US10981996B1 - Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use - Google Patents

Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use Download PDF

Info

Publication number
US10981996B1
US10981996B1 US16/926,306 US202016926306A US10981996B1 US 10981996 B1 US10981996 B1 US 10981996B1 US 202016926306 A US202016926306 A US 202016926306A US 10981996 B1 US10981996 B1 US 10981996B1
Authority
US
United States
Prior art keywords
amino acid
acid sequence
seq
set forth
hla
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/926,306
Other languages
English (en)
Inventor
Jon WEIDANZ
Katherine Upchurch-Ange
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim International GmbH
Original Assignee
Abexxa Biologics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abexxa Biologics Inc filed Critical Abexxa Biologics Inc
Priority to US16/926,306 priority Critical patent/US10981996B1/en
Assigned to ABEXXA BIOLOGICS, INC. reassignment ABEXXA BIOLOGICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WEIDANZ, JON, UPCHURCH-ANGE, KATHERINE
Priority to US17/199,205 priority patent/US11359023B2/en
Application granted granted Critical
Publication of US10981996B1 publication Critical patent/US10981996B1/en
Priority to US18/000,486 priority patent/US20240026007A1/en
Assigned to BOEHRINGER INGELHEIM PHARMACEUTICALS, INC. reassignment BOEHRINGER INGELHEIM PHARMACEUTICALS, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: ABEXXA BIOLOGICS, INC.
Priority to US17/663,393 priority patent/US12173072B2/en
Assigned to BOEHRINGER INGELHEIM INTERNATIONAL GMBH reassignment BOEHRINGER INGELHEIM INTERNATIONAL GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOEHRINGER INGELHEIM PHARMACEUTICALS, INC.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2833Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against MHC-molecules, e.g. HLA-molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/32Immunoglobulins specific features characterized by aspects of specificity or valency specific for a neo-epitope on a complex, e.g. antibody-antigen or ligand-receptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/64Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising a combination of variable region and constant region components
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • monoclonal antibodies or antigen-binding fragments thereof comprising a light chain variable domain (VL) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 7.
  • monoclonal antibodies or antigen-binding fragments thereof comprising a light chain variable domain (VL) comprising an amino acid sequence at least 90% identical to an amino acid sequence set forth as SEQ ID NO: 7.
  • monoclonal antibodies or antigen-binding fragments thereof comprising a light chain variable domain (VL) comprising an amino acid sequence at least 95% identical to an amino acid sequence set forth as SEQ ID NO: 7.
  • monoclonal antibodies or antigen-binding fragments thereof comprising a light chain variable domain (VL) comprising an amino acid sequence at least 99% identical to an amino acid sequence set forth as SEQ ID NO: 7.
  • monoclonal antibodies or antigen-binding fragments thereof comprising a light chain variable domain (VL) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 7.
  • the monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable domain (VH) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • the monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable domain (VH) comprising an amino acid sequence at least 90% identical to an amino acid sequence set forth as SEQ ID NO: 8. In some embodiments, the monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable domain (VH) comprising an amino acid sequence at least 95% identical to an amino acid sequence set forth as SEQ ID NO: 8. In some embodiments, the monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable domain (VH) comprising an amino acid sequence at least 99% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • the monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable domain (VH) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • VH heavy chain variable domain
  • the monoclonal antibody or antigen-binding fragment thereof selectively binds to a complex comprising an HLA-E and a neoantigen.
  • the monoclonal antibody or antigen-binding fragment thereof does not have a binding affinity to (i) the HLA-E alone; or (ii) the neoantigen alone.
  • the neoantigen is expressed by an antigen processing machinery (APM)-proficient cell.
  • APM antigen processing machinery
  • the neoantigen is expressed by a TAP1/2-proficient cell.
  • the neoantigen comprises, consists essentially of, or consists of a sequence according to SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 20 (VTAPRTLLL), SEQ ID NO: 21 (IMAPRTLVL), SEQ ID NO: 23 (VMAPQALLL), SEQ ID NO: 24 (VMAPRALLL), SEQ ID NO: 25 (VMAPRTLLL), SEQ ID NO: 26 (VMAPRTLTL), SEQ ID NO: 27 (VMAPRTVLL), SEQ ID NO: 28 (VMPPRTLLL), or SEQ ID NO: 29 (VTAPRTVLL).
  • the neoantigen comprises, consists essentially of, or consists of a sequence according to SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 26 (VMAPRTLTL), or SEQ ID NO: 27 (VMAPRTVLL).
  • the HLA-E is HLA-E*0101 or HLA-E*0103.
  • the antibody selectively binds to the complex comprising: (a) the HLA-E*0101 and the neoantigen; (b) the HLA-E*0103 and the neoantigen; or (c) the HLA-E*0101 and the neoantigen, and the HLA-E*0103 and the neoantigen.
  • the monoclonal antibody or antigen-binding fragment thereof is a murine antibody, a chimeric antibody, a camelid antibody, a humanized antibody, or a human antibody.
  • the monoclonal antibody or antigen-binding fragment thereof is a TCR-like antibody.
  • the monoclonal antibody or antigen-binding fragment thereof is a multispecific antibody. In some embodiments, the monoclonal antibody or antigen-binding fragment thereof is a bispecific antibody. In some embodiments, the monoclonal antibody or antigen-binding fragment thereof is a bispecific T cell engager (BiTE). In some embodiments, the BiTE binds to a CD3 protein associated with a T cell receptor (TCR). In some embodiments, the BiTE further comprises a light chain variable domain (VL) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 15.
  • VL light chain variable domain
  • the BiTE further comprises a heavy chain variable domain (VH) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 16.
  • VH heavy chain variable domain
  • the monoclonal antibody or antigen-binding fragment thereof is a multifunctional antibody.
  • the monoclonal antibody or antigen-binding fragment thereof antibody further comprises a conjugated therapeutic moiety.
  • the selective binding of the antibody to the complex comprising the HLA-E and the neoantigen induces an immune response in a cell.
  • the immune response comprises activation of T cells.
  • the T cell is a CD8+ T cell.
  • the immune response comprises activation of cytotoxic T cells (CTLs).
  • the cell is a cancer cell.
  • monoclonal antibodies or antigen-binding fragments thereof comprising a heavy chain variable domain (VH) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • monoclonal antibodies or antigen-binding fragments thereof comprising a heavy chain variable domain (VH) comprising an amino acid sequence at least 90% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • monoclonal antibodies or antigen-binding fragments thereof comprising a heavy chain variable domain (VH) comprising an amino acid sequence at least 95% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • monoclonal antibodies or antigen-binding fragments thereof comprising a heavy chain variable domain (VH) comprising an amino acid sequence at least 99% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • monoclonal antibodies or antigen-binding fragments thereof comprising a heavy chain variable domain (VH) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • the monoclonal antibody or antigen-binding fragment thereof comprises a light chain variable domain (VL) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 7.
  • the monoclonal antibody or antigen-binding fragment thereof comprises a light chain variable domain (VL) comprising an amino acid sequence at least 90% identical to an amino acid sequence set forth as SEQ ID NO: 7. In some embodiments, the monoclonal antibody or antigen-binding fragment thereof comprises a light chain variable domain (VL) comprising an amino acid sequence at least 95% identical to an amino acid sequence set forth as SEQ ID NO: 7. In some embodiments, the monoclonal antibody or antigen-binding fragment thereof comprises a light chain variable domain (VL) comprising an amino acid sequence at least 99% identical to an amino acid sequence set forth as SEQ ID NO: 7.
  • the monoclonal antibody or antigen-binding fragment thereof comprises a light chain variable domain (VL) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 7.
  • VL light chain variable domain
  • the monoclonal antibody or antigen-binding fragment thereof selectively binds to a complex comprising an HLA-E and a neoantigen.
  • the monoclonal antibody or antigen-binding fragment thereof does not have a binding affinity to (i) the HLA-E alone; or (ii) the neoantigen alone.
  • the neoantigen is expressed by an antigen processing machinery (APM)-proficient cell.
  • APM antigen processing machinery
  • the neoantigen is expressed by a TAP1/2-proficient cell.
  • the neoantigen comprises, consists essentially of, or consists of a sequence according to SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 20 (VTAPRTLLL), SEQ ID NO: 21 (IMAPRTLVL), SEQ ID NO: 23 (VMAPQALLL), SEQ ID NO: 24 (VMAPRALLL), SEQ ID NO: 25 (VMAPRTLLL), SEQ ID NO: 26 (VMAPRTLTL), SEQ ID NO: 27 (VMAPRTVLL), SEQ ID NO: 28 (VMPPRTLLL), or SEQ ID NO: 29 (VTAPRTVLL).
  • the neoantigen comprises, consists essentially of, or consists of a sequence according to SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 26 (VMAPRTLTL), or SEQ ID NO: 27 (VMAPRTVLL).
  • the HLA-E is HLA-E*0101 or HLA-E*0103.
  • the antibody selectively binds to the complex comprising: (a) the HLA-E*0101 and the neoantigen; (b) the HLA-E*0103 and the neoantigen; or (c) the HLA-E*0101 and the neoantigen, and the HLA-E*0103 and the neoantigen.
  • the monoclonal antibody or antigen-binding fragment thereof is a murine antibody, a chimeric antibody, a camelid antibody, a humanized antibody, or a human antibody.
  • the monoclonal antibody or antigen-binding fragment thereof is a TCR-like antibody.
  • the monoclonal antibody or antigen-binding fragment thereof is a multispecific antibody. In some embodiments, the monoclonal antibody or antigen-binding fragment thereof is a bispecific antibody. In some embodiments, the monoclonal antibody or antigen-binding fragment thereof is a bispecific T cell engager (BiTE). In some embodiments, the BiTE binds to a CD3 protein associated with a T cell receptor (TCR). In some embodiments, the BiTE further comprises a light chain variable domain (VL) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 15.
  • VL light chain variable domain
  • the BiTE further comprises a heavy chain variable domain (VH) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 16.
  • VH heavy chain variable domain
  • the monoclonal antibody or antigen-binding fragment thereof is a multifunctional antibody.
  • the monoclonal antibody or antigen-binding fragment thereof antibody further comprises a conjugated therapeutic moiety.
  • the selective binding of the antibody to the complex comprising the HLA-E and the neoantigen induces an immune response in a cell.
  • the immune response comprises activation of T cells.
  • the T cell is a CD8+ T cell.
  • the immune response comprises activation of cytotoxic T cells (CTLs).
  • the cell is a cancer cell.
  • monoclonal antibodies or antigen-binding fragments thereof comprising a light chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3.
  • monoclonal antibodies or antigen-binding fragments thereof comprising a light chain complementarity determining region (CDR) having an amino acid sequence at least 90% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3.
  • monoclonal antibodies or antigen-binding fragments thereof comprising a light chain complementarity determining region (CDR) having an amino acid sequence at least 95% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3.
  • monoclonal antibodies or antigen-binding fragments thereof comprising a light chain complementarity determining region (CDR) having an amino acid sequence at least 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3.
  • monoclonal antibodies or antigen-binding fragments thereof comprising a light chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3.
  • the monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • the monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 90% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6. In some embodiments, the monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 95% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • CDR heavy chain complementarity determining region
  • the monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6. In some embodiments, the monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6. In some embodiments, the monoclonal antibody or antigen-binding fragment thereof comprises a light chain variable domain (VL) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 7.
  • VL light chain variable domain
  • the monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable domain (VH) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • VH heavy chain variable domain
  • the monoclonal antibody or antigen-binding fragment thereof selectively binds to a complex comprising an HLA-E and a neoantigen.
  • the monoclonal antibody or antigen-binding fragment thereof does not have a binding affinity to (i) the HLA-E alone; or (ii) the neoantigen alone.
  • the neoantigen is expressed by an antigen processing machinery (APM)-proficient cell.
  • APM antigen processing machinery
  • the neoantigen is expressed by a TAP1/2-proficient cell.
  • the neoantigen comprises, consists essentially of, or consists of a sequence according to SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 20 (VTAPRTLLL), SEQ ID NO: 21 (IMAPRTLVL), SEQ ID NO: 23 (VMAPQALLL), SEQ ID NO: 24 (VMAPRALLL), SEQ ID NO: 25 (VMAPRTLLL), SEQ ID NO: 26 (VMAPRTLTL), SEQ ID NO: 27 (VMAPRTVLL), SEQ ID NO: 28 (VMPPRTLLL), or SEQ ID NO: 29 (VTAPRTVLL).
  • the neoantigen comprises, consists essentially of, or consists of a sequence according to SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 26 (VMAPRTLTL), or SEQ ID NO: 27 (VMAPRTVLL).
  • the HLA-E is HLA-E*0101 or HLA-E*0103.
  • the antibody selectively binds to the complex comprising: (a) the HLA-E*0101 and the neoantigen; (b) the HLA-E*0103 and the neoantigen; or (c) the HLA-E*0101 and the neoantigen, and the HLA-E*0103 and the neoantigen.
  • the monoclonal antibody or antigen-binding fragment thereof is a murine antibody, a chimeric antibody, a camelid antibody, a humanized antibody, or a human antibody.
  • the monoclonal antibody or antigen-binding fragment thereof is a TCR-like antibody.
  • the monoclonal antibody or antigen-binding fragment thereof is a multispecific antibody. In some embodiments, the monoclonal antibody or antigen-binding fragment thereof is a bispecific antibody. In some embodiments, the monoclonal antibody or antigen-binding fragment thereof is a bispecific T cell engager (BiTE). In some embodiments, the BiTE binds to a CD3 protein associated with a T cell receptor (TCR). In some embodiments, the BiTE further comprises a light chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 9-11.
  • CDR light chain complementarity determining region
  • the BiTE further comprises a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 12-14.
  • the BiTE further comprises a light chain variable domain (VL) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 15.
  • the BiTE further comprises a heavy chain variable domain (VH) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 16.
  • the monoclonal antibody or antigen-binding fragment thereof is a multifunctional antibody.
  • the monoclonal antibody or antigen-binding fragment thereof antibody further comprises a conjugated therapeutic moiety.
  • the selective binding of the antibody to the complex comprising the HLA-E and the neoantigen induces an immune response in a cell.
  • the immune response comprises activation of T cells.
  • the T cell is a CD8+ T cell.
  • the immune response comprises activation of cytotoxic T cells (CTLs).
  • the cell is a cancer cell.
  • monoclonal antibodies or antigen-binding fragments thereof comprising a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • monoclonal antibodies or antigen-binding fragments thereof comprising a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 90% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • monoclonal antibodies or antigen-binding fragments thereof comprising a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 95% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • monoclonal antibodies or antigen-binding fragments thereof comprising a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • monoclonal antibodies or antigen-binding fragments thereof comprising a heavy chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • the monoclonal antibody or antigen-binding fragment comprises a light chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3.
  • the monoclonal antibody or antigen-binding fragment comprises a light chain complementarity determining region (CDR) having an amino acid sequence at least 90% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3. In some embodiments, the monoclonal antibody or antigen-binding fragment comprises a light chain complementarity determining region (CDR) having an amino acid sequence at least 95% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3.
  • the monoclonal antibody or antigen-binding fragment comprises a light chain complementarity determining region (CDR) having an amino acid sequence at least 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3. In some embodiments, the monoclonal antibody or antigen-binding fragment comprises a light chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3. In some embodiments, the monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable domain (VH) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • VH heavy chain variable domain
  • the monoclonal antibody or antigen-binding fragment thereof comprises a light chain variable domain (VL) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 7.
  • VL light chain variable domain
  • the monoclonal antibody or antigen-binding fragment thereof selectively binds to a complex comprising an HLA-E and a neoantigen.
  • the monoclonal antibody or antigen-binding fragment thereof does not have a binding affinity to (i) the HLA-E alone; or (ii) the neoantigen alone.
  • the neoantigen is expressed by an antigen processing machinery (APM)-proficient cell.
  • APM antigen processing machinery
  • the neoantigen is expressed by a TAP1/2-proficient cell.
  • the neoantigen comprises, consists essentially of, or consists of a sequence according to SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 20 (VTAPRTLLL), SEQ ID NO: 21 (IMAPRTLVL), SEQ ID NO: 23 (VMAPQALLL), SEQ ID NO: 24 (VMAPRALLL), SEQ ID NO: 25 (VMAPRTLLL), SEQ ID NO: 26 (VMAPRTLTL), SEQ ID NO: 27 (VMAPRTVLL), SEQ ID NO: 28 (VMPPRTLLL), or SEQ ID NO: 29 (VTAPRTVLL).
  • the neoantigen comprises, consists essentially of, or consists of a sequence according to SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 26 (VMAPRTLTL), or SEQ ID NO: 27 (VMAPRTVLL).
  • the HLA-E is HLA-E*0101 or HLA-E*0103.
  • the antibody selectively binds to the complex comprising: (a) the HLA-E*0101 and the neoantigen; (b) the HLA-E*0103 and the neoantigen; or (c) the HLA-E*0101 and the neoantigen, and the HLA-E*0103 and the neoantigen.
  • the monoclonal antibody or antigen-binding fragment thereof is a murine antibody, a chimeric antibody, a camelid antibody, a humanized antibody, or a human antibody.
  • the monoclonal antibody or antigen-binding fragment thereof is a TCR-like antibody.
  • the monoclonal antibody or antigen-binding fragment thereof is a multispecific antibody. In some embodiments, the monoclonal antibody or antigen-binding fragment thereof is a bispecific antibody. In some embodiments, the monoclonal antibody or antigen-binding fragment thereof is a bispecific T cell engager (BiTE). In some embodiments, the BiTE binds to a CD3 protein associated with a T cell receptor (TCR). In some embodiments, the BiTE further comprises a light chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 9-11.
  • CDR light chain complementarity determining region
  • the BiTE further comprises a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 12-14.
  • the BiTE further comprises a light chain variable domain (VL) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 15.
  • the BiTE further comprises a heavy chain variable domain (VH) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 16.
  • the monoclonal antibody or antigen-binding fragment thereof is a multifunctional antibody.
  • he monoclonal antibody or antigen-binding fragment thereof antibody further comprises a conjugated therapeutic moiety.
  • the selective binding of the antibody to the complex comprising the HLA-E and the neoantigen induces an immune response in a cell.
  • the immune response comprises activation of T cells.
  • the T cell is a CD8+ T cell.
  • the immune response comprises activation of cytotoxic T cells (CTLs).
  • the cell is a cancer cell.
  • bispecific antibodies or antigen-binding fragments thereof comprising: (a) a light chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; or a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 9-11; or a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 12-14.
  • CDR light chain complementarity determining region
  • the bispecific antibody comprises: (a) a light chain variable domain (VL) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 7; or a heavy chain variable domain (VH) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 15; or a heavy chain variable domain (VH) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 16.
  • bispecific antibodies or antigen-binding fragments thereof comprising: (a) a light chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; and a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 9-11; and a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 12-14.
  • CDR light chain complementarity determining region
  • the bispecific antibody comprises: (a) a light chain variable domain (VL) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 7; and a heavy chain variable domain (VH) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 15; and a heavy chain variable domain (VH) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 16.
  • the bispecific antibody selectively binds to a complex comprising an HLA-E and a neoantigen. In some embodiments, the bispecific antibody does not have a binding affinity to (i) the HLA-E alone; or (ii) the neoantigen alone. In some embodiments, the neoantigen is expressed by an antigen processing machinery (APM)-proficient cell. In some embodiments, the neoantigen is expressed by a TAP1/2-proficient cell.
  • APM antigen processing machinery
  • the neoantigen comprises, consists essentially of, or consists of a sequence according to SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 20 (VTAPRTLLL), SEQ ID NO: 21 (IMAPRTLVL), SEQ ID NO: 23 (VMAPQALLL), SEQ ID NO: 24 (VMAPRALLL), SEQ ID NO: 25 (VMAPRTLLL), SEQ ID NO: 26 (VMAPRTLTL), SEQ ID NO: 27 (VMAPRTVLL), SEQ ID NO: 28 (VMPPRTLLL), or SEQ ID NO: 29 (VTAPRTVLL).
  • the neoantigen comprises, consists essentially of, or consists of a sequence according to SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 26 (VMAPRTLTL), or SEQ ID NO: 27 (VMAPRTVLL).
  • the HLA-E is HLA-E*0101 or HLA-E*0103.
  • the antibody selectively binds to the complex comprising: (a) the HLA-E*0101 and the neoantigen; (b) the HLA-E*0103 and the neoantigen; or (c) the HLA-E*0101 and the neoantigen, and the HLA-E*0103 and the neoantigen.
  • the monoclonal antibody or antigen-binding fragment thereof is a murine antibody, a chimeric antibody, a camelid antibody, a humanized antibody, or a human antibody.
  • the monoclonal antibody or antigen-binding fragment thereof is a bispecific T cell engager (BiTE).
  • the BiTE binds to a CD3 protein associated with a T cell receptor (TCR).
  • TCR T cell receptor
  • the monoclonal antibody or antigen-binding fragment thereof is a multifunctional antibody.
  • the monoclonal antibody or antigen-binding fragment thereof antibody further comprises a conjugated therapeutic moiety.
  • the selective binding of the antibody to the complex comprising the HLA-E and the neoantigen induces an immune response in a cell.
  • the immune response comprises activation of T cells.
  • the T cell is a CD8+ T cell.
  • the immune response comprises activation of cytotoxic T cells (CTLs).
  • the cell is a cancer cell.
  • compositions comprising: (a) a monoclonal antibody or an antigen-binding fragment thereof as disclosed herein, or a bispecific antibody or an antigen-binding fragment thereof as disclosed herein; and (b) a pharmaceutically acceptable carrier or excipient.
  • a monoclonal antibody or an antigen-binding fragment thereof comprising a light chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3.
  • CDR light chain complementarity determining region
  • a monoclonal antibody or an antigen-binding fragment thereof comprising a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • CDR heavy chain complementarity determining region
  • the monoclonal antibody or antigen-binding fragment thereof comprises (a) a light chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; and (b) a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • CDR light chain complementarity determining region having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3
  • CDR heavy chain complementarity determining region
  • the monoclonal antibody or antigen-binding fragment thereof comprises (a) a light chain complementarity determining region (CDR) having an amino acid sequence at least 90% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; and (b) a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 90% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • CDR light chain complementarity determining region having an amino acid sequence at least 90% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3
  • a heavy chain complementarity determining region CDR having an amino acid sequence at least 90% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • the monoclonal antibody or antigen-binding fragment thereof comprises (a) a light chain complementarity determining region (CDR) having an amino acid sequence at least 95% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; and (b) a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 95% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • CDR light chain complementarity determining region
  • the monoclonal antibody or antigen-binding fragment thereof comprises (a) a light chain complementarity determining region (CDR) having an amino acid sequence at least 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; and (b) a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • CDR light chain complementarity determining region
  • the monoclonal antibody or antigen-binding fragment thereof comprises (a) a light chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; and (b) a heavy chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • the monoclonal antibody or antigen-binding fragment thereof comprises a light chain variable domain (VL) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 7.
  • the monoclonal antibody or antigen-binding fragment thereof comprises a heavy chain variable domain (VH) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • VH heavy chain variable domain
  • the monoclonal antibody or antigen-binding fragment thereof selectively binds to a complex comprising an HLA-E and a neoantigen.
  • the monoclonal antibody or antigen-binding fragment thereof does not have a binding affinity to (i) the HLA-E alone; or (ii) the neoantigen alone.
  • the neoantigen is expressed by an antigen processing machinery (APM)-proficient cell.
  • APM antigen processing machinery
  • the neoantigen is expressed by a TAP1/2-proficient cell.
  • the neoantigen comprises, consists essentially of, or consists of a sequence according to SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 20 (VTAPRTLLL), SEQ ID NO: 21 (IMAPRTLVL), SEQ ID NO: 23 (VMAPQALLL), SEQ ID NO: 24 (VMAPRALLL), SEQ ID NO: 25 (VMAPRTLLL), SEQ ID NO: 26 (VMAPRTLTL), SEQ ID NO: 27 (VMAPRTVLL), SEQ ID NO: 28 (VMPPRTLLL), or SEQ ID NO: 29 (VTAPRTVLL).
  • the neoantigen comprises, consists essentially of, or consists of a sequence according to SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 26 (VMAPRTLTL), or SEQ ID NO: 27 (VMAPRTVLL).
  • the HLA-E is HLA-E*0101 or HLA-E*0103.
  • the antibody selectively binds to the complex comprising: (a) the HLA-E*0101 and the neoantigen; (b) the HLA-E*0103 and the neoantigen; or (c) the HLA-E*0101 and the neoantigen, and the HLA-E*0103 and the neoantigen.
  • the monoclonal antibody or antigen-binding fragment thereof is a murine antibody, a chimeric antibody, a camelid antibody, a humanized antibody, or a human antibody.
  • the monoclonal antibody or antigen-binding fragment thereof is a TCR-like antibody.
  • the monoclonal antibody or antigen-binding fragment thereof is a multispecific antibody. In some embodiments, the monoclonal antibody or antigen-binding fragment thereof is a bispecific antibody. In some embodiments, the monoclonal antibody or antigen-binding fragment thereof is a bispecific T cell engager (BiTE). In some embodiments, the BiTE binds to a CD3 protein associated with a T cell receptor (TCR). In some embodiments, the BiTE further comprises a light chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 9-11.
  • CDR light chain complementarity determining region
  • the BiTE further comprises a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 12-14.
  • the BiTE further comprises a light chain variable domain (VL) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 15.
  • the BiTE further comprises a heavy chain variable domain (VH) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 16.
  • the monoclonal antibody or antigen-binding fragment thereof is a multifunctional antibody.
  • the monoclonal antibody or antigen-binding fragment thereof antibody further comprises a conjugated therapeutic moiety.
  • the selective binding of the antibody to the complex comprising the HLA-E and the neoantigen induces an immune response in a cell.
  • the immune response comprises activation of T cells.
  • the T cell is a CD8+ T cell.
  • the immune response comprises activation of cytotoxic T cells (CTLs).
  • CTLs cytotoxic T cells
  • the cancer is breast cancer.
  • the cancer is kidney cancer.
  • the cancer is lung cancer.
  • the cancer is ovarian cancer.
  • the cancer is colorectal cancer.
  • the cancer is pancreatic cancer. In some embodiments, the cancer is choriocarcinoma. In some embodiments, the cancer is non-small cell lung carcinoma (NSCLC). In some embodiments, the cancer is gastric cancer. In some embodiments, the cancer is cervical cancer. In some embodiments, the cancer is head and neck cancer. In some embodiments, the cancer is a myeloma. In some embodiments, the cancer is a leukemia. In some embodiments, the cancer is a lymphoma. In some embodiments, the cancer is acute myeloid leukemia (AML). In some embodiments, the cancer is multiple myeloma. In some embodiments, the cancer is a myelodysplastic syndrome. In some embodiments, the cancer is a B-cell malignancy. In some embodiments, the cancer is mantel cell lymphoma.
  • NSCLC non-small cell lung carcinoma
  • the cancer is gastric cancer. In some embodiments, the cancer is cervical cancer. In some embodiments, the cancer is head and neck
  • a bispecific antibody or an antigen-binding fragment thereof comprising: (a) a light chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; or a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 9-11; or a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 12-14.
  • CDR light chain complementarity determining region
  • the bispecific antibody comprises: (a) a light chain variable domain (VL) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 7; or a heavy chain variable domain (VH) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 15; or a heavy chain variable domain (VH) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 16.
  • a bispecific antibody or an antigen-binding fragment thereof comprising: (a) a light chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; and a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 9-11; and a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 80% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 12-14.
  • CDR light chain complementarity determining region
  • the bispecific antibody comprises: (a) a light chain variable domain (VL) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 7; and a heavy chain variable domain (VH) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 15; and a heavy chain variable domain (VH) comprising an amino acid sequence at least 80% identical to an amino acid sequence set forth as SEQ ID NO: 16.
  • the bispecific antibody or antigen-binding fragment thereof selectively binds to a complex comprising an HLA-E and a neoantigen. In some embodiments, the bispecific antibody or antigen-binding fragment thereof does not have a binding affinity to (i) the HLA-E alone; or (ii) the neoantigen alone. In some embodiments, the neoantigen is expressed by an antigen processing machinery (APM)-proficient cell. In some embodiments, the neoantigen is expressed by a TAP1/2-proficient cell.
  • APM antigen processing machinery
  • the neoantigen comprises, consists essentially of, or consists of a sequence according to SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 20 (VTAPRTLLL), SEQ ID NO: 21 (IMAPRTLVL), SEQ ID NO: 23 (VMAPQALLL), SEQ ID NO: 24 (VMAPRALLL), SEQ ID NO: 25 (VMAPRTLLL), SEQ ID NO: 26 (VMAPRTLTL), SEQ ID NO: 27 (VMAPRTVLL), SEQ ID NO: 28 (VMPPRTLLL), or SEQ ID NO: 29 (VTAPRTVLL).
  • the neoantigen comprises, consists essentially of, or consists of a sequence according to SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 26 (VMAPRTLTL), or SEQ ID NO: 27 (VMAPRTVLL).
  • the HLA-E is HLA-E*0101 or HLA-E*0103.
  • the bispecific antibody selectively binds to the complex comprising: (a) the HLA-E*0101 and the neoantigen; (b) the HLA-E*0103 and the neoantigen; or (c) the HLA-E*0101 and the neoantigen, and the HLA-E*0103 and the neoantigen.
  • the bispecific antibody or antigen-binding fragment thereof is a murine antibody, a chimeric antibody, a camelid antibody, a humanized antibody, or a human antibody.
  • the bispecific antibody or antigen-binding fragment thereof is a TCR-like antibody.
  • the bispecific antibody or antigen-binding fragment thereof is a bispecific T cell engager (BiTE).
  • the BiTE binds to a CD3 protein associated with a T cell receptor (TCR).
  • TCR T cell receptor
  • the bispecific antibody or antigen-binding fragment thereof is a multifunctional antibody.
  • the bispecific antibody or antigen-binding fragment thereof antibody further comprises a conjugated therapeutic moiety.
  • the selective binding of the antibody to the complex comprising the HLA-E and the neoantigen induces an immune response in a cell.
  • the immune response comprises activation of T cells.
  • the T cell is a CD8+ T cell.
  • the immune response comprises activation of cytotoxic T cells (CTLs).
  • CTLs cytotoxic T cells
  • the bispecific antibody is administered at a therapeutically effective amount.
  • the cancer is breast cancer.
  • the cancer is kidney cancer.
  • the cancer is lung cancer.
  • the cancer is ovarian cancer.
  • the cancer is colorectal cancer.
  • the cancer is pancreatic cancer.
  • the cancer is choriocarcinoma.
  • the cancer is non-small cell lung carcinoma (NSCLC).
  • the cancer is gastric cancer.
  • the cancer is cervical cancer.
  • the cancer is head and neck cancer.
  • the cancer is a myeloma. In some embodiments, the cancer is a leukemia. In some embodiments, the cancer is a lymphoma. In some embodiments, the cancer is acute myeloid leukemia (AML). In some embodiments, the cancer is multiple myeloma. In some embodiments, the cancer is a myelodysplastic syndrome. In some embodiments, the cancer is a B-cell malignancy. In some embodiments, the cancer is mantel cell lymphoma.
  • FIG. 1A - FIG. 1D exemplifies identification and affinity characterization of CDRH3 region of R4 clone 1 (R4c1) against V-0025 and V-0018 (control). Phage ( FIG. 1A ) and monoclonal soluble ELISA( FIG. 1B ). Antigen is at 1 ⁇ g/ml. Binding affinity sensorgram ( FIG. 1C ) and kinetic data ( FIG. 1D ).
  • FIG. 2A - FIG. 2D are exemplary overview of sorting schematic for the isolation of affinity matured R4c1.
  • FIG. 2A - FIG. 2C exemplify cell sorting plots showing each round of sorting for the first round of affinity maturation. The ‘star’ indicates the sorted population.
  • Koff was utilized with V-0025 at 10 nM using R4c1-IgG1 at 1 ⁇ M for the various timepoints as the antibody sink.
  • FIG. 3A - FIG. 3G exemplify clones identified from affinity maturation of R4c1.
  • FIG. 3A - FIG. 3D exemplify binding profile to target antigen (V-0025) at 100 nM.
  • FIG. 3E - FIG. 3G exemplify binding profile of the clone, R2A_1, to target (V-0025) at 10 nM and to additional peptide/HLA-E antigens at 100 nM.
  • FIG. 4 exemplifies R2A_1 binding to A549-B4 cells.
  • FIG. 5A - FIG. 5B exemplify isolation process for improved clones by affinity maturation of CDRL3 region of R2A_1.
  • FIG. 5A exemplifies binding to target (V-0025) by parent clone (R2A_1) and the starting affinity maturation library (R0) and first round sorted library (R1).
  • FIG. 5B exemplifies Koff of R1 affinity maturation library.
  • Target (V-0025) is at 10 nM, with R2A_1-hIgG1 as antibody sink at 1 ⁇ M for 15 minutes up to 90 minutes.
  • FIG. 6A - FIG. 6B exemplify the sorting schematic for the isolation of clones with greater binding affinity than the parent.
  • Cell sorting plots showing round 1 ( FIG. 6A ) and round 2 ( FIG. 6B ) sorting for affinity maturation. The asterisk indicates the sorted population.
  • Koff was utilized with V-0025 at 10 nM using R2A_1-IgG1 at 1 ⁇ M for 45 minutes as the antibody sink.
  • FIG. 7 exemplifies identification of clones from affinity maturation of the CDRL3 region of R2A_1 and binding profile to V-0025 at 1 nM and 0.1 nM. Arrows indicate the top clones.
  • FIG. 8A - FIG. 8B exemplify QC data for the production of ABX0020.
  • FIG. 9A - FIG. 9I exemplify affinity, specificity and stability of ABX0020. Specificity to peptide/HLA-E complexes by HLA-E clone 3D12 ( FIG. 9A ) and ABX0020 ( FIG. 9B ). Antibodies were used at 1 ⁇ g/ml, antigen was used at 0.25 ⁇ g/ml.
  • FIG. 9C exemplifies monovalent affinity of ABX0020 to V-0025.
  • FIG. 9D illustrates titration of V-0034.
  • FIG. 9E illustrates titration of antibody.
  • FIG. 9F exemplifies thermostability of ABX0020. Binding affinity at 4° C. compared with incubation at 37° C.
  • FIG. 9G illustrates binding of HLA-E to peptide-pulsed K562.E cells.
  • K562.E cells were pulsed with 2 ⁇ M of peptide for two hours followed by staining with antibody at 1 ⁇ g/mL.
  • FIG. 9H illustrates binding of ABX0020 to peptide-pulsed K562.E cells.
  • K562.E cells were pulsed with 2 ⁇ M of peptide for two hours followed by staining with antibody at 1 ⁇ g/mL.
  • FIG. 9I illustrates binding of ABX0020 to peptide-pulsed K562.E cells.
  • K562.E cells were pulsed with 2 ⁇ M of peptide for two hours followed by staining with antibody at 1 ⁇ g/mL.
  • FIG. 10A - FIG. 10B exemplify ABX0020 binds similarly to HLA-E*0101 and HLA-E*0103.
  • FIG. 10A illustrates binding by HLA-E at 1 ⁇ g/mL.
  • FIG. 10B illustrates binding by ABX0020 at 1 ⁇ g/mL.
  • FIG. 11A - FIG. 11D exemplify ABX0020 binds to a variety of tumor cell lines. Antibody binding at 1 ⁇ g/mL.
  • FIG. 11A exemplifies binding to IFN ⁇ -stimulated JEG3 wild type cells (WT, top panel), JEG3 E KO cells (middle panel) and JEG3 Tap-1 KO cells (bottom panel).
  • FIG. 11B exemplifies binding to WT K-562 cells (top panel), HLA-E+K-562 cells (middle panel) and HLA-E+K-562 cells pulsed with 2 ⁇ M of peptide.
  • FIG. 11B the light gray solid line represents isotype while the black outline represents HLA-E or ABX0020.
  • FIG. 11C exemplifies binding in unstimulated (dotted black line) and IFN ⁇ -stimulated (solid black line) THP-1 cells (top panel), RPMI-8226 cells (middle panel) and JY-A2 cells (bottom panel).
  • FIG. 11D exemplifies binding to IFN ⁇ -stimulated (solid black line) COLO-205 cells (top panel), PANC-1 cells (second from top panel), A549-D5 cells (second from bottom panel) and JVM2 cells (bottom panel).
  • FIG. 11C - FIG. 11D the gray solid line represents isotype and the dotted line represents unstimulated cells.
  • FIG. 12A - FIG. 12I exemplify ABX0020 enhances NK cytotoxicity against tumor cell lines expressing target.
  • FIG. 12A - FIG. 12B FIG. 12A exemplifies frequency of dead target cells. NK cells were co-cultured for four hrs with IFN ⁇ -stimulated and peptide-pulsed JY-A2 cells with MabCtrl (isotype control), ABX0020, ABX0021 or ABX0022
  • FIG. 12C illustrates NK cells co-cultured for 24 hrs with unstimulated and peptide-pulsed JY-A2 cells with MabCtrl, ⁇ NKG2A or ABX002.
  • FIG. 12D illustrates NK cells co-cultured for 24 hrs with IFN ⁇ -stimulated and peptide-pulsed JY-A2 cells with MabCtrl, ⁇ NKG2A or ABX0021.
  • FIGS. 12C and 12D show percent cytotoxicity as measured by LDH release with target only set to 0.
  • N 6.
  • FIG. 12E illustrates NK cells co-cultured with peptide-pulsed HLA-E+K-562 cells (K562.E) for four hrs with hIgG (isotype control) ⁇ NKG2A or ABX0021. The percent of dead K
  • FIG. 12G illustrates NK cells co-cultured with IFN ⁇ -stimulated and peptide-pulsed JY-A2 cells for four hrs with hIgG1, ⁇ NKG2A, or a titration of ABX0020 or ABX0022.
  • FIG. 12G shows frequency of dead target cells.
  • FIG. 12H illustrates NK cells co-cultured with IFN ⁇ -stimulated and peptide-pulsed JY-A2 cells for four hrs with hIgG1, ⁇ NKG2A, or a titration of ABX0020 or ABX0022.
  • 12I illustrates NK cells co-cultured with IFN ⁇ -stimulated COLO-205 cells for four hrs with hIgG1 (control), cetuximab, ABX0020, ABX0021 or a combination of cetuximab with ABX0020 or ABX0021.
  • the frequency of dead COLO-205 cells is shown.
  • N 11.
  • MabCtrl, hIgG1, ABX0020, ABX0021 and ⁇ NKG2A were used at 10 ⁇ g/mL unless otherwise indicated.
  • ABX0022 was used at 1 ⁇ g/mL unless otherwise indicated.
  • Cetuximab was used at 0.1 ⁇ g/mL.
  • the effector to target ratio was set to 10:1. Plots are shown as box and whiskers with means indicated by crosses. The whiskers are drawn down to the 25th percentile minus 1.5 times IQR (inter-quartile distance; the difference between the 25th and 75th percentiles). Outliers are plotted individually. *p ⁇ 0.05; **p ⁇ 0.01; ***p ⁇ 0.001.
  • FIG. 13 exemplifies that ABX0020 unleashes suppression of antigen-specific CD8+ T-cells and promotes lysis of target cells.
  • M1-specific CTL lines Two different donor flu antigen (M1)-specific CTL lines were used in the study.
  • Donor A CTL line provided by Professor van Hall at Leiden University Medical Center in the Netherlands and
  • Donor B CTL line purchased from Astarte Biologics, WA, USA).
  • FIG. 14A - FIG. 14B illustrate design and characterization of ABX0040 Bispecific T-cell engager.
  • FIG. 15 exemplifies affinity analysis of ABX0040.
  • FIG. 16A - FIG. 16B exemplify that ABX0040 staining to tumor cell line is HLA-E restricted.
  • ABX0040 stains the JEG3 wild-type cells while not staining JEG3 cells lacking HLA-E.
  • ABX0023 (ABX0020 derived with mouse-IgG) was used as a control.
  • FIG. 17 exemplifies that ABX0040 stains target positive THP-1 AML cells.
  • THP-1 cells were incubated 0/N in the presence of human IFN-g (long/ml) and then stained with ABX0040 at 1 ⁇ g/ml. Bound ABX0040 was detected using a goat anti-human IgG (GAH)-APC conjugate.
  • GAH goat anti-human IgG
  • FIG. 18A - FIG. 18E are exemplary histograms to illustrate that ABX0040 stains human CD3+ cells and not CD3neg cells.
  • FIG. 18A illustrates PBMCs stained with GAH-APC conjugate and anti-CD3 (clone SK7).
  • FIG. 18B illustrates PBMCs stained with anti-CD4 and GAH-APC conjugate.
  • FIG. 18C illustrates CD3+ cell staining with ABX0040+GAH-APC conjugate (no SK7 Ab).
  • FIG. 18 D illustrates double staining with anti-CD4-PE and ABX0040+GAH-APC conjugate. Notice in this panel the two populations of CD3+ cells representing CD4+ and CD8+ T-cells.
  • FIG. 18E illustrates double staining of CD3+ cells using ABX0040 and clone SK7-PE. ABX0040 was used at 1 ⁇ g/mL.
  • FIG. 19A - FIG. 19C exemplify that ABX0040 mediates CD8+ T-cell lysis of target positive K562.E cells. Percent cytotoxicity was measured by the frequency of dead target cells with target only set to 0. Cells were harvested after 48 hrs using an effector to target ratio (E:T) of 5:1.
  • FIG. 19A FIG. 19B-19C shows ABX0040 dose-dependent effect on CD8+ T cell activation, specifically CD107a ( FIG. 19B ) and IFN ⁇ expression ( FIG. 19C ).
  • FIG. 20A - FIG. 20E exemplify that ABX0040 mediates CD8+ T-cell killing of THP-1 AML cells.
  • FIG. 20A shows a dose-dependent effect (1000 to 80 pM) of ABX0040 to redirect CD8+ T cell cytotoxicity of THP-1 cells. Percent cytotoxicity was measured by the frequency of dead THP-1 cells with target only set to 0.
  • FIG. 20A-20E shows ABX0040 dose-dependent effect on CD8+ T cell activation, specifically CD25 ( FIG. 20B ), CD107a ( FIG. 20C ), perforin ( FIG. 20D ), and IFN ⁇ ( FIG. 20E ) expression. Cells were harvested after 48 hrs using an effector to target ratio (E:T) of 5:1.
  • FIG. 21A - FIG. 21B exemplify ABX0040 displays checkpoint blocking activity to activate NK cells.
  • NK cells were co-cultured with K562.E cells ( FIG. 21A ) or RPMI-8226 cells ( FIG. 21B ) for 24 hrs. Both figures show percent cytotoxicity as measured by LDH release with target only set to 0. Antibody were used at 10 ⁇ g/mL.
  • antibodies comprising at least one heavy chain comprising a heavy chain variable domain (VH) and at least one light chain comprising a light chain variable domain (VL). Each VH and VL comprises three complementarity determining regions (CDR).
  • the antibodies are bispecific antibodies.
  • the bispecific antibodies are bispecific T cell engagers (BiTEs).
  • the bispecific antibodies bind to a CD3 protein associated with a T cell receptor (TCR).
  • methods of treating a cancer by administering an antibody that selectively binds to a complex comprising a non-classical HLA-I (e.g.
  • the antibodies that selectively bind to a complex comprising a non-classical HLA-I (e.g. HLA-E) and a neoantigen modulate immune response against cancer cells, thereby treating cancer.
  • the antibodies are bispecific antibodies.
  • HLA Major histocompatibility complex
  • HLA-I human leukocyte antigen
  • HLA-II HLA Class II
  • Cancer cells decorated with these unique peptide/HLA complexes are recognized and killed by the cytotoxic T cells (CTLs).
  • CTLs cytotoxic T cells
  • Cancer cells show a downregulation in classical HLA-I expression but an upregulation in non-classical HLA-I expression (e.g. HLA-E).
  • HLA-E non-classical HLA-I expression
  • an antibody includes a plurality of antibodies and reference to “an antibody” in some embodiments includes multiple antibodies, and so forth.
  • references to a range of 90-100% includes 91%, 92%, 93%, 94%, 95%, 95%, 97%, etc., as well as 91.1%, 91.2%, 91.3%, 91.4%, 91.5%, etc., 92.1%, 92.2%, 92.3%, 92.4%, 92.5%, etc., and so forth.
  • reference to a range of 1-5,000 fold includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, fold, etc., as well as 1.1, 1.2, 1.3, 1.4, 1.5, fold, etc., 2.1, 2.2, 2.3, 2.4, 2.5, fold, etc., and so forth.
  • “About” a number refers to range including the number and ranging from 10% below that number to 10% above that number. “About” a range refers to 10% below the lower limit of the range, spanning to 10% above the upper limit of the range.
  • MHC refers to the Major Histocompability Complex, which is a set of gene loci specifying major histocompatibility antigens.
  • HLA refers to Human Leukocyte Antigens, which are the histocompatibility antigens found in humans.
  • HLA is the human form of “MHC” and the terms are used interchangeably.
  • antibody refers to a glycoprotein which exhibits binding specificity to a specific antigen.
  • Antibodies herein also include “antigen binding portion” or fragments of the antibody that are capable of binding to the antigen.
  • the term includes, but is not limited to, polyclonal, monoclonal, monospecific, multispecific (e.g., bispecific antibodies), natural, humanized, human, chimeric, synthetic, recombinant, hybrid, mutated, grafted, antibody fragments (e.g., a portion of a full-length antibody, generally the antigen binding or variable region thereof, e.g., Fab, Fab′, F(ab′)2, and Fv fragments), and in vitro generated antibodies so long as they exhibit the desired biological activity.
  • the term also includes single chain antibodies, e.g., single chain Fv (sFv or scFv) antibodies, in which a variable heavy and a variable light chain are joined together (directly or through a peptide linker) to form a continuous polypeptide.
  • sFv or scFv single chain Fv antibodies
  • CDR refers to an immunoglobulin (Ig) hypervariable domain.
  • a CDR is defined by any suitable manner.
  • CDRs can be defined in accordance with any of the Chothia numbering schemes, the Kabat numbering scheme, a combination of Kabat and Chothia, the AbM definition, the contact definition, and/or a combination of the Kabat, Chothia, AbM, and/or contact definitions; and may produce different results.
  • the term “selectively binds” in the context of any binding agent refers to a binding agent that binds specifically to an antigen or epitope, such as with a high affinity, and does not significantly bind other unrelated antigens or epitopes.
  • neoantigen or “neopeptide” are used interchangeably and refer to a peptide differentially expressed by a diseased or stressed cell (e.g. cancer cell) compared to a healthy cell.
  • treatment refers to administering an agent, or carrying out a procedure, for the purposes of obtaining an effect.
  • the effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of effecting a partial or complete cure for a disease and/or symptoms of the disease.
  • Treatment may include treatment of a disease or disorder (e.g.
  • cancer in a mammal, particularly in a human, and includes: (a) preventing the disease or a symptom of a disease from occurring in a subject which may be predisposed to the disease but has not yet been diagnosed as having it (e.g., including diseases that may be associated with or caused by a primary disease; (b) inhibiting the disease, i.e., arresting its development; and (c) relieving the disease, i.e., causing regression of the disease.
  • Treating may refer to any indicia of success in the treatment or amelioration or prevention of a cancer, including any objective or subjective parameter such as abatement; remission; diminishing of symptoms or making the disease condition more tolerable to the patient; slowing in the rate of degeneration or decline; or making the final point of degeneration less debilitating.
  • the treatment or amelioration of symptoms is based on one or more objective or subjective parameters; including the results of an examination by a physician.
  • treating includes the administration of the compounds or agents of the present invention to prevent or delay, to alleviate, or to arrest or inhibit development of the symptoms or conditions associated with diseases (e.g. cancer).
  • therapeutic effect refers to the reduction, elimination, or prevention of the disease, symptoms of the disease, or side effects of the disease in the subject.
  • a “therapeutically effective amount” in some cases means the amount that, when administered to a subject for treating a disease, is sufficient to effect treatment for that disease.
  • Percent (%) identity refers to the extent to which two sequences (nucleotide or amino acid) have the same residue at the same positions in an alignment.
  • an amino acid sequence is X % identical to SEQ ID NO: Y refers to % identity of the amino acid sequence to SEQ ID NO: Y and is elaborated as X % of residues in the amino acid sequence are identical to the residues of sequence disclosed in SEQ ID NO: Y.
  • computer programs are employed for such calculations.
  • Exemplary programs that compare and align pairs of sequences include ALIGN (Myers and Miller, 1988), FASTA (Pearson and Lipman, 1988; Pearson, 1990) and gapped BLAST (Altschul et al., 1997), BLASTP, BLASTN, or GCG (Devereux et al., 1984).
  • MHC Major Histocompability Complex
  • HLA Human Leukocyte Antigens
  • MHC Major histocompatibility complexes
  • HLA Human Leukocyte Antigens
  • MHC I comprises classical and non-classical MHC I sub-groups.
  • Classical MHC I molecules include HLA-A, HLA-B and HLA-C in humans and H-2-K, H-2-D, H-2-B and H-2-L in mice.
  • Classical MHC I molecules are highly polymorphic with more than 2,735 alleles of HLA-A, 3,455 alleles of HLA-B and 2,259 alleles of HLA-C.
  • Classical MHC I is expressed on the surface of all nucleated cells and present peptides to CD8 T lymphocytes. 30% of the proteins in the cellular machinery are rapidly degraded and are primary substrates for classical MHC I antigen presentation.
  • proteins are first processed through the conventional processing route (ubiquitin proteasome system) which begins with protein degradation in the proteasome and Transporter associated protein (TAP) dependent transport of peptides into the endoplasmic reticulum (ER) and ends with the loading of peptides into the HLA peptide binding pocket.
  • the proteins that contribute to the conventional processing route are collectively known as antigen processing machinery (APM) and include the proteasome, TAP complex, tapasin, endoplasmic reticulum amino peptidase (ERAAP), binding immunoglobulin protein (BiP), clanexin and calreticulin.
  • APM antigen processing machinery
  • ERAAP endoplasmic reticulum amino peptidase
  • BiP binding immunoglobulin protein
  • Cells lacking either proteasome subunits, TAP1/2, ErP57 or calreticulin have reduced numbers of classical MHC I molecules on their surface.
  • Non-classical MHC I molecules include HLA-E, HLA-F and HLA-G, and have limited polymorphisms. They play a role in regulating innate and adaptive immune responses. Non-classical MHC I molecules present peptides generated by both the conventional processing route and the alternative processing route in health and disease states, and represent a novel set of markers for targeting in disease states (e.g. cancer).
  • HLA-E The non-classical MHC class I molecule, HLA-E is non-polymorphic. In nature, 13 HLA-E alleles have been identified with only two functional variants, namely HLAE* 0101 and HLA-E*0103.
  • the difference between HLA-E*0101 (HLA-E 107R ) and *0103 (HLA-E 107G ) is a single amino acid difference at position 107 which is outside the peptide binding pocket.
  • HLA-E is expressed in all cells with a nucleus, however at usually lower levels. HLA-E molecule expression in cells and tissues is generally increased during stress and disease. As such, HLA-E is differentially expressed on stressed or diseased cell (e.g. cancer cell) compared to on a healthy cell.
  • HLA-E presents peptides derived from classical MHC molecules and the non-classical HLA-G molecule to either inhibit or stimulate the activity of NK cells and a subset of CD8 T cells through engaging the receptor CD94/NKG2.
  • the HLA-E complex engages either CD94/NKG2A or CD94/NKG2C to inhibit or activate NK cells and a subset of CD8 T cells, respectively.
  • Another signal peptide that has characteristics in common with signal peptides generated from classical HLA-I molecules is the signal peptide generated from non-classical HLA-G.
  • HLA-G expression under normal physiologic conditions is tightly regulated, with limited expression found in relatively few tissues and cells in the body.
  • HLA-G plays a key role as an immune tolerant molecule and its expression is observed in cancer tissue/cells.
  • the signal peptide from HLA-G is processed by the conventional antigen processing pathway and delivered to the endoplasmic reticulum by the peptide transporter TAP.
  • the signal peptide is VMAPRTLFL (SEQ ID NO: 18).
  • APM-deficient cells not only have reduced numbers of classical MHC I molecules on their surface, but also show an increase in the cell surface density of HLA-E molecules as well as an increase in the repertoire of peptides presented.
  • the alternative processing routes are constitutively turned on and produce peptides in both healthy and diseased cells. These peptides, however, are not presented by healthy cells; instead they are only presented in diseased or stressed cells.
  • T-cell epitopes associated with impaired peptide processing represent novel targets unique to cancer cells, and represent ideal targets for therapeutic development in the treatment of cancer.
  • the stressed or diseased cell in a stressed or diseased state (e.g. cancer), differentially expresses a complex comprising an HLA-E and a peptide derived from classical MHC molecules or the non-classical HLA-G molecule.
  • the complex comprising an HLA-E and a peptide derived from classical MHC molecules or the non-classical HLA-G molecule is differentially expressed on the stressed or diseased cell compared to a healthy cell. Targeting this complex blocks the inhibitory interaction of the complex with receptors on NK cells and a subset of CD8 T cells, thereby inducing an immune response against the cell expressing the complex.
  • MHC II molecules in humans include HLA-DM, HLA-DO, HLA-DP, HLA-DQ and HLA-DR and include H-2 I-A and H-2 I-E in mice.
  • MHC II expression is more restricted to B cells, dendritic cells, macrophages, activated T cells and thymic epithelial cells and MHC II molecules present peptides to CD4 lymphocytes.
  • Antibodies that Target a Complex Comprising a Non-Classical HLA-I e.g. HLA-E
  • a Neoantigen e.g. HLA-E
  • the antibodies comprise at least one heavy chain comprising a heavy chain variable domain (VH) and at least one light chain comprising a light chain variable domain (VL).
  • VH heavy chain variable domain
  • VL light chain variable domain
  • Each VH and VL comprises three complementarity determining regions (CDR).
  • the amino acid sequences of the VH and VL and the CDRs determine the antigen binding specificity and antigen binding strength of the antibody.
  • the amino acid sequences of the VH and VL and the CDRs are summarized in Table 1.
  • the antibodies selectively bind to a complex comprising a non-classical HLA-I (e.g. HLA-E) and a neoantigen.
  • a non-classical HLA-I e.g. HLA-E
  • the antibody does not have a binding affinity to the non-classical HLA-I alone.
  • the antibody does not have a binding affinity to the neoantigen alone.
  • the antibody does not have a binding affinity to a complex comprising the non-classical HLA-I and a non-relevant neoantigen.
  • the neoantigen is expressed by an antigen processing machinery (APM)-proficient cell. In some embodiments, the neoantigen is expressed by a TAP1/2-proficient cell. In some embodiments, the neoantigen comprises, consists essentially of, or consists of a sequence according to SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 20 (VTAPRTLLL), SEQ ID NO: 21 (IMAPRTLVL), SEQ ID NO: 23 (VMAPQALLL), SEQ ID NO: 24 (VMAPRALLL), SEQ ID NO: 25 (VMAPRTLLL), SEQ ID NO: 26 (VMAPRTLTL), SEQ ID NO: 27 (VMAPRTVLL), SEQ ID NO: 28 (VMPPRTLLL), or SEQ ID NO: 29 (VTAPRTVLL).
  • APM antigen processing machinery
  • the neoantigen comprises, consists essentially of, or consists of a sequence according to SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 26 (VMAPRTLTL), or SEQ ID NO: 27 (VMAPRTVLL).
  • the non-classical HLA-I is HLA-E, HLA-F, HLA-G, or HLA-H. In some embodiments, the non-classical HLA-I is HLA-E. In some embodiments, the HLA-E is HLA-E*0101. In some embodiments, the HLA-E is HLA-E*0103.
  • the antibody selectively binds to the complex comprising the HLA-E and the neoantigen. In some embodiments, the antibody selectively binds to the complex comprising the HLA-E*0101 and the neoantigen. In some embodiments, the antibody selectively binds to the complex comprising the HLA-E*0103 and the neoantigen. In some embodiments, the antibody selectively binds to the complex comprising the HLA-E*0101 and the neoantigen, and to the complex of the HLA-E*0103 and the neoantigen.
  • the complex comprises the HLA-E and a neoantigen selected from the group consisting of: SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 20 (VTAPRTLLL), SEQ ID NO: 21 (IMAPRTLVL), SEQ ID NO: 23 (VMAPQALLL), SEQ ID NO: 24 (VMAPRALLL), SEQ ID NO: 25 (VMAPRTLLL), SEQ ID NO: 26 (VMAPRTLTL), SEQ ID NO: 27 (VMAPRTVLL), SEQ ID NO: 28 (VMPPRTLLL), and SEQ ID NO: 29 (VTAPRTVLL).
  • a neoantigen selected from the group consisting of: SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 20 (VTAPRTLLL), SEQ ID
  • the complex comprises the HLA-E and a neoantigen selected from the group consisting of: SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 26 (VMAPRTLTL), and SEQ ID NO: 27 (VMAPRTVLL).
  • a neoantigen selected from the group consisting of: SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 26 (VMAPRTLTL), and SEQ ID NO: 27 (VMAPRTVLL).
  • the antibody is a murine antibody. In some embodiments, the antibody is a chimeric antibody. In some embodiments, the antibody is a camelid antibody. In some embodiments, the antibody is a humanized antibody. In some embodiments, the antibody is a human antibody.
  • the antibody is a TCR-like antibody. In some embodiments, the antibody is a single domain antibody. In some embodiments, the single domain antibody is a camelid single domain antibody.
  • the antibody is a multispecific antibody. In some embodiments, the antibody is a bispecific antibody. In some embodiments, the antibody is a bispecific T cell engager (BiTE). In some embodiments, the BiTE binds to a CD3 protein associated with a T cell receptor (TCR). In some embodiments, the BiTE binds to a CD3c protein associated with a T cell receptor (TCR). In some embodiments, the antibody is a multifunctional antibody.
  • BiTE bispecific T cell engager
  • the BiTE binds to a CD3 protein associated with a T cell receptor (TCR). In some embodiments, the BiTE binds to a CD3c protein associated with a T cell receptor (TCR). In some embodiments, the antibody is a multifunctional antibody.
  • the antibody further comprises a conjugated therapeutic moiety.
  • Therapeutic moiety include, but are not limited to, a cytotoxin, a chemotherapeutic drug, an immunosuppressant, and a radioisotope.
  • a cytotoxin or cytotoxic agent includes any agent that is detrimental to (e.g., kills) cells.
  • Examples include, but are not limited to, taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof.
  • Suitable chemotherapeutic agents include, but are not limited to, anti-metabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, fludarabin, 5-fluorouracil, decarbazine, hydroxyurea, azathiprin, gemcitabin and cladribin), alkylating agents (e.g., mechlorethamine, thioepa, chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclophosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin
  • Suitable radioisotopes include, but are not limited to, iodine-131, yttrium-90 or indium-Ill.
  • therapeutic moieties are a protein or polypeptide possessing a desired biological activity.
  • proteins may include, for example, an enzymatically active toxin, or active fragment thereof, such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor or interferon- ⁇ ; or biological response modifiers such as, for example, lymphokines, interleukin-1 (IL-1), interleukin-2 (IL-2), interleukin-6 (IL-6), granulocyte macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), or other growth factors.
  • IL-1 interleukin-1
  • IL-2 interleukin-2
  • IL-6 interleukin-6
  • GM-CSF granulocyte macrophage
  • the selective binding of the antibody to the complex comprising the non-classical HLA-I (e.g. HLA-E) and the neoantigen induces an immune response.
  • the immune response comprises activation of T cells.
  • the T cell is a CD8+ T cell.
  • the immune response comprises activation of cytotoxic T cells (CTLs).
  • the cell is a cancer cell.
  • VL and VH Antibody Variable Domain
  • antibodies that selectively bind to a complex comprising an HLA-E and a neoantigen, the antibodies having a light chain comprising a light chain variable domain (VL).
  • antibodies comprise a light chain variable domain (VL) having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 7.
  • the VL has an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 7.
  • the VL has an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 7.
  • antibodies that selectively bind to a complex comprising an HLA-E and a neoantigen, the antibodies having a heavy chain comprising a heavy chain variable domain (VH).
  • antibodies comprise a heavy chain variable domain (VH) having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • the VH has an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • the VH has an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • antibodies that selectively bind to a complex comprising an HLA-E and a neoantigen, the antibodies comprising a light chain variable domain (VL) and a heavy chain variable domain (VH).
  • antibodies comprise a light chain variable domain (VL) having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 7 and a heavy chain variable domain (VH) having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • the VL has an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 7 and the VH has an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • the VL has an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 7 and the VH has an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • antibodies that selectively bind to a complex comprising an HLA-E and a neoantigen, the antibodies having a light chain comprising a light chain complementarity determining region (CDR).
  • CDR light chain complementarity determining region
  • antibodies comprise a light chain CDR sequence having an amino acid sequence at least about 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3.
  • antibodies comprise a light chain CDR sequence having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3. In some embodiments, antibodies comprise a light chain CDR sequence having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3.
  • antibodies that selectively bind to a complex comprising an HLA-E and a neoantigen, the antibodies having a heavy chain comprising a heavy chain complementarity determining region (CDR).
  • antibodies comprise a heavy chain CDR sequence having an amino acid sequence at least about 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • antibodies comprise a heavy chain CDR sequence having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6. In some embodiments, antibodies comprise a heavy chain CDR sequence having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • antibodies that selectively bind to a complex comprising an HLA-E and a neoantigen comprise a light chain complementarity determining region (CDR) and a heavy chain complementarity determining region (CDR).
  • CDR light chain complementarity determining region
  • CDR heavy chain complementarity determining region
  • antibodies comprise a light chain CDR sequence having an amino acid sequence at least about 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3 and a heavy chain CDR sequence having an amino acid sequence at least about 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • antibodies comprise a light chain CDR sequence having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3 and a heavy chain CDR sequence having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • antibodies comprise a light chain CDR sequence having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3 and a heavy chain CDR sequence having an amino acid sequence at least about 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • antibodies selectively bind to a complex comprising an HLA-E and a neoantigen comprise at least one of a light chain CDR1 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 1, a light chain CDR2 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 2, and a light chain CDR3 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 3.
  • antibodies comprise at least one of a light chain a light chain CDR1 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 1, a light chain CDR2 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 2, and a light chain CDR3 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%,
  • antibodies comprise at least one of a light chain CDR1 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 1, a light chain CDR2 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 2, and a light chain CDR3 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 3.
  • antibodies that selectively bind to a complex comprising an HLA-E and a neoantigen comprise at least one of a heavy chain CDR1 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 4, a heavy chain CDR2 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 5, a heavy chain CDR3 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 6.
  • antibodies comprise at least one of a heavy chain CDR1 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 4, a heavy chain CDR2 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 5, a heavy chain CDR3 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 93%, 93%
  • antibodies comprise at least one of a heavy chain CDR1 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 4, a heavy chain CDR2 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 5, a heavy chain CDR3 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 6.
  • antibodies that selectively bind to a complex comprising an HLA-E and a neoantigen comprise at least one of a light chain CDR1 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 1, a light chain CDR2 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 2, a light chain CDR3 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 3, a heavy chain CDR1 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 4, a heavy chain CDR2 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 5, and a heavy chain CDR3 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 6.
  • antibodies comprise at least one of a light chain CDR1 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 1, a light chain CDR2 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 2, a light chain CDR3 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 93%, 93%
  • antibodies comprise at least one of a light chain CDR1 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 1, a light chain CDR2 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 2, a light chain CDR3 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 3, a heavy chain CDR1 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 4, a heavy chain CDR2 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 5, and a heavy chain CDR3 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 6.
  • the antibodies disclosed herein are bispecific antibodies.
  • the bispecific antibodies are bispecific T cell engagers (BiTEs).
  • the BiTE binds to a CD3 protein associated with a T cell receptor (TCR).
  • the BiTE binds to a CD3c protein associated with a T cell receptor (TCR).
  • the BiTE comprises an anti-CD3 antibody, or a fragment thereof, such as UCHT1, OKT3, F6A, L2K, muromonab, otelixizumab, teplizumab, visilizumab, CD3-12, MEM-57, 4D10A6, CD3D, or TR66.
  • an anti-CD3 antibody or a fragment thereof, such as UCHT1, OKT3, F6A, L2K, muromonab, otelixizumab, teplizumab, visilizumab, CD3-12, MEM-57, 4D10A6, CD3D, or TR66.
  • the bispecific antibodies comprise (a) a light chain variable domain (VL) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 7; or a heavy chain variable domain (VH) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 15; or a heavy chain variable domain (VH) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 16.
  • the bispecific antibodies comprise (a) a light chain variable domain (VL) comprising an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 7; or a heavy chain variable domain (VH) comprising an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 8
  • the bispecific antibodies comprise (a) a light chain variable domain (VL) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 7; or a heavy chain variable domain (VH) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 15; or a heavy chain variable domain (VH) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 16.
  • the bispecific antibodies comprise (a) a light chain variable domain (VL) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 7; and a heavy chain variable domain (VH) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 15; and a heavy chain variable domain (VH) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 16.
  • the bispecific antibodies comprise (a) a light chain variable domain (VL) comprising an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 7; and a heavy chain variable domain (VH) comprising an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 8
  • the bispecific antibodies comprise (a) a light chain variable domain (VL) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 7; and a heavy chain variable domain (VH) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 15; and a heavy chain variable domain (VH) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 16.
  • the bispecific antibodies comprise (a) a light chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; or a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 9-11; or a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 12-14.
  • CDR light chain complementarity determining region
  • the bispecific antibodies comprise (a) a light chain complementarity determining region (CDR) having an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; or a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence at least 75%, 80%, 81%
  • the bispecific antibodies comprise (a) a light chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; or a heavy chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 9-11; or a heavy chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 12-14.
  • CDR light chain complementarity determining region
  • the bispecific antibodies comprise (a) a light chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; and a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 9-11; and a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 12-14.
  • CDR light chain complementarity determining region
  • the bispecific antibodies comprise (a) a light chain complementarity determining region (CDR) having an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; and a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence at least 75%, 80%, 81%
  • the bispecific antibodies comprise (a) a light chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; and a heavy chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 9-11; and a heavy chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 12-14.
  • CDR light chain complementarity determining region
  • kits for treating cancer in an individual in need thereof comprising administering to the individual an antibody that selectively bind to a complex comprising a non-classical HLA-I (e.g. HLA-E) and a neoantigen as disclosed herein.
  • a non-classical HLA-I e.g. HLA-E
  • a neoantigen as disclosed herein.
  • the cancer is breast cancer. In some embodiments, the cancer is kidney cancer. In some embodiments, the cancer is lung cancer. In some embodiments, the cancer is ovarian cancer. In some embodiments, the cancer is colorectal cancer. In some embodiments, the cancer is pancreatic cancer. In some embodiments, the cancer is choriocarcinoma. In some embodiments, the cancer is non-small cell lung carcinoma (NSCLC). In some embodiments, the cancer is gastric cancer. In some embodiments, the cancer is cervical cancer. In some embodiments, the cancer is head and neck cancer. In some embodiments, the cancer is a myeloma. In some embodiments, the cancer is a leukemia. In some embodiments, the cancer is a lymphoma.
  • NSCLC non-small cell lung carcinoma
  • the cancer is acute myeloid leukemia (AML). In some embodiments, the cancer is multiple myeloma. In some embodiments, the cancer is a myelodysplastic syndrome. In some embodiments, the cancer is a B-cell malignancy. In some embodiments, the cancer is mantel cell lymphoma.
  • AML acute myeloid leukemia
  • the cancer is multiple myeloma. In some embodiments, the cancer is a myelodysplastic syndrome. In some embodiments, the cancer is a B-cell malignancy. In some embodiments, the cancer is mantel cell lymphoma.
  • the cancer cell differentially expresses the neoantigen. In some embodiments, the cancer cell differentially expresses the HLA-E. In some embodiments, the cancer cell differentially expresses the complex comprising the HLA-E and the neoantigen.
  • the antibody selectively bind to a complex comprising a non-classical HLA-I (e.g. HLA-E) and a neoantigen. In some embodiments, the antibody does not have a binding affinity to the non-classical HLA-I alone. In some embodiments, the antibody does not have a binding affinity to the neoantigen alone. In some embodiments, the antibody does not have a binding affinity to a complex comprising the non-classical HLA-I and a non-relevant neoantigen.
  • a non-classical HLA-I e.g. HLA-E
  • neoantigen e.g. HLA-E
  • the antibody does not have a binding affinity to the non-classical HLA-I alone. In some embodiments, the antibody does not have a binding affinity to the neoantigen alone.
  • the neoantigen is expressed by an antigen processing machinery (APM)-proficient cell. In some embodiments, the neoantigen is expressed by a TAP1/2-proficient cell. In some embodiments, the neoantigen comprises, consists essentially of, or consists of a sequence according to SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 20 (VTAPRTLLL), SEQ ID NO: 21 (IMAPRTLVL), SEQ ID NO: 23 (VMAPQALLL), SEQ ID NO: 24 (VMAPRALLL), SEQ ID NO: 25 (VMAPRTLLL), SEQ ID NO: 26 (VMAPRTLTL), SEQ ID NO: 27 (VMAPRTVLL), SEQ ID NO: 28 (VMPPRTLLL), or SEQ ID NO: 29 (VTAPRTVLL).
  • APM antigen processing machinery
  • the neoantigen comprises, consists essentially of, or consists of a sequence according to SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 26 (VMAPRTLTL), or SEQ ID NO: 27 (VMAPRTVLL).
  • the non-classical HLA-I is HLA-E, HLA-F, HLA-G, or HLA-H. In some embodiments, the non-classical HLA-I is HLA-E. In some embodiments, the HLA-E is HLA-E*0101. In some embodiments, the HLA-E is HLA-E*0103.
  • the antibody selectively binds to the complex comprising the HLA-E and the neoantigen. In some embodiments, the antibody selectively binds to the complex comprising the HLA-E*0101 and the neoantigen. In some embodiments, the antibody selectively binds to the complex comprising the HLA-E*0103 and the neoantigen. In some embodiments, the antibody selectively binds to the complex comprising the HLA-E*0101 and the neoantigen, and to the complex of the HLA-E*0103 and the neoantigen.
  • the complex comprises the HLA-E and a neoantigen selected from the group consisting of: SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 20 (VTAPRTLLL), SEQ ID NO: 21 (IMAPRTLVL), SEQ ID NO: 23 (VMAPQALLL), SEQ ID NO: 24 (VMAPRALLL), SEQ ID NO: 25 (VMAPRTLLL), SEQ ID NO: 26 (VMAPRTLTL), SEQ ID NO: 27 (VMAPRTVLL), SEQ ID NO: 28 (VMPPRTLLL), and SEQ ID NO: 29 (VTAPRTVLL).
  • a neoantigen selected from the group consisting of: SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 20 (VTAPRTLLL), SEQ ID
  • the complex comprises the HLA-E and a neoantigen selected from the group consisting of: SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 26 (VMAPRTLTL), and SEQ ID NO: 27 (VMAPRTVLL).
  • a neoantigen selected from the group consisting of: SEQ ID NO: 17 (VMAPRTLIL), SEQ ID NO: 18 (VMAPRTLFL), SEQ ID NO: 19 (VMAPRTLVL), SEQ ID NO: 26 (VMAPRTLTL), and SEQ ID NO: 27 (VMAPRTVLL).
  • the antibody is a murine antibody. In some embodiments, the antibody is a chimeric antibody. In some embodiments, the antibody is a camelid antibody. In some embodiments, the antibody is a humanized antibody. In some embodiments, the antibody is a human antibody.
  • the antibody is a TCR-like antibody. In some embodiments, the antibody is a single domain antibody. In some embodiments, the single domain antibody is a camelid single domain antibody.
  • the antibody is a multispecific antibody. In some embodiments, the antibody is a bispecific antibody. In some embodiments, the antibody is a bispecific T cell engager (BiTE). In some embodiments, the BiTE binds to a CD3 protein associated with a T cell receptor (TCR). In some embodiments, the BiTE binds to a CD3c protein associated with a T cell receptor (TCR). In some embodiments, the antibody is a multifunctional antibody.
  • BiTE bispecific T cell engager
  • the BiTE binds to a CD3 protein associated with a T cell receptor (TCR). In some embodiments, the BiTE binds to a CD3c protein associated with a T cell receptor (TCR). In some embodiments, the antibody is a multifunctional antibody.
  • the antibody further comprises a conjugated therapeutic moiety.
  • Therapeutic moiety include, but are not limited to, a cytotoxin, a chemotherapeutic drug, an immunosuppressant, and a radioisotope.
  • a cytotoxin or cytotoxic agent includes any agent that is detrimental to (e.g., kills) cells.
  • Examples include, but are not limited to, taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof.
  • Suitable chemotherapeutic agents include, but are not limited to, anti-metabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, fludarabin, 5-fluorouracil, decarbazine, hydroxyurea, azathiprin, gemcitabin and cladribin), alkylating agents (e.g., mechlorethamine, thioepa, chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclophosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin
  • Suitable radioisotopes include, but are not limited to, iodine-131, yttrium-90 or indium-Ill.
  • therapeutic moieties are a protein or polypeptide possessing a desired biological activity.
  • proteins may include, for example, an enzymatically active toxin, or active fragment thereof, such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor or interferon- ⁇ ; or biological response modifiers such as, for example, lymphokines, interleukin-1 (IL-1), interleukin-2 (IL-2), interleukin-6 (IL-6), granulocyte macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), or other growth factors.
  • IL-1 interleukin-1
  • IL-2 interleukin-2
  • IL-6 interleukin-6
  • GM-CSF granulocyte macrophage
  • the selective binding of the antibody to the complex comprising the non-classical HLA-I (e.g. HLA-E) and the neoantigen induces an immune response.
  • the immune response comprises activation of T cells.
  • the T cell is a CD8+ T cell.
  • the immune response comprises activation of cytotoxic T cells (CTLs).
  • the antibody comprises a light chain variable domain (VL) having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 7.
  • VL has an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 7.
  • the VL has an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 7.
  • the antibody comprises a heavy chain variable domain (VH) having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • VH heavy chain variable domain
  • the VH has an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • the VH has an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • the antibody comprises a light chain variable domain (VL) having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 7 and a heavy chain variable domain (VH) having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • VL light chain variable domain
  • VH heavy chain variable domain
  • the VL has an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 7 and the VH has an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • the VL has an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 7 and the VH has an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • the antibody comprises a light chain CDR sequence having an amino acid sequence at least about 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3. In some embodiments, the antibody comprises a light chain CDR sequence having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3. In some embodiments, the antibody comprises a light chain CDR sequence having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3.
  • the antibody comprises a heavy chain CDR sequence having an amino acid sequence at least about 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6. In some embodiments, the antibody comprises a heavy chain CDR sequence having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6. In some embodiments, the antibody comprises a heavy chain CDR sequence having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • the antibody comprises a light chain CDR sequence having an amino acid sequence at least about 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3 and a heavy chain CDR sequence having an amino acid sequence at least about 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • the antibody comprises a light chain CDR sequence having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3 and a heavy chain CDR sequence having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • the antibody comprises a light chain CDR sequence having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3 and a heavy chain CDR sequence having an amino acid sequence at least about 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • the antibody selectively binds to a complex comprising an HLA-E and a neoantigen and comprises at least one of a light chain CDR1 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 1, a light chain CDR2 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 2, and a light chain CDR3 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 3.
  • the antibody comprises at least one of a light chain a light chain CDR1 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 1, a light chain CDR2 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 2, and a light chain CDR3 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 91%, 92%
  • the antibody comprises at least one of a light chain CDR1 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 1, a light chain CDR2 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 2, and a light chain CDR3 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 3.
  • the antibody that selectively binds to a complex comprising an HLA-E and a neoantigen comprises at least one of a heavy chain CDR1 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 4, a heavy chain CDR2 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 5, a heavy chain CDR3 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 6.
  • the antibody comprises at least one of a heavy chain CDR1 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 4, a heavy chain CDR2 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 5, a heavy chain CDR3 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 93%, 9
  • the antibody comprises at least one of a heavy chain CDR1 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 4, a heavy chain CDR2 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 5, a heavy chain CDR3 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 6.
  • the antibody that selectively bind to a complex comprising an HLA-E and a neoantigen comprises at least one of a light chain CDR1 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 1, a light chain CDR2 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 2, a light chain CDR3 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 3, a heavy chain CDR1 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 4, a heavy chain CDR2 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 5, and a heavy chain CDR3 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 6.
  • the antibody comprises at least one of a light chain CDR1 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 1, a light chain CDR2 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 2, a light chain CDR3 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 93%, 9
  • the antibody comprises at least one of a light chain CDR1 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 1, a light chain CDR2 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 2, a light chain CDR3 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 3, a heavy chain CDR1 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 4, a heavy chain CDR2 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 5, and a heavy chain CDR3 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 6.
  • the antibody is a bispecific antibody.
  • the bispecific the antibody comprises (a) a light chain variable domain (VL) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 7; or a heavy chain variable domain (VH) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 15; or a heavy chain variable domain (VH) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 16.
  • the bispecific the antibody comprises (a) a light chain variable domain (VL) comprising an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 7; or a heavy chain variable domain (VH) comprising an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%,
  • the bispecific the antibody comprises (a) a light chain variable domain (VL) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 7; or a heavy chain variable domain (VH) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 15; or a heavy chain variable domain (VH) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 16.
  • the bispecific the antibody comprises (a) a light chain variable domain (VL) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 7; and a heavy chain variable domain (VH) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 15; and a heavy chain variable domain (VH) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 16.
  • the bispecific the antibody comprises (a) a light chain variable domain (VL) comprising an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 7; and a heavy chain variable domain (VH) comprising an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%,
  • the bispecific the antibody comprises (a) a light chain variable domain (VL) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 7; and a heavy chain variable domain (VH) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 15; and a heavy chain variable domain (VH) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 16.
  • the bispecific the antibody comprises (a) a light chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; or a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 9-11; or a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 12-14.
  • CDR light chain complementarity determining region
  • the bispecific the antibody comprises (a) a light chain complementarity determining region (CDR) having an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; or a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence at least 75%,
  • the bispecific the antibody comprises (a) a light chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; or a heavy chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 9-11; or a heavy chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 12-14.
  • CDR light chain complementarity determining region
  • the bispecific the antibody comprises (a) a light chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; and a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 9-11; and a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 12-14.
  • CDR light chain complementarity determining region
  • the bispecific the antibody comprises (a) a light chain complementarity determining region (CDR) having an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; and a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence at least 75%,
  • the bispecific the antibody comprises (a) a light chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; and a heavy chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 9-11; and a heavy chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 12-14.
  • CDR light chain complementarity determining region
  • the antibody is administered by intravenous administration. In some embodiments, the antibody is administered by subcutaneous administration. In some embodiments, the antibody is administered locally. In some embodiments, the antibody is administered systemically (e.g., intravenously, intramuscularly, subcutaneously, intradermally, orally, intranasally, sublingually). In some embodiments, the antibody is formulated as a salve, lotion or emulsion. In some embodiments, the antibody is formulated as a solution. In some embodiments, the antibody is formulated for topical, oral, buccal, or nasal administration.
  • the individual is monitored prior to administration of the antibody. Symptoms are identified and their severity is assessed. An antibody as described herein is administered alone or in combination with additional treatments, singly or multiply over time as discussed herein or known to one of skill in the art. In some embodiments, the individual is monitored such that the efficacy of the treatment regimen is determined. In some embodiments, a treatment regimen is modified in response to preliminary treatment outcomes, such that treatment dose or frequency or dose and frequency is altered so as to attain a desired level of subject response in light of symptom alleviation, side effect reduction, or a combination of symptom alleviation and side effect reduction.
  • compositions comprising (a) an antibody that selectively bind to a complex comprising a non-classical HLA-I (e.g. HLA-E) and a neoantigen as disclosed herein, and (b) a pharmaceutically acceptable carrier or excipient.
  • a non-classical HLA-I e.g. HLA-E
  • a neoantigen as disclosed herein
  • a pharmaceutically acceptable carrier or excipient e.g. HLA-E
  • the antibody comprises a light chain variable domain (VL) having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 7.
  • VL light chain variable domain
  • the VL has an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 7.
  • the VL has an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 7.
  • the antibody comprises a heavy chain variable domain (VH) having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • VH heavy chain variable domain
  • the VH has an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • the VH has an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • the antibody comprises a light chain variable domain (VL) having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 7 and a heavy chain variable domain (VH) having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • VL light chain variable domain
  • VH heavy chain variable domain
  • the VL has an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 7 and the VH has an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • the VL has an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 7 and the VH has an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 8.
  • the antibody comprises a light chain CDR sequence having an amino acid sequence at least about 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3. In some embodiments, the antibody comprises a light chain CDR sequence having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3. In some embodiments, the antibody comprises a light chain CDR sequence having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3.
  • the antibody comprises a heavy chain CDR sequence having an amino acid sequence at least about 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6. In some embodiments, the antibody comprises a heavy chain CDR sequence having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6. In some embodiments, the antibody comprises a heavy chain CDR sequence having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • the antibody comprises a light chain CDR sequence having an amino acid sequence at least about 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3 and a heavy chain CDR sequence having an amino acid sequence at least about 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • the antibody comprises a light chain CDR sequence having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3 and a heavy chain CDR sequence having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • the antibody comprises a light chain CDR sequence having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3 and a heavy chain CDR sequence having an amino acid sequence at least about 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6.
  • the antibody that selectively binds to a complex comprising an HLA-E and a neoantigen comprises at least one of a light chain CDR1 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 1, a light chain CDR2 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 2, and a light chain CDR3 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 3.
  • the antibody comprises at least one of a light chain a light chain CDR1 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 1, a light chain CDR2 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 2, and a light chain CDR3 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 91%, 92%
  • the antibody comprises at least one of a light chain CDR1 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 1, a light chain CDR2 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 2, and a light chain CDR3 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 3.
  • the antibody that selectively bind to a complex comprising an HLA-E and a neoantigen comprises at least one of a heavy chain CDR1 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 4, a heavy chain CDR2 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 5, a heavy chain CDR3 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 6.
  • the antibody comprises at least one of a heavy chain CDR1 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 4, a heavy chain CDR2 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 5, a heavy chain CDR3 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 93%, 9
  • the antibody comprises at least one of a heavy chain CDR1 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 4, a heavy chain CDR2 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 5, a heavy chain CDR3 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 6.
  • the antibody that selectively bind to a complex comprising an HLA-E and a neoantigen comprises at least one of a light chain CDR1 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 1, a light chain CDR2 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 2, a light chain CDR3 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 3, a heavy chain CDR1 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 4, a heavy chain CDR2 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 5, and a heavy chain CDR3 having an amino acid sequence at least about 70% identical to an amino acid sequence set forth as SEQ ID NO: 6.
  • the antibody comprises at least one of a light chain CDR1 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 1, a light chain CDR2 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 2, a light chain CDR3 having an amino acid sequence at least about 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 93%, 9
  • the antibody comprises at least one of a light chain CDR1 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 1, a light chain CDR2 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 2, a light chain CDR3 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 3, a heavy chain CDR1 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 4, a heavy chain CDR2 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 5, and a heavy chain CDR3 having an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 6.
  • the antibody is a bispecific antibody.
  • the bispecific the antibody comprises (a) a light chain variable domain (VL) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 7; or a heavy chain variable domain (VH) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 15; or a heavy chain variable domain (VH) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 16.
  • the bispecific the antibody comprises (a) a light chain variable domain (VL) comprising an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 7; or a heavy chain variable domain (VH) comprising an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%,
  • the bispecific the antibody comprises (a) a light chain variable domain (VL) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 7; or a heavy chain variable domain (VH) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 15; or a heavy chain variable domain (VH) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 16.
  • the bispecific the antibody comprises (a) a light chain variable domain (VL) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 7; and a heavy chain variable domain (VH) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 15; and a heavy chain variable domain (VH) comprising an amino acid sequence at least 70% identical to an amino acid sequence set forth as SEQ ID NO: 16.
  • the bispecific the antibody comprises (a) a light chain variable domain (VL) comprising an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 7; and a heavy chain variable domain (VH) comprising an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%,
  • the bispecific the antibody comprises (a) a light chain variable domain (VL) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 7; and a heavy chain variable domain (VH) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 8; and (b) a light chain variable domain (VL) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 15; and a heavy chain variable domain (VH) comprising an amino acid sequence 100% identical to an amino acid sequence set forth as SEQ ID NO: 16.
  • the bispecific the antibody comprises (a) a light chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; or a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 9-11; or a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 12-14.
  • CDR light chain complementarity determining region
  • the bispecific the antibody comprises (a) a light chain complementarity determining region (CDR) having an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; or a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence at least 75%,
  • the bispecific the antibody comprises (a) a light chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; or a heavy chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 9-11; or a heavy chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 12-14.
  • CDR light chain complementarity determining region
  • the the antibody comprises comprise (a) a light chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; and a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 9-11; and a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 70% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 12-14.
  • CDR light chain complementarity determining region
  • the bispecific the antibody comprises (a) a light chain complementarity determining region (CDR) having an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; and a heavy chain complementarity determining region (CDR) having an amino acid sequence at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence at least 75%,
  • the bispecific the antibody comprises (a) a light chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 1-3; and a heavy chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 4-6; and (b) a light chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 9-11; and a heavy chain complementarity determining region (CDR) having an amino acid sequence 100% identical to at least one of the amino acid sequences set forth as SEQ ID NOS: 12-14.
  • CDR light chain complementarity determining region
  • excipients for use with the compositions disclosed herein include maleic acid, tartaric acid, lactic acid, citric acid, acetic acid, sodium bicarbonate, sodium phosphate, histidine, glycine, sodium chloride, potassium chloride, calcium chloride, zinc chloride, water, dextrose, N-methylpyrrolidone, dimethyl sulfoxide, N,N-dimethylacetamide, ethanol, propylene glycol, polyethylene glycol, diethylene glycol monoethyl ether, and surfactant polyoxyethylene-sorbitan monooleate.
  • the compositions further comprise an additional therapeutic agent.
  • the therapeutic agent is a chemotherapeutic agent.
  • the chemotherapeutic agents can include, among others, cytotoxic agents, anti-metabolite agents (e.g., folate antagonists, purine analogs, pyrimidine analogs, etc.), topoisomerase inhibitors (e.g., camptothecin derivatives, anthracenedione, anthracyclines, epipodophyllotoxins, quinoline alkaloids, etc.), anti-microtubule agents (e.g., taxanes, vinca alkaloids), protein synthesis inhibitors (e.g., cephalotaxine, camptothecin derivatives, quinoline alkaloids), alkylating agents (e.g., alkyl sulfonates, ethylenimines, nitrogen mustards, nitrosoureas, platinum derivatives, triazenes, etc.), alkaloids, terpenoids, and
  • the antibody and the therapeutic agent are in the same formulation. In some embodiments, the antibody and the therapeutic agent are in different formulation. In some embodiments, antibody described herein is used prior to the administration of the other therapeutic agent. In some embodiments, antibody described herein is used concurrently with the administration of the other therapeutic agent. In some embodiments, antibody described herein is used subsequent to the administration of the other therapeutic agent.
  • compositions are made to be compatible with a particular local, regional or systemic administration or delivery route.
  • pharmaceutical formulations include carriers, diluents, or excipients suitable for administration by particular routes.
  • routes of administration for compositions herein are parenteral, e.g., intravenous, intra-arterial, intradermal, intramuscular, subcutaneous, intra-pleural, transdermal (topical), transmucosal, intra-cranial, intra-spinal, intra-ocular, rectal, oral (alimentary), mucosal administration, and any other formulation suitable for the treatment method or administration protocol.
  • Solutions or suspensions used for parenteral application include: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfate; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates; and agents for the adjustment of tonicity such as sodium chloride or dextrose.
  • pH is adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
  • compositions for injection include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
  • suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, N.J.), or phosphate buffered saline (PBS).
  • the carrier is a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), or suitable mixtures thereof.
  • Fluidity is maintained, in some embodiments, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion, and by the use of surfactants.
  • Antibacterial and antifungal agents include, for example, parabens, chlorobutanol, phenol, ascorbic acid, and thimerosal.
  • Isotonic agents for example, sugars; polyalcohols such as mannitol or sorbitol; or sodium chloride, in some embodiments, are included in the composition.
  • an agent which delays absorption for example, aluminum monostearate or gelatin prolongs absorption of injectable compositions.
  • Sterile injectable formulations are prepared by incorporating the active composition in the required amount in an appropriate solvent with one or a combination of above ingredients.
  • dispersions are prepared by incorporating the active composition into a sterile vehicle containing a basic dispersion medium and any other ingredient.
  • methods of preparation include, for example, vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously prepared solution thereof.
  • penetrants appropriate to the barrier to be permeated are used in the formulation.
  • penetrants are known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives.
  • transmucosal administration is accomplished through the use of nasal sprays, inhalation devices (e.g., aspirators) or suppositories.
  • the active compounds are formulated into ointments, salves, gels, creams or patches.
  • the pharmaceutical formulations are prepared with carriers that protect against rapid elimination from the body, such as a controlled release formulation or a time delay material such as glyceryl monostearate or glyceryl stearate.
  • the formulations in some embodiments, are also delivered using articles of manufacture such as implants and microencapsulated delivery systems to achieve local, regional or systemic delivery or controlled or sustained release.
  • R4 clone was first isolated from a semi-synthetic human antibody phage library. In brief, this was performed as follows. A human scFv antibody phage display library (1.42 ⁇ 10 9 clones) constructed by Creative Biolabs (HuScL-2 phage library) was used to screen against HLA-G signal peptide/HLA-E*0103 complex (ABI-V-0025; VMAPRTLFL(SEQ ID NO: 18)).
  • Affinity maturation of R4 Cycle 2: To increase the binding affinity of clone R4 to V-0025, the R4 scFv construct was cloned into a yeast vector to create a library of R4 mutants by changing two amino acid in the CDRH3 region.
  • the yeast display library generated used EBY100 yeast competent cells that were prepared for transformation by incubation in 100 mM lithium acetate (LiAc, Sigma) plus 10 mM Dithiothreitol (DTT, Sigma).
  • Electroporation was achieved using a GenePulser (BioRad) with 60 OD prepared yeast per 2 mm cuvette (BioRad) in 10 mM LiAc, with 1 ⁇ g of scFv clones and 100 ng of pYES3 (ThermoFisher) altered to include Aga2 after the GAL1 promoter and a Flag (DYKDDDDK) epitope tag (SEQ ID NO: 30) after the scFv.
  • 100 ⁇ L of 1/10, 1/100 and 1/1000 dilutions of transformed yeast were spread on glucose plates minus tryptophan and uracil (D-UT, Teknova).
  • Transformation efficiency was calculated after incubation at 30° C. for 2 days. Random clones were then picked for insertion diversity by PCR. Yeast were grown at 30° C. with shaking at 200 rpm in CM broth with glucose minus tryptophan and uracil (D-UT, Teknova). scFv surface induction was achieved by growing yeast for at least 20 hrs in CM broth with galactose minus tryptophan and uracil (G-UT, Teknova) supplemented with 0.1% raffinose (Sigma) (GR-UT).
  • Yeast were stained after first blocking with 2% BSA in PBS 0.05% tween (blocking buffer) for 30 minutes to 1 hour at room temperature with rotation. Yeast were than incubated with biotinylated peptide/HLA complex monomers on ice for 30 minutes to 90 minutes, depending on monomer concentration. Secondary labeling was achieved with Streptaivdin PE (ThermoFisher) and DYKDDDDK epitope tag (SEQ ID NO: 30) Alexa Fluor 488 (R&D Systems) on ice for 30 minutes. Samples were acquired using a LSR II flow cytometer (BD Biosciences) or a CytoFLEX S (Beckmen Coulter). Data was prepared using Flowjo Software version 10 or FACSDiva (BD Biosciences).
  • MACS magnetic-activated cell sorting
  • FACS fluorescence-activated cell sorting
  • yeast were first blocked with 2% BSA in PBS 0.05% tween (blocking buffer) for 30 minutes to 1 hour at room temperature with rotation. Biotinylated peptide/HLA complex monomers were than incubated on ice for 30 minutes at 1 ⁇ M. Secondary labeling was achieved using streptavidin microbeads (Miltenyi Biotec). Labeled yeast were poured over a MACS Column on a MACS Separator (Miltenyi Biotec). Yeast bound to the column were harvested and considered as an enriched population.
  • FACS screening yeast were prepared as described in the flow cytometry section. Samples were sorted using a FACS Aria II (BD Bioscience). Sorted yeast were considered an enriched population.
  • the first round of selection was performed using 1 ⁇ M of V-0025. Gating was based on binding by the parent (R4); parent exhibited 0.11% to V-0025 while the cycle 2 library exhibited 1.66%, indicating the presence of higher affinity binders ( FIG. 2A ). Round two sort used 100 nM V-0025. The cycle 2 library showed 0.23% binding while the parent showed 0%; no binding was observed to a negative control (V-0018) ( FIG. 2B ). The third round of sorting used 10 nM V-0025, with 1.05% binding observed ( FIG. 2C ).
  • R2A_1 Stabilization of clone R2A_1: In order to increase the stability of R2A_1, several alterations were made to amino acids in the framework regions of both VH and VL. For the VL, the CDRL2 was modified to match its germline (IGKV1-39). This also removed an N-linked glycosylation site. For the VH, in framework region 1, Gln5 was changed to match germline (Leu5). Also in framework region 1, Met18 was changed to match germline (Leu18). The stabilized clone was referred to as R4c1 H1-L1. The scFv sequence was inserted into yeast for display and compared with the parent (R2A_1). While there was some loss in affinity, there was no alteration in specificity (data not shown).
  • a yeast display library was generated based off of R4c1-H1-L1 and introduced four amino acid mutations in the CDRL3 region, meaning that 44% of the CDRL3 sequence could potentially be altered from the parent.
  • FIG. 5A R0
  • very view clones exhibited binding to target, although there were a select group that had greater binding to target than parent.
  • a sort was done (R1 out) using target at 10 nM with gating made to only select clones with greater binding affinity than the parent ( FIG. 6A ).
  • the R1 library was checked for binding to target, and a substantial increase was observed in the number of clones binding with improved affinity compared with parent ( FIG. 5A , R1).
  • the R1 library was subjected to Koff pressure. Briefly, the library was incubated with 10 nM of target. After washing, 1 ⁇ M of the parent clone as a full length IgG1 was added for 15 to 120 minutes to act as an antibody sink. Any yeast still showing binding to target indicate a greater Koff compared with the parent clone. As shown in FIG. 5B , yeast clones were observed that maintained binding with target even after 120 minutes in the antibody sink.
  • R2-A12 exhibited the best affinity and the broadest specificity (data not shown).
  • R2-A12 was given the designation ABX0020 and produced in CHO cells using a 1-L transient transfection protocol followed by purification by Protein-A affinity chromatography. Sample purity was determined by SDS-PAGE reduced (two bands representing heavy and light chains) and non-reduced (single band at ⁇ 150 kD) ( FIG. 8A ) and by observing a single peak by size exclusion chromatography ( FIG. 8B ).
  • ABX0020 was first tested against a broad array of peptide/HLA complexes.
  • HLA-E clone 3D12 binds to all HLA-E complexes, including peptide-empty HLA-E.
  • ABX0020 was specific for classical HLA signal peptide/HLA-E complexes ( FIG. 9B ). It also recognized the non-classical HLA, HLA-G signal peptide/HLA-E complex. It did not recognize any additional peptide/HLA-E complexes, or any peptide/HLA-A2 complexes. No cross-reactivity was observed with the mouse homologue of HLA-E (Qa1b).
  • HLA-E 01:03 and HLA-A2 02:01 monomer complexes were immobilized on neutravidin coated microarray plate at 0.25 ⁇ g/ml for one hour at RT. The plate was subsequently washed in dilution/wash buffer 5 ⁇ . Antibodies diluted to 1 ⁇ g/ml in dilution/wash buffer were incubated for one hour at RT and plate was subsequently washed in dilution/wash buffer 5 ⁇ .
  • Anti-mouse and anti-human HRP conjugate was diluted 1:5000 in dilution/wash buffer and incubated for 30 minutes at RT then subsequently washed 5 ⁇ in dilution/wash buffer.
  • TMB substrate was added to plate wells and incubated for 15 minutes at 50 ul/well.
  • 1N HCl stop solution was added at 50 ul/well before reading plate at 450 nm absorbance.
  • HLA-E 01:03 and HLA-E 01:01 monomer complexes of each were used in an ELISA as described above. No difference was observed between binding to the peptides in the two HLA-E alleles; HLA-E*0101 and *0103 ( FIG. 10A - FIG. 10B ).
  • Affinity determination for ABX0020 The binding affinity of ABX0020 was determined using label-free technology (Resonant Sensors, Inc., ResoSens instrument). The dissociation equilibrium constant (KD) was found to be 1.87 nM or an improvement of more than 200-fold over the R4 clone ( FIG. 9C ).
  • the method for determining the affinity was as follows. Thermofisher Capture SelectTM Biotin anti-IgG-Fc (Hu) (diluted PBS buffer) was immobilized on neutravidin coated Bionetic label-free microarray plate at 5 ug/ml until binding reached equilibrium. Plate subsequently was washed 3 ⁇ with 0.1% BSA, 0.1% Tween20, PBS dilution/wash buffer.
  • ABX0020 (5 ug/ml in dilution/wash buffer) was captured by anti-IgG-Fc until binding reached equilibrium. Plate was subsequently washed in dilution/wash buffer 3 ⁇ . V-0025 HLA-E 01:03 monomer complex (serial dilutions starting at 5 ug/ml in dilution/wash buffer) was added to wells and allowed to incubate for 20 minutes to determine the binding association and then immediately followed by dissociation (dilution/wash buffer) for approximately 25 minutes. Binding affinity calculated using Tracedrawer kinetic analysis software.
  • V-0034 HLA-E 01:03 monomer complex (serial dilutions starting at 2 ⁇ g/ml in 0.1% BSA, 0.1% Tween20, PBS buffer) was immobilized on neutravidin coated microarray plate for one hour at RT. Plate was subsequently washed in dilution/wash buffer 5 ⁇ . Antibodies were diluted to 1 ⁇ g/ml in dilution/wash buffer and incubated for one hour at RT and subsequently washed in dilution/wash buffer 5 ⁇ .
  • Anti-mouse and anti-human HRP conjugate was diluted 1:5000 in dilution/wash buffer and incubated for 30 minutes at RT and then subsequently washed 5 ⁇ in dilution/wash buffer. TMB substrate incubated for 15 minutes at 50 ⁇ L/well. 1N HCl stop solution added at 50 ⁇ L/well and plate is read at 450 nm.
  • ABX0020 and HLA-E were bound at 1 ⁇ g/mL and tested against a titration of the antigen V-0034.
  • FIG. 9D ABX0020 and HLA-E were bound at 1 ⁇ g/mL and tested against a titration of the antigen V-0034.
  • FIG. 9D ABX0020 and HLA-E were bound at 1 ⁇ g/mL and tested against a titration of the antigen V-0034.
  • V-0034 was bound at 0.25 ⁇ g/mL and tested against a titration of ABX0020 and HLA-E using a similar ELISA protocol as described for FIG. 9D .
  • ABX0020 was left at 37° C. for 7 to 14 days, then checked against ABX0020 stored at 4° C.
  • ABX0020 was diluted to 1 ⁇ g/ml in mouse serum incubated at 37° C. for 7 and 14 days (4° C. control was prepared in serum at time of testing) and added to wells with immobilized HLA-E 01:03 monomer complexes and run in an ELISA as described above.
  • FIG. 9F binding was not altered, indicating good stability of ABX0020.
  • K-562 cells transfected to express HLA-E were peptide-pulsed with an array of peptides, then tested for binding to HLA-E and ABX0020.
  • FIG. 9G all peptides pulsed showed loading, based on an increase in HLA-E expression compared with no peptide (unpulsed).
  • ABX0020 showed specificity for classical HLA and the non-classical HLA signal peptide HLA-G loaded on HLA-E, with no binding to the three additional peptides tested ( FIG. 9H ).
  • HLA-E is known to be increased in multiple types of cancers. Therefore, a broad range of cancer cell lines were analyzed for HLA-E expression and ABX0020 binding. Since HLA-E can be upregulated when cells are stressed or stimulated, binding was observed in both unstimulated and IFN ⁇ -stimulated cells.
  • FIG. 11C illustrates cell lines that express HLA-E and bind ABX0020 without stimulation, however, stimulation often increases binding. Interestingly, these cells were all are of leukocyte origin, including THP-1 (acute myeloid leukemia), RPMI 8226 (multiple myeloma) and JY-A2 (EBV-transformed B lymphoblastoid cell).
  • ABX0020 Cell lines that required stimulation for ABX0020 binding include COLO 205 (Colorectal adenocarcinoma), PANC-1 (pancreatic epithelial carcinoma), A549-D5 (lung carcinoma) and JVM-2 (EBV-transformed lymphoblast) ( FIG. 11D ). These results indicate that ABX0020 may be used to target multiple types of cancer.
  • the K-562, THP-1, RPMI-8226, COL0205, PANC-1, JVM-2 cells were acquired from ATCC.
  • K-562 cells expressing HLA-E (K562.E), JY-A2 and mutated JEG3 cells were acquired from (Thorbald van Hall; Leiden University Medical Center).
  • A5495-D5 were A549 cells acquired from ATCC that were altered to express HLA-E using Crisper-Cas9 technology (Applied Stem Cell, CA). In some instances, cells required stimulation overnight with IFN ⁇ (long/ml) to induce HLA-E expression.
  • NKG2A The receptor, NKG2A is generally expressed on up to 60% of NK cells in peripheral blood and the frequency of NKG2A+NK cells has been reported to be as high as 90% in the tumor microenvironment.
  • the primary objective of these studies was to determine the ability of ABX0020 and derivatives ABX0021 and ABX0022 to inhibit the HLA-E:NKG2A axis by binding to HLA-E/signal peptide complexes expressed on tumor cells to unleash NK cell mediated killing.
  • To test the ability of ABX0020 to block the HLA-E/NKG2A inhibitory axis primary human NK cells were co-cultured with various tumor target cells in the presence of ABX0020. Blood from healthy volunteers was acquired from Carter BloodCare.
  • PBMCs were isolated by density-gradient centrifugation using Ficoll-Paque PLUS (GE Healthcare) or Lymphoprep (StemCell Technologies). Natural Killer (NK) cells were purified using EasySep human NK cell enrichment kit (StemCell Technologies).
  • ABX0020 was also tested as ⁇ -glycosylated (ABX0021) and with enhanced antibody-dependent cellular cytotoxicity (ADCC) activity (ABX0022).
  • ADCC antibody-dependent cellular cytotoxicity
  • FIG. 12A after four-hour co-culture of NK cells with IFN ⁇ -stimulated and peptide-pulsed JY-A2 cells, ABX0020 and ABX0022 were able to significantly increase killing of JY-A2 ( FIG. 12A ) and upregulate NK CD107a expression ( FIG. 12B ).
  • ABX0021 exhibited increased killing when tested over a longer period of time.
  • ABX0021-mediated killing of both unstimulated FIG.
  • FIG. 12C The performance of ABX0021 compared with ABX0020 and ABX0022 was also evident when tested in NK cells co-cultured with unstimulated RPMI 8226 cells for 24 hours ( FIG. 12F ). To show a dose-dependent effect, ABX0020 and ABX0022 were titrated from 10 pg/mL to 0.1 pg/mL in NK cells co-cultured with IFN ⁇ -stimulated and peptide-pulsed JY-A2 cells ( FIG.
  • ABX0020 and ABX0021 were used alone or in combination with cetuximab (anti-EGFR) in NK cells co-cultured with COLO 205 target cells.
  • ABX0020 alone exhibited greater killing enhancement compared with ABX0021.
  • ABX0021 was able to act in combination with cetuximab to significantly improve killing over cetuximab alone ( FIG. 12I ).
  • ABX0020 can be used to promote NK cell activation and cytotoxicity by blocking the HLA-E:NKG2A axis. Furthermore, ABX0020 and derivatives can act through additional pathways, including through ADCC activity and in combination with additional antibody therapeutics.
  • Tumor infiltrating CD8+ T-cells upregulate expression of the NKG2A inhibitory receptor and T-cell suppression mediated via this pathway is reversible using antibodies to NKG2A. Furthermore, anti-tumor responses are mediated by CD8+ T-cells in mouse tumors lacking Qa-1b but not against tumor cells expressing Qa-1b. Shown herein are results that exemplify ABX0020 disrupts the HLA-E:NKG2A inhibitory pathway by binding to HLA-E/peptide complexes to unleash T cell effector functions.
  • Flu-specific CD8+ T cells were used in co-culture assays with JY-A2 target cells to measure T-cell lytic activity.
  • JY-A2 cells expressing PD-L1, HLA-E, and HLA-A2 were pulsed with the specific flu peptide, M1, with cytolytic activity measured in a Calcein-AM release assay.
  • An anti-M1/flu-specific T cell line was provided by Dr. Thorbald van Hall while a second CTL line to the same M1/HLA-A2 target was purchased from Astarte Biologics (Catlog No. 1039).
  • T cells Prior to running the cytotoxic assays, T cells were expanded over 10 days with ImmunoCult human CD3/CD28 T cell activator in ImmunoCult-XF-T cell expansion medium supplemented with human recombinant IL-2 (10 ng/mL) and IL-15 (20 ng/mL) using standard protocol provided with ImmunoCult-XF T cell Expansion Medium (Catalog 10981, StemCell Technologies). JY-A2 cells were stimulated with IFN ⁇ overnight and then pulsed for one hour with the M1-flu peptide followed by staining with Calcein-AM (1.0 ⁇ M/mL) before co-culturing with CD8+ T cells.
  • Co-cultures were incubated with and without anti-NKG2a, ABX0021, ABX0020 or isotype control antibody.
  • Specific lysis was calculated according to the formula [(test release ⁇ spontaneous release)/(maximum release ⁇ spontaneous release)] ⁇ 100.
  • Spontaneous release represents Calcein-AM release from target cells in medium alone, and maximum release is the Calcein-AM release from target cells lysed in medium 2% Triton X-100, each measured in at least three replicate wells.
  • the data shown are the frequencies of JY-A2 target cell lysis.
  • p values are calculated by using unpaired student t-test; results are in mean+/ ⁇ SD.
  • CD8+ T cells in presence of isotype control (Mab Control) or without antibody (None) displayed no significant killing due to T-cell inhibition via interaction with HLA-E/signal peptide complexes.
  • a significant increase in target cell lysis was observed in culture wells with the addition of ⁇ NKG2A, ABX0020 or ABX0021.
  • the cytolytic activity of two different CD8+ T cell lines ( FIG. 13 ) exhibited approximately a 2-fold increase in target cell lysis in presence of ⁇ NKG2A, ABX0020 and ABX0021 compared to MabCtrl and showed approximately a 4-fold increase in target cell lysis compared to the “None” control. No difference between donors was observed for target cell lysis in the presence of ABX0020, ABX0021 (a-glycosylated) or ⁇ NKG2A.
  • ABX0040 was constructed as a bispecific antibody to be able to activate CD3+ T-cells and simultaneously inhibit the HLA-E:NKG2A checkpoint pathway.
  • ABX0040 was made as an Fab-Fc-scFv construct containing ABX0020 (Fab) coupled to a single-chain (scFv) of clone SP34 (mouse anti-human CD3e) on an non-glycosylated (N297D mutation) human IgG1 scaffold ( FIG. 14A ).
  • a 20 amino acid linker (GKPGSGKPGSGKPGSGKPGS (SEQ ID NO: 46) was used to covalently join the ABX0020 Fab with the SP34 scFv.
  • ABX0040 was produced in a transiently transfected CHO cell and purified on a Protein-A affinity column. ABX0040 was run on a reducing SDS-PAGE gel and shows the expected two bands at the anticipated 1 ⁇ 4W (25 kD for the ABX0020 light chain and ⁇ 55 kD for ABX0040 without light chain). Greater than 91% of ABX0040 migrates as a single peak on an analytical SEC-HPLC column ( FIG. 14B ).
  • the binding affinity of ABX0040 was determined using a label-free assay (ResoSens instrument, Resonant Sensors, Inc). Briefly, V-0025 HLA-E 01:03 monomer complex (diluted in 0.1% BSA, 0.1% Tween20, PBS buffer) was immobilized on neutravidin coated Bionetic label-free microarray plate at 5 ⁇ g/ml until binding reached equilibration. Plate was subsequently washed in dilution/wash buffer 3 ⁇ . The ABX0040 (serial dilutions starting at 10 ⁇ g/ml in dilution/wash buffer) binding association was evaluated for approximately 20 minutes and immediately followed by dissociation (dilution/wash buffer) for approximately 15 minutes. Binding affinity calculated using Tracedrawer kinetic analysis software. The findings revealed a dissociation equilibrium constant of 1.57 nM ( FIG. 15 ).
  • ABX0040 binding to target tumor cells was first confirmed. As shown in FIG. 16 , ABX0040 binds to wild type (WT) JEG3 cells similarly to the parent clone (ABX0023). This binding is HLA-E restricted, as HLA-E knock-out JEG3 cells do not exhibit binding to ABX0040 ( FIG. 16A - FIG. 16B ). This was confirmed using THP-1 cells stimulated overnight with IFN ⁇ to upregulate HLA-E expression ( FIG. 17 ). Binding to T cells in peripheral blood mononuclear cells (PBMCs) was used to confirm the anti-CD3 arm ( FIG. 18A - FIG. 18E ).
  • PBMCs peripheral blood mononuclear cells
  • JEG3, THP-1, K-562, and RPMI 8226 cell lines were acquired from ATCC.
  • K-562 cells expressing HLA-E and HLA-E knock-out JEG3 cells were acquired from (Dr. Thorbald van Hall, Leiden University Medical Center, Netherlands). Cells were cultured per the supplier's recommendation.
  • cells were blocked with anti-human CD16 (clone KD1), anti-human CD32 (clone AT10), and anti-human CD64 (clone 10.1) (Bio-Rad) or with Human TruStain FcX (BioLegend) at room temperature for 5-10 min before surface staining with unlabeled antibody at 1 ⁇ g/mL or with AF647-labeled antibody, and with HLA-E/PE-Cy7 (clone 3D12, BioLegend) at 4° C. for 30 min in 50-100 ⁇ L.
  • anti-human CD16 clone KD1
  • anti-human CD32 clone AT10
  • CD64 clone 10.1
  • Bio-Rad Human TruStain FcX
  • HLA-E/PE-Cy7 clone 3D12, BioLegend
  • ABX0040 enhances target-specific cytotoxicity of primary CTLs: To assess the activity of ABX0040, primary human CTLs were co-cultured with either parent K562 (HLA-E negative) or K562.E (HLA-E positive) and tested with a titration of ABX0040. As shown in FIG. 19A , ABX0040 induced dose-dependent cytotoxicity in a target-specific manner; HLA-E negative cells (K562 parent) were not affected. ABX0040 also induced expression of CD107a (24 hrs) ( FIG. 19B ) and IFN ⁇ (48 hrs) ( FIG. 19C ) in CD8+ T cells cultured with target-positive tumor cells.
  • PBMCs peripheral blood cells
  • CD8+ T cells were purified using EasySep human CD8+ T cell enrichment kit (StemCell Technologies).
  • CTLs The enriched human CD8+ T cells (CTLs) were rested overnight at 1 ⁇ 10 6 /mL.
  • Target cells were labeled with CFSE (ThemoFisher) and added to the rested CTLs at a ratio of 10:1 (E:T).
  • CD3/CD28 stimulation (ImmunoCult human CD3/CD28 T cell activator, StemCell Technologies) was used as a positive control. In the last 4 hr of culture, monensin and anti-human CD107a/BV421 (BioLegend) was added to all wells. Cells were harvested after 24 to 48 hrs. Cells were stained with anti-human CD8/APC (BioLegend), anti-human CD25/PE-Cy7 (Tonbo) and Zombie/Aqua viability marker (BioLegend).
  • ABX0021 As the parent antibody (ABX0021) has been shown to act as a checkpoint blocker in the HLA-E/NKG2A axis, the checkpoint blocking activity of ABX0040 was assessed. As shown in FIG. 21A - FIG. 21B , both ABX0040 and ABX0021 enhanced the cytotoxicity of NK cell co-cultured with K562.E and RPMI 8226 cells. NK cells used for these assays were purified using EasySep human NK cell enrichment kit (StemCell Technologies). The assays were performed using human NK cells incubated at 1 ⁇ 10 6 /mL with IL-2 (R&D systems).
  • CFSE Thermo Fisher
  • E:T Antibodies were used at 10 ⁇ g/mL.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)
US16/926,306 2020-06-01 2020-07-10 Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use Active US10981996B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/926,306 US10981996B1 (en) 2020-06-01 2020-07-10 Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use
US17/199,205 US11359023B2 (en) 2020-06-01 2021-03-11 Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use
US18/000,486 US20240026007A1 (en) 2020-06-01 2021-06-01 Antibodies targeting a complex comprising non-classical hla-i and neoantigen and their methods of use
US17/663,393 US12173072B2 (en) 2020-06-01 2022-05-13 Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063032747P 2020-06-01 2020-06-01
US16/926,306 US10981996B1 (en) 2020-06-01 2020-07-10 Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/199,205 Continuation US11359023B2 (en) 2020-06-01 2021-03-11 Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use

Publications (1)

Publication Number Publication Date
US10981996B1 true US10981996B1 (en) 2021-04-20

Family

ID=75495114

Family Applications (4)

Application Number Title Priority Date Filing Date
US16/926,306 Active US10981996B1 (en) 2020-06-01 2020-07-10 Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use
US17/199,205 Active US11359023B2 (en) 2020-06-01 2021-03-11 Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use
US18/000,486 Pending US20240026007A1 (en) 2020-06-01 2021-06-01 Antibodies targeting a complex comprising non-classical hla-i and neoantigen and their methods of use
US17/663,393 Active 2040-12-04 US12173072B2 (en) 2020-06-01 2022-05-13 Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use

Family Applications After (3)

Application Number Title Priority Date Filing Date
US17/199,205 Active US11359023B2 (en) 2020-06-01 2021-03-11 Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use
US18/000,486 Pending US20240026007A1 (en) 2020-06-01 2021-06-01 Antibodies targeting a complex comprising non-classical hla-i and neoantigen and their methods of use
US17/663,393 Active 2040-12-04 US12173072B2 (en) 2020-06-01 2022-05-13 Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use

Country Status (19)

Country Link
US (4) US10981996B1 (zh)
EP (1) EP4157882A4 (zh)
JP (1) JP2023530036A (zh)
KR (1) KR20230019468A (zh)
CN (1) CN116367865A (zh)
AR (1) AR122501A1 (zh)
AU (1) AU2021284275A1 (zh)
BR (1) BR112022024275A2 (zh)
CA (1) CA3174090A1 (zh)
CL (1) CL2022003336A1 (zh)
CO (1) CO2022018426A2 (zh)
CR (1) CR20220652A (zh)
DO (1) DOP2022000268A (zh)
EC (1) ECSP22097197A (zh)
IL (1) IL298020A (zh)
MX (1) MX2022015114A (zh)
PE (1) PE20230306A1 (zh)
TW (1) TW202235439A (zh)
WO (1) WO2021247607A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210253713A1 (en) * 2018-07-23 2021-08-19 Abexxa Biologics, Inc. Antibodies targeting a complex comprising non-classical hla-i and neoantigen and their methods of use
US20220033504A1 (en) * 2020-06-01 2022-02-03 Abexxa Biologics, Inc. Antibodies targeting a complex comprising non-classical hla-i and neoantigen and their methods of use
US11359023B2 (en) * 2020-06-01 2022-06-14 Boehringer Ingelheim Pharmaceuticals, Inc. Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4504345A1 (en) * 2022-04-08 2025-02-12 Tizona Therapeutics, Inc. Combination therapy involving anti-hla-g antibodies and anti-egfr antibodies, anti-pd1 or anti-pd-l1 antibodies, and/or anti-cd47

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1790664A1 (en) 2005-11-24 2007-05-30 Ganymed Pharmaceuticals AG Monoclonal antibodies against claudin-18 for treatment of cancer
WO2012145469A1 (en) 2011-04-19 2012-10-26 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Human monoclonal antibodies specific for glypican-3 and use thereof
US10656156B2 (en) 2012-07-05 2020-05-19 Mepur Ravindranath Diagnostic and therapeutic potential of HLA-E monospecific monoclonal IgG antibodies directed against tumor cell surface and soluble HLA-E
WO2014131711A1 (en) 2013-02-26 2014-09-04 Roche Glycart Ag Bispecific t cell activating antigen binding molecules
DK3083689T3 (da) 2013-12-17 2020-08-03 Genentech Inc Anti-CD3-antistoffer og fremgangsmåder til anvendelse
CN103773775B (zh) 2014-01-26 2015-11-18 江苏省农业科学院 一种人源抗虫基因及其编码的抗Cry1B毒素独特型单链抗体与应用
WO2015196167A1 (en) 2014-06-20 2015-12-23 Bioalliance C.V. Anti-folate receptor aplha (fra) antibody-drug conjugates and methods of using thereof
SG10202006685XA (en) 2014-10-23 2020-08-28 Innate Pharma Treatment of Cancers Using Anti-NKG2A Agents
NZ733531A (en) 2015-01-08 2024-11-29 Genmab As Bispecific antibodies against cd3 and cd20
MA45491A (fr) 2016-06-27 2019-05-01 Juno Therapeutics Inc Épitopes à restriction cmh-e, molécules de liaison et procédés et utilisations associés
EP3573997A4 (en) 2017-01-24 2020-12-09 Abexxa Biologics, Inc. METHODS AND COMPOSITIONS INTENDED TO TARGE A COMPLEX INCLUDING A NON-CLASSIC HLA-I AND A NEO-ANTIGEN IN THE TREATMENT OF CANCER
WO2019165307A1 (en) 2018-02-23 2019-08-29 Abexxa Biologics, Inc. Combination cancer therapy with anti-cancer agents and antibodies targeting a complex comprising non-classical hla-i and neoantigen
WO2020023548A1 (en) 2018-07-23 2020-01-30 Abexxa Biologics, Inc. Antibodies targeting a complex comprising non-classical hla-i and neoantigen and their methods of use
US20200291128A1 (en) 2020-05-18 2020-09-17 Abexxa Biologics, Inc. Antibodies and methods of use thereof
US10981997B1 (en) * 2020-06-01 2021-04-20 Abexxa Biologics, Inc. Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use
US10981996B1 (en) * 2020-06-01 2021-04-20 Abexxa Biologics, Inc. Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use
US11976120B2 (en) * 2020-06-01 2024-05-07 Boehringer Ingelheim International Gmbh Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use

Non-Patent Citations (26)

* Cited by examiner, † Cited by third party
Title
Allan, D.S.J., et al., Tetrameric complexes of HLA-E, HLA-F, and HLA-G, J Immunol Methods, 268: 43-50, (2002).
André, P., et al., Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells, Cell, 175(7): 1731-1743, (2018).
Borrego, F., et al., Recognition of Human Histocompatibility Leukocyte Antigen (HLA)-E Complexed with HLA Class I Signal Sequence-derived Peptides by CD94/NKG2 Confers Protection from Natural Killer Cell-mediated Lysis, J Exp Med, 187(5): 813-818, (1998).
Braud, V.M., et al., HLA-E binds to natural killer cell receptors CD94/NKG2A, B, and C, Nature, 391: 795-799, (1998).
Brooks, A.G., et al., Specific Recognition of HLA-E, But Not CLassical, HLA Class I Molecules by Soluble CD94/NKG2A and NK Cells, J Immunol, 162: 305-313, (1999).
Enqvist M. et al. Selenite Induces Posttranscriptional Blockade of HLA-E Expression and Sensitizes Tumor Cells to CD94/NKG2A-Positive NK Cells, J Immunol, 187: 3546-3554, (2011).
Eugène, J., et al., The inhibitory receptor CD94/NKG2A on CD8+ tumor-infiltrating lymphocytes in colorectal cancer: a promising new druggable immune checkpoint in the context of HLAE/b2m overexpression, Mod Pathol, 33(3): 468-482, (2020, epub 2019).
Hamid, M.A., et al., Enriched HLA-E and CD94/NKG2A Interaction Limits Antitumor CD8+ Tumor-Infiltrating T Lymphocyte Responses, Cancer Immunol Res, 7(8): 1293-1306, (2019).
Hoare, H.L., et al., Subtle Changes in Peptide Conformation Profoundly Affect Recognition of the Non-Classical MHC Class I Molecule HLA-E by the CD94-NKG2 Natural Killer Cell Receptor, J Mil Biol, 377: 1297-1303 (2008).
Kaiser, B.K., et al., Structural basis for NKG2A/CD94 recognition of HLA-E, PNAS, 105(18): 6696-6701, (2008).
Kamiya, T., et al., Blocking expression of inhibitory receptor NGK2A overcomes tumor resistance to NK cells, J Clin Invest, 129(5): 2094-2106, (2019).
Llano, M., et al. HLA-E-bound peptides influence recognition by inhibitory and triggering CD94/NKG2 receptors: preferential response to an HLA-G-derived nonamer, Eur J Immunol, 28: 2854-2863, (1998).
McWilliams, E.M., et al., Therapeutic CD94/NKG2A blockade improves natural killer cell dysfunction in chronic lymphocytic leukemia, Oncoimmunology, 5(10): 9 pages, e1226720, (2016).
Michaëlsson, J., et al., A Signal Peptide Derived from hsp60 Binds HLA-E and Interferes with CD94/NKG2A Recognition, J Exp Med, 196(11): 1403-1414, (2002).
Miller, J.D., et al., Analysis of HLA-E Peptide-Binding Specificity and Contact Residues in Bound Peptide Required for Recognition by CD94/NKG2, J Immunol, 171: 1369-1375, (2003).
Mingari, M.C., et al., Immune Checkpoint Inhibitors: Anti-NKG2A Antibodies on Board, Trends Immunol, 40(2): 83-85, (2019).
Petrie, E.J., et al., CD94-NKG2A recognition of human leukocyte antigen (HLA)-E bound to an HLA class I leader sequence, JEM, 205(3): 725-735, (2008).
Ravindranath, M.H., et al. Enhancing Natural Killer and CD8+ T Cell-Mediated Anticancer Cytotoxicity and Proliferation of CD8+ T Cells with HLA-E Monospecific Monoclonal Antibodies, Monoclon Antib Immunodiagn Immunother, 38 (2):38-59, (2019).
Ravindranath, M.H., et al., The Monospecificity of Novel Anti-HLA-E Monoclonal Antibodies Enables Reliable Immunodaignosis, Immunomodulation of HLA-E, and Upregulation of CD8+ T Lymphocytes, Monoclon Antib Immunodiagn Immunother, 34(3): 135-153, (2015).
Rudikoff et al., Proc Natl Acad Sci USA 79: 1979-1983 (Year: 1982). *
Ruggeri, L., et al., Effects of anti-NKG2A antibody administration on leukemia and normal hematopoietic cells, Haematologica, 101(5): 626-633, (2016).
Valés-Gómez, M., et al., Kinetics andpeptide dependency of the binding if the inhibitory NK receptor CD94/NKG2-A and the activating receptor CD94/NKG2-C to HLA-E, EMBO J, 18(15): 4250-4260, (1999).
Van Hall, T., et al., Monalizumab: inhibiting the novel immune checkpoint NKG2A, J Innumther Cancer, 7:263, (2019).
Van Montfoort, N., et al., NKG2A blockade potentiates CD8 T-cell immunity induced by cancer vaccines, Cell, 175(7): 1744-1755, (2018).
Wu et al., J. Mol. Biol. 294: 151-162 (Year: 1999). *
Yazdi, M.T., et al., The positive prognostic effect of stromal CD8+ tumor-infiltrating T cells is restrained by the expression of HLA-E in non-small cell lung carcinoma, Oncotarget, 7(3): 3477-3488, (2016, epublished 2015).

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210253713A1 (en) * 2018-07-23 2021-08-19 Abexxa Biologics, Inc. Antibodies targeting a complex comprising non-classical hla-i and neoantigen and their methods of use
US20220033504A1 (en) * 2020-06-01 2022-02-03 Abexxa Biologics, Inc. Antibodies targeting a complex comprising non-classical hla-i and neoantigen and their methods of use
US11359023B2 (en) * 2020-06-01 2022-06-14 Boehringer Ingelheim Pharmaceuticals, Inc. Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use
US20220332831A1 (en) * 2020-06-01 2022-10-20 Boehringer Ingelheim Pharmaceuticals, Inc. Antibodies targeting a complex comprising non-classical hla-i and neoantigen and their methods of use
US11976120B2 (en) * 2020-06-01 2024-05-07 Boehringer Ingelheim International Gmbh Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use
US12173072B2 (en) * 2020-06-01 2024-12-24 Boehringer Ingelheim International Gmbh Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use

Also Published As

Publication number Publication date
CL2022003336A1 (es) 2023-06-23
CR20220652A (es) 2023-07-03
DOP2022000268A (es) 2023-01-15
ECSP22097197A (es) 2023-02-28
TW202235439A (zh) 2022-09-16
US12173072B2 (en) 2024-12-24
BR112022024275A2 (pt) 2023-05-02
CA3174090A1 (en) 2021-12-09
CN116367865A (zh) 2023-06-30
US11359023B2 (en) 2022-06-14
AR122501A1 (es) 2022-09-14
US20240026007A1 (en) 2024-01-25
EP4157882A1 (en) 2023-04-05
EP4157882A4 (en) 2024-06-26
CO2022018426A2 (es) 2022-12-30
WO2021247607A1 (en) 2021-12-09
US20210371532A1 (en) 2021-12-02
KR20230019468A (ko) 2023-02-08
JP2023530036A (ja) 2023-07-12
IL298020A (en) 2023-01-01
US20220332831A1 (en) 2022-10-20
MX2022015114A (es) 2023-03-24
AU2021284275A1 (en) 2023-01-19
PE20230306A1 (es) 2023-02-13

Similar Documents

Publication Publication Date Title
US11359023B2 (en) Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use
US11976120B2 (en) Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use
US20240002515A1 (en) Methods and antibodies for modulation of immunoresponse
US9828432B2 (en) Cancer treatment and monitoring methods using OX40 agonists
JP2021511818A (ja) Vista抗原結合性分子
JP2022513778A (ja) キメラ抗原受容体及びt細胞受容体並びに使用方法
JP2021525546A (ja) 抗cd137抗体
US10981997B1 (en) Antibodies targeting a complex comprising non-classical HLA-I and neoantigen and their methods of use
US20210253713A1 (en) Antibodies targeting a complex comprising non-classical hla-i and neoantigen and their methods of use
TW202235440A (zh) 靶向包含非典型hla-i及新生抗原之複合物的抗體及其使用方法
TWI790193B (zh) 調控免疫反應之方法及抗體
TW202448504A (zh) Btn3a活化抗體及免疫檢查點抑制劑之組合
WO2024035341A1 (en) Cd30 antigen-binding molecules

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4