US11513541B2 - Method of inspecting and inspection apparatus - Google Patents

Method of inspecting and inspection apparatus Download PDF

Info

Publication number
US11513541B2
US11513541B2 US16/656,935 US201916656935A US11513541B2 US 11513541 B2 US11513541 B2 US 11513541B2 US 201916656935 A US201916656935 A US 201916656935A US 11513541 B2 US11513541 B2 US 11513541B2
Authority
US
United States
Prior art keywords
pressure
flow rate
fluid
reference data
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/656,935
Other languages
English (en)
Other versions
US20200124455A1 (en
Inventor
Atsushi Sawachi
Norihiko Amikura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Assigned to TOKYO ELECTRON LIMITED reassignment TOKYO ELECTRON LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AMIKURA, NORIHIKO, SAWACHI, ATSUSHI
Publication of US20200124455A1 publication Critical patent/US20200124455A1/en
Application granted granted Critical
Publication of US11513541B2 publication Critical patent/US11513541B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • G01F25/15Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters specially adapted for gas meters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B1/00Comparing elements, i.e. elements for effecting comparison directly or indirectly between a desired value and existing or anticipated values
    • G05B1/11Comparing elements, i.e. elements for effecting comparison directly or indirectly between a desired value and existing or anticipated values fluidic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F7/00Volume-flow measuring devices with two or more measuring ranges; Compound meters
    • G01F7/005Volume-flow measuring devices with two or more measuring ranges; Compound meters by measuring pressure or differential pressure, created by the use of flow constriction

Definitions

  • Exemplary embodiments of the present disclosure relate to a method of inspecting and an inspection apparatus.
  • Japanese Unexamined Patent Publication No. H8-338546 discloses a pressure-type flow rate control device for performing flow rate control.
  • This device includes an orifice and a control valve provided upstream of the orifice.
  • the control valve adjusts pressure upstream of the orifice and controls a flow rate downstream of the orifice so as to reach a set value.
  • the control valve has a diaphragm, a piezoelectric element pressing the diaphragm downward, and a valve seat.
  • the diaphragm is always pressed downward through the piezoelectric element and is in contact with the valve seat. If the pressing is released, the diaphragm returns upward with an elastic force.
  • the diaphragm is separated from the valve seat, whereby the control valve enters an opened state.
  • a method is provided.
  • the method is an inspection method of a flow rate controller for controlling a flow rate of a fluid, the flow rate controller including a first pressure detector configured to detect a first pressure that is a pressure of the fluid, a diaphragm valve provided downstream of the first pressure detector and having a diaphragm and a piezoelectric element for driving the diaphragm, a second pressure detector provided downstream of the diaphragm valve and configured to detect a second pressure that is a pressure of the fluid, and an orifice provided downstream of the second pressure detector, and the flow rate controller being connected to a processing apparatus for executing a substrate processing process, and controlling the diaphragm valve, based on the second pressure such that the flow rate of the fluid which is supplied to the processing apparatus becomes a set flow rate, the inspection method including: measuring, as reference data, control values of the piezoelectric element corresponding to the first pressure and the set flow rate or the second pressure while changing the first pressure and the set flow rate or the
  • FIG. 1 is a flowchart illustrating an example of a reference acquisition step of an inspection method according to an embodiment.
  • FIG. 2 is a flowchart illustrating an example of a target measurement step and a determination step of the inspection method according to the embodiment.
  • FIG. 3 is a schematic diagram illustrating an example of a processing system.
  • FIG. 4 is a diagram illustrating an example of a configuration of a diaphragm valve.
  • FIG. 5 is a block diagram illustrating an example of a function of a controller.
  • FIG. 6 is an example in which the contents of a three-dimensional database are visualized.
  • FIG. 7 is an example of a change over time of an applied voltage.
  • FIG. 8 is an example in which the contents of a converted three-dimensional database are visualized.
  • a variation width of a piezoelectric element itself and a variation width of a diaphragm connected to the piezoelectric element are very small, and therefore, an individual difference in the displacement amount of the piezoelectric element itself and an individual difference in the displacement amount of the diaphragm occur.
  • There is an individual difference between the flow rate controllers and therefore, it is difficult to provide an inspection index applicable to all the flow rate controllers.
  • the piezoelectric element can be inspected at the time of execution of a process, it is not necessary to stop an apparatus for the inspection, and therefore, the availability of the apparatus is improved.
  • the present disclosure provides a flow rate controller inspection method and an inspection apparatus, in which it is possible to inspect a flow rate control function regardless of an individual difference of the flow rate controller.
  • an inspection method is provided.
  • the inspection method is an inspection method for a flow rate controller for controlling a flow rate of a fluid, in which the flow rate controller includes a first pressure detector for detecting a first pressure that is a pressure of the fluid, a diaphragm valve provided downstream of the first pressure detector and having a diaphragm and a piezoelectric element for driving the diaphragm, a second pressure detector provided downstream of the diaphragm valve and detecting a second pressure that is a pressure of the fluid, and an orifice provided downstream of the second pressure detector, and the flow rate controller is connected to a processing apparatus for executing a substrate processing process and controls the diaphragm valve, based on the second pressure such that the flow rate of the fluid which is supplied to the processing apparatus becomes a set flow rate, the inspection method including: a reference measurement step of measuring, as reference data, control values of the piezoelectric element corresponding to the first pressure and the set flow rate or the second pressure while changing the first pressure
  • the fluid flows through a flow path passing through the flow rate controller in the order of the first pressure detector, the diaphragm valve, the second pressure detector, and the orifice.
  • the second pressure upstream of the orifice which is detected by the second pressure detector, is two or more times the pressure downstream of the orifice
  • the flow rate of the fluid passing through the orifice is proportional to the second pressure.
  • the first pressure and the set flow rate or the second pressure are changed before the execution of the substrate processing process, and the control values of the piezoelectric elements corresponding to the first pressure and the set flow rate or the second pressure are measured as the reference data.
  • the reference recording step the three-dimensional database in which the first pressure, the set flow rate or the second pressure, and the control value of the piezoelectric element are associated with each other is created and recorded based on the reference data measured in the reference measurement step.
  • the target measurement step the control values of the piezoelectric element corresponding to the detected first pressure and the set flow rate specified in the recipe or the detected second pressure are measured as the target data at the time of the execution of the substrate processing process.
  • the determination step the reference data is compared with the target data. In this manner, before the execution of the substrate processing process, the control values of the piezoelectric element with respect to various combinations of the first pressure and the set flow rate or the second pressure are acquired in advance and compiled into a database.
  • the reference acquisition step may use a first fluid as the fluid
  • the target measurement step may use a second fluid as the fluid
  • the determination step may further include an application step of applying, to the reference data of the first fluid, a flow factor for converting into the reference data of the second fluid, and comparing the reference data of the second fluid with the target data of the second fluid.
  • the determination step includes the application step, whereby it is possible to inspect the reference data of the second fluid and the target data of the second fluid by using the flow factor fort converting the reference data of the first fluid into the reference data of the second fluid. Accordingly, in this inspection method for the flow rate controller, even in a case of using a gaseous species different from the gaseous species of the reference data, it is possible to inspect the flow rate control function of the flow rate controller.
  • the flow rate controller may further include a third pressure detector provided downstream of the orifice and detecting a third pressure that is pressure of the fluid. In this case, even in a case where the pressure upstream of the orifice is not two or more times the pressure downstream of the orifice, it is possible to calculate the flow rate of the fluid passing through the orifice.
  • an inspection apparatus is an inspection apparatus for performing inspection related to control of a flow rate controller for controlling a flow rate of a fluid
  • the flow rate controller includes a first pressure detector for detecting a first pressure that is a pressure of the fluid, a diaphragm valve provided downstream of the first pressure detector and having a diaphragm and a piezoelectric element for driving the diaphragm, a second pressure detector provided downstream of the diaphragm valve and detecting a second pressure that is a pressure of the fluid, and an orifice provided downstream of the second pressure detector
  • the flow rate controller is connected to a substrate processing apparatus for executing a substrate processing process and controls the diaphragm valve, based on the second pressure such that the flow rate of the fluid which is supplied to the substrate processing apparatus becomes a set flow rate
  • the inspection apparatus including an inspection part connected to the flow rate controller, the inspection part being configured to be capable of executing a reference measurement step of measuring, as reference data, control
  • FIG. 1 is a flowchart illustrating an example of the reference acquisition step of the inspection method according to an embodiment.
  • FIG. 2 is a flowchart illustrating an example of the target measurement step and the determination step of the inspection method according to the embodiment.
  • An inspection method MT 1 illustrated in FIG. 1 and an inspection method MT 2 illustrated in FIG. 2 are methods of inspecting the flow rate control function of the flow rate controller. The inspection method MT 1 and the inspection method MT 2 are executed in order.
  • FIG. 3 is a schematic diagram illustrating an example of the processing system.
  • a processing system 1 illustrated in FIG. 3 can include a processing apparatus 10 and a controller 20 (an example of the inspection apparatus).
  • the processing apparatus 10 executes the substrate processing process in accordance with the instructions from the controller 20 .
  • the processing apparatus 10 processes a substrate by using a fluid, as an example of the substrate processing process.
  • the fluid can be gas such as nitrogen gas or argon gas.
  • the processing apparatus 10 is connected to a supply source of the fluid by a flow path IL.
  • the flow path IL is formed in a gas pipe made of, for example, stainless steel.
  • the flow path IL allows the fluid to flow in the direction of an arrow F.
  • a first valve VL 1 , a flow rate controller FC, and a second valve VL 2 are disposed in the flow path IL.
  • the first valve VL 1 is disposed upstream of the flow rate controller FC in the flow path IL.
  • the second valve VL 2 is disposed downstream of the flow rate controller FC in the flow path IL.
  • the first valve VL 1 and the second valve VL 2 are opened or closed to permit or block the flow of the fluid to the downstream side.
  • the flow rate controller FC controls the flow rate of the fluid flowing through the flow path IL from the upstream side to the downstream side.
  • the flow rate controller FC is connected to the processing apparatus 10 by the flow path IL.
  • the flow rate controller FC controls the flow rate of the fluid which is supplied to the processing apparatus 10 so as to reach the set flow rate set by the controller 20 .
  • the flow rate controller FC includes a first pressure detector FP 1 , a diaphragm valve DV, a second pressure detector FP 2 , and an orifice OF.
  • the flow rate controller FC can include a third pressure detector FP 3 , a temperature detector FT, and a control unit CU.
  • the first pressure detector FP 1 , the diaphragm valve DV, the second pressure detector FP 2 , the temperature detector FT, the orifice OF, and the third pressure detector FP 3 are provided in the flow path IL in order from the upstream side to the downstream side.
  • the first pressure detector FP 1 detects a first pressure P 1 , which is the pressure of the fluid in the flow path IL, upstream of the diaphragm valve DV.
  • the second pressure detector FP 2 detects a second pressure P 2 , which is the pressure of the fluid in the flow path IL, between the diaphragm valve DV and the orifice OF.
  • the third pressure detector detects a third pressure P 3 , which is the pressure of the fluid in the flow path IL, downstream of the orifice OF.
  • the first pressure detector FP 1 , the second pressure detector FP 2 , and the third pressure detector FP 3 are, for example, pressure transducers. Each of the first pressure detector FP 1 , the second pressure detector FP 2 , and the third pressure detector FP 3 outputs information on the detected pressure value to the control unit CU.
  • the diaphragm valve DV is provided downstream of the first pressure detector FP 1 .
  • the diaphragm valve DV is provided on the flow path IL between the first pressure detector FP 1 and the second pressure detector FP 2 .
  • FIG. 4 is a diagram illustrating an example of the configuration of the diaphragm valve.
  • the diaphragm valve DV includes a diaphragm 14 and a piezoelectric element 12 (a piezo element) for driving the diaphragm 14 .
  • the diaphragm 14 opens and closes the flow path IL by the operation of the piezoelectric element 12 .
  • An example of the diaphragm valve DV illustrated in FIG. 4 includes a control circuit 11 , a main body 13 , a disk spring 15 , a hold-down member 16 , a base member 17 , a spherical body 18 , and a support member 19 .
  • the piezoelectric element 12 drives the diaphragm 14 as an opening and closing operation of the diaphragm valve DV.
  • the piezoelectric element 12 extends in response to an applied voltage Vp controlled by the control circuit 11 and performs the opening and closing of the diaphragm valve DV by causing the diaphragm 14 to come close to or be separated from a valve seat 13 d (described later).
  • the main body 13 has a flow path 13 a , a flow path 13 b , a valve chamber 13 e , and the valve seat 13 d .
  • the flow path 13 a and the flow path 13 b configure a part of the flow path IL described above.
  • the diaphragm 14 is biased to the valve seat 13 d by the disk spring 15 through the hold-down member 16 . In a case where the applied voltage Vp to the piezoelectric element 12 is zero, the diaphragm 14 is in contact with the valve seat 13 d and the diaphragm valve DV is in a closed state.
  • the piezoelectric element 12 is supported by the base member 17 .
  • the piezoelectric element 12 is connected to the support member 19 .
  • the support member 19 is coupled to the hold-down member 16 at one end (in the drawing, a lower end) thereof. If the applied voltage Vp is applied to the piezoelectric element 12 , the piezoelectric element 12 extends. If the piezoelectric element 12 extends, the support member 19 moves in the direction away from the valve seat 13 d , and accordingly, the hold-down member 16 also moves in the direction away from the valve seat 13 d .
  • the diaphragm 14 is separated from the valve seat 13 d , so that the diaphragm valve DV enters an opened state.
  • the degree of opening of the diaphragm valve DV that is, the distance between the diaphragm 14 and the valve seat 13 d is controlled by the applied voltage Vp which is applied to the piezoelectric element 12 .
  • a flow rate difference ⁇ F between an output flow rate and a set flow rate is input from the control unit CU to the control circuit 11 .
  • the output flow rate is a flow rate downstream of the orifice OF.
  • the set flow rate is a target value of the output flow rate set in advance.
  • the set flow rate can be set by the controller 20 .
  • the control circuit 11 controls the applied voltage Vp which is applied to the piezoelectric element 12 such that the flow rate difference ⁇ F becomes zero, for example.
  • the control circuit 11 inputs a signal specifying the applied voltage Vp to the piezoelectric element 12 to the control unit CU. That is, the control unit CU can acquire a signal specifying the applied voltage Vp to the piezoelectric element 12 (a control value of the piezoelectric element 12 ).
  • FIG. 3 is referred to again.
  • the orifice OF partially reduces the cross-sectional area of the flow path IL in the flow path IL between the second pressure detector FP 2 and the third pressure detector FP 3 .
  • the temperature detector FT detects the temperature of the fluid in the flow path IL between the diaphragm valve DV and the orifice OF.
  • the temperature detector FT outputs information on the detected temperature to the control unit CU.
  • the control unit CU can be configured with a control device (a control board) composed of a microcomputer provided with a CPU.
  • the hardware of the control unit CU can be configured with a circuit (control) board equipped with a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), an A/D conversion circuit, a D/A conversion circuit, and a communication I/F (interface) circuit.
  • the control unit CU is communicably connected to the first pressure detector FP 1 , the second pressure detector FP 2 , the third pressure detector FP 3 , the temperature detector FT, and the diaphragm valve DV.
  • the control unit CU calculates the output flow rate, based on the second pressure P 2 detected by the second pressure detector FP 2 .
  • the flow rate controller FC is operated under the condition that the second pressure P 2 becomes two or more times the third pressure P 3 downstream of the orifice OF, whereby the output flow rate of the flow rate controller FC is determined based on the second pressure P 2 .
  • the flow rate controller FC may not include the third pressure detector FP 3 in a case of being used in a state where the second pressure P 2 is two or more times the third pressure P 3 .
  • the control unit CU may correct the output flow rate, based on the temperature detected by the temperature detector FT. In this case, the control unit CU can more accurately calculate the output flow rate.
  • the control unit CU may calculate the output flow rate by further using the third pressure P 3 detected by the third pressure detector FP 3 .
  • the flow rate of the fluid passing through the orifice OF can be derived from the differential pressure between the second pressure P 2 and the third pressure P 3 .
  • the control unit CU obtains the flow rate difference ⁇ F by calculating the difference between the output flow rate calculated as described above and the set flow rate acquired from the controller 20 .
  • the control unit CU outputs the obtained flow rate difference ⁇ F to the control circuit 11 .
  • the controller 20 can be configured with a control device (a control board) composed of a microcomputer provided with a CPU.
  • the hardware of the controller 20 can be configured with a circuit (control) board equipped with a CPU, a ROM, a RAM, an A/D conversion circuit, a D/A conversion circuit, and a communication I/F circuit.
  • the controller 20 is communicably connected to the control unit CU and the processing apparatus 10 .
  • the controller 20 outputs the instructions to the processing apparatus 10 to cause the processing apparatus 10 to execute the substrate processing process.
  • the controller 20 outputs the set flow rate to the control unit CU of the flow rate controller FC to cause the fluid to flow through the flow rate controller FC at the set flow rate.
  • the controller 20 includes the inspection part 201 , a recipe recording part 202 , and a database recording part 203 .
  • a recipe of the substrate processing process is stored in the recipe recording part 202 .
  • the recipe can include a time of a processing step, a gaseous species, the set flow rate, and the like.
  • the inspection part 201 refers to the recipe to output the set flow rate to the control unit CU of the flow rate controller FC.
  • FIG. 5 is a block diagram illustrating an example of the function of the controller.
  • the inspection part 201 of the controller 20 can include a reference measurement unit 211 , a reference recording unit 212 , a target measurement unit 213 , and a determination unit 214 .
  • the reference measurement unit 211 is configured to be capable of executing the reference measurement step (ST 1 ) in the inspection method MT 1 .
  • the reference recording unit 212 is configured to be capable of executing the reference recording step (ST 2 ) in the inspection method MT 1 .
  • the target measurement unit 213 is configured to be capable of executing the target measurement step (ST 3 ) in the inspection method MT 2 .
  • the determination unit 214 is configured to be capable of executing the determination step (ST 4 ) in the inspection method MT 2 .
  • the inspection method MT 1 is executed in advance by the controller 20 before the execution of the substrate processing process.
  • the reference measurement unit 211 of the controller 20 measures, as the reference data, the applied voltages Vp corresponding to the first pressure P 1 and the set flow rate or the second pressure P 2 while changing the first pressure P 1 and the set flow rate or the second pressure P 2 , as the reference measurement step (ST 1 ).
  • the reference measurement unit 211 prepares any combination of the first pressure P 1 and the set flow rate and acquires the applied voltage Vp corresponding to the combination.
  • the reference measurement unit 211 may prepare any combination of the first pressure P 1 and the second pressure P 2 and acquire the applied voltage Vp corresponding to the combination.
  • the reference recording unit 212 of the controller 20 creates and records the three-dimensional database in which the first pressure P 1 , the set flow rate or the second pressure P 2 , and the applied voltage Vp are associated with each other, based on the reference data measured in the reference measurement step (ST 1 ), as the reference recording step (ST 2 ).
  • the three-dimensional database is a database in which the first pressure P 1 , the set flow rate or the second pressure P 2 , and the applied voltage Vp are associated with each other.
  • the reference recording unit 212 creates the three-dimensional database by plotting the reference data in three dimensions with the first pressure P 1 , the set flow rate, and the applied voltage Vp as axes, as an example.
  • FIG. 6 is an example in which the contents of the three-dimensional database are visualized.
  • the relationship between the first pressure P 1 , the set flow rate, and the applied voltage Vp can be visually displayed.
  • the reference recording unit 212 stores the created three-dimensional database in the database recording part 203 .
  • the set flow rate in FIG. 6 may be the second pressure P 2 .
  • the controller 20 ends the inspection method MT 1 .
  • the inspection method MT 2 is executed by the controller 20 when the substrate processing process is executed.
  • the target measurement unit 213 of the controller 20 measures the applied voltage Vp as the target data at the time of the execution of the substrate processing process, as the target measurement step (ST 3 ). First, the target measurement unit 213 acquires the first pressure P 1 and the set flow rate or the second pressure P 2 at the time of the measurement of the applied voltage Vp. The target measurement unit 213 acquires the first pressure P 1 from the first pressure detector FP 1 . The target measurement unit 213 refers to the recipe recording part 202 to acquire the set flow rate specified in the recipe. Alternatively, the target measurement unit 213 acquires the second pressure P 2 from the second pressure detector FP 2 . Then, the target measurement unit 213 measures the applied voltage Vp and associates it with the combination of the first pressure P 1 and the set flow rate or the second pressure P 2 at the time of the measurement.
  • FIG. 7 is an example of a change over time of the applied voltage.
  • the applied voltage Vp is applied in a processing step N (Step N).
  • the target measurement unit 213 starts the measurement of the applied voltage Vp after a first period T 1 that is a predetermined period has elapsed since the start of the processing step N.
  • the target measurement unit 213 may acquire a plurality of data DT of the applied voltage Vp. In this case, the target measurement unit 213 may average the plurality of data DT in an acquisition period T 2 .
  • the determination unit 214 of the controller 20 compares the target data with the reference data included in the three-dimensional database, as the determination step (ST 4 ).
  • the determination unit 214 acquires the applied voltage Vp, which is the reference data, based on the first pressure P 1 and the set flow rate or the second pressure P 2 at the time of the measurement and the three-dimensional database illustrated in FIG. 6 , as an example.
  • the determination unit 214 determines whether or not there is a problem in the diaphragm valve DV, by comparing the applied voltage Vp, which is the reference data, with the applied voltage Vp measured at the time of the execution of the substrate processing process.
  • the determination unit 214 determines that there is a problem in the diaphragm valve DV. As an example, if the difference between the applied voltage Vp, which is the reference data, and the measured applied voltage Vp is smaller than the reference value, the determination unit 214 determines that there is no problem in the diaphragm valve DV.
  • the reference value can be determined in consideration of variation in communication, variation in reproducibility of the piezoelectric element 12 itself, or the like.
  • the determination unit 214 may record the determination result on a recording device, or may display the determination result on a monitor device or the like.
  • the controller 20 determines whether or not an inspection status satisfies an end condition, as an inspection end determination (ST 5 ). For example, in a case where the inspection is carried out in a plurality of steps of the substrate processing process, the end condition is satisfied when all the inspections are ended in a target step. In a case where the end condition is satisfied, the controller 20 ends the inspection method MT 2 .
  • the determination step (ST 4 ) may be started after all the target data are measured in the target measurement step (ST 3 ). In that case, the end determination step (ST 5 ) may not be provided.
  • the determination step (ST 4 ) can have an application step.
  • the first fluid and the second fluid are different types of fluids.
  • the application step is performed before the comparison of the reference data with the target data.
  • the flow factor for converting the reference data of the first fluid into the reference data of the second fluid is applied by the determination unit 214 .
  • the flow factor can be a numerical value representing a change in flow rate display according to the type of the second fluid with respect to the first fluid.
  • the flow factor includes characteristic values such as density, a specific heat ratio, and a gas constant corresponding to the first fluid and the second fluid.
  • the flow factor may be a coefficient which is defined by the international standard IEC60534-1 (corresponding to Japanese Industrial Standard JIS B 2005-1).
  • the flow factor may be a value determined such that the flow rate of an orifice in which the flow rate of water at 60° F. flows at 1 gallon/min in one minute with a pressure difference of 1 psi becomes 1.
  • the definition may be made by replacing water with air.
  • FIG. 8 is an example in which the contents of the converted three-dimensional database are visualized.
  • the three-dimensional database illustrated in FIG. 8 is the database obtained by applying the flow factor to the three-dimensional database illustrated in FIG. 6 . In this manner, it is possible to acquire the three-dimensional database of the second fluid, based on the three-dimensional database of the first fluid.
  • the determination unit 214 compares the target data with the reference data included in the three-dimensional database, after the application step.
  • the first pressure P 1 and the set flow rate or the second pressure P 2 are changed before the execution of the substrate processing process, and the applied voltages Vp corresponding thereto are measured as the reference data.
  • the reference recording step (ST 2 ) the three-dimensional database in which the first pressure P 1 , the set flow rate or the second pressure P 2 , and the applied voltage Vp are associated with each other is created and recorded based on the reference data measured in the reference measurement step (ST 1 ).
  • the applied voltages Vp corresponding to the detected first pressure P 1 and the set flow rate specified in the recipe or the detected second pressure P 2 are measured as the target data.
  • the determination step (ST 4 ) the reference data is compared with the target data. In this manner, before the execution of the substrate processing process, the applied voltages Vp with respect to various combinations of the first pressure P 1 and the set flow rate or the second pressure P 2 are acquired in advance and complied into a database. By using this three-dimensional database, it is possible to acquire the reference value of the applied voltage Vp under any condition.
  • the inspection methods MT 1 and MT 2 can monitor the abnormality or specular change of the diaphragm valve even at the time of the execution of the substrate processing process. Accordingly, the inspection methods MT 1 and MT 2 can inspect the flow rate control function of the flow rate controller FC regardless of the individual difference of the flow rate controller FC.
  • the inspection methods MT 1 and MT 2 can inspect the flow rate control function of the flow rate controller FC by using the flow factor, even in a case of using a gaseous species different from the gaseous species of the reference data.
  • the present disclosure is not limited to the exemplary embodiments described above, and various omissions, substitutions, and changes may be made. Further, it is possible to combine the elements in different embodiments to form other embodiments.
  • the function of the inspection part 201 may be provided in the control unit CU.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Flow Control (AREA)
  • Measuring Volume Flow (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
US16/656,935 2018-10-22 2019-10-18 Method of inspecting and inspection apparatus Active 2041-07-12 US11513541B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018198245A JP2020067689A (ja) 2018-10-22 2018-10-22 検査方法及び検査装置
JPJP2018-198245 2018-10-22
JP2018-198245 2018-10-22

Publications (2)

Publication Number Publication Date
US20200124455A1 US20200124455A1 (en) 2020-04-23
US11513541B2 true US11513541B2 (en) 2022-11-29

Family

ID=70279521

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/656,935 Active 2041-07-12 US11513541B2 (en) 2018-10-22 2019-10-18 Method of inspecting and inspection apparatus

Country Status (5)

Country Link
US (1) US11513541B2 (zh)
JP (1) JP2020067689A (zh)
KR (1) KR20200045417A (zh)
CN (1) CN111077916A (zh)
TW (1) TW202024509A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06214657A (ja) 1993-01-14 1994-08-05 Hitachi Metals Ltd 異常診断機能付マスフローコントローラ及びその異常診断方法
JPH08338546A (ja) 1995-06-12 1996-12-24 Fujikin:Kk 圧力式流量制御装置
JP2004199245A (ja) 2002-12-17 2004-07-15 Ckd Corp 流量制御方法および流量制御装置
JP2004199109A (ja) 2002-12-16 2004-07-15 Fujikin Inc 圧力式流量制御装置を用いた流体の流量制御方法
US20090248213A1 (en) * 2008-03-31 2009-10-01 Hitachi Metals, Ltd. Flow controller and test method therefor, and flow control method
JP2013088946A (ja) 2011-10-14 2013-05-13 Horiba Stec Co Ltd 流量制御装置、流量制御装置に用いられる診断装置及び診断用プログラム
JP2017059200A (ja) 2015-09-16 2017-03-23 東京エレクトロン株式会社 ガス供給系を検査する方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102121260B1 (ko) * 2015-12-25 2020-06-10 가부시키가이샤 후지킨 유량 제어 장치 및 유량 제어 장치를 사용하는 이상 검지 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06214657A (ja) 1993-01-14 1994-08-05 Hitachi Metals Ltd 異常診断機能付マスフローコントローラ及びその異常診断方法
JPH08338546A (ja) 1995-06-12 1996-12-24 Fujikin:Kk 圧力式流量制御装置
JP2004199109A (ja) 2002-12-16 2004-07-15 Fujikin Inc 圧力式流量制御装置を用いた流体の流量制御方法
JP2004199245A (ja) 2002-12-17 2004-07-15 Ckd Corp 流量制御方法および流量制御装置
US20090248213A1 (en) * 2008-03-31 2009-10-01 Hitachi Metals, Ltd. Flow controller and test method therefor, and flow control method
JP2013088946A (ja) 2011-10-14 2013-05-13 Horiba Stec Co Ltd 流量制御装置、流量制御装置に用いられる診断装置及び診断用プログラム
JP2017059200A (ja) 2015-09-16 2017-03-23 東京エレクトロン株式会社 ガス供給系を検査する方法

Also Published As

Publication number Publication date
KR20200045417A (ko) 2020-05-04
TW202024509A (zh) 2020-07-01
US20200124455A1 (en) 2020-04-23
CN111077916A (zh) 2020-04-28
JP2020067689A (ja) 2020-04-30

Similar Documents

Publication Publication Date Title
US10401202B2 (en) Method and apparatus for gas flow control
KR102121260B1 (ko) 유량 제어 장치 및 유량 제어 장치를 사용하는 이상 검지 방법
US8104323B2 (en) Flow controller, flow measuring device testing method, flow controller testing system, and semiconductor manufacturing apparatus
JP4788920B2 (ja) 質量流量制御装置、その検定方法及び半導体製造装置
US10545514B2 (en) Flow rate control apparatus, flow rate control method, and program recording medium
KR101572407B1 (ko) 차압식 매스 플로우 컨트롤러에 있어서 진단 기구
US20060283390A1 (en) Semiconductor manufacturing apparatus enabling inspection of mass flow controller maintaining connection thereto
TWI650533B (zh) 濃度檢測方法及壓力式流量控制裝置
KR20190087644A (ko) 넓은 범위의 질량 유동 검증을 위한 방법 및 장치
US11513541B2 (en) Method of inspecting and inspection apparatus
US10274972B2 (en) Method of inspecting gas supply system
US20200011720A1 (en) Flow rate measuring method and flow rate measuring device
US20200124456A1 (en) Method of inspecting and flow rate controller
JP6818483B2 (ja) 動的透湿性評価装置、動的透湿性評価方法及び動的透湿性評価プログラム
JP2019144667A (ja) 弁装置異常検知システム及び弁装置異常検知方法
JP2014081366A (ja) 容積測定方法
JP2018072262A (ja) リークテスタ、リーク係数算出方法、プログラム
US11635322B2 (en) System and method for metering fluid flow
JP7519234B2 (ja) シートリーク評価システム、シートリーク評価プログラム、及びシートリーク評価方法
JP2017227486A (ja) 管内粗さ非破壊測定方法および測定装置
Abd Halim Operability and performance analysis of various control valves
JP2021093182A (ja) 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
JP2019192166A (ja) 制御弁システムの異常部位検出装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOKYO ELECTRON LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAWACHI, ATSUSHI;AMIKURA, NORIHIKO;REEL/FRAME:050758/0795

Effective date: 20191017

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE