US11378849B2 - Array substrate and display panel - Google Patents
Array substrate and display panel Download PDFInfo
- Publication number
- US11378849B2 US11378849B2 US16/626,544 US201916626544A US11378849B2 US 11378849 B2 US11378849 B2 US 11378849B2 US 201916626544 A US201916626544 A US 201916626544A US 11378849 B2 US11378849 B2 US 11378849B2
- Authority
- US
- United States
- Prior art keywords
- electrode
- common electrode
- base substrate
- orthographic projection
- pixel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134318—Electrodes characterised by their geometrical arrangement having a patterned common electrode
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134363—Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136213—Storage capacitors associated with the pixel electrode
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136286—Wiring, e.g. gate line, drain line
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/12—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
- G02F2201/121—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/12—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
- G02F2201/123—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
Definitions
- the present application relates to the field of display technologies, and in particular, to an array substrate and a display panel.
- a liquid crystal display panel generally includes an array substrate, a color filter substrate, and a liquid crystal layer positioned between the array substrate and the color filter substrate.
- a common electrode is generally provided below the pixel electrode.
- a storage capacitor formed by the pixel electrode and the common electrode is used to reduce the voltage variations caused by electric leakage and increase the potential retention capability.
- a method of increasing an area of the common electrode is generally adopted.
- storage capacitors are generally made of metal sandwiched with an insulating layer, the common electrode is opaque, and an increase in the area of the common electrode will cause a decrease in the aperture ratio.
- the present application provides an array substrate to solve the technical problem that a common electrode is opaque, and an increase in an area of the common electrode will cause a decrease in the aperture ratio.
- the present application provides an array substrate.
- the array substrate includes a base substrate and a plurality of pixel units distributed in an array on the base substrate, wherein each of the pixel units includes:
- a pixel electrode positioned above the common electrode
- the pixel electrode includes a main electrode and a branch electrode electrically connected to the main electrode, and an orthographic projection of the common electrode on the base substrate coincides with at least a part of an orthographic projection of the main electrode on the base substrate.
- the common electrode includes a first common electrode line, and the first common electrode line is disposed corresponding to the main electrode.
- a shape and a size of the first common electrode line are same as a shape and a size of the main electrode.
- the orthographic projection of the common electrode on the base substrate does not coincide with an orthographic projection of the branch electrode on the base substrate.
- each of the pixel units includes a main region and a sub region
- the pixel electrode includes a first pixel electrode positioned in the main region and a second pixel electrode positioned in the sub region
- the second pixel electrode includes a second main electrode and a second branch electrode
- the orthographic projection of the common electrode on the base substrate coincides with at least a part of an orthographic projection of the second main electrode on the base substrate.
- the second main electrode includes a first split and a second split crossing each other, the first split is arranged along a lateral direction, the second split is arranged along a longitudinal direction, the second branch electrode is arranged obliquely, and an edge line of the second branch electrode forms included angles with edge lines of the first split and the second split.
- the orthographic projection of the common electrode on the base substrate coincides with at least a part of an orthographic projection of the first split on the base substrate.
- the array substrate further including
- the common electrode is disposed in a same layer as the first metal layer.
- the first metal layer includes scan lines arranged in a lateral direction, one of the scan lines is arranged corresponding to one row of the pixel units;
- the second metal layer includes data lines arranged in a longitudinal direction, one of the data lines is arranged corresponding to one column of pixel units;
- the common electrode further includes a second common electrode line arranged close to the data lines and parallel to the data lines.
- the present application further provides a display panel, the display panel including a color filter substrate and an array substrate, and a liquid crystal layer disposed between the color filter substrate and the array substrate; wherein the array substrate includes a base substrate and a plurality of pixel units are distributed in an array on the base substrate, wherein each of the pixel units includes:
- a pixel electrode positioned above the common electrode
- the pixel electrode includes a main electrode and a branch electrode electrically connected to the main electrode, and an orthographic projection of the common electrode on the base substrate coincides with at least a part of an orthographic projection of the main electrode on the base substrate.
- the common electrode includes a first common electrode line, and the first common electrode line is disposed corresponding to the main electrode.
- a shape and a size of the first common electrode line are same as a shape and a size of the main electrode.
- the orthographic projection of the common electrode on the base substrate does not coincide with an orthographic projection of the branch electrode on the base substrate.
- each of the pixel units includes a main region and a sub region
- the pixel electrode includes a first pixel electrode positioned in the main region and a second pixel electrode positioned in the sub region
- the second pixel electrode includes a second main electrode and a second branch electrode
- the orthographic projection of the common electrode on the base substrate coincides with at least a part of an orthographic projection of the second main electrode on the base substrate.
- the second main electrode includes a first split and a second split crossing each other, the first split is arranged along a lateral direction, the second split is arranged along a longitudinal direction, the second branch electrode is arranged obliquely, and an edge line of the second branch electrode forms included angles with edge lines of the first split and the second split.
- the orthographic projection of the common electrode on the base substrate coincides with at least a part of an orthographic projection of the first split on the base substrate.
- the display panel further including
- the common electrode is disposed in a same layer as the first metal layer.
- the first metal layer includes scan lines arranged in a lateral direction, one of the scan lines is arranged corresponding to one row of the pixel units;
- the second metal layer includes data lines arranged in a longitudinal direction, one of the data lines is arranged corresponding to one column of pixel units;
- the common electrode further includes a second common electrode line arranged close to the data lines and parallel to the data lines.
- the capacitance of the storage capacitor is increased without affecting the aperture ratio of the array substrate, thereby reducing the voltage variations caused by electric leakage and increasing potential retention capability.
- FIG. 1 is a schematic diagram of a first structure of an array substrate in a first embodiment of the present application.
- FIG. 2 is a schematic diagram of removing the pixel electrode from FIG. 1 .
- FIG. 3 is a schematic diagram of a second structure of the array substrate in the first embodiment of the present application.
- FIG. 4 is a schematic diagram of a first structure of an array substrate in a second embodiment of the present application.
- FIG. 5 is a schematic diagram of removing the pixel electrode from FIG. 4 .
- FIG. 6 is a schematic diagram of a second structure of the array substrate in the second embodiment of the present application.
- FIG. 7 is a schematic structural diagram of a display panel in the present application.
- the present application is directed to the conventional array substrate.
- storage capacitors are generally made of metal sandwiched with an insulating layer, and an increase in an area of a common electrode will cause a technical problem that the aperture ratio decreases.
- the present application can solve the above-mentioned problems.
- FIG. 1 and FIG. 2 An array substrate, as shown in FIG. 1 and FIG. 2 , where the array substrate 10 includes a base substrate 11 and a plurality of pixel units distributed in an array on the base substrate 11 .
- the pixel unit includes a common electrode 13 and a pixel electrode 12 positioned above the common electrode 13 .
- the pixel electrode 12 includes a main electrode 121 and a branch electrode 122 electrically connected to the main electrode 121 .
- the array substrate 10 is a four-domain region array substrate 10 , as shown in FIG. 1 to FIG. 2 , that is, the main electrode 121 divides a sub-pixel region into four domain regions.
- an orthographic projection of the common electrode 13 on the base substrate 11 coincides with at least a part of an orthographic projection of the main electrode 121 on the base substrate 11 .
- a region in which the main electrode 121 is disposed on the array substrate 10 is a dark region where the liquid crystal is disordered, and the aperture ratio is not contributed here.
- the capacitance of the storage capacitor is increased without affecting the aperture ratio of the array substrate 10 , thereby reducing the voltage variations caused by electric leakage and increasing potential retention capability.
- the common electrode 13 includes a first common electrode line 131 , and the first common electrode line 131 is disposed corresponding to the main electrode 121 .
- a shape and a size of the first common electrode line 131 are same as a shape and a size of the main electrode 121 . Therefore, the first common electrode line 131 and the main electrode 121 are used to form a storage capacitor, meanwhile, the first common electrode line 131 is prevented from reducing the aperture ratio of the array substrate 10 .
- an overall shape of the main electrode 121 is in a cross shape
- the first common electrode line 131 is in a cross shape and matched with the main electrode 121 .
- the branch electrode 122 is arranged obliquely, and an edge line of the branch electrode 122 forms an included angle with an edge line of the main electrode 121 .
- the array substrate 10 further includes a first metal layer disposed on the base substrate 11 and a second metal layer positioned between the first metal layer and the pixel electrode 12 .
- the first metal layer includes a plurality of scan lines 14 arranged along a lateral direction and spaced apart from each other, and each scan line 14 is disposed corresponding to a row of the pixel units to provide scan signals for the pixel units.
- the common electrode 13 is disposed in a same layer as the first metal layer, and the common electrode 13 and the first metal layer can be formed by same material and same process, or can be formed by different materials and processes.
- the second metal layer includes source-drain electrodes 15 and a plurality of data lines 16 arranged along a longitudinal direction and spaced apart from each other.
- One of the data lines 16 is arranged corresponding to one column of the pixel units.
- the data lines 16 and the source-drain electrodes 15 are electrically connected to provide data signals to the source-drain electrodes 15
- the pixel electrode 12 is electrically connected to the source-drain electrodes 15 to receive the data signals.
- the common electrode 13 further includes a second common electrode line 132 arranged close to the data lines 16 and parallel to the data lines 16 .
- the setting of the second common electrode line 132 can be used to shield voltage variations caused by the coupling capacitance formed between the data line 16 and the pixel electrode 12 , thereby reducing risks such as crosstalk.
- the array substrate 10 is an eight-domain region array substrate 10 .
- each of the pixel units includes a main region 18 and a sub region 19
- the pixel electrode 12 includes a first pixel electrode in the main region 18 and a second pixel electrode in the sub region 19 .
- the first pixel electrode includes a first main electrode 123 and a first branch electrode 124
- the second pixel electrode includes a second main electrode 125 and a second branch electrode 126 .
- the first main electrode 123 divides the main region 18 into four domain regions
- the second main electrode 125 divides the sub region 19 into four domain regions.
- first pixel electrode and the second pixel electrode are inconsistent, resulting in different driving voltage differences between the main region 18 and the sub region 19 , and a certain voltage difference is set by utilization of a spatial domain region to increase the diversity of liquid crystal molecules, which can improve the characteristic of wide viewing angle color shift.
- the first main electrode 123 and the second main electrode 125 are both in a cross shape.
- the orthographic projection of the common electrode 13 on the base substrate 11 coincides with at least a part of an orthographic projection of the second main electrode 125 on the base substrate 11 .
- the parasitic capacitance of the sub region 19 is larger, so the sub region 19 also needs a storage capacitor with a larger capacitance.
- the capacitance of the storage capacitor in the sub region 19 is increased on the premise that the aperture ratio of the sub region 19 is not affected.
- the second main electrode 125 includes a first split 1251 and a second split 1252 which are disposed crossing each other, the first split 1251 is arranged along the lateral direction, and the second split 1252 is arranged along the longitudinal direction.
- the second branch electrode 126 is arranged obliquely, and an edge line of the second branch electrode 126 forms included angles with edge lines of the first split 1251 and the second split 1252 .
- the second metal layer further includes a high-potential power line 17 .
- An orthographic projection of the high-potential power line 17 on the base substrate 11 coincides with at least a part of an orthographic projection of the second split 1252 on the base substrate 11 .
- the orthographic projection of the common electrode 13 on the base substrate 11 coincides with at least a part of an orthographic projection of the first split 1251 on the base substrate 11 .
- the common electrode 13 includes a first common electrode 133 positioned in the main region 18 and a second common electrode 134 positioned in the sub region 19 .
- An orthographic projection of second common electrode 134 on the base substrate 11 coincides with at least a part of an orthographic projection of the second main electrode 125 on the base substrate 11 .
- FIG. 5 merely illustrates the case where the first split 1251 completely coincides with the common electrode 13 .
- FIG. 5 and FIG. 6 merely show the case where only the second pixel electrode 12 coincides with the common electrode 13 . In actual implementation, it can also be to set a part of the common electrode 13 to coincide with the first pixel electrode 12 .
- the present application also provides a display panel. As shown in FIG. 7 , where the display panel includes a color filter substrate 20 and the array substrate 10 according to any one of the above-mentioned embodiments, and a liquid crystal layer 30 disposed between the color filter substrate 20 and the array substrate 10 .
- the beneficial effect of the present application is: by arranging a part of the common electrode 13 corresponding to the main electrode 121 and forming a storage capacitor by using the main electrode 121 and the common electrode 13 , the capacitance of the storage capacitor is increased without affecting the aperture ratio of the array substrate 10 , thereby reducing the voltage variations caused by electric leakage and increasing potential retention capability.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Geometry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Liquid Crystal (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911249088.X | 2019-12-09 | ||
CN201911249088.XA CN111025801A (zh) | 2019-12-09 | 2019-12-09 | 一种阵列基板及显示面板 |
PCT/CN2019/126476 WO2021114342A1 (zh) | 2019-12-09 | 2019-12-19 | 一种阵列基板及显示面板 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20210364869A1 US20210364869A1 (en) | 2021-11-25 |
US11378849B2 true US11378849B2 (en) | 2022-07-05 |
Family
ID=70205231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/626,544 Active 2040-11-06 US11378849B2 (en) | 2019-12-09 | 2019-12-19 | Array substrate and display panel |
Country Status (3)
Country | Link |
---|---|
US (1) | US11378849B2 (zh) |
CN (1) | CN111025801A (zh) |
WO (1) | WO2021114342A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113741108B (zh) * | 2021-08-31 | 2022-07-22 | 惠科股份有限公司 | 阵列基板、显示面板及显示装置 |
CN113885261A (zh) * | 2021-09-30 | 2022-01-04 | Tcl华星光电技术有限公司 | 显示面板的像素单元、显示面板的下基板、及显示面板 |
CN114690496B (zh) * | 2022-03-25 | 2023-08-22 | Tcl华星光电技术有限公司 | 显示面板、阵列基板及其制造方法 |
US12019342B2 (en) * | 2022-05-07 | 2024-06-25 | Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Array substrate and display panel |
CN114823735A (zh) * | 2022-05-07 | 2022-07-29 | 深圳市华星光电半导体显示技术有限公司 | 阵列基板及显示面板 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130083263A1 (en) | 2011-09-29 | 2013-04-04 | Samsung Display Co., Ltd. | Liquid crystal display |
US20160195788A1 (en) | 2015-01-06 | 2016-07-07 | Samsung Display Co., Ltd. | Liquid crystal display device |
US20160320672A1 (en) * | 2015-04-28 | 2016-11-03 | Samsung Display Co., Ltd. | Liquid crystal display device |
US20170038655A1 (en) * | 2015-03-06 | 2017-02-09 | Boe Technology Group Co., Ltd. | Array Substrate and Display Panel |
CN106707596A (zh) | 2016-12-22 | 2017-05-24 | 深圳市华星光电技术有限公司 | 显示面板及显示装置 |
CN109064909A (zh) | 2018-08-15 | 2018-12-21 | 友达光电股份有限公司 | 像素结构 |
CN109634015A (zh) | 2018-12-29 | 2019-04-16 | 惠科股份有限公司 | 阵列基板与其显示面板 |
WO2020087663A1 (zh) * | 2018-10-29 | 2020-05-07 | 惠科股份有限公司 | 阵列基板以及显示面板 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN206002819U (zh) * | 2016-09-18 | 2017-03-08 | 京东方科技集团股份有限公司 | 阵列基板及显示器件 |
-
2019
- 2019-12-09 CN CN201911249088.XA patent/CN111025801A/zh active Pending
- 2019-12-19 US US16/626,544 patent/US11378849B2/en active Active
- 2019-12-19 WO PCT/CN2019/126476 patent/WO2021114342A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130083263A1 (en) | 2011-09-29 | 2013-04-04 | Samsung Display Co., Ltd. | Liquid crystal display |
US20160195788A1 (en) | 2015-01-06 | 2016-07-07 | Samsung Display Co., Ltd. | Liquid crystal display device |
CN105759518A (zh) | 2015-01-06 | 2016-07-13 | 三星显示有限公司 | 液晶显示装置 |
US20170038655A1 (en) * | 2015-03-06 | 2017-02-09 | Boe Technology Group Co., Ltd. | Array Substrate and Display Panel |
US20160320672A1 (en) * | 2015-04-28 | 2016-11-03 | Samsung Display Co., Ltd. | Liquid crystal display device |
CN106707596A (zh) | 2016-12-22 | 2017-05-24 | 深圳市华星光电技术有限公司 | 显示面板及显示装置 |
CN109064909A (zh) | 2018-08-15 | 2018-12-21 | 友达光电股份有限公司 | 像素结构 |
US20200058679A1 (en) | 2018-08-15 | 2020-02-20 | Au Optronics Corporation | Pixel structure |
WO2020087663A1 (zh) * | 2018-10-29 | 2020-05-07 | 惠科股份有限公司 | 阵列基板以及显示面板 |
CN109634015A (zh) | 2018-12-29 | 2019-04-16 | 惠科股份有限公司 | 阵列基板与其显示面板 |
Also Published As
Publication number | Publication date |
---|---|
US20210364869A1 (en) | 2021-11-25 |
WO2021114342A1 (zh) | 2021-06-17 |
CN111025801A (zh) | 2020-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11378849B2 (en) | Array substrate and display panel | |
JP4938032B2 (ja) | 液晶パネル、液晶表示装置、およびテレビジョン装置 | |
CN104880871B (zh) | 显示面板和显示装置 | |
US10672801B2 (en) | TFT substrate | |
US8279385B2 (en) | Liquid crystal display | |
US9400408B2 (en) | Liquid crystal display | |
KR101247936B1 (ko) | 액티브 매트릭스 기판, 액정 패널, 액정 표시 유닛, 액정 표시 장치, 텔레비전 수상기, 액티브 매트릭스 기판의 제조 방법 | |
US8643802B2 (en) | Pixel array, polymer stablized alignment liquid crystal display panel, and pixel array driving method | |
US11942487B2 (en) | Array substrate and display panel | |
CN106886112B (zh) | 阵列基板、显示面板和显示装置 | |
US20220317525A1 (en) | Array substrate and liquid crystal display panel | |
US20170255071A1 (en) | Array substrate and in-plane switching liquid crystal display panel | |
US9235091B2 (en) | Liquid crystal display device and manufacturing method thereof | |
US8115878B2 (en) | Thin film transistor array substrate and liquid crystal display | |
CN103676373A (zh) | 一种阵列基板及其制备方法、显示装置 | |
US8451393B2 (en) | Liquid crystal display | |
US20160313615A1 (en) | Pixel structure, array substrate, display device and method for manufacturing the same | |
CN104849921A (zh) | 液晶显示装置 | |
KR101777323B1 (ko) | 액정 표시 장치 및 그 구동 방법 | |
US20190086742A1 (en) | Display panel and display device | |
US11300842B2 (en) | Array substrate and liquid crystal display panel | |
US10031389B2 (en) | Liquid crystal display | |
US20150185534A1 (en) | Liquid crystal display | |
US8896797B2 (en) | Liquid crystal display panel comprising first and second sub-pixel electrodes and including a contact electrode and a connection electrode that couples the second sub-pixel and contact electrodes | |
US9007289B2 (en) | Thin film transistor array panel and liquid crystal display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHENZHEN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LV, XIAOWEN;REEL/FRAME:051364/0380 Effective date: 20191121 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION COUNTED, NOT YET MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |