US10443510B2 - Model based bump-less transfer between passive and active mode operation of three-way check valve for liquid fuel delivery in gas turbine systems - Google Patents
Model based bump-less transfer between passive and active mode operation of three-way check valve for liquid fuel delivery in gas turbine systems Download PDFInfo
- Publication number
- US10443510B2 US10443510B2 US15/210,382 US201615210382A US10443510B2 US 10443510 B2 US10443510 B2 US 10443510B2 US 201615210382 A US201615210382 A US 201615210382A US 10443510 B2 US10443510 B2 US 10443510B2
- Authority
- US
- United States
- Prior art keywords
- fuel
- check valve
- way check
- valve
- fuel flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 221
- 239000007788 liquid Substances 0.000 title claims abstract description 79
- 238000012546 transfer Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 28
- 239000012530 fluid Substances 0.000 claims abstract description 22
- 230000007704 transition Effects 0.000 claims abstract description 11
- 230000010355 oscillation Effects 0.000 claims abstract description 8
- 238000010248 power generation Methods 0.000 claims abstract description 8
- 238000010926 purge Methods 0.000 claims description 29
- 230000003190 augmentative effect Effects 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 12
- 238000011144 upstream manufacturing Methods 0.000 claims description 8
- 239000007789 gas Substances 0.000 description 36
- 238000002485 combustion reaction Methods 0.000 description 14
- 230000001276 controlling effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 238000001816 cooling Methods 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 239000000567 combustion gas Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- -1 e.g. Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/32—Control of fuel supply characterised by throttling of fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/22—Fuel supply systems
- F02C7/232—Fuel valves; Draining valves or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/263—Control of fuel supply by means of fuel metering valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/40—Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/40—Type of control system
- F05D2270/44—Type of control system active, predictive, or anticipative
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/70—Type of control algorithm
- F05D2270/71—Type of control algorithm synthesized, i.e. parameter computed by a mathematical model
Definitions
- the present invention relates generally to fuel delivery systems for gas turbine engines and more specifically to an inverse fuel model and method for implementing liquid fuel flow control in a gas turbine to achieve a nearly bump-less driven watts (dwatt) power output during fuel mode transitions between passive and active modes of operation of a three-way check valve which delivers liquid fuel to the turbine combustor.
- a gas turbine engine includes a compressor, combustor and turbine. Compressed air is delivered by the compressor to the combustor in which fuel is mixed with the air and combusted. Hot combustion gases turn the turbine that drives the compressor and generates work from the gas turbine engine.
- the combustor is formed of combustion cans typically arranged in an annular array between the compressor and turbine. Fuel to the combustor flows through pipes and valves that meter the fuel to the combustion cans. The valves are used to control fuel flow and to ensure that fuel flows equally to each of the combustion cans.
- Industrial gas turbines are often capable of alternatively running on liquid and gaseous fuels, e.g., natural gas. These gas turbines have fuel supply systems for both liquid and gas fuels. The gas turbines generally do not burn both gas and liquid fuels at the same time. Rather, when the gas turbine burns liquid fuel, the gas fuel supply is turned off. Similarly, when the gas turbine burns gaseous fuel, the liquid fuel supply is turned off. Fuel transfers occur during the operation of the gas turbine as the fuel supply is switched from liquid fuel to gaseous fuel, and vice versa.
- Gas turbines that burn both liquid and gaseous fuel require a liquid fuel purge system to clear the fuel nozzles in the combustors of liquid fuel.
- the liquid fuel supply system is generally turned off when a gas turbine operates on gaseous fuel.
- the purge system operates to flush out any remaining liquid fuel from the nozzles of the combustor and provide continuous cooling airflow to the nozzles.
- FIG. 1 is a simplified schematic diagram of an exemplary gas turbine having liquid and gas fuel systems.
- FIG. 1 shows schematically a gas turbine power generation system 100 having liquid fuel system 102 and a liquid fuel purge system 104 .
- the gas turbine is also capable of running on a gas, such as natural gas, and includes a gaseous fuel system 106 .
- Other major components of the gas turbine include a main compressor 108 , a combustor 110 , a turbine 112 and a system controller 114 .
- the power output of the gas turbine 112 is a rotating turbine shaft 116 , which may be coupled to a generator 130 that produces electric power.
- the combustor may be an annular array of combustion chambers, i.e., combustion cans 118 , each of which has a liquid fuel nozzle 120 and a gas fuel nozzle 122 .
- the combustor may alternatively be an annular chamber. Combustion is initiated within the combustion cans at points slightly downstream of the nozzles. Air from the compressor 108 flows around and through the combustion cans 118 to provide oxygen for combustion.
- water injection nozzles 124 are arranged within the combustor 110 to add excess mass flow to the hot combustion gases and to cool the combustion cans 118 .
- the air for the liquid fuel system purge may be provided from the compressor 108 , boosted by a purge air compressor (not shown) and controlled by other elements of the system (not shown).
- the liquid fuel purge system 104 blows compressed air into the combustion cans 118 through the liquid fuel nozzles 120 of the liquid fuel 102 system to purge liquid fuel and provide a flow of continuous cooling air to the liquid fuel nozzles 120 .
- FIG. 2 is a simplified diagram of a gas turbine engine with an existing liquid fuel system.
- Liquid fuel is provided to the liquid fuel system 200 from a liquid fuel source 205 .
- the liquid fuel system 200 includes a flow path to a flow divider 230 through a low pressure filter 210 , a fuel pump 215 , a bypass control valve 220 , and a stop valve 225 .
- Pressure relief valve 235 , bypass control valve 220 and stop valve 225 serve to recirculate liquid fuel to the upstream side of the low pressure filter 210 and regulate flow to flow divider 230 and fuel delivery to three-way check valve(s) 245 .
- the flow divider 230 divides liquid fuel flow into a plurality of liquid fuel flow paths leading to one or more three-way check valve(s) 245 which feed fuel to individual combustion cans 270 of the turbine.
- the turbine system controller 114 provides control signals to the fuel pump and each of the various valves to regulate and control fuel flow that is provided to the combustors in response to a fuel reference demand for a given power output.
- the controller 114 may include, among other things, an output control signal for initiating a predetermined liquid fuel prefill flow rate through the liquid fuel system, an output control signal for controlling transitions of a fuel delivery three-way valve 245 between purge air delivery and liquid fuel operation, and an output control signal for controlling a fuel bypass control valve 220 for regulating fuel flow to a fuel flow divider 230 and a turbine combustor can.
- the controller 114 may also accept input signals from various turbine system sensors and incorporate a hardware processor for implementing an algorithm to generate appropriate control signals based on sensor inputs and measured system parameters such as a Driven Megawatts power output.
- Each liquid fuel flow path downstream of the flow divider includes a combustor fuel delivery three-way check (endcover) valve 245 (three-way valve) and a distribution valve 260 before entering a combustor combustion can 270 .
- Three-way valve 245 permits flow to the combustion can nozzles from the liquid fuel flow path (described above) or air flow from a liquid fuel purge air system 280 .
- Three-way valve 245 is designed to selectably allow fuel flow to the combustor nozzles 120 from a liquid fuel supply system while preventing backflow of fuel into the liquid fuel purge air system or to allow purge air to the combustor nozzles 120 while preventing backflow of purge air into the liquid fuel system upstream of the three-way valve. By preventing purge air from entering the liquid fuel system, the air-fuel interfaces with the fuel supply are minimized.
- the three-way valve 245 When gas (gaseous) fuel is supplying the turbine, the three-way valve 245 is positioned to block liquid fuel flow and allow purge air to pass for cooling the fuel nozzles in the combustor. This purge must be shut off when liquid fuel is turned on.
- the three-way valve 245 has passive and active operational modes. During the active mode, three-way valve 245 is controlled by external forces, such as a “Pilot” (instrument) air pressure applied by the turbine system controller 114 . In passive mode, the three-way valve is controlled by the pressure of the liquid fuel. The passive mode is used to switch the three-way valve between purge air flow and purge liquid fuel flow. The active mode is applied to hold the three-way valve in a liquid fuel ON flow setting during high fuel-flow conditions. The active mode is not used to switch the three-way valve from fuel flow to purge air, or vice versa. Three-way valve 245 is biased to purge air flow, if there is insufficient fuel pressure present to operate the valve.
- the three-way valve 245 (operating in the passive mode) automatically switches to pass fuel to the combustor fuel nozzles when the fuel pressure increases.
- the increase in fuel pressure itself is the actuating force that switches the three-way valve from applying purge air to applying liquid fuel flow to the combustor.
- a three-way valve used to deliver liquid fuel to the combustor of a liquid/gas fuel turbine engine is transferred (transitioned) from a “passive mode” operation to “active mode” operation at a predetermined load point during startup and from active mode to passive mode during shutdown of turbine operation.
- a fuel spike and an oscillation is often observed in the generated driven watts power output (dwatt).
- Such fuel spikes and/or power output oscillations in addition to being undesirable in the delivered output power, are indicative of a turbine operating condition which is potentially detrimental to turbine components. Accordingly, there is a need and desire to eliminate such fuel spikes and dwatt power output oscillations that occur during the transitions between the passive and active operational modes of the three-way valve fuel delivery operation in a liquid/gas fuel turbine.
- inventions disclosed herein generally relate to a fuel delivery flow control method and, more particularly, to an “inverse” fuel flow model used for controlling the liquid fuel delivery flow to a combustor in a gas turbine power generation system so as to achieve a “bump-less” driven watts (dwatt) power output during fuel mode transfers/transitions between passive mode and active mode operation of the three-way valve(s) used for delivering fuel to turbine combustor nozzles.
- An “inverse” three-way valve fuel flow model is developed based on a valve position surrogate for the three-way valve and pressure difference in fuel across the three-way valve that occurs during transitioning of the three-way valve between operational modes.
- a fuel flow spike estimation which is developed from inverse valve model is then used to produce valve spool position control signals for controlling a liquid fuel supply system bypass valve during the mode transitions.
- the valve spool position setting of the bypass valve effectively determines how much liquid fuel is recirculated back to a fuel supply source and how much and at what rate liquid fuel is provided to the combustor fuel delivery three-way valve.
- the model-based control signals are provided to the bypass valve in a preemptive “feed-forward” manner during the three-way valve mode transfer. This “feed forward” approach to controlling the bypass valve effectively anticipates and prevents or at least significantly reduces fuel spikes and the resultant dwatt power output spike or oscillation that occurs as a result of an operating mode transfer.
- an inverse valve model equation is used as an operation model for a spring-loaded three-way valve that delivers fuel to the turbine combustor.
- a fuel flow/dwatt power output spike estimation is made based on the inverse valve model and used to provide a feed-forward fuel flow control signal, which is utilized to control the operation of a fuel flow bypass valve in the gas turbine fuel flow supply system.
- a valve modeling equation is first determined (using conventional valve modeling technique) which estimates the operation of at least one of the three-way valves in the fuel lines providing liquid fuel to the combustor cans of the gas turbine engine.
- an estimate of a possible spike in fuel flow, and consequentially in dwatt output, that can occur during transfer of the three-way valve between operational modes is obtained.
- an “inverse” three-way valve model is developed as an inverse of the valve modeling equation for the three-way valve. Based upon a measurement of the differential pressure across the three-way valve, this inverse valve model then functions as a position surrogate to provide an estimate of the three-way valve (spool) position to at least a certain predetermined degree of accuracy.
- a fuel spike estimate produced by the inverse valve model is then used as a feed-forward bias to manage a fuel flow control loop set point for operating bypass valve 220 .
- a tuning algorithm for the three-way valve inverse model may also be initially run to calibrate the valve model at the time of startup (or commissioning) of the turbine using appropriate design data available from the valve manufacturer/vendor for the particular three-way valve(s) used in the turbine.
- the embodiments described herein provide an example of use in a gas turbine power generation system, it is also contemplated that the method and principles described herein are applicable to use in any system dependent upon a fluid flow process (e.g., power plant or any other chemical industry process) where there may occur a sudden change in fluid flow resistance (e.g., due to a sudden opening or closing of either controlled or uncontrolled components like valves or other variable area devices) which cause undesired oscillations/variations in the process parameters like flow, pressure, temperature, concentration of species etc.
- a feed forward controller mechanism may be used to reduce or avoid the undesired oscillations/variations.
- FIG. 1 is a simplified schematic diagram of an exemplary gas turbine having liquid and gas fuel systems
- FIG. 2 is a simplified diagram of a gas turbine engine with an existing liquid fuel system
- FIG. 3 is a signal flow functional diagram of input and output data signals of the inverse three-way valve model and fuel bypass valve controller implemented by the turbine system controller to provide feed-forward control of the bypass valve position;
- FIG. 4 is a process flow chart for implementing the inverse three-way valve model and generating the feed-forward signal for controlling the fuel bypass valve position
- FIG. 5 is a diagram of liquid fuel and purge air pressures at the fuel delivery three-way valve.
- the turbine system controller 114 may include a computer processor or comparable circuitry (not explicitly depicted) for executing software and/or other programmed instructions for performing calculations and implementing an inverse three-way valve model.
- the controller 114 also including appropriate conventional hardware/software for performing and operating as a bypass valve controller for providing feed-forward control signals to create a set-point and control the operating position (valve spool position) of the fuel bypass valve 220 .
- FIG. 3 illustrates example signal flow paths 300 of input and output data signals for the inverse three-way valve model 301 and fuel bypass valve controller 303 implemented by the turbine system controller 114 to provide a feed-forward control of the bypass valve.
- the three-way valve model 301 is implemented as software configured to be executed by a computer processor (not shown in FIG. 1 ) of the turbine controller 114 which accepts input data or signals indicative of specifically monitored turbine system operating parameters and conditions including the existing purge air pressure and the liquid fuel pressure measured both upstream and downstream of fuel delivery three-way valve 245 .
- Such input signals may be obtained, for example, from sensors located at or within appropriate components and positions within turbine system 100 .
- the three-way valve model 301 (described in greater detail below with reference to FIG. 4 ) provides a fuel flow spike estimation output and may also be used to provide valve position analytic data specific to a three-way valve 245 .
- the fuel spike estimation is used to augment a fuel flow rate feedback signal/data 302 obtained from three-way valve 245 to produce augmented flow feedback signal/data.
- This augmented flow feedback signal/data is provided to a Bypass Valve Controller 303 , which may be a part of turbine control system 114 .
- the Bypass Valve Controller 303 then generates the feed-forward control signal for modulating the valve operating position of fuel bypass valve 220 based on a fuel flow reference data/signal and the augmented flow feedback signal/data to produce signals for controlling the position of bypass valve 220 in the turbine liquid fuel supply system.
- FIG. 4 illustrates an example process flow chart 400 for implementing the inverse three-way valve model 301 and generating the feed-forward signal for controlling and modulating the fuel bypass valve 220 operating position.
- an estimate of the valve stroke, ST, of at least one of the turbine combustor fuel delivery three-way valves 245 is determined as a function of a measured pressure differential between a purge air pressure for the valve and a liquid fuel pressure that initiates a mode transfer process (i.e., a transition from passive mode operation of the valve to active mode operation or vice versa).
- An estimate of the fluid flow resistance, CV, across three-way valve 245 is then determined, at block 403 , as a function of the valve stroke estimate.
- an estimate of the fluid fuel flow, W E , through three-way valve 245 is determined as a function of the estimated fluid flow resistance and a measured pressure difference existing between upstream and downstream sides of the three-way valve.
- a fuel flow spike estimate, W s of the fuel flow spike that is likely to occur as a result of the transfer of the valve between modes is determined as being a function of the difference in the determined estimate of fluid flow and a known or predetermined measured steady state flow value for the three-way valve.
- inverse three-way valve model 301 provides an inverse of that estimated fuel flow spike as an output.
- valve controller 303 such as is configured to calculate an error value between a desired set point for the valve and a measured process variable. This measured process variable is provided as feedback signal input to the controller and the controller attempts to minimize the error over time by adjustment of a control variable for the process according to a predetermined mathematical control law.
- Bypass Valve Controller 303 is provided with a fuel flow feedback signal from three-way check valve 245 that is augmented by the inverse fuel flow spike estimation and which is then used by the controller to adjust the position of the bypass valve 220 according to a predetermined conventional control law.
- an augmented fuel flow rate feedback is produced as a function of both the fuel spike estimation and the current fuel flow rate feedback data/signal obtained at three-way valve 245 .
- a predetermined control law is used by Bypass Valve Controller 303 to calculate a position command in response to the augmented fuel flow rate feedback data and a current fuel flow rate reference signal. This position command is sent to the fuel supply system bypass valve 220 and sets or modulates the current operating position (spool position) of the bypass valve to affect the fuel rate/amount provided to three-way valve 245 .
- bypass valve 220 position command produced by Bypass Valve Controller 303 is developed based upon an inverse of a three-way valve operational model for three-way valve 245 , it can effectively counteract or at least mitigate a fuel flow spike and the disturbances that are likely to occur in the dwatt power output (or other relevant monitored system parameters) during the three-way valve's transference between operational modes.
- a valve model tuning algorithm 412 may be used initially or whenever needed to calibrate three-way valve inverse model 301 (e.g., at time of startup or commissioning of the turbine).
- the tuning algorithm 412 is configured to periodically check the steady state error between the calculated fuel flow estimate and the measured fuel flow through three-way valve 245 . No tuning of the model is required or performed if the steady state error is found to be within a predetermined threshold (that threshold being based, for example, on specifications and operational parameter data obtainable from a valve manufacturer/vendor of the particular three-way valve(s) used in the turbine). If the error is above the threshold, then slight tuning (e.g., incremental changes) of various model parameter values, such as the estimated valve stroke and/or the estimated flow resistance and/or the estimated fluid flow through the valve, is performed by tuning algorithm 412 .
- FIG. 5 illustrates example liquid fluid and purge air pressures measured at the three-way valve which are indicated in the FIG. 4 process flow for implementing the inverse three-way valve model 301 .
- P 1 represents the pressure of the liquid fuel from flow divider 230 at three-way valve 245
- P 2 represents the pressure of the liquid fuel just down-stream of three-way valve 245
- P A represents the pressure of purge air at three-way valve 245 .
- the three-way valve stroke, ST may be calculated, for example, in accordance with Equation 1 below:
- P max and P Lift are conventional operational pressure parameters for the three-way valve which are typically specified by the valve manufacturer.
- CV is typically specified as a function of valve stroke ST by the manufacturer of the three-way valve.
- W measured is fluid flow measured just upstream of the three-way valve (for example, after flow divider 230 in the system of FIG. 2 ).
- W S is the calculated estimated spike
- KP and KI are user settable Proportional and Integral gain control values for the bypass valve controller.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Feedback Control In General (AREA)
- Multiple-Way Valves (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/210,382 US10443510B2 (en) | 2016-07-14 | 2016-07-14 | Model based bump-less transfer between passive and active mode operation of three-way check valve for liquid fuel delivery in gas turbine systems |
EP17180135.0A EP3269963B1 (fr) | 2016-07-14 | 2017-07-06 | Transfert sans à-coups basé sur un modèle entre un fonctionnement en mode passif et actif d'un clapet de retenue à trois voies pour alimentation en carburant liquide dans un système de turbine à gaz |
JP2017133179A JP6991005B2 (ja) | 2016-07-14 | 2017-07-07 | ガスタービンシステムの液体燃料送達用の三方チェック弁の受動及び能動モード動作間のモデルベースのバンプレス移動 |
CN201710578756.8A CN107620639B (zh) | 2016-07-14 | 2017-07-14 | 用于控制通向三通止回阀的液体燃料流的方法及涡轮发电控制系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/210,382 US10443510B2 (en) | 2016-07-14 | 2016-07-14 | Model based bump-less transfer between passive and active mode operation of three-way check valve for liquid fuel delivery in gas turbine systems |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180016991A1 US20180016991A1 (en) | 2018-01-18 |
US10443510B2 true US10443510B2 (en) | 2019-10-15 |
Family
ID=59298325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/210,382 Active 2037-12-09 US10443510B2 (en) | 2016-07-14 | 2016-07-14 | Model based bump-less transfer between passive and active mode operation of three-way check valve for liquid fuel delivery in gas turbine systems |
Country Status (4)
Country | Link |
---|---|
US (1) | US10443510B2 (fr) |
EP (1) | EP3269963B1 (fr) |
JP (1) | JP6991005B2 (fr) |
CN (1) | CN107620639B (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11156163B2 (en) | 2019-10-04 | 2021-10-26 | Hamilton Sundstrand Corporation | Fluid injection systems having fluid line purging |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5252860A (en) * | 1989-12-11 | 1993-10-12 | Westinghouse Electric Corp. | Gas turbine control system having maximum instantaneous load-pickup limiter |
US6145294A (en) * | 1998-04-09 | 2000-11-14 | General Electric Co. | Liquid fuel and water injection purge system for a gas turbine |
US6438963B1 (en) * | 2000-08-31 | 2002-08-27 | General Electric Company | Liquid fuel and water injection purge systems and method for a gas turbine having a three-way purge valve |
US20040236492A1 (en) | 2003-03-12 | 2004-11-25 | Honda Motor Co., Ltd. | Controller for controlling a plant |
US6932052B1 (en) | 2004-09-24 | 2005-08-23 | Woodward Governor Company | Air/fuel ratio control system for gaseous fueled engines |
US7077103B2 (en) | 2002-07-30 | 2006-07-18 | Siemens Aktiengesellschaft | Method for regulating the filling of an internal combustion engine |
US20060213200A1 (en) * | 2005-03-25 | 2006-09-28 | Honeywell International, Inc. | System and method for turbine engine adaptive control for mitigation of instabilities |
EP1916482A2 (fr) | 2006-10-26 | 2008-04-30 | General Electric Company | Procédé de détection d'injection de carburant incontrôlée dans une chambre de combustion de turbine à gaz |
US20080147289A1 (en) * | 2006-12-19 | 2008-06-19 | Majid Feiz | Methods and apparatus to facilitate gas turbine fuel control |
US20080154474A1 (en) | 2006-12-26 | 2008-06-26 | General Electric | Non-linear fuel transfers for gas turbines |
US7481039B2 (en) | 2004-03-05 | 2009-01-27 | Ford Global Technologies, Llc | Engine system and method for efficient emission control device purging |
US20090025396A1 (en) * | 2007-07-24 | 2009-01-29 | General Electric Company | Parallel turbine fuel control valves |
US7509932B2 (en) | 2005-10-20 | 2009-03-31 | Hitachi, Ltd. | Control apparatus for controlling internal combustion engines |
US7730711B2 (en) | 2005-11-07 | 2010-06-08 | General Electric Company | Methods and apparatus for a combustion turbine nitrogen purge system |
US7949458B2 (en) | 2008-01-08 | 2011-05-24 | Honda Motor Co., Ltd. | Control apparatus and method and control unit |
US8104258B1 (en) * | 2007-05-24 | 2012-01-31 | Jansen's Aircraft Systems Controls, Inc. | Fuel control system with metering purge valve for dual fuel turbine |
US20120137699A1 (en) * | 2010-10-18 | 2012-06-07 | Ge Energy Products France Snc | Method and device for purging a gas turbine liquid fuel injection system |
US20130110298A1 (en) * | 2011-10-31 | 2013-05-02 | Emerson Process Management Power & Water Solutions , Inc. | Model-based load demand control |
US20140200721A1 (en) * | 2010-05-24 | 2014-07-17 | Hany Rizkalla | Stabilizing A Gas Turbine Engine Via Incremental Tuning During Transients |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100307157A1 (en) * | 2009-06-08 | 2010-12-09 | General Electric Company | Methods relating to turbine engine control and operation |
US8845770B2 (en) * | 2011-08-25 | 2014-09-30 | General Electric Company | System and method for switching fuel feeds during gasifier start-up |
US9243804B2 (en) * | 2011-10-24 | 2016-01-26 | General Electric Company | System for turbine combustor fuel mixing |
-
2016
- 2016-07-14 US US15/210,382 patent/US10443510B2/en active Active
-
2017
- 2017-07-06 EP EP17180135.0A patent/EP3269963B1/fr active Active
- 2017-07-07 JP JP2017133179A patent/JP6991005B2/ja active Active
- 2017-07-14 CN CN201710578756.8A patent/CN107620639B/zh active Active
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5252860A (en) * | 1989-12-11 | 1993-10-12 | Westinghouse Electric Corp. | Gas turbine control system having maximum instantaneous load-pickup limiter |
US6145294A (en) * | 1998-04-09 | 2000-11-14 | General Electric Co. | Liquid fuel and water injection purge system for a gas turbine |
US6438963B1 (en) * | 2000-08-31 | 2002-08-27 | General Electric Company | Liquid fuel and water injection purge systems and method for a gas turbine having a three-way purge valve |
US7077103B2 (en) | 2002-07-30 | 2006-07-18 | Siemens Aktiengesellschaft | Method for regulating the filling of an internal combustion engine |
US20040236492A1 (en) | 2003-03-12 | 2004-11-25 | Honda Motor Co., Ltd. | Controller for controlling a plant |
US7481039B2 (en) | 2004-03-05 | 2009-01-27 | Ford Global Technologies, Llc | Engine system and method for efficient emission control device purging |
US6932052B1 (en) | 2004-09-24 | 2005-08-23 | Woodward Governor Company | Air/fuel ratio control system for gaseous fueled engines |
US20060213200A1 (en) * | 2005-03-25 | 2006-09-28 | Honeywell International, Inc. | System and method for turbine engine adaptive control for mitigation of instabilities |
US7509932B2 (en) | 2005-10-20 | 2009-03-31 | Hitachi, Ltd. | Control apparatus for controlling internal combustion engines |
US7730711B2 (en) | 2005-11-07 | 2010-06-08 | General Electric Company | Methods and apparatus for a combustion turbine nitrogen purge system |
US20080098746A1 (en) * | 2006-10-26 | 2008-05-01 | General Electric | Method for detecting onset of uncontrolled fuel in a gas turbine combustor |
EP1916482A2 (fr) | 2006-10-26 | 2008-04-30 | General Electric Company | Procédé de détection d'injection de carburant incontrôlée dans une chambre de combustion de turbine à gaz |
US7950238B2 (en) | 2006-10-26 | 2011-05-31 | General Electric Company | Method for detecting onset of uncontrolled fuel in a gas turbine combustor |
US20080147289A1 (en) * | 2006-12-19 | 2008-06-19 | Majid Feiz | Methods and apparatus to facilitate gas turbine fuel control |
US20080154474A1 (en) | 2006-12-26 | 2008-06-26 | General Electric | Non-linear fuel transfers for gas turbines |
US8104258B1 (en) * | 2007-05-24 | 2012-01-31 | Jansen's Aircraft Systems Controls, Inc. | Fuel control system with metering purge valve for dual fuel turbine |
US20090025396A1 (en) * | 2007-07-24 | 2009-01-29 | General Electric Company | Parallel turbine fuel control valves |
US7949458B2 (en) | 2008-01-08 | 2011-05-24 | Honda Motor Co., Ltd. | Control apparatus and method and control unit |
US20140200721A1 (en) * | 2010-05-24 | 2014-07-17 | Hany Rizkalla | Stabilizing A Gas Turbine Engine Via Incremental Tuning During Transients |
US20120137699A1 (en) * | 2010-10-18 | 2012-06-07 | Ge Energy Products France Snc | Method and device for purging a gas turbine liquid fuel injection system |
US20130110298A1 (en) * | 2011-10-31 | 2013-05-02 | Emerson Process Management Power & Water Solutions , Inc. | Model-based load demand control |
Non-Patent Citations (3)
Title |
---|
Extended European Search Report and Opinion issued in connection with corresponding EP Application No. 17180135.0 dated Dec. 7, 2017. |
Johnson Controls, Inc., Valve and Actuator Manual 977, Engineering Data Book, Issue Date Feb. 1994. * |
Salsbury Ph.D., T.I., et al., Fault Detection in HVAC Systems Using Model-based Feedforward Control; Johnson Controls Inc., 1998. * |
Also Published As
Publication number | Publication date |
---|---|
CN107620639A (zh) | 2018-01-23 |
US20180016991A1 (en) | 2018-01-18 |
JP6991005B2 (ja) | 2022-01-12 |
JP2018009574A (ja) | 2018-01-18 |
EP3269963B1 (fr) | 2019-06-12 |
EP3269963A1 (fr) | 2018-01-17 |
CN107620639B (zh) | 2021-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6912856B2 (en) | Method and system for controlling gas turbine by adjusting target exhaust temperature | |
US8056317B2 (en) | Apparatus and system for gas turbine engine control | |
US7549292B2 (en) | Method of controlling bypass air split to gas turbine combustor | |
US8015791B2 (en) | Fuel control system for gas turbine and feed forward control method | |
US10267185B2 (en) | System and method for controlling coolant supply to an exhaust gas | |
JP5627792B2 (ja) | パルス状の燃料分割を有する燃焼装置 | |
CN1619122A (zh) | 用于控制燃气轮机燃烧室的燃料分离的方法 | |
EP3191699B1 (fr) | Régulateur de température de flamme en vrac pour moteurs à faibles émissions sèches | |
US20120036861A1 (en) | Method for compensating for combustion efficiency in fuel control system | |
US20080147289A1 (en) | Methods and apparatus to facilitate gas turbine fuel control | |
CN106968803B (zh) | 在燃气轮机调节中对功率输出-排放参数的组合概率控制 | |
US11920523B2 (en) | Combustion control device for gas turbine, combustion control method, and program | |
US20170254282A1 (en) | Control device, system, control method, power control device, gas turbine, and power control method | |
JP2012207564A (ja) | ガスタービンの制御装置 | |
CN106884725B (zh) | 在燃气涡轮调节中对功率输出-排放参数的概率控制 | |
JP5501870B2 (ja) | ガスタービン | |
US10443510B2 (en) | Model based bump-less transfer between passive and active mode operation of three-way check valve for liquid fuel delivery in gas turbine systems | |
US20170122222A1 (en) | System and Method for Determining Fuel Splits for a Gas Turbine | |
JP2013083226A (ja) | 排熱ボイラシステムの制御方法および制御装置 | |
JP2004027891A (ja) | 燃料弁開度制御システム | |
JP2011247159A (ja) | デュアル燃料ガスタービンプラントの燃料切替制御及びガスタービンプラント | |
US12031490B2 (en) | System and method for non-model based control utilizing turbine exit mach number surrogate | |
JPH10212906A (ja) | 蒸気タービンの流量制御弁制御方式 | |
JP2020085396A (ja) | 燃料調整装置、燃料調整方法 | |
JPH0579819B2 (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GENERAL ELECTRIC COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:POBBATI, OMPRAKASH;UNNIKRISHNAN, SUNIL;VAVILALA, PRADEEP KUMAR;REEL/FRAME:039160/0461 Effective date: 20160712 |
|
AS | Assignment |
Owner name: GENERAL ELECTRIC COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:POBBATI, OMPRAKASH;UNNIKRISHNAN, SUNIL;VAVILALA, PRADEEP KUMAR;REEL/FRAME:039266/0246 Effective date: 20160712 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
AS | Assignment |
Owner name: GENERAL ELECTRIC COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DEN OUTER, JAMES FREDERICK;REEL/FRAME:050147/0979 Effective date: 20160824 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: GE INFRASTRUCTURE TECHNOLOGY LLC, SOUTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:065727/0001 Effective date: 20231110 |