanol-d4) δ 8.60 (s, 2H), 7.73 (dd, J = 7.7, 1.7 Hz, 2H), 7.59 (t, J = 7.6 Hz,
2H), 7.50 (dd, J = 7.6, 1.7 Hz, 2H), 4.73 (s, 4H), 4.68-4.27 (m, 8H),
3.88-3.55 (m, 4H), 2.93-2.71 (m, 4H), 2.70 (s, 6H).
90 1H NMR (400 MHz, Methanol-d4) δ 8.60 (s, 2H), 7.73 (dd, J = 7.7, 1.7 Hz, 2H), 7.59 (t, J = 7.7 Hz,
2H), 7.50 (dd, J = 7.7, 1.7 Hz, 2H), 4.73 (s, 4H), 4.72-4.18 (m, 8H), 2.70 (s,
6H), 2.57 (t, J = 7.9 Hz, 4H), 2.42 (t, J = 7.9 Hz, 4H).
93 1H NMR (400 MHz, Methanol-d4) δ 8.75 (s, 2H), 7.65 (dd, J = 7.7, 1.8 Hz, 2H), 7.58 (t, J = 7.6 Hz,
2H), 7.49 (dd, J = 7.6, 1.8 Hz, 2H), 4.85-4.63 (m, 8H), 4.46-4.22 (m, 4H),
4.09-4.00 (m, 2H), 2.63 (s, 6H).
100 1H NMR (400 MHz, Methanol-d4) δ 8.94 (s, 1H), 8.34 (s, 1H), 7.74-7.64 (m, 2H),
7.64-7.49 (m, 3H), 7.45 (dd, J = 7.6, 1.7 Hz, 1H), 4.97-3.93 (m, 14H), 3.05 (s, 6H).
101 1H NMR (400 MHz, Methanol-d4) δ 8.33 (s, 2H), 7.65 (dd, J = 7.7, 1.7 Hz, 2H), 7.53 (t, J = 7.6 Hz,
2H), 7.43 (dd, J = 7.6, 1.7 Hz, 2H), 4.81 (s, 4H), 4.57-4.17 (m, 8H),
3.86-3.59 (m, 4H), 3.05 (s, 12H), 2.90-2.66 (m, 4H).
102 1H NMR (400 MHz, Methanol-d4) δ 8.94 (s, 1H), 8.34 (s, 1H), 7.73-7.65 (m, 2H),
7.65-7.48 (m, 3H), 7.45 (d, J = 6.6 Hz, 1H), 4.95 (s, 2H), 4.81 (s, 2H), 4.62-4.12 (m, 8H),
3.90-3.58 (m, 2H), 3.06 (s, 6H), 2.90-2.65 (m, 2H).
103 1H NMR (400 MHz, Methanol-d4) δ 8.34 (s, 2H), 7.66 (dd, J = 7.7, 1.8 Hz, 2H), 7.54 (t, J = 7.6 Hz,
2H), 7.44 (dd, J = 7.6, 1.7 Hz, 2H), 4.82 (s, 4H), 4.75-4.11 (m, 8H), 3.06 (s,
12H), 2.60-2.49 (m, 4H), 2.47-2.32 (m, 4H).
104 1H NMR (400 MHz, Methanol-d4) δ 8.94 (s, 1H), 8.35 (s, 1H), 7.73-7.66 (m, 2H),
7.65-7.49 (m, 3H), 7.49-7.41 (m, 1H), 4.95 (s, 2H), 4.87-4.17 (m, 10H), 3.06 (s, 6H),
2.61-2.51 (m, 4H), 2.46-2.35 (m, 4H).
112 1H NMR (400 MHz, Methanol-d4) δ 8.43 (s, 2H), 7.63-7.57 (m, 4H), 7.43 (dd, J = 5.2,
4.1 Hz, 2H), 4.83-4.00 (m, 14H), 4.10 (s, 6H).
113 1H NMR (400 MHz, Methanol-d4) δ 8.48 (s, 2H), 7.65-7.59 (m, 4H), 7.44 (dd, J = 5.8,
3.5 Hz, 2H), 4.60-4.43 (m, 4H), 4.18-4.05 (m, 2H), 4.12 (s, 6H), 3.37-3.30 (m, 4H),
2.54-2.34 (m, 6H), 2.06-1.93 (m, 2H).
114 1H NMR (400 MHz, Methanol-d4) δ 8.48 (s, 1H), 8.27 (d, J = 8.0 Hz, 1H), 7.81-7.40 (m,
7H), 4.74 (s, 2H), 4.61-4.29 (m, 4H), 4.18 (s, 4H), 4.10 (s, 6H), 3.83-3.65 (m, 2H),
2.89-2.59 (m, 2H).
116 1H NMR (400 MHz, Methanol-d4) δ 8.48 (s, 1H), 8.28 (d, J = 8.0 Hz, 1H), 7.81-7.40 (m,
7H), 4.83-4.21 (m, 7H), 4.18 (s, 4H), 4.10 (s, 6H).
120 1H NMR (400 MHz, Methanol-d4) δ 8.48 (s, 2H), 7.70 (dd, J = 7.7, 1.7 Hz, 2H), 7.57 (t, J = 7.7 Hz,
2H), 7.47 (dd, J = 7.5, 1.7 Hz, 2H), 4.74 (s, 4H), 4.69-4.19 (m, 8H), 4.11 (s,
6H), 3.89-3.60 (m, 4H), 2.97-2.54 (m, 4H).
121 1H NMR (400 MHz, Methanol-d4) δ 8.82 (s, 2H), 7.83 (dd, J = 7.6, 1.7 Hz, 2H), 7.65 (t, J = 7.7 Hz,
2H), 7.57 (dd, J = 7.6, 1.7 Hz, 2H), 4.64-4.51 (m, 2H), 4.32-4.23 (m, 2H),
4.26 (s, 6H), 3.73 (dd, J = 11.7, 8.0 Hz, 2H), 1.50 (d, J = 6.4 Hz, 6H).
122 1H NMR (400 MHz, Methanol-d4) δ 8.47 (s, 1H), 7.79-7.03 (m, 9H), 4.56 (s, 2H),
4.15 (s, 2H), 4.10 (s, 3H), 3.95 (s, 3H).
123 1H NMR (400 MHz, Methanol-d4) δ 8.47 (s, 1H), 7.68 (dd, J = 7.6, 1.7 Hz, 1H),
7.59-7.40 (m, 5H), 7.37 (dd, J = 7.4, 1.9 Hz, 1H), 7.18 (s, 1H), 7.16-7.10 (m, 1H), 4.74 (s, 2H),
4.61-4.19 (m, 10H), 4.11 (s, 3H), 3.96 (s, 3H), 3.85-3.60 (m, 4H), 2.92-2.66 (m, 4H).
124 1H NMR (400 MHz, Methanol-d4) δ 8.48 (s, 1H), 7.68 (dd, J = 7.8, 1.8 Hz, 1H),
7.61-7.41 (m, 5H), 7.38 (dd, J = 7.3, 1.9 Hz, 1H), 7.20 (s, 1H), 7.14 (d, J = 7.7 Hz, 1H),
4.83-4.23 (m, 12H), 4.11 (s, 3H), 3.97 (s, 3H), 2.63-2.33 (m, 8H).
125 1H NMR (400 MHz, Methanol-d4) δ 8.53 (s, 1H), 7.72-7.66 (m, 1H), 7.62-7.42 (m,
5H), 7.38 (dd, J = 7.4, 2.1 Hz, 1H), 7.20 (s, 1H), 7.14 (d, J = 7.8 Hz, 1H), 4.58-4.44 (m,
2H), 4.41-4.26 (m, 2H), 4.12 (s, 3H), 4.12-4.01 (m, 2H), 3.98 (s, 3H), 3.39-3.17 (m,
4H), 2.51-2.27 (m, 6H), 2.08-1.72 (m, 2H).
126 1H NMR (400 MHz, Methanol-d4) δ 8.53 (s, 1H), 7.89 (d, J = 7.5 Hz, 1H), 7.70 (dd, J = 7.6,
1.7 Hz, 1H), 7.66 (dd, J = 7.6, 1.7 Hz, 1H), 7.60-7.50 (m, 2H), 7.47 (dd, J = 7.6, 1.7 Hz,
1H), 7.42 (dd, J = 7.6, 1.7 Hz, 1H), 7.37 (d, J = 7.4 Hz, 1H), 4.60-4.43 (m, 2H),
4.41-4.26 (m, 2H), 4.12-4.00 (m, 2H), 4.12 (s, 3H), 4.10 (s, 3H), 3.38-3.20 (m, 4H),
2.54-2.24 (m, 6H), 2.10-1.76 (m, 2H).
130 1H NMR (400 MHz, Methanol-d4) δ 8.54 (s, 2H), 7.72 (dd, J = 7.7, 1.8 Hz, 2H), 7.58 (t, J = 7.7 Hz,
2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.75-4.55 (m, 6H), 4.11 (s, 6H),
4.06-3.28 (m, 8H), 2.49-2.00 (m, 4H).
131 1H NMR (400 MHz, Methanol-d4) δ 8.48 (s, 2H), 7.70 (dd, J = 7.7, 1.7 Hz, 2H), 7.57 (t, J = 7.6 Hz,
2H), 7.47 (dd, J = 7.6, 1.7 Hz, 2H), 4.81-3.95 (m, 14H), 4.10 (s, 6H).
133 1H NMR (400 MHz, Methanol-d4) δ 8.82 (s, 2H), 7.83 (dd, J = 7.7, 1.8 Hz, 2H), 7.65 (t, J = 7.6 Hz,
2H), 7.57 (dd, J = 7.6, 1.8 Hz, 2H), 4.59-4.49 (m, 2H), 4.26 (s, 6H), 4.22 (t, J = 11.9 Hz,
2H), 4.05 (dd, J = 11.8, 7.5 Hz, 2H), 3.85 (dd, J = 11.8, 3.6 Hz, 2H), 3.72 (dd, J = 11.8, 3.6 Hz, 2H).
134 1H NMR (400 MHz, Methanol-d4) δ 8.82 (s, 2H), 7.83 (dd, J = 7.6, 1.8 Hz, 2H), 7.65 (t, J = 7.6 Hz,
2H), 7.57 (dd, J = 7.7, 1.8 Hz, 2H), 4.63-4.43 (m, 2H), 4.26 (s, 6H), 4.22 (t, J = 11.9 Hz,
2H), 4.11-4.01 (m, 2H), 3.85 (dd, J = 11.8, 3.7 Hz, 2H), 3.72 (dd, J = 11.8, 3.6 Hz, 2H).
136 1H NMR (400 MHz, Methanol-d4) δ 8.49 (s, 2H), 7.70 (dd, J = 7.7, 1.8 Hz, 2H), 7.57 (t, J = 7.7 Hz,
2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.74 (s, 4H), 4.69-4.18 (m, 8H), 4.12 (s,
6H), 2.63-2.52 (m, 2H), 2.42 (t, J = 7.7 Hz, 2H).
137 1H NMR (400 MHz, Methanol-d4) δ 8.52 (s, 2H), 7.71 (dd, J = 7.7, 1.8 Hz, 2H), 7.57 (t, J = 7.6 Hz,
2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.49 (s, 4H), 4.40 (ddd, J = 9.8, 6.3, 2.9 Hz,
2H), 4.11 (s, 6H), 3.41 (dd, J = 12.7, 3.1 Hz, 2H), 3.21 (dd, J = 12.6, 9.8 Hz, 2H), 2.59 (d, J = 6.3 Hz,
4H).
138 1H NMR (400 MHz, Methanol-d4) δ 8.53 (s, 2H), 7.72 (dd, J = 7.7, 1.8 Hz, 2H), 7.58 (t, J = 7.6 Hz,
2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.60-4.45 (m, 4H), 4.18-4.07 (m, 2H),
4.12 (s, 6H), 3.39-3.31 (m, 4H), 2.53-2.25 (m, 6H), 2.08-1.81 (m, 2H).
139 1H NMR (400 MHz, Methanol-d4) δ 8.53 (s, 2H), 7.72 (dd, J = 7.6, 1.7 Hz, 2H), 7.58 (t, J = 7.6 Hz,
2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.58-4.47 (m, 4H), 4.18-4.07 (m, 2H),
4.12 (s, 6H), 3.42-3.27 (m, 4H), 2.54-2.25 (m, 6H), 2.08-1.83 (m, 2H).
140 1H NMR (400 MHz, Methanol-d4) δ 8.52 (s, 2H), 7.71 (dd, J = 7.7, 1.7 Hz, 2H), 7.57 (t, J = 7.6 Hz,
2H), 7.48 (dd, J = 7.7, 1.7 Hz, 2H), 4.49 (s, 6H), 4.11 (s, 8H), 3.91-3.87 (m,
4H), 3.37-3.27 (m, 4H).
141 1H NMR (400 MHz, Methanol-d4) δ 8.82 (s, 2H), 7.83 (dd, J = 7.7, 1.7 Hz, 2H), 7.65 (t, J = 7.7 Hz,
2H), 7.57 (dd, J = 7.7, 1.7 Hz, 2H), 4.26 (s, 6H), 4.15 (s, 8H).
156 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.89 (d, J = 7.5 Hz, 1H), 7.78-7.30 (m,
7H), 4.60-4.40 (m, 4H), 4.30-3.87 (m, 11H), 3.63-3.36 (m, 4H), 2.57-2.29 (m, 3H),
2.05-1.89 (m, 1H), 1.32 (d, J = 10.3 Hz, 3H).
157 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.90 (s, 1H), 7.78-7.34 (m, 7H),
4.62-4.04 (m, 15H), 3.38 (d, J = 4.3 Hz, 5H), 2.53-2.33 (m, 3H), 2.06-1.88 (m, 1H).
158 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.95 (d, J = 7.6 Hz, 1H), 7.81-7.34 (m,
7H), 4.63-4.44 (m, 2H), 4.41 (s, 2H), 4.20-4.05 (m, 7H), 3.50-3.35 (m, 6H),
2.53-2.31 (m, 3H), 2.10-1.72 (m, 5H), 1.31 (s, 3H).
159 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.95 (d, J = 7.6 Hz, 1H), 7.77-7.67 (m,
2H), 7.63-7.34 (m, 5H), 4.61-4.35 (m, 4H), 4.13 (d, J = 13.6 Hz, 7H), 3.92-3.11 (m,
6H), 2.52-1.92 (m, 6H), 1.48 (s, 3H).
160 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.94 (d, J = 7.6 Hz, 1H), 7.72 (ddd, J = 10.6,
7.7, 1.7 Hz, 2H), 7.65-7.36 (m, 5H), 4.62-4.49 (m, 2H), 4.39 (s, 2H), 4.20-4.04 (m,
7H), 3.62 (d, J = 11.8 Hz, 2H), 3.51-3.43 (m, 2H), 3.37 (dd, J = 6.2, 5.1 Hz, 2H),
3.21-3.07 (m, 2H), 2.55-2.34 (m, 3H), 2.12-1.44 (m, 6H).
161 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.71 (ddd, J = 16.8,
7.7, 1.8 Hz, 2H), 7.66-7.31 (m, 5H), 4.64-4.50 (m, 2H), 4.46 (s, 2H), 4.37 (s, 2H),
4.20-4.04 (m, 7H), 3.37 (dd, J = 6.2, 5.0 Hz, 2H), 2.55-2.33 (m, 3H), 2.06-1.97 (m, 1H).
162 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.91 (d, J = 7.5 Hz, 1H), 7.79-7.32 (m,
7H), 4.63-4.46 (m, 2H), 4.33 (s, 2H), 4.13 (d, J = 12.1 Hz, 9H), 3.50 (td, J = 12.1, 2.1 Hz,
3H), 3.37 (dd, J = 6.2, 5.2 Hz, 2H), 2.60-2.32 (m, 3H), 2.15 (dd, J = 12.0, 3.9 Hz, 2H),
2.08-1.90 (m, 1H), 1.76 (qd, J = 12.2, 4.7 Hz, 2H).
163 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.94 (d, J = 7.6 Hz, 1H), 7.72 (ddd, J = 10.3,
7.7, 1.7 Hz, 2H), 7.66-7.35 (m, 5H), 4.62-4.48 (m, 2H), 4.43 (d, J = 21.3 Hz, 2H),
4.21-4.04 (m, 7H), 3.66 (d, J = 12.3 Hz, 2H), 3.50-3.35 (m, 2H), 3.23-3.10 (m, 2H),
2.75-1.85 (m, 9H).
164 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.81-7.30 (m,
7H), 4.82-4.29 (m, 7H), 4.13 (d, J = 15.8 Hz, 9H), 3.44-3.36 (m, 2H), 2.57-2.30 (m,
3H), 2.07-1.87 (m, 1H).
165 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.93 (d, J = 7.5 Hz, 1H), 7.79-7.33 (m,
7H), 4.65-4.50 (m, 3H), 4.48-4.30 (m, 2H), 4.27-4.06 (m, 9H), 4.02 (dd, J = 11.0, 3.2 Hz,
1H), 3.73 (dt, J = 5.7, 2.8 Hz, 1H), 3.63 (dd, J = 9.8, 4.4 Hz, 1H), 3.37 (dd, J = 6.2, 5.2 Hz,
2H), 2.56-2.31 (m, 3H), 2.12-1.90 (m, 1H).
166 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.77-7.33 (m,
7H), 4.63-4.48 (m, 2H), 4.35 (s, 2H), 4.26 (tt, J = 8.5, 4.4 Hz, 1H), 4.14 (d, J = 8.2 Hz,
7H), 3.90 (dd, J = 11.7, 7.6 Hz, 1H), 3.61 (dd, J = 11.7, 4.0 Hz, 1H), 3.37 (dd, J = 6.2, 5.1 Hz,
2H), 2.93 (dd, J = 17.8, 8.8 Hz, 1H), 2.59 (dd, J = 17.8, 4.7 Hz, 1H), 2.54-2.30 (m,
3H), 2.00 (ddd, J = 13.1, 5.7, 3.5 Hz, 1H).
167 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.79-7.35 (m,
7H), 4.63-4.47 (m, 2H), 4.35 (s, 2H), 4.26 (dt, J = 8.2, 4.2 Hz, 1H), 4.14 (d, J = 8.2 Hz,
7H), 3.90 (dd, J = 11.6, 7.6 Hz, 1H), 3.61 (dd, J = 11.6, 3.9 Hz, 1H), 3.37 (dd, J = 6.2, 5.2 Hz,
2H), 2.93 (dd, J = 17.8, 8.8 Hz, 1H), 2.59 (dd, J = 17.8, 4.7 Hz, 1H), 2.54-2.36 (m,
3H), 2.07-1.94 (m, 1H).
168 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.90 (d, J = 7.6 Hz, 1H), 7.80-7.37 (m,
7H), 4.62-4.33 (m, 9H), 4.13 (d, J = 12.3 Hz, 6H), 3.83 (s, 2H), 3.37 (dd, J = 6.2, 5.1 Hz,
2H), 2.58-2.35 (m, 3H), 2.07-1.97 (m, 1H).
169 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.92 (d, J = 7.5 Hz, 1H), 7.79-7.30 (m,
7H), 4.61-4.48 (m, 3H), 4.38 (d, J = 13.2 Hz, 1H), 4.22 (dd, J = 10.6, 8.6 Hz, 1H), 4.13 (d,
J = 11.1 Hz, 7H), 3.54-3.41 (m, 2H), 3.41-3.35 (m, 2H), 2.66 (ddt, J = 8.7, 6.5, 3.3 Hz,
1H), 2.54-2.35 (m, 3H), 2.33-2.18 (m, 1H), 2.06-1.96 (m, 1H).
170 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.77-7.31 (m,
7H), 4.65-4.46 (m, 2H), 4.31 (s, 2H), 4.20-3.97 (m, 10H), 3.88 (dd, J = 10.8, 5.7 Hz,
1H), 3.84-3.71 (m, 1H), 3.38 (dd, J = 6.2, 5.3 Hz, 2H), 2.56-2.34 (m, 4H),
2.22-1.96 (m, 2H).
171 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.71 (ddd, J = 19.1,
7.7, 1.7 Hz, 2H), 7.63-7.33 (m, 5H), 4.62-4.48 (m, 2H), 4.31 (s, 2H),
4.22-3.96 (m, 10H), 3.88 (dd, J = 10.8, 5.7 Hz, 1H), 3.83-3.70 (m, 1H), 3.37 (dd, J = 6.2, 5.2 Hz,
2H), 2.57-2.37 (m, 4H), 2.21-1.96 (m, 2H).
172 1H NMR (400 MHz, Methanol-d4) δ 8.56 (d, J = 7.5 Hz, 2H), 7.74 (dt, J = 7.7, 1.6 Hz,
2H), 7.61 (td, J = 7.7, 1.1 Hz, 2H), 7.51 (dt, J = 7.6, 1.6 Hz, 2H), 4.62-4.48 (m, 2H),
4.45 (s, 2H), 4.24-4.05 (m, 8H), 3.43-3.35 (m, 2H), 3.27 (d, J = 7.4 Hz, 2H), 2.66-2.14 (m,
6H), 2.05-1.97 (m, 1H), 1.85-1.67 (m, 2H).
173 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 8.51 (s, 1H), 7.74 (ddd, J = 7.5, 5.6, 1.7 Hz,
2H), 7.60 (td, J = 7.7, 2.7 Hz, 2H), 7.51 (dt, J = 7.6, 1.7 Hz, 2H), 4.75 (d, J = 9.9 Hz,
4H), 4.64-4.49 (m, 2H), 4.41 (s, 3H), 4.27-4.03 (m, 7H), 3.39 (t, J = 5.3 Hz, 5H),
2.57-2.34 (m, 3H), 2.04-1.97 (m, 1H).
174 1H NMR (400 MHz, Methanol-d4) δ 8.56 (d, J = 2.2 Hz, 2H), 7.75 (dt, J = 7.7, 1.6 Hz,
2H), 7.61 (td, J = 7.6, 0.9 Hz, 2H), 7.51 (dt, J = 7.6, 1.5 Hz, 2H), 4.81 (d, J = 8.6 Hz, 1H),
4.71 (s, 1H), 4.62-4.47 (m, 2H), 4.19-4.04 (m, 7H), 4.07-3.47 (m, 3H), 3.42-3.34 (m,
2H), 3.29-3.11 (m, 1H), 2.57-1.97 (m, 6H), 1.49 (d, J = 1.6 Hz, 3H).
175 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 8.50 (d, J = 2.5 Hz, 1H), 7.73 (tt, J = 6.3,
1.6 Hz, 2H), 7.60 (td, J = 7.6, 3.0 Hz, 2H), 7.50 (dt, J = 7.6, 2.0 Hz, 2H), 4.70 (d, J = 19.7 Hz,
2H), 4.55 (d, J = 4.0 Hz, 2H), 4.53-4.43 (m, 1H), 4.26-4.06 (m, 9H), 4.02 (d, J = 10.7 Hz,
1H), 3.62 (s, 1H), 3.45 (s, 1H), 3.37 (dd, J = 6.2, 5.0 Hz, 2H), 2.60-2.35 (m,
3H), 2.13-1.93 (m, 1H), 1.35 (d, J = 32.2 Hz, 3H).
176 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 8.50 (s, 1H), 7.74 (ddd, J = 7.2, 5.3, 1.7 Hz,
2H), 7.60 (td, J = 7.7, 3.0 Hz, 2H), 7.50 (dt, J = 7.6, 2.0 Hz, 2H), 4.71 (d, J = 3.2 Hz,
2H), 4.59-4.22 (m, 6H), 4.19-4.07 (m, 7H), 3.79 (d, J = 4.3 Hz, 1H), 3.67 (d, J = 3.8 Hz,
1H), 3.43-3.37 (m, 2H), 3.27-3.03 (m, 1H), 2.60-2.33 (m, 3H), 2.04-1.94 (m, 1H).
177 1H NMR (400 MHz, Methanol-d4) δ 8.56 (d, J = 4.4 Hz, 2H), 7.74 (d, J = 7.7 Hz, 2H),
7.61 (t, J = 7.7 Hz, 2H), 7.51 (d, J = 7.6 Hz, 2H), 5.25 (d, J = 53.4 Hz, 1H), 4.56 (d, J = 3.9 Hz,
2H), 4.50 (s, 2H), 4.22-4.10 (m, 7H), 4.03-3.85 (m, 1H), 3.45-3.35 (m, 2H),
2.71-1.78 (m, 10H).
178 1H NMR (400 MHz, Methanol-d4) δ 8.56 (d, J = 2.5 Hz, 2H), 7.75 (dd, J = 7.9, 1.7 Hz,
2H), 7.61 (t, J = 7.6 Hz, 2H), 7.51 (d, J = 7.5 Hz, 2H), 5.14-4.97 (m, 1H), 4.63 (d, J = 5.9 Hz,
2H), 4.55 (d, J = 3.8 Hz, 2H), 4.15 (s, 7H), 3.45-3.35 (m, 2H), 3.11-2.99 (m, 1H),
2.44 (q, J = 11.9, 10.7 Hz, 3H), 1.99 (d, J = 8.9 Hz, 1H), 1.64-1.24 (m, 2H).
179 1H NMR (400 MHz, Methanol-d4) δ 8.56 (d, J = 4.5 Hz, 2H), 7.75 (dd, J = 7.7, 1.7 Hz,
2H), 7.61 (t, J = 7.7 Hz, 2H), 7.51 (dt, J = 7.6, 1.7 Hz, 2H), 4.64-4.44 (m, 4H),
4.21-4.08 (m, 7H), 3.38 (t, J = 5.7 Hz, 2H), 3.13 (d, J = 7.6 Hz, 2H), 2.52-2.33 (m, 3H),
1.98 (dd, J = 11.8, 6.5 Hz, 1H), 1.29-1.12 (m, 1H), 0.84-0.71 (m, 2H), 0.49 (d, J = 5.0 Hz,
2H).
185 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 8.56 (s, 1H), 7.75 (t, J = 1.7 Hz, 1H),
7.73 (t, J = 1.7 Hz, 1H), 7.61 (t, J = 7.7 Hz, 2H), 7.52 (d, J = 1.7 Hz, 1H), 7.50 (d, J = 1.7 Hz,
1H), 4.61-4.49 (m, 2H), 4.36 (s, 2H), 4.15 (m, 7H), 3.83 (s, 2H), 3.47 (s, 3H),
3.40-3.34 (m, 2H), 2.53-2.36 (m, 5H), 2.29-2.17 (m, 2H), 2.03 (dtd, J = 23.7, 9.1, 4.9 Hz,
3H).
186 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 8.55 (s, 1H), 7.75 (d, J = 1.7 Hz, 1H),
7.73 (d, J = 1.7 Hz, 1H), 7.61 (td, J = 7.6, 1.3 Hz, 2H), 7.52 (t, J = 2.0 Hz, 1H), 7.50 (t, J = 1.9 Hz,
1H), 4.55 (d, J = 4.1 Hz, 2H), 4.50 (d, J = 2.0 Hz, 2H), 4.15 (s, 3H), 4.14 (s, 5H),
3.95 (q, J = 7.4 Hz, 1H), 3.43-3.35 (m, 2H), 3.25 (m, 2H), 2.53-2.36 (m, 3H), 2.17 (dq,
J = 15.7, 7.8 Hz, 1H), 2.02 (ddtd, J = 17.9, 13.6, 9.8, 9.2, 4.4 Hz, 3H), 1.85 (ddd, J = 13.2,
9.4, 5.0 Hz, 1H), 1.78-1.68 (m, 1H), 1.68-1.55 (m, 1H), 1.45-1.33 (m, 1H).
187 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 8.55 (s, 1H), 7.75 (t, J = 1.4 Hz, 1H),
7.73 (d, J = 1.5 Hz, 1H), 7.61 (td, J = 7.7, 1.1 Hz, 2H), 7.52 (d, J = 1.7 Hz, 1H), 7.50 (d, J = 1.7 Hz,
1H), 4.74 (m, 1H), 4.66-4.49 (m, 2H), 4.19 (m, 1H), 4.15 (s, 3H), 4.13 (s, 3H),
4.00 (m, 2H), 3.84 (m, 1H), 3.69 (s, 1H), 3.41-3.34 (m, 2H), 2.53-2.36 (m, 3H),
1.99 (ddt, J = 14.3, 10.3, 4.7 Hz, 2H), 1.85 (td, J = 7.9, 4.2 Hz, 1H), 1.30 (m, 1H), 1.05 (m, 1H),
0.97 (m, 1H), 0.85 (m, 1H).
188 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 2H), 7.76 (t, J = 2.0 Hz, 1H), 7.74 (t, J = 2.0 Hz,
1H), 7.61 (t, J = 7.6 Hz, 2H), 7.52 (d, J = 1.7 Hz, 1H), 7.50 (d, J = 1.7 Hz, 1H), 4.73 (s,
2H), 4.61-4.49 (m, 2H), 4.38 (s, 1H), 4.15 (s, 3H), 4.14 (s, 4H), 4.12 (d, J = 9.8 Hz, 1H),
4.05 (m, 1H), 3.93 (d, J = 23.2 z, 1H), 3.69 (s, 3H), 3.4.5 (m, 1H), 3.41-3.36 (m, 2H),
2.56 (m, 1H), 2.53-2.35 (m, 3H), 2.17 (s, 1H), 2.06-1.91 (m, 1H).
189 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 2H), 7.78-7.72 (m, 2H), 7.61 (t, J = 7.7 Hz,
2H), 7.56-7.46 (m, 2H), 4.53 (s, 4H), 4.44 (t, J = 8.8 Hz, 2H), 4.20 (t, J = 9.4 Hz, 2H),
4.15 (s, 6H), 4.06 (dd, J = 9.1, 5.5 Hz, 2H), 3.86 (dd, J = 10.3, 5.6 Hz, 2H), 3.54 (d, J = 7.5 Hz,
4H), 3.21-3.08 (m, 2H), 1.89 (s, 6H).
190 1H NMR (400 MHz, Methanol-d4) δ 8.54 (s, 2H), 7.74 (dd, J = 7.9, 1.8 Hz, 2H), 7.61 (t, J = 7.7 Hz,
2H), 7.51 (dd, J = 7.7, 1.7 Hz, 2H), 4.37 (s, 4H), 4.32 (s, 2H), 4.23 (s, 2H),
4.14 (s, 6H), 4.08 (s, 2H), 3.99 (s, 2H), 3.93 (q, J = 8.2 Hz, 2H), 2.74 (dt, J = 12.6, 9.9 Hz, 4H),
2.53 (t, J = 10.8 Hz, 4H), 1.92-1.84 (m, 6H).
191 1H NMR (400 MHz, Methanol-d4) δ 8.57 (s, 1H), 8.56 (s, 1H), 7.75 (d, J = 7.7 Hz, 2H),
7.61 (t, J = 7.7 Hz, 2H), 7.52 (dd, J = 7.4, 1.7 Hz, 2H), 4.62 (d, J = 9.4 Hz, 2H), 4.56 (d, J = 3.9 Hz,
2H), 4.52 (s, 2H), 4.46-4.32 (m, 3H), 4.15 (s, 7H), 3.38 (d, J = 4.7 Hz, 2H),
2.44 (h, J = 7.4, 6.9 Hz, 3H), 2.06-1.97 (m, 1H), 1.95 (s, 3H).
192 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 8.51 (s, 1H), 7.74 (t, J = 6.9 Hz, 2H),
7.61 (td, J = 7.6, 2.0 Hz, 2H), 7.56-7.47 (m, 2H), 4.73 (s, 2H), 4.62 (d, J = 17.1 Hz, 1H),
4.56 (d, J = 3.9 Hz, 2H), 4.49 (m, 2H), 4.28 (s, 1H), 4.15 (m, 5H), 4.14 (m, 5H), 3.39 (d, J = 4.7 Hz,
2H), 2.55-2.33 (m, 3H), 1.99 (q, J = 10.0 Hz, 1H), 1.89 (s, 3H).
193 1H NMR (400 MHz, Methanol-d4) δ 8.57 (d, J = 2.3 Hz, 2H), 7.75 (d, J = 7.7 Hz, 2H),
7.61 (t, J = 7.7 Hz, 2H), 7.52 (d, J = 7.6 Hz, 2H), 4.78 (d, J = 4.7 Hz, 2H), 4.56 (d, J = 3.8 Hz,
2H), 4.15 (s, 7H), 4.00 (s, 2H), 3.54 (m, 3H), 3.38 (m, 2H), 2.63 (d, J = 17.4 Hz, 1H),
2.55-2.34 (m, 3H), 2.27 (m, 3H), 1.99 (d, J = 8.1 Hz, 1H).
194 1H NMR (400 MHz, Methanol-d4) δ 8.56 (d, J = 2.8 Hz, 2H), 7.78-7.71 (m, 2H), 7.61 (t,
J = 7.7 Hz, 2H), 7.51 (d, J = 7.6 Hz, 2H), 4.65-4.46 (m, 4H), 4.26-4.02 (m, 8H),
3.93 (dd, J = 13.1, 7.3 Hz, 1H), 3.79 (dd, J = 16.3, 10.4 Hz, 1H), 3.71 (t, J = 7.6 Hz, 1H),
3.37 (d, J = 2.5 Hz, 3H), 2.70-2.55 (m, 1H), 2.55-2.42 (m, 3H), 2.42-2.19 (m, 1H), 2.12 (d,
J = 3.9 Hz, 3H), 1.99 (d, J = 9.4 Hz, 1H).
195 1H NMR (400 MHz, Methanol-d4) δ 8.57 (s, 1H), 8.55 (s, 1H), 7.75 (d, J = 7.7 Hz, 2H),
7.61 (t, J = 7.7 Hz, 2H), 7.51 (d, J = 7.7 Hz, 2H), 4.56 (d, J = 3.9 Hz, 2H), 4.51 (s, 2H),
4.15 (s, 7H), 3.69 (s, 1H), 3.38 (d, J = 4.6 Hz, 2H), 2.44 (q, J = 11.8, 10.7 Hz, 3H), 2.31 (d,
J = 12.5 Hz, 2H), 2.10 (d, J = 12.8 Hz, 2H), 1.99 (d, J = 8.0 Hz, 1H), 1.95 (s, 3H), 1.64 (q, J = 12.7 Hz,
2H), 1.39 (q, J = 15.5, 14.2 Hz, 3H).
196 1H NMR (400 MHz, Methanol-d4) δ 8.57 (s, 2H), 7.78-7.71 (m, 2H), 7.61 (t, J = 7.7 Hz,
2H), 7.51 (d, J = 7.6 Hz, 2H), 4.56 (d, J = 4.0 Hz, 2H), 4.54 (s, 2H), 4.15 (s, 7H), 3.67 (dd,
J = 10.3, 8.1 Hz, 1H), 3.38 (d, J = 4.1 Hz, 2H), 3.30-3.21 (m, 1H), 3.01 (p, J = 7.4 Hz,
1H), 2.63 (dd, J = 16.9, 8.8 Hz, 1H), 2.47 (td, J = 17.7, 16.9, 9.4 Hz, 3H), 2.32 (dd, J = 16.9,
7.5 Hz, 1H), 1.99 (d, J = 8.4 Hz, 1H).
197 1H NMR (400 MHz, Methanol-d4) δ 8.57 (d, J = 2.9 Hz, 2H), 7.75 (d, J = 7.6 Hz, 2H),
7.61 (t, J = 7.7 Hz, 2H), 7.52 (d, J = 7.7 Hz, 2H), 4.78 (s, 2H), 4.56 (d, J = 3.9 Hz, 2H),
4.21-4.11 (m, 7H), 4.02 (s, 5H), 3.38 (s, 1H), 2.46 (dd, J = 12.0, 7.4 Hz, 4H),
2.41-2.21 (m, 1H), 2.00 (d, J = 11.7 Hz, 1H).
198 1H NMR (400 MHz, Methanol-d4) δ 8.57 (s, 2H), 7.75 (d, J = 7.8 Hz, 2H), 7.61 (t, J = 7.8 Hz,
2H), 7.52 (d, J = 7.6 Hz, 2H), 4.73 (s, 1H), 4.55 (d, J = 3.7 Hz, 2H), 4.15 (d, J = 2.1 Hz,
7H), 3.37 (s, 1H), 2.45 (s, 3H), 2.18 (s, 1H), 2.01 (m, 5H).
199 1H NMR (400 MHz, Methanol-d4) δ 8.57 (s, 1H), 8.56 (s, 1H), 7.75 (d, J = 7.7 Hz, 2H),
7.61 (t, J = 7.7 Hz, 2H), 7.55-7.48 (m, 2H), 4.56 (d, J = 3.3 Hz, 4H), 4.35 (m, 1H),
4.21-4.04 (m, 7H), 3.92 (dd, J = 11.5, 7.7 Hz, 1H), 3.65 (dd, J = 11.6, 4.0 Hz, 1H), 3.38 (d, J = 4.6 Hz,
2H), 2.94 (dd, J = 17.7, 8.8 Hz, 1H), 2.66 (dd, J = 17.7, 4.9 Hz, 1H),
2.54-2.36 (m, 3H), 2.06-1.92 (m, 1H).
200 1H NMR (400 MHz, Methanol-d4) δ 8.57 (s, 1H), 8.56 (s, 1H), 7.75 (d, J = 7.7 Hz, 2H),
7.61 (t, J = 7.7 Hz, 2H), 7.51 (d, J = 7.6 Hz, 2H), 4.62-4.50 (m, 4H), 4.35 (s, 1H),
4.15 (m, 7H), 3.92 (dd, J = 11.5, 7.7 Hz, 1H), 3.70-3.59 (m, 1H), 3.38 (d, J = 4.7 Hz, 2H),
2.93 (dd, J = 17.6, 8.7 Hz, 1H), 2.66 (dd, J = 17.7, 4.9 Hz, 1H), 2.55-2.34 (m, 3H), 2.00 (d, J = 12.4 Hz,
1H).
201 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 8.54 (s, 1H), 7.79-7.71 (m, 2H),
7.61 (t, J = 7.7 Hz, 2H), 7.57-7.48 (m, 4H), 4.58 (s, 2H), 4.56 (d, J = 4.0 Hz, 2H), 4.15 (d, J = 1.9 Hz,
7H), 3.72 (t, J = 7.7 Hz, 2H), 3.59 (t, J = 7.7 Hz, 2H), 3.38 (t, J = 5.8 Hz, 2H),
2.55-2.34 (m, 3H), 2.02 (dd, J = 19.7, 9.9 Hz, 1H).
202 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 8.55 (s, 1H), 7.75 (d, J = 7.7 Hz, 2H),
7.61 (t, J = 7.7 Hz, 2H), 7.51 (dd, J = 7.3, 1.7 Hz, 2H), 4.56 (d, J = 3.9 Hz, 2H), 4.48 (s,
2H), 4.15 (m, 7H), 3.92 (s, 1H), 3.47-3.35 (m, 5H), 2.53-2.40 (m, 5H), 2.35 (dd, J = 15.0,
6.8 Hz, 1H), 1.97 (q, J = 12.1, 10.3 Hz, 2H), 1.88 (dd, J = 13.0, 8.8 Hz, 1H).
203 1H NMR (400 MHz, Methanol-d4) δ 8.61 (s, 1H), 8.57 (s, 1H), 7.76 (t, J = 6.8 Hz, 2H),
7.62 (t, J = 7.7 Hz, 2H), 7.52 (d, J = 7.6 Hz, 2H), 4.63 (s, 2H), 4.56 (d, J = 3.9 Hz, 2H),
4.15 (s, 6H), 3.77 (s, 2H), 3.38 (m, 2H), 2.53-2.37 (m, 5H), 2.21 (s, 1H), 2.09 (s, 8H),
1.98 (m, J = 9.0 Hz, 1H).
204 1H NMR (400 MHz, Methanol-d4) δ 8.57 (s, 2H), 7.75 (d, J = 7.3 Hz, 2H), 7.61 (t, J = 7.7 Hz,
2H), 7.56-7.48 (m, 2H), 4.74 (s, 1H), 4.56 (d, J = 3.9 Hz, 2H), 4.45 (s, 1H), 4.15 (d, J = 2.0 Hz,
6H), 4.06 (m, 1H), 4.00-3.77 (m, 1H), 3.59 (m, 1H), 3.38 (t, J = 5.6 Hz, 2H),
2.60 (s, 1H), 2.44 (q, J = 11.7, 10.6 Hz, 3H), 2.19 (s, 1H), 2.06-1.93 (m, 4H).
205 1H NMR (400 MHz, Methanol-d4) δ 8.56 (d, J = 3.3 Hz, 2H), 7.75 (dd, J = 7.7, 1.7 Hz,
2H), 7.61 (t, J = 7.7 Hz, 2H), 7.51 (d, J = 7.6 Hz, 2H), 4.61 (d, J = 5.0 Hz, 1H), 4.58 (s,
2H), 4.56 (d, J = 3.8 Hz, 2H), 4.44 (d, J = 11.1 Hz, 1H), 4.30 (t, J = 14.4 Hz, 1H), 4.15 (d, J = 2.0 Hz,
6H), 3.78 (d, J = 13.9 Hz, 1H), 3.48-3.36 (m, 3H), 2.54-2.40 (m, 3H), 2.36 (d,
J = 18.0 Hz, 2H), 2.20 (s, 1H), 2.17 (s, 3H), 2.08-1.94 (m, 1H), 1.90 (d, J = 11.9 Hz, 3H),
1.78-1.55 (m, 1H).
206 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 8.56 (s, 1H), 7.75 (dd, J = 7.7, 1.7 Hz,
2H), 7.61 (t, J = 7.7 Hz, 2H), 7.51 (dd, J = 7.6, 1.7 Hz, 2H), 4.72 (d, J = 14.2 Hz, 1H),
4.64-4.48 (m, 4H), 4.15 (d, J = 1.8 Hz, 8H), 3.67-3.54 (m, 1H), 3.38 (t, J = 5.7 Hz, 2H),
3.24 (t, J = 13.2 Hz, 1H), 2.72 (dd, J = 14.4, 11.7 Hz, 1H), 2.55-2.36 (m, 3H), 2.30 (t, J = 15.4 Hz,
2H), 2.16 (s, 3H), 1.99 (q, J = 10.1 Hz, 1H), 1.73 (tt, J = 12.2, 6.1 Hz, 1H),
1.65-1.54 (m, 1H).
207 1H NMR (400 MHz, Methanol-d4) δ 8.57 (s, 1H), 8.52 (s, 1H), 7.74 (t, J = 6.3 Hz, 2H),
7.66-7.58 (m, 2H), 7.51 (d, J = 7.6 Hz, 2H), 4.78 (s, 2H), 4.69 (s, 1H), 4.56 (d, J = 3.9 Hz,
2H), 4.39 (s, 1H), 4.15 (d, J = 1.8 Hz, 7H), 3.90 (s, 2H), 3.38 (d, J = 4.5 Hz, 2H),
2.53-2.32 (m, 3H), 2.06-1.93 (m, 1H).
208 1H NMR (400 MHz, Methanol-d4) δ 8.57 (s, 1H), 8.54 (s, 1H), 7.74 (d, J = 7.5 Hz, 2H),
7.61 (t, J = 7.7 Hz, 2H), 7.51 (dd, J = 8.0, 1.7 Hz, 2H), 4.56 (d, J = 3.9 Hz, 2H), 4.38 (s,
2H), 4.32 (s, 1H), 4.23 (s, 1H), 4.15 (s, 3H), 4.14 (s, 4H), 4.08 (s, 1H), 3.99 (s, 1H),
3.98-3.88 (m, 1H), 3.38 (d, 1H), 2.74 (m, 2H), 2.59-2.47 (m, 1H), 2.47-2.37 (m, 2H),
2.01 (m, 1H), 1.90-1.84 (m, 3H).
209 1H NMR (400 MHz, Methanol-d4) δ 8.51 (s, 2H), 7.73 (d, J = 7.7 Hz, 2H), 7.60 (t, J = 7.7 Hz,
2H), 7.51 (d, J = 7.6 Hz, 2H), 4.73 (s, 4H), 4.65 (s, 4H), 4.47 (m 8H), 4.23 (m, 4H),
4.14 (s, 6H), 1.89 (s, 6H).
221 1H NMR (400 MHz, Methanol-d4) δ 8.55 (d, J = 8.4 Hz, 2H), 7.74 (dt, J = 7.7, 1.8 Hz, 2H),
7.61 (td, J = 7.6, 1.1 Hz, 2H), 7.51 (dt, J = 7.6, 1.5 Hz, 2H), 4.62-4.48 (m, 2H), 4.36 (s,
2H), 4.14 (d, J = 3.9 Hz, 6H), 3.85 (q, J = 8.1 Hz, 1H), 3.47-3.33 (m, 7H), 2.58-2.33 (m,
5H), 2.17-2.07 (m, 4H), 2.05-1.93 (m, 1H).
222 1H NMR (400 MHz, Methanol-d4) δ 8.59-8.51 (m, 2H), 7.78-7.70 (m, 2H), 7.60 (td, J = 7.7,
1.5 Hz, 2H), 7.51 (dt, J = 7.6, 1.8 Hz, 2H), 4.62-4.45 (m, 4H), 4.15 (d, J = 1.2 Hz,
6H), 3.95 (q, J = 6.6, 6.1 Hz, 1H), 3.91-3.78 (m, 1H), 3.48-3.33 (m, 5H),
2.79-2.54 (m, 3H), 2.53-2.07 (m, 6H), 2.08-1.93 (m, 2H).
224 1H NMR (400 MHz, Methanol-d4) δ 8.58 (d, J = 9.2 Hz, 2H), 7.75 (ddd, J = 7.3, 5.4, 1.7 Hz,
2H), 7.61 (t, J = 7.7 Hz, 2H), 7.55-7.48 (m, 2H), 5.02 (d, J = 15.6 Hz, 1H),
4.69-4.58 (m, 1H), 4.55 (d, J = 4.0 Hz, 2H), 4.15 (d, J = 3.1 Hz, 7H), 4.06 (d, J = 12.4 Hz, 1H),
4.02-3.87 (m, 3H), 3.51-3.45 (m, 1H), 3.40-3.34 (m, 4H), 2.63-2.47 (m, 2H),
2.50-2.36 (m, 4H), 2.05-1.94 (m, 2H).
225 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 8.50 (d, J = 1.8 Hz, 1H), 7.74 (ddd, J = 7.4,
5.5, 1.8 Hz, 2H), 7.60 (td, J = 7.6, 2.9 Hz, 2H), 7.50 (dt, J = 7.6, 1.8 Hz, 2H), 4.76 (s,
1H), 4.67 (s, 1H), 4.62-4.44 (m, 3H), 4.31-4.23 (m, 2H), 4.14 (d, J = 7.7 Hz, 7H),
4.08-3.98 (m, 2H), 3.51-3.33 (m, 5H), 3.20-3.07 (m, 1H), 2.54-2.36 (m, 4H),
2.08-1.90 (m, 3H).
227 1H NMR (400 MHz, Methanol-d4) δ 8.56 (d, J = 1.0 Hz, 2H), 7.75 (dd, J = 7.7, 1.7 Hz,
2H), 7.61 (t, J = 7.6 Hz, 2H), 7.55-7.47 (m, 2H), 4.63-4.48 (m, 4H), 4.15 (d, J = 1.0 Hz,
6H), 3.90-3.53 (m, 4H), 3.49-3.33 (m, 3H), 3.28-3.18 (m, 1H), 2.85-2.65 (m, 1H),
2.54-2.36 (m, 4H), 2.28 (ddd, J = 24.7, 12.2, 5.2 Hz, 1H), 2.09 (d, J = 3.4 Hz, 3H),
2.08-1.96 (m, 1H), 1.99-1.76 (m, 1H).
228 1H NMR (400 MHz, Methanol-d4) δ 8.55 (d, J = 7.3 Hz, 2H), 7.74 (dt, J = 7.6, 1.4 Hz, 2H),
7.61 (td, J = 7.7, 1.1 Hz, 2H), 7.51 (dt, J = 7.6, 1.6 Hz, 2H), 4.62-4.48 (m, 2H), 4.46 (s,
2H), 4.14 (d, J = 3.3 Hz, 7H), 3.87 (p, J = 7.2 Hz, 1H), 3.44-3.33 (m, 2H), 3.28 (d, J = 10.8 Hz,
5H), 2.63-2.21 (m, 6H), 2.08-1.93 (m, 1H), 1.82-1.69 (m, 2H).
229 1H NMR (400 MHz, Methanol-d4) δ 8.58 (d, J = 13.1 Hz, 2H), 7.75 (ddd, J = 5.7, 4.6, 2.5 Hz,
2H), 7.61 (t, J = 7.7 Hz, 2H), 7.52 (dd, J = 7.6, 1.7 Hz, 2H), 4.63-4.52 (m, 3H),
4.50 (d, J = 15.9 Hz, 1H), 4.14 (d, J = 3.0 Hz, 6H), 3.93 (s, 1H), 3.70 (d, J = 12.2 Hz, 1H),
3.62 (d, J = 12.2 Hz, 1H), 3.44-3.33 (m, 3H), 3.27 (d, J = 12.3 Hz, 2H), 2.54-2.33 (m, 3H),
2.15-1.93 (m, 2H), 1.86 (s, 1H), 1.72 (d, J = 14.3 Hz, 1H), 1.08 (d, J = 6.7 Hz, 3H).
231 1H NMR (400 MHz, Methanol-d4) δ 8.58 (d, J = 15.0 Hz, 2H), 7.75 (ddd, J = 7.3, 5.4, 1.7 Hz,
2H), 7.61 (t, J = 7.6 Hz, 2H), 7.51 (ddd, J = 7.6, 1.8, 0.8 Hz, 2H), 4.63-4.48 (m, 4H),
4.14 (d, J = 2.8 Hz, 7H), 3.78 (d, J = 12.5 Hz, 1H), 3.67 (d, J = 12.6 Hz, 1H),
3.49-3.33 (m, 3H), 2.99 (t, J = 12.5 Hz, 1H), 2.54-2.36 (m, 4H), 2.23-2.15 (m, 1H),
2.08-1.80 (m, 3H), 1.11 (d, J = 6.5 Hz, 3H).
232 1H NMR (400 MHz, Methanol-d4) δ 8.57 (d, J = 4.2 Hz, 2H), 7.75 (dt, J = 7.6, 1.8 Hz, 2H),
7.61 (t, J = 7.7 Hz, 2H), 7.51 (dd, J = 7.7, 1.7 Hz, 2H), 4.82 (d, J = 9.3 Hz, 2H),
4.63-4.48 (m, 2H), 4.49-4.37 (m, 2H), 4.15 (s, 6H), 3.74-3.64 (m, 5H), 3.44-3.32 (m, 4H),
2.55-2.35 (m, 4H), 2.08-1.93 (m, 2H).
234 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 8.51 (s, 1H), 7.74 (ddd, J = 7.5, 5.5, 1.8 Hz,
2H), 7.60 (td, J = 7.7, 2.2 Hz, 2H), 7.55-7.47 (m, 2H), 4.76 (d, J = 10.4 Hz, 3H),
4.62-4.45 (m, 4H), 4.34 (t, J = 10.9 Hz, 2H), 4.14 (d, J = 4.1 Hz, 6H), 4.03 (s, 1H), 3.94 (s,
1H), 3.90-3.82 (m, 2H), 3.41-3.33 (m, 3H), 2.52-2.36 (m, 3H), 2.31 (s, 1H),
2.05-1.93 (m, 1H).
235 1H NMR (400 MHz, Methanol-d4) δ 8.56 (d, J = 5.3 Hz, 2H), 7.74 (dd, J = 7.7, 1.7 Hz,
2H), 7.61 (t, J = 7.7 Hz, 2H), 7.51 (ddd, J = 7.6, 1.7, 0.8 Hz, 2H), 4.62-4.48 (m, 4H),
4.15 (d, J = 1.4 Hz, 6H), 3.61 (dd, J = 10.0, 7.7 Hz, 1H), 3.44-3.33 (m, 3H), 3.26 (t, J = 8.1 Hz,
2H), 3.13 (d, J = 10.0 Hz, 1H), 2.68-2.45 (m, 3H), 2.50-2.34 (m, 2H),
2.25-2.07 (m, 1H), 2.07-1.90 (m, 3H).
236 1H NMR (400 MHz, Methanol-d4) δ 8.55 (d, J = 9.4 Hz, 2H), 7.74 (ddd, J = 7.7, 1.7, 0.9 Hz,
2H), 7.61 (td, J = 7.6, 1.3 Hz, 2H), 7.51 (dt, J = 7.6, 1.8 Hz, 2H), 4.62-4.48 (m, 2H),
4.48 (d, J = 1.7 Hz, 2H), 4.14 (d, J = 2.5 Hz, 7H), 4.15-3.91 (m, 2H), 3.80 (td, J = 7.9, 6.4 Hz,
1H), 3.44-3.33 (m, 4H), 2.54-2.33 (m, 4H), 2.21-1.87 (m, 5H), 1.61 (dq, J = 12.1, 7.9 Hz, 1H)
237 1H NMR (400 MHz, Methanol-d4) δ 8.55 (d, J = 10.7 Hz, 2H), 7.74 (dd, J = 7.7, 1.7 Hz,
2H), 7.61 (td, J = 7.7, 1.2 Hz, 2H), 7.51 (dt, J = 7.6, 1.7 Hz, 2H), 4.69 (d, J = 16.2 Hz, 1H),
4.62-4.48 (m, 3H), 4.15 (d, J = 2.2 Hz, 6H), 3.97 (dt, J = 10.1, 5.0 Hz, 1H), 3.86 (ddd, J = 10.6,
8.3, 4.6 Hz, 1H), 3.45-3.33 (m, 2H), 2.94-2.83 (m, 1H), 2.68 (s, 1H),
2.54-2.33 (m, 3H), 2.18-2.03 (m, 1H), 2.05-1.93 (m, 1H), 1.18-1.05 (m, 1H), 0.86 (s, 2H),
0.91-0.75 (m, 1H), 0.67 (dq, J = 8.8, 4.7 Hz, 1H), 0.45 (dq, J = 10.2, 4.7 Hz, 1H).
261 8.57 (s, 1H), 8.52 (s, 1H), 7.72 (td, J = 7.7, 1.7 Hz, 2H), 7.58 (td, J = 7.7, 1.5 Hz, 2H),
7.48 (dt, J = 7.6, 1.6 Hz, 2H), 4.63 (d, J = 7.3 Hz, 2H), 4.52 (d, J = 3.9 Hz, 2H), 4.12 (d, J = 1.2 Hz,
7H), 3.99 (s, 1H), 3.79-3.53 (m, 3H), 3.35 (t, J = 5.9 Hz, 2H), 2.52-1.64 (m, 7H),
1.37 (dd, J = 6.7, 3.6 Hz, 2H).
265 δ 8.53 (d, J = 7.1 Hz, 2H), 7.72 (ddd, J = 7.7, 3.0, 1.7 Hz, 2H), 7.58 (t, J = 7.6 Hz, 2H),
7.48 (dd, J = 7.6, 1.7 Hz, 2H), 5.20 (d, J = 50.4 Hz, 1H), 4.79 (d, J = 2.5 Hz, 2H),
4.63-4.45 (m, 4H), 4.11 (d, J = 2.2 Hz, 7H), 3.35 (t, J = 5.9 Hz, 2H), 2.56-2.30 (m, 3H),
2.03-1.88 (m, 1H).
270 1H NMR (400 MHz, Methanol-d4) δ 8.57 (s, 1H), 8.52 (s, 1H), 7.72 (td, J = 7.5, 1.7 Hz,
2H), 7.58 (td, J = 7.6, 1.5 Hz, 2H), 7.48 (dt, J = 7.6, 1.8 Hz, 2H), 5.08 (d, J = 45.1 Hz, 1H),
4.71-4.55 (m, 2H), 4.52 (d, J = 3.9 Hz, 2H), 4.12 (d, J = 0.8 Hz, 8H), 3.93 (s, 0H), 3.67 (s,
1H), 3.35 (t, J = 5.9 Hz, 2H), 2.54-2.32 (m, 3H), 2.21 (dd, J = 30.9, 17.5 Hz, 2H),
2.03-1.81 (m, 3H).
274 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 5.6 Hz, 2H), 7.71 (dt, J = 7.7, 1.5 Hz,
2H), 7.57 (td, J = 7.7, 0.6 Hz, 2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.52 (d, J = 3.9 Hz, 2H),
4.35 (s, 2H), 4.11 (d, J = 2.3 Hz, 7H), 3.67-3.56 (m, 1H), 3.43-3.33 (m, 2H),
2.59-2.26 (m, 7H), 2.05-1.88 (m, 1H), 1.39 (s, 3H).
275 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 4.3 Hz, 2H), 7.71 (dd, J = 7.7, 1.7 Hz,
2H), 7.57 (td, J = 7.7, 0.7 Hz, 2H), 7.48 (ddd, J = 7.6, 1.7, 0.7 Hz, 2H), 4.52 (d, J = 3.9 Hz,
2H), 4.44 (s, 2H), 4.37 (td, J = 6.6, 6.1, 1.0 Hz, 1H), 4.11 (d, J = 2.1 Hz, 8H),
3.41-3.32 (m, 2H), 2.69 (tt, J = 8.6, 4.4 Hz, 1H), 2.51-2.33 (m, 3H), 2.31-2.12 (m, 4H),
2.03-1.89 (m, 1H), 1.36 (dd, J = 6.7, 3.5 Hz, 1H).
283 1H NMR (400 MHz, Methanol-d4) δ 8.53 (d, 2H), 7.71 (dt, J = 7.7, 1.5 Hz, 2H), 7.58 (t, J = 7.7 Hz,
2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 5.35 (t, J = 4.7 Hz, 1H), 5.21 (t, J = 4.7 Hz,
1H), 4.52 (d, J = 3.9 Hz, 2H), 4.39 (s, 2H), 4.27-4.17 (m, 1H), 4.12 (d, J = 2.3 Hz, 6H),
3.35 (d, J = 4.6 Hz, 2H), 2.79-2.60 (m, 4H), 2.51-2.34 (m, 3H), 2.02-1.86 (m, 1H).
286 1H NMR (400 MHz, Methanol-d4) δ 8.54 (d, J = 3.0 Hz, 2H), 7.72 (dd, J = 7.7, 1.7 Hz,
2H), 7.58 (t, J = 7.7 Hz, 2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.53 (t, J = 1.9 Hz, 4H),
4.12 (s, 6H), 3.55-3.24 (m, 10H), 2.52-2.31 (m, 4H), 2.03-1.90 (m, 2H). 19F NMR (376 MHz,
Methanol-d4) δ −77.66
287 1H NMR (400 MHz, Methanol-d4) δ 8.54 (d, J = 9.1 Hz, 2H), 7.73 (ddd, J = 9.0, 7.7, 1.7 Hz,
2H), 7.58 (t, J = 7.6 Hz, 2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.80 (d, J = 14.9 Hz, 1H),
4.69 (d, J = 9.2 Hz, 1H), 4.60-4.46 (m, 2H), 4.12 (d, J = 3.3 Hz, 6H), 3.78 (s, 1H),
3.67 (dd, J = 10.7, 7.4 Hz, 1H), 3.59 (s, 1H), 3.46-3.31 (m, 3H), 3.27 (dd, J = 10.6, 1.7 Hz,
1H), 2.64-2.50 (m, 1H), 2.52-2.31 (m, 3H), 2.07-1.90 (m, 2H). 19F NMR (376 MHz,
Methanol-d4) δ −77.67
288 1H NMR (400 MHz, Methanol-d4) δ 8.56-8.47 (m, 2H), 7.71 (ddd, J = 7.7, 3.2, 1.7 Hz,
2H), 7.58 (td, J = 7.7, 2.2 Hz, 2H), 7.48 (ddd, J = 7.6, 2.9, 1.7 Hz, 2H), 4.60-4.44 (m,
3H), 4.34 (s, 2H), 4.12 (d, J = 3.4 Hz, 6H), 3.98 (s, 2H), 3.42-3.31 (m, 2H), 2.82 (s, 2H),
2.52-2.31 (m, 3H), 2.03-1.90 (m, 2H). 19F NMR (376 MHz, Methanol-d4) δ −77.60 (d, J = 5.2 Hz).
289 1H NMR (400 MHz, Methanol-d4) δ 8.53 (s, 1H), 8.47 (s, 1H), 7.70 (ddd, J = 8.1, 6.6, 1.7 Hz,
2H), 7.57 (td, J = 7.7, 2.6 Hz, 2H), 7.51-7.44 (m, 2H), 4.65 (s, 2H), 4.60-4.36 (m,
4H), 4.27-4.15 (m, 2H), 4.18-4.07 (m, 7H), 3.42-3.31 (m, 2H), 2.79-2.71 (m, 2H),
2.65-2.57 (m, 2H), 2.52-2.31 (m, 3H), 2.28-2.12 (m, 2H), 2.05-1.90 (m, 2H). 19F
NMR (376 MHz, Methanol-d4) δ −77.70
290 1H NMR (400 MHz, Methanol-d4) δ 8.56 (d, J = 19.7 Hz, 2H), 7.73 (ddd, J = 8.4, 6.8, 1.7 Hz,
2H), 7.59 (td, J = 7.7, 1.9 Hz, 2H), 7.49 (dt, J = 7.6, 2.0 Hz, 2H), 4.63 (s, 2H),
4.60-4.46 (m, 4H), 4.13 (d, J = 3.4 Hz, 4H), 3.89 (dd, J = 12.6, 5.0 Hz, 2H), 3.42-3.31 (m, 2H),
2.52-2.33 (m, 4H), 2.14 (s, 2H), 2.03-1.90 (m, 2H), 0.09 (s, 2H). 19F NMR (376 MHz,
Methanol-d4) δ −77.55.
291 1H NMR (400 MHz, Methanol-d4) δ 8.53 (d, J = 6.2 Hz, 2H), 7.72 (dt, J = 7.7, 2.0 Hz,
2H), 7.58 (td, J = 7.7, 1.9 Hz, 2H), 7.48 (dt, J = 7.5, 1.4 Hz, 2H), 4.51 (dd, J = 14.8, 5.7 Hz,
4H), 4.11 (d, J = 8.2 Hz, 7H), 3.55 (d, J = 12.4 Hz, 1H), 3.45-3.31 (m, 4H),
2.52-2.33 (m, 3H), 2.30 (d, J = 18.8 Hz, 2H), 2.22 (d, J = 12.3 Hz, 2H), 2.11 (s, 2H), 2.03-1.88 (m,
2H), 1.78 (d, J = 13.5 Hz, 2H). 19F NMR (376 MHz, Methanol-d4) δ −77.66
292 1H NMR (400 MHz, Methanol-d4) δ 8.54 (d, J = 2.4 Hz, 2H), 7.72 (dt, J = 7.7, 1.8 Hz,
2H), 7.58 (t, J = 7.7 Hz, 2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.79 (d, J = 1.4 Hz, 2H),
4.64-4.46 (m, 2H), 4.12 (d, J = 0.7 Hz, 6H), 4.02 (s, 1H), 3.87 (s, 2H), 3.78 (s, 1H), 3.65 (s, 1H),
3.42-3.31 (m, 2H), 2.66 (dt, J = 14.3, 7.2 Hz, 1H), 2.52-2.31 (m, 4H), 2.05-1.90 (m,
1H). 19F NMR (376 MHz, Methanol-d4) δ −77.66.
293 1H NMR (400 MHz, Methanol-d4) δ 8.53 (d, J = 3.2 Hz, 2H), 7.72 (ddd, J = 7.6, 4.6, 1.7 Hz,
2H), 7.58 (td, J = 7.7, 1.8 Hz, 2H), 7.48 (dt, J = 7.6, 2.1 Hz, 2H), 4.53 (d, J = 3.9 Hz,
3H), 4.12 (d, J = 4.6 Hz, 7H), 3.67 (s, 2H), 3.45-3.31 (m, 5H), 2.52-2.31 (m, 3H),
2.09 (s, 3H), 2.03-1.89 (m, 2H). 19F NMR (376 MHz, Methanol-d4) δ −77.60
294 1H NMR (400 MHz, Methanol-d4) δ 8.53 (d, J = 1.2 Hz, 2H), 7.72 (dt, J = 7.7, 1.4 Hz,
2H), 7.58 (t, J = 7.6 Hz, 2H), 7.48 (dd, J = 7.7, 1.7 Hz, 2H), 4.79 (s, 2H), 4.60-4.46 (m,
2H), 4.12 (d, J = 1.0 Hz, 7H), 4.00 (s, 1H), 3.88 (s, 2H), 3.75 (s, 2H), 3.42-3.31 (m, 3H),
2.99 (s, 3H), 2.64 (dt, J = 14.3, 7.2 Hz, 1H), 2.52-2.31 (m, 2H), 2.03-1.90 (m, 2H). 19F
NMR (376 MHz, Methanol-d4) δ −77.57
295 1H NMR (400 MHz, Methanol-d4) δ 8.53 (s, 2H), 7.72 (dd, J = 7.7, 1.7 Hz, 2H), 7.58 (t, J = 7.6 Hz,
2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.60-4.49 (m, 3H), 4.51-4.40 (m, 1H),
4.12 (d, J = 2.8 Hz, 7H), 4.12-4.00 (m, 1H), 3.97 (dq, J = 8.6, 4.7, 3.8 Hz, 1H),
3.82-3.68 (m, 1H), 3.42-3.31 (m, 3H), 2.56-2.31 (m, 2H), 2.30-2.16 (m, 1H),
2.03-1.90 (m, 1H), 1.47 (d, J = 6.6 Hz, 2H). 19F NMR (376 MHz, Methanol-d4) δ −77.55.
296 1H NMR (400 MHz, Methanol-d4) δ 8.53 (d, J = 2.4 Hz, 2H), 7.75-7.68 (m, 2H), 7.58 (t,
J = 7.6 Hz, 2H), 7.48 (ddd, J = 7.6, 2.0, 0.8 Hz, 2H), 4.60-4.43 (m, 4H), 4.12 (dd, J = 1.3,
0.6 Hz, 7H), 3.97-3.87 (m, 2H), 3.84-3.73 (m, 1H), 3.62 (dd, J = 9.0, 5.7 Hz, 1H),
3.42-3.15 (m, 4H), 2.71 (hept, J = 7.0 Hz, 1H), 2.52-2.31 (m, 3H), 2.23 (dtd, J = 12.9, 7.9,
5.0 Hz, 1H), 2.03-1.90 (m, 1H), 1.76 (dq, J = 14.0, 7.3 Hz, 1H). 19F NMR (376 MHz,
Methanol-d4) δ −77.54.
297 1H NMR (400 MHz, Methanol-d4) δ 8.55 (d, J = 14.9 Hz, 2H), 7.73 (ddd, J = 7.6, 5.8, 1.7 Hz,
2H), 7.58 (td, J = 7.7, 1.6 Hz, 2H), 7.49 (dt, J = 7.6, 2.0 Hz, 2H), 4.59 (d, J = 9.5 Hz,
2H), 4.55-4.46 (m, 3H), 4.29 (ddt, J = 12.0, 8.7, 2.7 Hz, 2H), 4.22-4.06 (m, 5H),
3.92-3.80 (m, 2H), 3.73 (q, J = 8.4 Hz, 2H), 3.42-3.31 (m, 4H), 2.99 (s, 3H), 2.52-2.27 (m,
3H), 2.03-1.90 (m, 1H). Multiplet Report 19F NMR (376 MHz, Methanol-d4) δ −77.54.
298 1H NMR (400 MHz, Methanol-d4) δ 8.54 (d, J = 4.5 Hz, 2H), 7.72 (dt, J = 7.6, 2.0 Hz,
2H), 7.58 (t, J = 7.7 Hz, 2H), 7.49 (dd, J = 7.5, 1.7 Hz, 2H), 4.70-4.57 (m, 2H), 4.53 (d, J = 3.9 Hz,
2H), 4.38 (dd, J = 11.0, 6.4 Hz, 1H), 4.18-4.06 (m, 6H), 3.96 (d, J = 11.8 Hz,
1H), 3.90-3.73 (m, 1H), 3.52 (dd, J = 11.2, 6.1 Hz, 2H), 3.42-3.32 (m, 1H),
3.36-3.20 (m, 3H), 2.54-2.38 (m, 1H), 2.40-2.19 (m, 1H), 2.18-2.07 (m, 0H), 2.07-1.91 (m,
2H). 19F NMR (376 MHz, Methanol-d4) δ −77.31 (d, J = 7.5 Hz), −77.59
299 1H NMR (400 MHz, Methanol-d4) δ 8.53 (d, J = 2.4 Hz, 2H), 7.75-7.68 (m, 2H), 7.58 (t,
J = 7.6 Hz, 2H), 7.48 (ddd, J = 7.6, 2.0, 0.8 Hz, 2H), 4.60-4.43 (m, 4H), 4.12 (dd, J = 1.3,
0.6 Hz, 7H), 3.97-3.87 (m, 2H), 3.84-3.73 (m, 1H), 3.62 (dd, J = 9.0, 5.7 Hz, 1H),
3.42-3.15 (m, 4H), 2.71 (hept, J = 7.0 Hz, 1H), 2.52-2.31 (m, 3H), 2.23 (dtd, J = 12.9, 7.9,
5.0 Hz, 1H), 2.03-1.90 (m, 1H), 1.76 (dq, J = 14.0, 7.3 Hz, 1H). 19F NMR (376 MHz,
Methanol-d4) δ −77.54.
300 1H (400 MHz, Methanol-d4) δ 8.55 (d, J = 14.9 Hz, 2H), 7.73 (ddd, J = 7.6, 5.8, 1.7 Hz,
2H), 7.58 (td, J = 7.7, 1.6 Hz, 2H), 7.49 (dt, J = 7.6, 2.0 Hz, 2H), 4.59 (d, J = 9.5 Hz, 2H),
4.55-4.46 (m, 2H), 4.29 (ddt, J = 12.0, 8.7, 2.7 Hz, 2H), 4.22-4.06 (m, 5H),
3.92-3.80 (m, 4H), 3.73 (q, J = 8.4 Hz, 3H), 3.42-3.31 (m, 2H), 2.99 (s, 3H), 2.52-2.27 (m, 2H),
2.03-1.90 (m, 1H). 19F NMR (376 MHz, Methanol-d4) δ −77.54.
301 1H NMR (400 MHz, Methanol-d4) δ 8.51 (d, J = 16.6 Hz, 2H), 7.71 (ddd, J = 7.7, 4.2, 1.7 Hz,
2H), 7.58 (td, J = 7.7, 2.0 Hz, 2H), 7.48 (ddd, J = 7.6, 1.7, 0.7 Hz, 2H), 4.89 (d, J = 12.5 Hz,
2H), 4.76 (s, 2H), 4.65 (d, J = 12.5 Hz, 2H), 4.60-4.46 (m, 2H), 4.17-4.06 (m,
8H), 3.42-3.31 (m, 3H), 2.57-2.48 (m, 2H), 2.52-2.31 (m, 3H), 2.03-1.90 (m, 1H).
19F NMR (376 MHz, Methanol-d4) δ −77.56.
302 1H NMR (400 MHz, Methanol-d4) δ 8.53 (d, J = 5.5 Hz, 2H), 7.72 (ddd, J = 7.6, 1.8, 0.8 Hz,
2H), 7.58 (td, J = 7.7, 1.2 Hz, 2H), 7.48 (dt, J = 7.6, 1.7 Hz, 2H), 4.59-4.45 (m, 4H),
4.12 (d, J = 3.9 Hz, 6H), 4.01 (s, 2H), 3.65 (s, 2H), 3.34 (s, 2H), 2.49-2.35 (m, 2H),
1.29 (s, 0H). 19F NMR (376 MHz, Methanol-d4) δ −77.47.
303 1H NMR (400 MHz, Methanol-d4) δ 8.54 (d, J = 2.0 Hz, 2H), 7.72 (dt, J = 7.7, 1.8 Hz,
2H), 7.58 (t, J = 7.6 Hz, 2H), 7.49 (dd, J = 7.6, 1.7 Hz, 2H), 4.60-4.46 (m, 4H), 4.13 (d, J = 1.4 Hz,
7H), 3.53 (dd, J = 12.9, 3.2 Hz, 1H), 3.46-3.31 (m, 4H), 2.90 (s, 3H),
2.58-2.45 (m, 1H), 2.42 (ddtt, J = 17.2, 13.8, 6.8, 3.2 Hz, 5H), 2.14-1.90 (m, 2H), 1.31 (d, J = 16.8 Hz,
1H). Multiplet Report 19F NMR (376 MHz, Methanol-d4) δ −77.60.
304 1H NMR (400 MHz, Methanol-d4) δ 8.53 (d, J = 5.8 Hz, 2H), 7.72 (dd, J = 7.7, 1.7 Hz,
2H), 7.58 (td, J = 7.6, 1.5 Hz, 2H), 7.48 (dt, J = 7.7, 2.1 Hz, 2H), 4.53 (d, J = 3.9 Hz, 3H),
4.28-4.17 (m, 1H), 4.12 (d, J = 4.7 Hz, 6H), 4.02 (dd, J = 12.0, 5.6 Hz, 1H),
3.41-3.31 (m, 3H), 2.50-2.33 (m, 3H), 2.03-1.90 (m, 1H), 1.29 (s, 1H). 19F NMR (376 MHz,
Methanol-d4) δ −77.58.
305 1H NMR (400 MHz, Methanol-d4) δ 8.53 (d, J = 9.4 Hz, 2H), 7.81-7.67 (m, 2H),
7.58 (td, J = 7.7, 1.4 Hz, 2H), 7.48 (dt, J = 7.7, 2.0 Hz, 4H), 6.43 (t, J = 6.9 Hz, 2H),
4.60-4.45 (m, 2H), 4.31 (s, 3H), 4.12 (d, J = 6.7 Hz, 9H), 3.61 (s, 4H), 3.35 (q, J = 3.7, 3.3 Hz, 4H),
2.50-2.33 (m, 4H), 2.03-1.90 (m, 3H). Multiplet Report 19F NMR (376 MHz,
Methanol-d4) δ −77.58.
306 1H NMR (400 MHz, Methanol-d4) δ 8.53 (d, J = 5.0 Hz, 2H), 7.72 (dd, J = 7.7, 1.7 Hz,
2H), 7.58 (td, J = 7.7, 1.0 Hz, 2H), 7.48 (dt, J = 7.6, 1.7 Hz, 2H), 4.60-4.44 (m, 4H),
4.12 (d, J = 0.9 Hz, 8H), 3.44-3.31 (m, 4H), 3.28 (d, J = 2.5 Hz, 1H), 3.05 (ddd, J = 12.8, 11.0,
9.0 Hz, 1H), 2.73 (dtd, J = 13.5, 8.8, 2.5 Hz, 1H), 2.52-2.33 (m, 3H), 2.21-2.04 (m, 1H),
2.03-1.90 (m, 1H). 19F NMR (376 MHz, Methanol-d4) δ −77.57.
307 1H NMR (400 MHz, Methanol-d4) δ 8.53 (s, 1H), 8.48 (s, 1H), 7.71 (ddd, J = 8.1, 6.5, 1.7 Hz,
2H), 7.58 (td, J = 7.7, 2.8 Hz, 2H), 7.48 (dt, J = 7.6, 1.5 Hz, 2H), 4.66 (s, 2H), 4.55 (d,
J = 16.5 Hz, 1H), 4.55-4.41 (m, 3H), 4.31-4.22 (m, 4H), 4.11 (d, J = 8.0 Hz, 8H),
3.42-3.31 (m, 3H), 2.52-2.27 (m, 6H), 2.05-1.90 (m, 2H). 19F NMR (376 MHz, Methanol-
d4) δ −77.81.
308 1H NMR (400 MHz, Methanol-d4) δ 8.53 (s, 1H), 8.48 (s, 1H), 7.71 (ddd, J = 7.7, 6.1, 1.7 Hz,
2H), 7.58 (td, J = 7.7, 2.7 Hz, 2H), 7.48 (ddd, J = 7.6, 1.8, 1.0 Hz, 2H), 4.67 (s, 2H),
4.60-4.43 (m, 4H), 4.33 (d, J = 10.4 Hz, 1H), 4.11 (d, J = 7.8 Hz, 6H), 3.42-3.31 (m,
2H), 2.86 (d, J = 13.7 Hz, 1H), 2.77 (d, J = 14.0 Hz, 2H), 2.55 (d, J = 13.9 Hz, 2H),
2.52-2.32 (m, 3H), 2.05-1.90 (m, 2H). 19F NMR (376 MHz, Methanol-d4) δ −77.81, −86.45.
309 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 13.9 Hz, 2H), 7.71 (ddd, J = 7.7, 3.2, 1.8 Hz,
2H), 7.58 (td, J = 7.7, 1.3 Hz, 2H), 7.48 (dt, J = 7.6, 1.2 Hz, 2H), 4.79-4.61 (m, 2H),
4.60-4.46 (m, 2H), 4.35 (td, J = 10.0, 5.4 Hz, 1H), 4.12 (d, J = 3.9 Hz, 7H),
3.82-3.66 (m, 2H), 3.42 (s, 3H), 3.42-3.31 (m, 2H), 2.63-2.52 (m, 1H), 2.54-2.41 (m, 2H),
2.45-2.31 (m, 2H), 2.05-1.90 (m, 2H). Multiplet Report 19F NMR (376 MHz, Methanol-d4) δ
−77.82.
310 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 13.9 Hz, 2H), 7.71 (ddd, J = 7.7, 3.2, 1.8 Hz,
2H), 7.58 (td, J = 7.7, 1.3 Hz, 2H), 7.48 (dt, J = 7.6, 1.2 Hz, 2H), 4.79-4.61 (m, 2H),
4.60-4.46 (m, 2H), 4.35 (td, J = 10.0, 5.4 Hz, 1H), 4.12 (d, J = 3.9 Hz, 7H),
3.82-3.66 (m, 2H), 3.42 (s, 3H), 3.42-3.31 (m, 2H), 2.63-2.52 (m, 1H), 2.54-2.41 (m, 2H),
2.45-2.31 (m, 2H), 2.05-1.90 (m, 2H). Multiplet Report 19F NMR (376 MHz, Methanol-d4) δ
−77.82.
311 1H NMR (400 MHz, Methanol-d4) δ 8.53 (d, J = 2.0 Hz, 2H), 7.72 (dd, J = 7.7, 1.7 Hz,
2H), 7.58 (t, J = 7.6 Hz, 2H), 7.48 (dd, J = 7.6, 1.8 Hz, 2H), 4.60-4.46 (m, 4H),
4.45-4.34 (m, 2H), 4.15-4.03 (m, 8H), 3.58 (d, J = 7.5 Hz, 2H), 3.42-3.31 (m, 2H),
3.12-2.99 (m, 2H), 2.50-2.33 (m, 2H), 2.05-1.90 (m, 2H). 19F NMR (376 MHz, Methanol-
d4) δ −77.83
312 1H NMR (400 MHz, Methanol-d4) δ 8.54 (d, J = 5.1 Hz, 2H), 7.72 (dt, J = 7.7, 2.0 Hz,
2H), 7.58 (t, J = 7.6 Hz, 2H), 7.49 (dt, J = 7.6, 1.5 Hz, 2H), 4.71 (s, 2H), 4.53 (d, J = 3.9 Hz,
2H), 4.12 (d, J = 2.5 Hz, 7H), 3.73 (s, 2H), 3.44 (s, 1H), 3.35 (dd, J = 6.2, 5.1 Hz, 2H),
2.78 (dd, J = 18.0, 10.2 Hz, 1H), 2.52-2.40 (m, 1H), 2.42 (s, 2H), 2.44-2.32 (m, 2H),
2.05-1.90 (m, 2H). 19F NMR (376 MHz, Methanol-d4) δ −77.71.
313 1H NMR (400 MHz, Methanol-d4) δ 8.51 (d, J = 18.6 Hz, 2H), 7.71 (ddd, J = 7.7, 4.0, 1.7 Hz,
2H), 7.58 (td, J = 7.7, 1.7 Hz, 2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.84 (s, 6H),
4.60-4.46 (m, 2H), 4.12 (d, J = 2.0 Hz, 4H), 3.35 (dd, J = 6.2, 5.2 Hz, 1H), 2.52-2.31 (m, 2H),
2.05-1.90 (m, 1H). Multiplet Report 19F NMR (376 MHz, Methanol-d4) δ −77.85.
314 1H NMR (400 MHz, Methanol-d4) δ 8.53 (d, J = 4.4 Hz, 2H), 7.72 (ddd, J = 7.7, 1.7, 0.7 Hz,
2H), 7.58 (t, J = 7.6 Hz, 2H), 7.48 (dd, J = 7.7, 1.7 Hz, 2H), 4.60-4.46 (m, 4H),
4.12 (d, J = 0.8 Hz, 2H), 3.78 (q, J = 6.6 Hz, 2H), 3.42-3.31 (m, 2H), 3.26 (dd, J = 10.2, 6.4 Hz,
4H), 2.52-2.28 (m, 4H), 2.09-1.90 (m, 4H), 1.87-1.76 (m, 2H), 1.28 (s, 1H).
Multiplet Report 19F NMR (376 MHz, Methanol-d4) δ −77.68.
315 1H NMR (400 MHz, Methanol-d4) δ 8.55 (d, J = 7.1 Hz, 2H), 7.74 (dt, J = 7.8, 1.7 Hz, 2H),
7.60 (td, J = 7.6, 1.3 Hz, 2H), 7.51 (dt, J = 7.6, 1.7 Hz, 2H), 4.82 (d, J = 6.8 Hz, 1H),
4.54 (d, J = 4.0 Hz, 2H), 4.15 (s, 6H), 3.36 (s, 1H), 2.51-2.32 (m, 5H), 1.99 (d, J = 7.8 Hz,
1H), 1.66 (d, J = 6.8 Hz, 3H).
316 1H NMR (400 MHz, Methanol-d4) δ 8.56 (d, J = 7.0 Hz, 2H), 7.74 (dt, J = 7.8, 1.7 Hz,
2H), 7.58 (td, J = 7.6, 1.3 Hz, 2H), 7.50 (dt, J = 7.6, 1.8 Hz, 2H), 4.82 (d, J = 6.8 Hz, 1H),
4.54 (d, J = 4.0 Hz, 2H), 4.16 (s, 6H), 3.37 (s, 1H), 2.51-2.31 (m, 5H), 2.01 (d, J = 7.7 Hz,
1H), 1.66 (d, J = 6.8 Hz, 3H).
317 1H NMR (400 MHz, Methanol-d4) δ 8.54 (s, 2H), 7.74 (dd, J = 7.7, 1.7 Hz, 2H), 7.60 (t, J = 7.6 Hz,
2H), 7.50 (dd, J = 7.6, 1.8 Hz, 2H), 4.15-4.06 (m, 6H), 3.50 (t, J = 1.7 Hz, 2H),
3.37 (s, 6H), 3.15 (t, J = 1.7 Hz, 2H), 2.44-2.36 (m, 4H), 2.03 (s, 4H), 1.35 (d, J = 6.6 Hz, 4H).
318 1H NMR (400 MHz, Methanol-d4) δ 8.54 (d, J = 14.3 Hz, 2H), 7.74 (ddd, J = 7.7, 3.4, 1.7 Hz,
2H), 7.60 (td, J = 7.7, 2.3 Hz, 2H), 7.50 (ddd, J = 7.6, 3.3, 1.7 Hz, 2H), 4.55 (d, J = 4.1 Hz,
2H), 4.37 (s, 2H), 4.14 (d, J = 3.7 Hz, 6H), 3.37 (d, J = 6.7 Hz, 1H), 3.01 (s, 1H),
2.88 (d, J = 0.7 Hz, 1H), 2.72 (s, 1H), 2.46-2.42 (m, 2H), 1.99 (d, J = 7.9 Hz, 1H).
319 1H NMR (400 MHz, Methanol-d4) δ 8.07 (s, 2H), 7.69 (dd, J = 7.7, 1.8 Hz, 2H), 7.52 (t, J = 7.6 Hz,
2H), 7.40 (dd, J = 7.6, 1.8 Hz, 2H), 4.39-4.26 (m, 4H), 4.19-3.99 (m, 2H),
3.38-3.26 (m, 4H), 3.15 (s, 6H), 3.03 (s, 6H), 2.52-2.29 (m, 6H), 2.07-1.92 (m, 2H).
320 1H NMR (400 MHz, Methanol-d4) δ 8.07 (s, 2H), 7.64 (dd, J = 7.7, 1.8 Hz, 2H), 7.52 (t, J = 7.6 Hz,
2H), 7.42 (dd, J = 7.6, 1.8 Hz, 2H), 4.39-4.24 (m, 4H), 4.19-3.99 (m, 2H),
3.38-3.26 (m, 4H), 3.03 (s, 6H), 2.52-2.29 (m, 6H), 2.07-1.92 (m, 2H).
321 1H NMR (400 MHz, Methanol-d4) δ 8.55 (s, 2H), 7.74 (dd, J = 7.7, 1.8 Hz, 2H), 7.60 (t, J = 7.7 Hz,
2H), 7.51 (dd, J = 7.6, 1.7 Hz, 2H), 4.52 (d, J = 3.4 Hz, 4H), 4.15 (s, 7H), 3.77 (dd,
J = 11.2, 6.8 Hz, 2H), 3.68-3.57 (m, 4H), 3.44 (dt, J = 10.1, 7.7 Hz, 3H), 2.98 (s, 6H),
2.61-2.52 (m, 2H), 2.27 (dd, J = 13.8, 6.7 Hz, 2H).
322 1H NMR (400 MHz, Methanol-d4) δ 8.58-8.50 (m, 2H), 7.75-7.69 (m, 2H),
7.61-7.55 (m, 2H), 7.48 (d, J = 7.4 Hz, 2H), 4.50 (d, J = 12.2 Hz, 2H), 4.20-4.09 (m, 7H), 3.96 (s,
2H), 3.89 (t, J = 5.2 Hz, 2H), 3.49-3.45 (m, 1H), 3.33 (d, J = 8.2 Hz, 3H), 3.12 (d, J = 1.7 Hz,
1H), 3.08 (s, 2H), 2.44-2.31 (m, 4H), 2.01-1.80 (m, 3H).
323 1H NMR (400 MHz, Methanol-d4) δ 8.55 (d, J = 12.2 Hz, 2H), 7.72 (ddd, J = 7.7, 6.0, 1.7 Hz,
2H), 7.62-7.55 (m, 2H), 7.52-7.46 (m, 2H), 4.76 (s, 2H), 4.52 (d, J = 3.9 Hz, 2H),
4.12 (s, 6H), 4.11-4.05 (m, 1H), 4.00-3.93 (m, 2H), 3.53 (d, J = 8.2 Hz, 1H),
3.37-3.32 (m, 2H), 3.09 (s, 3H), 2.50-2.33 (m, 4H), 1.96 (d, J = 7.8 Hz, 1H).
324 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.75 (dd, J = 7.7, 1.7 Hz, 1H), 7.61 (t, J = 7.7 Hz,
1H), 7.51 (dd, J = 7.6, 1.7 Hz, 1H), 4.59-4.54 (m, 2H), 4.15 (s, 3H), 3.98 (t, J = 5.4 Hz,
1H), 3.47-3.36 (m, 2H), 2.13-2.08 (m, 1H), 2.00-1.95 (m, 1H), 1.33 (td, J = 8.1,
4.7 Hz, 1H), 0.77 (q, J = 4.1 Hz, 1H).
325 1H NMR (400 MHz, Methanol-d4) δ 8.57 (s, 1H), 8.49 (s, 1H), 7.73 (ddd, J = 12.7, 7.7, 1.7 Hz,
2H), 7.63-7.56 (m, 2H), 7.55-7.26 (m, 7H), 4.55 (d, J = 4.0 Hz, 2H),
4.30-4.19 (m, 2H), 4.15 (s, 4H), 4.05 (s, 2H), 3.50 (t, J = 1.7 Hz, 1H), 3.42-3.34 (m, 4H), 3.15 (t, J = 1.7 Hz,
1H), 2.51-2.39 (m, 3H), 2.32 (s, 3H), 2.04-1.90 (m, 2H), 1.87-1.72 (m, 2H).
326 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.74 (dd, J = 7.7, 1.7 Hz, 1H), 7.61 (t, J = 7.7 Hz,
1H), 7.51 (dd, J = 7.6, 1.7 Hz, 1H), 4.54 (d, J = 4.2 Hz, 2H), 4.15 (s, 3H), 4.06 (dq,
J = 8.0, 2.6 Hz, 1H), 3.36 (d, J = 5.1 Hz, 2H), 2.69-2.59 (m, 1H), 2.30-2.23 (m, 1H),
2.14-2.06 (m, 1H), 1.22 (d, J = 7.2 Hz, 3H).
327 1H NMR (400 MHz, Methanol-d4) δ 8.60 (s, 1H), 7.76 (dd, J = 7.7, 1.7 Hz, 1H), 7.62 (t, J = 7.7 Hz,
1H), 7.52 (dd, J = 7.6, 1.8 Hz, 1H), 4.70 (s, 2H), 4.26 (q, J = 6.4 Hz, 1H), 4.15 (s,
3H), 3.45 (s, 2H), 3.15 (s, 3H), 2.52-2.33 (m, 3H), 1.96 (s, 1H).
328 1H NMR (400 MHz, Methanol-d4) δ 8.59 (s, 1H), 7.76 (dd, J = 7.7, 1.7 Hz, 1H), 7.65 (t, J = 7.7 Hz,
1H), 7.51 (dd, J = 7.6, 1.8 Hz, 1H), 4.70 (s, 2H), 4.26 (q, J = 6.4 Hz, 1H), 4.12 (s,
3H), 3.45 (s, 2H), 3.15 (s, 3H), 2.52-2.33 (m, 3H), 2.01-1.97 (m, 4H), 1.96 (s, 1H).
329 1H NMR (400 MHz, Methanol-d4) δ 8.60 (s, 1H), 8.56 (s, 1H), 7.76 (td, J = 7.8, 1.7 Hz,
2H), 7.61 (td, J = 7.7, 1.4 Hz, 2H), 7.51 (dt, J = 7.6, 1.6 Hz, 2H), 4.84-4.70 (m, 2H),
4.55 (d, J = 4.1 Hz, 2H), 4.31-4.23 (m, 1H), 4.15 (d, J = 4.5 Hz, 7H), 3.58-3.35 (m, 6H),
2.52-2.36 (m, 6H), 2.04-1.91 (m, 2H), 1.24 (s, 1H), 0.82 (d, J = 7.7 Hz, 2H), 0.52 (s, 2H).
330 HPLC retention time = 4.89 min.
331 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.75 (dd, J = 7.7, 1.7 Hz, 1H), 7.63 (t, J = 7.7 Hz,
1H), 7.51 (dd, J = 7.6, 1.7 Hz, 1H), 4.57-4.55 (m, 2H), 4.15 (s, 3H), 3.98 (t, J = 5.4 Hz,
1H), 3.47-3.36 (m, 2H), 2.13-1.95 (m, 2H), 1.35 (td, J = 8.1, 4.7 Hz, 1H),
0.77 (q, J = 4.1 Hz, 1H).
332 1H NMR (400 MHz, Methanol-d4) δ 8.61 (s, 1H), 8.56 (s, 1H), 7.76 (t, J = 7.3 Hz, 2H),
7.61 (t, J = 7.6 Hz, 2H), 7.52 (d, J = 7.6 Hz, 2H), 4.53 (s, 2H), 4.16 (d, J = 6.1 Hz, 7H),
4.05-3.71 (m, 7H), 3.50 (s, 1H), 3.15 (s, 1H), 2.45 (s, 4H), 1.99 (d, J = 17.9 Hz, 2H),
1.45 (s, 5H).
333 1H NMR (400 MHz, Methanol-d4) δ 8.56 (d, J = 7.2 Hz, 2H), 7.75 (d, J = 7.5 Hz, 2H),
7.61 (t, J = 7.6 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 4.80 (t, J = 6.7 Hz, 2H), 4.65 (d, J = 6.6 Hz,
2H), 4.56 (d, J = 4.0 Hz, 2H), 4.49 (d, J = 4.2 Hz, 2H), 4.11-4.00 (m, 2H), 3.83 (s, 2H),
3.50 (d, J = 3.4 Hz, 3H), 3.17-3.06 (m, 3H), 2.85 (d, J = 7.2 Hz, 2H), 2.62-2.52 (m, 2H),
2.47-2.38 (m, 3H), 2.19-2.07 (m, 2H), 2.06-1.96 (m, 2H).
334 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 2H), 7.75 (d, J = 7.7 Hz, 2H), 7.61 (t, J = 7.7 Hz,
2H), 7.51 (d, J = 7.6 Hz, 2H), 4.61 (s, 2H), 4.51 (s, 2H), 4.15 (s, 7H), 4.00 (dd, J = 10.8,
5.1 Hz, 2H), 3.81 (d, J = 5.1 Hz, 2H), 3.52-3.37 (m, 3H), 3.17 (t, J = 10.2 Hz, 2H),
2.45 (t, J = 9.6 Hz, 3H), 2.24 (d, J = 13.2 Hz, 1H), 2.02-1.96 (m, 1H).
335 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 2H), 7.75 (d, J = 7.7 Hz, 2H), 7.61 (t, J = 7.7 Hz,
2H), 7.51 (d, J = 7.6 Hz, 2H), 4.61 (s, 2H), 4.51 (s, 2H), 4.15 (s, 7H), 4.00 (dd, J = 10.8,
5.1 Hz, 2H), 3.81 (d, J = 5.1 Hz, 2H), 3.52-3.37 (m, 3H), 3.17 (t, J = 10.2 Hz, 2H),
2.45 (t, J = 9.6 Hz, 3H), 2.24 (d, J = 13.2 Hz, 1H), 2.02-1.96 (m, 1H).
336 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 2H), 7.75 (d, J = 7.7 Hz, 2H), 7.61 (t, J = 7.7 Hz,
2H), 7.51 (d, J = 7.6 Hz, 2H), 4.61 (s, 2H), 4.51 (s, 2H), 4.15 (s, 7H), 4.00 (dd, J = 10.8,
5.1 Hz, 2H), 3.81 (d, J = 5.1 Hz, 2H), 3.52-3.37 (m, 3H), 3.17 (t, J = 10.2 Hz, 2H),
2.45 (t, J = 9.6 Hz, 3H), 2.24 (d, J = 13.2 Hz, 1H), 2.02-1.96 (m, 1H).
337 1H NMR (400 MHz, Methanol-d4) δ 8.55 (d, J = 6.2 Hz, 2H), 7.74 (d, J = 7.9 Hz, 2H),
7.61 (t, J = 7.0 Hz, 3H), 7.51 (d, J = 7.6 Hz, 2H), 7.32 (s, 1H), 4.64 (s, 2H), 4.53 (s, 2H), 4.47 (s,
2H), 4.14 (d, J = 7.7 Hz, 6H), 3.50 (s, 1H), 3.15 (s, 1H), 2.44 (d, J = 6.7 Hz, 3H), 2.18 (s,
1H), 2.08-1.96 (m, 2H).
338 1H NMR (400 MHz, Methanol-d4) δ 8.55 (d, J = 6.2 Hz, 2H), 7.74 (d, J = 7.9 Hz, 2H),
7.61 (t, J = 7.0 Hz, 4H), 7.49 (d, J = 7.4 Hz, 2H), 7.32 (s, 1H), 4.60 (s, 2H), 4.53 (s, 2H),
4.47 (s, 2H), 4.13 (d, J = 7.4 Hz, 6H), 3.50 (s, 1H), 3.15 (s, 1H), 2.44 (d, J = 6.7 Hz, 3H),
2.18 (s, 1H), 2.08-1.96 (m, 2H).
339 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 2H), 7.75 (d, J = 7.7 Hz, 2H), 7.61 (t, J = 7.7 Hz,
2H), 7.51 (d, J = 7.6 Hz, 2H), 4.61 (s, 2H), 4.51 (s, 2H), 4.15 (s, 7H), 4.00 (dd, J = 10.8,
5.1 Hz, 2H), 3.81 (d, J = 5.1 Hz, 2H), 3.52-3.37 (m, 3H), 3.17 (t, J = 10.2 Hz, 2H),
2.45 (t, J = 9.6 Hz, 3H), 2.24 (d, J = 13.2 Hz, 1H), 2.02-1.96 (m, 1H).
340 1H NMR (400 MHz, Methanol-d4) δ 8.58-8.50 (m, 2H), 7.75-7.69 (m, 2H),
7.61-7.55 (m, 2H), 7.48 (d, J = 7.4 Hz, 2H), 4.50 (d, J = 12.2 Hz, 2H), 4.20-4.09 (m, 7H), 3.96 (s,
2H), 3.89 (t, J = 5.2 Hz, 2H), 3.49-3.45 (m, 1H), 3.35-3.21 (m, 3H), 3.18 (d, J = 1.7 Hz,
1H), 3.16 (s, 2H), 2.44-2.23 (m, 4H).
341 1H NMR (400 MHz, Methanol-d4) δ 8.55 (d, J = 2.9 Hz, 2H), 7.74 (dt, J = 7.7, 1.6 Hz,
2H), 7.60 (t, J = 7.7 Hz, 2H), 7.51 (dd, J = 7.4, 1.7 Hz, 2H), 4.52 (dd, J = 16.1, 3.8 Hz, 3H),
4.38 (s, 2H), 4.17-4.07 (m, 7H), 3.54-3.46 (m, 1H), 3.19-3.10 (m, 1H), 2.60 (dd, J = 13.8,
6.9 Hz, 2H), 2.56-2.49 (m, 2H) 2.46-2.38 (m, 4H), 2.17 (s, 2H), 2.04-1.91 (m, 2H).
342 1H NMR (400 MHz, Methanol-d4) δ 8.55 (d, J = 2.9 Hz, 2H), 7.74 (dt, J = 7.7, 1.6 Hz, 2H),
7.60 (t, J = 7.7 Hz, 2H), 7.51 (dd, J = 7.4, 1.7 Hz, 2H), 4.52 (dd, J = 16.1, 3.8 Hz, 3H),
4.38 (s, 2H), 4.17-4.07 (m, 7H), 3.54-3.46 (m, 1H), 3.19-3.10 (m, 1H), 2.60 (dd, J = 13.8,
6.9 Hz, 2H), 2.46-2.38 (m, 4H), 2.17 (s, 2H), 2.04-1.91 (m, 2H).
343 1H NMR (400 MHz, Methanol-d4) δ 8.55 (d, J = 2.9 Hz, 2H), 7.74 (dt, J = 7.7, 1.6 Hz, 2H),
7.60 (t, J = 7.7 Hz, 2H), 7.51 (dd, J = 7.4, 1.7 Hz, 2H), 4.52 (dd, J = 16.1, 3.8 Hz, 3H),
4.38 (s, 2H), 4.17-4.07 (m, 7H), 3.54-3.46 (m, 1H), 3.19-3.10 (m, 1H), 2.60 (dd, J = 13.8,
6.9 Hz, 2H), 2.46-2.38 (m, 4H), 2.17 (s, 2H), 2.04-1.91 (m, 2H).
344 1H NMR (400 MHz, Methanol-d4) δ 8.51 (d, J = 5.9 Hz, 2H), 7.71 (dd, J = 7.7, 1.7 Hz,
2H), 7.62-7.54 (m, 2H), 7.48 (dt, J = 7.5, 1.7 Hz, 2H), 4.54-4.45 (m, 4H), 4.12 (d, J = 2.0 Hz,
7H), 3.93-3.34 (m, 5H), 2.48-2.39 (m, 5H), 2.00-1.92 (m, 2H).
345 1H NMR (400 MHz, Methanol-d4) δ 8.51 (d, J = 5.9 Hz, 2H), 7.71 (dd, J = 7.7, 1.7 Hz,
2H), 7.62-7.54 (m, 2H), 7.48 (dt, J = 7.5, 1.7 Hz, 2H), 4.54-4.45 (m, 4H), 4.12 (d, J = 2.0 Hz,
7H), 3.93-3.34 (m, 5H), 2.48-2.39 (m, 5H), 2.00-1.92 (m, 2H).
346 1H NMR (400 MHz, Methanol-d4) δ 8.51 (d, J = 5.9 Hz, 2H), 7.71 (dd, J = 7.7, 1.7 Hz,
2H), 7.62-7.54 (m, 2H), 7.48 (dt, J = 7.5, 1.7 Hz, 2H), 4.54-4.45 (m, 4H), 4.06 (d, J = 2.0 Hz,
7H), 3.92-3.34 (m, 5H), 2.48-2.39 (m, 5H), 2.00-1.92 (m, 2H).
347 1H NMR (400 MHz, Methanol-d4) δ 8.51 (d, J = 5.9 Hz, 2H), 7.71 (dd, J = 7.7, 1.7 Hz,
2H), 7.62-7.54 (m, 2H), 7.48 (dt, J = 7.5, 1.7 Hz, 2H), 4.54-4.45 (m, 4H), 4.06 (d, J = 2.0 Hz,
7H), 3.92-3.34 (m, 5H), 2.48-2.39 (m, 5H), 2.00-1.92 (m, 2H).
348 HPLC retention time = 3.81 min.
349 1H NMR (400 MHz, Methanol-d4) δ 8.74 (s, 1H), 8.54 (d, J = 12.9 Hz, 2H), 7.82 (d, J = 8.0 Hz,
1H), 7.74 (d, J = 7.9 Hz, 2H), 7.60 (t, J = 7.7 Hz, 2H), 7.51 (d, J = 7.5 Hz, 2H),
7.38 (d, J = 8.3 Hz, 2H), 4.52 (s, 4H), 4.33 (s, 2H), 4.15 (d, J = 5.4 Hz, 7H), 3.50 (s, 1H),
3.44-3.35 (m, 2H), 3.15 (s, 1H), 2.43 (d, J = 6.9 Hz, 3H), 2.06-1.94 (m, 2H).
350 1H NMR (400 MHz, Methanol-d4) δ 8.54 (d, J = 4.6 Hz, 2H), 7.74 (d, J = 7.5 Hz, 2H),
7.60 (t, J = 7.6 Hz, 2H), 7.53-7.48 (m, 2H), 7.45 (d, J = 4.4 Hz, 3H), 7.37 (s, 2H), 4.72 (d, J = 16.1 Hz,
2H), 4.50-4.33 (m, 5H), 4.17-3.98 (m, 7H), 3.50 (s, 1H), 3.16 (s, 1H), 2.42 (d,
J = 5.5 Hz, 3H), 2.05 (d, J = 8.7 Hz, 3H).
351 1H NMR (400 MHz, Methanol-d4) δ 8.54 (d, J = 19.5 Hz, 2H), 7.73 (d, J = 7.2 Hz, 2H),
7.61 (t, J = 8.0 Hz, 2H), 7.51 (d, J = 7.8 Hz, 2H), 4.75 (s, 2H), 4.54 (s, 2H), 4.41-4.29 (m,
2H), 4.14 (d, J = 3.5 Hz, 6H), 3.75 (s, 3H), 3.50 (s, 1H), 3.15 (s, 1H), 2.43 (d, J = 20.9 Hz,
7H), 2.01 (d, J = 23.5 Hz, 3H), 1.35-1.20 (m, 2H).
352 1H NMR (400 MHz, Methanol-d4) δ 8.57 (s, 2H), 7.78 (d, J = 29.3 Hz, 4H), 7.57 (d, J = 35.0 Hz,
4H), 4.55 (s, 3H), 4.18 (d, J = 19.1 Hz, 8H), 3.50 (s, 1H), 3.15 (s, 1H), 2.44 (s,
4H), 2.06-1.90 (m, 4H), 1.51 (d, J = 6.6 Hz, 2H).
353 1H NMR (400 MHz, Methanol-d4) δ 8.54 (s, 2H), 7.74 (d, J = 7.6 Hz, 2H), 7.60 (t, J = 7.7 Hz,
2H), 7.51 (d, J = 7.7 Hz, 2H), 4.50-4.39 (m, 5H), 4.15 (d, J = 3.8 Hz, 7H),
3.90-3.85 (m, 1H), 3.50 (s, 1H), 3.26 (d, J = 16.0 Hz, 2H), 3.16 (s, 1H), 2.42 (d, J = 5.4 Hz, 3H),
2.27 (s, 2H), 1.96 (d, J = 25.8 Hz, 3H).
354 1H NMR (400 MHz, Methanol-d4) δ 8.54 (s, 2H), 7.74 (d, J = 7.6 Hz, 2H), 7.60 (t, J = 7.7 Hz,
2H), 7.51 (d, J = 7.7 Hz, 2H), 4.50-4.39 (m, 5H), 4.15 (d, J = 3.8 Hz, 7H),
3.90-3.85 (m, 1H), 3.50 (s, 1H), 3.26 (d, J = 16.0 Hz, 2H), 3.19 (s, 1H), 2.42 (d, J = 5.4 Hz, 3H),
2.27 (s, 2H), 1.96 (d, J = 25.8 Hz, 3H).
355 1H NMR (400 MHz, Methanol-d4) δ 8.54 (s, 2H), 7.74 (d, J = 7.6 Hz, 2H), 7.61 (t, J = 7.7 Hz,
2H), 7.51 (d, J = 7.7 Hz, 2H), 4.50-4.39 (m, 5H), 4.15 (d, J = 3.8 Hz, 7H),
3.90-3.85 (m, 1H), 3.50 (s, 1H), 3.26 (d, J = 16.0 Hz, 2H), 3.17 (s, 1H), 2.42 (d, J = 5.4 Hz, 3H),
2.27 (s, 2H), 1.96 (d, J = 25.8 Hz, 3H).
356 1H NMR (400 MHz, Methanol-d4) δ 8.54 (s, 2H), 7.74 (d, J = 7.6 Hz, 2H), 7.60 (t, J = 7.7 Hz,
2H), 7.51 (d, J = 7.7 Hz, 2H), 4.50-4.39 (m, 5H), 4.15 (d, J = 3.8 Hz, 7H),
3.90-3.83 (m, 1H), 3.49 (s, 1H), 3.26 (d, J = 16.0 Hz, 2H), 3.16 (s, 1H), 2.42 (d, J = 5.4 Hz, 3H),
2.27 (s, 2H), 1.96 (d, J = 25.8 Hz, 3H).
357 1H NMR (400 MHz, Methanol-d4) δ 8.55 (d, J = 6.9 Hz, 2H), 7.74 (d, J = 7.6 Hz, 2H),
7.61 (t, J = 7.7 Hz, 2H), 7.51 (d, J = 7.7 Hz, 2H), 4.52 (d, J = 3.6 Hz, 2H), 4.40 (s, 2H), 4.15 (d,
J = 2.1 Hz, 7H), 3.97 (d, J = 11.0 Hz, 1H), 3.50 (s, 1H), 3.16 (s, 1H), 3.00 (s, 3H), 2.92 (s,
2H), 2.80 (s, 2H), 2.43 (d, J = 6.9 Hz, 2H).
358 1H NMR (400 MHz, Methanol-d4) δ 8.55 (d, J = 6.9 Hz, 2H), 7.74 (d, J = 7.6 Hz, 2H),
7.61 (t, J = 7.7 Hz, 2H), 7.51 (d, J = 7.7 Hz, 2H), 4.52 (d, J = 3.6 Hz, 2H), 4.40 (s, 2H), 4.15 (d,
J = 2.1 Hz, 7H), 3.97 (d, J = 11.0 Hz, 1H), 3.50 (s, 1H), 3.16 (s, 1H), 3.00 (s, 3H), 2.92 (s,
2H), 2.80 (s, 2H), 2.43 (d, J = 6.9 Hz, 2H).
359 1H NMR (400 MHz, Methanol-d4) δ 8.55 (s, 2H), 7.74 (dd, J = 7.7, 1.7 Hz, 2H), 7.60 (t, J = 7.6 Hz,
2H), 7.53-7.48 (m, 2H), 4.49 (d, J = 1.5 Hz, 3H), 4.15-4.07 (m, 8H),
3.94-3.88 (m, 2H), 3.84-3.75 (m, 2H), 3.50 (t, J = 1.7 Hz, 1H), 3.15 (d, J = 1.7 Hz, 1H),
2.46-2.38 (m, 3H), 2.17 (s, 2H), 2.04-1.95 (m, 2H).
360 1H NMR (400 MHz, Methanol-d4) δ 8.55 (s, 2H), 7.74 (dd, J = 7.7, 1.7 Hz, 2H), 7.60 (t, J = 7.6 Hz,
2H), 7.53-7.48 (m, 2H), 4.49 (d, J = 1.5 Hz, 3H), 4.15-4.07 (m, 8H),
3.94-3.88 (m, 2H), 3.84-3.75 (m, 2H), 3.50 (t, J = 1.7 Hz, 1H), 3.15 (d, J = 1.7 Hz, 1H),
2.46-2.38 (m, 3H), 2.17 (s, 2H), 2.04-1.95 (m, 2H).
361 1H NMR (400 MHz, Methanol-d4) δ 8.55 (s, 2H), 7.74 (d, J = 8.0 Hz, 2H), 7.61 (t, J = 7.7 Hz,
2H), 7.51 (d, J = 7.4 Hz, 2H), 4.45 (s, 2H), 4.39 (s, 2H), 4.14 (s, 7H), 3.51 (s, 1H),
3.15 (s, 1H), 2.69 (s, 2H), 2.47 (d, J = 31.2 Hz, 5H), 2.05 (d, J = 8.8 Hz, 3H), 1.98 (s, 3H).
362 1H NMR (400 MHz, Methanol-d4) δ 8.55 (s, 2H), 7.74 (d, J = 8.0 Hz, 2H), 7.61 (t, J = 7.7 Hz,
2H), 7.51 (d, J = 7.4 Hz, 2H), 4.45 (s, 2H), 4.39 (s, 2H), 4.14 (s, 7H), 3.51 (s, 1H),
3.15 (s, 1H), 2.69 (s, 2H), 2.47 (d, J = 31.2 Hz, 5H), 2.05 (d, J = 8.8 Hz, 3H), 1.98 (s, 3H).
363 1H NMR (400 MHz, Methanol-d4) δ 8.54 (d, J = 4.2 Hz, 2H), 7.74 (d, J = 7.6 Hz, 2H),
7.61 (t, J = 7.7 Hz, 2H), 7.51 (d, J = 7.8 Hz, 2H), 4.48 (s, 2H), 4.36 (s, 2H), 4.29 (s, 2H), 4.24 (s,
2H), 4.14 (s, 6H), 4.04-3.94 (m, 2H), 3.16 (s, 1H), 2.81 (t, J = 10.0 Hz, 2H), 2.64 (t, J = 10.8 Hz,
2H), 2.43 (d, J = 6.7 Hz, 2H), 2.39 (s, 1H), 2.05 (d, J = 8.5 Hz, 1H), 1.97 (s, 1H).
364 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 9.1 Hz, 2H), 7.71 (dt, J = 7.6, 2.2 Hz, 2H),
7.61-7.54 (m, 2H), 7.50-7.45 (m, 2H), 4.52 (d, J = 3.9 Hz, 2H), 4.36 (s, 2H), 4.12 (d, J = 3.4 Hz,
7H), 3.80 (t, J = 7.0 Hz, 1H), 3.59 (d, J = 8.1 Hz, 1H), 3.48 (d, J = 7.0 Hz, 1H),
3.38-3.32 (m, 2H), 2.84-2.75 (m, 2H), 2.41 (dd, J = 7.8, 4.4 Hz, 2H), 2.19-2.11 (m,
2H), 2.00 (s, 4H).
365 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 9.1 Hz, 2H), 7.71 (dt, J = 7.6, 2.2 Hz, 2H),
7.63-7.54 (m, 2H), 7.50-7.45 (m, 2H), 4.52 (d, J = 3.9 Hz, 2H), 4.36 (s, 2H), 4.12 (d, J = 3.4 Hz,
7H), 3.80 (t, J = 7.0 Hz, 1H), 3.59 (d, J = 8.1 Hz, 1H), 3.48 (d, J = 7.0 Hz, 1H),
3.38-3.32 (m, 2H), 2.84-2.75 (m, 2H), 2.42 (dd, J = 7.8, 4.4 Hz, 2H), 2.19-2.10 (m,
2H), 2.00 (s, 4H).
366 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 7.6 Hz, 2H), 7.71 (dt, J = 7.7, 1.9 Hz, 2H),
7.61-7.54 (m, 2H), 7.51-7.45 (m, 2H), 4.52 (d, J = 3.9 Hz, 2H), 4.33 (s, 2H), 4.12 (d, J = 3.2 Hz,
7H), 3.92-3.84 (m, 1H), 3.34 (d, J = 6.7 Hz, 2H), 2.52-2.28 (m, 9H),
1.99-1.93 (m, 1H), 1.16 (s, 6H).
367 1H NMR (400 MHz, Methanol-d4) δ 8.53 (s, 1H), 8.47 (s, 1H), 7.71 (ddd, J = 7.3, 5.4, 1.7 Hz,
2H), 7.57 (td, J = 7.7, 2.2 Hz, 2H), 7.48 (ddd, J = 7.6, 1.8, 0.9 Hz, 2H), 4.70 (s, 2H),
4.58 (s, 3H), 4.51 (d, J = 8.5 Hz, 6H), 4.11 (d, J = 6.2 Hz, 6H), 3.34 (d, J = 4.6 Hz, 2H),
2.48-2.31 (m, 4H), 2.01-1.90 (m, 2H), 1.28 (s, 1H), 1.23 (t, J = 7.1 Hz, 1H),
0.93-0.82 (m, 2H).
368 1H NMR (400 MHz, Methanol-d4) δ 8.51 (d, J = 20.3 Hz, 2H), 7.71 (ddd, J = 7.5, 5.7, 1.7 Hz,
2H), 7.57 (td, J = 7.7, 2.0 Hz, 2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.74 (s, 2H), 4.52 (d,
J = 3.8 Hz, 3H), 4.38 (s, 1H), 4.11 (d, J = 3.8 Hz, 7H), 3.82-3.64 (m, 3H), 3.37-3.32 (m,
2H), 2.87-2.69 (m, 3H), 2.45-2.32 (m, 3H), 1.96 (d, J = 8.1 Hz, 1H).
369 1H NMR (400 MHz, Methanol-d4) δ 8.50 (d, J = 19.8 Hz, 2H), 7.73-7.68 (m, 2H),
7.57 (td, J = 7.6, 2.2 Hz, 2H), 7.47 (d, J = 7.6 Hz, 2H), 4.73 (s, 2H), 4.48 (s, 2H), 4.11 (d, J = 2.8 Hz,
7H), 2.40 (d, J = 6.6 Hz, 3H), 2.00 (s, 4H), 1.28 (s, 4H), 0.90 (d, J = 6.6 Hz, 4H).
370 1H NMR (400 MHz, Methanol-d4) δ 8.53 (s, 1H), 8.47 (s, 1H), 7.73-7.65 (m, 3H),
7.63-7.54 (m, 4H), 7.50-7.45 (m, 2H), 6.63 (d, J = 9.1 Hz, 1H), 6.47 (t, J = 6.6 Hz, 1H),
4.49 (s, 4H), 4.46-4.42 (m, 2H), 4.11 (d, J = 5.0 Hz, 8H), 3.62-3.57 (m, 2H), 2.43-2.36 (m,
3H), 1.98-1.90 (m, 2H).
371 1H NMR (400 MHz, Methanol-d4) δ 8.50 (d, J = 19.0 Hz, 2H), 7.72-7.68 (m, 2H),
7.60-7.54 (m, 2H), 7.47 (d, J = 8.4 Hz, 2H), 4.48 (s, 2H), 4.11 (d, J = 3.3 Hz, 7H), 3.47 (d, J = 1.9 Hz,
1H), 3.39-3.31 (m, 4H), 3.12 (s, 1H), 2.53 (d, J = 8.1 Hz, 3H), 2.41 (t, J = 6.7 Hz,
5H), 1.96 (d, J = 17.8 Hz, 2H).
372 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 6.9 Hz, 2H), 7.74-7.68 (m, 2H),
7.61-7.54 (m, 2H), 7.48 (d, J = 7.6 Hz, 2H), 4.50 (d, J = 5.1 Hz, 4H), 4.12 (d, J = 1.2 Hz, 7H),
3.71 (t, J = 5.6 Hz, 2H), 3.55 (t, J = 7.1 Hz, 2H), 3.48 (d, J = 6.9 Hz, 1H), 3.42 (t, J = 5.6 Hz,
2H), 2.45-2.34 (m, 5H), 2.15-2.09 (m, 2H), 1.96 (t, J = 11.3 Hz, 2H).
373 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 9.9 Hz, 2H), 7.74-7.68 (m, 2H), 7.58 (td,
J = 7.7, 1.3 Hz, 2H), 7.51-7.46 (m, 2H), 4.52 (d, J = 3.9 Hz, 2H), 4.48 (s, 2H), 4.12 (d, J = 2.9 Hz,
7H), 3.58 (t, J = 5.7 Hz, 2H), 3.38-3.32 (m, 4H), 2.48-2.38 (m, 3H), 2.00 (s, 4H).
374 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 5.9 Hz, 2H), 7.71 (dd, J = 7.7, 1.7 Hz,
2H), 7.61-7.54 (m, 2H), 7.48 (dt, J = 7.5, 1.7 Hz, 2H), 4.54-4.46 (m, 4H), 4.12 (d, J = 2.0 Hz,
7H), 3.93-3.86 (m, 2H), 3.34 (s, 3H), 2.48-2.38 (m, 3H), 2.00-1.92 (m, 2H).
375 1H NMR (400 MHz, Methanol-d4) δ 8.51 (d, J = 3.7 Hz, 2H), 7.71 (d, J = 7.7 Hz, 2H),
7.57 (t, J = 7.8 Hz, 2H), 7.50-7.45 (m, 2H), 4.50 (s, 2H), 4.11 (d, J = 6.6 Hz, 6H), 3.51 (s, 2H),
3.47 (s, 2H), 3.32 (d, J = 2.3 Hz, 3H), 3.12 (s, 1H), 2.39 (d, J = 3.6 Hz, 3H), 2.01 (d, J = 3.2 Hz,
3H), 1.45 (s, 6H).
376 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 4.8 Hz, 2H), 7.74-7.68 (m, 2H),
7.58 (dd, J = 8.0, 7.3 Hz, 2H), 7.51-7.45 (m, 2H), 4.49 (d, J = 3.9 Hz, 2H), 4.45 (s, 2H),
4.12 (d, J = 1.5 Hz, 7H), 3.43 (s, 2H), 3.39-3.32 (m, 2H), 2.44-2.35 (m, 3H), 1.99 (s, 4H),
1.45 (s, 6H).
377 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 5.2 Hz, 2H), 7.71 (dd, J = 7.6, 1.7 Hz,
2H), 7.61-7.55 (m, 2H), 7.47 (dd, J = 7.5, 1.7 Hz, 2H), 4.43 (s, 4H), 4.12 (d, J = 5.3 Hz,
7H), 3.68 (s, 2H), 2.39 (d, J = 5.5 Hz, 4H), 1.97-1.87 (m, 2H), 1.43 (s, 6H).
378 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 7.1 Hz, 2H), 7.71 (d, J = 7.9 Hz, 2H),
7.57 (t, J = 7.7 Hz, 2H), 7.50-7.45 (m, 2H), 4.47 (s, 2H), 4.41 (s, 2H), 4.11 (d, J = 2.5 Hz, 7H),
3.22 (s, 1H), 3.17 (s, 2H), 2.42-2.33 (m, 3H), 1.97-1.86 (m, 2H), 1.35 (s, 6H).
379 1H NMR (400 MHz, Methanol-d4) δ 8.49 (d, J = 9.1 Hz, 2H), 7.72-7.67 (m, 2H),
7.60-7.53 (m, 2H), 7.47 (d, J = 7.6 Hz, 2H), 4.71 (d, J = 17.2 Hz, 4H), 4.53 (s, 1H), 4.39 (d, J = 11.7 Hz,
2H), 4.10 (s, 8H), 3.23-3.15 (m, 2H), 2.39 (d, J = 18.4 Hz, 3H), 1.90 (s, 2H).
380 1H NMR (400 MHz, Methanol-d4) δ 8.50 (d, J = 9.1 Hz, 2H), 7.72-7.67 (m, 2H),
7.60-7.53 (m, 2H), 7.48 (d, J = 7.6 Hz, 2H), 4.71 (d, J = 17.2 Hz, 4H), 4.52 (s, 1H), 4.39 (d, J = 11.7 Hz,
2H), 4.10 (s, 8H), 3.20-3.15 (m, 4H), 2.39 (d, J = 18.4 Hz, 3H), 1.90 (s, 2H).
381 1H NMR (400 MHz, Methanol-d4) δ 8.52 (s, 2H), 7.71 (dd, J = 7.7, 1.7 Hz, 2H), 7.57 (t, J = 7.7 Hz,
2H), 7.48 (dd, J = 7.5, 1.7 Hz, 2H), 4.53-4.37 (m, 5H), 4.12 (s, 7H), 3.61 (d, J = 5.0 Hz,
1H), 3.48 (q, J = 7.1 Hz, 1H), 2.46-2.36 (m, 3H), 2.17 (d, J = 14.5 Hz, 1H),
1.94-1.69 (m, 4H), 1.20 (dt, J = 24.4, 7.1 Hz, 3H).
382 1H NMR (400 MHz, Methanol-d4) δ 8.53 (s, 1H), 7.72 (dd, J = 7.7, 1.7 Hz, 1H), 7.57 (t, J = 7.7 Hz,
1H), 7.48 (dd, J = 7.6, 1.7 Hz, 1H), 4.48 (s, 2H), 4.11 (s, 3H), 3.18 (s, 2H), 1.35 (s, 6H).
383 1H NMR (400 MHz, Methanol-d4) δ 8.52 (s, 1H), 7.71 (dd, J = 7.7, 1.7 Hz, 1H), 7.57 (t, J = 7.7 Hz,
1H), 7.48 (dd, J = 7.6, 1.7 Hz, 1H), 4.46 (d, J = 5.5 Hz, 2H), 4.40 (d, J = 6.4 Hz,
1H), 4.11 (s, 3H), 3.60 (d, J = 5.0 Hz, 1H), 2.16 (d, J = 8.4 Hz, 1H), 1.98-1.78 (m, 4H),
1.73-1.64 (m, 1H).
384 1H NMR (400 MHz, Methanol-d4) δ 8.52 (s, 1H), 7.71 (dd, J = 7.7, 1.7 Hz, 1H), 7.57 (t, J = 7.6 Hz,
1H), 7.48 (dd, J = 7.6, 1.7 Hz, 1H), 4.43 (s, 2H), 4.12 (s, 3H), 3.68 (s, 2H), 1.43 (s, 6H).
385 1H NMR (400 MHz, Methanol-d4) δ 8.51 (s, 1H), 7.71 (dd, J = 7.8, 1.7 Hz, 1H), 7.57 (t, J = 7.7 Hz,
1H), 7.48 (dd, J = 7.6, 1.7 Hz, 1H), 4.79 (t, J = 6.8 Hz, 1H), 4.12 (s, 3H), 1.63 (d, J = 6.8 Hz, 3H).
386 1H NMR (400 MHz, Methanol-d4) δ 8.51 (s, 1H), 7.71 (dd, J = 7.8, 1.7 Hz, 1H), 7.57 (t, J = 7.7 Hz,
1H), 7.48 (dd, J = 7.6, 1.7 Hz, 1H), 4.79 (t, J = 6.8 Hz, 1H), 4.12 (s, 3H), 1.63 (d, J = 6.8 Hz, 3H).
387 1H NMR (400 MHz, Methanol-d4) δ 8.53 (s, 2H), 7.71 (d, J = 7.5 Hz, 2H), 7.58 (t, J = 7.6 Hz,
2H), 7.48 (d, J = 7.9 Hz, 2H), 4.50 (s, 4H), 4.37 (s, 1H), 4.12 (d, J = 3.0 Hz, 7H),
3.34 (s, 2H), 2.72 (dd, J = 17.9, 10.6 Hz, 1H), 2.46-2.35 (m, 2H), 2.15 (s, 2H), 2.08-1.87 (m,
2H), 1.28 (s, 1H).
389 1H NMR (400 MHz, Methanol-d4) δ 8.53 (s, 1H), 8.48 (s, 1H), 7.78-7.71 (m, 1H),
7.65 (d, J = 4.6 Hz, 1H), 7.64-7.58 (m, 1H), 7.55-7.46 (m, 2H), 4.79 (s, 4H), 4.55 (s, 3H),
4.41 (s, 4H), 4.16 (d, J = 1.9 Hz, 5H), 3.78 (d, J = 39.5 Hz, 4H), 2.83 (d, J = 40.2 Hz, 4H).
390 1H NMR (400 MHz, Methanol-d4) δ 8.54 (s, 1H), 8.48 (s, 1H), 7.75 (dd, J = 7.7, 1.7 Hz,
1H), 7.65 (d, J = 4.7 Hz, 1H), 7.62 (td, J = 7.7, 2.2 Hz, 1H), 7.55-7.47 (m, 2H), 4.78 (s,
4H), 4.64 (s, 2H), 4.39 (s, 3H), 4.16 (d, J = 1.9 Hz, 5H), 2.61 (t, J = 7.8 Hz, 4H), 2.47 (t, J = 7.8 Hz,
4H).
391 1H NMR (400 MHz, Methanol-d4) δ 8.53 (s, 1H), 8.48 (s, 1H), 7.75 (dd, J = 7.7, 1.7 Hz,
1H), 7.65 (d, J = 4.7 Hz, 1H), 7.61 (td, J = 7.7, 2.3 Hz, 1H), 7.54-7.48 (m, 2H), 4.76 (s,
9H), 4.39 (d, J = 43.4 Hz, 2H), 4.15 (d, J = 1.9 Hz, 6H), 4.09 (s, 2H).
392 1H NMR (400 MHz, Methanol-d4) δ 8.58 (s, 1H), 8.53 (s, 1H), 7.80-7.45 (m, 6H),
4.57 (d, J = 3.9 Hz, 3H), 4.17 (d, J = 1.9 Hz, 6H), 3.40 (t, J = 5.7 Hz, 3H), 2.61-2.36 (m, 5H),
2.02 (dt, J = 13.3, 4.9 Hz, 2H).
397 1H NMR (400 MHz, Methanol-d4) δ 8.62 (s, 1H), 7.62 (dd, J = 8.5, 3.1 Hz, 1H), 7.42 (dd,
J = 8.1, 2.9 Hz, 1H), 4.58 (s, 2H), 4.18 (s, 3H), 2.46 (d, J = 7.0 Hz, 3H), 1.98 (s, 2H),
1.33 (s, 2H).
398 1H NMR (400 MHz, Methanol-d4) δ 8.58 (s, 1H), 8.54 (s, 1H), 7.74 (dd, J = 7.6, 1.7 Hz,
1H), 7.60 (t, J = 7.7 Hz, 1H), 7.55 (dd, J = 8.6, 3.0 Hz, 1H), 7.50 (dd, J = 7.7, 1.7 Hz, 1H),
7.33 (dd, J = 8.1, 3.1 Hz, 1H), 4.53 (dd, J = 4.1, 1.5 Hz, 4H), 4.13 (s, 4H), 4.12 (s, 3H),
3.36-3.32 (m, 8H), 2.49-2.36 (m, 6H), 1.96 (dd, J = 17.9, 9.9 Hz, 2H).
399 1H NMR (400 MHz, Methanol-d4) δ 8.57 (s, 1H), 8.53 (s, 1H), 7.77 (dd, J = 7.7, 1.6 Hz,
1H), 7.64 (t, J = 7.6 Hz, 1H), 7.58 (dd, J = 8.7, 3.1 Hz, 1H), 7.54 (dd, J = 7.6, 1.7 Hz, 1H),
7.37 (dd, J = 8.2, 3.1 Hz, 1H), 4.82-4.66 (m, 8H), 4.43 (s, 1H), 4.34 (s, 1H), 4.16 (s, 4H),
4.15 (s, 3H), 4.09 (s, 2H).
400 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 3.6 Hz, 1H), 7.75 (dd, J = 7.7, 1.8 Hz,
1H), 7.62 (t, J = 7.7 Hz, 1H), 7.52 (dd, J = 7.6, 1.7 Hz, 1H), 4.77 (s, 3H), 4.43 (s, 3H),
4.16 (s, 3H), 3.42 (s, 4H).
401 1H NMR (400 MHz, Methanol-d4) δ 8.60 (s, 1H), 7.77 (dd, J = 7.7, 1.7 Hz, 1H), 7.62 (t, J = 7.6 Hz,
1H), 7.53 (dd, J = 7.6, 1.7 Hz, 1H), 4.64 (s, 2H), 4.16 (s, 3H), 3.09 (s, 7H).
402 1H NMR (400 MHz, Methanol-d4) δ 8.51 (s, 1H), 7.71 (dd, J = 7.7, 1.5 Hz, 1H), 7.57 (t, J = 7.8 Hz,
1H), 7.48 (dd, J = 7.5, 1.9 Hz, 1H), 4.44 (s, 2H), 4.11 (s, 3H), 2.88 (s, 3H).
404 1H NMR (400 MHz, Methanol-d4) δ 8.70-8.59 (m, 2H), 8.57-8.47 (m, 3H), 7.72 (ddd, J = 7.7,
4.1, 1.7 Hz, 2H), 7.58 (t, J = 7.7 Hz, 2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.52 (d, J = 3.8 Hz,
2H), 4.27 (d, J = 36.3 Hz, 2H), 4.12 (d, J = 5.3 Hz, 6H), 3.97 (d, J = 31.8 Hz, 2H),
3.84-3.45 (m, 5H), 3.35 (dd, J = 6.2, 5.2 Hz, 2H), 2.65 (s, 2H), 2.52-2.24 (m, 5H),
2.03-1.88 (m, 2H).
405 1H NMR (400 MHz, Methanol-d4) δ 8.79 (d, J = 2.1 Hz, 1H), 8.69 (dd, J = 5.4, 1.4 Hz,
1H), 8.53 (d, J = 7.3 Hz, 2H), 8.39 (dt, J = 8.1, 1.8 Hz, 1H), 7.86 (ddd, J = 8.1, 5.4, 0.8 Hz,
1H), 7.72 (ddd, J = 7.7, 2.8, 1.7 Hz, 2H), 7.63-7.54 (m, 2H), 7.48 (ddd, J = 7.6, 1.7, 0.9 Hz,
2H), 4.52 (d, J = 3.8 Hz, 2H), 4.12 (d, J = 4.0 Hz, 6H), 4.04-3.46 (m, 5H),
3.42-3.32 (m, 2H), 2.76-2.60 (m, 2H), 2.53-2.28 (m, 5H), 2.03-1.87 (m, 2H).
406 1H NMR (400 MHz, Methanol-d4) δ 8.60 (ddd, J = 5.0, 1.8, 1.0 Hz, 1H), 8.54 (d, J = 7.0 Hz,
2H), 7.83 (td, J = 7.7, 1.8 Hz, 1H), 7.72 (ddd, J = 7.7, 4.8, 1.7 Hz, 2H), 7.58 (t, J = 7.6 Hz,
2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 7.43 (d, J = 7.8 Hz, 1H), 7.35 (ddd, J = 7.6, 4.9, 1.1 Hz,
1H), 4.52 (d, J = 3.8 Hz, 2H), 4.12 (d, J = 6.2 Hz, 6H), 3.94 (s, 2H), 3.87-3.51 (m,
3H), 3.35 (dd, J = 6.2, 5.1 Hz, 2H), 2.65 (s, 2H), 2.51-2.36 (m, 3H), 2.34 (d, J = 10.0 Hz,
2H), 2.03-1.89 (m, 2H).
407 1H NMR (400 MHz, Methanol-d4) δ 8.53 (d, J = 3.7 Hz, 2H), 7.72 (ddd, J = 7.7, 2.5, 1.7 Hz,
2H), 7.58 (t, J = 7.7 Hz, 2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.76 (s, 2H), 4.52 (d, J = 4.0 Hz,
2H), 4.16-4.08 (m, 7H), 3.34 (d, J = 4.5 Hz, 4H), 2.97 (s, 2H), 2.53-2.35 (m,
4H), 2.33 (d, J = 21.4 Hz, 2H), 2.04-1.89 (m, 2H).
408 1H NMR (400 MHz, Methanol-d4) δ 8.80 (d, J = 4.9 Hz, 2H), 8.54 (d, J = 7.9 Hz, 2H),
7.72 (ddd, J = 7.6, 5.2, 1.7 Hz, 2H), 7.58 (t, J = 7.7 Hz, 2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H),
7.41 (t, J = 5.0 Hz, 1H), 4.52 (d, J = 3.9 Hz, 2H), 4.37 (s, 1H), 4.33-4.20 (m, 1H), 4.12 (d,
J = 4.4 Hz, 6H), 4.06 (d, J = 20.5 Hz, 2H), 3.84 (s, 1H), 3.55 (s, 1H), 3.39-3.32 (m, 2H),
2.75 (s, 1H), 2.64 (s, 1H), 2.54-2.31 (m, 4H), 2.05-1.89 (m, 2H).
409 1H NMR (400 MHz, Methanol-d4) δ 8.53 (d, J = 1.1 Hz, 2H), 7.72 (ddd, J = 7.7, 2.5, 1.7 Hz,
2H), 7.58 (t, J = 7.7 Hz, 2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.68 (d, J = 9.0 Hz, 2H),
4.52 (d, J = 3.9 Hz, 2H), 4.12 (d, J = 2.9 Hz, 6H), 3.88 (dd, J = 22.3, 9.7 Hz, 4H), 3.76 (q, J = 7.5 Hz,
2H), 3.40-3.32 (m, 3H), 2.51-2.32 (m, 4H), 2.13-1.89 (m, 5H), 1.57 (s, 2H),
1.30 (t, J = 7.4 Hz, 1H).
410 1H NMR (400 MHz, Methanol-d4) δ 8.77-8.71 (m, 2H), 8.54 (d, J = 7.4 Hz, 2H),
7.92-7.83 (m, 2H), 7.72 (ddd, J = 7.7, 2.8, 1.7 Hz, 2H), 7.58 (td, J = 7.6, 0.8 Hz, 2H), 7.48 (ddd,
J = 7.6, 1.7, 1.0 Hz, 2H), 4.52 (d, J = 4.0 Hz, 2H), 4.12 (d, J = 3.7 Hz, 6H), 3.97 (d, J = 28.1 Hz,
2H), 3.88 (d, J = 39.6 Hz, 4H), 3.42-3.33 (m, 2H), 2.73 (dt, J = 11.9, 6.3 Hz,
2H), 2.50-2.30 (m, 4H), 2.06-1.87 (m, 2H).
411 1H NMR (400 MHz, Methanol-d4) δ 8.57-8.49 (m, 2H), 7.72 (dt, J = 7.7, 1.9 Hz, 2H),
7.58 (t, J = 7.7 Hz, 2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.70 (s, 2H), 4.52 (d, J = 3.9 Hz,
2H), 4.16-4.06 (m, 6H), 3.86 (ddd, J = 17.9, 8.2, 5.2 Hz, 3H), 3.75 (q, J = 7.9 Hz, 1H),
3.56-3.33 (m, 5H), 3.13-2.96 (m, 1H), 2.49-2.24 (m, 5H), 2.22-2.01 (m, 2H),
2.03-1.88 (m, 2H), 1.65 (ddd, J = 29.0, 12.6, 7.4 Hz, 2H).
412 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 7.0 Hz, 2H), 8.27 (d, J = 1.6 Hz, 1H),
8.22 (d, J = 2.5 Hz, 1H), 7.83-7.79 (m, 1H), 7.71 (dt, J = 7.7, 1.6 Hz, 2H), 7.58 (td, J = 7.7, 0.8 Hz,
2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.52 (d, J = 3.3 Hz, 4H), 4.11 (d, J = 2.8 Hz, 6H),
3.56 (dd, J = 8.9, 6.8 Hz, 2H), 3.40-3.32 (m, 2H), 3.27 (t, J = 7.8 Hz, 2H), 2.50-2.30 (m,
4H), 2.04-1.88 (m, 2H).
413 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 6.9 Hz, 2H), 7.71 (dt, J = 7.8, 1.9 Hz,
2H), 7.58 (td, J = 7.6, 0.7 Hz, 2H), 7.48 (ddd, J = 7.6, 1.7, 0.7 Hz, 2H), 4.52 (d, J = 4.4 Hz,
4H), 4.49-4.37 (m, 1H), 4.17-4.06 (m, 7H), 3.43-3.31 (m, 6H), 3.24 (dd, J = 12.9, 9.2 Hz,
2H), 2.52-2.30 (m, 4H), 2.12 (s, 4H), 2.05-1.87 (m, 2H).
414 1H NMR (400 MHz, Methanol-d4) δ 8.57 (s, 1H), 8.53 (s, 1H), 8.25 (d, J = 2.7 Hz, 1H),
7.73 (ddd, J = 7.6, 6.9, 1.7 Hz, 2H), 7.59 (td, J = 7.7, 2.2 Hz, 2H), 7.53-7.43 (m, 3H),
4.97 (d, J = 11.8 Hz, 6H), 4.53 (d, J = 3.9 Hz, 2H), 4.12 (d, J = 2.7 Hz, 7H), 3.90 (s, 3H),
3.41-3.32 (m, 2H), 2.51-2.33 (m, 3H), 2.06-1.89 (m, 1H).
415 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 1.7 Hz, 2H), 7.90 (dd, J = 1.6, 0.9 Hz,
1H), 7.71 (dd, J = 7.7, 1.7 Hz, 2H), 7.65-7.54 (m, 3H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H),
6.64 (dd, J = 1.9, 0.9 Hz, 1H), 4.52 (d, J = 4.2 Hz, 4H), 4.12 (d, J = 2.1 Hz, 6H), 3.63 (tt, J = 11.7,
4.1 Hz, 1H), 3.42-3.32 (m, 2H), 3.12 (t, J = 1.7 Hz, 4H), 2.51-2.35 (m, 3H),
2.35-2.22 (m, 2H), 2.04-1.89 (m, 2H), 1.69 (qd, J = 12.4, 4.5 Hz, 2H).
416 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 1.2 Hz, 2H), 7.71 (dd, J = 7.7, 1.7 Hz,
2H), 7.57 (t, J = 7.6 Hz, 2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.57-4.47 (m, 4H), 4.12 (d, J = 2.9 Hz,
6H), 3.89-3.76 (m, 1H), 3.53-3.41 (m, 2H), 3.41-3.32 (m, 2H),
3.04-2.89 (m, 4H), 2.58 (dd, J = 16.9, 10.6 Hz, 1H), 2.53-2.31 (m, 4H), 2.16-1.89 (m, 3H).
417 1H NMR (400 MHz, Methanol-d4) δ 8.61 (ddd, J = 5.1, 1.8, 0.9 Hz, 1H), 8.52 (d, J = 6.6 Hz,
2H), 8.00 (td, J = 7.8, 1.8 Hz, 1H), 7.71 (dd, J = 7.7, 1.7 Hz, 2H), 7.62-7.54 (m, 3H),
7.53-7.43 (m, 3H), 4.58-4.48 (m, 4H), 4.12 (s, 7H), 3.67 (t, J = 7.0 Hz, 2H),
3.44-3.32 (m, 4H), 2.51-2.33 (m, 3H), 2.03-1.89 (m, 1H).
418 1H NMR (400 MHz, Methanol-d4) δ 8.66 (ddd, J = 4.9, 1.7, 0.9 Hz, 1H), 8.53 (d, J = 0.9 Hz,
2H), 7.88 (td, J = 7.7, 1.8 Hz, 1H), 7.71 (dd, J = 7.7, 1.7 Hz, 2H), 7.62-7.54 (m, 2H),
7.48 (dt, J = 7.6, 1.6 Hz, 3H), 7.43 (ddd, J = 7.6, 4.9, 1.1 Hz, 1H), 4.57 (d, J = 3.7 Hz, 4H),
4.52 (d, J = 3.9 Hz, 2H), 4.11 (d, J = 5.4 Hz, 6H), 3.38-3.33 (m, 2H), 2.50-2.32 (m, 4H),
2.01-1.91 (m, 1H).
419 1H NMR (400 MHz, Methanol-d4) δ 8.52 (s, 1H), 8.47 (s, 1H), 7.80-7.73 (m, 2H),
7.70 (td, J = 7.5, 1.7 Hz, 2H), 7.61-7.54 (m, 4H), 7.48 (dt, J = 7.5, 1.5 Hz, 2H), 4.59-4.46 (m,
4H), 4.11 (m, 7H), 3.47-3.33 (m, 6H), 2.52-2.34 (m, 5H), 2.03-1.90 (m, 1H).
420 1H NMR (400 MHz, Methanol-d4) δ 8.87 (d, J = 4.9 Hz, 2H), 8.54 (s, 2H), 7.72 (ddd, J = 7.6,
3.4, 1.7 Hz, 2H), 7.58 (t, J = 7.7 Hz, 2H), 7.53-7.46 (m, 3H), 4.70 (s, 2H), 4.65 (s,
2H), 4.52 (d, J = 3.9 Hz, 2H), 4.12 (d, J = 0.9 Hz, 6H), 3.38-3.33 (m, 2H), 2.51-2.35 (m,
4H), 1.98-1.92 (m, 1H).
421 1H NMR (400 MHz, Methanol-d4) δ 8.56 (ddd, J = 5.0, 1.7, 0.9 Hz, 1H), 8.52 (d, J = 5.5 Hz,
2H), 7.87 (td, J = 7.9, 1.8 Hz, 1H), 7.71 (ddd, J = 7.7, 4.2, 1.7 Hz, 2H), 7.58 (td, J = 7.6,
0.7 Hz, 2H), 7.48 (dt, J = 7.6, 1.5 Hz, 2H), 7.36 (ddd, J = 7.6, 4.9, 1.0 Hz, 1H),
7.21 (dt, J = 8.2, 1.0 Hz, 1H), 4.60 (s, 2H), 4.53 (d, J = 3.9 Hz, 2H), 4.19-4.08 (m, 4H), 4.06 (s,
3H), 3.41-3.33 (m, 2H), 2.53-2.31 (m, 4H), 2.03-1.90 (m, 1H), 1.84-1.74 (m, 2H),
1.64-1.53 (m, 2H).
422 1H NMR (400 MHz, Methanol-d4) δ 8.80-8.72 (m, 2H), 8.53 (d, J = 1.4 Hz, 2H),
7.83-7.76 (m, 2H), 7.71 (ddd, J = 7.6, 1.7, 0.6 Hz, 2H), 7.58 (t, J = 7.7 Hz, 2H), 7.48 (dd, J = 7.6,
1.7 Hz, 2H), 4.57 (d, J = 2.6 Hz, 4H), 4.52 (d, J = 3.9 Hz, 2H), 4.11 (d, J = 3.5 Hz,
6H), 3.42-3.32 (m, 2H), 2.55-2.32 (m, 4H), 2.03-1.89 (m, 1H).
423 1H NMR (400 MHz, Methanol-d4) δ 8.53 (d, J = 7.5 Hz, 2H), 7.72 (ddd, J = 7.7, 4.5, 1.7 Hz,
2H), 7.58 (t, J = 7.7 Hz, 2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 5.03 (d, J = 15.5 Hz, 1H),
4.69 (d, J = 15.4 Hz, 1H), 4.57 (s, 1H), 4.52 (d, J = 3.9 Hz, 2H), 4.12 (s, 7H), 4.02 (dd, J = 12.3,
3.6 Hz, 1H), 3.84 (ddd, J = 26.3, 12.5, 5.0 Hz, 2H), 3.49-3.32 (m, 3H),
2.53-2.32 (m, 3H), 2.23 (dd, J = 13.7, 6.7 Hz, 1H), 2.18-2.04 (m, 1H), 2.06-1.88 (m, 2H).
424 1H NMR (400 MHz, Methanol-d4) δ 8.93 (dd, J = 2.3, 0.8 Hz, 1H), 8.67 (dd, J = 5.2, 1.5 Hz,
1H), 8.52 (s, 1H), 8.42 (s, 1H), 8.33 (ddd, J = 8.0, 2.2, 1.5 Hz, 1H), 7.75-7.61 (m,
3H), 7.56 (td, J = 7.7, 4.8 Hz, 2H), 7.46 (dd, J = 7.6, 1.7 Hz, 2H), 4.52 (d, J = 3.9 Hz, 2H),
4.45 (s, 2H), 4.11 (s, 4H), 4.04 (s, 3H), 3.43-3.32 (m, 2H), 2.54-2.31 (m, 3H),
2.05-1.88 (m, 1H), 1.74-1.61 (m, 2H), 1.52-1.39 (m, 2H).
425 1H NMR (400 MHz, Methanol-d4) δ 8.88 (d, J = 2.5 Hz, 1H), 8.77 (dd, J = 5.3, 1.5 Hz,
1H), 8.52 (s, 2H), 8.34 (dt, J = 8.0, 1.9 Hz, 1H), 7.79 (ddd, J = 8.0, 5.3, 0.8 Hz, 1H),
7.71 (dt, J = 7.7, 1.5 Hz, 2H), 7.57 (t, J = 7.6 Hz, 2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.57 (d, J = 4.7 Hz,
4H), 4.52 (d, J = 3.9 Hz, 2H), 4.11 (d, J = 2.9 Hz, 6H), 3.44-3.31 (m, 2H),
2.56-2.31 (m, 3H), 2.06-1.88 (m, 2H).
426 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 3.8 Hz, 2H), 7.71 (dd, J = 7.7, 1.7 Hz,
2H), 7.58 (td, J = 7.6, 0.9 Hz, 2H), 7.48 (dt, J = 7.6, 1.6 Hz, 2H), 4.58-4.48 (m, 4H),
4.12 (d, J = 1.2 Hz, 6H), 3.41-3.31 (m, 5H), 2.51-2.32 (m, 3H), 2.03-1.88 (m, 1H),
0.96-0.88 (m, 2H), 0.83-0.70 (m, 2H).
427 1H NMR (400 MHz, Methanol-d4) δ 8.53 (d, J = 4.0 Hz, 2H), 7.72 (ddd, J = 7.7, 2.5, 1.7 Hz,
2H), 7.58 (t, J = 7.6 Hz, 2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.69 (s, 2H), 4.52 (d, J = 3.9 Hz,
2H), 4.22 (s, 1H), 4.11 (d, J = 3.0 Hz, 6H), 3.93 (d, J = 3.0 Hz, 2H), 3.36 (d, J = 8.6 Hz,
6H), 2.53-2.32 (m, 4H), 2.19 (d, J = 34.8 Hz, 2H), 2.07-1.84 (m, 2H).
428 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 1.5 Hz, 2H), 7.71 (dt, J = 7.7, 1.7 Hz,
2H), 7.57 (t, J = 7.7 Hz, 2H), 7.48 (ddd, J = 7.6, 1.7, 0.8 Hz, 2H), 4.64 (s, 2H), 4.52 (d, J = 3.9 Hz,
2H), 4.12 (d, J = 2.5 Hz, 7H), 3.86 (s, 6H), 3.40-3.32 (m, 2H), 2.54-2.32 (m,
3H), 2.01-1.89 (m, 1H).
429 1H NMR (400 MHz, Methanol-d4) δ 8.53 (d, J = 3.6 Hz, 2H), 7.71 (ddd, J = 7.7, 1.7, 1.1 Hz,
2H), 7.57 (t, J = 7.7 Hz, 2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.55 (s, 2H), 4.52 (d, J = 3.8 Hz,
2H), 4.18-4.06 (m, 7H), 3.43 (s, 2H), 3.40-3.32 (m, 2H), 2.52-2.31 (m, 3H),
2.04-1.91 (m, 1H), 1.57-1.48 (m, 2H), 1.39-1.29 (m, 2H).
430 1H NMR (400 MHz, Methanol-d4) δ 8.53 (d, J = 4.2 Hz, 2H), 7.72 (ddd, J = 7.7, 2.6, 1.8 Hz,
2H), 7.58 (t, J = 7.7 Hz, 2H), 7.48 (dd, J = 7.6, 1.8 Hz, 2H), 4.69 (s, 2H), 4.52 (d, J = 3.9 Hz,
2H), 4.22 (s, 1H), 4.11 (d, J = 2.9 Hz, 6H), 4.05-3.83 (m, 2H), 3.36 (d, J = 8.4 Hz,
6H), 2.52-2.32 (m, 4H), 2.24 (s, 2H), 2.04-1.90 (m, 2H).
431 1H NMR (400 MHz, Methanol-d4) δ 8.53 (d, J = 4.2 Hz, 2H), 7.72 (ddd, J = 7.7, 3.0, 1.7 Hz,
2H), 7.58 (t, J = 7.6 Hz, 2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.72 (d, J = 34.7 Hz, 2H),
4.61 (s, 1H), 4.52 (d, J = 3.9 Hz, 2H), 4.11 (d, J = 2.5 Hz, 6H), 4.08-3.75 (m, 3H), 3.54 (s,
1H), 3.37 (tt, J = 12.6, 7.7 Hz, 3H), 2.51-2.35 (m, 3H), 2.14 (d, J = 34.6 Hz, 2H),
2.02-1.91 (m, 1H).
432 1H NMR (400 MHz, DMSO-d6) δ 9.50 (s, 2H), 9.25 (s, 2H), 9.15 (s, 2H), 8.60 (d, J = 5.8 Hz,
2H), 7.78 (d, J = 7.5 Hz, 2H), 7.68-7.65 (m, 2H), 7.59 (d, J = 7.6 Hz, 2H), 4.49 (s,
3H), 4.31 (d, J = 6.0 Hz, 2H), 4.05 (d, J = 3.8 Hz, 5H), 3.97 (s, 2H), 3.22 (s, 4H), 2.29 (s,
2H), 2.21 (q, J = 7.4, 6.5 Hz, 3H), 1.82 (d, J = 8.4 Hz, 2H).
433 1H NMR (400 MHz, DMSO-d6) δ 9.32 (s, 3H), 9.15 (s, 2H), 8.60 (d, J = 6.5 Hz, 2H),
7.78 (d, J = 7.8 Hz, 2H), 7.69-7.65 (m, 2H), 7.59 (d, J = 7.7 Hz, 2H), 5.77 (s, 5H),
5.28-5.21 (m, 1H), 4.48 (d, J = 13.6 Hz, 4H), 4.04 (t, J = 4.2 Hz, 7H), 4.00-3.90 (m, 4H),
2.26-2.14 (m, 3H), 1.82 (d, J = 8.8 Hz, 2H).
434 1H NMR (400 MHz, Methanol-d4) δ 8.52 (s, 2H), 7.71 (dd, J = 7.7, 1.7 Hz, 2H), 7.58 (t, J = 7.6 Hz,
2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.84 (s, 2H), 4.48 (s, 4H), 4.12 (s, 6H),
3.85-3.73 (m, 2H), 3.26 (dd, J = 10.2, 6.4 Hz, 2H), 2.44-2.26 (m, 6H), 2.11-1.92 (m, 4H),
1.90-1.73 (m, 2H)
435 1H NMR (400 MHz, Methanol-d4) δ 8.55 (s, 2H), 7.74 (dd, J = 7.7, 1.7 Hz, 2H), 7.60 (t, J = 7.7 Hz,
2H), 7.51 (dd, J = 7.6, 1.7 Hz, 2H), 4.60-4.46 (m, 4H), 4.14 (s, 7H), 3.67 (dd, J = 10.2,
8.0 Hz, 1H), 3.46-3.35 (m, 4H), 3.27 (dd, J = 10.2, 6.5 Hz, 1H), 3.10-2.95 (m,
1H), 2.70-2.56 (m, 1H), 2.56-2.40 (m, 3H), 2.32 (dd, J = 16.9, 7.6 Hz, 1H),
2.07-1.91 (m, 1H)
436 1H NMR (400 MHz, Methanol-d4) δ 8.50 (s, 1H), 7.82 (d, J = 7.7 Hz, 1H), 7.73-7.60 (m,
2H), 7.60-7.49 (m, 2H), 7.47 (s, 1H), 7.41 (d, J = 5.9 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H),
4.34 (s, 2H), 4.16 (s, 2H), 4.11 (s, 3H), 4.08 (s, 3H).
437 1H NMR (400 MHz, Methanol-d4) δ 8.48 (s, 1H), 7.88 (d, J = 7.6 Hz, 1H), 7.69 (dd, J = 7.6,
1.7 Hz, 1H), 7.65 (dd, J = 7.7, 1.7 Hz, 1H), 7.61-7.48 (m, 2H), 7.46 (dd, J = 7.6, 1.7 Hz,
1H), 7.41 (dd, J = 7.6, 1.7 Hz, 1H), 7.36 (d, J = 7.5 Hz, 1H), 4.74 (s, 2H),
4.57-4.21 (m, 10H), 4.11 (s, 3H), 4.08 (s, 3H), 3.86-3.60 (m, 4H), 2.95-2.67 (m, 4H).
439 1H NMR (400 MHz, Methanol-d4) δ 8.53 (d, J = 1.8 Hz, 1H), 7.92 (s, 2H), 7.72 (dd, J = 12.1,
7.4 Hz, 3H), 7.64-7.38 (m, 7H), 4.77 (s, 1H), 4.53 (s, 1H), 4.15 (s, 3H), 4.13 (s, 5H).
440 1H NMR (400 MHz, DMSO-d6) δ 9.00 (d, J = 43.2 Hz, 2H), 8.15 (s, 2H), 7.84 (s, 4H),
7.74-7.64 (m, 2H), 7.56 (d, J = 31.3 Hz, 3H), 6.54 (s, 4H), 4.55 (s, 1H), 4.23 (s, 1H),
3.99 (s, 1H), 2.88 (dq, J = 11.1, 6.4 Hz, 3H), 2.17 (td, J = 12.3, 6.5 Hz, 6H), 1.87-1.67 (m, 3H).
629 1H NMR (400 MHz, Acetonitrile-d3) δ 8.43 (s, 2H), 7.71 (dd, J = 7.7, 1.8 Hz, 2H), 7.59 (t,
J = 7.7 Hz, 2H), 7.50 (dd, J = 7.6, 1.7 Hz, 2H), 4.61 (m, 4H), 4.37 (m, 2H), 4.25 (m, 3H),
4.03 (s, 6H), 3.97 (m, 3H), 1.52 (s, 3H).
630 1H NMR (400 MHz, Methanol-d4) δ 8.50 (s, 1H), 7.90 (d, J = 7.6 Hz, 1H), 7.70 (dd, J = 7.7,
1.7 Hz, 1H), 7.67 (dd, J = 7.7, 1.7 Hz, 1H), 7.55 (dt, J = 14.2, 7.7 Hz, 2H), 7.47 (dd, J = 7.6,
1.7 Hz, 1H), 7.43 (dd, J = 7.6, 1.7 Hz, 1H), 7.38 (d, J = 7.6 Hz, 1H), 4.35 (d, J = 2.7 Hz,
4H), 4.11 (d, J = 4.8 Hz, 6H), 4.09-4.02 (m, 1H), 3.26 (dd, J = 6.2, 4.2 Hz, 2H),
2.48-2.33 (m, 3H), 1.98-1.86 (m, 1H).
631 1H NMR (400 MHz, Methanol-d4) δ 8.48 (s, 1H), 7.89 (dd, J = 7.6, 1.2 Hz, 1H),
7.74-7.61 (m, 2H), 7.59-7.48 (m, 2H), 7.48-7.38 (m, 2H), 7.35 (d, J = 7.5 Hz, 1H), 4.72 (d, J = 22.2 Hz,
2H), 4.51-4.24 (m, 4H), 4.09 (d, J = 5.0 Hz, 8H), 3.28-3.18 (m, 2H),
2.54-2.27 (m, 4H), 2.02-1.83 (m, 1H), 1.58 (s, 3H).
632 1H NMR (400 MHz, Methanol-d4) δ 8.47 (s, 1H), 7.89 (dd, J = 7.6, 1.1 Hz, 1H),
7.74-7.61 (m, 2H), 7.60-7.48 (m, 2H), 7.46 (dd, J = 7.6, 1.7 Hz, 1H), 7.40 (ddd, J = 7.6, 3.1,
1.7 Hz, 1H), 7.35 (d, J = 7.5 Hz, 1H), 4.69 (s, 2H), 4.54 (d, J = 64.1 Hz, 5H), 4.34 (d, J = 2.5 Hz,
2H), 4.24 (d, J = 26.8 Hz, 2H), 4.09 (d, J = 4.0 Hz, 7H), 4.08-4.03 (m, 1H),
3.28-3.19 (m, 2H), 2.48-2.28 (m, 3H), 1.98-1.87 (m, 1H), 1.85 (s, 3H).
633 1H NMR (400 MHz, Methanol-d4) δ 8.48 (s, 1H), 7.89 (d, J = 7.6 Hz, 1H), 7.73-7.62 (m,
2H), 7.61-7.50 (m, 2H), 7.44 (ddd, J = 20.5, 7.6, 1.8 Hz, 2H), 7.36 (d, J = 7.5 Hz, 1H),
4.74 (s, 2H), 4.49 (s, 4H), 4.34 (d, J = 2.6 Hz, 2H), 4.10 (d, J = 4.6 Hz, 7H), 4.05 (q, J = 6.5 Hz,
1H), 3.72 (s, 1H), 3.29-3.16 (m, 2H), 2.80 (s, 2H), 2.50-2.29 (m, 3H),
2.01-1.84 (m, 1H).
634 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 2H), 7.75 (dd, J = 7.7, 1.7 Hz, 2H), 7.60 (t, J = 7.6 Hz,
2H), 7.51 (dd, J = 7.6, 1.7 Hz, 2H), 4.70 (s, 4H), 4.14 (s, 6H), 3.92 (t, J = 11.0 Hz,
4H), 3.73-3.53 (m, 8H), 3.45 (q, J = 9.9 Hz, 2H), 3.25 (d, J = 11.9 Hz, 2H),
2.28-2.14 (m, 2H), 2.08 (q, J = 13.2, 11.0 Hz, 2H).
635 1H NMR (400 MHz, Methanol-d4) δ 8.54 (s, 1H), 7.90 (d, J = 7.6 Hz, 1H), 7.73 (dd, J = 7.6,
1.7 Hz, 1H), 7.68 (dd, J = 7.7, 1.8 Hz, 1H), 7.59 (t, J = 7.9 Hz, 1H), 7.54 (d, J = 7.7 Hz,
1H), 7.49 (dd, J = 7.6, 1.7 Hz, 1H), 7.44 (dd, J = 7.6, 1.7 Hz, 1H), 7.39 (dd, J = 7.5, 2.7 Hz,
1H), 4.61 (d, J = 9.5 Hz, 2H), 4.55-4.41 (m, 4H), 4.33 (dd, J = 10.7, 6.2 Hz, 1H),
4.18 (dt, J = 18.4, 9.3 Hz, 5H), 4.10 (d, J = 1.3 Hz, 3H), 2.94 (dp, J = 26.4, 8.7 Hz, 2H), 1.18 (d,
J = 23.4 Hz, 13H), 0.94-0.79 (m, 4H).
636 1H NMR (400 MHz, Methanol-d4) δ 8.54 (s, 1H), 7.90 (d, J = 7.6 Hz, 1H), 7.73 (dd, J = 7.7,
1.8 Hz, 1H), 7.68 (dd, J = 7.7, 1.8 Hz, 1H), 7.59 (t, J = 7.7 Hz, 1H), 7.55 (t, J = 7.8 Hz,
1H), 7.50 (dd, J = 7.6, 1.7 Hz, 1H), 7.45 (dd, J = 7.6, 1.7 Hz, 1H), 7.40 (d, J = 7.5 Hz, 1H),
4.71 (s, 2H), 4.63 (s, 4H), 4.51 (dp, J = 6.3, 3.0 Hz, 3H), 4.41 (q, J = 12.2, 11.4 Hz, 6H),
4.11 (s, 3H), 2.56 (dt, J = 23.8, 7.6 Hz, 4H), 2.48-2.34 (m, 4H), 1.02-0.78 (m, 4H).
637 1H NMR (400 MHz, Methanol-d4) δ 8.54 (s, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.73 (dd, J = 7.7,
1.7 Hz, 1H), 7.68 (dd, J = 7.7, 1.7 Hz, 1H), 7.64-7.56 (m, 1H), 7.54 (d, J = 7.6 Hz,
1H), 7.49 (dd, J = 7.6, 1.8 Hz, 1H), 7.44 (dd, J = 7.6, 1.8 Hz, 1H), 7.39 (d, J = 7.5 Hz, 1H),
4.70 (s, 2H), 4.64-4.44 (m, 4H), 4.35 (s, 6H), 4.11 (s, 3H), 3.72 (s, 3H), 2.77 (s, 3H),
0.96-0.74 (m, 2H).
638 1H NMR (400 MHz, Methanol-d4) δ 8.59 (s, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.74 (dd, J = 7.7,
1.7 Hz, 1H), 7.69 (dd, J = 7.7, 1.8 Hz, 1H), 7.60 (t, J = 7.7 Hz, 1H), 7.55 (t, J = 7.7 Hz,
1H), 7.50 (dd, J = 7.7, 1.7 Hz, 1H), 7.45 (dd, J = 7.6, 1.7 Hz, 1H), 7.39 (d, J = 7.5 Hz, 1H),
4.53 (dt, J = 6.1, 3.2 Hz, 1H), 4.48 (d, J = 4.1 Hz, 2H), 4.37 (d, J = 2.6 Hz, 2H), 4.12 (s,
5H), 3.47-3.35 (m, 2H), 3.29-3.17 (m, 2H), 2.54-2.25 (m, 6H), 1.96 (dddd, J = 18.9,
11.6, 6.1, 3.2 Hz, 2H), 0.94-0.77 (m, 5H).
639 1H NMR (400 MHz, Methanol-d4) δ 8.54 (s, 1H), 7.91 (d, J = 7.5 Hz, 1H), 7.73 (dd, J = 7.7,
1.7 Hz, 1H), 7.68 (dd, J = 7.7, 1.7 Hz, 1H), 7.57 (dt, J = 15.7, 7.6 Hz, 2H), 7.49 (dd, J = 7.6,
1.7 Hz, 1H), 7.45 (dd, J = 7.6, 1.7 Hz, 1H), 7.39 (d, J = 7.5 Hz, 1H), 4.39 (s, 2H),
4.34 (s, 2H), 4.14 (s, 3H), 4.12 (s, 3H), 3.93 (p, J = 7.8 Hz, 1H), 3.64 (dd, J = 10.2, 8.0 Hz,
1H), 3.31-3.26 (m, 1H), 3.21 (dd, J = 10.1, 6.6 Hz, 1H), 3.07 (q, J = 8.4 Hz, 1H),
3.02-2.91 (m, 1H), 2.75-2.63 (m, 2H), 2.58 (dd, J = 16.8, 8.8 Hz, 1H), 2.53-2.40 (m, 2H),
2.26 (dd, J = 16.8, 7.8 Hz, 1H).
640 1H NMR (400 MHz, Methanol-d4) δ 8.55 (s, 1H), 7.91 (d, J = 7.5 Hz, 1H), 7.73 (dd, J = 7.7,
1.7 Hz, 1H), 7.68 (dd, J = 7.7, 1.8 Hz, 1H), 7.57 (dt, J = 15.6, 7.7 Hz, 2H), 7.49 (dd, J = 7.6,
1.7 Hz, 1H), 7.44 (dd, J = 7.6, 1.7 Hz, 1H), 7.39 (d, J = 7.5 Hz, 1H), 4.49 (d, J = 5.8 Hz,
2H), 4.43 (td, J = 4.6, 2.2 Hz, 1H), 4.34 (s, 2H), 4.14 (s, 3H), 4.12 (s, 3H),
3.70-3.58 (m, 2H), 3.31-3.26 (m, 1H), 3.22 (dd, J = 10.2, 6.6 Hz, 1H), 2.97 (dt, J = 15.3, 7.8 Hz,
1H), 2.58 (dd, J = 16.9, 8.8 Hz, 1H), 2.34-2.23 (m, 1H), 2.18 (ddd, J = 12.4, 8.3, 3.9 Hz,
1H), 2.11-1.89 (m, 2H), 1.89-1.80 (m, 1H), 1.80-1.66 (m, 1H).
641 1H NMR (400 MHz, Methanol-d4) δ 8.84 (s, 1H), 7.97-7.78 (m, 2H), 7.78-7.52 (m, 4H),
7.52-7.34 (m, 2H), 4.61-4.32 (m, 6H), 4.29 (s, 3H), 4.18 (s, 4H), 4.12 (s, 3H),
2.64-2.32 (m, 4H).
642 1H NMR (400 MHz, Methanol-d4) δ 8.84 (s, 1H), 7.97-7.78 (m, 2H), 7.73-7.52 (m, 4H),
7.50-7.31 (m, 2H), 4.51 (d, J = 28.6 Hz, 2H), 4.32-4.02 (m, 14H), 1.56 (s, 3H).
643 1H NMR (400 MHz, Methanol-d4) δ 8.84 (s, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.84 (dd, J = 7.7,
1.7 Hz, 1H), 7.74-7.50 (m, 4H), 7.46 (dd, J = 7.6, 1.7 Hz, 1H), 7.40 (d, J = 7.5 Hz,
1H), 4.60 (ddd, J = 11.3, 7.9, 6.2 Hz, 1H), 4.37 (d, J = 2.8 Hz, 2H), 4.34-4.21 (m, 3H),
4.18-4.03 (m, 4H), 3.75 (dd, J = 11.7, 8.0 Hz, 1H), 3.28 (dd, J = 6.2, 4.0 Hz, 2H),
2.51-2.30 (m, 3H), 2.01-1.83 (m, 1H), 1.52 (d, J = 6.4 Hz, 3H).
644 1H NMR (400 MHz, Methanol-d4) δ 8.84 (s, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.84 (dd, J = 7.7,
1.8 Hz, 1H), 7.75-7.50 (m, 5H), 7.51-7.30 (m, 2H), 4.60 (ddd, J = 11.5, 7.9, 6.3 Hz,
1H), 4.37 (d, J = 2.8 Hz, 2H), 4.36-4.22 (m, 3H), 4.16-4.02 (m, 4H), 3.75 (dd, J = 11.7,
8.0 Hz, 1H), 3.28 (dd, J = 6.2, 4.0 Hz, 2H), 2.52-2.31 (m, 3H), 1.94 (ddt, J = 8.8, 5.4, 2.9 Hz,
1H), 1.52 (d, J = 6.3 Hz, 3H).
645 1H NMR (400 MHz, Methanol-d4) δ 8.84 (s, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.84 (dd, J = 7.7,
1.8 Hz, 1H), 7.74-7.50 (m, 4H), 7.51-7.32 (m, 2H), 4.37 (d, J = 2.8 Hz, 2H), 4.29 (s,
3H), 4.21-3.99 (d, J = 19.3 Hz, 8H), 3.29-3.23 (m, 2H), 2.53-2.30 (m, 3H),
2.02-1.82 (m, 1H).
646 1H NMR (400 MHz, Methanol-d4) δ 8.84 (s, 1H), 8.57 (s, 1H), 7.85 (dd, J = 7.7, 1.7 Hz,
1H), 7.76 (dd, J = 7.7, 1.7 Hz, 1H), 7.74-7.45 (m, 4H), 4.57 (dd, J = 16.5, 4.2 Hz, 3H),
4.34-4.21 (m, 4H), 4.17-4.06 (m, 4H), 3.75 (dd, J = 11.7, 8.0 Hz, 1H), 3.37 (t, J = 5.6 Hz,
2H), 2.57-2.32 (m, 3H), 2.09-1.85 (m, 1H), 1.52 (d, J = 6.4 Hz, 3H).
647 1H NMR (400 MHz, Methanol-d4) δ 8.84 (s, 1H), 8.57 (s, 1H), 7.85 (dd, J = 7.7, 1.7 Hz,
1H), 7.76 (dd, J = 7.7, 1.8 Hz, 1H), 7.72-7.40 (m, 4H), 4.67-4.48 (m, 3H),
4.38-4.22 (m, 4H), 4.15 (s, 4H), 3.75 (dd, J = 11.7, 8.0 Hz, 1H), 3.37 (t, J = 5.7 Hz, 2H),
2.58-2.32 (m, 3H), 2.08-1.87 (m, 1H), 1.52 (d, J = 6.4 Hz, 3H).
648 1H NMR (400 MHz, Methanol-d4) δ 8.55 (d, J = 11.6 Hz, 2H), 7.74 (dt, J = 7.7, 2.0 Hz,
2H), 7.61 (td, J = 7.7, 1.3 Hz, 2H), 7.51 (dt, J = 7.6, 1.7 Hz, 2H), 4.62-4.33 (m, 4H),
4.20-4.07 (m, 7H), 3.93-3.73 (m, 1H), 3.69-3.51 (m, 2H), 3.37 (dd, J = 6.2, 5.1 Hz, 2H),
2.59-1.52 (m, 11H).
649 1H NMR (400 MHz, Methanol-d4) δ 8.51 (s, 1H), 8.24-8.13 (m, 1H), 7.88 (d, J = 7.7 Hz,
1H), 7.79-7.36 (m, 6H), 4.82-4.24 (m, 12H), 4.16 (d, J = 11.4 Hz, 6H), 2.69-2.29 (m, 8H).
650 1H NMR (400 MHz, Methanol-d4) δ 8.52 (s, 1H), 8.21-8.09 (m, 1H), 7.72 (dd, J = 7.4,
2.1 Hz, 1H), 7.67-7.52 (m, 2H), 7.52-7.36 (m, 3H), 4.81-4.25 (m, 12H), 4.15 (d, J = 4.4 Hz,
6H), 2.69-2.35 (m, 11H).
651 1H NMR (400 MHz, Methanol-d4) δ 8.51 (s, 1H), 8.16 (td, J = 7.2, 3.1 Hz, 1H), 7.72 (dd, J = 7.4,
2.0 Hz, 1H), 7.66-7.51 (m, 2H), 7.51-7.36 (m, 3H), 4.80-4.07 (m, 18H),
3.87-3.64 (m, 4H), 2.82 (d, J = 34.6 Hz, 4H), 2.53 (s, 3H).
652 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.73 (dd, J = 7.7, 1.7 Hz, 1H), 7.65 (dd,
J = 7.7, 1.7 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.49 (dd, J = 7.6, 1.8 Hz,
1H), 7.43 (dd, J = 7.6, 1.7 Hz, 1H), 7.25 (m, 1H), 4.60-4.50 (m, 2H), 4.42 (q, J = 6.7 Hz,
1H), 4.38-4.28 (m, 2H), 4.15 (s, 4H), 4.10 (d, J = 2.0 Hz, 3H), 3.42-3.35 (m, 2H),
3.28 (m, 3H), 2.81-2.66 (m, 2H), 2.52 (s, 3H), 2.50-2.38 (m, 3H), 2.27-2.19 (m, 4H),
2.04-1.94 (m, 1H).
653 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.73 (dd, J = 7.7, 1.7 Hz, 1H), 7.65 (dd,
J = 7.7, 1.7 Hz, 1H), 7.59 (t, J = 7.7 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.49 (dd, J = 7.6, 1.7 Hz,
1H), 7.43 (dd, J = 7.6, 1.7 Hz, 1H), 7.27 (s, 1H), 4.55 (t, J = 2.0 Hz, 4H), 4.43 (d, J = 24.3 Hz,
2H), 4.22 (s, 1H), 4.17 (s, 1H), 4.15 (m, 4H), 4.10 (s, 3H), 3.41-3.35 (m, 2H),
2.55 (s, 3H), 2.51-2.36 (m, 3H), 2.06-1.93 (m, 1H), 1.87 (s, 3H).
654 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.73 (dd, J = 7.7, 1.7 Hz, 1H), 7.67 (dd,
J = 7.7, 1.7 Hz, 1H), 7.59 (t, J = 7.7 Hz, 1H), 7.54 (t, J = 7.7 Hz, 1H), 7.49 (dd, J = 7.6, 1.7 Hz,
1H), 7.44 (dd, J = 7.6, 1.8 Hz, 1H), 7.29 (s, 1H), 4.69 (s, 1H), 4.55 (d, J = 3.9 Hz, 2H),
4.15 (s, 3H), 4.12 (s, 3H), 4.09 (s, 1H), 4.02-3.83 (m, 1H), 3.76 (s, 7H), 3.62-3.50 (m,
1H), 3.43-3.35 (m, 3H), 2.57 (s, 3H), 2.53 (s, 1H), 2.52-2.36 (m, 3H), 2.21 (s, 1H),
2.10-1.91 (m, 1H).
655 1H NMR (400 MHz, Methanol-d4) δ 8.56 (s, 1H), 7.73 (dd, J = 7.7, 1.8 Hz, 1H), 7.67 (dd,
J = 7.7, 1.8 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.54 (t, J = 7.7 Hz, 1H), 7.49 (dd, J = 7.6, 1.7 Hz,
1H), 7.44 (dd, J = 7.6, 1.7 Hz, 1H), 7.28 (s, 1H), 4.57 (d, J = 3.0 Hz, 2H), 4.55 (d, J = 4.0 Hz,
2H), 4.28 (d, J = 11.6 Hz, 1H), 4.15 (m, 4H), 4.11 (s, 3H), 3.88 (t, J = 9.7 Hz, 1H),
3.37 (m, 3H), 3.15 (p, J = 1.6 Hz, 1H), 3.08 (d, J = 11.7 Hz, 1H), 3.00 (t, J = 10.6 Hz, 1H),
2.54 (s, 3H), 2.52-2.32 (m, 3H), 2.08 (d, J = 9.9 Hz, 1H), 2.05-1.87 (m, 2H), 1.79 (s, 1H).
656 1H NMR (400 MHz, Methanol-d4) δ 8.54 (s, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.73 (dd, J = 7.7,
1.7 Hz, 1H), 7.59 (t, J = 7.8 Hz, 1H), 7.54 (d, J = 7.6 Hz, 1H), 7.49 (dd, J = 7.6, 1.7 Hz,
1H), 7.44 (dd, J = 7.6, 1.7 Hz, 1H), 7.39 (d, J = 7.5 Hz, 1H), 4.47 (s, 2H),
4.43-4.32 (m, 3H), 4.14 (s, 3H), 4.12 (s, 3H), 4.11-4.05 (m, 1H), 3.31-3.23 (m, 2H), 2.72 (qp, J = 8.5,
4.5 Hz, 1H), 2.51-2.33 (m, 3H), 2.33-2.16 (m, 4H), 2.01-1.87 (m, 1H).
657 1H NMR (400 MHz, Methanol-d4) δ 8.51 (s, 2H), 7.73 (m, 2H), 7.59 (t, J = 7.6 Hz, 2H),
7.50 (dd, J = 7.6, 1.7 Hz, 2H), 4.78 (s, 6H), 4.69-4.19 (m, 6H), 4.13 (s, 6H), 4.08 (s, 4H).
658 1H NMR (400 MHz, Methanol-d4) δ 8.53 (dd, J = 5.3, 0.7 Hz, 2H), 7.72 (ddt, J = 7.7, 1.7,
0.8 Hz, 2H), 7.58 (tt, J = 7.6, 0.7 Hz, 2H), 7.48 (dtd, J = 7.6, 1.8, 0.7 Hz, 2H),
4.60-4.45 (m, 4H), 4.12 (d, J = 0.7 Hz, 7H), 3.54-3.38 (m, 5H), 3.38-3.27 (m, 6H), 3.04-2.91 (m,
2H), 2.52-2.31 (m, 5H), 2.05-1.86 (m, 3H). 19F NMR (376 MHz, Methanol-d4) δ −77.75.
659 1H NMR (400 MHz, Methanol-d4) δ 8.53 (t, J = 0.8 Hz, 2H), 7.72 (ddt, J = 7.6, 1.6, 0.8 Hz,
2H), 7.58 (td, J = 7.6, 0.7 Hz, 2H), 7.48 (dd, J = 7.7, 1.5 Hz, 2H), 4.60-4.46 (m, 4H),
4.12 (d, J = 0.7 Hz, 6H), 3.40 (ddd, J = 12.6, 5.7, 3.2 Hz, 1H), 3.39-3.28 (m, 3H),
3.33-3.20 (m, H), 3.19 (dd, J = 12.7, 6.9 Hz, 1H), 2.57 (ddd, J = 17.2, 5.3, 1.9 Hz, 1H),
2.52-2.33 (m, 4H), 2.17 (dd, J = 17.3, 10.8 Hz, 1H), 2.07 (d, J = 13.7 Hz, 1H), 2.03-1.90 (m,
1H), 1.59 (ddt, J = 17.0, 11.2, 5.6 Hz, 1H). 19F NMR (376 MHz, Methanol-d4) δ −77.73 (d,
J = 2.3 Hz).
660 1H NMR (400 MHz, Methanol-d4) δ 8.53 (d, J = 0.6 Hz, 2H), 7.72 (ddd, J = 7.6, 1.7, 0.6 Hz,
2H), 7.58 (td, J = 7.6, 0.6 Hz, 2H), 7.48 (ddd, J = 7.6, 1.7, 0.6 Hz, 2H), 4.51 (s, 4H),
4.12 (d, J = 0.7 Hz, 6H), 3.45-3.14 (m, 5H), 2.57 (ddd, J = 17.3, 5.2, 1.9 Hz, 2H), 2.40 (t,
J = 11.3 Hz, 2H), 2.17 (dd, J = 17.2, 10.8 Hz, 2H), 2.12-2.02 (m, 2H), 1.59 (dtd, J = 13.2,
11.1, 5.6 Hz, 2H). 19F NMR (376 MHz, Methanol-d4) δ −77.84.
661 1H NMR (400 MHz, Methanol-d4) δ 8.52 (d, J = 0.7 Hz, 2H), 7.72 (ddd, J = 7.7, 1.7, 0.7 Hz,
2H), 7.58 (td, J = 7.7, 0.7 Hz, 2H), 7.48 (ddd, J = 7.6, 1.8, 0.7 Hz, 2H), 4.60-4.45 (m,
5H), 4.12 (d, J = 0.7 Hz, 6H), 3.52-3.36 (m, 9H), 3.30 (p, J = 1.7 Hz, 5H), 2.98 (dtd, J = 10.5,
8.8, 6.9 Hz, 3H), 2.49-2.35 (m, 3H), 2.05-1.86 (m, 3H). Multiplet Report 19F
NMR (376 MHz, Methanol-d4) δ −77.63-−77.74 (m), −77.76, −77.77-−77.95 (m).
662 1H NMR (400 MHz, Methanol-d4) δ 8.48 (s, 1H), 8.33 (d, J = 1.9 Hz, 1H), 7.66 (d, J = 7.8 Hz,
1H), 7.56 (t, J = 7.7 Hz, 1H), 7.50 (d, J = 7.7 Hz, 1H), 7.45 (d, J = 1.9 Hz, 1H), 7.42 (s,
1H), 7.30 (d, J = 7.4 Hz, 1H), 4.69 (s, 3H), 4.68 (s, 2H), 4.62 (s, 2H), 4.49 (s, 1H), 4.44 (s,
2H), 4.26 (s, 1H), 4.15 (s, 1H), 4.11 (d, J = 1.9 Hz, 4H), 4.08 (s, 3H), 2.16 (s, 4H), 2.03 (d,
J = 1.9 Hz, 2H), 1.86 (s, 8H).
663 1H NMR (400 MHz, Methanol-d4) δ 8.53 (s, 2H), 7.72 (dd, J = 7.7, 1.7 Hz, 2H), 7.58 (t, J = 7.7 Hz,
2H), 7.48 (dd, J = 7.6, 1.7 Hz, 2H), 4.69 (s, 4H), 4.11 (s, 6H), 3.90 (d, J = 15.1 Hz,
4H), 3.61 (s, 1H), 3.41 (d, J = 9.7 Hz, 4H), 3.00 (d, J = 10.1 Hz, 1H), 2.72 (d, J = 48.1 Hz,
3H), 2.27 (d, J = 35.2 Hz, 3H), 1.95 (s, 6H), 1.81 (d, J = 16.7 Hz, 2H).
Biological Example 1 PD-1/PD-L1 & CTLA/CD80 Biochemical Protein-Protein Interaction Assay
Compounds were tested in biochemical protein-protein interaction assays to determine if they can specifically block the interaction between the extracellular domains of PD-1/PD-L1 or CTLA/CD80. Binding of the protein pairs is measured using a bead based Amplified Luminescent Proximity Homogeneous Assay (ALPHA) platform. Binding of each protein pair results in proximity of the donor and acceptor beads which leads to an increase in ALPHA signal. Disruption of the protein-protein interaction with a test compound results in a decrease in ALPHA signal. Assays are performed in 25 mM Hepes (pH 7.4), 150 mM NaCl, 3.4 mM EDTA, 0.005% Tween 20, and 0.01% BSA. Final protein concentration in the assays were 0.3 nM (His tagged PD-L1), 2.5 nM (biotinylated Fc-PD-1), 1 nM (His tagged CTLA4) and 1 nM (biotinylated CD80). After an assay reaction time of 60 minutes at 25° C., binding was measured with addition of 20 pg/mL ALPHA assay acceptor beads (anti-His coated) and 20 pg/mL ALPHA assay donor beads (streptavidin coated). IC50 values were calculated from the fit of the dose-response curves to a four-parameter equation. Representative data are shown below in Table 3.
TABLE 3
IC50
No. PD-L1-PD1 (nM)
1 0.080
2 0.135
3 0.318
4 0.086
5 0.213
6 0.099
7 0.430
8 0.590
9 0.490
10 0.270
11 0.172
12 1.492
13 0.482
14 0.224
15 7.508
16 0.173
17 0.163
18 0.266
19 0.199
20 0.546
21 0.525
22 0.506
23 0.221
24 0.179
25 0.080
26 0.060
27 0.090
28 0.436
29 1.091
30 0.475
31 0.334
32 0.187
33 0.138
34 0.231
35 0.191
36 1.290
37 1.697
38 0.660
39 0.390
40 0.238
41 0.083
42 3.419
43 0.083
44 0.113
45 0.064
46 0.081
47 0.160
48 0.822
49 0.356
50 0.259
51 0.301
52 0.170
53 0.100
54 0.180
55 0.260
56 0.090
57 8.780
58 6.760
59 0.100
60 0.140
61 0.070
62 0.160
63 2.990
65 0.165
66 0.610
67 0.292
68 0.403
69 2.622
70 0.784
71 0.081
72 0.198
73 0.370
74 1.340
75 0.877
76 0.090
77 0.192
78 0.064
79 0.292
80 0.360
81 4.176
82 0.335
83 0.560
84 0.189
85 0.976
86 3.050
87 5.883
88 0.217
89 0.286
90 0.156
91 0.978
92 1.026
93 0.566
94 0.862
95 0.233
96 1.495
97 0.701
98 0.647
99 0.407
100 0.146
101 0.130
102 0.223
103 0.071
104 0.077
105 0.302
106 0.360
107 1.540
108 0.474
109 0.586
110 0.327
111 0.297
112 0.076
113 0.211
114 0.064
115 0.115
116 0.064
117 0.281
118 0.715
119 0.115
120 0.320
121 0.064
122 1.692
123 0.112
124 0.190
125 0.225
126 0.272
127 0.064
128 0.557
129 0.064
130 0.185
131 0.309
132 0.753
133 0.064
134 0.064
135 0.733
136 0.147
137 0.168
138 0.161
139 0.213
140 0.260
141 0.064
142 0.200
143 0.410
144 0.240
145 0.100
146 0.130
147 0.060
148 0.060
149 0.270
150 0.200
151 0.684
152 0.073
153 0.396
154 0.126
155 1.647
156 0.084
157 0.064
158 0.162
159 0.150
160 0.128
161 0.167
162 0.116
163 0.177
164 0.122
165 0.187
166 0.233
167 0.262
168 0.196
169 0.344
170 0.227
171 0.208
172 0.222
173 0.209
174 0.219
175 0.110
176 0.111
177 0.330
178 0.553
179 0.211
180 1.032
181 1.510
182 0.547
183 0.888
184 0.763
185 0.480
186 0.100
187 0.280
188 0.120
189 0.094
190 0.200
191 0.143
192 0.156
193 0.133
194 0.149
195 0.064
196 0.170
197 0.230
198 0.121
199 0.126
200 0.132
201 0.280
202 0.144
203 0.129
204 0.110
205 0.079
206 0.113
207 0.104
208 0.223
209 0.175
210 0.30
211 0.095
212 0.48
213 0.840
214 0.260
215 0.110
216 0.210
217 0.140
218 0.140
219 0.190
220 0.360
221 0.227
222 0.291
223 0.584
224 0.393
225 0.288
226 0.474
227 0.136
228 0.168
229 0.229
230 0.331
231 0.064
232 0.312
233 0.451
234 0.088
235 0.106
236 0.064
237 0.064
238 0.297
239 0.300
240 0.090
241 0.270
242 0.140
243 0.110
244 0.080
245 0.150
246 0.210
247 0.130
248 0.180
249 2.670
250 0.120
251 0.070
252 0.060
253 0.090
254 0.110
255 0.080
256 0.160
257 0.426
258 0.673
259 0.273
260 0.295
261 0.128
262 0.465
263 0.379
264 0.407
265 0.225
266 0.243
267 0.606
268 0.352
269 0.230
270 0.378
271 1.704
272 2.426
273 0.265
274 0.117
275 0.064
276 0.270
277 0.652
278 0.538
279 0.343
280 0.180
281 1.194
282 1.573
283 0.711
284 0.816
285 0.358
286 0.060
287 0.340
288 0.260
289 0.060
290 0.259
291 0.216
292 0.229
293 0.516
294 0.298
295 0.414
296 0.222
297 0.254
298 0.181
299 0.260
300 0.299
301 0.250
302 0.089
303 0.256
304 0.290
305 0.244
306 0.245
307 0.167
308 0.337
309 0.178
310 0.216
311 0.240
312 0.295
313 0.327
314 0.142
315 0.18
316 0.17
317 0.220
318 0.150
319 3.870
320 3.720
321 0.460
322 0.230
323 0.120
324 0.358
325 1.860
326 0.180
327 0.238
328 4.042
329 0.955
330 5.676
331 0.669
332 0.743
333 0.171
334 0.246
335 0.172
336 0.137
337 1.102
338 0.565
339 0.192
340 0.118
341 0.094
342 0.107
343 0.126
344 0.114
345 0.313
346 0.323
347 0.245
348 0.138
349 0.389
350 0.737
351 0.283
352 4.633
353 0.064
354 0.133
355 0.129
356 0.102
357 0.096
358 0.141
359 0.132
360 0.401
361 0.130
362 0.074
363 0.424
364 0.244
365 0.070
366 0.115
367 0.064
368 0.064
369 0.078
370 0.064
371 0.213
372 0.104
373 0.130
374 0.183
375 0.459
376 0.208
377 0.098
378 0.396
379 0.155
380 0.203
381 0.085
382 0.289
383 0.887
384 0.154
385 0.292
386 0.879
387 0.625
388 1.223
389 0.211
390 0.146
391 0.232
392 0.246
393 2.229
394 1.782
395 9.235
396 2.015
397 0.561
398 0.195
399 0.324
400 0.173
401 0.295
402 0.175
403 0.070
404 0.070
405 0.160
406 0.280
407 0.186
408 0.139
409 0.124
410 0.316
411 0.321
412 0.187
413 0.162
414 0.559
415 0.195
416 0.140
417 0.196
418 0.219
419 0.542
420 0.449
421 0.603
422 0.554
423 0.237
424 0.617
425 0.414
426 0.273
427 0.136
428 0.272
429 0.349
430 0.071
431 0.124
432 0.084
433 0.259
434 0.064
435 0.064
436 5.463
437 0.086
438 1.34
439 0.646
440 1.873
441 0.064
442 0.146
443 0.246
444 0.074
445 0.069
446 0.138
447 0.064
448 0.064
449 0.285
450 0.064
451 0.101
452 0.086
453 0.139
454 0.064
455 0.145
456 0.186
457 0.172
458 0.087
459 0.344
460 0.157
461 0.159
462 0.346
463 0.076
464 0.11
465 0.158
466 0.073
467 0.146
468 0.123
469 0.26
470 0.094
471 0.119
472 0.066
473 0.093
474 0.219
475 0.162
476 0.622
477 0.246
478 0.064
479 0.239
480 0.064
481 0.227
482 0.108
483 0.341
484 0.122
485 0.229
486 0.29
487 0.123
488 0.064
489 0.332
490 0.565
491 0.064
492 0.092
493 0.109
494 0.139
495 0.247
496 0.386
497 0.276
498 0.169
499 0.203
500 0.232
501 0.087
502 0.064
508 0.084
509 0.106
510 0.192
511 0.197
512 0.101
513 0.064
514 0.09
515 0.342
516 0.064
517 0.106
518 0.144
519 0.277
520 0.072
521 0.071
522 0.064
523 0.181
524 0.115
525 0.105
526 0.168
527 0.089
528 0.064
529 0.091
530 0.212
531 0.225
532 0.273
533 0.096
534 0.299
535 0.095
536 0.276
537 0.064
538 0.199
539 0.171
540 0.072
541 0.094
542 0.392
543 0.2
544 0.238
545 0.214
546 0.089
547 0.064
548 0.665
549 0.194
550 0.593
551 0.464
552 0.144
553 0.118
554 0.099
555 0.345
556 0.176
557 0.09
558 0.064
559 0.12
560 0.144
561 0.164
562 0.151
563 0.431
564 0.2
565 0.43
566 0.13
567 0.064
568 0.293
569 0.59
570 0.414
571 0.064
572 0.064
573 0.089
574 0.133
575 0.064
576 0.641
577 0.064
578 0.182
579 0.782
580 0.359
581 0.201
582 0.19
583 0.064
584 0.118
585 0.442
586 0.29
587 0.515
588 0.17
589 0.291
590 0.131
591 0.138
592 0.151
593 0.346
594 0.12
595 0.064
596 0.181
597 0.129
598 0.178
599 0.174
600 0.064
601 0.196
602 0.145
603 0.073
604 0.064
605 0.113
606 0.077
607 0.064
608 0.064
609 0.079
610 0.313
611 0.21
612 0.064
613 0.182
614 0.079
615 0.291
616 0.069
617 0.064
618 0.064
619 0.178
620 0.101
621 1.054
622 0.26
623 0.064
624 0.152
625 0.074
626 0.064
627 0.081
628 0.064
629 0.083
630 0.437
631 0.064
632 0.172
633 0.064
634 0.064
635 0.098
636 0.12
637 0.134
638 0.079
639 0.066
640 0.167
641 0.064
642 0.064
643 0.064
644 0.093
645 0.064
646 0.064
647 0.064
648 0.08
649 0.128
650 0.064
651 0.064
652 0.12
653 0.064
654 0.071
655 0.064
656 0.167
657 0.064
658 0.196
659 0.121
660 0.135
661 0.064
662 0.082
663 0.281
The above data shows that compounds of the present disclosure are generally effective at blocking the PD-1/PD-L1 interaction.
PD-1/PD-L1 NFAT Reporter Assay:
Compounds were tested in a functional co-culture reporter assay in which TCR-mediated NFAT activity is inhibited by the engagement of PD-1 with PD-L1. Blocking the PD-1/PD-L1 interaction impairs PD-1 mediated blunting of TCR signaling and significantly increases NFAT-mediated transcription of luciferase. CHO cells expressing surface-bound anti-CD3 antibodies and PD-L1 (artificial antigen presenting cells, aAPC-PD-L1) were first seeded overnight. Jurkat cells overexpressing PD-1 and expressing a luciferase construct under NFAT control are diluted in RPMI assay medium (RPMI 1640 with 2% FBS), mixed with compounds, and immediately seeded on the monolayer of aAPC-PD-L1. The co-culture is then incubated for 6 hrs at 37° C. Luciferase activity is assessed by adding the ONE-Glo reagent and measuring luminescence with a plate reader. EC50 values are calculated from the fit of the dose-response curves to a four-parameter equation (Table 4).
PD-L1/PD-L1 Dimerization Biochemical Protein-Protein Interaction Assay:
Compounds were tested in biochemical protein-protein interaction assays to determine if they can specifically dimerize the extracellular domains of PD-L1. Dimerization of the proteins (His-tagged PD-L1 and FLAG-tagged PD-L1) is measured using a bead based Amplified Luminescent Proximity Homogeneous Assay (ALPHA) platform. Compound induced dimerization of PD-L1 results in proximity of the donor and acceptor beads which leads to an increase in ALPHA signal. Assays are performed in 25 mM Hepes (pH 7.4), 150 mM NaCl, 3.4 mM EDTA, 0.005% Tween 20, and 0.01% BSA. Final protein concentration in the assays were 0.5 nM (His tagged PD-L1) and 0.5 nM (FLAG tagged PD-L1). After an assay reaction time of 2 hours at 25° C., 1-20 μg/mL (final assay concentration) ALPHA assay acceptor beads (anti-His coated) were added and incubated for 60 minutes at 25° C. Binding was measured following a final 60 minute incubation with 40 μg/mL (final assay concentration) ALPHA assay donor beads (anti-FLAG coated). AC50 values were calculated from the fit of the dose-response curves to a four-parameter equation (Table 4).
TABLE 4
AC50 PDL1 EC50 NFAT
No. Dimer Luciferase
1 240.33 66
2 202.6 90
3 392.74 218
4 335.51 59
5 393.97 274
6 305.57 126
7 583.46 3442
8 644.47 5852
9 607.65 375
10 403.62 142
11 462.83 163
12 757.1 299
13 347.99 403
14 353.78 87
15 10000 50000
16 282.19 49
17 408.39 99
18 426.95 391
19 611.82 50000
20 10000 1164
21 731.29 193
22 685.61 252
23 335.84 108
24 338.33 89
25 229.05 76
26 215.35 78
27 205.5 157
28 530.34 156
29 1357.1 50000
30 446.13 181
31 247.95 325
32 252.14 242
33 527.94 138
34 668.28 271
35 371.63 40
36 10000 1608
37 516.49 667
38 1702.4 1607
39 282.95 291
40 694.13 3977
41 840.99 1206
42 10000 3046
43 372.8 214
44 369.96 145
45 325.08 68
46 311.32 55
47 694.52 215
48 2569.1 332
49 402.54 123
50 578.04 77
51 653.49 3264
52 586.85 220
53 353.66 104
54 201.78 131
55 421.05 211
56 259.11 104
57 319.44 277
58 728.88 711
59 291.2 56
60 260.45 59
61 211.47 50
62 311.93 201
63 387.65 314
65 167.34 957
66 306.4 1717
67 509.76 1806
68 769.42 50000
69 1489.1 50000
70 356.8 1131
71 298.23 842
72 144.68 175
73 141.66 222
74 120.4 128
75 733.44 606
76 364.58 81
77 243.78 44
78 276.77 55
79 428.2 221
80 481.52 286
81 10000 50000
82 1287.4 193
83 2505.1 94
84 749.38 75
85 1984.9 1027
86 10000 50000
87 10000 314
88 443.98 209
89 984.05 145
90 459.79 90
91 1327.2 579
92 10000 906
93 3077.7 234
94 7667.6 844
95 935.74 1008
96 6153.3 10199
97 755 50000
98 4099.2 296
99 694.66 568
100 733.69 94
101 319.17 250
102 916.48 194
103 273.94 63
104 762.09 108
105 631.44 630
106 766.54 6565
107 10000 922
108 3331.7 105
109 9105.7 11321
110 3779.4 893
111 2805.9 1010
112 334.96 92
113 345.93 121
114 128.97 169
115 215.77 251
116 182.89 221
117 208.11 281
118 10000 75
119 199.58 684
120 445.1 54
121 49.136 118
122 273.52 178
123 162.4 66
124 141.41 189
125 75.808 96
126 149.37 89
127 147.82 573
128 850.98 597
129 138.43 412
130 362.76 90
131 380.73 51
132 1987.6 335
133 80.854 73
134 93.585 121
135 893.64 323
136 497.22 64
137 911.52 185
138 478.77 74
139 316.16 119
140 523.32 40
141 61.477 83
142 444.64 86
143 935.68 218
144 821.08 160
145 284.53 62
146 376.2 84
147 219.91 21
148 240.84 50
149 644.02 174
150 555.04 198
151 10000 3920
152 193.3 2405
153 10000 50000
154 10000 6236
155 354.32 461
156 198.61 57
157 199.71 35
158 195.23 103
159 242.49 86
160 257.43 98
161 447.76 217
162 220.19 60
163 178.77 92
164 169.19 52
165 363.23 116
166 396.99 137
167 416.64 188
168 328.93 91
169 614.81 144
170 289.16 114
171 332.93 88
172 352.96 107
173 344.94 87
174 418.66 75
175 301.88 89
176 255.56 71
177 458.57 126
178 342.2 181
179 243.89 133
180 7553.7 610
181 10000 50000
182 734.41 315
183 838.01 360
184 502.06 271
185 368.99 617
186 253.73 124
187 498.41 232
188 290.06 129
189 489.49 41
190 704.99 41
191 602.43 279
192 473.83 64
193 513.8 92
194 593.95 169
195 437.96 48
196 434.26 95
197 412.83 68
198 331.55 125
199 361.43 61
200 593.43 100
201 250.63 181
202 330.42 47
203 602.8 121
204 415.43 70
205 423.98 73
206 509 59
207 367.58 52
208 446.16 41
209 442.05 18
210 250.74 123
211 161.64 74
212 284.89 189
213 942.18 458
214 345.44 536
215 287.86 154
216 566.87 191
217 295.45 98
218 267.04 154
219 136.53 144
220 443.54 180
221 425.01 186
222 567.51 134
223 667.4 305
224 613.37 245
225 299.81 117
226 559.43 368
227 318.49 65
228 337.06 96
229 320.33 201
230 627.52 284
231 317.88 49
232 377.77 117
233 472.96 353
234 212.85 37
235 306.18 45
236 213.57 54
237 301.81 52
238 363.63 337
239 1266 250
240 301.58 121
241 912.47 274
242 424.01 81
243 396.89 83
244 255.87 130
245 309.98 202
246 724.79 2078
247 366.02 156
248 408.37 138
249 10000 50000
250 253.1 929
251 261.95 50000
252 357.76 82
253 255.07 78
254 202.9 633
255 138.35 172
256 613.08 263
257 528.03 268
258 10000 3534
259 372.54 1977
260 869.26 1872
261 494.43 117
262 1383.3 1409
263 796.17 1060
264 806.91 1136
265 579.77 238
266 606.61 640
267 416.46 484
268 405.02 275
269 455.1 347
270 490.29 208
271 10000 50000
272 2199.5 1519
273 299.55 261
274 374.67 94
275 177.21 27
276 558.56 278
277 2992.8 616
278 1886.1 923
279 996.73 423
280 577.23 1093
281 1110.6 256
282 10000 352
283 810.85 203
284 928.54 520
285 636.77 156
286 233.86 101
287 911.62 5209
288 221.54 132
289 253.52 61
290 757.43 234
291 431.8 10913
292 329.88 205
293 768.18 243
294 510.87 267
295 528.13 217
296 351.75 95
297 404.21 223
298 343.89 126
299 320.99 122
300 509.06 175
301 852.36 311
302 351.12 156
303 564.3 173
304 589.38 391
305 390.28 102
306 417.73 138
307 366.17 70
308 376.22 152
309 392.45 84
310 391.31 173
311 318.45 158
312 476.32 176
313 637.34 426
314 311.4 77
315 110.9 52
316 219.01 85
317 625.74 169
318 197.44 87
319 10000 50000
320 186.69 111
321 934.73 1025
322 596.63 276
323 187.05 87
324 443 195
325 1664.9 50000
326 235.57 135
327 1194.4 150
328 10000 50000
329 647.48 223
330 10000 286
331 332.12 236
332 1070.4 50000
333 355.27 100
334 484.05 120
335 397.45 146
336 328.96 200
337 419.55 238
338 393.49 344
339 392.15 204
340 542.53 91
341 669.95 83
342 459.66 54
343 519.17 92
344 403.75 57
345 423.04 80
346 452.36 95
347 567.07 84
348 407.79 64
349 268.4 151
350 5440.8 550
351 566.15 83
352 10000 2822
353 262.56 47
354 392.78 58
355 336.38 68
356 345.82 44
357 316.85 77
358 445.56 69
359 398.4 52
360 636.01 115
361 380.23 56
362 273.29 51
363 419.83 162
364 562.57 126
365 395.18 88
366 418.51 136
367 401.17 34
368 494.92 46
369 451.56 193
370 246.32 48
371 423.53 68
372 375.51 47
373 396.81 159
374 310.58 46
375 810.72 179
376 455.77 88
377 461.33 83
378 492.68 124
379 304.77 24
380 903.67 86
381 220.58 35
382 1018.8 173
383 438.4 321
384 1529.5 87
385 246.71 143
386 1139 1070
387 658.16 233
388 831.08 5277
389 711.54 98
390 537.01 110
391 412.01 64
392 418.26 116
393 10000 50000
394 10000 50000
395 10000 50000
396 10000 50000
397 3410.2 291
398 434.16 139
399 589.87 60
400 601.31 47
401 652.27 121
402 256.72 147
403 223.08 68
404 206.21 107
405 371.33 186
406 348.29 255
407 320.76 92
408 245.75 89
409 276.42 68
410 265.76 94
411 220.22 109
412 177.99 121
413 190.09 159
414 477.79 410
415 463.96 227
416 297.81 102
417 254.17 339
418 353.69 134
419 154.71 304
420 648.16 188
421 10000 50000
422 360.44 132
423 1137.7 216
424 5708.9 50000
425 689.58 230
426 465.34 98
427 567.52 107
428 533.99 178
429 539.48 133
430 426.93 76
431 301.45 56
432 221.18 249
433 411.65 95
434 138.15 31
435 119.7 27
436 252.11 114
437 248.47 41
438 1067.7 446
439 639.68 158
440 3589.1 1357
441 354.66 112
442 205.36 88
443 267.4 57
444 336.13 32
445 249.34 35
446 309.41 54
447 354.48 24
448 388.09 28
449 420.34 46
450 83.295 153
451 246.61 131
452 197.92 95
453 208.68 98
454 548.84 140
455 307.89 79
456 220.61 55
457 350.98 120
458 291.36 169
459 467.3 146
460 422.41 198
461 280.93 130
462 313.97 165
463 250.21 88
464 394.11 139
465 276.08 84
466 328.83 97
467 293.02 90
468 148.43 44
469 377.61 166
470 251.52 121
471 141.95 49
472 159.64 40
473 178.06 57
474 637.08 95
475 338.67 50
476 384.96 171
477 393.47 66
478 209.93 16
479 517.18 109
480 218.25 29
481 245.05 72
482 309.56 56
483 304.7 153
484 195.44 72
485 293.8 63
486 234.14 148
487 180.17 65
488 321.37 67
489 1160.7 43
490 1365.8 104
491 225.05 43
492 127.28 65
493 165.61 40
494 139.69 57
495 373.48 180
496 450.5 176
497 242.05 158
498 179.03 80
499 455.99 110
500 324.11 89
501 262.7 76
502 209.05 40
508 193.02 80
509 179.77 81
510 161 41
511 198.59 60
512 255.73 127
513 155.63 141
514 187.1 135
515 326.79 162
516 277.85 68
517 282.44 100
518 318.12 151
519 438.99 71
520 179.81 82
521 126.14 50
522 209.96 79
523 268.2 84
524 274.9 54
525 322.25 43
526 307.95 155
527 238.19 92
528 187.07 76
529 157.29 104
530 392.15 100
531 449.69 74
532 271.56 68
533 156.78 37
534 153.8 46
535 156.47 60
536 234.37 99
537 160.28 46
538 559.01 99
539 314.53 63
540 401.53 46
541 345.59 80
542 275.46 83
543 199.23 62
544 1741.3 111
545 493.12 124
546 373.32 125
547 248.97 73
548 353.21 142
549 393.57 96
550 1165.1 148
551 358.35 92
552 352.37 169
553 425.98 122
554 240.08 130
555 379.07 106
556 513.98 74
557 313.91 115
558 210.24 50
559 261.43 66
560 433.11 162
561 203.15 31
562 473.43 58
563 545.94 98
564 330.63 58
565 326.42 90
566 293.18 63
567 227.96 21
568 646.29 164
569 593.64 153
570 427.87 184
571 259.53 96
572 351.82 130
573 257.44 75
574 310.5 150
575 227.13 73
576 432.38 187
577 90.285 63
578 267.8 198
579 448.31 165
580 306.36 194
581 187.05 149
582 135.62 121
583 53.288 65
584 84.945 115
585 492.38 129
586 469.53 85
587 496.67 105
588 390.01 58
589 307.89 99
590 676.48 56
591 195.23 28
592 246.23 43
593 246.65 82
594 239.11 21
595 117.9 17
596 215.39 32
597 281.77 31
598 174.83 60
599 189.42 99
600 137.66 34
601 268.53 88
602 217.64 73
603 195.39 159
604 254.67 34
605 256.04 60
606 203.59 74
607 142.37 36
608 379.95 18
609 396.2 56
610 227.28 73
611 233.34 145
612 282.68 19
613 377.69 92
614 169.8 63
615 294.52 144
616 188.86 60
617 309.56 74
618 205.79 27
619 223.42 102
620 154.07 143
621 224.96 71
622 231.74 79
623 192.23 94
624 163.79 39
625 129.55 32
626 263.43 25
627 189.61 58
628 171.09 53
629 157.06 14
630 200.17 40
631 130.42 25
632 229.73 47
633 233.21 46
634 232.31 14
635 134.19 50
636 180.16 25
637 243.34 42
638 98.219 42
639 563.95 31
640 525.75 50
641 64.437 44
642 60.016 31
643 44.34 48
644 35.75 48
645 36.462 49
646 66.651 48
647 51.449 37
648 287.34 38
649 220.43 21
650 76.27 35
651 68.737 26
652 104.79 46
653 64.175 15
654 142.04 39
655 154.84 50
656 199.94 43
657 274.75 21
658 253.78 49
659 306.76 39
660 663.58 39
661 356.06 30
662 688.81 36
663 618.38 49
Biological Example 2 In Vitro Activity of Compound 139 on HBV-Specific T Cells from CHB Patient PBMCs
This example shows the effect of compound 139 on HBV-specific T cell function in peripheral blood mononuclear cells obtained from chronic hepatitis B (CHB) patients. Inhibition of the interaction between programmed death 1 (PD-1) with its ligand (PD-L1) with specific monoclonal antibodies has been reported to enhance the antiviral function of HBV-specific T cells. This study evaluated the ability of a PD-L1 inhibitor described herein (i.e., compound 139), to enhance HBV-specific T cell functions in peripheral blood mononuclear cells (PBMC) isolated from chronic hepatitis B (CHB) patients. PBMCs from CHB patients were treated for 6 days with compound 139 or DMSO in the presence of HBV core peptides, followed by re-stimulation for 16 hours before analysis of CD8+ and CD4+ T cells by flow cytometry. Compared to DMSO-treated controls, treatment with compound 139 increased the percentage of interferon-y (IFN-γ)+CD8+ T cells by 2.5 fold (p=0.01) and IFN-γ+CD4+ T cells by 2.5 fold (p=0.003). Compound 139 also significantly increased the expression of granzyme B (GrB) in HBV-specific CD8+ T cells by 1.2 fold (p=0.015) and in CD4+ T cells by 1.8 fold (p=0.045). The increases in IFN-γ and GrB production in CD8+ T cells following treatment with compound 139 was comparable to those induced by durvalumab, a marketed anti-PD-L1 monoclonal antibody. These data demonstrate that compound 139 enhances the antiviral function of HBV-specific CD8+ and CD4+ T cells from CHB patients in vitro to a degree comparable to anti-PD-L1 monoclonal antibodies.
Materials and Methods
Compounds
Compound 139 was dissolved in 100% DMSO to prepare a 10 mM stock solution and stored at −20° C. The anti-PD-L1 Ah durvalumab was produced and purified at Gilead Sciences. In all assays, compound 139 was evaluated at the dose of 650 nM, which is 2× concentration above the EC90 value as determined in a human blood polyclonal activation assay. Durvalumab (durva) was used at 10 μg/mL concentration as per previously reported studies (Boni et al. J Virol 2007; 81(8); 4215-4225).
Whole Blood from CHB Donors
CHB donors were sourced by C&M LabPro, LLC (San Francisco, Calif.), MT Group, Inc. (Van Nuys, Calif.), and BioIVT (Westbury, N.Y.). Whole blood from CHB donors was drawn into K2 EDTA Tubes (Becton Dickinson, Franklin Lakes, N.J.) and shipped overnight to Gilead Sciences, Inc. PBMCs from the blood samples were isolated at Gilead Sciences using the protocol described below. Table 5 summarizes HBV s antigen (HBsAg) and HBV e antigen (HBeAg) reactivity as well as demographic data for the CHB patients in this study.
TABLE 5
CHB Patient Demographics.
Donor ID# HBsAg HBeAg Age Sex
1 + + 74 M
2 + 59 M
3 + n/a 36 F
4 + 65 M
5 + + 63 F
6 + n/a 67 F
7 + 53 F
8 + + 59 M
9 + 44 F
10 + 69 M
11 + 48 M
12 + 55 M
13 + + 49 F
14 + n/a 48 M
n/a = not available

Assays
PBMC Isolation from Whole Blood PBMCs were isolated from whole blood using a standard Ficoll® Paque gradient. Briefly, 25-30 mL of blood was gently overlaid on top of 15 mL Ficoll® Paque Plus solution (GE Healthcare, Chicago, Ill.) in a 50 mL Falcon tube, and centrifuged in an Allegra X-14R (Beckman Coulter, Indianapolis, Ind.) at 520 g for 20 minutes at 25° C. The mononuclear cell layer was washed twice with PBMC wash buffer (RPMI Medium 1640-GlutaMAX-I (Life Technologies, Carlsbad, Calif.)) supplemented with 10% heat-inactivated Fetal Bovine Serum (LBS; Hyclone, Logan, Utah). Next, the cells were centrifuged at 520 g for 5 minutes and red blood cells (RBC) lysed for 5 minutes at room temperature using RBC Lysis Buffer (eBioscience, San Diego, Calif.). After a final wash with PBMC wash buffer, the cells were resuspended in cell culture medium consisting of RPMI 1640 culture medium supplemented with 25 mM HEPES (Life Technologies), 100 U/mL Penicillin/Streptomycin (Sigma Aldrich, St Louis, Mo.), lx non-essential amino acids (Life Technologies, Carlsbad, Calif.), 10% FBS, and 20 U/mL interleukin-2 (IL-2) (Miltenyi Biotec, Sunnyvale, Calif.) before cell number and viability were determined using trypan blue (VWR, Radnor, Pa.) exclusion. PBMCs were either subsequently used for the T cell expansion assay, or were cryopreserved with 10% DMSO in PBS before further use.
CD8+ and CD4+ T Cell 7-Day Expansion and Recall Response Assay
PBMCs were seeded at 2-4×105 cells/well in 96-well round bottom plates (Corning, N.Y.). A pool of 15-mer 11-amino acid (AA) overlapping peptides spanning the entire HBV core sequence was added at 100-300 ng/mL concentration in the presence of 650 nM compound 139, or 10 μg/mL durvalumab, or the equivalent volume of DMSO (Sigma Aldrich). PBMCs were incubated for 7 days at 37° C. with 5% CO2 in a humidified incubator. Cell culture medium (as described above) was replenished with fresh medium containing IL-2 (without peptides, compound 139, or durvalumab) after 4 days. On Day 6, PBMCs were re-stimulated by the addition of 100-300 ng/mL HBV core peptides, or DMSO. Compound 139 or durvalumab was also added during the re-stimulation. To inhibit protein transport, 1 μg/mL brefeldin. A solution (Sigma) was added to each well. After overnight incubation, cells were processed for immunostaining and flow cytometry as described herein.
Immunostaining and Flow Cytometry
After re-stimulation overnight with the peptide pool and compound 139 or durvalumab, PBMCs were pelleted by centrifugation on Day 7 and washed twice with PBS. Washed cells were resuspended in Live/Dead Aquamine Stain (Invitrogen) per manufacturer's instructions to determine the viability of the cells by flow cytometry. Live/Dead Aqua stained PBMCs were washed twice with FACS staining buffer (1% FBS in PBS), and then incubated with 50 μL of Fc blocking reagent (BD Biosciences, Franklin Lakes, N.J.) for 10 minutes at room temperature. A mixture of antibodies (50 μL/well) described in Table 6 were added to the blocking solution for surface staining, and PBMCs were incubated with the antibodies for 40 minutes at 4° C. PBMCs were pelleted by centrifugation as described above and washed twice with FACS buffer, followed by fixation with 1×FoxP3 Fix/Perm buffer (eBioscience) for 1 hour. Cells were washed twice with the permeabilization reagent included in the FoxP3 staining kit and incubated with antibodies for intracellular staining of IFN-γ and GrB (Table 6) at 1.0 μg/mL. After 1 hour incubation at 4° C., PBMCs were centrifuged and washed twice before being resuspended in FACS buffer. Stained PBMCs were analyzed by flow cytometry using a BD LSRFortessa X-20 Cell Analyzer (Becton Dickinson). BD Comp Beads (BD Biosciences) were used as compensation controls. CD8+ and CD4+ T cells were identified by gating on the live AquamineCD3+CD8+ and AquamineCD3+CD4+ PBMC population respectively.
TABLE 6
Flow Cytometry Antibodies
Antibody Fluorophore Clone Supplier
CD3 Percp-Cy5.5 UCHT1 BD Biosciences
CD4 BV650 SK3 BD Biosciences
CD8 BV605 SK1 BD Biosciences
Granzyme B Alexa Fluor ® 647 GB11 BD Biosciences
IFN-γ APC-Cy7 B27 BioLegend ®

Data Analysis
Flow cytometry data was analyzed using FlowJo Flow Cytometry Analysis Software v10 (TreeStar, Ashland, Oreg.). Data was exported and statistical analysis was performed using GraphPad Prism v6 (GraphPad Software, La Jolla, Calif.). Statistical significance relative to the DMSO control was calculated by two-tailed, paired t-test.
Results
To evaluate the effects of compound 139 on the activation of HBV-specific T cells, PBMCs isolated from 14 CHB donors were stimulated with a pool of 15-mer peptides spanning the HBV core sequence. During peptide stimulation, PBMCs were treated with compound 139 (650 nM) or vehicle control (DMSO) for 6 days. After 6 days of peptide stimulation and treatment with compound 139, PBMCs were re-stimulated for 16 hours with fresh peptides and compound 139 or DMSO. As surrogates of effector function, intracellular levels of IFN-γ (antiviral cytokine) and GrB (a marker of cytotoxic function) were measured by flow cytometry in CD3+CD8+ and CD3+CD4+ T cell populations.
In HBV core peptide-stimulated PBMCs isolated from 14 CHB donors, compound 139 significantly increased the frequencies of both IFN-γ+ (2.5-fold, p=0.01) and GrB+(1.2-fold, p=0.015) CD8+ T cells, as compared with DMSO treated PBMCs (FIG. 1A and Table 7). For control purposes, durvalumab, a marketed monoclonal α-PD-L1 antibody, was also tested in PBMCs isolated from 9 out of the 14 CHB donors. We found that both compound 139 and durvalumab induced a comparable increase of IFN-γ+CD8+ T cells (2.5-fold versus 2.7-fold, respectively, p=0.21) and GrB+CD8+ T cells (1.2-fold versus 1.1-fold, respectively, p=0.53) (FIG. 1B and Table 7). These data agree with a previous report where IFN-γ+ cells in CD8+ T and CD4+ T cells were enhanced by 1.8- to 8.2-fold (p=0.028) and 2.2- to 4.3-fold (p=0.01) respectively in 8 responsive patients out of 24 total patients after in vitro treatment with an α-PD-L1 antibody (Fisicaro et al., Gastroenterology, 2010; 138(2): 682-693, 93 e1-4).
TABLE 7
Compound 139 Enhances IFN-γ and Granzyme B Production in CHB CD8+ T Cells.
IFN-γ+ CD8+ T cells GrB+ CD8+ T cells
Fold change Fold change
% IFN-γ+ over DMSO % GrB+ over DMSO
Donor Cmpd Cmpd Cmpd Cmpd
ID# DMSO 139 Durva 1 139 Durva DMSO 139 Durva 139 Durva
1 0.94 1.53  n.d.2 1.63 n.d. 33.40 32.30 n.d. 0.97 n.d.
2 1.85 2.63 n.d. 1.42 n.d. 47.30 47.80 n.d. 1.01 n.d.
3 0.26 0.94 n.d. 3.62 n.d. 5.27 8.78 n.d. 1.67 n.d.
4 0.04 0.41 0.36 11.08 9.73 38.80 50.30 47.20 1.30 1.22
5 0.20 0.61 n.d. 3.00 n.d. 14.31 30.67 n.d. 2.14 n.d.
6 1.45 3.06 3.99 2.12 2.76 24.80 28.15 17.70 1.14 0.71
7 0.94 0.90 1.20 0.95 1.27 23.93 24.10 22.93 1.01 0.96
8 0.79 3.28 0.85 4.13 1.07 38.02 45.05 47.23 1.18 1.24
9 3.90 4.69 n.d. 1.20 n.d. 19.30 20.20 n.d. 1.05 n.d.
10 0.20 0.30 0.73 1.46 3.61 30.07 33.50 31.77 1.11 1.06
11 6.69 7.74 8.18 1.16 1.22 50.83 52.67 56.20 1.04 1.11
12 1.56 1.86 2.98 1.19 1.91 18.70 18.93 27.25 1.01 1.46
13 5.60 4.69 7.58 0.84 1.35 22.17 23.23 28.40 1.05 1.28
14 8.42 11.17 14.16  1.33 1.68 35.83 55.80 35.80 1.56 1.00
Average ± 2.35 ± 3.13 ± 4.45 ± 2.51 ± 2.73 ± 28.77 ± 33.68 ± 34.94 ± 1.23 ± 1.11 ±
SD 2.71 3.12 4.67 2.67 2.75 12.78 14.46 12.78 0.34 0.22
1Durva = Durvalumab
2n.d. = not done
Additionally, treatment of CD4+ T cells with compound 139 significantly enhanced the frequency of HBV-specific IFN-γ+ cells (2.5 fold, p=0.003) and GrB+ cells (1.8 fold, p=0.045) over DMSO-treated PBMCs (FIG. 2A and Table 8). The frequencies of CD4+ IFN-γ+ T cells between compound 139 and durvalumab treated PBMCs were not statistically significant (2.5% versus 3.1% respectively; p=0.2018). Compound 139 and durvalumab also enhanced the frequency of GrB+CD4+ T cells to similar levels (4.7% versus 4.3% respectively, p=0.07) (FIG. 2B), as compared with DMSO treatment (3.5%) (Table 8).
TABLE 8
Compound 139 Enhances IFN-γ and Granzyme B Production in CHB CD4+ T Cells.
IFN-γ+ CD4+ T cells GrB+ CD4+ T cells
Fold change Fold change
% IFN-γ+ over DMSO % GrB+ over DMSO
Donor Cmpd Cmpd Cmpd Cmpd
ID# DMSO 139 Durva 1 139 Durva DMSO 139 Durva 139 Durva
1 0.94 1.53  n.d.2 1.63 n.d. 5.79 4.91 n.d. 0.85 n.d.
2 7.78 9.22 n.d. 1.19 n.d. 12.8 15.2 n.d. 1.19 n.d.
3 0.56 1.39 n.d. 2.48 n.d. 0.60 3.80 n.d. 6.33 n.d.
4 0.29 1.42 5.38 4.90 18.55 2.27 5.63 7.88 2.48 3.47
5 0.11 0.79 n.d. 7.48 n.d. 4.05 7.76 n.d. 1.92 n.d.
6 0.24 0.41 3.41 1.73 14.39 0.74 0.93 0.55 1.25 0.74
7 0.23 1.40 0.44 6.18 1.95 0.82 0.88 1.53 1.07 1.87
8 0.85 0.94 1.18 1.11 1.39 1.28 2.43 1.25 1.89 0.97
9 1.01 1.76 n.d. 1.74 n.d. 2.96 3.72 n.d. 1.26 n.d.
10 3.09 2.83 2.94 0.92 0.95 5.83 3.27 3.74 0.56 0.64
11 0.45 0.61 0.60 1.37 1.33 2.27 3.98 3.89 1.75 1.72
12 0.29 0.54 0.51 1.86 1.74 3.84 6.04 9.17 1.57 2.38
13 6.33 6.83 8.24 1.08 1.30 4.51 5.21 7.60 1.16 1.69
14 4.03 5.64 4.97 1.40 1.23 0.72 1.44 3.49 2.01 4.86
Average ± 1.87 ± 2.52 ± 3.07 ± 2.51 ± 4.76 ± 3.46 ± 4.66 ± 4.34 ± 1.81 ± 2.04 ±
SD 2.49 2.72 2.71 2.10 6.73 3.25 3.63 3.15 1.40 1.38
1Durva = durvalumab;
2n.d. = not done

Conclusion
Compound 139 significantly increased the frequencies of HBV-specific IFN-γ+ cells in both CD4+(2.5-fold, p=0.01) and CD8+ T cells (2.5-fold, p=0.003). Compound 139 also enhanced the frequency of GrB+ cells among HBV-specific CD8+(1.2 fold, p=0.015) and CD4+ T cells (1.8 fold, p=0.045). Furthermore, the ability of compound 139 to enhance the antiviral functions of HBV-specific CD8+ and CD4+ T cells in vitro was comparable to those of durvalumab, a marketed α-PD-L1 antibody. Taken together, these data indicate that compound 139 enhances the antiviral/effector functions of HBV-specific CD8+ and CD4+ T cells from CHB patients in vitro.
Biological Example 3 Pharmacologic Assessment in Mouse Tumor Model
The compounds described herein are small molecule PD-L1 inhibitors that block the PD-l/PD-L1 interaction through a mechanism of action that is distinct from the clinically approved monoclonal antibodies The objective of this study was to assess the relationship of pharmacokinetics (PK), TO and anti-tumor activity of compound 139 in a human PD-L1 expressing MC38 mouse colorectal tumor model.
Compound 139 does not bind murine PD-L1, precluding the use of traditional syngeneic murine tumor models to assess compound 139 activity in vivo. However, compound 139 blocks the interaction between mouse PD-1 and human PD-L1 as determined by a biochemical binding assay. Therefore, a human PD-L1-expressing MC38 mouse colorectal tumor model was utilized to evaluate the activity of compound 139 in vivo. An α-PD-L1 antibody that is unable to bind to murine PD-L1 was included as a positive control.
At 10, 25, and 50 mg/ kg compound 139 or 10 mg/kg PD-L1 antibody, >90% PD-L1 target occupancy (TO) on the tumor cells was observed for at least 24 hours. This result translated to similar tumor growth inhibition (TGI) of 32% to 38% for both compound 139 and PD-L1 antibody at indicated dose groups. In parallel, compound 139 plasma concentrations were determined at the same time points used to determine intratumoral TO. At 10 mg/kg, compound 139 plasma concentrations dropped below the whole blood EC90 value for compound 139 but >90% TO was retained, indicating that compound 139 TO on the tumor extended beyond plasma exposure. Moreover, there was no treatment-related effect on body weight, indicating compound 139 was well-tolerated at all doses for the entire study.
Materials and Methods
Test Articles
Compound 139 was synthesized at Gilead Sciences, Inc. (Foster City, Calif.). Durvalumab; α-PD-L1 antibody and Isotype control antibody (human IgG1, hIgG1) were produced and purified at Gilead Sciences.
In Vivo Formulation of Compound 139
The vehicle formulation for compound 139 was 10% ethanol, 40% PEG 300 and 50% DI water and was formulated in a single batch for the entire study. Compound 139 formulations were prepared weekly and stored under refrigerated conditions (4° C.-8° C.). Before closing, the solution was warmed to room temperature while stirring. Solution was stirred constantly during the whole process of dosing. Compound 139 was formulated as a 2 mg/mL and 5 mg/mL solution in the vehicle. Compound 139 powder was brought to room temperature before use, weighed and added to a suitable container. Appropriate volume of ethanol was dispensed into the container. Next, an appropriate volume of PEG-300 was added to the container while stirring. Once the powder was fully dissolved, an appropriate volume of water was slowly added while stirring. The powder was allowed to fully dissolve in solution and the pH was adjusted to 3 using IN NaOH. The solution was sterile filtered using a nylon syringe filter before administration.
In Vivo Formulation of Durvalumaband Isotype Control Antibody
The isotype control antibody (hIgG1) contains the same mutation in the Fc domain as durvalumab α-PD-L1 antibody. Isotype control antibody and durvalumab stock solutions (20 mM Histidine-HCl pH 5.8, 9% Sucrose and 0.05% Tween-80) were diluted in PBS to 2 mg/mL. The dosing volume was 5 mL/kg.
Animals
Female C57BL/6 mice were purchased from Shanghai Lingchang Bio-Technology. Animals were between 8 to 10 weeks when tumors were inoculated. Mice were acclimated for 1 week before tumor inoculation.
Human PD-L1-Expressing MC38 Colorectal Tumor Model
To create a human PD-L1-expressing MC38 tumor cell line (Crown Bioscience), murine PD-L1 knockout cells were generated by using the CRISPR-Cas9 system (FIG. 3 ). Stable clones expressing human PD-L1 (driven by a cytomegalovirus promoter) were then generated from knockout cells by lipofectamine (Thermo Fisher Scientific) transfection.
Cell Culture
Human PD-L1-expressing MC38 tumor cells were cultured in DMEM medium (GE Healthcare) supplemented with 10% heat-inactivated fetal bovine serum (ExCell Biology) and 50 μg/mL hygromycin B at 37° C. in an atmosphere of 5% CO2 in air.
Tumor Inoculation
Before inoculation, human PD-L1-expressing MC38 tumor cells were measured by trypan blue staining to assess viability. Cells with viability greater than 90% were used for inoculation. Each mouse was inoculated subcutaneously (SC) at the right hind flank with the tumor cells (lx 106 cells suspended in 100 μL PBS for each mouse). After inoculation, the remaining cells were measured by trypan blue staining again for viability to confirm viability did not drop below 90%.
Group Randomization
108 mice were enrolled in the study. All animals were randomly allocated to the study groups. Day 0 was defined as the time when mean tumor size at randomization was approximately 50 mm3 and mice weighted between 17 to 20 grams. Randomization was performed based on “Matched Distribution” randomization method using multi-task method (StudyDirector™ software, version 3.1.399.19).
Animal Observation and Tumor Measurement
After tumor cell inoculation, the animals were checked daily for morbidity and mortality. During routine monitoring, the animals were checked for any effects of tumor growth, changes with behavior such as mobility, food and water consumption, body weight gain/loss (body weights were measured twice per week), and any gross abnormalities. Mortality and observed clinical signs were recorded for individual animals. Body weight was measured twice per week.
Tumor volumes were measured twice weekly in two dimensions using a caliper, and the volume was expressed in mm3 using the formula: V=(L×W×W)/2, where V is tumor volume, L is tumor length (the longest tumor dimension) and W is tumor width (the longest tumor dimension perpendicular to L).
Termination
Any animal with tumor size exceeding 2500 mm3 (or group of mice with mean tumor size exceeding 2000 mm3) was euthanized.
In Vivo TO on Human PD-L1-Expressing MC38 Tumor Cells
Tumor Dissociation
Tumors were collected from mice, washed in PBS with extra tissues removed (i.e. blood vessel, fat and fascia). In each well of a sterile 6-well plate (Corning), the tumor was placed in 3 mL of dissociation media (Murine Tumor Dissociation Kit, Miltenyi). Tumors were held in place with sterile tweezers and forceps and sliced with a scalpel until small tumor pieces of 1 mm3 were obtained. Tumor pieces were then transferred to gentleMACS C tubes (Miltenyi) and placed on ice until digestion. Once all the tumors had been sliced, C tubes were transferred to gentleMACS Octo Dissociator with Heaters (Miltenyi). Dissociation program (37_c_m_TDK_1) was selected for tumor digestion. After completion of the program, C tubes were spun down at 300×g. Samples were re-suspended and added to a cell strainer (Corning) placed above a 50 mL centrifuge tube (Corning). Cells were washed through the cell strainer with 10 mL of wash buffer (10% FBS, Gibco; 40 mM EDTA, Boston BioProducts; PBS without calcium and magnesium, GE Healthcare) to obtain single cell suspensions. The tubes were then centrifuged at 300 g for 5 minutes. Supernatants were removed and cells were counted and adjusted to 1×106 per tube in Staining Buffer (BD Biosciences).
Assessment of TO on Tumor
1×106 cells from tumor were re-suspended in 15 mL centrifuge tubes (Corning) with 200 μL of Staining Buffer (BD Biosciences) and 1 μg/mL Mouse Fc Block (Purified rat a-mouse CD16/CD32, BD Biosciences). Tubes were incubated for 15 mins in the dark at 4° C. Antibody cocktail (Table 9) was added to each tube and further incubated for 30 mins in the dark at 4° C. 2 mL of ice cold PBS was added and tubes were centrifuged at 300×g for 5 mins. The wash step was performed twice. After discarding the supernatants from the last wash, cell pellets were re-suspended in 200 μL of Fixation/Permeabilization working solution (Thermo Fisher Scientific) for 10 minutes at room temperature in the dark. Tubes were centrifuged at 300×g for 5 minutes and supernatants were removed. Cells were resuspended with 150 μL of Staining Buffer and data was acquired on LSRFortessa X-20 (BD Biosciences).
TABLE 9
Flow Cytometry Reagents to Determine TO
Markers Fluorochrome Clone Catalogue # Isotype Vender
Mouse BD Fc 2.4G2 553141 Rat IgG2b, κ BD
Block
CD45 BUV661 30-F11 565079 Rat IgG2b,κ BD
CD3 BUV395 145-2C11 563565 Hamster IgG1, κ BD
CD11b BV605 M1/70 101257 Rat IgG2b,κ Biolegend
Human PD-L1 PE-Cyanine7 MIH1 25-5983-42 Mouse IgG1,κ Thermo Fisher
Fixable eFluor-506 NA 65-0866-14 NA Thermo Fisher
Viability Dye (BV510)
Plasma Concentration Analysis of Compound 139
In parallel to the assessment of TO on tumor cells at the pre-determined time points, 100 μL of WB was collected into K2EDTA lavender tubes (BD Biosciences), mixed by inverting and subjected to centrifugation. Plasma was transferred to labeled microcentrifuge tubes and stored at −80° C. until analysis.
To a 10 μL aliquot of each plasma sample with exception of the matrix blanks, 60 μL of 100 ng/mL Carbutamide in acetonitrile (ACN) was added. The matrix blank samples received 60 μL of acetonitrile only. The precipitated proteins were removed by centrifugation and 50 μL of supernatant was transferred into a clean 96 deep-well plate (Thermo Fisher Scientific). A 50 μL aliquot of water was added to each sample. An aliquot of 5 μL was injected into a Sciex API-5500 LC/MS/MS system.
Data Analysis
Calculation of Compound 139 TO on Tumor
TO of compound 139 or durvalumab, α-PD-L1, antibody was calibrated using tumor-bearing mice treated with either vehicle or isotype control antibody using the following equation:
T O = ( Average Control Group M F I - Average Sample M F I ) * 100 ( Average Control Group M F I )
    • where:
    • TO is the Target occupancy (i.e., % PD-L1 occupied);
    • Average Sample MFI is the Mean fluorescence intensity averaged from tumors treated with either compound 139 or durvalumab, α-PD-L1 antibody (n=3); and
    • Average Control Group MFI is the Mean fluorescence intensity averaged from tumors treated either with vehicle or isotype control antibody (n=3).
Calculation of Compound 139 TGI in Human PD-L1-Expressing MC38 Tumor Model
TGI of compound 139 or durvalumab α-PD-L1 antibody groups was calibrated using tumor volumes obtained from either vehicle or isotype control antibody groups on day 15 post dosing using the following equation:
T G I = ( Average Control Group Tumor Volume - Average Sample Tumor Volume ) * 100 ( Average Control Group Tumor Volume )
    • where:
    • TGI is the % of tumor growth inhibition;
    • Average Control Group Tumor Volume is the Mean tumor volume averaged from vehicle or isotype control antibody treated groups (n=12); and
    • Average Sample Tumor Volume is the Mean tumor volume averaged from compound 139 or durvalumab α-PD-L1 antibody treated groups (n=12).
Results
This example demonstrated that compound 139 can block the interaction between mouse PD-1 and human PD-L1 in a functional biochemical binding assay with a potency of <0.75 nM (Table 10). Therefore, a human PD-L1-expressing MC38 colorectal tumor model was utilized to demonstrate the activity of compound 139 in vivo.
TABLE 10
Activity of Compound 139 and durvalumab Against
Mouse PD-1/Human PD-L1 Interaction
Blockade of PD-1 and PD-L1 binding (IC50 )
Mouse PD-1/
Human PD-L1
Human (nM) Mouse (μM) (nM)
Compound 139 <0.15a 61 <0.75a
durvalumab <0.15a >1 <0.75a
α-PD-L1 antibody
aValues have been rounded to the theoretical bottom of the assay.
Relationship between PK, target occupancy and anti-tumor activity The objective of this study was to assess the relationship between PK and TO of compound 139, as well as changes in body weight and tumor volume. Human PD-L1 MC38 tumor cells were implanted sSC) into the right flank of female C57BL/6 mice. Once tumors reached a mean volume of about 50 mm3, mice were randomized and treatment administered as an IP injection.
Compound 139 plasma concentration was determined at 1, 6 and 24 hours post dosing on day 6 when tumors were ˜250 mm3 in size (Table 12). In parallel, TO was measured at those same time points and evaluated by flow cytometry, measured as a reduction in PD-L1 MFT and normalized to either vehicle or isotype control. At 10, 25, and 50 mg/kg, compound 139 or 10 mg/kg durvalumab, a α-PD-L1 antibody, greater than 90% TO was observed for the duration of 24 hours post dosing (Table 13). For the 10 mg/kg dose (FIG. 4A), when compound 139 plasma concentration dropped below the whole blood EC90 value, greater than 90% TO was retained (FIG. 4B).
With greater than 90% TO observed, comparable TGI between 31.8% and 37.9% was obtained at 10, 25, and 50 mg/kg compound 139 (Table 13 and 14), which was similar to the TGI of 37.3% achieved with the α-PD-L1 antibody dosed at 10 mg/kg twice weekly (FIG. 5 ). Compound 139 was well tolerated at all doses for the entire study with no effect on body weights.
TABLE 11
PK and TO Experimental Groups with Compound 139
Time Points After
Last Dose on
Day 6 (Nd)
Test Articles Schedule 1 hr 6 hr 24 hr
Human IgG1 isotype BIWa (days 1, 4, 6) 3 3 3
Vehicle BIDb * 6 (days 1-6) 3 3 3
50 mg/kg (compound 139) QDc * 6 (days 1-6) 3 3 3
25 mg/kg (compound 139) BID * 6 (days 1-6) 3 3 3
10 mg/kg (compound 139) QD * 6 (days 1-6) 3 3 3
1 mg/kg (compound 139) QD * 6 (days 1-6) 3 3 3
α-PD-L1 antibody BIW (days 1, 4, 6) 3 3 3
(durvalumab)
aBIW, Twice a week.
bBID, Twice a day.
cQD, Once a day.
dN, Number of animals.
TABLE 12
PK Parameters of Compound 139 on Day 6 (Mean ± SD)a
50 mg/kg
1 mg/kg QD 10 mg/kg QD 25 mg/kg BID QD α-PDL1
AUC0-24/0-12 hr 4.9 ± 1.3 18.6 ± 2.7  47.1 ± 9.0  152 ± 51 NDc
(μM · h)b
Cmax (μM) 0.41 ± 0.05 3.2 ± 0.5 7.3 ± 1.0 15.9 ± 2.4 16.8 ± 5.9
Tmax (hour) 2.7 ± 2.9 1.0 ± 0.0 1.0 ± 0.0  1.0 ± 0.0 ND
an = 3 animals per time point.
bAUC was estimated based on a sparse sampling method.
cND, not determined.
TABLE 13
TO of Compound 139 on Day 6 (Mean ± SD)a
Time 1 mg/kg 10 mg/kg 50 mg/kg
(hours) QD QD 25 mg/kg BID QD α-PDL1
1 67.8 ± 2.9 94.7 ± 1.6 98.4 ± 0.4 98.8 ± 0.2 99.6 ± 0.5
6 43.2 ± 4.6 89.6 ± 0.9 96.6 ± 0.3 98.1 ± 0.3 99.9 ± 0.1
24 70.4 ± 3.2 93.9 ± 2.1 99.3 ± 0.0 99.4 ± 0.2 99.9 ± 0.3
an = 3 animals per time point.
TABLE 14
Tumor Volumes (TV) and Percentage of Tumor Growth Inhibition (TGI)
10 mg/kg
durvalumab (α-
10 mg/kg isotype PD-L1
50 mg/kg 25 mg/kg 10 mg/kg 1 mg/kg control antibody antibody)
Vehicle QD BID QD QD (hIgG1) BIW * 3 BIW * 3
TV (mm3 ± 1842.2 ± 167.1 1143.7 ± 132.7 1169.2 ± 109.6 1255.7 ± 104.8 1546.3 ± 137.0 1549.5 ± 132.7
SEMb)
% TGI 37.9 ± 5.4 36.5 ± 5.9 31.8 ± 5.2 16.1 ± 6.3 37.3 ± 7.9
(Mean ±
SEM)
P valuec 0.001 0.001 0.003 0.128 0.004
a% TGI of compound 139 (normalized to vehicle) and α-PD-L1 mAb (normalized to isotype) on day 15, the last day both controls groups (vehicle and isotype) were on study.
bStandard error of the mean.
cAll data were analyzed with SPSS (Statistical Product and Service Solutions) version 18.0 (IBM, Armonk, NY, U.S.) and were two-sided. P < 0.05 was considered to be statistically significant. Compound 139 groups were compared to vehicle. Durvalumab group was compared to isotype.
CONCLUSION
The in vivo activity of compound 139 was assessed in a human PD-L1-expressing MC38 mouse colorectal tumor model. Intraperitoneal administration of 10 (QD), 25 (BID), and 50 mg/kg (QD) compound 139 showed greater than 90% TO on the tumors for the duration of at least 24 hours post dosing and resulted in anti-tumor activity comparable to the PD-L1 antibody.

Claims (9)

The invention claimed is:
1. A compound of Formula (IIId):
Figure US11555029-20230117-C00745
wherein:
each Z1 is independently halo;
each Z3 is independently halo or —O—C1-6 alkyl;
each R1 is independently selected from the group consisting of H, —C1-8 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —C3-6 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —C1-6 alkylheterocyclyl, —C1-6 alkylC(O)ORa, —C2-6 alkenylC(O)ORa, —S(O)2Ra, —S(O)2NRaRb, —C(O)NRaS(O)2Ra, and —C1-6 alkylC3-8cycloalkyl;
wherein each alkyl, alkenyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORa, —CN, halo, —C1-6alkyl, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-6 haloalkyl, C3-8 cycloalkyl, —C1-3 alkylC3-8cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —NRaRb, —OC(O)NRaRb, —NRaC(O)ORb, —C1-6 alkylNRaRb, —C(O)NRaRb, —C1-6 alkylC(O)NRaRb, —S(O)2Ra, —C1-6 alkylS(O)2Ra, —S(O)2NRaRb, —C1-6 alkylS(O)2NRaRb, —C(O)NR'S(O)2Rb, —C1-6 alkylC(O)NR'S(O)2Rb, —NRaC(O)Rb, and —C1-6alkylNRaC(O)Rb;
each R2 is independently selected from the group consisting of H, —C1-6 alkyl, —C2-6 alkenyl, —C2-6 alkynyl, —C3-6 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, —C1-6 alkylheterocyclyl, —C2-6 alkylORa, —C1-6 alkylC(O)ORa, and —C2-6 alkenylC(O)ORa;
wherein each alkyl, alkenyl, cycloalkyl, aryl, heteroaryl, or heterocyclyl group is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORa, —CN, halo, —C1-6alkyl, —C1-6 alkylORa, —C1-6 cyanoalkyl, —C1-6 haloalkyl, —C3-8 cycloalkyl, —C1-3 alkylC3-8cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C(O)ORa, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6 alkylNRaRb, —C(O)NRaRb, C1-6 alkylC(O)NRaRb, —S(O)2Ra, —C1-6 alkyl S(O)2Ra, —S(O)2NRaRb, —C1-6 alkyl S(O)2NRaRb, —C(O)NRaS(O)2Rb, and —NRaC(O)Rb;
or R1 and R2 combine to form a heterocyclyl group optionally containing 1, 2, or 3 additional heteroatoms independently selected from oxygen, sulfur, and nitrogen, and optionally substituted with 1 to 3 groups independently selected from the group consisting of oxo, —C1-6 alkyl, —C3-8 cycloalkyl, —C2-6 alkenyl, —C2-6 alkynyl, —0Ra, —C(O)ORa, —C1-6 cyanoalkyl, —C1-6 alkylORa, —C1-6 haloalkyl, —Ci-3 alkylC3-8cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6alkylNRaRb, —C(O)NRaRb, —C1-6 alkylC(O)NRaRb, —S(O)2Ra, —C1-6 alkyl S(O)2Ra, —S(O)2NRaRb, and —C1-6 alkyl S(O)2NRaRb;
each Ra is independently selected from the group consisting of H, —C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6alkylheterocyclyl;
each Rb is independently selected from the group consisting of H, —C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
or Ra and Rb may combine together to form a ring consisting of 3-8 ring atoms that are C, N, O, or S; wherein the ring is optionally substituted with 1 to 4 groups independently selected from the group consisting of —ORf, —CN, halo, —C1-6 alkylORf, —C1-6 cyanoalkyl, —C1-6 haloalkyl, —C3-8 cycloalkyl, —C1-3 alkylC3-8cycloalkyl, —C(O)Rf, —C1-6 alkylC(O)Rf, —C(O)ORf, —C1-6 alkylC(O)ORf, —NRfRg, —C1-6alkylNRfRg, —C(O)NRfRg, C1-6 alkylC(O)NRfRg, —S(O)2Rf, —C1-6alkylS(O)2Rf, —S(O)2NRfRg, —C1-6 alkyl S(O)2NRfRg, —C(O)NRfS(O)2Rg, and —NRfC(O)Rg;
each Rf is independently selected from the group consisting of H, —C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and -C1-6 alkylheterocyclyl; and
each Rg is independently selected from the group consisting of H, —C1-6 alkyl, —C3-8 cycloalkyl, aryl, heteroaryl, heterocyclyl, —C1-3 alkylC3-8 cycloalkyl, —C1-6 alkylaryl, —C1-6 alkylheteroaryl, and —C1-6 alkylheterocyclyl;
or a pharmaceutically acceptable salt thereof.
2. A compound selected from:
Figure US11555029-20230117-C00746
Figure US11555029-20230117-C00747
Figure US11555029-20230117-C00748
Figure US11555029-20230117-C00749
Figure US11555029-20230117-C00750
Figure US11555029-20230117-C00751
Figure US11555029-20230117-C00752
Figure US11555029-20230117-C00753
Figure US11555029-20230117-C00754
Figure US11555029-20230117-C00755
Figure US11555029-20230117-C00756
Figure US11555029-20230117-C00757
Figure US11555029-20230117-C00758
Figure US11555029-20230117-C00759
Figure US11555029-20230117-C00760
Figure US11555029-20230117-C00761
Figure US11555029-20230117-C00762
Figure US11555029-20230117-C00763
Figure US11555029-20230117-C00764
Figure US11555029-20230117-C00765
Figure US11555029-20230117-C00766
Figure US11555029-20230117-C00767
Figure US11555029-20230117-C00768
Figure US11555029-20230117-C00769
Figure US11555029-20230117-C00770
Figure US11555029-20230117-C00771
Figure US11555029-20230117-C00772
Figure US11555029-20230117-C00773
Figure US11555029-20230117-C00774
Figure US11555029-20230117-C00775
Figure US11555029-20230117-C00776
Figure US11555029-20230117-C00777
Figure US11555029-20230117-C00778
Figure US11555029-20230117-C00779
Figure US11555029-20230117-C00780
Figure US11555029-20230117-C00781
Figure US11555029-20230117-C00782
Figure US11555029-20230117-C00783
Figure US11555029-20230117-C00784
Figure US11555029-20230117-C00785
Figure US11555029-20230117-C00786
Figure US11555029-20230117-C00787
Figure US11555029-20230117-C00788
Figure US11555029-20230117-C00789
Figure US11555029-20230117-C00790
Figure US11555029-20230117-C00791
Figure US11555029-20230117-C00792
Figure US11555029-20230117-C00793
Figure US11555029-20230117-C00794
Figure US11555029-20230117-C00795
Figure US11555029-20230117-C00796
Figure US11555029-20230117-C00797
Figure US11555029-20230117-C00798
Figure US11555029-20230117-C00799
Figure US11555029-20230117-C00800
Figure US11555029-20230117-C00801
Figure US11555029-20230117-C00802
Figure US11555029-20230117-C00803
Figure US11555029-20230117-C00804
Figure US11555029-20230117-C00805
Figure US11555029-20230117-C00806
Figure US11555029-20230117-C00807
Figure US11555029-20230117-C00808
Figure US11555029-20230117-C00809
Figure US11555029-20230117-C00810
Figure US11555029-20230117-C00811
Figure US11555029-20230117-C00812
Figure US11555029-20230117-C00813
Figure US11555029-20230117-C00814
Figure US11555029-20230117-C00815
Figure US11555029-20230117-C00816
Figure US11555029-20230117-C00817
Figure US11555029-20230117-C00818
Figure US11555029-20230117-C00819
Figure US11555029-20230117-C00820
Figure US11555029-20230117-C00821
Figure US11555029-20230117-C00822
Figure US11555029-20230117-C00823
Figure US11555029-20230117-C00824
Figure US11555029-20230117-C00825
Figure US11555029-20230117-C00826
Figure US11555029-20230117-C00827
Figure US11555029-20230117-C00828
Figure US11555029-20230117-C00829
Figure US11555029-20230117-C00830
Figure US11555029-20230117-C00831
Figure US11555029-20230117-C00832
Figure US11555029-20230117-C00833
Figure US11555029-20230117-C00834
Figure US11555029-20230117-C00835
Figure US11555029-20230117-C00836
Figure US11555029-20230117-C00837
Figure US11555029-20230117-C00838
Figure US11555029-20230117-C00839
Figure US11555029-20230117-C00840
Figure US11555029-20230117-C00841
Figure US11555029-20230117-C00842
Figure US11555029-20230117-C00843
Figure US11555029-20230117-C00844
Figure US11555029-20230117-C00845
Figure US11555029-20230117-C00846
Figure US11555029-20230117-C00847
Figure US11555029-20230117-C00848
Figure US11555029-20230117-C00849
Figure US11555029-20230117-C00850
Figure US11555029-20230117-C00851
Figure US11555029-20230117-C00852
Figure US11555029-20230117-C00853
Figure US11555029-20230117-C00854
Figure US11555029-20230117-C00855
Figure US11555029-20230117-C00856
Figure US11555029-20230117-C00857
Figure US11555029-20230117-C00858
Figure US11555029-20230117-C00859
Figure US11555029-20230117-C00860
Figure US11555029-20230117-C00861
Figure US11555029-20230117-C00862
Figure US11555029-20230117-C00863
Figure US11555029-20230117-C00864
Figure US11555029-20230117-C00865
Figure US11555029-20230117-C00866
Figure US11555029-20230117-C00867
Figure US11555029-20230117-C00868
Figure US11555029-20230117-C00869
Figure US11555029-20230117-C00870
Figure US11555029-20230117-C00871
Figure US11555029-20230117-C00872
Figure US11555029-20230117-C00873
Figure US11555029-20230117-C00874
Figure US11555029-20230117-C00875
Figure US11555029-20230117-C00876
Figure US11555029-20230117-C00877
Figure US11555029-20230117-C00878
Figure US11555029-20230117-C00879
Figure US11555029-20230117-C00880
Figure US11555029-20230117-C00881
Figure US11555029-20230117-C00882
Figure US11555029-20230117-C00883
Figure US11555029-20230117-C00884
Figure US11555029-20230117-C00885
Figure US11555029-20230117-C00886
Figure US11555029-20230117-C00887
Figure US11555029-20230117-C00888
Figure US11555029-20230117-C00889
Figure US11555029-20230117-C00890
Figure US11555029-20230117-C00891
Figure US11555029-20230117-C00892
Figure US11555029-20230117-C00893
Figure US11555029-20230117-C00894
Figure US11555029-20230117-C00895
Figure US11555029-20230117-C00896
Figure US11555029-20230117-C00897
Figure US11555029-20230117-C00898
Figure US11555029-20230117-C00899
Figure US11555029-20230117-C00900
Figure US11555029-20230117-C00901
Figure US11555029-20230117-C00902
Figure US11555029-20230117-C00903
Figure US11555029-20230117-C00904
Figure US11555029-20230117-C00905
Figure US11555029-20230117-C00906
Figure US11555029-20230117-C00907
Figure US11555029-20230117-C00908
Figure US11555029-20230117-C00909
Figure US11555029-20230117-C00910
Figure US11555029-20230117-C00911
Figure US11555029-20230117-C00912
Figure US11555029-20230117-C00913
Figure US11555029-20230117-C00914
Figure US11555029-20230117-C00915
Figure US11555029-20230117-C00916
Figure US11555029-20230117-C00917
Figure US11555029-20230117-C00918
Figure US11555029-20230117-C00919
Figure US11555029-20230117-C00920
Figure US11555029-20230117-C00921
Figure US11555029-20230117-C00922
Figure US11555029-20230117-C00923
Figure US11555029-20230117-C00924
Figure US11555029-20230117-C00925
Figure US11555029-20230117-C00926
Figure US11555029-20230117-C00927
Figure US11555029-20230117-C00928
Figure US11555029-20230117-C00929
Figure US11555029-20230117-C00930
Figure US11555029-20230117-C00931
Figure US11555029-20230117-C00932
Figure US11555029-20230117-C00933
Figure US11555029-20230117-C00934
Figure US11555029-20230117-C00935
Figure US11555029-20230117-C00936
Figure US11555029-20230117-C00937
Figure US11555029-20230117-C00938
Figure US11555029-20230117-C00939
Figure US11555029-20230117-C00940
Figure US11555029-20230117-C00941
Figure US11555029-20230117-C00942
Figure US11555029-20230117-C00943
Figure US11555029-20230117-C00944
Figure US11555029-20230117-C00945
Figure US11555029-20230117-C00946
Figure US11555029-20230117-C00947
Figure US11555029-20230117-C00948
Figure US11555029-20230117-C00949
Figure US11555029-20230117-C00950
Figure US11555029-20230117-C00951
Figure US11555029-20230117-C00952
Figure US11555029-20230117-C00953
Figure US11555029-20230117-C00954
Figure US11555029-20230117-C00955
Figure US11555029-20230117-C00956
Figure US11555029-20230117-C00957
Figure US11555029-20230117-C00958
Figure US11555029-20230117-C00959
Figure US11555029-20230117-C00960
Figure US11555029-20230117-C00961
Figure US11555029-20230117-C00962
Figure US11555029-20230117-C00963
Figure US11555029-20230117-C00964
Figure US11555029-20230117-C00965
Figure US11555029-20230117-C00966
Figure US11555029-20230117-C00967
Figure US11555029-20230117-C00968
Figure US11555029-20230117-C00969
Figure US11555029-20230117-C00970
Figure US11555029-20230117-C00971
Figure US11555029-20230117-C00972
Figure US11555029-20230117-C00973
Figure US11555029-20230117-C00974
Figure US11555029-20230117-C00975
Figure US11555029-20230117-C00976
Figure US11555029-20230117-C00977
Figure US11555029-20230117-C00978
Figure US11555029-20230117-C00979
Figure US11555029-20230117-C00980
Figure US11555029-20230117-C00981
Figure US11555029-20230117-C00982
Figure US11555029-20230117-C00983
Figure US11555029-20230117-C00984
Figure US11555029-20230117-C00985
Figure US11555029-20230117-C00986
Figure US11555029-20230117-C00987
Figure US11555029-20230117-C00988
Figure US11555029-20230117-C00989
Figure US11555029-20230117-C00990
Figure US11555029-20230117-C00991
Figure US11555029-20230117-C00992
Figure US11555029-20230117-C00993
Figure US11555029-20230117-C00994
Figure US11555029-20230117-C00995
Figure US11555029-20230117-C00996
Figure US11555029-20230117-C00997
Figure US11555029-20230117-C00998
Figure US11555029-20230117-C00999
Figure US11555029-20230117-C01000
Figure US11555029-20230117-C01001
Figure US11555029-20230117-C01002
Figure US11555029-20230117-C01003
Figure US11555029-20230117-C01004
Figure US11555029-20230117-C01005
Figure US11555029-20230117-C01006
Figure US11555029-20230117-C01007
Figure US11555029-20230117-C01008
Figure US11555029-20230117-C01009
Figure US11555029-20230117-C01010
Figure US11555029-20230117-C01011
Figure US11555029-20230117-C01012
Figure US11555029-20230117-C01013
Figure US11555029-20230117-C01014
Figure US11555029-20230117-C01015
Figure US11555029-20230117-C01016
Figure US11555029-20230117-C01017
Figure US11555029-20230117-C01018
Figure US11555029-20230117-C01019
Figure US11555029-20230117-C01020
Figure US11555029-20230117-C01021
Figure US11555029-20230117-C01022
Figure US11555029-20230117-C01023
Figure US11555029-20230117-C01024
Figure US11555029-20230117-C01025
Figure US11555029-20230117-C01026
Figure US11555029-20230117-C01027
Figure US11555029-20230117-C01028
Figure US11555029-20230117-C01029
Figure US11555029-20230117-C01030
Figure US11555029-20230117-C01031
Figure US11555029-20230117-C01032
Figure US11555029-20230117-C01033
Figure US11555029-20230117-C01034
Figure US11555029-20230117-C01035
Figure US11555029-20230117-C01036
Figure US11555029-20230117-C01037
Figure US11555029-20230117-C01038
Figure US11555029-20230117-C01039
Figure US11555029-20230117-C01040
Figure US11555029-20230117-C01041
Figure US11555029-20230117-C01042
Figure US11555029-20230117-C01043
Figure US11555029-20230117-C01044
Figure US11555029-20230117-C01045
Figure US11555029-20230117-C01046
Figure US11555029-20230117-C01047
Figure US11555029-20230117-C01048
Figure US11555029-20230117-C01049
Figure US11555029-20230117-C01050
Figure US11555029-20230117-C01051
Figure US11555029-20230117-C01052
Figure US11555029-20230117-C01053
Figure US11555029-20230117-C01054
Figure US11555029-20230117-C01055
Figure US11555029-20230117-C01056
Figure US11555029-20230117-C01057
Figure US11555029-20230117-C01058
Figure US11555029-20230117-C01059
Figure US11555029-20230117-C01060
Figure US11555029-20230117-C01061
Figure US11555029-20230117-C01062
Figure US11555029-20230117-C01063
Figure US11555029-20230117-C01064
Figure US11555029-20230117-C01065
Figure US11555029-20230117-C01066
Figure US11555029-20230117-C01067
Figure US11555029-20230117-C01068
Figure US11555029-20230117-C01069
Figure US11555029-20230117-C01070
Figure US11555029-20230117-C01071
Figure US11555029-20230117-C01072
Figure US11555029-20230117-C01073
Figure US11555029-20230117-C01074
Figure US11555029-20230117-C01075
Figure US11555029-20230117-C01076
Figure US11555029-20230117-C01077
Figure US11555029-20230117-C01078
Figure US11555029-20230117-C01079
Figure US11555029-20230117-C01080
Figure US11555029-20230117-C01081
Figure US11555029-20230117-C01082
Figure US11555029-20230117-C01083
Figure US11555029-20230117-C01084
Figure US11555029-20230117-C01085
Figure US11555029-20230117-C01086
Figure US11555029-20230117-C01087
Figure US11555029-20230117-C01088
Figure US11555029-20230117-C01089
Figure US11555029-20230117-C01090
Figure US11555029-20230117-C01091
Figure US11555029-20230117-C01092
Figure US11555029-20230117-C01093
Figure US11555029-20230117-C01094
Figure US11555029-20230117-C01095
Figure US11555029-20230117-C01096
Figure US11555029-20230117-C01097
Figure US11555029-20230117-C01098
Figure US11555029-20230117-C01099
Figure US11555029-20230117-C01100
Figure US11555029-20230117-C01101
Figure US11555029-20230117-C01102
Figure US11555029-20230117-C01103
Figure US11555029-20230117-C01104
Figure US11555029-20230117-C01105
Figure US11555029-20230117-C01106
Figure US11555029-20230117-C01107
Figure US11555029-20230117-C01108
Figure US11555029-20230117-C01109
Figure US11555029-20230117-C01110
Figure US11555029-20230117-C01111
Figure US11555029-20230117-C01112
Figure US11555029-20230117-C01113
Figure US11555029-20230117-C01114
Figure US11555029-20230117-C01115
Figure US11555029-20230117-C01116
Figure US11555029-20230117-C01117
Figure US11555029-20230117-C01118
Figure US11555029-20230117-C01119
Figure US11555029-20230117-C01120
Figure US11555029-20230117-C01121
Figure US11555029-20230117-C01122
Figure US11555029-20230117-C01123
Figure US11555029-20230117-C01124
Figure US11555029-20230117-C01125
Figure US11555029-20230117-C01126
Figure US11555029-20230117-C01127
Figure US11555029-20230117-C01128
Figure US11555029-20230117-C01129
Figure US11555029-20230117-C01130
Figure US11555029-20230117-C01131
Figure US11555029-20230117-C01132
Figure US11555029-20230117-C01133
Figure US11555029-20230117-C01134
Figure US11555029-20230117-C01135
Figure US11555029-20230117-C01136
Figure US11555029-20230117-C01137
Figure US11555029-20230117-C01138
Figure US11555029-20230117-C01139
Figure US11555029-20230117-C01140
Figure US11555029-20230117-C01141
Figure US11555029-20230117-C01142
Figure US11555029-20230117-C01143
Figure US11555029-20230117-C01144
Figure US11555029-20230117-C01145
Figure US11555029-20230117-C01146
Figure US11555029-20230117-C01147
Figure US11555029-20230117-C01148
Figure US11555029-20230117-C01149
Figure US11555029-20230117-C01150
Figure US11555029-20230117-C01151
Figure US11555029-20230117-C01152
Figure US11555029-20230117-C01153
Figure US11555029-20230117-C01154
Figure US11555029-20230117-C01155
Figure US11555029-20230117-C01156
Figure US11555029-20230117-C01157
Figure US11555029-20230117-C01158
Figure US11555029-20230117-C01159
Figure US11555029-20230117-C01160
Figure US11555029-20230117-C01161
Figure US11555029-20230117-C01162
Figure US11555029-20230117-C01163
Figure US11555029-20230117-C01164
Figure US11555029-20230117-C01165
Figure US11555029-20230117-C01166
Figure US11555029-20230117-C01167
Figure US11555029-20230117-C01168
Figure US11555029-20230117-C01169
Figure US11555029-20230117-C01170
Figure US11555029-20230117-C01171
Figure US11555029-20230117-C01172
Figure US11555029-20230117-C01173
Figure US11555029-20230117-C01174
Figure US11555029-20230117-C01175
Figure US11555029-20230117-C01176
Figure US11555029-20230117-C01177
Figure US11555029-20230117-C01178
Figure US11555029-20230117-C01179
Figure US11555029-20230117-C01180
Figure US11555029-20230117-C01181
Figure US11555029-20230117-C01182
Figure US11555029-20230117-C01183
Figure US11555029-20230117-C01184
Figure US11555029-20230117-C01185
Figure US11555029-20230117-C01186
Figure US11555029-20230117-C01187
Figure US11555029-20230117-C01188
Figure US11555029-20230117-C01189
Figure US11555029-20230117-C01190
Figure US11555029-20230117-C01191
Figure US11555029-20230117-C01192
Figure US11555029-20230117-C01193
Figure US11555029-20230117-C01194
Figure US11555029-20230117-C01195
Figure US11555029-20230117-C01196
Figure US11555029-20230117-C01197
Figure US11555029-20230117-C01198
Figure US11555029-20230117-C01199
Figure US11555029-20230117-C01200
Figure US11555029-20230117-C01201
Figure US11555029-20230117-C01202
Figure US11555029-20230117-C01203
Figure US11555029-20230117-C01204
Figure US11555029-20230117-C01205
Figure US11555029-20230117-C01206
Figure US11555029-20230117-C01207
Figure US11555029-20230117-C01208
Figure US11555029-20230117-C01209
Figure US11555029-20230117-C01210
Figure US11555029-20230117-C01211
Figure US11555029-20230117-C01212
Figure US11555029-20230117-C01213
Figure US11555029-20230117-C01214
Figure US11555029-20230117-C01215
Figure US11555029-20230117-C01216
Figure US11555029-20230117-C01217
Figure US11555029-20230117-C01218
Figure US11555029-20230117-C01219
Figure US11555029-20230117-C01220
Figure US11555029-20230117-C01221
Figure US11555029-20230117-C01222
Figure US11555029-20230117-C01223
Figure US11555029-20230117-C01224
Figure US11555029-20230117-C01225
Figure US11555029-20230117-C01226
Figure US11555029-20230117-C01227
Figure US11555029-20230117-C01228
Figure US11555029-20230117-C01229
Figure US11555029-20230117-C01230
Figure US11555029-20230117-C01231
Figure US11555029-20230117-C01232
Figure US11555029-20230117-C01233
Figure US11555029-20230117-C01234
Figure US11555029-20230117-C01235
Figure US11555029-20230117-C01236
Figure US11555029-20230117-C01237
Figure US11555029-20230117-C01238
Figure US11555029-20230117-C01239
Figure US11555029-20230117-C01240
Figure US11555029-20230117-C01241
Figure US11555029-20230117-C01242
Figure US11555029-20230117-C01243
Figure US11555029-20230117-C01244
Figure US11555029-20230117-C01245
Figure US11555029-20230117-C01246
Figure US11555029-20230117-C01247
Figure US11555029-20230117-C01248
Figure US11555029-20230117-C01249
Figure US11555029-20230117-C01250
Figure US11555029-20230117-C01251
Figure US11555029-20230117-C01252
Figure US11555029-20230117-C01253
Figure US11555029-20230117-C01254
Figure US11555029-20230117-C01255
Figure US11555029-20230117-C01256
Figure US11555029-20230117-C01257
Figure US11555029-20230117-C01258
Figure US11555029-20230117-C01259
Figure US11555029-20230117-C01260
Figure US11555029-20230117-C01261
Figure US11555029-20230117-C01262
Figure US11555029-20230117-C01263
Figure US11555029-20230117-C01264
Figure US11555029-20230117-C01265
Figure US11555029-20230117-C01266
Figure US11555029-20230117-C01267
Figure US11555029-20230117-C01268
Figure US11555029-20230117-C01269
Figure US11555029-20230117-C01270
Figure US11555029-20230117-C01271
Figure US11555029-20230117-C01272
Figure US11555029-20230117-C01273
Figure US11555029-20230117-C01274
Figure US11555029-20230117-C01275
Figure US11555029-20230117-C01276
Figure US11555029-20230117-C01277
Figure US11555029-20230117-C01278
Figure US11555029-20230117-C01279
Figure US11555029-20230117-C01280
Figure US11555029-20230117-C01281
Figure US11555029-20230117-C01282
Figure US11555029-20230117-C01283
Figure US11555029-20230117-C01284
Figure US11555029-20230117-C01285
Figure US11555029-20230117-C01286
Figure US11555029-20230117-C01287
Figure US11555029-20230117-C01288
Figure US11555029-20230117-C01289
Figure US11555029-20230117-C01290
Figure US11555029-20230117-C01291
Figure US11555029-20230117-C01292
Figure US11555029-20230117-C01293
Figure US11555029-20230117-C01294
Figure US11555029-20230117-C01295
Figure US11555029-20230117-C01296
Figure US11555029-20230117-C01297
Figure US11555029-20230117-C01298
Figure US11555029-20230117-C01299
Figure US11555029-20230117-C01300
Figure US11555029-20230117-C01301
Figure US11555029-20230117-C01302
Figure US11555029-20230117-C01303
Figure US11555029-20230117-C01304
Figure US11555029-20230117-C01305
Figure US11555029-20230117-C01306
Figure US11555029-20230117-C01307
Figure US11555029-20230117-C01308
Figure US11555029-20230117-C01309
Figure US11555029-20230117-C01310
Figure US11555029-20230117-C01311
Figure US11555029-20230117-C01312
Figure US11555029-20230117-C01313
Figure US11555029-20230117-C01314
Figure US11555029-20230117-C01315
Figure US11555029-20230117-C01316
Figure US11555029-20230117-C01317
Figure US11555029-20230117-C01318
Figure US11555029-20230117-C01319
Figure US11555029-20230117-C01320
Figure US11555029-20230117-C01321
Figure US11555029-20230117-C01322
Figure US11555029-20230117-C01323
Figure US11555029-20230117-C01324
Figure US11555029-20230117-C01325
Figure US11555029-20230117-C01326
Figure US11555029-20230117-C01327
Figure US11555029-20230117-C01328
Figure US11555029-20230117-C01329
Figure US11555029-20230117-C01330
Figure US11555029-20230117-C01331
Figure US11555029-20230117-C01332
Figure US11555029-20230117-C01333
Figure US11555029-20230117-C01334
Figure US11555029-20230117-C01335
Figure US11555029-20230117-C01336
Figure US11555029-20230117-C01337
Figure US11555029-20230117-C01338
Figure US11555029-20230117-C01339
Figure US11555029-20230117-C01340
Figure US11555029-20230117-C01341
Figure US11555029-20230117-C01342
Figure US11555029-20230117-C01343
Figure US11555029-20230117-C01344
Figure US11555029-20230117-C01345
Figure US11555029-20230117-C01346
Figure US11555029-20230117-C01347
Figure US11555029-20230117-C01348
Figure US11555029-20230117-C01349
Figure US11555029-20230117-C01350
Figure US11555029-20230117-C01351
Figure US11555029-20230117-C01352
Figure US11555029-20230117-C01353
Figure US11555029-20230117-C01354
Figure US11555029-20230117-C01355
Figure US11555029-20230117-C01356
Figure US11555029-20230117-C01357
Figure US11555029-20230117-C01358
Figure US11555029-20230117-C01359
Figure US11555029-20230117-C01360
Figure US11555029-20230117-C01361
Figure US11555029-20230117-C01362
Figure US11555029-20230117-C01363
Figure US11555029-20230117-C01364
Figure US11555029-20230117-C01365
Figure US11555029-20230117-C01366
Figure US11555029-20230117-C01367
Figure US11555029-20230117-C01368
Figure US11555029-20230117-C01369
Figure US11555029-20230117-C01370
Figure US11555029-20230117-C01371
Figure US11555029-20230117-C01372
Figure US11555029-20230117-C01373
Figure US11555029-20230117-C01374
Figure US11555029-20230117-C01375
Figure US11555029-20230117-C01376
Figure US11555029-20230117-C01377
Figure US11555029-20230117-C01378
Figure US11555029-20230117-C01379
Figure US11555029-20230117-C01380
Figure US11555029-20230117-C01381
Figure US11555029-20230117-C01382
Figure US11555029-20230117-C01383
Figure US11555029-20230117-C01384
Figure US11555029-20230117-C01385
Figure US11555029-20230117-C01386
Figure US11555029-20230117-C01387
Figure US11555029-20230117-C01388
Figure US11555029-20230117-C01389
Figure US11555029-20230117-C01390
Figure US11555029-20230117-C01391
Figure US11555029-20230117-C01392
Figure US11555029-20230117-C01393
Figure US11555029-20230117-C01394
Figure US11555029-20230117-C01395
Figure US11555029-20230117-C01396
Figure US11555029-20230117-C01397
Figure US11555029-20230117-C01398
Figure US11555029-20230117-C01399
Figure US11555029-20230117-C01400
Figure US11555029-20230117-C01401
Figure US11555029-20230117-C01402
and
Figure US11555029-20230117-C01403
or a pharmaceutically acceptable salt thereof.
3. A pharmaceutical composition comprising a compound according to claim 1 or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable excipient.
4. The pharmaceutical composition according to claim 3, further comprising at least one additional anticancer agent or therapy selected from rituxan, doxorubicin, gemcitabine, nivolumab, pembrolizumab, and ipilimumab, and at least one pharmaceutically acceptable excipient.
5. The pharmaceutical composition according to claim 3, further comprising an additional anticancer agent selected from nivolumab, pembrolizumab, atezolizumab, and ipilimumab, and at least one pharmaceutically acceptable excipient.
6. The compound of claim 1, wherein each Z1 is chloro.
7. The compound of claim 1, wherein Z3 is —O—C1-3 alkyl.
8. The compound of claim 1, wherein Z3 is —OCH3.
9. The compound of claim 1, wherein R1 and R2 combine to form a heterocyclyl group optionally containing 1, 2, or 3 additional heteroatoms independently selected from oxygen, sulfur, and nitrogen, and optionally substituted with 1 to 3 groups independently selected from the group consisting of oxo, —C1-6 alkyl, —C3-8 cycloalkyl, —C2-6 alkenyl, —C2-6 alkynyl, —ORa, —C(O)ORa, —C1-6 cyanoalkyl, —C1-6 alkylORa, —C1-6haloalkyl, —C1-3 alkylC3-8cycloalkyl, —C(O)Ra, —C1-6 alkylC(O)Ra, —C1-6 alkylC(O)ORa, —NRaRb, —C1-6alkylNRaRb, —C(O)NRaRb, —C1-6 alkylC(O)NRaRb, —S(O)2Ra, —C1-6 alkyl S(O)2Ra, —S(O)2NRaRb, and —C1-6 alkyl S(O)2NRaRb.
US16/891,880 2018-02-13 2020-06-03 PD-1/PD-L1 inhibitors Active US11555029B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/891,880 US11555029B2 (en) 2018-02-13 2020-06-03 PD-1/PD-L1 inhibitors
US18/060,934 US20230212155A1 (en) 2018-02-13 2022-12-01 Pd-1/pd-l1 inhibitors

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201862630187P 2018-02-13 2018-02-13
US201862640534P 2018-03-08 2018-03-08
US201862763116P 2018-04-19 2018-04-19
US201862747029P 2018-10-17 2018-10-17
US16/274,106 US10710986B2 (en) 2018-02-13 2019-02-12 PD-1/PD-L1 inhibitors
US16/891,880 US11555029B2 (en) 2018-02-13 2020-06-03 PD-1/PD-L1 inhibitors

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/274,106 Continuation US10710986B2 (en) 2018-02-13 2019-02-12 PD-1/PD-L1 inhibitors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/060,934 Division US20230212155A1 (en) 2018-02-13 2022-12-01 Pd-1/pd-l1 inhibitors

Publications (2)

Publication Number Publication Date
US20210053946A1 US20210053946A1 (en) 2021-02-25
US11555029B2 true US11555029B2 (en) 2023-01-17

Family

ID=65576712

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/274,106 Active US10710986B2 (en) 2018-02-13 2019-02-12 PD-1/PD-L1 inhibitors
US16/891,880 Active US11555029B2 (en) 2018-02-13 2020-06-03 PD-1/PD-L1 inhibitors
US18/060,934 Pending US20230212155A1 (en) 2018-02-13 2022-12-01 Pd-1/pd-l1 inhibitors

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/274,106 Active US10710986B2 (en) 2018-02-13 2019-02-12 PD-1/PD-L1 inhibitors

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/060,934 Pending US20230212155A1 (en) 2018-02-13 2022-12-01 Pd-1/pd-l1 inhibitors

Country Status (25)

Country Link
US (3) US10710986B2 (en)
EP (2) EP3752501B1 (en)
JP (2) JP7062792B2 (en)
KR (3) KR102708681B1 (en)
CN (2) CN118084940A (en)
AU (3) AU2019222644B2 (en)
BR (2) BR112020016466A2 (en)
CA (1) CA3091015C (en)
CL (1) CL2020002082A1 (en)
CO (1) CO2020009861A2 (en)
CR (1) CR20200347A (en)
DO (1) DOP2020000154A (en)
ES (1) ES2949664T3 (en)
IL (2) IL300572A (en)
MX (2) MX2020008404A (en)
MY (1) MY196582A (en)
PE (1) PE20210640A1 (en)
PH (1) PH12020551244A1 (en)
PL (1) PL3752501T3 (en)
PT (1) PT3752501T (en)
SG (1) SG11202007646UA (en)
SI (1) SI3752501T1 (en)
TW (2) TWI707849B (en)
UA (1) UA126458C2 (en)
WO (1) WO2019160882A1 (en)

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3029256A1 (en) 2016-06-27 2018-01-04 Chemocentryx, Inc. Immunomodulator compounds
US11130740B2 (en) 2017-04-25 2021-09-28 Arbutus Biopharma Corporation Substituted 2,3-dihydro-1H-indene analogs and methods using same
JP7185681B2 (en) 2017-07-28 2022-12-07 ケモセントリックス,インコーポレイティド immunomodulatory compounds
WO2019032547A1 (en) 2017-08-08 2019-02-14 Chemocentryx, Inc. Macrocyclic immunomodulators
CN111093663A (en) 2017-09-07 2020-05-01 奥古斯塔大学研究所公司 Specific AKT3 activator and application thereof
PE20210640A1 (en) 2018-02-13 2021-03-23 Gilead Sciences Inc INHIBITORS PD-1 / PD-L1
WO2019161129A1 (en) 2018-02-14 2019-08-22 Mayo Foundation For Medical Education And Research Rescuing cancer patients from resistance to treatment with inhibitors of pd-1/pd-l1 interactions
MA51232A (en) 2018-02-22 2020-10-07 Chemocentryx Inc INDANE-AMINES USEFUL AS PD-L1 ANTAGONISTS
WO2019191624A1 (en) 2018-03-29 2019-10-03 Arbutus Biopharma, Inc. Substituted 1,1'-biphenyl compounds, analogues thereof, and methods using same
TWI712412B (en) 2018-04-19 2020-12-11 美商基利科學股份有限公司 Pd-1/pd-l1 inhibitors
ES2962674T3 (en) 2018-07-13 2024-03-20 Gilead Sciences Inc PD-1/PD-L1 inhibitors
CN112955435B (en) 2018-10-24 2024-09-06 吉利德科学公司 PD-1/PD-L1 inhibitors
CN111138301B (en) * 2018-11-02 2024-01-05 上海再极医药科技有限公司 Biphenyl compound, intermediate, preparation method, pharmaceutical composition and application
US11596692B1 (en) 2018-11-21 2023-03-07 Incyte Corporation PD-L1/STING conjugates and methods of use
AU2020276277A1 (en) 2019-05-15 2021-12-09 Chemocentryx, Inc. Triaryl compounds for treatment of PD-L1 diseases
SG11202112875UA (en) 2019-06-20 2021-12-30 Chemocentryx Inc Compounds for treatment of pd-l1 diseases
US11872217B2 (en) 2019-07-10 2024-01-16 Chemocentryx, Inc. Indanes as PD-L1 inhibitors
WO2021063404A1 (en) 2019-09-30 2021-04-08 南京明德新药研发有限公司 Compound as small molecule inhibitor pd-1/pd-l1 and application thereof
CN117843811A (en) 2019-09-30 2024-04-09 吉利德科学公司 HBV vaccine and method of treating HBV
AU2020368393A1 (en) 2019-10-16 2022-04-21 Chemocentryx, Inc. Heteroaryl-biphenyl amides for the treatment of PD-L1 diseases
EP4045037A4 (en) 2019-10-16 2023-11-15 ChemoCentryx, Inc. Heteroaryl-biphenyl amines for the treatment of pd-l1 diseases
CN114555123B (en) 2019-10-18 2024-04-02 四十七公司 Combination therapy for the treatment of myelodysplastic syndrome and acute myeloid leukemia
AU2020374947A1 (en) 2019-10-31 2022-03-31 Forty Seven, Inc. Anti-CD47 and anti-CD20 based treatment of blood cancer
US20230029157A1 (en) * 2019-11-26 2023-01-26 The Regents Of The University Of California Combination therapy for head and neck cancer
US11845723B2 (en) 2019-12-24 2023-12-19 Gilead Sciences, Inc. Diacylglycerol kinase modulating compounds
US20230143612A1 (en) * 2020-02-03 2023-05-11 Arbutus Biopharma Corporation Substituted 1,1'-biphenyl compounds and methods using same
TWI832035B (en) 2020-02-14 2024-02-11 美商基利科學股份有限公司 Antibodies and fusion proteins that bind to ccr8 and uses thereof
AU2021237718B2 (en) 2020-03-20 2023-09-21 Gilead Sciences, Inc. Prodrugs of 4'-C-substituted-2-halo-2'-deoxyadenosine nucleosides and methods of making and using the same
BR112022022335A2 (en) 2020-05-05 2023-01-10 Teon Therapeutics Inc TYPE 2 CANNABINOID RECEPTOR MODULATORS AND USES THEREOF
TW202216694A (en) * 2020-06-23 2022-05-01 美商卡默森屈有限公司 Methods of treating cancer using heteroaryl-biphenyl amide derivatives
WO2022040002A1 (en) * 2020-08-17 2022-02-24 Aligos Therapeutics, Inc. Methods and compositions for targeting pd-l1
JP2023546679A (en) * 2020-10-22 2023-11-07 アクティニウム ファーマシューティカルズ インコーポレイテッド Combination of radioimmunotherapy and CD47 blockade in cancer treatment
CN112213487B (en) * 2020-10-23 2021-10-29 郑州大学第一附属医院 Application of ASTE1 in detection of esophageal squamous carcinoma
WO2022099018A1 (en) 2020-11-06 2022-05-12 Incyte Corporation Process of preparing a pd-1/pd-l1 inhibitor
CN114507227B (en) * 2020-11-17 2024-06-21 中国医学科学院药物研究所 Benzisothiazole compound, preparation method, pharmaceutical composition and application thereof
WO2022147302A1 (en) * 2020-12-30 2022-07-07 Chulalongkorn University 4-phenyl-indole derivatives and related uses
EP4308118A1 (en) * 2021-03-17 2024-01-24 Institut National de la Santé et de la Recherche Médicale (INSERM) Methods and compositions for treating melanoma
TW202302145A (en) 2021-04-14 2023-01-16 美商基利科學股份有限公司 Co-inhibition of cd47/sirpα binding and nedd8-activating enzyme e1 regulatory subunit for the treatment of cancer
CN113135895A (en) * 2021-04-30 2021-07-20 中国药科大学 Novel biphenyl derivative, preparation method and medical application thereof
WO2022241134A1 (en) 2021-05-13 2022-11-17 Gilead Sciences, Inc. COMBINATION OF A TLR8 MODULATING COMPOUND AND ANTI-HBV siRNA THERAPEUTICS
AU2022277649A1 (en) 2021-05-21 2023-11-30 Cellectis S.A. Enhancing efficacy of t-cell-mediated immunotherapy by modulating cancer-associated fibroblasts in solid tumors
WO2022261301A1 (en) 2021-06-11 2022-12-15 Gilead Sciences, Inc. Combination mcl-1 inhibitors with anti-cancer agents
KR20240019330A (en) * 2021-06-11 2024-02-14 길리애드 사이언시즈, 인코포레이티드 Combination of MCL-1 inhibitor and antibody drug conjugate
WO2022271659A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
KR20240005901A (en) 2021-06-23 2024-01-12 길리애드 사이언시즈, 인코포레이티드 Diacylglycerol Kinase Modulating Compounds
WO2022271677A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
CN115677665B (en) * 2021-07-26 2024-04-19 中国药科大学 Biphenyl-containing derivative and medical application thereof
TW202325306A (en) 2021-09-02 2023-07-01 美商天恩治療有限公司 Methods of improving growth and function of immune cells
CN118139858A (en) 2021-10-28 2024-06-04 吉利德科学公司 Pyrazin-3 (2H) -one derivatives
KR20240097895A (en) 2021-10-29 2024-06-27 길리애드 사이언시즈, 인코포레이티드 CD73 compound
WO2023081730A1 (en) 2021-11-03 2023-05-11 Teon Therapeutics, Inc. 4-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide derivatives as cannabinoid cb2 receptor modulators for the treatment of cancer
WO2023091932A1 (en) * 2021-11-17 2023-05-25 Cardiff Oncology, Inc. Cancer treatment using lsd1 inhibitors and plk1 inhibitors
CN114085184B (en) * 2021-11-17 2023-08-29 中山大学 Biphenyl derivative containing cyclopropane structure and preparation method and application thereof
WO2023097211A1 (en) 2021-11-24 2023-06-01 The University Of Southern California Methods for enhancing immune checkpoint inhibitor therapy
US20230203202A1 (en) 2021-12-08 2023-06-29 Dragonfly Therapeutics, Inc. Proteins binding nkg2d, cd16 and 5t4
US20230220106A1 (en) 2021-12-08 2023-07-13 Dragonfly Therapeutics, Inc. Antibodies targeting 5t4 and uses thereof
US20230192713A1 (en) * 2021-12-16 2023-06-22 Aligos Therapeutics, Inc. Methods and compositions for targeting pd-l1
CA3237577A1 (en) 2021-12-22 2023-06-29 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
CA3239528A1 (en) 2021-12-22 2023-06-29 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
TW202340168A (en) 2022-01-28 2023-10-16 美商基利科學股份有限公司 Parp7 inhibitors
JP2023132064A (en) 2022-03-10 2023-09-22 株式会社ジャパンディスプレイ Display and method of manufacturing display
AU2023233730A1 (en) 2022-03-17 2024-09-26 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
US20230355796A1 (en) 2022-03-24 2023-11-09 Gilead Sciences, Inc. Combination therapy for treating trop-2 expressing cancers
TW202345901A (en) 2022-04-05 2023-12-01 美商基利科學股份有限公司 Combination therapy for treating colorectal cancer
WO2023201267A1 (en) 2022-04-13 2023-10-19 Gilead Sciences, Inc. Combination therapy for treating trop-2 expressing cancers
WO2023205719A1 (en) 2022-04-21 2023-10-26 Gilead Sciences, Inc. Kras g12d modulating compounds
US20240116928A1 (en) 2022-07-01 2024-04-11 Gilead Sciences, Inc. Cd73 compounds
WO2024015372A1 (en) 2022-07-14 2024-01-18 Teon Therapeutics, Inc. Adenosine receptor antagonists and uses thereof
WO2024038356A1 (en) * 2022-08-16 2024-02-22 Arbutus Biopharma Corporation Synthesis of substituted 1-aryl-1'-heteroaryl compounds and substituted 1,1'-biheteroaryl compounds, and analogues thereof
US20240091351A1 (en) 2022-09-21 2024-03-21 Gilead Sciences, Inc. FOCAL IONIZING RADIATION AND CD47/SIRPa DISRUPTION ANTICANCER COMBINATION THERAPY
WO2024097741A1 (en) 2022-11-04 2024-05-10 Gilead Sciences, Inc. Anticancer therapies using anti-ccr8 antibody, chemo and immunotherapy combinations
WO2024137852A1 (en) 2022-12-22 2024-06-27 Gilead Sciences, Inc. Prmt5 inhibitors and uses thereof
WO2024148209A1 (en) * 2023-01-06 2024-07-11 Staidson Biopharma Inc. Combination of antibodies specifically recognizing tnfr2 and pd-l1 or pd-1

Citations (367)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031910A1 (en) 1996-02-28 1997-09-04 Merck & Co., Inc. Fibrinogen receptor antagonists
WO1999017777A1 (en) 1997-10-08 1999-04-15 Merck & Co., Inc. Inhibitors of prenyl-protein transferase
JP2001002661A (en) 1999-06-22 2001-01-09 Ricoh Co Ltd Nitrile compound and its production
WO2001019798A2 (en) 1999-09-17 2001-03-22 Cor Therapeutics Inc. INHIBITORS OF FACTOR Xa
WO2001056989A2 (en) 2000-02-01 2001-08-09 Cor Therapeutics, Inc. Inhibitors of factor xa
JP2001335476A (en) 2000-05-29 2001-12-04 Shionogi & Co Ltd New use of tricyclic compound
WO2002000647A1 (en) 2000-06-23 2002-01-03 Bristol-Myers Squibb Pharma Company Heteroaryl-phenyl substituted factor xa inhibitors
WO2002020436A2 (en) 2000-09-05 2002-03-14 Neogenesis Pharmaceuticals, Inc. Methods for forming combinatorial libraries combining amide bond formation with epoxide opening
WO2002051775A2 (en) 2000-12-22 2002-07-04 Neogenesis Pharmaceuticals, Inc. Methods for forming combinatorial libraries using reductive amination
US20020091116A1 (en) 1999-09-17 2002-07-11 Bing-Yan Zhu Inhibitors of factor Xa
DE10104279A1 (en) 2001-01-31 2002-08-01 Heinz Langhals Fluorescent detection of prions, useful for diagnosis, by binding to fluorescently labeled Congo Red derivative, also treatment of prion diseases e.g. Creutzfeld-Jakob disease
US20030013028A1 (en) 1999-06-22 2003-01-16 Ricoh Company, Ltd. Reaction product, process for the production thereof, electrophotographic photoconductor using the reaction product, electrophotographic apparatus using the photoconductor, and process cartridge for electrophotographic apparatus
WO2004052848A1 (en) 2002-12-11 2004-06-24 Eli Lilly And Company Novel mch receptor antagonists
WO2004054582A1 (en) 2002-12-13 2004-07-01 Neurogen Corporation Combination therapy for the treatment of pain
WO2004084824A2 (en) 2003-03-24 2004-10-07 Merck & Co., Inc. Biaryl substituted 6-membered heterocyles as sodium channel blockers
US20040209936A1 (en) 2003-04-17 2004-10-21 Bratton Larry D. Compounds that modulate PPAR activity and methods of preparation
US20040235877A1 (en) 2001-09-14 2004-11-25 Natsuki Ishizuka Novel use of tricyclic compound
WO2005044797A1 (en) 2003-11-06 2005-05-19 Addex Pharmaceuticals Sa Allosteric modulators of metabotropic glutamate receptors
WO2005051890A1 (en) 2003-11-19 2005-06-09 Smithkline Beecham Corporation Aminophenylcyclopropyl carboxylic acids and derivatives as agonists to gpr40
WO2005086808A2 (en) 2004-03-08 2005-09-22 The University Of North Carolina At Chapel Hill NOVEL DICATIONIC IMIDAZO[1,2-a]PYRIDINES AND 5,6,7,8-TETRAHYDRO-IMIDAZO[1,2a]PYRIDINES AS ANTIPROTOZOAL AGENTS
US20050224524A1 (en) 2004-03-29 2005-10-13 Khan Ayub I Aerosol
WO2005095338A1 (en) 2004-03-30 2005-10-13 Takeda Pharmaceutical Company Limited Alkoxyphenylpropanoic acid derivatives
US20060019967A1 (en) 2004-07-21 2006-01-26 Su-Ying Wu SARS CoV main protease inhibitors
WO2006011615A1 (en) 2004-07-27 2006-02-02 Takeda Pharmaceutical Company Limited Remedy for diabetes
WO2006038738A1 (en) 2004-10-08 2006-04-13 Takeda Pharmaceutical Company Limited Receptor function regulating agent
WO2006040646A1 (en) 2004-10-14 2006-04-20 Pfizer, Inc. Benzimidazole or indole amides as inhibitors of pin1
WO2006052566A2 (en) 2004-11-03 2006-05-18 Arena Pharmaceuticals, Inc. Gpr41 and modulators thereof for the treatment of insulin-related disorders
WO2006083781A1 (en) 2005-01-31 2006-08-10 Merck & Co., Inc. Antidiabetic bicyclic compounds
WO2006083612A1 (en) 2005-01-28 2006-08-10 Merck & Co., Inc. Antidiabetic bicyclic compounds
WO2006091394A2 (en) 2005-02-11 2006-08-31 Coley Pharmaceutical Group, Inc. Substituted imidazoquinolines and imidazonaphthyridines
WO2006123257A2 (en) 2005-05-18 2006-11-23 Addex Pharma Sa Phenyl-3-{(3-(1h-pyrrol-2-yl)-[1, 2 , 4]0xadiaz0l-5-yl]piperidin-1-yl}-methanone derivatives and related compounds as positive allosteric modulators of metabotropic glutamate receptors
WO2006127503A2 (en) 2005-05-20 2006-11-30 Amgen Inc Compounds, pharmaceutical compositions and methods for their use in treating metabolic disorders
WO2007013689A1 (en) 2005-07-29 2007-02-01 Takeda Pharmaceutical Company Limited Cyclopropanecarboxylic acid compound
WO2007033002A1 (en) 2005-09-14 2007-03-22 Amgen Inc. Conformationally constrained 3- (4-hydroxy-phenyl) - substituted-propanoic acids useful for treating metabolic disorders
WO2007047591A2 (en) 2005-10-19 2007-04-26 Merck & Co., Inc. Cetp inhibitors
WO2007049050A2 (en) 2005-10-27 2007-05-03 Heptahelix Ab Modulators of gpr40 for the treatment of diabetes
WO2007052466A1 (en) 2005-11-04 2007-05-10 Eisai R & D Management Co., Ltd. Method of screening substance useful in treating disease with the use of gpr40 and phospholipase
US20070155726A1 (en) 2005-12-29 2007-07-05 Schering Aktiengesellschaft Diamine derivatives as inhibitors of leukotriene A4 hydrolase
WO2007096142A2 (en) 2006-02-22 2007-08-30 Philogen Spa Vascular tumor markers
WO2007106469A2 (en) 2006-03-14 2007-09-20 Amgen Inc. Bicyclic carboxylic acid derivatives useful for treating metabolic disorders
WO2007104560A1 (en) 2006-03-15 2007-09-20 Grünenthal GmbH Substituted 4-amino-quinazoline derivatives as regulators of metabotropic glutamate receptors and their use for producing drugs
WO2007109376A2 (en) 2006-03-23 2007-09-27 Novartis Ag Anti-tumor cell antigen antibody therapeutics
WO2007123225A1 (en) 2006-04-24 2007-11-01 Astellas Pharma Inc Oxadiazolidinedione compound
WO2007128460A1 (en) 2006-04-28 2007-11-15 Laboratorios Del Dr. Esteve, S.A. Substituted 3 -amino-4 -hydroxy pyrrolidines compounds, their preparation and use as medicaments
WO2007131620A1 (en) 2006-05-11 2007-11-22 Sanofi-Aventis 4,5-diphenyl-pyrimidinyl-amino substituted carboxylic acids, method for the production and use thereof as medicaments
WO2007132307A1 (en) 2006-05-09 2007-11-22 Pfizer Products Inc. Cycloalkylamino acid derivatives and pharmaceutical compositions thereof
WO2007131622A1 (en) 2006-05-11 2007-11-22 Sanofi-Aventis Phenylamino-benzoxazole substituted carboxylic acids, method for their production and use thereof as medicaments
WO2007131619A1 (en) 2006-05-11 2007-11-22 Sanofi-Aventis 4,5-diphenyl-pyrimidinyl-oxy or -mercapto substituted carboxylic acids, method for the production and use thereof as medicaments
WO2007131621A1 (en) 2006-05-11 2007-11-22 Sanofi-Aventis 4,5-diphenyl-pyrimidinyl substituted carboxylic acids, method for the production and use thereof as medicaments
WO2007136572A2 (en) 2006-05-15 2007-11-29 Merck & Co., Inc. Antidiabetic bicyclic compounds
WO2008001931A2 (en) 2006-06-27 2008-01-03 Takeda Pharmaceutical Company Limited Fused cyclic compounds
WO2008014236A1 (en) 2006-07-24 2008-01-31 Tetralogic Pharmaceuticals Corporation Dimeric iap inhibitors
WO2008021936A2 (en) 2006-08-11 2008-02-21 Bristol-Myers Squibb Company Hepatitis c virus inhibitors
WO2008030520A1 (en) 2006-09-07 2008-03-13 Amgen Inc. Heterocyclic gpr40 modulators
WO2008037266A1 (en) 2006-09-25 2008-04-03 Universite Libre De Bruxelles Inhibitors of conventional protein kinase c isozymes and use thereof for treating inflammatory diseases
WO2008054675A2 (en) 2006-10-31 2008-05-08 Merck & Co., Inc. Antidiabetic bicyclic compounds
WO2008054674A2 (en) 2006-10-31 2008-05-08 Merck & Co., Inc. Antidiabetic bicyclic compounds
WO2008063768A2 (en) 2006-10-12 2008-05-29 Case Western Reserve University Compositions and methods for treating metabolic diseases
WO2008066097A1 (en) 2006-12-01 2008-06-05 Astellas Pharma Inc. Carboxylic acid derivative
WO2008065409A2 (en) 2006-12-01 2008-06-05 Betagenon Ab Combination for use in the treatment of cancer, comprising tamoxifen or an aromatase inhibitor
WO2008067644A1 (en) 2006-12-04 2008-06-12 Boehringer Ingelheim International Gmbh Inhibitors of hiv replication
WO2008073865A2 (en) 2006-12-11 2008-06-19 Novartis Ag Method of preventing or treating myocardial ischemia
WO2008079965A1 (en) 2006-12-22 2008-07-03 Incyte Corporation Substituted heterocycles as janus kinase inhibitors
WO2008083027A1 (en) 2006-12-28 2008-07-10 Abbott Laboratories Inhibitors of poly(adp-ribose)polymerase
WO2008090356A1 (en) 2007-01-25 2008-07-31 Betagenon Ab Thiazolidinone derivatives useful in the treatment of cancer and disorders caused by excess adiposity
WO2008090327A1 (en) 2007-01-22 2008-07-31 Betagenon Ab New combination for use in the treatment of cancer
WO2008106202A1 (en) 2007-02-27 2008-09-04 Housey Gerard M Theramutein modulators
WO2008130514A1 (en) 2007-04-16 2008-10-30 Amgen Inc. Substituted biphenyl phenoxy-, thiophenyl- and aminophenylpropanoic acid gpr40 modulators
WO2008139987A1 (en) 2007-04-26 2008-11-20 Japan Science And Technology Agency G-protein-conjugated receptor agonist
WO2008144925A1 (en) 2007-05-30 2008-12-04 Aegera Therapeutics Inc. Iap bir domain binding compounds
WO2008147852A1 (en) 2007-05-22 2008-12-04 Taigen Biotechnology Co., Ltd. Kinesin inhibitors
EP2002838A1 (en) 2007-06-13 2008-12-17 Bayer Schering Pharma AG Use of aryl and hetaryl amide derivatives as modulators of an EP2 receptor
WO2008156656A2 (en) 2007-06-13 2008-12-24 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Method for making biaryl compounds, compounds made by the method, and method for their use
WO2009017822A2 (en) 2007-08-02 2009-02-05 Amgen Inc. Pi3 kinase modulators and methods of use
WO2009025983A2 (en) 2007-08-17 2009-02-26 E. I. Du Pont De Nemours And Company Method for preparing 5-haloalkyl-4,5-dihydroisoxazole derivatives
WO2009038204A1 (en) 2007-09-17 2009-03-26 Pharma Frontier Co., Ltd. Novel long-chain fatty acid derivative compound and g-protein-coupled receptor agonist containing the compound as active ingredient
WO2009039943A1 (en) 2007-09-21 2009-04-02 Sanofi-Aventis (carboxylalkylene-phenyl)-phenyl-oxalamides, method for the production thereof, and use of same as a medicament
WO2009039942A1 (en) 2007-09-21 2009-04-02 Sanofi-Aventis (cyclopropyl-phenyl)-phenyl-oxalamides, method for the production thereof, and use of same as a medicament
WO2009047798A2 (en) 2007-10-08 2009-04-16 Advinus Therapeutics Private Limited Acetamide derivatives as glucokinase activators, their process and medicinal applications
WO2009048527A1 (en) 2007-10-10 2009-04-16 Amgen Inc. Substituted biphenyl gpr40 modulators
WO2009054390A1 (en) 2007-10-23 2009-04-30 Astellas Pharma Inc. Thiazolidinedione compound
WO2009054468A1 (en) 2007-10-24 2009-04-30 Astellas Pharma Inc. Azolecarboxamide compound or salt thereof
WO2009054479A1 (en) 2007-10-26 2009-04-30 Japan Tobacco Inc. Spiro-ring compound and use thereof for medical purposes
WO2009058237A1 (en) 2007-10-29 2009-05-07 Merck & Co., Inc. Antidiabetic tricyclic compounds
WO2009102633A1 (en) 2008-02-13 2009-08-20 Bristol-Myers Squibb Company Hepatitis c virus inhibitors
WO2009102568A1 (en) 2008-02-13 2009-08-20 Bristol-Myers Squibb Company Conformationally restricted biphenyl derivatives for use as hepatitis c virus inhibitors
WO2009111056A1 (en) 2008-03-06 2009-09-11 Amgen Inc. Conformationally constrained carboxylic acid derivatives useful for treating metabolic disorders
WO2009112445A1 (en) 2008-03-10 2009-09-17 Novartis Ag Method of increasing cellular phosphatidyl choline by dgat1 inhibition
WO2010012650A1 (en) 2008-07-28 2010-02-04 Syddansk Universitet Compounds for the treatment of metabolic diseases
WO2010017870A1 (en) 2008-08-14 2010-02-18 Merck Patent Gmbh Bicyclic triazole derivatives for treating tumors
US7687522B2 (en) 2006-12-20 2010-03-30 Amgen Inc. Substituted pyridines and pyrimidines and their use in treatment of cancer
WO2010039238A1 (en) 2008-10-01 2010-04-08 Synta Pharmaceuticals Corp. Compounds for inflammation and immune-related uses
WO2010045258A2 (en) 2008-10-15 2010-04-22 Amgen Inc. Spirocyclic gpr40 modulators
WO2010066682A1 (en) 2008-12-08 2010-06-17 Euroscreen S.A. Compounds, pharmaceutical composition and methods for use in treating metabolic disorders
US7750048B2 (en) 2006-11-15 2010-07-06 Janssen Pharmaceutica Nv GPR40 agonists
WO2010082563A1 (en) 2009-01-19 2010-07-22 第一三共株式会社 Cyclic compound having hetero atom
WO2010085525A1 (en) 2009-01-23 2010-07-29 Schering Corporation Bridged and fused heterocyclic antidiabetic compounds
WO2010085528A1 (en) 2009-01-23 2010-07-29 Schering Corporation Bridged and fused antidiabetic compounds
WO2010085522A1 (en) 2009-01-23 2010-07-29 Schering Corporation Pentafluorosulpholane-containing antidiabetic compounds
WO2010091176A1 (en) 2009-02-05 2010-08-12 Schering Corporation Phthalazine-containing antidiabetic compounds
WO2010091413A1 (en) 2009-02-09 2010-08-12 Enanta Pharmaceuticals, Inc. Linked dibenzimidazole derivatives
WO2010096462A1 (en) 2009-02-17 2010-08-26 Enanta Pharmaceuticals, Inc Linked diimidazole derivatives
WO2010099527A1 (en) 2009-02-27 2010-09-02 Enanta Pharmaceuticals, Inc. Hepatitis c virus inhibitors
US20100249175A1 (en) 2005-12-02 2010-09-30 Wilson W David Dicationic compounds which selectively recognize G-quadruplex DNA
WO2010111534A1 (en) 2009-03-27 2010-09-30 Presidio Pharmaceuticals, Inc. Fused ring inhibitors of hepatitis c
WO2010123017A1 (en) 2009-04-22 2010-10-28 アステラス製薬株式会社 Tetrazole compound
WO2010123016A1 (en) 2009-04-22 2010-10-28 アステラス製薬株式会社 Carboxylic acid compound
WO2010132601A1 (en) 2009-05-13 2010-11-18 Gilead Sciences, Inc. Antiviral compounds
WO2010144646A2 (en) 2009-06-11 2010-12-16 Abbott Laboratories Anti-viral compounds
WO2010143733A1 (en) 2009-06-09 2010-12-16 Takeda Pharmaceutical Company Limited Novel fused cyclic compound and use thereof
WO2011008709A1 (en) 2009-07-13 2011-01-20 Gilead Sciences, Inc. Apoptosis signal-regulating kinase inhibitors
WO2011024001A1 (en) 2009-08-25 2011-03-03 Ark Therapeutics Limited Np-1 antagonists and their therapeutic use
WO2011031934A1 (en) 2009-09-11 2011-03-17 Enanta Pharmaceuticals, Inc. Hepatitis c virus inhibitors
WO2011031965A1 (en) 2009-09-14 2011-03-17 Gilead Sciences, Inc. Modulators of toll-like receptors
WO2011044073A1 (en) 2009-10-06 2011-04-14 Bristol-Myers Squibb Company Pyrrolidine gpr40 modulators
WO2011046851A1 (en) 2009-10-15 2011-04-21 Eli Lilly And Company Spiropiperidine compounds and pharmaceutical use thereof for treating diabetes
WO2011049825A1 (en) 2009-10-22 2011-04-28 Gilead Sciences, Inc. Derivatives of purine or deazapurine useful for the treatment of (inter alia) viral infections
WO2011052756A1 (en) 2009-10-30 2011-05-05 持田製薬株式会社 Novel 3-hydroxy-5-arylisoxazole derivative
WO2011066241A1 (en) 2009-11-25 2011-06-03 Schering Corporation Fused tricyclic compounds and derivatives thereof useful for the treatment of viral diseases
WO2011066183A1 (en) 2009-11-30 2011-06-03 Eli Lilly And Company Novel spiropiperidine compounds
WO2011073376A1 (en) 2009-12-18 2011-06-23 Euroscreen S.A. Pyrrolidine or thiazolidine carboxylic acid derivatives, pharmaceutical composition and methods for use in treating metabolic disordersas as agonists of g- protein coupled receptor 43 (gpr43)
WO2011076734A1 (en) 2009-12-21 2011-06-30 Euroscreen S.A. Compounds, pharmaceutical composition and methods for use in treating inflammatory diseases
WO2011078371A1 (en) 2009-12-25 2011-06-30 持田製薬株式会社 Novel 3-hydroxy-5-arylisothiazole derivative
WO2011076732A1 (en) 2009-12-21 2011-06-30 Euroscreen S.A. Compounds, pharmaceutical composition and methods for use in treating gastrointestinal disorders
WO2011082400A2 (en) 2010-01-04 2011-07-07 President And Fellows Of Harvard College Modulators of immunoinhibitory receptor pd-1, and methods of use thereof
WO2011080755A1 (en) 2009-12-29 2011-07-07 Advinus Therapeutics Private Limited Fused nitrogen heterocyclic compounds, process of preparation and uses thereof
WO2011092284A1 (en) 2010-01-29 2011-08-04 Euroscreen S.A. Novel amino acid derivatives and their use as gpr43 receptor modulators
WO2011119870A1 (en) 2010-03-24 2011-09-29 Vertex Pharmaceuticals Incorporated Analogues for the treatment or prevention of flavivirus infections
WO2011119858A1 (en) 2010-03-24 2011-09-29 Vertex Pharmaceuticals Incorporated Analogues for the treatment or prevention of flavivirus infections
WO2011138665A1 (en) 2010-05-06 2011-11-10 Incozen Therapeutics Pvt. Ltd. Novel immunomodulator and anti inflammatory compounds
WO2011143466A1 (en) 2010-05-12 2011-11-17 Vanderbilt University Heterocyclic sulfone mglur4 allosteric potentiators, compositions, and methods of treating neurological dysfunction
WO2011143208A1 (en) 2010-05-13 2011-11-17 Indiana University Research And Technology Corporation Glucagon superfamily peptides exhibiting g protein-coupled receptor activity
WO2011151436A2 (en) 2010-06-04 2011-12-08 Euroscreen S.A. Novel compounds, method for use them and pharmaceutical composition containing them
WO2011161030A1 (en) 2010-06-21 2011-12-29 Sanofi Heterocyclic substituted methoxyphenyl derivatives having an oxo group, method for producing same, and use thereof as gpr40 receptor modulators
WO2012004269A1 (en) 2010-07-05 2012-01-12 Sanofi (2-aryloxy-acetylamino)-phenyl-propionic acid derivatives, method for producing same and use thereof as pharmaceuticals
WO2012004270A1 (en) 2010-07-05 2012-01-12 Sanofi Spirocyclically substituted 1,3-propane dioxide derivatives, methods for the production thereof and use of the same as medicament
WO2012010413A1 (en) 2010-07-05 2012-01-26 Sanofi Aryloxy-alkylene substituted hydroxyphenyl hexynoic acids, methods for the production thereof and use of the same as medicament
WO2012012627A1 (en) 2010-07-22 2012-01-26 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Method of preventing or treating viral infection
WO2012011124A1 (en) 2010-07-20 2012-01-26 Council Of Scientific & Industrial Research Ordered mesoporous titanosilicate and the process for the preparation thereof
JP2012036168A (en) 2010-07-15 2012-02-23 Daiichi Sankyo Co Ltd Pharmaceutical composition containing annular compound having hetero atom
WO2012036168A1 (en) 2010-09-14 2012-03-22 北海道公立大学法人札幌医科大学 Composition for treating muscular dystrophy
WO2012046869A1 (en) 2010-10-08 2012-04-12 持田製薬株式会社 Cyclic amide derivative
WO2012050918A2 (en) 2010-09-29 2012-04-19 Presidio Pharmaceutical, Inc. Tricyclic fused ring inhibitors of hepatitis c
WO2012068234A2 (en) 2010-11-17 2012-05-24 Gilead Sciences, Inc. Antiviral compounds
WO2012065904A2 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag Cyanoenamines and their use as fungicides
WO2012072691A1 (en) 2010-12-01 2012-06-07 Boehringer Ingelheim International Gmbh Indanyloxydihydrobenzofuranylacetic acids
WO2012078802A1 (en) 2010-12-08 2012-06-14 Takeda Pharmaceutical Company Limited PREPARATION OF SUBSTITUTED-4,5-DIHYDROPYRROLO[4,3,2-de][2,6]NAPHTHYRIDIN-3(1H)-ONES
WO2012083061A2 (en) 2010-12-15 2012-06-21 Abbott Laboratories Anti-viral compounds
WO2012083043A1 (en) 2010-12-15 2012-06-21 Abbott Laboratories Anti-viral compounds
WO2012083053A2 (en) 2010-12-15 2012-06-21 Abbott Laboratories Anti-viral compounds
WO2012083059A1 (en) 2010-12-15 2012-06-21 Abbott Laboratories Anti-viral compounds
WO2012083048A2 (en) 2010-12-15 2012-06-21 Abbott Laboratories Anti-viral compounds
US20120189539A1 (en) 2011-01-25 2012-07-26 The Regents Of University Of Michigan Bcl-2/bcl-xl inhibitors and therapeutic methods using the same
WO2012098033A1 (en) 2011-01-19 2012-07-26 Galapagos Nv Azetidine derivatives useful for the treatment of metabolic and inflammatory diseases
WO2012111849A1 (en) 2011-02-17 2012-08-23 Takeda Pharmaceutical Company Limited Production method of optically active dihydrobenzofuran derivative
US20120225851A1 (en) 2010-12-22 2012-09-06 Eutropics Pharmaceuticals, Inc. Compositions and methods useful for treating diseases
WO2012129562A2 (en) 2011-03-24 2012-09-27 The Scripps Research Institute Compounds and methods for inducing chondrogenesis
WO2012136221A1 (en) 2011-04-08 2012-10-11 Syddansk Universitet Ortho-fluoro substituted compounds for the treatment of metabolic diseases
WO2012147518A1 (en) 2011-04-27 2012-11-01 持田製薬株式会社 Novel 3-hydroxyisothiazole 1-oxide derivative
US20120289558A1 (en) 2009-11-09 2012-11-15 Neurogenetic Pharmaceuticals, Inc. Gamma-secretase modulatory compounds, methods for identifying same, and uses therefor
WO2012154608A1 (en) 2011-05-06 2012-11-15 Intellikine, Llc Reactive mtor and pi3 kinase inhibitors and uses thereof
US20120309701A1 (en) 2009-10-22 2012-12-06 The Washington University Compounds and methods for treating bacterial infections
WO2013009259A1 (en) 2011-07-14 2013-01-17 Biochromix Pharma Ab Novel compounds and their use in therapy
US20130023495A1 (en) 2010-03-30 2013-01-24 Novartis Ag Uses of dgat1 inhibitors
WO2013025424A1 (en) 2011-08-17 2013-02-21 Eli Lilly And Company A Novel 1,2,3,4-Tetrahydroquinoline Derivative Useful for the Treatment of Diabetes
WO2013057743A1 (en) 2011-10-21 2013-04-25 Connexios Life Sciences Pvt. Ltd Process for the preparation of an aryl oxime and salts thereof
WO2013102626A1 (en) 2012-01-04 2013-07-11 Sanofi 3-[4-(phenylaminooxalylamino)phenyl]hex-4-ynoic acids, process for preparation thereof and use thereof as a medicament
WO2013104257A1 (en) 2012-01-12 2013-07-18 江苏恒瑞医药股份有限公司 Polycyclic derivatives, preparation method and medical uses thereof
WO2013106520A1 (en) 2012-01-13 2013-07-18 Bristol-Myers Squibb Company Hepatitis c virus inhibitors
WO2013109521A1 (en) 2012-01-16 2013-07-25 Vertex Pharmaceuticals Incorporated Pyran-spirocyclic piperidine amides as modulators of ion channels
WO2013122028A1 (en) 2012-02-13 2013-08-22 武田薬品工業株式会社 Aromatic ring compound
WO2013122029A1 (en) 2012-02-13 2013-08-22 武田薬品工業株式会社 Aromatic ring compound
WO2013128378A1 (en) 2012-02-28 2013-09-06 Piramal Enterprises Limited Phenyl alkanoic acid derivatives as gpr agonists
US8541424B2 (en) 2008-12-23 2013-09-24 Abbott Laboratories Anti-viral compounds
WO2013144097A1 (en) 2012-03-26 2013-10-03 Boehringer Ingelheim International Gmbh New indanyloxydihydrobenzofuranylacetic acid derivatives and their use as gpr40 receptor agonists
WO2013154163A1 (en) 2012-04-11 2013-10-17 持田製薬株式会社 Novel 5-aryl-1,2-thiazinane derivative
WO2013164292A1 (en) 2012-04-30 2013-11-07 Boehringer Ingelheim International Gmbh Indanyloxydihydrobenzofuranylacetic acids
WO2013170115A1 (en) 2012-05-11 2013-11-14 Abbvie Inc. Pyridazine and pyridine derivatives as nampt inhibitors
WO2013170113A1 (en) 2012-05-11 2013-11-14 Abbvie Inc. Nampt inhibitors
US20130310379A1 (en) 2010-11-19 2013-11-21 Constellation Pharmaceuticals Modulators of methyl modifying enzymes, compositions and uses thereof
WO2013178575A1 (en) 2012-05-30 2013-12-05 Boehringer Ingelheim International Gmbh New indanyloxyphenylcyclopropanecarb oxylic acids
WO2014014530A1 (en) 2012-07-17 2014-01-23 Mylari Banavara L Ursolic acid salts for treating diabetes and obesity
WO2014014129A1 (en) 2012-07-19 2014-01-23 Takeda Pharmaceutical Company Limited Solid preparation
WO2014019186A1 (en) 2012-08-02 2014-02-06 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
WO2014035827A1 (en) 2012-08-27 2014-03-06 Allergan, Inc. Reduced central corneal thickening by use of hydrophilic ester prodrugs of beta-chlorocyclopentanes
US20140064053A1 (en) 2011-05-13 2014-03-06 Fujifilm Corporation Non-resonant two-photon absorption material, non-resonant two-photon absorption recording material, recording medium, recording/reproducing method and non-resonant two-photon absorption compound
US20140073631A1 (en) 2012-09-12 2014-03-13 Vymed Corporation Antiviral and antimicrobial compounds
WO2014073904A1 (en) 2012-11-09 2014-05-15 Lg Life Sciences Ltd. Gpr40 receptor agonist, methods of preparing the same, and pharmaceutical compositions containing the same as an active ingredient
WO2014078609A1 (en) 2012-11-16 2014-05-22 Bristol-Myers Squibb Company Pyrrolidine gpr40 modulators
WO2014078610A1 (en) 2012-11-16 2014-05-22 Bristol-Myers Squibb Company Dihydropyrazole gpr40 modulators
WO2014078608A1 (en) 2012-11-16 2014-05-22 Bristol-Myers Squibb Company Dihydropyrazole gpr40 modulators
WO2014081689A1 (en) 2012-11-20 2014-05-30 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of indoleamine 2,3-dioxygenase
WO2014082918A1 (en) 2012-11-28 2014-06-05 Boehringer Ingelheim International Gmbh New indanyloxydihydrobenzofuranylacetic acids
WO2014086712A1 (en) 2012-12-07 2014-06-12 Boehringer Ingelheim International Gmbh New indanyloxydihydrobenzofuranylacetic acids
WO2014122067A1 (en) 2013-02-06 2014-08-14 Boehringer Ingelheim International Gmbh New indanyloxydihydrobenzofuranylacetic acids
WO2014130608A1 (en) 2013-02-22 2014-08-28 Merck Sharp & Dohme Corp. Antidiabetic bicyclic compounds
WO2014134243A1 (en) 2013-02-27 2014-09-04 Regents Of The University Of Michigan Pharmaceutical compounds and use of same in cancer and tauopathies
WO2014133361A1 (en) 2013-02-28 2014-09-04 에스케이케미칼주식회사 Tricyclic compound and use thereof
US8835451B2 (en) 2006-03-31 2014-09-16 Novartis Ag Compounds
WO2014145817A2 (en) 2013-03-15 2014-09-18 Children's Medical Center Corporation Novel therapeutic target for the treatment of cancers and related therapies and methods
WO2014146604A1 (en) 2013-03-22 2014-09-25 正大天晴药业集团股份有限公司 Fused ring compound having gpr40 receptor function regulating action
WO2014171762A1 (en) 2013-04-18 2014-10-23 현대약품 주식회사 Novel 3-(4-(benzyloxy)phenyl)hex-4-inoic acid derivative, method of preparing same and pharmaceutical composition for preventing and treating metabolic disease including same as effective ingredient
WO2014170842A2 (en) 2013-04-17 2014-10-23 Piramal Enterprises Limited Substituted alkyl carboxylic acid derivatives as gpr agonists
WO2014169817A1 (en) 2013-04-16 2014-10-23 中国科学院上海药物研究所 Phenylalanine compound having nitrogen heterocyclic link, pharmaceutical composition thereof, preparation method therefor, and use thereof
WO2014187343A1 (en) 2013-05-22 2014-11-27 四川海思科制药有限公司 Benzofuran derivative, preparation method therefor, and medical application thereof
WO2015000412A1 (en) 2013-07-02 2015-01-08 四川海思科制药有限公司 Benzocyclobutene derivative and preparation method and pharmaceutical application thereof
WO2015010655A1 (en) 2013-07-26 2015-01-29 四川海思科制药有限公司 Triadic fused cyclic carboxylic acids derivatives, preparation method therefor and pharmaceutical use thereof
CN104341407A (en) 2013-07-24 2015-02-11 黄传满 Quinazoline compounds, preparation method and applications thereof
WO2015020184A1 (en) 2013-08-09 2015-02-12 武田薬品工業株式会社 Aromatic compound
WO2015024448A1 (en) 2013-08-19 2015-02-26 上海润诺生物科技有限公司 Benzo piperidine ring and benzo morpholine ring compounds, manufacturing method therefor, and medical applications thereof
WO2015024526A1 (en) 2013-08-23 2015-02-26 Fujian Haixi Pharmaceuticals Co., Ltd Carboxylic acid compounds in treatment of diabetes mellitus
WO2015028960A1 (en) 2013-08-28 2015-03-05 Piramal Enterprises Limited Substituted heterocyclic derivatives as gpr agonists and uses thereof
WO2015032328A1 (en) 2013-09-03 2015-03-12 四川海思科制药有限公司 Indane derivative, preparation method therefor, and pharmaceutical application thereof
WO2015034820A1 (en) 2013-09-04 2015-03-12 Bristol-Myers Squibb Company Compounds useful as immunomodulators
WO2015044073A1 (en) 2013-09-26 2015-04-02 Boehringer Ingelheim International Gmbh Process and intermediates for preparing indanyloxydihydrobenzofuranyl acetic acid derivatives as gpr40 agonists
WO2015051496A1 (en) 2013-10-08 2015-04-16 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
WO2015062486A1 (en) 2013-10-31 2015-05-07 Sunshine Lake Pharma Co., Ltd. Biphenyl compounds and uses thereof
WO2015065621A1 (en) 2012-11-02 2015-05-07 Maqui New Life S.A. Compounds, compositions, and methods for decreasing intestinal glucose uptake and inducing incretin release
WO2015073342A1 (en) 2013-11-15 2015-05-21 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
WO2015076800A1 (en) 2013-11-21 2015-05-28 Ptc Therapeutics, Inc. Substituted pyridine and pyrazine bmi-1 inhibitors
WO2015078802A1 (en) 2013-11-28 2015-06-04 Boehringer Ingelheim International Gmbh New indanyloxyphenylcyclopropanecarboxylic acids
WO2015078949A1 (en) 2013-11-27 2015-06-04 Euroscreen Sa Compounds, pharmaceutical composition and methods for use in treating inflammatory diseases
WO2015084692A1 (en) 2013-12-04 2015-06-11 Merck Sharp & Dohme Corp. Antidiabetic bicyclic compounds
WO2015088868A1 (en) 2013-12-13 2015-06-18 Eli Lilly And Company A novel triazolo-pyridine compound
WO2015089809A1 (en) 2013-12-19 2015-06-25 Merck Sharp & Dohme Corp. Antidiabetic substituted heteroaryl compounds
WO2015097713A1 (en) 2013-11-14 2015-07-02 Cadila Healthcare Limited Novel heterocyclic compounds
WO2015105779A1 (en) 2014-01-10 2015-07-16 Eli Lilly And Company Isopropyl triazolo pyridine compounds
WO2015105786A1 (en) 2014-01-10 2015-07-16 Eli Lilly And Company Phenyl-triazolo-pyridine compounds
WO2015119899A1 (en) 2014-02-06 2015-08-13 Merck Sharp & Dohme Corp. Antidiabetic compounds
CN104876912A (en) 2015-04-08 2015-09-02 苏州云轩医药科技有限公司 Wnt signal channel inhibitor and application thereof
WO2015140717A1 (en) 2014-03-18 2015-09-24 Iteos Therapeutics Novel 3-indol substituted derivatives, pharmaceutical compositions and methods for use
WO2015150097A1 (en) 2014-04-04 2015-10-08 Iomet Pharma Ltd Indole derivatives for use in medicine
WO2015160641A2 (en) 2014-04-14 2015-10-22 Bristol-Myers Squibb Company Compounds useful as immunomodulators
WO2015171733A1 (en) 2014-05-07 2015-11-12 Bristol-Myers Squibb Company Pyrrolidine gpr40 modulators for the treatment of diseases such as diabetes
WO2015171722A1 (en) 2014-05-07 2015-11-12 Bristol-Myers Squibb Company Pyrrolidine gpr40 modulators for the treatment of diseases such as diabetes
WO2015171757A1 (en) 2014-05-07 2015-11-12 Bristol-Myers Squibb Company Pyrrolidine gpr40 modulators
WO2015176267A1 (en) 2014-05-22 2015-11-26 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
US20150352206A1 (en) 2012-10-26 2015-12-10 The University Of Chicago Synergistic combination of immunologic inhibitors for the treatment of cancer
WO2015198045A1 (en) 2014-06-25 2015-12-30 Takeda Pharmaceutical Company Limited 3-substituted 2-amino-indole derivatives
WO2015198046A1 (en) 2014-06-25 2015-12-30 Takeda Pharmaceutical Company Limited 1,3-substituted 2-aminoindole derivatives and analogues useful in the treatment or prevention of diabetes mellitus, obesity and inflammatory bowel disease
WO2016007714A1 (en) 2014-07-09 2016-01-14 Janssen Pharmaceutica Nv Pyrazine gpr40 agonists for the treatment of type ii diabetes
WO2016022448A1 (en) 2014-08-08 2016-02-11 Merck Sharp & Dohme Corp. Antidiabetic bicyclic compounds
WO2016022446A1 (en) 2014-08-08 2016-02-11 Merck Sharp & Dohme Corp. [5,6]-fused bicyclic antidiabetic compounds
WO2016019587A1 (en) 2014-08-08 2016-02-11 Merck Sharp & Dohme Corp. [7, 6]-fused bicyclic antidiabetic compounds
WO2016022742A1 (en) 2014-08-08 2016-02-11 Merck Sharp & Dohme Corp. Antidiabetic bicyclic compounds
WO2016026772A1 (en) 2014-08-19 2016-02-25 Iomet Pharma Ltd Pharmaceutical compound
WO2016032120A1 (en) 2014-08-27 2016-03-03 씨제이헬스케어 주식회사 Novel amino-phenyl-sulfonyl-acetate derivative and use thereof
WO2016039749A1 (en) 2014-09-11 2016-03-17 Bristol-Myers Squibb Company Macrocyclic inhibitors of the pd-1/pd-l1 and cd80 (b7-1)/pd-li protein/protein interactions
WO2016041511A1 (en) 2014-09-19 2016-03-24 Yen-Ta Lu Benzo-heterocyclic compounds and their applications
UY35733A (en) 2014-09-12 2016-04-01 Bristol Myers Squibb Company Una Corporación Del Estado De Delaware MACROCYCLIC INHIBITORS OF PROTEIN / PROTEIN INTERACTIONS PD-1 / PD-L1 AND CD80 (B7-1) / PD-L1 I.P.C.
WO2016060517A2 (en) 2014-10-17 2016-04-21 현대약품 주식회사 Composite preparation, containing novel 3-(4-(benzyloxy)phenyl)hex-4-inoic acid derivative and another active ingredient, for preventing or treating metabolic diseases
WO2016060963A1 (en) 2014-10-14 2016-04-21 Sunshine Lake Pharma Co., Ltd. Substituted heteroaryl compounds and methods of use
WO2016065226A1 (en) 2014-10-24 2016-04-28 Bristol-Myers Squibb Company Indole carboxamides compounds useful as kinase inhobitors
WO2016071283A1 (en) 2014-11-03 2016-05-12 Iomet Pharma Ltd Inhibitors of tryptophan-2,3-dioxygenase or indoleamine-2,3-dioxygenase
WO2016071293A2 (en) 2014-11-03 2016-05-12 Iomet Pharma Ltd Pharmaceutical compound
WO2016073774A2 (en) 2014-11-05 2016-05-12 Flexus Biosciences, Inc. Immunoregulatory agents
US20160145304A1 (en) 2013-07-12 2016-05-26 Helmholtz-Zentrum für Infektionsforschung GmbH Cystobactamides
US20160166592A1 (en) 2013-07-03 2016-06-16 Georgetown University Boronic acid derivatives of resveratrol for activating deacetylase enzymes
WO2016110821A1 (en) 2015-01-08 2016-07-14 Advinus Therapeutics Limited Bicyclic compounds, compositions and medicinal applications thereof
US20160207923A1 (en) 2013-08-26 2016-07-21 Purdue Pharma L.P. Azaspiro[4.5] decane derivatives and use thereof
WO2016128908A1 (en) 2015-02-12 2016-08-18 Advinus Therapeutics Limited Bicyclic compounds, compositions and medicinal applications thereof
WO2016142886A2 (en) 2015-03-10 2016-09-15 Aurigene Discovery Technologies Limited 3-substituted-1,2,4-oxadiazole and thiadiazole compounds as immunomodulators
WO2016142852A1 (en) 2015-03-10 2016-09-15 Aurigene Discovery Technologies Limited 1,3,4-oxadiazole and thiadiazole compounds as immunomodulators
WO2016142894A1 (en) 2015-03-10 2016-09-15 Aurigene Discovery Technologies Limited 3-substituted 1,3,4-oxadiazole and thiadiazole compounds as immunomodulators
WO2016142835A1 (en) 2015-03-10 2016-09-15 Aurigene Discovery Technologies Limited Therapeutic cyclic compounds as immunomodulators
WO2016142833A1 (en) 2015-03-10 2016-09-15 Aurigene Discovery Technologies Limited 1,2,4-oxadiazole and thiadiazole compounds as immunomodulators
WO2016195776A1 (en) 2015-06-04 2016-12-08 Kura Oncology, Inc. Methods and compositions for inhibiting the interaction of menin with mll proteins
WO2016197987A1 (en) 2015-06-12 2016-12-15 杭州英创医药科技有限公司 Heterocyclic compound serving as syk inhibitor and/or syk-hdac dual inhibitor
WO2017011279A1 (en) 2015-07-13 2017-01-19 Merck Sharp & Dohme Corp. Bicyclic heterocycles as inhibitors of cholesterol ester transfer protein
WO2017027310A1 (en) 2015-08-12 2017-02-16 Janssen Pharmaceutica Nv Gpr40 agonists for the treatment of type ii diabetes
WO2017025368A1 (en) 2015-08-07 2017-02-16 Boehringer Ingelheim International Gmbh Indanylaminopyridylcyclopropanecarboxylic acids, pharmaceutical compositions and uses thereof
WO2017027309A1 (en) 2015-08-12 2017-02-16 Janssen Pharmaceutica Nv Gpr40 agonists for the treatment of type ii diabetes
WO2017027312A1 (en) 2015-08-12 2017-02-16 Janssen Pharmaceutica Nv Gpr40 agonists for the treatment of type ii diabetes
WO2017031392A1 (en) 2015-08-20 2017-02-23 University Of Florida Research Foundation, Incorporated Lipid compounds for treatment of obesity, hypertension and metabolic syndrome
WO2017042121A1 (en) 2015-09-09 2017-03-16 Boehringer Ingelheim International Gmbh [{[2,3-dihydro-1h-inden-1-yl]amino}-2h,3h-furo[3,2-b]pyridin-3-yl]acetic acids, pharmaceutical compositions and uses thereof
US20170088532A1 (en) 2013-12-05 2017-03-30 The Regents Of The University Of California Inhibitors of lpxc
US20170100414A1 (en) 2014-06-13 2017-04-13 University Of Rochester Small molecule efflux pump inhibitors
US20170107216A1 (en) 2015-10-19 2017-04-20 Incyte Corporation Heterocyclic compounds as immunomodulators
WO2017066227A1 (en) 2015-10-15 2017-04-20 Bristol-Myers Squibb Company Compounds useful as immunomodulators
WO2017079669A1 (en) 2015-11-04 2017-05-11 Incyte Corporation Pharmaceutical compositions and methods for indoleamine 2,3-dioxygenase inhibition and indications therefor
US20170145025A1 (en) 2015-11-19 2017-05-25 Incyte Corporation Heterocyclic compounds as immunomodulators
WO2017099034A1 (en) 2015-12-07 2017-06-15 国立大学法人京都大学 Pd-1 signal inhibitor combination therapy
US20170174679A1 (en) 2015-12-22 2017-06-22 Incyte Corporation Heterocyclic compounds as immunomodulators
WO2017106634A1 (en) 2015-12-17 2017-06-22 Incyte Corporation N-phenyl-pyridine-2-carboxamide derivatives and their use as pd-1/pd-l1 protein/protein interaction modulators
WO2017107979A1 (en) 2015-12-24 2017-06-29 Genentech, Inc. Tdo2 inhibitors
WO2017118762A1 (en) 2016-01-08 2017-07-13 Rijksuniversiteit Groningen Inhibitors of the pd-1/pd-l1 protein/protein interaction
US20170210715A1 (en) 2014-07-29 2017-07-27 Merck Sharp & Dohme Corp. Monocyclic isoxazolines as inhibitors of cholesterol ester transfer protein
WO2017143220A1 (en) 2016-02-17 2017-08-24 Children's Medical Center Corporation Ffa1 (gpr40) as a therapeutic target for neural angiogenesis diseases or disorders
US20170252432A1 (en) 2016-03-04 2017-09-07 Bristol-Myers Squibb Company Immunomodulators
US20170266211A1 (en) 2015-02-06 2017-09-21 Unity Biotechnology, Inc. Use of a heterocyclic bcl-2 inhibitor for removing senescent cells and treating senescence-associated conditions
WO2017162284A1 (en) 2016-03-23 2017-09-28 Symrise Ag Homovanillic acid ester for reducing or inhibiting fatty acid absorption in the small intestine
WO2017172505A1 (en) 2016-03-29 2017-10-05 Merck Sharp & Dohme Corp. Antidiabetic bicyclic compounds
US20170283463A1 (en) 2016-04-05 2017-10-05 Bristol-Myers Squibb Company Immunomodulators
US20170283462A1 (en) 2015-02-04 2017-10-05 Bristol-Myers Squibb Company Immunomodulators
WO2017180769A1 (en) 2016-04-13 2017-10-19 Capten Therapeutics Inc. Small molecules for immunogenic treatment of cancer
WO2017180571A1 (en) 2016-04-11 2017-10-19 Janssen Pharmaceutica Nv Substituted benzothiophenyl derivatives as gpr40 agonists for the treatment of type ii diabetes
WO2017180457A1 (en) 2016-04-11 2017-10-19 Janssen Pharmaceutica Nv Gpr40 agonists in anti-diabetic drug combinations
US20170320875A1 (en) 2016-05-06 2017-11-09 Incyte Corporation Heterocyclic compounds as immunomodulators
US20170331067A1 (en) 2014-10-28 2017-11-16 Samsung Sdi Co., Ltd. Organic optoelectronic device and display apparatus
WO2017202744A1 (en) 2016-05-26 2017-11-30 Merck Patent Gmbh Pd-1 / pd-l1 inhibitors for cancer treatment
WO2017201683A1 (en) 2016-05-25 2017-11-30 Merck Sharp & Dohme Corp. Substituted tetrahydroisoquinoline compounds useful as gpr120 agonists
WO2017202273A1 (en) 2016-05-23 2017-11-30 中国医学科学院药物研究所 Benzyl phenyl ether derivative, preparation method therefor, and pharmaceutical composition and uses thereof
WO2017205464A1 (en) 2016-05-26 2017-11-30 Incyte Corporation Heterocyclic compounds as immunomodulators
US20170362253A1 (en) 2016-06-20 2017-12-21 Incyte Corporation Heterocyclic compounds as immunomodulators
WO2018005374A1 (en) 2016-06-27 2018-01-04 Chemocentryx, Inc. Immunomodulator compounds
WO2018009505A1 (en) 2016-07-08 2018-01-11 Bristol-Myers Squibb Company 1,3-dihydroxy-phenyl derivatives useful as immunomodulators
WO2018026971A1 (en) 2016-08-03 2018-02-08 Arising International, Llc Symmetric or semi-symmetric compounds useful as immunomodulators
WO2018029150A1 (en) 2016-08-09 2018-02-15 Dompe' Farmaceutici S.P.A. Sulfonamides as gpr40- and gpr120-agonists
US20180057486A1 (en) 2016-08-29 2018-03-01 Incyte Corporation Heterocyclic compounds as immunomodulators
US20180057455A1 (en) 2016-09-01 2018-03-01 Bristol-Myers Squibb Company Compounds useful as immunomodulators
WO2018045142A1 (en) 2016-09-02 2018-03-08 Polaris Pharmaceuticals, Inc. Immune checkpoint inhibitors, compositions and methods thereof
WO2018051254A1 (en) 2016-09-14 2018-03-22 Aurigene Discovery Technologies Limited Cyclic substituted-1,2,4-oxadiazole compounds as immunomodulators
WO2018051255A1 (en) 2016-09-14 2018-03-22 Aurigene Discovery Technologies Limited Cyclic substituted-1,3,4-oxadiazole and thiadiazole compounds as immunomodulators
WO2018053302A1 (en) 2016-09-19 2018-03-22 Ensemble Therapeutics Corporation Macrocyclic compounds for the inhibition of indoleamine-2,3-dioxygenase activity and use thereof
US20180086793A1 (en) 2014-11-14 2018-03-29 Bristol-Myers Squibb Company Immunomodulators
WO2018077699A1 (en) 2016-10-25 2018-05-03 Boehringer Ingelheim International Gmbh Benzylaminopyridylcyclopropanecarboxylic acids, pharmaceutical compositions and uses thereof
WO2018081047A1 (en) 2016-10-25 2018-05-03 Janssen Pharmaceutica Nv Cyclohexyl gpr40 agonists for the treatment of type ii diabetes
WO2018095877A1 (en) 2016-11-28 2018-05-31 Boehringer Ingelheim International Gmbh Indanylaminopyridylcyclopropanecarboxylic acids, pharmaceutical compositions and uses thereof
WO2018106518A1 (en) 2016-12-06 2018-06-14 Merck Sharp & Dohme Corp. Antidiabetic heterocyclic compounds
WO2018111012A1 (en) 2016-12-15 2018-06-21 Il Dong Pharmaceutical Co., Ltd. Novel phenyl propionic acid derivatives and uses thereof
WO2018119236A1 (en) 2016-12-22 2018-06-28 Incyte Corporation Triazolo[1,5-a]pyridine derivatives as immunomodulators
WO2018119221A1 (en) 2016-12-22 2018-06-28 Incyte Corporation Pyridine derivatives as immunomodulators
WO2018119263A1 (en) 2016-12-22 2018-06-28 Incyte Corporation Heterocyclic compounds derivatives as pd-l1 internalization inducers
WO2018119286A1 (en) 2016-12-22 2018-06-28 Incyte Corporation Bicyclic heteroaromatic compounds as immunomodulators
WO2018118848A1 (en) 2016-12-20 2018-06-28 Bristol-Myers Squibb Company Compounds useful as immunomodulators
WO2018119224A1 (en) 2016-12-22 2018-06-28 Incyte Corporation Tetrahydro imidazo[4,5-c]pyridine derivatives as pd-l1 internalization inducers
WO2018119266A1 (en) 2016-12-22 2018-06-28 Incyte Corporation Benzooxazole derivatives as immunomodulators
WO2018118670A1 (en) 2016-12-20 2018-06-28 Merck Sharp & Dohme Corp. Antidiabetic spirochroman compounds
WO2018118664A1 (en) 2016-12-20 2018-06-28 Merck Sharp & Dohme Corp. Combinations of pd-1 antagonists and cyclic dinucleotide sting agonists for cancer treatment
WO2018121560A1 (en) 2016-12-29 2018-07-05 深圳微芯生物科技有限责任公司 Urea compound and preparation method and application thereof
WO2018138029A1 (en) 2017-01-26 2018-08-02 Boehringer Ingelheim International Gmbh Benzyloxypyridylcyclopropanecarboxylic acids, pharmaceutical compositions and uses thereof
WO2018138026A1 (en) 2017-01-26 2018-08-02 Boehringer Ingelheim International Gmbh Indanylaminopyrazinylcyclopropanecarboxylic acids, pharmaceutical compositions and uses thereof
WO2018138030A1 (en) 2017-01-26 2018-08-02 Boehringer Ingelheim International Gmbh Benzyloxypyrazinylcyclopropanecarboxylic acids, pharmaceutical compositions and uses thereof
WO2018138028A1 (en) 2017-01-26 2018-08-02 Boehringer Ingelheim International Gmbh Benzylaminopyrazinylcyclopropanecarboxylic acids, pharmaceutical compositions and uses thereof
WO2018138027A1 (en) 2017-01-26 2018-08-02 Boehringer Ingelheim International Gmbh Benzylaminopyridylcyclopropanecarboxylic acids, pharmaceuticalcompositions and uses thereof
WO2018146008A1 (en) 2017-02-08 2018-08-16 Boehringer Ingelheim International Gmbh Indanylaminoazadihydrobenzofuranylacetic acids, pharmaceutical compositions for the treatment of diabetes
EP3363790A1 (en) 2013-09-06 2018-08-22 Aurigene Discovery Technologies Limited 1,2,4-oxadiazole derivatives as immunomodulators
WO2018172727A1 (en) 2017-03-24 2018-09-27 Caldan Therapeutics Limited Tetrahydro-benzo[d]azepine derivatives as gpr120 modulators
WO2018181847A1 (en) 2017-03-31 2018-10-04 武田薬品工業株式会社 Aromatic compound
WO2018182050A1 (en) 2017-03-31 2018-10-04 Takeda Pharmaceutical Company Limited Substituted cyclyl-acetic acid derivatives for the treatment of metabolic disorders
WO2018183171A1 (en) 2017-03-27 2018-10-04 Bristol-Myers Squibb Company Substituted isoquionline derivatives as immunomudulators
WO2018195321A1 (en) 2017-04-20 2018-10-25 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2018196768A1 (en) 2017-04-26 2018-11-01 南京圣和药业股份有限公司 Heterocyclic compound serving as pd-l1 inhibitor
WO2019008156A1 (en) 2017-07-07 2019-01-10 Rijksuniversiteit Groningen Inhibitors of the pd-1/pd-l1 protein/protein interaction
WO2019023575A1 (en) 2017-07-28 2019-01-31 Chemocentryx, Inc. Immunomodulator compounds
WO2019032547A1 (en) 2017-08-08 2019-02-14 Chemocentryx, Inc. Macrocyclic immunomodulators
WO2019034172A1 (en) 2017-08-18 2019-02-21 上海轶诺药业有限公司 Compound having pd-l1 inhibitory activity, preparation method therefor and use thereof
WO2019059411A1 (en) 2017-09-20 2019-03-28 Chugai Seiyaku Kabushiki Kaisha Dosage regimen for combination therapy using pd-1 axis binding antagonists and gpc3 targeting agent
WO2019070643A1 (en) 2017-10-03 2019-04-11 Bristol-Myers Squibb Company Immunomodulators
WO2019074241A1 (en) 2017-10-11 2019-04-18 정원혁 Inhibitor against interaction between pd-1 and pd-l1, comprising phenylacetylene derivative
WO2019076343A1 (en) 2017-10-19 2019-04-25 上海长森药业有限公司 Pd-1/pd-l1 small-molecule inhibitor and preparation method therefor and use thereof
WO2019128918A1 (en) 2017-12-29 2019-07-04 广州再极医药科技有限公司 Aromatic vinyl or aromatic ethyl derivative, preparation method therefor, intermediate, pharmaceutical composition, and application
WO2019160882A1 (en) 2018-02-13 2019-08-22 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2019165043A2 (en) 2018-02-22 2019-08-29 Chemocentryx, Inc. Indane-amines as pd-l1 antagonists
WO2019170745A1 (en) 2018-03-08 2019-09-12 Syngenta Participations Ag Herbicidal compounds
US20190276435A1 (en) 2018-03-08 2019-09-12 Incyte Corporation AMINOPYRAZINE DIOL COMPOUNDS AS PI3K-y INHIBITORS
WO2019175897A1 (en) 2018-03-13 2019-09-19 Jubilant Biosys Limited Bicyclic compounds as inhibitors of pd1/pd-l1 interaction/activation
WO2019174533A1 (en) 2018-03-13 2019-09-19 广东东阳光药业有限公司 Small molecule pd-1/pd-l1 inhibitor and use thereof in drugs
WO2019191707A1 (en) 2018-03-30 2019-10-03 Incyte Corporation Heterocyclic compounds as immunomodulators
WO2019191624A1 (en) 2018-03-29 2019-10-03 Arbutus Biopharma, Inc. Substituted 1,1'-biphenyl compounds, analogues thereof, and methods using same
WO2019192506A1 (en) 2018-04-03 2019-10-10 Betta Pharmaceuticals Co., Ltd Immunomodulators, compositions and methods thereof
WO2019204609A1 (en) 2018-04-19 2019-10-24 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2019217821A1 (en) 2018-05-11 2019-11-14 Incyte Corporation Tetrahydro-imidazo[4,5-c]pyridine derivatives as pd-l1 immunomodulators
WO2020014643A1 (en) 2018-07-13 2020-01-16 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2020011246A1 (en) 2018-07-13 2020-01-16 广州丹康医药生物有限公司 Benzene ring-containing compound, preparation method therefor and application thereof
WO2020086556A1 (en) 2018-10-24 2020-04-30 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
US11155520B2 (en) 2018-03-08 2021-10-26 Dow Agrosciences Llc Picolinamides as fungicides

Family Cites Families (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943593A (en) 1988-02-25 1990-07-24 Merrell Dow Pharmaceuticals Inc. Inhibitors of lysyl oxidase
US5182297A (en) 1988-02-25 1993-01-26 Merrell Dow Pharmaceuticals Inc. Inhibitors of lysyl oxidase
US5252608A (en) 1988-02-25 1993-10-12 Merrell Dow Pharmaceuticals Inc. Inhibitors of lysyl oxidase
US5021456A (en) 1988-02-25 1991-06-04 Merrell Dow Pharmaceuticals Inc. Inhibitors of lysyl oxidase
US4965288A (en) 1988-02-25 1990-10-23 Merrell Dow Pharmaceuticals Inc. Inhibitors of lysyl oxidase
US5059714A (en) 1988-02-25 1991-10-22 Merrell Dow Pharmaceuticals Inc. Inhibitors of lysyl oxidase
US5120764A (en) 1988-11-01 1992-06-09 Merrell Dow Pharmaceuticals Inc. Inhibitors of lysyl oxidase
US4997854A (en) 1989-08-25 1991-03-05 Trustees Of Boston University Anti-fibrotic agents and methods for inhibiting the activity of lysyl oxidase in-situ using adjacently positioned diamine analogue substrates
US6319494B1 (en) 1990-12-14 2001-11-20 Cell Genesys, Inc. Chimeric chains for receptor-associated signal transduction pathways
IL104570A0 (en) 1992-03-18 1993-05-13 Yeda Res & Dev Chimeric genes and cells transformed therewith
FR2828206B1 (en) 2001-08-03 2004-09-24 Centre Nat Rech Scient USE OF LYSYL OXIDASE INHIBITORS FOR CELL CULTURE AND TISSUE ENGINEERING
US7446190B2 (en) 2002-05-28 2008-11-04 Sloan-Kettering Institute For Cancer Research Nucleic acids encoding chimeric T cell receptors
US7405295B2 (en) 2003-06-04 2008-07-29 Cgi Pharmaceuticals, Inc. Certain imidazo[1,2-a]pyrazin-8-ylamines and method of inhibition of Bruton's tyrosine kinase by such compounds
AU2005245875C1 (en) 2004-05-13 2017-08-31 Icos Corporation Quinazolinones as inhibitors of human phosphatidylinositol 3-kinase delta
US20090142345A1 (en) 2005-03-15 2009-06-04 Takeda Pharmaceutical Company Limited Prophylactic/therapeutic agent for cancer
CN117534755A (en) 2005-05-09 2024-02-09 小野药品工业株式会社 Human monoclonal antibodies to programmed death-1 (PD-1) and methods of treating cancer using anti-PD-1 antibodies
KR101888321B1 (en) 2005-07-01 2018-08-13 이. 알. 스퀴부 앤드 선즈, 엘.엘.씨. Human monoclonal antibodies to programmed death ligand 1(pd-l1)
TWI404537B (en) 2005-08-19 2013-08-11 Array Biopharma Inc 8-substituted benzoazepines as toll-like receptor modulators
TWI382019B (en) 2005-08-19 2013-01-11 Array Biopharma Inc Aminodiazepines as toll-like receptor modulators
KR20150043565A (en) 2007-03-12 2015-04-22 와이엠 바이오사이언시즈 오스트레일리아 피티와이 엘티디 Phenyl amino pyrimidine compounds and uses thereof
MX2009013832A (en) 2007-06-29 2010-03-10 Gilead Sciences Inc Purine derivatives and their use as modulators of toll-like receptor 7.
ES2402334T3 (en) 2007-08-02 2013-04-30 Gilead Biologics, Inc Procedures and compositions for the treatment and diagnosis of fibrosis
LT2824100T (en) 2008-07-08 2018-05-10 Incyte Holdings Corporation 1,2,5-Oxadiazoles as inhibitors of indoleamine 2,3-dioxygenase
CA3092223C (en) 2008-07-21 2023-01-03 Apogenix Ag Tnfsf single chain molecules
DK2313111T3 (en) 2008-08-01 2013-12-02 Ventirx Pharmaceuticals Inc Toll-like receptor agonist formulations and their use
WO2010019702A2 (en) 2008-08-12 2010-02-18 Oncomed Pharmaceuticals, Inc. Ddr1-binding agents and methods of use thereof
US8450321B2 (en) 2008-12-08 2013-05-28 Gilead Connecticut, Inc. 6-(1H-indazol-6-yl)-N-[4-(morpholin-4-yl)phenyl]imidazo-[1,2-A]pyrazin-8-amine, or a pharmaceutically acceptable salt thereof, as a SYK inhibitor
ES2623794T3 (en) 2008-12-09 2017-07-12 Gilead Sciences, Inc. Intermediates for the preparation of toll receptor modulators
ES2620629T3 (en) 2009-08-18 2017-06-29 Ventirx Pharmaceuticals, Inc. Substituted benzoazepines as modulators of the Toll type receptor
WO2011022509A2 (en) 2009-08-18 2011-02-24 Ventirx Pharmaceuticals, Inc. Substituted benzoazepines as toll-like receptor modulators
MX2012009088A (en) 2010-02-04 2012-12-05 Gilead Biologics Inc Antibodies that bind to lysyl oxidase-like 2 (loxl2) and methods of use therefor.
WO2011106573A2 (en) 2010-02-24 2011-09-01 Oryzon Genomics, S.A. Lysine demethylase inhibitors for diseases and disorders associated with hepadnaviridae
US9089520B2 (en) 2010-05-21 2015-07-28 Baylor College Of Medicine Methods for inducing selective apoptosis
DK2578585T3 (en) 2010-05-31 2016-11-14 Ono Pharmaceutical Co PURINONDERIVAT AS BTK kinase inhibitor
PL2608809T3 (en) 2010-08-27 2019-10-31 Gilead Biologics Inc Antibodies to matrix metalloproteinase 9
EP2621499B1 (en) 2010-10-01 2017-11-22 VentiRx Pharmaceuticals, Inc. Methods for the treatment of allergic diseases
SG189071A1 (en) 2010-10-01 2013-05-31 Ventirx Pharmaceuticals Inc Therapeutic use of a tlr agonist and combination therapy
KR102243575B1 (en) 2010-12-09 2021-04-22 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 Use of chimeric antigen receptor-modified t cells to treat cancer
UY33775A (en) 2010-12-10 2012-07-31 Gilead Sciences Inc MACROCYCLIC INHIBITORS OF VIRUS FLAVIVIRIDAE, PHARMACEUTICAL COMPOSITIONS THAT UNDERSTAND AND THEIR USES
MX346387B (en) 2011-01-12 2017-03-02 Ventirx Pharmaceuticals Inc Substituted benzoazepines as toll-like receptor modulators.
PT2663555T (en) 2011-01-12 2017-03-23 Array Biopharma Inc Substituted benzoazepines as toll-like receptor modulators
MA34956B1 (en) 2011-02-12 2014-03-01 Globeimmune Inc THERAPY WITH YEAST FOR CHRONIC INFECTION WITH HEPATITIS B
US9422250B2 (en) 2011-04-08 2016-08-23 Janssen Sciences Ireland Uc Pyrimidine derivatives for the treatment of viral infections
HUE036220T2 (en) 2011-05-18 2018-06-28 Janssen Sciences Ireland Uc Quinazoline derivatives for the treatment of viral infections and further diseases
TWI567061B (en) 2011-07-01 2017-01-21 吉李德科學股份有限公司 Compounds for the treatment of addiction
JP6101205B2 (en) 2011-08-23 2017-03-22 中外製薬株式会社 Novel anti-DDR1 antibody having antitumor activity
GB201115529D0 (en) 2011-09-08 2011-10-26 Imp Innovations Ltd Antibodies, uses and methods
EP2763994A4 (en) 2011-10-04 2015-08-26 Gilead Calistoga Llc Novel quinoxaline inhibitors of pi3k
PL2786996T3 (en) 2011-11-29 2017-01-31 Ono Pharmaceutical Co., Ltd. Purinone derivative hydrochloride
KR101699822B1 (en) 2011-12-21 2017-01-25 노비라 테라퓨틱스, 인코포레이티드 Hepatitis b antiviral agents
UY34573A (en) 2012-01-27 2013-06-28 Gilead Sciences Inc QUINASE INHIBITOR REGULATING THE APOPTOSIS SIGNAL
WO2013116562A1 (en) 2012-02-03 2013-08-08 Gilead Calistoga Llc Compositions and methods of treating a disease with (s)-4 amino-6-((1-(5-chloro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile
BR112014019699B1 (en) 2012-02-08 2021-12-07 Janssen Sciences Ireland Uc PIPERIDINO-PYRIMIDINE DERIVATIVES, THEIR USE IN THE TREATMENT OF VIRAL INFECTIONS AND THE PHARMACEUTICAL COMPOSITION THAT COMPRISES THEM
CN104144924B (en) 2012-03-31 2016-02-24 弗·哈夫曼-拉罗切有限公司 Be used for the treatment of and prevent hepatitis b virus infected 4-methyl-dihydro miazines
US20130267517A1 (en) 2012-03-31 2013-10-10 Hoffmann-La Roche Inc. Novel 4-methyl-dihydropyrimidines for the treatment and prophylaxis of hepatitis b virus infection
MX2014014768A (en) 2012-06-08 2015-05-11 Gilead Sciences Inc Macrocyclic inhibitors of flaviviridae viruses.
AR091279A1 (en) 2012-06-08 2015-01-21 Gilead Sciences Inc MACROCICLIC INHIBITORS OF VIRUS FLAVIVIRIDAE
PT2861604T (en) 2012-06-08 2017-05-05 Gilead Sciences Inc Macrocyclic inhibitors of flaviviridae viruses
ES2707885T3 (en) 2012-08-10 2019-04-05 Janssen Sciences Ireland Unlimited Co Alkylpyrimidines for the treatment of viral infections and other diseases
ES2610758T3 (en) 2012-08-28 2017-05-03 Janssen Sciences Ireland Uc Condensed bicyclic sulfamoyl derivatives and their use as medicines in the treatment of hepatitis B
AR092270A1 (en) 2012-08-28 2015-04-08 Janssen R&D Ireland SULFAMOILARILAMIDAS AND ITS USE AS MEDICINES FOR THE TREATMENT OF HEPATITIS B
WO2014037480A1 (en) 2012-09-10 2014-03-13 F. Hoffmann-La Roche Ag 6-amino acid heteroaryldihydropyrimidines for the treatment and prophylaxis of hepatitis b virus infection
TW201427995A (en) 2012-09-24 2014-07-16 Gilead Sciences Inc Anti-DDR1 antibodies
PL2903968T3 (en) 2012-10-02 2017-05-31 Gilead Sciences, Inc. Inhibitors of histone demethylases
KR102217111B1 (en) 2012-10-10 2021-02-18 얀센 사이언시즈 아일랜드 언리미티드 컴퍼니 Pyrrolo[3,2-d]pyrimidine derivatives for the treatment of viral infections and other diseases
KR101268466B1 (en) 2012-11-12 2013-06-04 유병수 Slanted windmill
NZ706226A (en) 2012-11-16 2019-09-27 Janssen Sciences Ireland Uc Heterocyclic substituted 2-amino-quinazoline derivatives for the treatment of viral infections
MX2015007205A (en) 2012-12-06 2016-03-31 Quanticel Pharmaceuticals Inc Histone demethylase inhibitors.
US8969343B2 (en) 2012-12-19 2015-03-03 Quanticel Pharmaceuticals, Inc. Histone demethylase inhibitors
EA028774B1 (en) 2012-12-21 2017-12-29 Квонтисел Фармасьютикалс, Инк. Histone demethylase inhibitors
BR112015014592A2 (en) 2012-12-21 2017-07-11 Gilead Calistoga Llc compound, pharmaceutical composition, and method for treating a human
TW201441216A (en) 2012-12-21 2014-11-01 Gilead Calistoga Llc Phosphatidylinositol 3-kinase inhibitors
EP2958900B1 (en) 2013-02-21 2019-04-10 Janssen Sciences Ireland Unlimited Company 2-aminopyrimidine derivatives for the treatment of viral infections
JP6514117B2 (en) 2013-02-27 2019-05-15 エピセラピューティクス アーペーエス Inhibitors of histone demethylase
PT2961732T (en) 2013-02-28 2017-06-26 Janssen Sciences Ireland Uc Sulfamoyl-arylamides and the use thereof as medicaments for the treatment of hepatitis b
WO2014165128A2 (en) 2013-03-12 2014-10-09 Novira Therapeutics, Inc. Hepatitis b antiviral agents
JP6320506B2 (en) 2013-03-12 2018-05-09 セルジーン クオンティセル リサーチ,インク. Histone demethylase inhibitor
CA2904760A1 (en) 2013-03-13 2014-09-18 Genentech, Inc. Pyrazolo compounds and uses thereof
US9527829B2 (en) 2013-03-14 2016-12-27 Celgene Quanticel Research, Inc. Histone demethylase inhibitors
WO2014151106A1 (en) 2013-03-15 2014-09-25 Quanticel Pharmaceuticals, Inc. Histone demethylase inhibitors
EA027068B1 (en) 2013-04-03 2017-06-30 Янссен Сайенсиз Айрлэнд Юси N-phenyl-carboxamide derivatives and the use thereof as medicaments for the treatment of hepatitis b
TWI527811B (en) 2013-05-09 2016-04-01 吉李德科學股份有限公司 Benzimidazole derivatives as bromodomain inhibitors
JP6441315B2 (en) 2013-05-17 2018-12-19 ヤンセン・サイエンシズ・アイルランド・ユーシー Sulfamoylthiophenamide derivatives and their use as pharmaceuticals for treating hepatitis B
JP6533217B2 (en) 2013-05-17 2019-06-19 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 6-Bridged Heteroaryldihydropyrimidines for the Treatment and Prevention of Hepatitis B Virus Infection
JO3603B1 (en) 2013-05-17 2020-07-05 Janssen Sciences Ireland Uc Sulphamoylpyrrolamide derivatives and the use thereof as medicaments for the treatment of hepatitis b
BR112015031475A2 (en) 2013-06-14 2017-07-25 Gilead Sciences Inc compound, pharmaceutical composition, method for treating a disease or condition, kit, and use of compound.
US10450270B2 (en) 2013-07-25 2019-10-22 Janssen Sciences Ireland Uc Glyoxamide substituted pyrrolamide derivatives and the use thereof as medicaments for the treatment of hepatitis B
MD4659B1 (en) 2013-07-30 2019-11-30 Gilead Connecticut Inc Polymorph of SYK inhibitors
RS61540B1 (en) 2013-09-11 2021-04-29 Inst Nat Sante Rech Med Methods and pharmaceutical compositions for the treatment of hepatitis b virus infection
MX368158B (en) 2013-10-23 2019-09-20 Janssen Sciences Ireland Uc Carboxamide derivatives and the use thereof as medicaments for the treatment of hepatitis b.
EP3068774B1 (en) 2013-11-14 2019-12-25 Novira Therapeutics Inc. Azepane derivatives and methods of treating hepatitis b infections
TWI735853B (en) 2013-12-23 2021-08-11 美商克洛諾斯生技有限公司 Syk inhibitors
US9290505B2 (en) 2013-12-23 2016-03-22 Gilead Sciences, Inc. Substituted imidazo[1,2-a]pyrazines as Syk inhibitors
US9169212B2 (en) 2014-01-16 2015-10-27 Novira Therapeutics, Inc. Azepane derivatives and methods of treating hepatitis B infections
US9181288B2 (en) 2014-01-16 2015-11-10 Novira Therapeutics, Inc. Azepane derivatives and methods of treating hepatitis B infections
EP3099685B1 (en) 2014-01-30 2018-04-18 F.Hoffmann-La Roche Ag Novel dihydroquinolizinones for the treatment and prophylaxis of hepatitis b virus infection
EA035848B1 (en) 2014-02-06 2020-08-20 Янссен Сайенсиз Айрлэнд Юси Sulphamoylpyrrolamide derivatives and the use thereof as medicaments for the treatment of hepatitis b
CA2935811C (en) 2014-03-07 2018-09-18 F. Hoffmann-La Roche Ag 6-fused heteroaryldihydropyrimidines for the treatment and prophylaxis of hepatitis b virus infection
US9400280B2 (en) 2014-03-27 2016-07-26 Novira Therapeutics, Inc. Piperidine derivatives and methods of treating hepatitis B infections
MA39838B1 (en) 2014-04-04 2019-05-31 Pfizer Bicyclic heteroaryl or fused aryl compounds and their use as irak4 inhibitors
SG10201808825XA (en) 2014-04-10 2018-11-29 Seattle Childrens Hospital Dba Seattle Childrens Res Inst Defined composition gene modified t-cell products
EP3143020B1 (en) 2014-05-13 2019-08-21 F. Hoffmann-La Roche AG Dihydroquinolizinones for the treatment and prophylaxis of hepatitis b virus infection
CN106535884A (en) 2014-06-06 2017-03-22 弗雷克萨斯生物科学公司 Immunoregulatory agents
WO2016012470A1 (en) 2014-07-25 2016-01-28 F. Hoffmann-La Roche Ag New amorphous and crystalline forms of (3s)-4-[[(4r)-4-(2-chloro-4-fluoro-phenyl)-5-methoxycarbonyl-2-thiazol-2-yl-1, 4-dihydropyrimidin-6-yl]methyl]morpholine-3-carboxylic acid
JP6506836B2 (en) 2014-08-14 2019-04-24 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Novel pyridazones and triazinones for the treatment and prevention of hepatitis B virus infection
KR20170040805A (en) 2014-08-27 2017-04-13 길리애드 사이언시즈, 인코포레이티드 Compounds and methods for inhibiting histone demethylases
TWI751102B (en) 2014-08-28 2022-01-01 美商奇諾治療有限公司 Antibodies and chimeric antigen receptors specific for cd19
EP3197884B1 (en) 2014-09-26 2019-03-06 Gilead Sciences, Inc. Aminotriazine derivatives useful as tank-binding kinase inhibitor compounds
EP3204379B1 (en) 2014-10-10 2019-03-06 Genentech, Inc. Pyrrolidine amide compounds as histone demethylase inhibitors
US9637485B2 (en) 2014-11-03 2017-05-02 Hoffmann-La Roche Inc. 6,7-dihydrobenzo[a]quinolizin-2-one derivatives for the treatment and prophylaxis of hepatitis B virus infection
UY36390A (en) 2014-11-05 2016-06-01 Flexus Biosciences Inc MODULATING COMPOUNDS OF INDOLAMINE ENZYME 2,3-DIOXYGENASE (IDO), ITS SYNTHESIS METHODS AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
US11266739B2 (en) 2014-12-03 2022-03-08 Juno Therapeutics, Inc. Methods and compositions for adoptive cell therapy
US20160158360A1 (en) 2014-12-05 2016-06-09 Genentech, Inc. Methods and compositions for treating cancer using pd-1 axis antagonists and hpk1 antagonists
CA2966234A1 (en) 2014-12-15 2016-06-23 Bellicum Pharmaceuticals, Inc. Methods for controlled elimination of therapeutic cells
US9676793B2 (en) 2014-12-23 2017-06-13 Hoffmann-Laroche Inc. Co-crystals of 5-amino-2-oxothiazolo[4,5-d]pyrimidin-3(2H)-yl-5-hydroxymethyl tetrahydrofuran-3-yl acetate and methods for preparing and using the same
AR103222A1 (en) 2014-12-23 2017-04-26 Hoffmann La Roche PROCEDURE FOR THE PREPARATION OF ANALOGS OF 4-PHENYL-5-ALCOXICARBONIL-2-THIAZOL-2-IL-1,4-DIHYDROPIRIMIDINE
EP3240537B1 (en) 2014-12-30 2020-09-09 F. Hoffmann-La Roche AG Novel tetrahydropyridopyrimidines and tetrahydropyridopyridines for the treatment and prophylaxis of hepatitis b virus infection
CN107109497A (en) 2014-12-31 2017-08-29 豪夫迈·罗氏有限公司 HBV cccDNA high flux new method is quantified from cell lysate by real-time PCR
MA41338B1 (en) 2015-01-16 2019-07-31 Hoffmann La Roche Pyrazine compounds for the treatment of infectious diseases
CN107208102B (en) 2015-01-27 2021-07-06 豪夫迈·罗氏有限公司 Recombinant HBV CCcDNA, method for producing same and use thereof
JP6435054B2 (en) 2015-02-11 2018-12-05 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Novel 2-oxo-6,7-dihydrobenzo [a] quinolidine-3-carboxylic acid derivatives for the treatment and prevention of hepatitis B virus infection
CA2985642A1 (en) 2015-05-15 2016-11-24 Gilead Sciences, Inc. Benzimidazole and imadazopyridine carboximidamide compounds having activity as inhibitors of indoleamine 2,3-dioxygenase
EP3303586A1 (en) 2015-05-29 2018-04-11 Juno Therapeutics, Inc. Composition and methods for regulating inhibitory interactions in genetically engineered cells
AU2016323985B2 (en) 2015-09-17 2022-12-15 Novartis Ag CAR T cell therapies with enhanced efficacy
US9798514B2 (en) 2016-03-09 2017-10-24 Spotify Ab System and method for color beat display in a media content environment
US10563620B2 (en) 2016-08-12 2020-02-18 Rolls-Royce North American Technologies Inc. Expandable exhaust cone
US10734026B2 (en) 2016-09-01 2020-08-04 Facebook, Inc. Systems and methods for dynamically providing video content based on declarative instructions
EP3596075B1 (en) 2017-03-15 2023-10-11 F. Hoffmann-La Roche AG Azaindoles as inhibitors of hpk1
PE20200008A1 (en) 2017-03-30 2020-01-06 Hoffmann La Roche ISOQUINOLINS AS INHIBITORS OF HPK1
TW201904964A (en) 2017-03-30 2019-02-01 瑞士商赫孚孟拉羅股份公司 Acridine as an inhibitor of HPK1

Patent Citations (406)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031910A1 (en) 1996-02-28 1997-09-04 Merck & Co., Inc. Fibrinogen receptor antagonists
WO1999017777A1 (en) 1997-10-08 1999-04-15 Merck & Co., Inc. Inhibitors of prenyl-protein transferase
US20030013028A1 (en) 1999-06-22 2003-01-16 Ricoh Company, Ltd. Reaction product, process for the production thereof, electrophotographic photoconductor using the reaction product, electrophotographic apparatus using the photoconductor, and process cartridge for electrophotographic apparatus
JP2001002661A (en) 1999-06-22 2001-01-09 Ricoh Co Ltd Nitrile compound and its production
US20020091116A1 (en) 1999-09-17 2002-07-11 Bing-Yan Zhu Inhibitors of factor Xa
WO2001019798A2 (en) 1999-09-17 2001-03-22 Cor Therapeutics Inc. INHIBITORS OF FACTOR Xa
WO2001056989A2 (en) 2000-02-01 2001-08-09 Cor Therapeutics, Inc. Inhibitors of factor xa
JP2001335476A (en) 2000-05-29 2001-12-04 Shionogi & Co Ltd New use of tricyclic compound
WO2002000647A1 (en) 2000-06-23 2002-01-03 Bristol-Myers Squibb Pharma Company Heteroaryl-phenyl substituted factor xa inhibitors
WO2002020436A2 (en) 2000-09-05 2002-03-14 Neogenesis Pharmaceuticals, Inc. Methods for forming combinatorial libraries combining amide bond formation with epoxide opening
WO2002051775A2 (en) 2000-12-22 2002-07-04 Neogenesis Pharmaceuticals, Inc. Methods for forming combinatorial libraries using reductive amination
DE10104279A1 (en) 2001-01-31 2002-08-01 Heinz Langhals Fluorescent detection of prions, useful for diagnosis, by binding to fluorescently labeled Congo Red derivative, also treatment of prion diseases e.g. Creutzfeld-Jakob disease
US20040235877A1 (en) 2001-09-14 2004-11-25 Natsuki Ishizuka Novel use of tricyclic compound
WO2004052848A1 (en) 2002-12-11 2004-06-24 Eli Lilly And Company Novel mch receptor antagonists
WO2004054582A1 (en) 2002-12-13 2004-07-01 Neurogen Corporation Combination therapy for the treatment of pain
WO2004084824A2 (en) 2003-03-24 2004-10-07 Merck & Co., Inc. Biaryl substituted 6-membered heterocyles as sodium channel blockers
US20040209936A1 (en) 2003-04-17 2004-10-21 Bratton Larry D. Compounds that modulate PPAR activity and methods of preparation
WO2005044797A1 (en) 2003-11-06 2005-05-19 Addex Pharmaceuticals Sa Allosteric modulators of metabotropic glutamate receptors
WO2005051890A1 (en) 2003-11-19 2005-06-09 Smithkline Beecham Corporation Aminophenylcyclopropyl carboxylic acids and derivatives as agonists to gpr40
WO2005086808A2 (en) 2004-03-08 2005-09-22 The University Of North Carolina At Chapel Hill NOVEL DICATIONIC IMIDAZO[1,2-a]PYRIDINES AND 5,6,7,8-TETRAHYDRO-IMIDAZO[1,2a]PYRIDINES AS ANTIPROTOZOAL AGENTS
US20050224524A1 (en) 2004-03-29 2005-10-13 Khan Ayub I Aerosol
WO2005095338A1 (en) 2004-03-30 2005-10-13 Takeda Pharmaceutical Company Limited Alkoxyphenylpropanoic acid derivatives
US20060019967A1 (en) 2004-07-21 2006-01-26 Su-Ying Wu SARS CoV main protease inhibitors
WO2006011615A1 (en) 2004-07-27 2006-02-02 Takeda Pharmaceutical Company Limited Remedy for diabetes
WO2006038738A1 (en) 2004-10-08 2006-04-13 Takeda Pharmaceutical Company Limited Receptor function regulating agent
WO2006040646A1 (en) 2004-10-14 2006-04-20 Pfizer, Inc. Benzimidazole or indole amides as inhibitors of pin1
WO2006052566A2 (en) 2004-11-03 2006-05-18 Arena Pharmaceuticals, Inc. Gpr41 and modulators thereof for the treatment of insulin-related disorders
WO2006083612A1 (en) 2005-01-28 2006-08-10 Merck & Co., Inc. Antidiabetic bicyclic compounds
WO2006083781A1 (en) 2005-01-31 2006-08-10 Merck & Co., Inc. Antidiabetic bicyclic compounds
WO2006091394A2 (en) 2005-02-11 2006-08-31 Coley Pharmaceutical Group, Inc. Substituted imidazoquinolines and imidazonaphthyridines
WO2006123257A2 (en) 2005-05-18 2006-11-23 Addex Pharma Sa Phenyl-3-{(3-(1h-pyrrol-2-yl)-[1, 2 , 4]0xadiaz0l-5-yl]piperidin-1-yl}-methanone derivatives and related compounds as positive allosteric modulators of metabotropic glutamate receptors
WO2006127503A2 (en) 2005-05-20 2006-11-30 Amgen Inc Compounds, pharmaceutical compositions and methods for their use in treating metabolic disorders
WO2007013689A1 (en) 2005-07-29 2007-02-01 Takeda Pharmaceutical Company Limited Cyclopropanecarboxylic acid compound
WO2007033002A1 (en) 2005-09-14 2007-03-22 Amgen Inc. Conformationally constrained 3- (4-hydroxy-phenyl) - substituted-propanoic acids useful for treating metabolic disorders
WO2007047591A2 (en) 2005-10-19 2007-04-26 Merck & Co., Inc. Cetp inhibitors
WO2007049050A2 (en) 2005-10-27 2007-05-03 Heptahelix Ab Modulators of gpr40 for the treatment of diabetes
WO2007052466A1 (en) 2005-11-04 2007-05-10 Eisai R & D Management Co., Ltd. Method of screening substance useful in treating disease with the use of gpr40 and phospholipase
US20100249175A1 (en) 2005-12-02 2010-09-30 Wilson W David Dicationic compounds which selectively recognize G-quadruplex DNA
US20070155726A1 (en) 2005-12-29 2007-07-05 Schering Aktiengesellschaft Diamine derivatives as inhibitors of leukotriene A4 hydrolase
WO2007096142A2 (en) 2006-02-22 2007-08-30 Philogen Spa Vascular tumor markers
WO2007106469A2 (en) 2006-03-14 2007-09-20 Amgen Inc. Bicyclic carboxylic acid derivatives useful for treating metabolic disorders
WO2007104560A1 (en) 2006-03-15 2007-09-20 Grünenthal GmbH Substituted 4-amino-quinazoline derivatives as regulators of metabotropic glutamate receptors and their use for producing drugs
WO2007109376A2 (en) 2006-03-23 2007-09-27 Novartis Ag Anti-tumor cell antigen antibody therapeutics
US8835451B2 (en) 2006-03-31 2014-09-16 Novartis Ag Compounds
WO2007123225A1 (en) 2006-04-24 2007-11-01 Astellas Pharma Inc Oxadiazolidinedione compound
WO2007128460A1 (en) 2006-04-28 2007-11-15 Laboratorios Del Dr. Esteve, S.A. Substituted 3 -amino-4 -hydroxy pyrrolidines compounds, their preparation and use as medicaments
WO2007132307A1 (en) 2006-05-09 2007-11-22 Pfizer Products Inc. Cycloalkylamino acid derivatives and pharmaceutical compositions thereof
WO2007131619A1 (en) 2006-05-11 2007-11-22 Sanofi-Aventis 4,5-diphenyl-pyrimidinyl-oxy or -mercapto substituted carboxylic acids, method for the production and use thereof as medicaments
WO2007131621A1 (en) 2006-05-11 2007-11-22 Sanofi-Aventis 4,5-diphenyl-pyrimidinyl substituted carboxylic acids, method for the production and use thereof as medicaments
WO2007131622A1 (en) 2006-05-11 2007-11-22 Sanofi-Aventis Phenylamino-benzoxazole substituted carboxylic acids, method for their production and use thereof as medicaments
WO2007131620A1 (en) 2006-05-11 2007-11-22 Sanofi-Aventis 4,5-diphenyl-pyrimidinyl-amino substituted carboxylic acids, method for the production and use thereof as medicaments
WO2007136572A2 (en) 2006-05-15 2007-11-29 Merck & Co., Inc. Antidiabetic bicyclic compounds
WO2008001931A2 (en) 2006-06-27 2008-01-03 Takeda Pharmaceutical Company Limited Fused cyclic compounds
WO2008014236A1 (en) 2006-07-24 2008-01-31 Tetralogic Pharmaceuticals Corporation Dimeric iap inhibitors
WO2008021936A2 (en) 2006-08-11 2008-02-21 Bristol-Myers Squibb Company Hepatitis c virus inhibitors
WO2008030520A1 (en) 2006-09-07 2008-03-13 Amgen Inc. Heterocyclic gpr40 modulators
WO2008037266A1 (en) 2006-09-25 2008-04-03 Universite Libre De Bruxelles Inhibitors of conventional protein kinase c isozymes and use thereof for treating inflammatory diseases
WO2008063768A2 (en) 2006-10-12 2008-05-29 Case Western Reserve University Compositions and methods for treating metabolic diseases
WO2008054674A2 (en) 2006-10-31 2008-05-08 Merck & Co., Inc. Antidiabetic bicyclic compounds
WO2008054675A2 (en) 2006-10-31 2008-05-08 Merck & Co., Inc. Antidiabetic bicyclic compounds
US7750048B2 (en) 2006-11-15 2010-07-06 Janssen Pharmaceutica Nv GPR40 agonists
WO2008066097A1 (en) 2006-12-01 2008-06-05 Astellas Pharma Inc. Carboxylic acid derivative
WO2008065409A2 (en) 2006-12-01 2008-06-05 Betagenon Ab Combination for use in the treatment of cancer, comprising tamoxifen or an aromatase inhibitor
WO2008067644A1 (en) 2006-12-04 2008-06-12 Boehringer Ingelheim International Gmbh Inhibitors of hiv replication
WO2008073865A2 (en) 2006-12-11 2008-06-19 Novartis Ag Method of preventing or treating myocardial ischemia
US7687522B2 (en) 2006-12-20 2010-03-30 Amgen Inc. Substituted pyridines and pyrimidines and their use in treatment of cancer
WO2008079965A1 (en) 2006-12-22 2008-07-03 Incyte Corporation Substituted heterocycles as janus kinase inhibitors
WO2008083027A1 (en) 2006-12-28 2008-07-10 Abbott Laboratories Inhibitors of poly(adp-ribose)polymerase
WO2008090327A1 (en) 2007-01-22 2008-07-31 Betagenon Ab New combination for use in the treatment of cancer
WO2008090356A1 (en) 2007-01-25 2008-07-31 Betagenon Ab Thiazolidinone derivatives useful in the treatment of cancer and disorders caused by excess adiposity
WO2008106202A1 (en) 2007-02-27 2008-09-04 Housey Gerard M Theramutein modulators
WO2008130514A1 (en) 2007-04-16 2008-10-30 Amgen Inc. Substituted biphenyl phenoxy-, thiophenyl- and aminophenylpropanoic acid gpr40 modulators
WO2008139987A1 (en) 2007-04-26 2008-11-20 Japan Science And Technology Agency G-protein-conjugated receptor agonist
WO2008147852A1 (en) 2007-05-22 2008-12-04 Taigen Biotechnology Co., Ltd. Kinesin inhibitors
WO2008144925A1 (en) 2007-05-30 2008-12-04 Aegera Therapeutics Inc. Iap bir domain binding compounds
WO2008156656A2 (en) 2007-06-13 2008-12-24 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Method for making biaryl compounds, compounds made by the method, and method for their use
EP2002838A1 (en) 2007-06-13 2008-12-17 Bayer Schering Pharma AG Use of aryl and hetaryl amide derivatives as modulators of an EP2 receptor
WO2009017822A2 (en) 2007-08-02 2009-02-05 Amgen Inc. Pi3 kinase modulators and methods of use
WO2009025983A2 (en) 2007-08-17 2009-02-26 E. I. Du Pont De Nemours And Company Method for preparing 5-haloalkyl-4,5-dihydroisoxazole derivatives
WO2009038204A1 (en) 2007-09-17 2009-03-26 Pharma Frontier Co., Ltd. Novel long-chain fatty acid derivative compound and g-protein-coupled receptor agonist containing the compound as active ingredient
WO2009039943A1 (en) 2007-09-21 2009-04-02 Sanofi-Aventis (carboxylalkylene-phenyl)-phenyl-oxalamides, method for the production thereof, and use of same as a medicament
WO2009039942A1 (en) 2007-09-21 2009-04-02 Sanofi-Aventis (cyclopropyl-phenyl)-phenyl-oxalamides, method for the production thereof, and use of same as a medicament
WO2009047798A2 (en) 2007-10-08 2009-04-16 Advinus Therapeutics Private Limited Acetamide derivatives as glucokinase activators, their process and medicinal applications
WO2009048527A1 (en) 2007-10-10 2009-04-16 Amgen Inc. Substituted biphenyl gpr40 modulators
WO2009054390A1 (en) 2007-10-23 2009-04-30 Astellas Pharma Inc. Thiazolidinedione compound
WO2009054468A1 (en) 2007-10-24 2009-04-30 Astellas Pharma Inc. Azolecarboxamide compound or salt thereof
WO2009054479A1 (en) 2007-10-26 2009-04-30 Japan Tobacco Inc. Spiro-ring compound and use thereof for medical purposes
WO2009058237A1 (en) 2007-10-29 2009-05-07 Merck & Co., Inc. Antidiabetic tricyclic compounds
WO2009102568A1 (en) 2008-02-13 2009-08-20 Bristol-Myers Squibb Company Conformationally restricted biphenyl derivatives for use as hepatitis c virus inhibitors
WO2009102633A1 (en) 2008-02-13 2009-08-20 Bristol-Myers Squibb Company Hepatitis c virus inhibitors
WO2009111056A1 (en) 2008-03-06 2009-09-11 Amgen Inc. Conformationally constrained carboxylic acid derivatives useful for treating metabolic disorders
WO2009112445A1 (en) 2008-03-10 2009-09-17 Novartis Ag Method of increasing cellular phosphatidyl choline by dgat1 inhibition
WO2010012650A1 (en) 2008-07-28 2010-02-04 Syddansk Universitet Compounds for the treatment of metabolic diseases
WO2010017870A1 (en) 2008-08-14 2010-02-18 Merck Patent Gmbh Bicyclic triazole derivatives for treating tumors
WO2010039238A1 (en) 2008-10-01 2010-04-08 Synta Pharmaceuticals Corp. Compounds for inflammation and immune-related uses
WO2010045258A2 (en) 2008-10-15 2010-04-22 Amgen Inc. Spirocyclic gpr40 modulators
WO2010066682A1 (en) 2008-12-08 2010-06-17 Euroscreen S.A. Compounds, pharmaceutical composition and methods for use in treating metabolic disorders
US8541424B2 (en) 2008-12-23 2013-09-24 Abbott Laboratories Anti-viral compounds
WO2010082563A1 (en) 2009-01-19 2010-07-22 第一三共株式会社 Cyclic compound having hetero atom
WO2010085525A1 (en) 2009-01-23 2010-07-29 Schering Corporation Bridged and fused heterocyclic antidiabetic compounds
WO2010085528A1 (en) 2009-01-23 2010-07-29 Schering Corporation Bridged and fused antidiabetic compounds
WO2010085522A1 (en) 2009-01-23 2010-07-29 Schering Corporation Pentafluorosulpholane-containing antidiabetic compounds
WO2010091176A1 (en) 2009-02-05 2010-08-12 Schering Corporation Phthalazine-containing antidiabetic compounds
WO2010091413A1 (en) 2009-02-09 2010-08-12 Enanta Pharmaceuticals, Inc. Linked dibenzimidazole derivatives
WO2010096462A1 (en) 2009-02-17 2010-08-26 Enanta Pharmaceuticals, Inc Linked diimidazole derivatives
WO2010099527A1 (en) 2009-02-27 2010-09-02 Enanta Pharmaceuticals, Inc. Hepatitis c virus inhibitors
WO2010111534A1 (en) 2009-03-27 2010-09-30 Presidio Pharmaceuticals, Inc. Fused ring inhibitors of hepatitis c
WO2010123016A1 (en) 2009-04-22 2010-10-28 アステラス製薬株式会社 Carboxylic acid compound
WO2010123017A1 (en) 2009-04-22 2010-10-28 アステラス製薬株式会社 Tetrazole compound
WO2010132601A1 (en) 2009-05-13 2010-11-18 Gilead Sciences, Inc. Antiviral compounds
US8273341B2 (en) 2009-05-13 2012-09-25 Gilead Sciences, Inc. Antiviral compounds
WO2010143733A1 (en) 2009-06-09 2010-12-16 Takeda Pharmaceutical Company Limited Novel fused cyclic compound and use thereof
WO2010144646A2 (en) 2009-06-11 2010-12-16 Abbott Laboratories Anti-viral compounds
WO2011008709A1 (en) 2009-07-13 2011-01-20 Gilead Sciences, Inc. Apoptosis signal-regulating kinase inhibitors
WO2011024001A1 (en) 2009-08-25 2011-03-03 Ark Therapeutics Limited Np-1 antagonists and their therapeutic use
WO2011031934A1 (en) 2009-09-11 2011-03-17 Enanta Pharmaceuticals, Inc. Hepatitis c virus inhibitors
WO2011031965A1 (en) 2009-09-14 2011-03-17 Gilead Sciences, Inc. Modulators of toll-like receptors
WO2011044073A1 (en) 2009-10-06 2011-04-14 Bristol-Myers Squibb Company Pyrrolidine gpr40 modulators
WO2011046851A1 (en) 2009-10-15 2011-04-21 Eli Lilly And Company Spiropiperidine compounds and pharmaceutical use thereof for treating diabetes
US20150197538A1 (en) 2009-10-22 2015-07-16 Washington University Compounds and methods for treating bacterial infections
WO2011049825A1 (en) 2009-10-22 2011-04-28 Gilead Sciences, Inc. Derivatives of purine or deazapurine useful for the treatment of (inter alia) viral infections
US20120309701A1 (en) 2009-10-22 2012-12-06 The Washington University Compounds and methods for treating bacterial infections
WO2011052756A1 (en) 2009-10-30 2011-05-05 持田製薬株式会社 Novel 3-hydroxy-5-arylisoxazole derivative
US20120289558A1 (en) 2009-11-09 2012-11-15 Neurogenetic Pharmaceuticals, Inc. Gamma-secretase modulatory compounds, methods for identifying same, and uses therefor
WO2011066241A1 (en) 2009-11-25 2011-06-03 Schering Corporation Fused tricyclic compounds and derivatives thereof useful for the treatment of viral diseases
WO2011066183A1 (en) 2009-11-30 2011-06-03 Eli Lilly And Company Novel spiropiperidine compounds
WO2011073376A1 (en) 2009-12-18 2011-06-23 Euroscreen S.A. Pyrrolidine or thiazolidine carboxylic acid derivatives, pharmaceutical composition and methods for use in treating metabolic disordersas as agonists of g- protein coupled receptor 43 (gpr43)
WO2011076734A1 (en) 2009-12-21 2011-06-30 Euroscreen S.A. Compounds, pharmaceutical composition and methods for use in treating inflammatory diseases
WO2011076732A1 (en) 2009-12-21 2011-06-30 Euroscreen S.A. Compounds, pharmaceutical composition and methods for use in treating gastrointestinal disorders
WO2011078371A1 (en) 2009-12-25 2011-06-30 持田製薬株式会社 Novel 3-hydroxy-5-arylisothiazole derivative
WO2011080755A1 (en) 2009-12-29 2011-07-07 Advinus Therapeutics Private Limited Fused nitrogen heterocyclic compounds, process of preparation and uses thereof
WO2011082400A2 (en) 2010-01-04 2011-07-07 President And Fellows Of Harvard College Modulators of immunoinhibitory receptor pd-1, and methods of use thereof
WO2011092284A1 (en) 2010-01-29 2011-08-04 Euroscreen S.A. Novel amino acid derivatives and their use as gpr43 receptor modulators
WO2011119858A1 (en) 2010-03-24 2011-09-29 Vertex Pharmaceuticals Incorporated Analogues for the treatment or prevention of flavivirus infections
WO2011119870A1 (en) 2010-03-24 2011-09-29 Vertex Pharmaceuticals Incorporated Analogues for the treatment or prevention of flavivirus infections
US20130023495A1 (en) 2010-03-30 2013-01-24 Novartis Ag Uses of dgat1 inhibitors
WO2011138665A1 (en) 2010-05-06 2011-11-10 Incozen Therapeutics Pvt. Ltd. Novel immunomodulator and anti inflammatory compounds
WO2011143466A1 (en) 2010-05-12 2011-11-17 Vanderbilt University Heterocyclic sulfone mglur4 allosteric potentiators, compositions, and methods of treating neurological dysfunction
WO2011143208A1 (en) 2010-05-13 2011-11-17 Indiana University Research And Technology Corporation Glucagon superfamily peptides exhibiting g protein-coupled receptor activity
WO2011151436A2 (en) 2010-06-04 2011-12-08 Euroscreen S.A. Novel compounds, method for use them and pharmaceutical composition containing them
WO2011161030A1 (en) 2010-06-21 2011-12-29 Sanofi Heterocyclic substituted methoxyphenyl derivatives having an oxo group, method for producing same, and use thereof as gpr40 receptor modulators
WO2012004270A1 (en) 2010-07-05 2012-01-12 Sanofi Spirocyclically substituted 1,3-propane dioxide derivatives, methods for the production thereof and use of the same as medicament
WO2012004269A1 (en) 2010-07-05 2012-01-12 Sanofi (2-aryloxy-acetylamino)-phenyl-propionic acid derivatives, method for producing same and use thereof as pharmaceuticals
WO2012010413A1 (en) 2010-07-05 2012-01-26 Sanofi Aryloxy-alkylene substituted hydroxyphenyl hexynoic acids, methods for the production thereof and use of the same as medicament
JP2012036168A (en) 2010-07-15 2012-02-23 Daiichi Sankyo Co Ltd Pharmaceutical composition containing annular compound having hetero atom
WO2012011124A1 (en) 2010-07-20 2012-01-26 Council Of Scientific & Industrial Research Ordered mesoporous titanosilicate and the process for the preparation thereof
WO2012012627A1 (en) 2010-07-22 2012-01-26 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Method of preventing or treating viral infection
WO2012036168A1 (en) 2010-09-14 2012-03-22 北海道公立大学法人札幌医科大学 Composition for treating muscular dystrophy
WO2012050918A2 (en) 2010-09-29 2012-04-19 Presidio Pharmaceutical, Inc. Tricyclic fused ring inhibitors of hepatitis c
WO2012046869A1 (en) 2010-10-08 2012-04-12 持田製薬株式会社 Cyclic amide derivative
WO2012065904A2 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag Cyanoenamines and their use as fungicides
WO2012068234A2 (en) 2010-11-17 2012-05-24 Gilead Sciences, Inc. Antiviral compounds
US20130310379A1 (en) 2010-11-19 2013-11-21 Constellation Pharmaceuticals Modulators of methyl modifying enzymes, compositions and uses thereof
WO2012072691A1 (en) 2010-12-01 2012-06-07 Boehringer Ingelheim International Gmbh Indanyloxydihydrobenzofuranylacetic acids
WO2012078802A1 (en) 2010-12-08 2012-06-14 Takeda Pharmaceutical Company Limited PREPARATION OF SUBSTITUTED-4,5-DIHYDROPYRROLO[4,3,2-de][2,6]NAPHTHYRIDIN-3(1H)-ONES
WO2012083048A2 (en) 2010-12-15 2012-06-21 Abbott Laboratories Anti-viral compounds
WO2012083059A1 (en) 2010-12-15 2012-06-21 Abbott Laboratories Anti-viral compounds
WO2012083053A2 (en) 2010-12-15 2012-06-21 Abbott Laboratories Anti-viral compounds
WO2012083043A1 (en) 2010-12-15 2012-06-21 Abbott Laboratories Anti-viral compounds
WO2012083061A2 (en) 2010-12-15 2012-06-21 Abbott Laboratories Anti-viral compounds
US20120225851A1 (en) 2010-12-22 2012-09-06 Eutropics Pharmaceuticals, Inc. Compositions and methods useful for treating diseases
WO2012098033A1 (en) 2011-01-19 2012-07-26 Galapagos Nv Azetidine derivatives useful for the treatment of metabolic and inflammatory diseases
US20120189539A1 (en) 2011-01-25 2012-07-26 The Regents Of University Of Michigan Bcl-2/bcl-xl inhibitors and therapeutic methods using the same
WO2012111849A1 (en) 2011-02-17 2012-08-23 Takeda Pharmaceutical Company Limited Production method of optically active dihydrobenzofuran derivative
WO2012129562A2 (en) 2011-03-24 2012-09-27 The Scripps Research Institute Compounds and methods for inducing chondrogenesis
WO2012136221A1 (en) 2011-04-08 2012-10-11 Syddansk Universitet Ortho-fluoro substituted compounds for the treatment of metabolic diseases
WO2012147518A1 (en) 2011-04-27 2012-11-01 持田製薬株式会社 Novel 3-hydroxyisothiazole 1-oxide derivative
WO2012154608A1 (en) 2011-05-06 2012-11-15 Intellikine, Llc Reactive mtor and pi3 kinase inhibitors and uses thereof
US20140064053A1 (en) 2011-05-13 2014-03-06 Fujifilm Corporation Non-resonant two-photon absorption material, non-resonant two-photon absorption recording material, recording medium, recording/reproducing method and non-resonant two-photon absorption compound
WO2013009259A1 (en) 2011-07-14 2013-01-17 Biochromix Pharma Ab Novel compounds and their use in therapy
WO2013025424A1 (en) 2011-08-17 2013-02-21 Eli Lilly And Company A Novel 1,2,3,4-Tetrahydroquinoline Derivative Useful for the Treatment of Diabetes
WO2013057743A1 (en) 2011-10-21 2013-04-25 Connexios Life Sciences Pvt. Ltd Process for the preparation of an aryl oxime and salts thereof
WO2013102626A1 (en) 2012-01-04 2013-07-11 Sanofi 3-[4-(phenylaminooxalylamino)phenyl]hex-4-ynoic acids, process for preparation thereof and use thereof as a medicament
WO2013104257A1 (en) 2012-01-12 2013-07-18 江苏恒瑞医药股份有限公司 Polycyclic derivatives, preparation method and medical uses thereof
WO2013106520A1 (en) 2012-01-13 2013-07-18 Bristol-Myers Squibb Company Hepatitis c virus inhibitors
WO2013109521A1 (en) 2012-01-16 2013-07-25 Vertex Pharmaceuticals Incorporated Pyran-spirocyclic piperidine amides as modulators of ion channels
WO2013122028A1 (en) 2012-02-13 2013-08-22 武田薬品工業株式会社 Aromatic ring compound
WO2013122029A1 (en) 2012-02-13 2013-08-22 武田薬品工業株式会社 Aromatic ring compound
WO2013128378A1 (en) 2012-02-28 2013-09-06 Piramal Enterprises Limited Phenyl alkanoic acid derivatives as gpr agonists
WO2013144097A1 (en) 2012-03-26 2013-10-03 Boehringer Ingelheim International Gmbh New indanyloxydihydrobenzofuranylacetic acid derivatives and their use as gpr40 receptor agonists
WO2013154163A1 (en) 2012-04-11 2013-10-17 持田製薬株式会社 Novel 5-aryl-1,2-thiazinane derivative
WO2013164292A1 (en) 2012-04-30 2013-11-07 Boehringer Ingelheim International Gmbh Indanyloxydihydrobenzofuranylacetic acids
WO2013170113A1 (en) 2012-05-11 2013-11-14 Abbvie Inc. Nampt inhibitors
WO2013170115A1 (en) 2012-05-11 2013-11-14 Abbvie Inc. Pyridazine and pyridine derivatives as nampt inhibitors
WO2013178575A1 (en) 2012-05-30 2013-12-05 Boehringer Ingelheim International Gmbh New indanyloxyphenylcyclopropanecarb oxylic acids
WO2014014530A1 (en) 2012-07-17 2014-01-23 Mylari Banavara L Ursolic acid salts for treating diabetes and obesity
WO2014014129A1 (en) 2012-07-19 2014-01-23 Takeda Pharmaceutical Company Limited Solid preparation
WO2014019186A1 (en) 2012-08-02 2014-02-06 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
WO2014035827A1 (en) 2012-08-27 2014-03-06 Allergan, Inc. Reduced central corneal thickening by use of hydrophilic ester prodrugs of beta-chlorocyclopentanes
US20140073631A1 (en) 2012-09-12 2014-03-13 Vymed Corporation Antiviral and antimicrobial compounds
US20150352206A1 (en) 2012-10-26 2015-12-10 The University Of Chicago Synergistic combination of immunologic inhibitors for the treatment of cancer
WO2015065621A1 (en) 2012-11-02 2015-05-07 Maqui New Life S.A. Compounds, compositions, and methods for decreasing intestinal glucose uptake and inducing incretin release
WO2014073904A1 (en) 2012-11-09 2014-05-15 Lg Life Sciences Ltd. Gpr40 receptor agonist, methods of preparing the same, and pharmaceutical compositions containing the same as an active ingredient
WO2014078608A1 (en) 2012-11-16 2014-05-22 Bristol-Myers Squibb Company Dihydropyrazole gpr40 modulators
WO2014078610A1 (en) 2012-11-16 2014-05-22 Bristol-Myers Squibb Company Dihydropyrazole gpr40 modulators
WO2014078609A1 (en) 2012-11-16 2014-05-22 Bristol-Myers Squibb Company Pyrrolidine gpr40 modulators
WO2014081689A1 (en) 2012-11-20 2014-05-30 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of indoleamine 2,3-dioxygenase
WO2014082918A1 (en) 2012-11-28 2014-06-05 Boehringer Ingelheim International Gmbh New indanyloxydihydrobenzofuranylacetic acids
WO2014086712A1 (en) 2012-12-07 2014-06-12 Boehringer Ingelheim International Gmbh New indanyloxydihydrobenzofuranylacetic acids
WO2014122067A1 (en) 2013-02-06 2014-08-14 Boehringer Ingelheim International Gmbh New indanyloxydihydrobenzofuranylacetic acids
WO2014130608A1 (en) 2013-02-22 2014-08-28 Merck Sharp & Dohme Corp. Antidiabetic bicyclic compounds
WO2014134243A1 (en) 2013-02-27 2014-09-04 Regents Of The University Of Michigan Pharmaceutical compounds and use of same in cancer and tauopathies
WO2014133361A1 (en) 2013-02-28 2014-09-04 에스케이케미칼주식회사 Tricyclic compound and use thereof
WO2014145817A2 (en) 2013-03-15 2014-09-18 Children's Medical Center Corporation Novel therapeutic target for the treatment of cancers and related therapies and methods
WO2014146604A1 (en) 2013-03-22 2014-09-25 正大天晴药业集团股份有限公司 Fused ring compound having gpr40 receptor function regulating action
WO2014169817A1 (en) 2013-04-16 2014-10-23 中国科学院上海药物研究所 Phenylalanine compound having nitrogen heterocyclic link, pharmaceutical composition thereof, preparation method therefor, and use thereof
WO2014170842A2 (en) 2013-04-17 2014-10-23 Piramal Enterprises Limited Substituted alkyl carboxylic acid derivatives as gpr agonists
WO2014171762A1 (en) 2013-04-18 2014-10-23 현대약품 주식회사 Novel 3-(4-(benzyloxy)phenyl)hex-4-inoic acid derivative, method of preparing same and pharmaceutical composition for preventing and treating metabolic disease including same as effective ingredient
WO2014187343A1 (en) 2013-05-22 2014-11-27 四川海思科制药有限公司 Benzofuran derivative, preparation method therefor, and medical application thereof
WO2015000412A1 (en) 2013-07-02 2015-01-08 四川海思科制药有限公司 Benzocyclobutene derivative and preparation method and pharmaceutical application thereof
US20160166592A1 (en) 2013-07-03 2016-06-16 Georgetown University Boronic acid derivatives of resveratrol for activating deacetylase enzymes
US20160145304A1 (en) 2013-07-12 2016-05-26 Helmholtz-Zentrum für Infektionsforschung GmbH Cystobactamides
CN104341407A (en) 2013-07-24 2015-02-11 黄传满 Quinazoline compounds, preparation method and applications thereof
WO2015010655A1 (en) 2013-07-26 2015-01-29 四川海思科制药有限公司 Triadic fused cyclic carboxylic acids derivatives, preparation method therefor and pharmaceutical use thereof
WO2015020184A1 (en) 2013-08-09 2015-02-12 武田薬品工業株式会社 Aromatic compound
WO2015024448A1 (en) 2013-08-19 2015-02-26 上海润诺生物科技有限公司 Benzo piperidine ring and benzo morpholine ring compounds, manufacturing method therefor, and medical applications thereof
WO2015024526A1 (en) 2013-08-23 2015-02-26 Fujian Haixi Pharmaceuticals Co., Ltd Carboxylic acid compounds in treatment of diabetes mellitus
US20160207923A1 (en) 2013-08-26 2016-07-21 Purdue Pharma L.P. Azaspiro[4.5] decane derivatives and use thereof
WO2015028960A1 (en) 2013-08-28 2015-03-05 Piramal Enterprises Limited Substituted heterocyclic derivatives as gpr agonists and uses thereof
WO2015032328A1 (en) 2013-09-03 2015-03-12 四川海思科制药有限公司 Indane derivative, preparation method therefor, and pharmaceutical application thereof
WO2015034820A1 (en) 2013-09-04 2015-03-12 Bristol-Myers Squibb Company Compounds useful as immunomodulators
US20160194307A1 (en) 2013-09-04 2016-07-07 Bristol-Myers Squibb Company Compounds useful as immunomodulators
EP3363790A1 (en) 2013-09-06 2018-08-22 Aurigene Discovery Technologies Limited 1,2,4-oxadiazole derivatives as immunomodulators
US20190144402A1 (en) 2013-09-06 2019-05-16 Aurigene Discovery Technologies Limited 1,2,4-Oxadiazole Derivatives as Immunomodulators
WO2015044073A1 (en) 2013-09-26 2015-04-02 Boehringer Ingelheim International Gmbh Process and intermediates for preparing indanyloxydihydrobenzofuranyl acetic acid derivatives as gpr40 agonists
WO2015051496A1 (en) 2013-10-08 2015-04-16 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
WO2015062486A1 (en) 2013-10-31 2015-05-07 Sunshine Lake Pharma Co., Ltd. Biphenyl compounds and uses thereof
WO2015097713A1 (en) 2013-11-14 2015-07-02 Cadila Healthcare Limited Novel heterocyclic compounds
WO2015073342A1 (en) 2013-11-15 2015-05-21 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
WO2015076800A1 (en) 2013-11-21 2015-05-28 Ptc Therapeutics, Inc. Substituted pyridine and pyrazine bmi-1 inhibitors
WO2015078949A1 (en) 2013-11-27 2015-06-04 Euroscreen Sa Compounds, pharmaceutical composition and methods for use in treating inflammatory diseases
WO2015078802A1 (en) 2013-11-28 2015-06-04 Boehringer Ingelheim International Gmbh New indanyloxyphenylcyclopropanecarboxylic acids
WO2015084692A1 (en) 2013-12-04 2015-06-11 Merck Sharp & Dohme Corp. Antidiabetic bicyclic compounds
US20170088532A1 (en) 2013-12-05 2017-03-30 The Regents Of The University Of California Inhibitors of lpxc
WO2015088868A1 (en) 2013-12-13 2015-06-18 Eli Lilly And Company A novel triazolo-pyridine compound
WO2015089809A1 (en) 2013-12-19 2015-06-25 Merck Sharp & Dohme Corp. Antidiabetic substituted heteroaryl compounds
WO2015105786A1 (en) 2014-01-10 2015-07-16 Eli Lilly And Company Phenyl-triazolo-pyridine compounds
WO2015105779A1 (en) 2014-01-10 2015-07-16 Eli Lilly And Company Isopropyl triazolo pyridine compounds
WO2015119899A1 (en) 2014-02-06 2015-08-13 Merck Sharp & Dohme Corp. Antidiabetic compounds
WO2015140717A1 (en) 2014-03-18 2015-09-24 Iteos Therapeutics Novel 3-indol substituted derivatives, pharmaceutical compositions and methods for use
WO2015150097A1 (en) 2014-04-04 2015-10-08 Iomet Pharma Ltd Indole derivatives for use in medicine
WO2015160641A2 (en) 2014-04-14 2015-10-22 Bristol-Myers Squibb Company Compounds useful as immunomodulators
WO2015171757A1 (en) 2014-05-07 2015-11-12 Bristol-Myers Squibb Company Pyrrolidine gpr40 modulators
WO2015171722A1 (en) 2014-05-07 2015-11-12 Bristol-Myers Squibb Company Pyrrolidine gpr40 modulators for the treatment of diseases such as diabetes
WO2015171733A1 (en) 2014-05-07 2015-11-12 Bristol-Myers Squibb Company Pyrrolidine gpr40 modulators for the treatment of diseases such as diabetes
WO2015176267A1 (en) 2014-05-22 2015-11-26 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
US20170100414A1 (en) 2014-06-13 2017-04-13 University Of Rochester Small molecule efflux pump inhibitors
WO2015198045A1 (en) 2014-06-25 2015-12-30 Takeda Pharmaceutical Company Limited 3-substituted 2-amino-indole derivatives
WO2015198046A1 (en) 2014-06-25 2015-12-30 Takeda Pharmaceutical Company Limited 1,3-substituted 2-aminoindole derivatives and analogues useful in the treatment or prevention of diabetes mellitus, obesity and inflammatory bowel disease
WO2016007714A1 (en) 2014-07-09 2016-01-14 Janssen Pharmaceutica Nv Pyrazine gpr40 agonists for the treatment of type ii diabetes
US20170210715A1 (en) 2014-07-29 2017-07-27 Merck Sharp & Dohme Corp. Monocyclic isoxazolines as inhibitors of cholesterol ester transfer protein
WO2016022446A1 (en) 2014-08-08 2016-02-11 Merck Sharp & Dohme Corp. [5,6]-fused bicyclic antidiabetic compounds
WO2016022742A1 (en) 2014-08-08 2016-02-11 Merck Sharp & Dohme Corp. Antidiabetic bicyclic compounds
WO2016019587A1 (en) 2014-08-08 2016-02-11 Merck Sharp & Dohme Corp. [7, 6]-fused bicyclic antidiabetic compounds
WO2016022448A1 (en) 2014-08-08 2016-02-11 Merck Sharp & Dohme Corp. Antidiabetic bicyclic compounds
WO2016026772A1 (en) 2014-08-19 2016-02-25 Iomet Pharma Ltd Pharmaceutical compound
WO2016032120A1 (en) 2014-08-27 2016-03-03 씨제이헬스케어 주식회사 Novel amino-phenyl-sulfonyl-acetate derivative and use thereof
WO2016039749A1 (en) 2014-09-11 2016-03-17 Bristol-Myers Squibb Company Macrocyclic inhibitors of the pd-1/pd-l1 and cd80 (b7-1)/pd-li protein/protein interactions
UY35733A (en) 2014-09-12 2016-04-01 Bristol Myers Squibb Company Una Corporación Del Estado De Delaware MACROCYCLIC INHIBITORS OF PROTEIN / PROTEIN INTERACTIONS PD-1 / PD-L1 AND CD80 (B7-1) / PD-L1 I.P.C.
WO2016041511A1 (en) 2014-09-19 2016-03-24 Yen-Ta Lu Benzo-heterocyclic compounds and their applications
WO2016060963A1 (en) 2014-10-14 2016-04-21 Sunshine Lake Pharma Co., Ltd. Substituted heteroaryl compounds and methods of use
WO2016060517A2 (en) 2014-10-17 2016-04-21 현대약품 주식회사 Composite preparation, containing novel 3-(4-(benzyloxy)phenyl)hex-4-inoic acid derivative and another active ingredient, for preventing or treating metabolic diseases
WO2016065226A1 (en) 2014-10-24 2016-04-28 Bristol-Myers Squibb Company Indole carboxamides compounds useful as kinase inhobitors
US20170331067A1 (en) 2014-10-28 2017-11-16 Samsung Sdi Co., Ltd. Organic optoelectronic device and display apparatus
WO2016071293A2 (en) 2014-11-03 2016-05-12 Iomet Pharma Ltd Pharmaceutical compound
WO2016071283A1 (en) 2014-11-03 2016-05-12 Iomet Pharma Ltd Inhibitors of tryptophan-2,3-dioxygenase or indoleamine-2,3-dioxygenase
WO2016073774A2 (en) 2014-11-05 2016-05-12 Flexus Biosciences, Inc. Immunoregulatory agents
US20180086793A1 (en) 2014-11-14 2018-03-29 Bristol-Myers Squibb Company Immunomodulators
WO2016110821A1 (en) 2015-01-08 2016-07-14 Advinus Therapeutics Limited Bicyclic compounds, compositions and medicinal applications thereof
US20170283462A1 (en) 2015-02-04 2017-10-05 Bristol-Myers Squibb Company Immunomodulators
US20170266211A1 (en) 2015-02-06 2017-09-21 Unity Biotechnology, Inc. Use of a heterocyclic bcl-2 inhibitor for removing senescent cells and treating senescence-associated conditions
WO2016128908A1 (en) 2015-02-12 2016-08-18 Advinus Therapeutics Limited Bicyclic compounds, compositions and medicinal applications thereof
WO2016142852A1 (en) 2015-03-10 2016-09-15 Aurigene Discovery Technologies Limited 1,3,4-oxadiazole and thiadiazole compounds as immunomodulators
US20180044303A1 (en) 2015-03-10 2018-02-15 Pottayil Govindan N. Sasikumar 1,2,4-oxadiazole and thiadiazole compounds as immunomodulators
WO2016142886A2 (en) 2015-03-10 2016-09-15 Aurigene Discovery Technologies Limited 3-substituted-1,2,4-oxadiazole and thiadiazole compounds as immunomodulators
WO2016142894A1 (en) 2015-03-10 2016-09-15 Aurigene Discovery Technologies Limited 3-substituted 1,3,4-oxadiazole and thiadiazole compounds as immunomodulators
WO2016142835A1 (en) 2015-03-10 2016-09-15 Aurigene Discovery Technologies Limited Therapeutic cyclic compounds as immunomodulators
US20180044329A1 (en) 2015-03-10 2018-02-15 Aurigene Discovery Technologies Limited 3-substituted-1,2,4-oxadiazole and thiadiazole compounds as immunomodulators
US20180044304A1 (en) 2015-03-10 2018-02-15 Aurigene Discovery Technologies Limited 1,3,4-oxadiazole and thiadiazole compounds as immunomodulators
WO2016142833A1 (en) 2015-03-10 2016-09-15 Aurigene Discovery Technologies Limited 1,2,4-oxadiazole and thiadiazole compounds as immunomodulators
US20180044350A1 (en) 2015-03-10 2018-02-15 Pottayil Govindan Nair Sasikumar Therapeutic cyclic compounds as immunomodulators
US20180044305A1 (en) 2015-03-10 2018-02-15 Aurigene Discovery Technologies Limited 3-substituted 1,3,4-oxadiazole and thiadiazole compounds as immunomodulators
CN104876912A (en) 2015-04-08 2015-09-02 苏州云轩医药科技有限公司 Wnt signal channel inhibitor and application thereof
WO2016195776A1 (en) 2015-06-04 2016-12-08 Kura Oncology, Inc. Methods and compositions for inhibiting the interaction of menin with mll proteins
WO2016197987A1 (en) 2015-06-12 2016-12-15 杭州英创医药科技有限公司 Heterocyclic compound serving as syk inhibitor and/or syk-hdac dual inhibitor
WO2017011279A1 (en) 2015-07-13 2017-01-19 Merck Sharp & Dohme Corp. Bicyclic heterocycles as inhibitors of cholesterol ester transfer protein
WO2017025368A1 (en) 2015-08-07 2017-02-16 Boehringer Ingelheim International Gmbh Indanylaminopyridylcyclopropanecarboxylic acids, pharmaceutical compositions and uses thereof
WO2017027310A1 (en) 2015-08-12 2017-02-16 Janssen Pharmaceutica Nv Gpr40 agonists for the treatment of type ii diabetes
WO2017027312A1 (en) 2015-08-12 2017-02-16 Janssen Pharmaceutica Nv Gpr40 agonists for the treatment of type ii diabetes
WO2017027309A1 (en) 2015-08-12 2017-02-16 Janssen Pharmaceutica Nv Gpr40 agonists for the treatment of type ii diabetes
WO2017031392A1 (en) 2015-08-20 2017-02-23 University Of Florida Research Foundation, Incorporated Lipid compounds for treatment of obesity, hypertension and metabolic syndrome
WO2017042121A1 (en) 2015-09-09 2017-03-16 Boehringer Ingelheim International Gmbh [{[2,3-dihydro-1h-inden-1-yl]amino}-2h,3h-furo[3,2-b]pyridin-3-yl]acetic acids, pharmaceutical compositions and uses thereof
WO2017066227A1 (en) 2015-10-15 2017-04-20 Bristol-Myers Squibb Company Compounds useful as immunomodulators
US20170107202A1 (en) 2015-10-15 2017-04-20 Bristol-Myers Squibb Company Compounds useful as immunomodulators
US20190144439A1 (en) 2015-10-19 2019-05-16 Incyte Corporation Heterocyclic compounds as immunomodulators
US20170107216A1 (en) 2015-10-19 2017-04-20 Incyte Corporation Heterocyclic compounds as immunomodulators
WO2017070089A1 (en) 2015-10-19 2017-04-27 Incyte Corporation Heterocyclic compounds as immunomodulators
WO2017079669A1 (en) 2015-11-04 2017-05-11 Incyte Corporation Pharmaceutical compositions and methods for indoleamine 2,3-dioxygenase inhibition and indications therefor
US20170145025A1 (en) 2015-11-19 2017-05-25 Incyte Corporation Heterocyclic compounds as immunomodulators
WO2017087777A1 (en) 2015-11-19 2017-05-26 Incyte Corporation Heterocyclic compounds as immunomodulators
WO2017099034A1 (en) 2015-12-07 2017-06-15 国立大学法人京都大学 Pd-1 signal inhibitor combination therapy
WO2017106634A1 (en) 2015-12-17 2017-06-22 Incyte Corporation N-phenyl-pyridine-2-carboxamide derivatives and their use as pd-1/pd-l1 protein/protein interaction modulators
US20180273519A1 (en) 2015-12-17 2018-09-27 Incyte Corporation Heterocyclic compounds as immunomodulators
US20170174679A1 (en) 2015-12-22 2017-06-22 Incyte Corporation Heterocyclic compounds as immunomodulators
WO2017112730A1 (en) 2015-12-22 2017-06-29 Incyte Corporation Heterocyclic compounds as immunomodulators
WO2017107979A1 (en) 2015-12-24 2017-06-29 Genentech, Inc. Tdo2 inhibitors
WO2017118762A1 (en) 2016-01-08 2017-07-13 Rijksuniversiteit Groningen Inhibitors of the pd-1/pd-l1 protein/protein interaction
WO2017143220A1 (en) 2016-02-17 2017-08-24 Children's Medical Center Corporation Ffa1 (gpr40) as a therapeutic target for neural angiogenesis diseases or disorders
WO2017151830A1 (en) 2016-03-04 2017-09-08 Bristol-Myers Squibb Company Immunomodulators
US20170252432A1 (en) 2016-03-04 2017-09-07 Bristol-Myers Squibb Company Immunomodulators
WO2017162284A1 (en) 2016-03-23 2017-09-28 Symrise Ag Homovanillic acid ester for reducing or inhibiting fatty acid absorption in the small intestine
WO2017172505A1 (en) 2016-03-29 2017-10-05 Merck Sharp & Dohme Corp. Antidiabetic bicyclic compounds
WO2017176608A1 (en) 2016-04-05 2017-10-12 Bristol-Myers Squibb Company Macrocyclic inhibitors of the pd-1/pd-l1 and cd80/pd-l1 protein/protein interactions
US20170283463A1 (en) 2016-04-05 2017-10-05 Bristol-Myers Squibb Company Immunomodulators
WO2017180457A1 (en) 2016-04-11 2017-10-19 Janssen Pharmaceutica Nv Gpr40 agonists in anti-diabetic drug combinations
WO2017180571A1 (en) 2016-04-11 2017-10-19 Janssen Pharmaceutica Nv Substituted benzothiophenyl derivatives as gpr40 agonists for the treatment of type ii diabetes
WO2017180769A1 (en) 2016-04-13 2017-10-19 Capten Therapeutics Inc. Small molecules for immunogenic treatment of cancer
WO2017192961A1 (en) 2016-05-06 2017-11-09 Incyte Corporation Heterocyclic compounds as immunomodulators
US20170320875A1 (en) 2016-05-06 2017-11-09 Incyte Corporation Heterocyclic compounds as immunomodulators
US20190071439A1 (en) 2016-05-06 2019-03-07 Incyte Corporation Heterocyclic compounds as immunomodulators
WO2017202275A1 (en) 2016-05-23 2017-11-30 中国医学科学院药物研究所 Bromo benzyl ether derivative, preparation method therefor, and pharmaceutical composition and uses thereof
WO2017202276A1 (en) 2016-05-23 2017-11-30 中国医学科学院药物研究所 Phenylate derivative, preparation method therefor, and pharmaceutical composition and uses thereof
WO2017202274A1 (en) 2016-05-23 2017-11-30 中国医学科学院药物研究所 Nicotinyl alcohol ether derivative, preparation method therefor, and pharmaceutical composition and uses thereof
WO2017202273A1 (en) 2016-05-23 2017-11-30 中国医学科学院药物研究所 Benzyl phenyl ether derivative, preparation method therefor, and pharmaceutical composition and uses thereof
WO2017201683A1 (en) 2016-05-25 2017-11-30 Merck Sharp & Dohme Corp. Substituted tetrahydroisoquinoline compounds useful as gpr120 agonists
WO2017202744A1 (en) 2016-05-26 2017-11-30 Merck Patent Gmbh Pd-1 / pd-l1 inhibitors for cancer treatment
WO2017205464A1 (en) 2016-05-26 2017-11-30 Incyte Corporation Heterocyclic compounds as immunomodulators
US20170362253A1 (en) 2016-06-20 2017-12-21 Incyte Corporation Heterocyclic compounds as immunomodulators
US20190040082A1 (en) 2016-06-20 2019-02-07 Incyte Corporation Heterocyclic compounds as immunomodulators
US20190062345A1 (en) 2016-06-20 2019-02-28 Incyte Corporation Heterocyclic compounds as immunomodulators
WO2017222976A1 (en) 2016-06-20 2017-12-28 Incyte Corporation Heterocyclic compounds as immunomodulators
US20180008554A1 (en) 2016-06-27 2018-01-11 Chemocentryx, Inc. Immunomodulator compounds
WO2018005374A1 (en) 2016-06-27 2018-01-04 Chemocentryx, Inc. Immunomodulator compounds
WO2018009505A1 (en) 2016-07-08 2018-01-11 Bristol-Myers Squibb Company 1,3-dihydroxy-phenyl derivatives useful as immunomodulators
WO2018026971A1 (en) 2016-08-03 2018-02-08 Arising International, Llc Symmetric or semi-symmetric compounds useful as immunomodulators
WO2018029150A1 (en) 2016-08-09 2018-02-15 Dompe' Farmaceutici S.P.A. Sulfonamides as gpr40- and gpr120-agonists
WO2018044783A1 (en) 2016-08-29 2018-03-08 Incyte Corporation Heterocyclic compounds as immunomodulators
US20180057486A1 (en) 2016-08-29 2018-03-01 Incyte Corporation Heterocyclic compounds as immunomodulators
WO2018044963A1 (en) 2016-09-01 2018-03-08 Bristol-Myers Squibb Company Biaryl compounds useful as immunomodulators
US20180057455A1 (en) 2016-09-01 2018-03-01 Bristol-Myers Squibb Company Compounds useful as immunomodulators
WO2018045142A1 (en) 2016-09-02 2018-03-08 Polaris Pharmaceuticals, Inc. Immune checkpoint inhibitors, compositions and methods thereof
US20180065917A1 (en) 2016-09-02 2018-03-08 Polaris Pharmaceuticals, Inc. Immune checkpoint inhibitors, compositions and methods thereof
WO2018051254A1 (en) 2016-09-14 2018-03-22 Aurigene Discovery Technologies Limited Cyclic substituted-1,2,4-oxadiazole compounds as immunomodulators
WO2018051255A1 (en) 2016-09-14 2018-03-22 Aurigene Discovery Technologies Limited Cyclic substituted-1,3,4-oxadiazole and thiadiazole compounds as immunomodulators
WO2018053302A1 (en) 2016-09-19 2018-03-22 Ensemble Therapeutics Corporation Macrocyclic compounds for the inhibition of indoleamine-2,3-dioxygenase activity and use thereof
WO2018081047A1 (en) 2016-10-25 2018-05-03 Janssen Pharmaceutica Nv Cyclohexyl gpr40 agonists for the treatment of type ii diabetes
WO2018077699A1 (en) 2016-10-25 2018-05-03 Boehringer Ingelheim International Gmbh Benzylaminopyridylcyclopropanecarboxylic acids, pharmaceutical compositions and uses thereof
WO2018095877A1 (en) 2016-11-28 2018-05-31 Boehringer Ingelheim International Gmbh Indanylaminopyridylcyclopropanecarboxylic acids, pharmaceutical compositions and uses thereof
WO2018106518A1 (en) 2016-12-06 2018-06-14 Merck Sharp & Dohme Corp. Antidiabetic heterocyclic compounds
WO2018111012A1 (en) 2016-12-15 2018-06-21 Il Dong Pharmaceutical Co., Ltd. Novel phenyl propionic acid derivatives and uses thereof
WO2018118848A1 (en) 2016-12-20 2018-06-28 Bristol-Myers Squibb Company Compounds useful as immunomodulators
WO2018118670A1 (en) 2016-12-20 2018-06-28 Merck Sharp & Dohme Corp. Antidiabetic spirochroman compounds
WO2018118664A1 (en) 2016-12-20 2018-06-28 Merck Sharp & Dohme Corp. Combinations of pd-1 antagonists and cyclic dinucleotide sting agonists for cancer treatment
WO2018119286A1 (en) 2016-12-22 2018-06-28 Incyte Corporation Bicyclic heteroaromatic compounds as immunomodulators
WO2018119224A1 (en) 2016-12-22 2018-06-28 Incyte Corporation Tetrahydro imidazo[4,5-c]pyridine derivatives as pd-l1 internalization inducers
US20190202824A1 (en) 2016-12-22 2019-07-04 Incyte Corporation Heterocyclic compounds as immunomodulators
WO2018119263A1 (en) 2016-12-22 2018-06-28 Incyte Corporation Heterocyclic compounds derivatives as pd-l1 internalization inducers
WO2018119236A1 (en) 2016-12-22 2018-06-28 Incyte Corporation Triazolo[1,5-a]pyridine derivatives as immunomodulators
WO2018119221A1 (en) 2016-12-22 2018-06-28 Incyte Corporation Pyridine derivatives as immunomodulators
WO2018119266A1 (en) 2016-12-22 2018-06-28 Incyte Corporation Benzooxazole derivatives as immunomodulators
WO2018121560A1 (en) 2016-12-29 2018-07-05 深圳微芯生物科技有限责任公司 Urea compound and preparation method and application thereof
WO2018138029A1 (en) 2017-01-26 2018-08-02 Boehringer Ingelheim International Gmbh Benzyloxypyridylcyclopropanecarboxylic acids, pharmaceutical compositions and uses thereof
WO2018138026A1 (en) 2017-01-26 2018-08-02 Boehringer Ingelheim International Gmbh Indanylaminopyrazinylcyclopropanecarboxylic acids, pharmaceutical compositions and uses thereof
WO2018138030A1 (en) 2017-01-26 2018-08-02 Boehringer Ingelheim International Gmbh Benzyloxypyrazinylcyclopropanecarboxylic acids, pharmaceutical compositions and uses thereof
WO2018138028A1 (en) 2017-01-26 2018-08-02 Boehringer Ingelheim International Gmbh Benzylaminopyrazinylcyclopropanecarboxylic acids, pharmaceutical compositions and uses thereof
WO2018138027A1 (en) 2017-01-26 2018-08-02 Boehringer Ingelheim International Gmbh Benzylaminopyridylcyclopropanecarboxylic acids, pharmaceuticalcompositions and uses thereof
WO2018146008A1 (en) 2017-02-08 2018-08-16 Boehringer Ingelheim International Gmbh Indanylaminoazadihydrobenzofuranylacetic acids, pharmaceutical compositions for the treatment of diabetes
WO2018172727A1 (en) 2017-03-24 2018-09-27 Caldan Therapeutics Limited Tetrahydro-benzo[d]azepine derivatives as gpr120 modulators
WO2018183171A1 (en) 2017-03-27 2018-10-04 Bristol-Myers Squibb Company Substituted isoquionline derivatives as immunomudulators
WO2018181847A1 (en) 2017-03-31 2018-10-04 武田薬品工業株式会社 Aromatic compound
WO2018182050A1 (en) 2017-03-31 2018-10-04 Takeda Pharmaceutical Company Limited Substituted cyclyl-acetic acid derivatives for the treatment of metabolic disorders
US20180305315A1 (en) 2017-04-20 2018-10-25 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2018195321A1 (en) 2017-04-20 2018-10-25 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
US20210323922A1 (en) 2017-04-20 2021-10-21 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2018196768A1 (en) 2017-04-26 2018-11-01 南京圣和药业股份有限公司 Heterocyclic compound serving as pd-l1 inhibitor
WO2019008156A1 (en) 2017-07-07 2019-01-10 Rijksuniversiteit Groningen Inhibitors of the pd-1/pd-l1 protein/protein interaction
WO2019023575A1 (en) 2017-07-28 2019-01-31 Chemocentryx, Inc. Immunomodulator compounds
US20190135745A1 (en) 2017-07-28 2019-05-09 Chemocentryx, Inc. Immunomodulator compounds
WO2019032547A1 (en) 2017-08-08 2019-02-14 Chemocentryx, Inc. Macrocyclic immunomodulators
WO2019034172A1 (en) 2017-08-18 2019-02-21 上海轶诺药业有限公司 Compound having pd-l1 inhibitory activity, preparation method therefor and use thereof
WO2019059411A1 (en) 2017-09-20 2019-03-28 Chugai Seiyaku Kabushiki Kaisha Dosage regimen for combination therapy using pd-1 axis binding antagonists and gpc3 targeting agent
WO2019070643A1 (en) 2017-10-03 2019-04-11 Bristol-Myers Squibb Company Immunomodulators
WO2019074241A1 (en) 2017-10-11 2019-04-18 정원혁 Inhibitor against interaction between pd-1 and pd-l1, comprising phenylacetylene derivative
WO2019076343A1 (en) 2017-10-19 2019-04-25 上海长森药业有限公司 Pd-1/pd-l1 small-molecule inhibitor and preparation method therefor and use thereof
WO2019128918A1 (en) 2017-12-29 2019-07-04 广州再极医药科技有限公司 Aromatic vinyl or aromatic ethyl derivative, preparation method therefor, intermediate, pharmaceutical composition, and application
WO2019160882A1 (en) 2018-02-13 2019-08-22 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
US20190270727A1 (en) 2018-02-13 2019-09-05 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
US20190282555A1 (en) 2018-02-22 2019-09-19 Chemocentryx, Inc. Indane-amines as pd-l1 antagonists
WO2019165043A2 (en) 2018-02-22 2019-08-29 Chemocentryx, Inc. Indane-amines as pd-l1 antagonists
US20190276435A1 (en) 2018-03-08 2019-09-12 Incyte Corporation AMINOPYRAZINE DIOL COMPOUNDS AS PI3K-y INHIBITORS
WO2019170745A1 (en) 2018-03-08 2019-09-12 Syngenta Participations Ag Herbicidal compounds
US11155520B2 (en) 2018-03-08 2021-10-26 Dow Agrosciences Llc Picolinamides as fungicides
WO2019175897A1 (en) 2018-03-13 2019-09-19 Jubilant Biosys Limited Bicyclic compounds as inhibitors of pd1/pd-l1 interaction/activation
WO2019174533A1 (en) 2018-03-13 2019-09-19 广东东阳光药业有限公司 Small molecule pd-1/pd-l1 inhibitor and use thereof in drugs
WO2019191624A1 (en) 2018-03-29 2019-10-03 Arbutus Biopharma, Inc. Substituted 1,1'-biphenyl compounds, analogues thereof, and methods using same
WO2019191707A1 (en) 2018-03-30 2019-10-03 Incyte Corporation Heterocyclic compounds as immunomodulators
WO2019192506A1 (en) 2018-04-03 2019-10-10 Betta Pharmaceuticals Co., Ltd Immunomodulators, compositions and methods thereof
WO2019204609A1 (en) 2018-04-19 2019-10-24 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
US20190345131A1 (en) 2018-04-19 2019-11-14 Gilead Sciences, Inc Pd-1/pd-l1 inhibitors
WO2019217821A1 (en) 2018-05-11 2019-11-14 Incyte Corporation Tetrahydro-imidazo[4,5-c]pyridine derivatives as pd-l1 immunomodulators
WO2020014643A1 (en) 2018-07-13 2020-01-16 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2020011246A1 (en) 2018-07-13 2020-01-16 广州丹康医药生物有限公司 Benzene ring-containing compound, preparation method therefor and application thereof
US20200017471A1 (en) 2018-07-13 2020-01-16 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
US20210024494A1 (en) 2018-07-13 2021-01-28 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2020086556A1 (en) 2018-10-24 2020-04-30 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
US20200157094A1 (en) 2018-10-24 2020-05-21 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors

Non-Patent Citations (40)

* Cited by examiner, † Cited by third party
Title
Decision to grant, search and examination report for ARIPO Patent Application No. AP/P/2020/012596 dated Mar. 29, 2022. 5 pages.
Exam Report and Search Report for ARIPO Patent Application No. AP/P/2020/012596 dated Oct. 18, 2021. 4 pages.
Examination Report dated May 29, 2020 for GCC Application No. GC 2019-37024. 4 pages.
Examination Report for Australia Patent Application No. 2019222644 dated Nov. 5, 2020. 4 pages.
Examination Report for Australian Patent Application No. 2021204222 dated Mar. 1, 2022. 3 pages.
Examination Report for Gulf Co-Operation Council Patent Application No. 37024 dated Dec. 30, 2020. 3 pages.
Examination Report for Gulf Co-Operation Council Patent Application No. 37024 dated Jun. 27, 2021. 4 pages.
Examination Report for Gulf Co-Operation Council Patent Application No. 37024 dated May 29, 2020. 4 pages.
Examination Report for Indian Patent Application No. 202017034754 dated Dec. 28, 2020. 7 pages.
Examiner Requisition for Canada Application No. 3,091,015 dated Oct. 22, 2021. 3 pages.
Gura, et al. Systems for Identifying New Drugs Are Often Faulty. Science. 1997; 278:1041-1042.
International Search Report and Written Opinion for International Application No. PCT/US2018/028382 dated Sep. 11, 2018. (17 pages).
International Search Report and Written Opinion for International Application No. PCT/US2018/028386 dated Jun. 22, 2018. (14 pages).
International Search Report and Written Opinion for International Application No. PCT/US2019/017721 dated Apr. 8, 2019. (15 pages).
International Search Report and Written Opinion for International Application No. PCT/US2019/028129 dated Jul. 22, 2019. (13 pages).
International Search Report and Written Opinion for International Application No. PCT/US2019/041657 dated Sep. 12, 2019. (12 pages).
International Search Report and Written Opinion for International Application No. PCT/US2019/057407 dated Feb. 18, 2020. (11 pages).
J. G. Cannon, Chapter Nineteen in Burger's Medicinal Chemistry and Drug Discovery, Fifth Edition, vol. I: Principles and Practice, Wiley-Interscience 1995, pp. 783-802. (Year: 1995). *
Johnson, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. British Journal of Cancer. 2001; 84:1424-1431.
Notice of Preliminary Rejection for Korean Patent Application No. 10-2020-7026091 dated Dec. 22, 2021. 12 pages.
Office Action dated Mar. 6, 2020 for Taiwan Application No. 108104664. 7 pages.
Office Action for Dominican Republic Patent Application No. P2020-0154 dated Jan. 27, 2022. 7 pages.
Office Action for Eurasia Patent Application No. 202091694 dated Oct. 29, 2021. 8 pages.
Office Action for Indonesian Patent Application No. P00202006639 dated Feb. 15, 2022. 6 pages.
Office Action for Israel Patent Application No. 276246 dated Mar. 25, 2021. 3 pages.
Office Action for Panamanian Patent Application No. 93166-01 dated Aug. 2, 2021. 9 pages.
Office Action for Ukraine Patent Application No. a202004858 dated Oct. 15, 2021. 7 pages.
Office Action for Vietnamese Patent Application No. 1-2020-05219 dated Oct. 9, 2020. 1 page.
Official Action for Chilean Patent Application No. 202002082 dated Aug. 27, 2021. 29 pages.
Official Action for Chilean Patent Application No. 202002082 dated Jan. 19, 2022. 22 pages.
Official Action for European Patent Application No. 19707975.9 dated Oct. 8, 2021. 5 pages.
Official Action for Guatemala Patent Application No. A2020-000124 dated Sep. 25, 2020. 2 pages.
Official Action for Japanese Patent Application No. 2020-564813 dated Sep. 28, 2021. 7 pages.
Official Action for Panamanian Patent Application No. 93166-01 dated Sep. 23, 2020. 1 page.
Opposition filed by Procaps S.A. for Colombian Patent Application No. NC2020/0009861 dated Nov. 27, 2020. 6 pages.
Sham, K-C. et al.: Acid-induced formation of hydrogen-bonded double helix based on chiral polyphenyl-bridged bis(2,2′-bipyridine) ligands. RSC Advances, vol. 4, pp. 14513-14526, 2014.
U.S. Appl. No. 16/551,550, filed Aug. 26, 2019, Aktoudianakis et al.
U.S. Appl. No. 16/840,217, filed Apr. 3, 2020, Aktoudianakis et al.
U.S. Appl. No. 16/923,750, filed Jul. 8, 2020, Aktoudianakis et al.
Zarganes-Tzitzikes et al., "Inhibitors of programmed cell death 1 (PD-1): a patent review (2010-2015)", Expert Opinion on Therapeutic Patents, 2016, vol. 26, No. 9, pp. 973-977.

Also Published As

Publication number Publication date
KR102445054B1 (en) 2022-09-22
KR20220133305A (en) 2022-10-04
MX2020008404A (en) 2020-09-25
AU2021204222A1 (en) 2021-07-29
AU2021204222B2 (en) 2023-02-16
IL300572A (en) 2023-04-01
PL3752501T3 (en) 2023-08-21
TWI707849B (en) 2020-10-21
IL276246B1 (en) 2023-03-01
PT3752501T (en) 2023-07-12
IL276246A (en) 2020-09-30
CN118084940A (en) 2024-05-28
CL2020002082A1 (en) 2020-12-11
AU2019222644B2 (en) 2021-04-01
SG11202007646UA (en) 2020-09-29
PH12020551244A1 (en) 2021-05-17
CA3091015A1 (en) 2019-08-22
BR112020016466A2 (en) 2020-12-15
US10710986B2 (en) 2020-07-14
AU2023202364A1 (en) 2023-05-25
AU2019222644A1 (en) 2020-09-03
CA3091015C (en) 2023-02-21
MY196582A (en) 2023-04-19
KR102708681B1 (en) 2024-09-26
KR102586510B1 (en) 2023-10-12
IL276246B2 (en) 2023-07-01
CR20200347A (en) 2020-09-23
US20230212155A1 (en) 2023-07-06
EP4227302A1 (en) 2023-08-16
US20190270727A1 (en) 2019-09-05
TW201942117A (en) 2019-11-01
BR102019002873A2 (en) 2019-09-10
MX2022014548A (en) 2023-01-11
TWI796596B (en) 2023-03-21
CO2020009861A2 (en) 2020-08-21
TW202116759A (en) 2021-05-01
WO2019160882A1 (en) 2019-08-22
DOP2020000154A (en) 2020-09-15
KR20200121323A (en) 2020-10-23
EP3752501A1 (en) 2020-12-23
US20210053946A1 (en) 2021-02-25
KR20230147740A (en) 2023-10-23
CN111712494A (en) 2020-09-25
JP2021513561A (en) 2021-05-27
UA126458C2 (en) 2022-10-05
ES2949664T3 (en) 2023-10-02
EP3752501B1 (en) 2023-04-19
SI3752501T1 (en) 2023-08-31
JP2022037169A (en) 2022-03-08
JP7062792B2 (en) 2022-05-06
PE20210640A1 (en) 2021-03-23

Similar Documents

Publication Publication Date Title
US11555029B2 (en) PD-1/PD-L1 inhibitors
US10899735B2 (en) PD-1/PD-L1 inhibitors
AU2019301811B2 (en) PD-1/PD-L1 inhibitors
EA043283B1 (en) PD-1/PD-L1 INHIBITORS

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: GILEAD SCIENCES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AKTOUDIANAKIS, EVANGELOS;CHO, AESOP;DU, ZHIMIN;AND OTHERS;SIGNING DATES FROM 20190125 TO 20190207;REEL/FRAME:053502/0702

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE