US11553873B2 - Device and method for measuring skin elasticity - Google Patents

Device and method for measuring skin elasticity Download PDF

Info

Publication number
US11553873B2
US11553873B2 US16/323,809 US201716323809A US11553873B2 US 11553873 B2 US11553873 B2 US 11553873B2 US 201716323809 A US201716323809 A US 201716323809A US 11553873 B2 US11553873 B2 US 11553873B2
Authority
US
United States
Prior art keywords
skin
inner structure
outer structure
image
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/323,809
Other languages
English (en)
Other versions
US20190209074A1 (en
Inventor
Willem Auke Westerhof
Matthijs Paltje
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Assigned to KONINKLIJKE PHILIPS N.V. reassignment KONINKLIJKE PHILIPS N.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PLATJE, Matthijs, WESTERHOF, WILLEM AUKE
Publication of US20190209074A1 publication Critical patent/US20190209074A1/en
Application granted granted Critical
Publication of US11553873B2 publication Critical patent/US11553873B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/442Evaluating skin mechanical properties, e.g. elasticity, hardness, texture, wrinkle assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • A61B5/0053Detecting, measuring or recording by applying mechanical forces or stimuli by applying pressure, e.g. compression, indentation, palpation, grasping, gauging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • A61B5/0079Devices for viewing the surface of the body, e.g. camera, magnifying lens using mirrors, i.e. for self-examination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to methods and devices for measuring skin properties.
  • the invention relates to methods and devices for measuring skin elasticity.
  • Skin is the largest organ of the human body and reflects a person's health and appearance. It has properties which are influenced by many factors. One of those properties is skin elasticity. Information on skin elasticity can be used to guide a person's skin care routine, personalized to his or her specific skin needs. Devices for validly measuring skin elasticity are expensive and are not available to most consumers.
  • US2012/0253224 describes an apparatus and method for making an apparatus for skin testing includes a housing with an opening which defines a field of view of a skin testing region, an image sensing apparatus, an illumination apparatus, a binding apparatus, and an image processing controller.
  • the image sensing apparatus is positioned with respect to the housing to capture images in the field of view provided by the opening.
  • the illumination apparatus is positioned within the housing to direct light towards a portion of the field of view provided by the opening.
  • the binding apparatus detachably secures the housing over the skin testing region and maintains a fixed distance between the image sensing apparatus and the skin testing region.
  • the controller is configured to analyze test samples sites in each of the captured images from the image sensing apparatus and provide a skin test result for each of the test sample sites.
  • US2013/0079643 describes a method of measuring the elasticity and firmness of skin.
  • the invention also relates to methods of measuring improvements in a person's skin health by measuring firmness and elasticity before, during and after a cosmetic treatment.
  • the invention further relates to methods of measuring the improvement in a person's skin firmness and elasticity that a cosmetic agent may cause when applied on the skin.
  • WO2014/029509 describes a device for determining elastic and/or visco-elastic properties of skin or scalp, comprising a measuring probe having a probe pin and a measurement system for registering a displacement of the probe pin, wherein the probe pin is provided in a probe chamber having an opening for contact of the probe pin with skin or scalp, the probe pin being biased to be flush with the opening or to protrude from the opening, a surrounding of the opening and/or a part of the opening being provided with one or more recesses, the device further comprising a pump connected to each of the recesses for applying an under-pressure in each of the one or more recesses.
  • EP2687151 describes a viscoelasticity measuring apparatus that measures viscoelasticity of a measurement target with high precision is provided.
  • the measuring apparatus includes: a casing; a surface contact part provided in the casing and brought into surface contact with skin; a ball indenter that moves toward the skin more than the surface contact part and is pushed into the skin; a driving unit that supports the ball indenter and moves the ball indenter toward the skin; a load cell whose right end side is fixed to the casing and left end side supports the driving unit, the load cell detecting a pushing load that pushes the ball indenter into the skin; and a control unit that obtains displacement of the ball indenter.
  • a device for measuring skin elasticity may comprise a means for attaching the device to an image recording device.
  • the device further comprises a mechanical means configured such that skin deforms under influence of a pre-defined pressure when the mechanical means is pressed against the skin.
  • the pre-defined pressure may be provided by a mechanical device that stores energy and that is present in the mechanical means, e.g. a spring.
  • the mechanical means is adapted or shaped such that an image of the deformed skin can be recorded by the image recording device when the device is attached to an image recording device.
  • the mechanical means comprises an outer structure and an inner structure which is partly located inside the outer structure.
  • a part of the inner structure is located outside of the outer structure when the device is not in use.
  • the inner structure is moveable inside the outer structure.
  • the inner structure can move completely inside the outer structure.
  • a spring is present for providing the pre-defined pressure.
  • the spring is coupled to the inner structure and positioned such that it compresses when the inner structure moves inside the outer structure.
  • the inner structure is configured to cause the skin to deform when the device is pressed against the skin and when the inner structure moves inside the outer structure.
  • the inner structure may comprise two elements that causes skin deformation, e.g. doming, when pressed against the skin.
  • the end of the inner structure that touches the skin when the device is pressed against the skin may feature an opening which allows the skin to protrude the opening.
  • the opening may be circular, e.g. for causing skin doming.
  • the device further comprises a first mirror positioned inside the inner structure.
  • the first mirror is positioned such that an image taken by the image recording device contains a view of the skin deformation under an angle, e.g. 45 degrees relative to the skin plane.
  • the first mirror may be attached to the inner structure.
  • the mirror allows the recording of images of the skin deformation parallel to the skin plane. This way, a silhouette image of the skin deformation can be observed by the camera of the image recording device. From this image, skin elasticity can be determined.
  • the mirror is placed at an angle between 45 and 75 degrees relative to the skin plane.
  • the device is adapted such that when it is attached to an image recording device, the image recording device can take an image which contains a direct view of the skin deformation and a view of the skin deformation obtained via the first mirror.
  • the image contains two parts. Both parts of the image may be used to determine skin elasticity. It is an advantage of the invention that by using information from different views, a more accurate determination of the skin elasticity can be obtained. For example, from both parts of the image, 3D information can be extracted which may be used to determine skin elasticity more accurately.
  • the device further comprises a second mirror.
  • the first mirror is positioned inside the device for reflecting light towards the skin deformation from one direction. It is an advantage of the invention that by providing illumination to the skin deformation from two sides, shadows in the mirrors are created which simplify the image analysis of the skin deformation, e.g. a skin dome.
  • the second mirror is positioned inside the device for reflecting light towards the skin deformation from another direction.
  • deformation of the skin is achieved without the use of pumps or other suction devices. It is an advantage of the invention that expensive components such as pumps are not required thereby reducing cost of the device.
  • the inner structure comprises two elements configured to move towards each other when the device is pressed against the skin and when the inner structure moves inside the outer structure thereby causing the skin in between the two elements to fold.
  • the invention also provides a device including such image recording device or functionally coupled to such image recording device.
  • a device including such image recording device or functionally coupled to such image recording device.
  • Such functional combination is herein also indicated as “system”.
  • the invention provides a system for determining the skin elasticity.
  • the system comprises a image recording devices as well as the device, wherein the device is functionally coupled to the image recording device, such as attached (with means for attaching).
  • the device itself comprises, as indicated above, a mechanical means configured for applying a pre-defined pressure to skin such that skin is deformed under the pre-defined pressure.
  • the mechanical means is adapted such that an image of the deformed skin can be recorded by the image recording device when the device is attached to the image recording device.
  • Such system especially comprises a processor that is configured for determining an amount of deformation of the skin in the image using image processing techniques.
  • the processor is further configured for determining skin elasticity based on the amount of skin deformation and on the pre-defined pressure value.
  • image recording device especially comprises an imager for imaging the skin deformation and a light source for illuminating the skin deformation.
  • a system for determining skin elasticity comprising: a mechanical means for exposing skin to a pre-defined pressure when applied to or pressed against skin thereby creating a skin deformation such as a skin dome or skin folds.
  • the system further comprises an image recording device comprising an imager for imaging the skin deformation and a light source for illuminating the skin deformation.
  • the system further comprises a processor that is configured for determining an amount of deformation of the skin in the image using image processing techniques.
  • the processor is further configured for determining skin elasticity based on the amount of skin deformation and on the pre-defined pressure value.
  • determining an amount of deformation of the skin comprises determining amplitude of skin folds in the deformed skin area and/or determining an amount of skin folds in the deformed skin area.
  • determining an amount of the skin deformation comprises analyzing light intensity differences in the image.
  • a method for determining skin elasticity of skin comprises: receiving an image of deformed skin; receiving a pressure value to which the skin was exposed to create the deformed skin; determining an amount of deformation of the skin in the image using image processing techniques; determining skin elasticity of the skin based on the amount of skin deformation and on the pressure value.
  • the method may be applied with the device as described herein and/or the system as described herein. Hence, in embodiments the method uses (or applies) the device or system. In specific embodiments, the method may further comprise using the device attached with means for attaching the device to an image recording device, wherein the image recording device comprises a smartphone.
  • determining the amount of deformation of the skin comprises determining amplitude and/or determining an amount of skin folds in the deformed skin area.
  • determining the amount of the skin deformation comprises analyzing light intensity differences in the image.
  • analyzing light intensity differences comprises: setting a light intensity threshold; calculating an area of the image having a light intensity larger than the threshold; and determining the amount of skin deformation based on the calculated area.
  • the setting of the light intensity threshold may be based on averages, e.g. abs value per pixel in an area of the image.
  • analyzing light intensity differences comprises: setting or selecting a first light intensity threshold; calculating a first area of the image having a light intensity higher than the first threshold; setting or selecting a second light intensity threshold being lower than the first threshold; calculating a second area of the image having a light intensity lower than the second threshold; and determining the amount of skin deformation using the calculated first and second area. It is an advantage of the invention that by using multiple light thresholds, the amount of skin deformation can be determined more accurately leading to a more accurate skin elasticity determination.
  • FIG. 1 illustrates a device for determining skin elasticity, according to an embodiment of the invention
  • FIG. 2 illustrates a device for determining skin elasticity when applied to skin, according to an embodiment of the invention
  • FIG. 3 illustrates the light path in a device for determining skin elasticity when applied to skin, according to an embodiment of the invention
  • FIG. 4 illustrates a device for determining skin elasticity, according to an embodiment of the invention
  • FIG. 5 illustrates a device for determining skin elasticity when applied to skin, according to an embodiment of the invention
  • FIG. 6 illustrates a front view of a device for determining skin elasticity attached to a smartphone
  • FIG. 7 illustrates a back view of a device for determining skin elasticity attached to a smartphone
  • FIG. 8 is a block diagram of a method for determining skin elasticity
  • FIG. 9 is an image of deformed skin
  • FIG. 10 is a representation of the output of an algorithm for determining skin elasticity of the skin presented in FIG. 9
  • FIG. 11 is an image of deformed skin
  • FIG. 12 is a representation of the output of an algorithm for determining skin elasticity of the skin presented in FIG. 11
  • skin dome or “skin doming”. This refers to the creation of a skin deformation which has the shape of a dome by deforming the skin physically. Thus, the skin resembling or having the shape of the upper half of a sphere under influence of a pressure.
  • the invention presented in this disclosure solves the problems of state of the art devices related to cost and compactness by providing a device which can be attached to e.g. the smartphone of the user.
  • Expensive components such as the imager, the flash light and a processor are, according to an embodiment of the invention, not part of the device itself. By doing so, cost of the device is drastically reduced.
  • a mechanical structure which is pressed against the skin to deform the skin is presented. This further reduces cost and decreases the size of the device.
  • a device for determining the skin elasticity comprises a means for attaching the device to an image recording device; a mechanical means configured for applying a pre-defined pressure to skin such that skin is deformed under the pre-defined pressure.
  • the mechanical means is adapted such that an image of the deformed skin can be recorded by the image recording device when the device is attached to the image recording device.
  • FIG. 1 illustrates a cross section of an embodiment of a device 100 for determining skin elasticity.
  • the device 100 may be attached to an image recording device 200 such as a digital camera or a smartphone.
  • the device comprises an outer structure 101 .
  • This outer structure 101 may be a tube.
  • the device 100 further comprises an inner structure 102 .
  • the inner structure 102 may be a tube.
  • the dimensions of the inner structure 102 are selected such that the inner structure 102 fits into the outer structure 101 and such that the inner structure 102 can easily slide, e.g. move back and forth, within the outer structure 101 .
  • the end of the inner structure 102 which is located outside of the outer structure 101 features an opening 110 . When the inner structure 102 is pressed against the skin, the skin protrudes through this opening 110 (see FIG. 2 ).
  • the device 100 further comprises a spring 103 .
  • the spring is located inside the outer structure 101 and is attached to the inner structure 102 .
  • the spring exerts a force on the inner structure 102 .
  • the device 100 is adapted such that when the device is not in use, e.g. not applied to skin, a part of the inner structure 102 is located outside of the outer structure 101 . As illustrated in FIG. 1 , when the device 100 is not pressed against skin, surface 107 of the inner structure 102 is located at a distance h from surface 106 of the outer structure 101 .
  • the inner structure 102 exerts a force on the skin which causes the skin to protrude through opening 110 .
  • the surface 106 of outer structure 101 is also in contact with the skin.
  • skin elasticity can be determined from the image of the skin defbrmation, e.g. by analyzing light differences in the image.
  • a means for determining the distance h over which the inner tube slides into the outer tube may be present. By measuring this distance h, a more accurate determination of the force of the spring may be done leading to a more accurate determination of the skin elasticity.
  • the means for determining the distance h may be optical, e.g. using a laser.
  • the device 100 further comprises a first and a second mirror 104 , 105 .
  • the mirrors are located in the inner structure 102 .
  • the mirrors 104 , 105 are positioned at an angle relative to the surface or plane of the skin when the device is applied to the skin.
  • the mirrors 104 , 105 are used to reflect light to and from the skin 400 . This is illustrated in FIG. 3 with arrows.
  • the outer structure 101 and the inner structure 102 are adapted such that flash light from the image recording device 200 reaches the skin that is deformed within the inner structure 102 and such that an image from the deformed skin 401 within the inner structure 102 can be recorded.
  • FIG. 4 illustrates an embodiment of a device 100 for determining skin elasticity.
  • the device is similar to the device illustrated in FIGS. 1 - 3 . To avoid repetition, the similar device features are not described here.
  • the device illustrated in FIG. 4 differs from the device illustrated in FIG. 1 in that the inner structure 102 is flexible. Further, the part of the inner structure 102 located outside of the outer structure 101 when the device is not in use features enlargements 109 . For example, parts of the inner structure 102 located outside of the outer structure 101 are thicker. When the inner structure 102 and consequently the enlarged parts 109 of the inner structure 102 slide into the outer structure 101 , the width w inside the inner structure 102 diminishes.
  • the enlargements 109 of the inner structure 102 are shaped, e.g. gradually becoming larger, such that they allow the inner structure 102 to slide into the outer structure 101 without blocking the sliding movement and such that the width w within the inner structure 102 diminishes as the inner structure 102 slides into the outer structure 101 .
  • the diminishing width w of the inner structure 102 deforms the skin 400 thereby causing skin folds 401 to form.
  • the skin folding 401 is illustrated in FIG. 5 which illustrates a device in use, applied to skin 400 and attached to an image recording device 200 comprising an imager 201 and a flash light 202 .
  • surface 107 of inner structure 102 is in contact with the skin 400 .
  • the inner structure 102 exerts a force on the skin 400 and while the inner structure 102 slides into the outer structure 101 the skin 400 present within the inner structure 102 starts to fold within opening 110 .
  • the surface 106 of outer structure 101 is also in contact with the skin 400 .
  • skin elasticity can be determined from the image of the skin deformation, e.g. taking into account the amplitude or number of the formed skin folds 401 .
  • Skin elasticity here is defined as a combination of deformation and the amount of folds for a given force and in plane compression of the skin. A higher amount of folds indicates that the skin is less able to follow compression/less flexible (older skin, degradation of collagen) while the number of the folds and the amplitude of the folds, but also the amplitude of the lowest doming frequency, in relation to the given force, defines the basic elasticity.
  • the inner structure may comprise a flexible material.
  • the inner structure comprises elastic hinges 108 .
  • the inner structure is fabricated from a flexible material such as a rubber. The flexibility of the inner structure is indicated in FIG. 5 with arrows.
  • the device illustrated in FIG. 4 contains one mirror instead of two.
  • the mirror is positioned at an angle of 45 degrees. By doing so, a viewing angle almost parallel to the skin plane is created.
  • the resulting image is composed of a view parallel to the skin plane and a view perpendicular on the skin plane (image 3 & 4 ).
  • the parallel view may be used for deriving the in-plane skin elasticity information, from the perpendicular image a multitude of other skin parameters can be derived.
  • a system for determining skin elasticity is presented. While the device presented in the first aspect of the invention is intended for being attached to a different device that performs image recording and image processing, the system presented in the second aspect of the invention is an integrated device that contains all components required for determining skin elasticity.
  • the system comprises: mechanical means for exposing skin to a pre-defined pressure to create a skin deformation; an image recording device comprising an imager and a light source for imaging and illuminating the skin deformation; and a processor configured for determining an amount of deformation of the skin in the image using image processing techniques and further configured for determining skin elasticity based on the amount of skin deformation and on the pre-defined pressure value.
  • a method 300 for determining skin elasticity of skin is presented.
  • the method is illustrated in FIG. 8 and comprises: receiving an image of deformed skin 301 ; receiving a pressure value to which the skin was exposed to create the deformed skin 302 ; determining an amount of deformation of the skin in the image using image processing techniques 303 ; determining skin elasticity of the skin based on the amount of skin deformation and on the pressure value 304 .
  • the method may be a software program, for example running on a processor of an image recording device such as a smartphone.
  • the software may be an app running on the smartphone.
  • the method may comprise the following steps: applying a pressure value to skin such that the skin deforms; taking an image of the deformed skin; determine the amount of deformation of the skin in the image using image processing techniques; determine skin elasticity of the skin based on the amount of skin deformation and on the pressure value.
  • the determination of the amount of skin deformation may comprise analyzing light intensity differences in the image taken from the skin dome.
  • analyzing light intensity differences is performed by analyzing the amount of light and shadow in an image.
  • a first step the amount of pixels above and below certain thresholds for each image row, e.g. each horizontal image row, is calculated.
  • pixels above a defined threshold are marked white and pixels below another defined threshold are marked black.
  • Each row now contains a number of white, black and other pixels.
  • third step when the majority of the pixels in the row are white, the whole line is colored white. The number of black and white lines is transformed into a “roundness” value that represents the skin elasticity.
  • FIG. 9 is an image of skin that is exposed to a pressure causing the skin to dome.
  • FIG. 10 illustrates the result after analysis of the amount of light and shadow in the image as described above.
  • FIG. 11 is another image of skin that is exposed to another pressure causing the skin to dome.
  • FIG. 12 illustrates the result after analysis of the amount of light and shadow in the image as described above.
  • the determination of the amount of skin deformation comprises determining amplitude and/or determining an amount of skin folds in the deformed skin area.
  • determining the amount of skin folds in the deformed skin area is performed by performing edge detection on an image of the deformed skin and analyzing the detected edges.
  • the determination of the amplitude may be performed e.g. by analysis of the gradient of change in RGB values of adherent pixels.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Dermatology (AREA)
  • General Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physiology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
US16/323,809 2016-08-09 2017-08-09 Device and method for measuring skin elasticity Active 2040-02-22 US11553873B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP16183306.6 2016-08-09
EP16183306 2016-08-09
EP16183306 2016-08-09
PCT/EP2017/070259 WO2018029286A1 (en) 2016-08-09 2017-08-09 Device and method for measuring skin elasticity

Publications (2)

Publication Number Publication Date
US20190209074A1 US20190209074A1 (en) 2019-07-11
US11553873B2 true US11553873B2 (en) 2023-01-17

Family

ID=56740861

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/323,809 Active 2040-02-22 US11553873B2 (en) 2016-08-09 2017-08-09 Device and method for measuring skin elasticity

Country Status (7)

Country Link
US (1) US11553873B2 (ru)
EP (1) EP3496593B1 (ru)
JP (1) JP7146731B2 (ru)
CN (1) CN109561829B (ru)
BR (1) BR112019002398A2 (ru)
RU (1) RU2760377C2 (ru)
WO (1) WO2018029286A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3536223A1 (en) * 2018-03-07 2019-09-11 Koninklijke Philips N.V. Device, system and method for measurement of a skin parameter
JP7176900B2 (ja) * 2018-09-13 2022-11-22 株式会社 資生堂 変形撮影装置、変形撮影支援装置および変形撮影方法
US20210052189A1 (en) * 2019-08-22 2021-02-25 Wisconsin Alumni Research Foundation Lesion Volume Measurements System
FR3106485A1 (fr) * 2020-01-23 2021-07-30 Anatoscope Dispositif et procede de mesure d’une force exercee sur un corps, et caracterisation de la rigidite d’un corps employant un tel dispositif
CN115336982B (zh) * 2022-08-25 2024-05-17 苏州纳生微电子有限公司 皮肤弹性的测量方法及测量系统

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164438A (ja) 1986-01-16 1987-07-21 オリンパス光学工業株式会社 皮膚観察装置
US20030026110A1 (en) * 2001-08-06 2003-02-06 Moritex Corporation Imaging apparatus
US20060239547A1 (en) * 2005-04-20 2006-10-26 Robinson M R Use of optical skin measurements to determine cosmetic skin properties
KR20060114881A (ko) * 2005-05-03 2006-11-08 아람휴비스(주) 검출 시스템
JP2008029578A (ja) 2006-07-28 2008-02-14 Kao Corp 皮膚性状評価方法
WO2009027898A1 (en) 2007-08-24 2009-03-05 Koninklijke Philips Electronics N.V. Method and apparatuses for measuring skin properties
WO2010118124A2 (en) 2009-04-07 2010-10-14 Reveal Sciences, Llc Device, method, and apparatus for biological testing with a mobile device
RU2422081C2 (ru) 2007-01-05 2011-06-27 Майскин, Инк. Система, устройство и способ кожного изображения
US20120172685A1 (en) 2011-01-04 2012-07-05 Ergylink System for analysing the skin and associated method
US20120215134A1 (en) 2007-03-19 2012-08-23 Nicholas Hunter-Jones Skin Elasticity Measurement
US20120253224A1 (en) 2011-03-30 2012-10-04 SensiVida Medical Technologies, Inc. Skin test image analysis apparatuses and methods thereof
US20130079643A1 (en) * 2011-09-22 2013-03-28 Lvmh Recherche Method to measure skin elasticity and firmness
US20130300919A1 (en) * 2008-01-02 2013-11-14 The Regents Of The University Of California Cellscope apparatus and methods for imaging
EP2687151A1 (en) 2012-07-20 2014-01-22 Tanita Corporation Viscoelasticity measuring apparatus
WO2014029509A1 (en) 2012-08-20 2014-02-27 Symae Technologies Holding B.V. Improved skin and scalp diagnosis device and method
US20150173996A1 (en) 2013-12-20 2015-06-25 L'oreal Method for treating the skin and device
US20160183804A1 (en) 2014-12-30 2016-06-30 Regents Of The University Of Minnesota Laser catheter with use of reflected light to determine material type in vascular system
US20210052212A1 (en) * 2017-03-31 2021-02-25 The University Of Massachusetts Instruments and methods for imaging collagen structure in vivo

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3832690C1 (ru) * 1988-09-26 1990-04-12 Courage + Khazaka Electronic Gmbh, 5000 Koeln, De
JP3121300B2 (ja) * 1997-11-07 2000-12-25 鐘紡株式会社 皮膚状態測定装置
CN2414759Y (zh) * 1999-06-17 2001-01-17 贲远谋 吸疗器
US6786100B2 (en) 2000-01-19 2004-09-07 Pola Chemical Industries Inc. Device for measuring physical properties of elastic bodies
FR2826857B1 (fr) 2001-07-09 2004-03-12 Oreal Instrument pour observer la peau ou les cheveux
JP2009240374A (ja) 2008-03-28 2009-10-22 Osaka Univ 皮膚特性測定装置および皮膚特性測定プログラム
KR101484026B1 (ko) * 2013-06-13 2015-01-19 국립암센터 피부 탄성도 측정장치
CN203970406U (zh) * 2014-04-15 2014-12-03 杨宝君 一种皮肤弹性指数测量装置
EP3179902B1 (en) * 2014-08-11 2020-10-14 The Board of Trustees of the University of Illionis Epidermal device for analysis of temperature and thermal transport characteristics

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164438A (ja) 1986-01-16 1987-07-21 オリンパス光学工業株式会社 皮膚観察装置
US20030026110A1 (en) * 2001-08-06 2003-02-06 Moritex Corporation Imaging apparatus
US20060239547A1 (en) * 2005-04-20 2006-10-26 Robinson M R Use of optical skin measurements to determine cosmetic skin properties
KR20060114881A (ko) * 2005-05-03 2006-11-08 아람휴비스(주) 검출 시스템
JP2008029578A (ja) 2006-07-28 2008-02-14 Kao Corp 皮膚性状評価方法
RU2422081C2 (ru) 2007-01-05 2011-06-27 Майскин, Инк. Система, устройство и способ кожного изображения
US20120215134A1 (en) 2007-03-19 2012-08-23 Nicholas Hunter-Jones Skin Elasticity Measurement
WO2009027898A1 (en) 2007-08-24 2009-03-05 Koninklijke Philips Electronics N.V. Method and apparatuses for measuring skin properties
US20130300919A1 (en) * 2008-01-02 2013-11-14 The Regents Of The University Of California Cellscope apparatus and methods for imaging
WO2010118124A2 (en) 2009-04-07 2010-10-14 Reveal Sciences, Llc Device, method, and apparatus for biological testing with a mobile device
US20120172685A1 (en) 2011-01-04 2012-07-05 Ergylink System for analysing the skin and associated method
US20120253224A1 (en) 2011-03-30 2012-10-04 SensiVida Medical Technologies, Inc. Skin test image analysis apparatuses and methods thereof
US20130079643A1 (en) * 2011-09-22 2013-03-28 Lvmh Recherche Method to measure skin elasticity and firmness
EP2687151A1 (en) 2012-07-20 2014-01-22 Tanita Corporation Viscoelasticity measuring apparatus
WO2014029509A1 (en) 2012-08-20 2014-02-27 Symae Technologies Holding B.V. Improved skin and scalp diagnosis device and method
US20150173996A1 (en) 2013-12-20 2015-06-25 L'oreal Method for treating the skin and device
US20160183804A1 (en) 2014-12-30 2016-06-30 Regents Of The University Of Minnesota Laser catheter with use of reflected light to determine material type in vascular system
US20210052212A1 (en) * 2017-03-31 2021-02-25 The University Of Massachusetts Instruments and methods for imaging collagen structure in vivo

Also Published As

Publication number Publication date
RU2019106321A3 (ru) 2020-12-09
EP3496593B1 (en) 2024-05-15
WO2018029286A1 (en) 2018-02-15
CN109561829A (zh) 2019-04-02
BR112019002398A2 (pt) 2019-06-04
EP3496593A1 (en) 2019-06-19
JP2019527574A (ja) 2019-10-03
RU2760377C2 (ru) 2021-11-24
JP7146731B2 (ja) 2022-10-04
US20190209074A1 (en) 2019-07-11
RU2019106321A (ru) 2020-09-11
CN109561829B (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
US11553873B2 (en) Device and method for measuring skin elasticity
CN110236486A (zh) 用于皮肤参数测量的设备、系统和方法
EP3555856B1 (en) Systems and methods for obtaining data characterizing a three-dimensional object
US9396576B2 (en) Method and apparatus for estimating the three-dimensional shape of an object
US20170078584A1 (en) Optical dynamic imaging system
ES2882498T3 (es) Dispositivo accesorio y dispositivo de formación de imágenes
JP2018504946A (ja) 毛細血管再充満時間を測るためのアプローチ
JP6436442B2 (ja) 光音響装置および画像処理方法
CN111465345A (zh) 皮肤传感器
KR20130006011A (ko) 초음파 근육 영상 처리 장치
AU2019366160B2 (en) An optical palpation device and method for evaluating a mechanical property of a sample material
EP3657383A3 (en) Skin analyzing device, skin analyzing method, and recording medium
TWI494868B (zh) 光學裝置及其運作方法
KR102278122B1 (ko) 모발 큐티클 모니터링을 통한 모발 관리 시스템
US20220160260A1 (en) System and method for measuring biomedical signal
US20210201080A1 (en) Learning data creation apparatus, method, program, and medical image recognition apparatus
JP2016120114A (ja) 光音響装置
JP6100322B2 (ja) 音響波測定装置および音響波測定方法
Nau et al. Skinscan: Low-cost 3d-scanning for dermatologic diagnosis and documentation
KR20200041550A (ko) 모바일 기반 자기 주도형 갑상선암 진단 시스템 및 방법
JP7515174B2 (ja) 表面下物体及び表面物体の特性評価のためのモバイルプラットフォーム圧縮誘導イメージング
KR20220072714A (ko) 생체 신호 측정 시스템 및 그것의 생체 신호 측정 방법
Oleksyuk et al. Live demonstration: Tactile imaging sensor for mechanical properties quantification of breast tumor
Kundu Benjamin Imaging platforms for detecting and analyzing skin features and Its stability: with applications in skin health and in using the skin as a body-relative position-encoding system
TW201910721A (zh) 釘體尺寸量測裝置

Legal Events

Date Code Title Description
AS Assignment

Owner name: KONINKLIJKE PHILIPS N.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WESTERHOF, WILLEM AUKE;PLATJE, MATTHIJS;SIGNING DATES FROM 20170904 TO 20190207;REEL/FRAME:048262/0541

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE