US11274254B2 - Compounds for the homeotropic alignment of liquid-crystalline media - Google Patents

Compounds for the homeotropic alignment of liquid-crystalline media Download PDF

Info

Publication number
US11274254B2
US11274254B2 US16/267,530 US201916267530A US11274254B2 US 11274254 B2 US11274254 B2 US 11274254B2 US 201916267530 A US201916267530 A US 201916267530A US 11274254 B2 US11274254 B2 US 11274254B2
Authority
US
United States
Prior art keywords
denotes
atoms
group
independently
another
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/267,530
Other languages
English (en)
Other versions
US20190241809A1 (en
Inventor
Melanie Klasen-Memmer
Edward Plummer
Rocco Fortte
Helmut Haensel
Timo Uebel
Tamara LEHMANN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Assigned to MERCK PATENT GMBH reassignment MERCK PATENT GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAENSEL, HELMUT, PLUMMER, EDWARD, Uebel, Timo, FORTTE, ROCCO, KLASEN-MEMMER, MELANIE, Lehmann, Tamara
Publication of US20190241809A1 publication Critical patent/US20190241809A1/en
Application granted granted Critical
Publication of US11274254B2 publication Critical patent/US11274254B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/602Dicarboxylic acid esters having at least two carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/02Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K19/544Macromolecular compounds as dispersing or encapsulating medium around the liquid crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0425Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a specific unit that results in a functional effect
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/125Ph-Ph-Ph-Ph-Ph or more Ph rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K2019/548Macromolecular compounds stabilizing the alignment; Polymer stabilized alignment

Definitions

  • the present invention relates to liquid-crystalline media (LC media) comprising novel self-aligning mesogens (self-alignment additives) which effect homeotropic (vertical) alignment of the LC media at a surface or the cell walls of a liquid-crystal display (LC display).
  • novel self-alignment additives contain five-ring systems.
  • the invention also encompasses LC displays having homeotropic alignment of the liquid-crystalline medium (LC medium) without conventional alignment layers.
  • VAN v ertically a capitad n ematic
  • MVA m ulti-domain v ertical a lignment
  • PVA p atterned v ertical a lignment, for example: Kim, Sang Soo, paper 15.4: “Super PVA Sets New State-of-the-Art for LCD-TV”, SID 2004 International Symposium, Digest of Technical Papers, XXXV, Book II, pp. 760 to 763)
  • ASV a dvanced s uper v iew, for example: Shigeta, Mitzuhiro and Fukuoka, Hirofumi, paper 15.2: “Development of High Quality LCDTV”, SID 2004 International Symposium, Digest of Technical Papers, XXXV, Book II, pp.
  • VA displays which comprise LC media having positive dielectric anisotropy are described in S. H. Lee et al. Appl. Phys. Lett . (1997), 71, 2851-2853.
  • interdigital electrodes arranged on a substrate surface in-plane addressing electrode configuration having a comb-shaped structure
  • IPS i n- p lane s witching
  • VA-IPS displays are also known under the name HT-VA (high transmittance VA).
  • VA-IPS displays In all such displays (referred to below in general as VA-IPS displays), an alignment layer is applied to both substrate surfaces for homeotropic alignment of the LC medium; the production of this layer has hitherto been associated with considerable effort.
  • LC phases which have to satisfy a multiplicity of requirements. Particularly important here are chemical resistance to moisture, air, the materials in the substrate surfaces and physical influences, such as heat, infrared, visible and ultraviolet radiation and direct and alternating electric fields.
  • LC phases are required to have a liquid-crystalline mesophase in a suitable temperature range and low viscosity.
  • VA and VA-IPS displays are generally intended to have very high specific resistance at the same time as a large working-temperature range, short response times and a low threshold voltage, with the aid of which various grey shades can be produced.
  • a polyimide layer on the substrate surfaces ensures homeotropic alignment of the liquid crystal.
  • the production of a suitable alignment layer in the display requires considerable effort.
  • interactions of the alignment layer with the LC medium may impair the electrical resistance of the display. Owing to possible interactions of this type, the number of suitable liquid-crystal components is considerably reduced. It would therefore be desirable to achieve homeotropic alignment of the LC medium without polyimide.
  • VA displays have significantly better viewing-angle dependences and are therefore used principally for televisions and monitors.
  • PSA p olymer s tabilised or “ p olymer s ustained a lignment” displays.
  • the PSA displays are distinguished by the shortening of the response times without significant adverse effects on other parameters, such as, in particular, the favourable viewing-angle dependence of the contrast.
  • a small amount (for example 0.3% by weight, typically ⁇ 1% by weight) of one or more polymerisable compound(s) is added to the LC medium and, after introduction into the LC cell, is polymerised or crosslinked in situ, usually by UV photopolymerisation, between the electrodes with or without an applied electrical voltage.
  • polymerisable mesogenic or liquid-crystalline compounds also known as reactive mesogens or “RMs”
  • PSA technology has hitherto been employed principally for LC media having negative dielectric anisotropy.
  • PS-VA, PS-OCB, PS-IPS, PS-FFS and PS-TN displays are known.
  • the polymerisation of the polymerisable compound(s) preferably takes place with an applied electrical voltage in the case of PS-VA and PS-OCB displays, and with or without an applied electrical voltage in the case of PS-IPS displays.
  • the PS(A) method results in a ‘pretilt’ in the cell.
  • PS-OCB displays for example, it is possible for the bend structure to be stabilised so that an offset voltage is unnecessary or can be reduced.
  • the pretilt has a positive effect on the response times.
  • a standard pixel and electrode layout can be used for PS-VA displays.
  • PS-VA displays are described, for example, in JP 10-036847 A, EP 1 170 626 A2, U.S. Pat. Nos. 6,861,107, 7,169,449, US 2004/0191428 A1, US 2006/0066793 A1 and US 2006/0103804 A1.
  • PS-OCB displays are described, for example, in T.-J- Chen et al., Jpn. J. Appl. Phys. (2006), 45, 2702-2704 and S. H. Kim, L.-C- Chien, Jpn. J. Appl. Phys. (2004), 43, 7643-7647.
  • PS-IPS displays are described, for example, in U.S. Pat. No. 6,177,972 and Appl. Phys. Lett. (1999), 75(21), 3264.
  • PS-TN displays are described, for example, in Optics Express (2004), 12(7), 1221.
  • PS-VA-IPS displays are disclosed, for example, in WO 2010/0890
  • PS displays can be operated as active-matrix or passive-matrix (PM) displays.
  • active-matrix displays individual pixels are usually addressed by integrated, non-linear active elements, such as, for example, transistors (for example thin-film transistors or “TFTs”), while in the case of passive-matrix displays, individual pixels are usually addressed by the multiplex method, both methods being known from the prior art.
  • transistors for example thin-film transistors or “TFTs”
  • passive-matrix displays individual pixels are usually addressed by the multiplex method, both methods being known from the prior art.
  • optimisation of the response times, but also of the contrast and luminance (i.e. also transmission), of the LC display is still sought after.
  • the PSA method can provide crucial advantages here.
  • a shortening of the response times, which correlate with a pretilt which can be measured in test cells, can be achieved without significant adverse effects on other parameters.
  • P 1/2 denotes a polymerisable group, usually an acrylate or methacrylate group, as described, for example, in U.S. Pat. No. 7,169,449.
  • EP 2918658 A2 and US 2015/0252265 A1 describe self-aligning, in some cases polymerisable mesogens containing an anchor group (e.g. OH) and liquid-crystalline media comprising such additives.
  • the additives disclosed there have a different structure to the compounds according to the invention.
  • the present compounds contain five ring systems in a linear sequence.
  • the present invention relates to compounds of the following formula I, and to an LC medium comprising a low-molecular-weight, unpolymerisable, liquid-crystalline component and a polymerisable or polymerised component comprising one or more compounds of the formula I, where the polymerised component is obtainable by polymerisation of the polymerisable component, R 1 -[A 2 -Z 2 ] m -A 1 -R a I in which
  • the polymerisable or polymerised component of the LC medium optionally comprises further polymerisable compounds. Those which are suitable for the PS principle are preferably used here.
  • the compounds of the formula I according to the invention are polymerisable in that they contain one, two or more polymerisable groups (P).
  • a preferred embodiment of the invention is therefore also a polymer which contains monomers of the formula I, i.e. a polymer which is built up at least partly from corresponding polymerisation product.
  • a polymer of this type is generally distributed homogeneously or in-homogeneously in a liquid-crystalline medium or deposited in full or part on an adjacent substrate, where mixed forms of these states are included.
  • the invention furthermore relates to an LC display comprising an LC cell having two substrates and at least two electrodes, where at least one substrate is transparent to light and at least one substrate has one or two electrodes, and a layer of an LC medium according to the invention located between the substrates.
  • the LC display is preferably one of the PS type.
  • the invention furthermore relates to the use of compounds of the formula I as additive for LC media for effecting homeotropic alignment with respect to a surface delimiting the LC medium.
  • a further aspect of the present invention is a process for the preparation of an LC medium according to the invention, which is characterised in that one or more optionally polymerisable self-alignment additives (compounds of the formula I) are mixed with a low-molecular-weight, liquid-crystalline component, and optionally one or more further polymerisable compounds are added.
  • one or more optionally polymerisable self-alignment additives compounds of the formula I
  • the invention furthermore relates to a process for the production of an LC display comprising an LC cell having two substrates and at least two electrodes, where at least one substrate is transparent to light and at least one substrate has one or two electrodes, comprising the process steps:
  • the use according to the invention of the self-alignment additives as additives of LC media is not tied to particular LC media.
  • the LC medium or the unpolymerisable component present therein can have positive or negative dielectric anisotropy.
  • the LC medium is preferably nematic, since most displays based on the VA principle comprise nematic LC media.
  • the self-alignment additive is introduced into the LC medium as additive. It effects homeotropic alignment of the liquid crystal with respect to the substrate surfaces (such as, for example, a surface made from glass or coated with ITO or with polyimide).
  • the substrate surfaces such as, for example, a surface made from glass or coated with ITO or with polyimide.
  • the polar anchor group interacts with the substrate surface. This causes the self-alignment additives on the substrate surface to align and induce a homeotropic alignment of the adjacent LC medium.
  • anchor groups R a which do not consist only of a simple OH group.
  • Sp a is particularly preferably an unbranched or branched alkylene chain having 1 to 8 C atoms, in which one or more CH 2 groups may be replaced by —O—, —NH—, —NR 3 —, —S— and —(CO)—, so that O/S atoms are not linked directly to one another, and in which, in addition, one or more H atoms may be replaced by F, Cl or —OH.
  • the self-alignment additives according to the invention are predominantly crystalline solids at room temperature, as a consequence of which the handling and storability are improved compared with, for example, oily substances.
  • the melting point can furthermore be varied towards advantageous values by variation of the side chains.
  • the compounds provide the LC media with comparatively good VHR values under applicational conditions, i.e. after the UV irradiation process of display manufacture.
  • the other parameters of VA displays such as, for example, the response times or the stability of the tilt angle in the production of PS-VA displays, are not adversely affected by the additives according to the invention.
  • the LC media have very good processability in the production of VA displays and comparatively low mura defects.
  • the LC cell of the LC display according to the invention preferably has no alignment layer, in particular no polyimide layer for homeotropic alignment of the LC medium.
  • Alignment layer here means a layer which is already present before the cell is filled.
  • the polymerised component of the LC medium is in this connection not regarded as an alignment layer.
  • An LC cell may nevertheless have an alignment layer or a comparable layer, but this layer is preferably not the sole cause of the homeotropic alignment, but instead supports or modifies the effect of the self-alignment additive. Rubbing of, for example, polyimide layers is, in accordance with the invention, not necessary in order to achieve homeotropic alignment of the LC medium with respect to the substrate surface.
  • the LC display according to the invention is preferably a VA display comprising an LC medium having negative dielectric anisotropy and electrodes arranged on opposite substrates.
  • a VA-IPS display comprising an LC medium having positive dielectric anisotropy and interdigital electrodes arranged at least on one substrate.
  • the self-alignment additive of the formula I is preferably employed in a concentration of less than 10% by weight, particularly preferably ⁇ 5% by weight and very particularly ⁇ 3% by weight. It is preferably employed in a concentration of at least 0.05% by weight, preferably at least 0.2% by weight.
  • the use of 0.1 to 2.5% by weight of the self-alignment additive generally already results in completely homeotropic alignment of the LC layer in the case of the usual cell thicknesses (3 to 4 ⁇ m) with the conventional substrate materials and under the conventional conditions of the production processes of an LC display. Due to the polymerisable nature, higher concentrations of self-alignment additives are also possible without influencing the LC medium in the long term, since the polymerisable substance is bound again by the polymerisation.
  • the anchor group R a contains one, two or three groups X 1 , which are intended to serve as binding member to a surface.
  • the spacer groups Sp a to Sp c are intended to form a flexible bond between the mesogenic group with rings and the group(s) X 1 .
  • the structure of the spacer groups is therefore very variable and in the most general case of the formula I not definitively defined. The person skilled in the art will recognise that a multiplicity of possible variations of chains come into question here.
  • the group R 3 in Sp b (as trivalent group) preferably denotes H or an alkyl radical having 1 to 10 C atoms, which is linear or branched.
  • the melting point of the additives of the formula (I) according to the invention can be adjusted through the choice of the radical R 3 .
  • the radical R 3 may also have an influence on the homogeneous distribution of the additives on the substrate surface.
  • Sp b is a group —C(R 3 ), in which R 3 denotes H or a radical having 1 to 8 C atoms, for example preferably C(CH 2 CH 2 CH 3 ), C(CH 2 CH 2 CH 2 CH 3 ), C(CH 2 CH(CH 3 )CH 3 ) or C(CH 2 CH 2 C(CH 3 ) 3 ).
  • R 3 denotes H or a radical having 1 to 8 C atoms, for example preferably C(CH 2 CH 2 CH 3 ), C(CH 2 CH 2 CH 2 CH 3 ), C(CH 2 CH(CH 3 )CH 3 ) or C(CH 2 CH 2 C(CH 3 ) 3 ).
  • Preferred radicals R 3 are also disclosed below in the explicit anchor groups.
  • Preference is given to an unbranched or branched alkylene chain having 1 to 8 C atoms, in which one or more CH 2 groups may be replaced by —O—, —NH—, —NR 3 —, —S— or —(CO)—, so that O/S atoms are not linked directly to one another, and in which, in addition, one or more H atoms may be replaced by F, Cl or —OH, or for o 1 additionally also denotes a single bond,
  • the group Sp c preferably does not denote a single bond, preferably denotes an unbranched or branched alkylene chain having 1 to 8 C atoms, in which one or more CH 2 groups may be replaced by —O—, and in which, in addition, one or more H atoms may be replaced by F, Cl or —OH, preferably a group selected from the formulae —CH 2 —, —CH 2 CH 2 —, —CH 2 CH 2 CH 2 —, —CH 2 CH 2 CH 2 CH 2 — and —CH 2 CH 2 OCH 2 CH 2 —, particularly preferably —CH 2 —.
  • the group Sp d preferably denotes an unbranched or branched alkylene chain having 1 to 8 C atoms, in which one or more CH 2 groups may be replaced by —O—, —NH—, —NR 3 —, —S— and —(CO)—, so that O/S atoms are not linked directly to one another, and in which, in addition, one or more H atoms may be replaced by F, Cl or —OH.
  • the anchor group R a denotes a radical of the formula
  • R 3 denotes H or an alkyl radical having 1 to 10 C atoms, which is linear or branched, and in which H may be substituted by fluorine or alkoxy having 1 to 8 C atoms.
  • R 3 particularly preferably denotes a straight-chain alkyl group having 1, 2, 3, 4, 5 or 6 C atoms or H.
  • R 1 preferably denotes an unsubstituted alkyl radical or alkoxy radical having 1 to 15 carbon atoms or an alkenyl, alkenyloxy or alkynyl radical having 2 to 15 C atoms, which are in each case optionally mono- or poly-halogenated.
  • R 1 particularly preferably denotes an alkyl radical having 2 to 8 carbon atoms
  • the group A 2 in the formula I preferably denotes, in each case independently, 1,4- or 1,3-phenylene, naphthalene-1,4-diylor naphthalene-2,6-diyl, where, in addition, one or more CH groups in these groups may be replaced by N, cyclohexane-1,4-diyl, in which, in addition, one or more non-adjacent CH 2 groups may be replaced by O and/or S, 3,3′-bicyclobutylidene, 1,4-cyclohexenylene, bicyclo[1.1.1]pentane-1,3-diyl, bicyclo[2.2.2]octane-1,4-diyl, spiro-[3.3]heptane-2,6-diyl, piperidine-1,4-diyl, decahydronaphthalene-2,6-diyl, 1,2,3,4-tetrahydronaphthalene-2,6
  • the groups A 1 , A 2 particularly preferably each independently denote a group selected from
  • the groups A 1 and A 2 particularly preferably each independently denote a group selected from
  • groups A 1 and A 2 denote a group in accordance with the preceding sub-groups a).
  • a 2 very particularly preferably independently denotes 1,4-phenylene or cyclohexane-1,4-diyl, each of which may be mono- or poly-substituted by a group L.
  • the group A 1 of the formula I particularly preferably denotes a ring group of the formula
  • r1 denotes 0 or 1
  • p1 denotes 1 or 2.
  • the anchor group R a in the above formulae particularly preferably contains one, two or three OH groups particularly preferably one or two OH groups.
  • anchor groups of the formula R a are selected from the following sub-formulae, where the group R a is bonded to the respective formula via the dashed bond:
  • variables r3 and r4 shown in formulae I-A and I-B below preferably both denote 0.
  • the variable r1 shown in formulae I-A and I-B below preferably denotes 0 or 1.
  • the variable r2 shown in formulae I-A and I-B below preferably denotes 0 or 1.
  • the compound of the formula I preferably contains at least one polymerisable group P within the groups A 1 , A 2 and Z 2 , as are present.
  • the number of polymerisable groups P in the additives of the formula I according to the invention is preferably 1 or 2, in particular 2.
  • the groups are preferably localised on one of the rings A 1 or A 2 , in particular on ring A 1 .
  • the polymerisable group is particularly preferably a methacrylate group.
  • the group L preferably denotes H, F, Cl, CH 3 , ethyl, propyl, cyclopropyl or isopropyl.
  • the bridge group Z 2 of the formula I and associated sub-formulae preferably denotes a single bond.
  • a preferred self-alignment additive of the formula I is an additive of the formula I-A or I-B:
  • R 1 , Sp, P, L and R a are defined as for formula I, and
  • rings A, B and C in each case independently denote a ring of the formula
  • p1 denotes 1 or 2, preferably 2,
  • r1 preferably denotes 0,
  • r2 preferably denotes 1,
  • r3 preferably denotes 1,
  • r4 preferably denotes 0 or 1
  • r5 preferably denotes 0 or 1, particularly preferably 0.
  • R 1 , L and R a in each case independently are defined as for formula I and sub-formulae thereof.
  • the substituents L can therefore adopt different meanings if they occur multiple times.
  • R 1 independently is defined as in formula I
  • L 1 and L 2 independently denote H or adopt a meaning of L as in formula I, and preferably independently
  • L 1 denotes H, —CH 3 , —CH 2 CH 3 , F or Cl, and
  • L 2 denotes H, —CH 3 , —CH 2 CH 3 , F or Cl.
  • At least one group from L 1 and L 2 is not H.
  • the LC medium according to the invention may also comprise further self-alignment additives of the formula K which contain, for example, fewer than five rings.
  • the total concentration of the polymerisable self-alignment additives of the formula I and the further (conventional) self-alignment additives of the formula K together is preferably the values indicated above, i.e., for example, 0.1 to 2.5% by weight.
  • the further self-alignment additives can have a structure of the formula K, where compounds of the formula I are excluded in formula K: R 1 -[A K2 -Z 2 ] m -A K1 -R a K
  • n 1 or 3
  • a K1 is defined like A 1 and A K2 like A 2 in formula I, in each case regarding the preferred definitions.
  • the formula K encompasses polytmerisable and unpolymerisable compounds.
  • the preferred embodiments of the anchor group R a , the elements A 2 , Z 2 , R 1 and the substituents L and -Sp-P, etc., can also be applied to the conventional additives of the formula K.
  • aryl denotes an aromatic carbon group or a group derived therefrom.
  • Aryl groups may be monocyclic or polycyclic, i.e. they may contain one ring (such as, for example, phenyl) or two or more fused rings. At least one of the rings here has an aromatic configuration. Heteroaryl groups contain one or more heteroatoms, preferably selected from O, N, S and Se.
  • aryl groups having 6 to 25 C atoms.
  • Preferred aryl groups are, for example, phenyl, naphthyl, anthracene, phenanthrene, pyrene, dihydropyrene, chrysene, perylene, tetracene, pentacene, benzopyrene, fluorene, indene, indenofluorene, spirobifluorene, etc.
  • alkyl denotes an unbranched or branched, saturated, aliphatic hydrocarbon radical having 1 to 15 (i.e. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15) carbon atoms.
  • cyclic alkyl includes alkyl groups which have at least one carbocyclic part, i.e., for example, also cycloalkylalkyl, alkylcycloalkyl and alkyl-cycloalkylalkyl.
  • the carbocyclic groups therein include, for example, cyclopropyl, cyclobutyl, cyclopentyl, bicyclo[1.1.1]pentyl, cyclohexyl, spiro[3.3]-bicycloheptyl, cycloheptyl, cyclooctyl, etc.
  • fluoroalkyl denotes an unbranched or branched, saturated or unsaturated, preferably saturated, aliphatic hydrocarbon radical having 1 to 15 (i.e. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15) carbon atoms which is substituted by one or more fluorine atoms.
  • the radical is preferably perfluorinated.
  • Halogen in connection with the present invention stands for fluorine, chlorine, bromine or iodine, preferably for fluorine or chlorine.
  • spacer group or “spacer”, generally denoted by “Sp” (or Sp a/c/d/1/2/3 ) herein, is known to the person skilled in the art and is described in the literature, for example in Pure Appl. Chem. 73(5), 888 (2001) and C. Tschierske, G. Pelzl, S. Diele, Angew. Chem. (2004), 116, 6340-6368.
  • the term “spacer group” or “spacer” denotes a connecting group, for example an alkylene group, which connects a mesogenic group to a polymerisable group. Whereas the mesogenic group generally contains rings, the spacer group generally contains no ring systems, i.e. is in chain form, where the chain may also be branched.
  • the term chain is applied, for example, to an alkylene group. Substitutions on and in the chain, for example by —O— or —COO—, are generally also included.
  • the polymerisable component of the LC medium according to the invention preferably comprises further polymerisable or (partially) polymerised compounds.
  • These are preferably conventional polymerisable compounds without an anchor group, preferably mesogenic compounds, in particular those which are suitable for the PS technique.
  • Polymerisable compounds which are preferred for this purpose are the structures indicated below for formula M and the sub-formulae thereof.
  • the polymer formed therefrom is able to stabilise the alignment of the LC medium, optionally form a passivation layer and optionally generate a pre-tilt.
  • the present invention also encompasses an LC medium as described above and below which comprises
  • the polymerisable component preferably comprises compounds of the formula I or of the formula M or both in variable proportions.
  • the LC media according to the invention therefore preferably comprise >0 to ⁇ 5% by weight, particularly preferably 0.05 to 1% by weight and very particularly preferably 0.2 to 1% by weight of polymerisable compounds without an anchor group R a , in particular compounds of the formula M as defined below and the preferred formulae falling thereunder.
  • the polymerisation of the polymerisable component(s) is carried out together or in part-steps under different polymerisation conditions.
  • the polymerisation is preferably carried out under the action of UV light.
  • the polymerisation is initiated with the aid of a polymerisation initiator and UV light.
  • a voltage can optionally be applied to the electrodes of the cell or another electric field can be applied in order additionally to influence the alignment of the LC medium.
  • LC media according to the invention which, besides the compounds of the formula I, comprise further polymerisable or (partially) polymerised compounds (without an anchor group) and optionally further self-alignment additives.
  • further self-alignment additives are preferably those of the formula K, as defined above.
  • the optionally present further monomers of the polymerisable component of the LC medium are preferably described by the following formula M: P 1 -Sp 1 -A 2x -(Z 1 -A 1x ) n -Sp 2 -P 2 M
  • one or more of the groups P 1 -Sp 1 -, -Sp 2 -P 2 and -Sp 3 -P 3 may denote a radical R aa , with the proviso that at least one of the groups P 1 -Sp 1 -, -Sp 2 -P 2 and -Sp 3 -P 3 present does not denote R aa ,
  • the polymerisable group P, P 1 , P 2 or P 3 in the formulae above and below is a group which is suitable for a polymerisation reaction, such as, for example, free-radical or ionic chain polymerisation, polyaddition or polycondensation, or for a polymer-analogous reaction, for example addition or condensation onto a main polymer chain.
  • a polymerisation reaction such as, for example, free-radical or ionic chain polymerisation, polyaddition or polycondensation, or for a polymer-analogous reaction, for example addition or condensation onto a main polymer chain.
  • groups for chain polymerisation in particular those containing a polymerisable C ⁇ C double bond or —C ⁇ C— triple bond, and groups which are suitable for polymerisation with ring opening, such as, for example, oxetane or epoxide groups.
  • P/P 1 /P 2 /P 3 are selected from the group consisting of CH 2 ⁇ CW 1 —CO—O—, CH 2 ⁇ CW 1 —CO—,
  • Particularly preferred groups P/P 1 /P 2 /P 3 are selected from the group consisting of CH 2 ⁇ CW 1 —CO—O—, CH 2 ⁇ CW 1 —CO—,
  • P/P 1 /P 2 /P 3 are selected from the group consisting of CH 2 ⁇ CW 1 —CO—O—, in particular CH 2 ⁇ CH—CO—O—, CH 2 ⁇ C(CH 3 )—CO—O— and CH 2 ⁇ CF—CO—O—, furthermore CH 2 ⁇ CH—O—, (CH 2 ⁇ CH) 2 CH—O—CO—, (CH 2 ⁇ CH) 2 CH—O—,
  • Very particularly preferred groups P/P 1 /P 2 /P 3 are therefore selected from the group consisting of acrylate, methacrylate, ethylacrylate, fluoroacrylate, furthermore vinyloxy, chloroacrylate, oxetane and epoxide groups, and of these in turn preferably an acrylate or methacrylate group.
  • Preferred spacer groups Sp, Sp 1 , Sp 2 or Sp 3 are a single bond or selected from the formula Sp′′-X′′, so that the radical P (1/2) -Sp (1/2) - conforms to the formula P 1/2 -Sp′′-X′′— or P-Sp′′-X′′—, where
  • Typical spacer groups Sp′′ are, for example, a single bond, —(CH 2 ) p1 —, —O—(CH 2 ) p1 —, —(CH 2 CH 2 O) q1 —CH 2 CH 2 —, —CH 2 CH 2 —S—CH 2 CH 2 —, or —(SiR 00 R 000 —O) p1 —, in which p1 is an integer from 1 to 12, q1 is an integer from 1 to 3, and R 00 and R 000 have the meanings indicated above.
  • Particularly preferred groups -Sp′′-X′′— are —(CH 2 ) p1 —, —(CH 2 ) p1 —O—, —(CH 2 ) p1 —O—CO—, —(CH 2 ) p1 —O—CO—O—, in which p1 and q1 have the meanings indicated above.
  • Particularly preferred groups Sp′′ are, for example, in each case unbranched ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, undecylene, dodecylene, octadecylene, ethyleneoxyethylene, methyleneoxybutylene, ethylenethioethylene, ethylene-N-methyliminoethylene, 1-methylalkylene, ethenylene, propenylene and butenylene.
  • the substances of the formula M generally and preferably do not contain an anchor group, i.e. do not contain a group —OH, —NH 2 , —SH, —C(O)OH or —CHO.
  • Suitable and preferred (co)monomers for use in displays according to the invention are selected, for example, from the following formulae:
  • L on each occurrence identically or differently, has one of the above meanings and preferably denotes F, Cl, CN, NO 2 , CH 3 , C 2 H 5 , C(CH 3 ) 3 , CH(CH 3 ) 2 , CH 2 CH(CH 3 )C 2 H 5 , OCH 3 , OC 2 H 5 , COCH 3 , COC 2 H 5 , COOCH 3 , COOC 2 H 5 , CF 3 , OCF 3 , OCHF 2 , OC 2 F 5 or P-Sp-, particularly preferably F, Cl, CN, CH 3 , C 2 H 5 , OCH 3 , COCH 3 , OCF 3 or P-Sp-, very particularly preferably F, Cl, CH 3 , OCH 3 , COCH 3 or OCF 3 , in particular F or CH 3 .
  • the LC medium or the polymerisable component preferably comprises one or more compounds selected from the group of the formulae M1-M28, particularly preferably from the group of the formulae M2-M15, of these particularly preferably from the group of the formulae M2, M3, M9, M14 and M15.
  • the LC medium or the polymerisable component preferably comprises no compounds of the formula M10 in which Z 2 and Z 3 denote —(CO)O— or —O(CO)—.
  • the polymerisable compounds are polymerised or crosslinked (if a polymerisable compound contains two or more polymerisable groups) by in-situ polymerisation in the LC medium between the substrates of the LC display, optionally with application of a voltage.
  • the polymerisation can be carried out in one step. It is also possible firstly to carry out the polymerisation with application of a voltage in a first step in order to produce a pretilt angle, and subsequently, in a second polymerisation step, to polymerise or crosslink the compounds which have not fully reacted in the first step without an applied voltage (“end curing”).
  • Suitable and preferred polymerisation methods are, for example, thermal or photopolymerisation, preferably photopolymerisation, in particular UV photo-polymerisation.
  • One or more initiators can optionally also be added here.
  • Suitable conditions for the polymerisation and suitable types and amounts of initiators are known to the person skilled in the art and are described in the literature.
  • Suitable for free-radical polymerisation are, for example, the commercially available photoinitiators Irgacure651®, Irgacure184®, Irgacure907®, Irgacure369® or Darocure1173® (Ciba AG). If an initiator is employed, its proportion is preferably 0.001 to 5% by weight, particularly preferably 0.001 to 1% by weight.
  • the polymerisable component or the LC medium may also comprise one or more stabilisers in order to prevent undesired spontaneous polymerisation of the RMs, for example during storage or transport.
  • Suitable types and amounts of stabilisers are known to the person skilled in the art and are described in the literature. Particularly suitable are, for example, the commercially available stabilisers from the Irganox® series (Ciba AG), such as, for example, Irganox® 1076. If stabilisers are employed, their proportion, based on the total amount of the RMs or the polymerisable component, is preferably 10-10,000 ppm, particularly preferably 50-500 ppm.
  • the LC media for use in the LC displays according to the invention comprise a low-molecular-weight, unpolymerisable component (LC mixture, “host mixture”) comprising one or more, preferably two or more, low-molecular-weight (i.e. monomeric or unpolymerised, unpolymerisable) compounds.
  • LC mixture “host mixture”
  • the latter are stable or unreactive with respect to a polymerisation reaction under the conditions used for the polymerisation of the polymerisable compounds.
  • any dielectrically negative or positive LC mixture which is suitable for use in conventional VA and VA-IPS displays is suitable as host mixture.
  • the proportion of the host mixture for liquid-crystal displays is generally 95% by weight or more, preferably 97% by weight or more
  • Suitable LC mixtures are known to the person skilled in the art and are described in the literature.
  • LC media for VA displays having negative dielectric anisotropy are described, for example, in EP 1 378 557 A1 or WO 2013/004372.
  • Suitable LC mixtures having positive dielectric anisotropy which are suitable for LCDs and especially for IPS displays are known, for example, from JP 07-181 439 (A), EP 0 667 555, EP 0 673 986, DE 195 09 410, DE 195 28 106, DE 195 28 107, WO 96/23 851 and WO 96/28 521.
  • the LC medium preferably additionally comprises one or more compounds selected from the group of the compounds of the formulae A, B and C,
  • Z 2 can have identical or different meanings.
  • Z 2 and Z 2′ can have identical or different meanings.
  • R 2A , R 2B and R 2C each preferably denote alkyl having 1-6 C atoms, in particular CH 3 , C 2 H 5 , n-C 3 H 7 , n-C 4 H 9 , n-C 5 H 11 .
  • Z 2 and Z 2′ in the formulae A and B preferably each, independently of one another, denote a single bond, furthermore a —C 2 H 4 — bridge.
  • Z 2′ is preferably a single bond, or if Z 2′ ⁇ —C 2 H 4 —, Z 2 is preferably a single bond.
  • (O)C v H 2v+1 preferably denotes OC v H 2v+1 , furthermore C v H 2v+1 .
  • (O)C v H 2v+1 preferably denotes C v H 2v+1 .
  • L 3 and L 4 preferably each denote F.
  • Preferred compounds of the formulae A, B and C are, for example:
  • alkyl and alkyl* each, independently of one another, denote an unbranched alkyl radical having 1-6 C atoms.
  • the LC medium preferably additionally comprises one or more compounds of the formula D,
  • the LC medium preferably has a ⁇ of ⁇ 1.5 to ⁇ 8.0, in particular of ⁇ 2.5 to ⁇ 6.0.
  • the medium comprises one or more compounds of the formulae D-1 to D-3
  • alkyl denote alkyl having 1 to 7 C atoms, preferably having 2-5 C atoms, and
  • alkoxy denote alkoxy having 1 to 7 C atoms, preferably having 2 to 5 C atoms.
  • the medium preferably comprises one or more compounds of the formula E:
  • the values of the birefringence ⁇ n in the liquid-crystal mixture are generally between 0.07 and 0.16, preferably between 0.08 and 0.12.
  • the rotational viscosity ⁇ 1 at 20° C. before the polymerisation is preferably ⁇ 165 mPa ⁇ s, in particular ⁇ 140 mPa ⁇ s.
  • LC medium which additionally comprises one or more compounds of the formulae II and/or Ill:
  • the compounds of the formula II are preferably selected from the group consisting of the following formulae:
  • R 3a and R 4a each, independently of one another, denote H, CH 3 , C 2 H 5 or C 3 H 7 , and “alkyl” in each case indeendently denotes an unbranched alkyl group having 1 to 8, preferably 1, 2, 3, 4 or 5, C atoms.
  • R 3a denotes H or CH 3 , preferably H
  • compounds of the formula IId in particular those in which R 3a and R 4a denote H, CH 3 or C 2 H 5 .
  • the LC medium preferably comprises one or more compounds of the formulae IV and V:
  • the nematic phase of the dielectrically negative or positive LC medium in accordance with the invention preferably has a nematic phase in a temperature range from 10° C. or less to 60° C. or more, particularly preferably from 0 or less to 70° C. or more.
  • 1,4-substituted cyclohexane is represented by
  • Table C indicates the meanings of the codes for the end groups of the left-hand or right-hand side.
  • the acronyms are composed of the codes for the ring elements with optional linking groups, followed by a first hyphen and the codes for the left-hand end group, and a second hyphen and the codes for the right-hand end group.
  • Table D shows illustrative structures of compounds with their respective abbreviations.
  • n and m are each integers and the three dots “ . . . ” are placeholders for other abbreviations from this table.
  • the mixtures according to the invention preferably comprise one or more compounds of the compounds mentioned below.
  • Table E shows possible chiral dopants which can be added to the LC media according to the invention.
  • the LC media optionally comprise 0 to 10% by weight, in particular 0.01 to 5% by weight, particularly preferably 0.1 to 3% by weight, of dopants, preferably selected from the group consisting of compounds from Table E.
  • the LC media preferably comprise 0 to 10% by weight, in particular 1 ppm to 5% by weight, particularly preferably 1 ppm to 1% by weight, of stabilisers.
  • the LC media preferably comprise one or more stabilisers selected from the group consisting of compounds from Table F.
  • Table G shows illustrative compounds which can preferably be used as polymerisable compounds in the LC media in accordance with the present invention.
  • the mesogenic media comprise one or more compounds selected from the group of the compounds from Table G.
  • LC media and LC medium The same applies to the terms “component” in each case encompasses one or more substances, compounds and/or particles.
  • the polymerisable compounds are polymerised in the display or test cell by irradiation with UVA light (usually 365 nm) of defined intensity for a prespecified time, with a voltage optionally being applied to the display at the same time (usually 10 to 30 V alternating current, 1 kHz).
  • UVA light usually 365 nm
  • a voltage optionally being applied to the display at the same time usually 10 to 30 V alternating current, 1 kHz.
  • a 100 mW/cm 2 mercury vapour lamp is used, and the intensity is measured using a standard UV meter (Ushio UNI meter) fitted with a 320 nm (optionally 340 nm) band-pass filter.
  • the compounds employed, if not commercially available, are synthesised by standard laboratory procedures.
  • the LC media originate from Merck KGaA, Germany.
  • Step 4 Synthesis of the Final Compound 12 (Self-Alignment Additive No. 2)
  • Phases glass transition temperature (Tg) ⁇ 20° C., melting point 71° C., nematic-isotropic phase transition 120.0° C.
  • LC media according to the invention are prepared using the following liquid-crystalline mixtures consisting of low-molecular-weight components in the percentage proportions by weight indicated (acronyms cf. Tables A-D above).
  • CY-3-O2 10.0% Clearing point [° C.]: 81 CCY-3-O1 8.0% ⁇ n (589 nm, 20° C.): 0.103 CCY-3-O2 11.0% ⁇ (1 kHz, 20° C.): ⁇ 3.8 CCY-4-O2 5.0% K 1 (20° C.) [pN]: 13.9 CCY-5-O2 2.0% K 3 (20° C.) [pN]: 15.0 CPY-2-O2 9.0% ⁇ 1 (20° C.) [mPa ⁇ s]: 133 CPY-3-O2 9.0% V 0 (20° C.) [V]: 2.10 CCH-34 9.0% CCH-23 17.5% CP-3-O1 9.0% PYP-2-3 2.5% PY-3-O2 8.0%
  • CC-3-V1 9.00% Clearing point [° C.]: 74.7 CC-2-3 18.0% ⁇ n (589 nm, 20° C.): 0.098 CC-3-4 3.00% ⁇ (1 kHz, 20° C.): ⁇ 3.4 CC-3-5 7.00% ⁇
  • CC-3-V1 10.25% Clearing point [° C.]: 74.7 CC-2-3 18.5% ⁇ n (589 nm, 20° C.): 0.103 CC-3-5 6.75% ⁇ (1 kHz, 20° C.): ⁇ 3.1 CCP-3-1 6.00% ⁇
  • CC-3-V1 9.00% Clearing point [° C.]: 74.6 CC-3-O1 3.50% ⁇ n (589 nm, 20° C.): 0.0984 CC-3-4 8.00% ⁇ (1 kHz, 20° C.): ⁇ 3.6 CC-3-5 8.00% ⁇
  • Self-alignment additives Nos. 1 and 2 are generally dissolved in one of host mixtures H1 to H47 in an amount of 0.02-1.5% by weight.
  • the self-alignment additive according to the invention is subsequently added to this host mixture in the amount indicated (generally 0.02-2.5% by weight).
  • the mixture formed is introduced into a test cell (without polyimide alignment layer, layer thickness d ⁇ 4.0 ⁇ m, ITO coating on both sides for VHR measurements).
  • the LC medium has spontaneous homeotropic (vertical) alignment with the substrate surfaces.
  • the VA cell With application of a voltage greater than the optical threshold voltage (for example 14 Vpp), the VA cell is irradiated with UV light of intensity 100 mW/cm 2 at 20° C. or 40° C. with a 320 nm band-pass filter. This causes polymerisation of the polymerisable compounds. This generates a ‘pre-tilt’.
  • the optical threshold voltage for example 14 Vpp
  • Pre-tilt measurements the pre-tilt angles of the cells are measured directly after setting of the pre-tilt using an AXOSCAN (Axometrics, Inc., 103 Quality Circle, Suite 215 Huntsville, Ala. 35806 U.S.A.) at a wavelength of 578 nm.
  • AXOSCAN Axometrics, Inc., 103 Quality Circle, Suite 215 Huntsville, Ala. 35806 U.S.A.
  • the cells are subjected to 60 Vpp for 60 hours.
  • the pre-tilt is measured before and after application of the voltage.
  • a change in the pre-tilt after application of the voltage is a measure of the stability of the pre-tilt.
  • UV process for VHR measurements metal halide lamp (100 mW/cm 3 , with a 320 nm cut-off filter for 60 minutes) at 40° C. with test cells coated with ITO over the entire surface.
  • VHR measurements are carried out using a Toyo VHR instrument: the VHR is measured one hour after processing of the test cells, with the following conditions: applied voltage: 1 V, frequency: 0.6 Hz, in bipolar mode at 60° C.
  • test cells (8 cm ⁇ 4 cm) are filled with the test mixture.
  • the lower part (close to the fill opening) has good alignment; the upper part (opposite the fill opening) in some cases has poor alignment, which is characterised by higher transmission between crossed polarisers.
  • the ratio of these two regions is a measure of the spreading properties of the additive.
  • a polymerisable compound RM-1 (0.3% by weight) and the polymerisable self-alignment additive V1 based on a terphenyl structure (0.3% by weight) are added to a nematic LC medium H1 of the VA type ( ⁇ 0) and homogenised.
  • Alignment very good vertical alignment.
  • the cell without polyimide layer can be switched reversibly.
  • VHR voltage holding ratio
  • V1 Compared with V1 (3% by weight of a self-alignment additive having a terphenyl structure), the low-temperature stability, VHR and tilt angle generation, in particular, are improved.
  • Alignment very good vertical alignment.
  • the cell without polyimide layer can be switched reversibly.
  • VHR voltage holding ratio

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)
US16/267,530 2018-02-05 2019-02-05 Compounds for the homeotropic alignment of liquid-crystalline media Active 2039-04-16 US11274254B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018000894 2018-02-05
DE102018000894.1 2018-02-05

Publications (2)

Publication Number Publication Date
US20190241809A1 US20190241809A1 (en) 2019-08-08
US11274254B2 true US11274254B2 (en) 2022-03-15

Family

ID=65278287

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/267,530 Active 2039-04-16 US11274254B2 (en) 2018-02-05 2019-02-05 Compounds for the homeotropic alignment of liquid-crystalline media

Country Status (7)

Country Link
US (1) US11274254B2 (zh)
EP (1) EP3521401B1 (zh)
JP (1) JP2019163236A (zh)
KR (1) KR20190095153A (zh)
CN (1) CN110117226B (zh)
DE (1) DE102019000286A1 (zh)
TW (1) TWI815858B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10798159B2 (en) * 2017-07-26 2020-10-06 Netapp, Inc. Methods for managing workload throughput in a storage system and devices thereof
CN113677657A (zh) * 2019-05-15 2021-11-19 Dic株式会社 聚合性液晶组合物及液晶显示元件、以及化合物
US11708531B2 (en) * 2020-01-29 2023-07-25 Samsung Display Co., Ltd. Liquid crystal composition and display device having the same
TW202136871A (zh) 2020-02-13 2021-10-01 德商馬克專利公司 液晶裝置
KR20210107196A (ko) * 2020-02-21 2021-09-01 삼성디스플레이 주식회사 액정 조성물 및 이를 포함하는 표시 장치
CN113801662A (zh) * 2020-06-16 2021-12-17 石家庄诚志永华显示材料有限公司 一种向列相液晶组合物、液晶显示元件及液晶显示器
CN112175634A (zh) * 2020-09-23 2021-01-05 北京八亿时空液晶科技股份有限公司 一种聚合物稳定配向型液晶组合物及其应用
CN112175635A (zh) * 2020-09-23 2021-01-05 北京八亿时空液晶科技股份有限公司 一种聚合物稳定配向型液晶组合物及其应用
CN113214083B (zh) * 2021-04-06 2022-04-22 北京八亿时空液晶科技股份有限公司 一种自配向可聚合化合物及其应用
CN116179212A (zh) * 2021-11-26 2023-05-30 江苏和成显示科技有限公司 液晶组合物及包含其的液晶显示器件
CN116179211A (zh) * 2021-11-26 2023-05-30 江苏和成显示科技有限公司 液晶组合物及包含其的液晶显示器件
CN116179216A (zh) * 2021-11-26 2023-05-30 江苏和成显示科技有限公司 液晶组合物及包含其的液晶显示器件

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764263A (en) 1987-05-18 1988-08-16 The Dow Chemical Company Electrochemical synthesis of substituted aromatic amines in basic media
DE102011108708A1 (de) 2010-09-25 2012-03-29 Merck Patent Gmbh Flüssigkristallanzeigen und flüssigkristalline Medien mit homöotroper Ausrichtung
US20150252265A1 (en) * 2014-03-10 2015-09-10 Merck Patent Gmbh Liquid-crystalline media having homeotropic alignment
DE102015008172A1 (de) 2014-07-28 2016-01-28 Merck Patent Gmbh Flüssigkristalline Medien mit homöotroper Ausrichtung
WO2017013981A1 (ja) 2015-07-23 2017-01-26 Jnc株式会社 液晶組成物および液晶表示素子
WO2017041893A1 (en) 2015-09-09 2017-03-16 Merck Patent Gmbh Liquid-crystalline medium
WO2017045740A1 (en) 2015-09-15 2017-03-23 Merck Patent Gmbh Liquid-crystalline media having homeotropic alignment
EP3246305A1 (en) 2015-01-14 2017-11-22 JNC Corporation Compound having polymerizable group, liquid crystal composition and liquid crystal display element
EP3263673A1 (en) 2016-06-30 2018-01-03 Merck Patent GmbH Liquid-crystalline medium
WO2019124153A1 (ja) * 2017-12-22 2019-06-27 Dic株式会社 液晶組成物及び液晶表示素子
US20200308488A1 (en) * 2017-11-17 2020-10-01 Dic Corporation Polymerizable compound, and liquid crystal composition and liquid crystal display element in which the compound is used

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4000451B4 (de) 1990-01-09 2004-12-09 Merck Patent Gmbh Elektrooptisches Flüssigkristallschaltelement
EP0916992B1 (en) 1992-09-18 2003-11-26 Hitachi, Ltd. A liquid crystal display device
JPH07181439A (ja) 1993-12-24 1995-07-21 Hitachi Ltd アクティブマトリクス型液晶表示装置
JP3543351B2 (ja) 1994-02-14 2004-07-14 株式会社日立製作所 アクティブマトリクス型液晶表示装置
TW262553B (zh) 1994-03-17 1995-11-11 Hitachi Seisakusyo Kk
JP3787819B2 (ja) 1994-07-14 2006-06-21 日本曹達株式会社 アゼチジノン化合物及びその製造方法
DE19528107B4 (de) 1995-03-17 2010-01-21 Merck Patent Gmbh Flüssigkristallines Medium und seine Verwendung in einer elektrooptischen Flüssigkristallanzeige
WO1996023851A1 (de) 1995-02-03 1996-08-08 Merck Patent Gmbh Elektrooptische flüssigkristallanzeige
DE19528106A1 (de) 1995-02-03 1996-08-08 Merck Patent Gmbh Elektrooptische Flüssigkristallanzeige
DE19509410A1 (de) 1995-03-15 1996-09-19 Merck Patent Gmbh Elektrooptische Flüssigkristallanzeige
JPH1036847A (ja) 1996-07-25 1998-02-10 Seiko Epson Corp 液晶表示素子およびその製造方法
US6177972B1 (en) 1999-02-04 2001-01-23 International Business Machines Corporation Polymer stabilized in-plane switched LCD
JP2002023199A (ja) 2000-07-07 2002-01-23 Fujitsu Ltd 液晶表示装置およびその製造方法
JP4175826B2 (ja) 2002-04-16 2008-11-05 シャープ株式会社 液晶表示装置
DE50306559D1 (de) 2002-07-06 2007-04-05 Merck Patent Gmbh Flüssigkristallines Medium
JP2004294605A (ja) 2003-03-26 2004-10-21 Fujitsu Display Technologies Corp 液晶パネル
JP4387276B2 (ja) 2004-09-24 2009-12-16 シャープ株式会社 液晶表示装置
JP2006139047A (ja) 2004-11-12 2006-06-01 Sharp Corp 液晶表示装置およびその製造方法
DE102010006691A1 (de) 2009-02-06 2010-10-28 Merck Patent Gmbh Flüssigkristallines Medium und Flüssigkristallanzeige
JP6193226B2 (ja) 2011-07-07 2017-09-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 液晶媒体
EP2931838B1 (en) * 2012-12-17 2017-08-16 Merck Patent GmbH Liquid-crystal displays and liquid-crystalline media having homeotropic alignment

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0291865B1 (en) 1987-05-18 1992-08-12 The Dow Chemical Company Electrochemical synthesis of substituted aromatic amines in basic media
US4764263A (en) 1987-05-18 1988-08-16 The Dow Chemical Company Electrochemical synthesis of substituted aromatic amines in basic media
DE102011108708A1 (de) 2010-09-25 2012-03-29 Merck Patent Gmbh Flüssigkristallanzeigen und flüssigkristalline Medien mit homöotroper Ausrichtung
US10273409B2 (en) 2010-09-25 2019-04-30 Merck Patent Gesellschaft Mit Beschrankter Haftung Liquid crystal displays and liquid crystalline media with homeotropic alignment
US9809748B2 (en) 2014-03-10 2017-11-07 Merck Patent Gmbh Liquid-crystalline media having homeotropic alignment
US20150252265A1 (en) * 2014-03-10 2015-09-10 Merck Patent Gmbh Liquid-crystalline media having homeotropic alignment
EP2918658A2 (de) 2014-03-10 2015-09-16 Merck Patent GmbH Flüssigkristalline Medien mit homöotroper Ausrichtung
DE102015008172A1 (de) 2014-07-28 2016-01-28 Merck Patent Gmbh Flüssigkristalline Medien mit homöotroper Ausrichtung
US10294426B2 (en) 2014-07-28 2019-05-21 Merck Patent Gmbh Liquid crystalline media having homeotropic alignment
EP3246305A1 (en) 2015-01-14 2017-11-22 JNC Corporation Compound having polymerizable group, liquid crystal composition and liquid crystal display element
US20180023001A1 (en) * 2015-01-14 2018-01-25 Jnc Corporation Compound having polymerizable group, liquid crystal composition and liquid crystal display device
US20180208849A1 (en) 2015-07-23 2018-07-26 Jnc Corporation Liquid crystal composition and liquid crystal display device
WO2017013981A1 (ja) 2015-07-23 2017-01-26 Jnc株式会社 液晶組成物および液晶表示素子
US20180171231A1 (en) 2015-09-09 2018-06-21 Merck Patent Gmbh Liquid-crystalline medium
WO2017041893A1 (en) 2015-09-09 2017-03-16 Merck Patent Gmbh Liquid-crystalline medium
WO2017045740A1 (en) 2015-09-15 2017-03-23 Merck Patent Gmbh Liquid-crystalline media having homeotropic alignment
US20180258346A1 (en) 2015-09-15 2018-09-13 Merck Patent Gmbh Liquid-crystalline media having homeotropic alignment
EP3263673A1 (en) 2016-06-30 2018-01-03 Merck Patent GmbH Liquid-crystalline medium
US20180002604A1 (en) 2016-06-30 2018-01-04 Merck Patent Gmbh Liquid-crystalline medium
US20200308488A1 (en) * 2017-11-17 2020-10-01 Dic Corporation Polymerizable compound, and liquid crystal composition and liquid crystal display element in which the compound is used
WO2019124153A1 (ja) * 2017-12-22 2019-06-27 Dic株式会社 液晶組成物及び液晶表示素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Supplementary search report in corresponding EP19155191.0 dated Jun. 12, 2019 (pp. 1-12).

Also Published As

Publication number Publication date
DE102019000286A1 (de) 2019-08-08
EP3521401B1 (de) 2021-04-21
TW201936910A (zh) 2019-09-16
JP2019163236A (ja) 2019-09-26
EP3521401A1 (de) 2019-08-07
TWI815858B (zh) 2023-09-21
US20190241809A1 (en) 2019-08-08
CN110117226B (zh) 2024-03-12
KR20190095153A (ko) 2019-08-14
CN110117226A (zh) 2019-08-13

Similar Documents

Publication Publication Date Title
US11274254B2 (en) Compounds for the homeotropic alignment of liquid-crystalline media
US10538704B2 (en) Compounds for the homeotropic alignment of liquid-crystalline media
US11015121B2 (en) Liquid crystal displays and liquid crystalline media with homeotropic alignment
US10294426B2 (en) Liquid crystalline media having homeotropic alignment
US10513657B2 (en) Liquid-crystalline media having homeotropic alignment
US9249355B2 (en) Liquid-crystal displays having homeotropic alignment
US9726933B2 (en) Liquid-crystal displays and liquid-crystalline media having homeotropic alignment
US20180258346A1 (en) Liquid-crystalline media having homeotropic alignment
US10301544B2 (en) Liquid-crystal medium
US9234135B2 (en) Liquid-crystalline medium and liquid-crystal displays
US11072742B2 (en) Liquid-crystalline media having homeotropic alignment
US20210222067A1 (en) Liquid-crystal medium
US20230242817A1 (en) Liquid-crystal medium comprising poylmerizable compounds
US20170335194A1 (en) Liquid-crystal medium
US11655417B2 (en) Liquid-crystal medium
US20230392077A1 (en) Liquid-crystal medium
TW202028436A (zh) 液晶組成物及液晶顯示元件

Legal Events

Date Code Title Description
AS Assignment

Owner name: MERCK PATENT GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KLASEN-MEMMER, MELANIE;PLUMMER, EDWARD;FORTTE, ROCCO;AND OTHERS;SIGNING DATES FROM 20190111 TO 20190116;REEL/FRAME:048260/0729

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE