US10323030B2 - Pesticidally active heterocyclic derivatives with sulphur containing substituents - Google Patents

Pesticidally active heterocyclic derivatives with sulphur containing substituents Download PDF

Info

Publication number
US10323030B2
US10323030B2 US15/536,820 US201515536820A US10323030B2 US 10323030 B2 US10323030 B2 US 10323030B2 US 201515536820 A US201515536820 A US 201515536820A US 10323030 B2 US10323030 B2 US 10323030B2
Authority
US
United States
Prior art keywords
spp
formula
compounds
alkyl
cycloalkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/536,820
Other languages
English (en)
Other versions
US20170342065A1 (en
Inventor
Ottmar Franz Hueter
Andrew Edmunds
Andre Jeanguenat
Pierre Joseph Marcel Jung
Anke Buchholz
Michel Muehlebach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Syngenta Participations AG
Original Assignee
Syngenta Participations AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syngenta Participations AG filed Critical Syngenta Participations AG
Publication of US20170342065A1 publication Critical patent/US20170342065A1/en
Assigned to SYNGENTA PARTICIPATIONS AG reassignment SYNGENTA PARTICIPATIONS AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BUCHHOLZ, ANKE, EDMUNDS, ANDREW, HUETER, OTTMAR FRANZ, Jeanguenat, André , JUNG, PIERRE JOSEPH MARCEL, MEUHLEBACH, MICHEL
Application granted granted Critical
Publication of US10323030B2 publication Critical patent/US10323030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/501,3-Diazoles; Hydrogenated 1,3-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system

Definitions

  • the present invention relates to pesticidally active, in particular insecticidally active heterocyclic derivatives containing sulphur substituents, to intermediates for the preparation of those compounds, to compositions comprising those compounds, and to their use for controlling animal pests (including arthropods and in particular insects or representatives of the order Acarina).
  • Heterocyclic compounds with pesticidal action are known and described, for example, in WO 2012/086848 and WO 2013/018928.
  • the present invention accordingly relates to compounds of formula I,
  • A represents CH or N; Q is attached to the 3- or 4-position; and is C 3 -C 6 cycloalkyl, or C 3 -C 6 cycloalkyl mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 3 -C 6 cycloalkyl, —C(O)OH, —C(O)NH 2 , phenyl and phenyl which can be mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 1 -C 4 haloalkoxy, C 1 -C 4 alkoxy, C 1 -C 4 haloalkylsulfanyl, C 1 -C 4 halo-alkylsulfinyl, C 1 -
  • Compounds of formula I which have at least one basic centre can form, for example, acid addition salts, for example with strong inorganic acids such as mineral acids, for example perchloric acid, sulfuric acid, nitric acid, nitrous acid, a phosphorus acid or a hydrohalic acid, with strong organic carboxylic acids, such as C 1 -C 4 alkanecarboxylic acids which are unsubstituted or substituted, for example by halogen, for example acetic acid, such as saturated or unsaturated dicarboxylic acids, for example oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid or phthalic acid, such as hydroxycarboxylic acids, for example ascorbic acid, lactic acid, malic acid, tartaric acid or citric acid, or such as benzoic acid, or with organic sulfonic acids, such as C 1 -C 4 alkane- or arylsulfonic acids which are unsubstituted or substituted
  • Compounds of formula I which have at least one acidic group can form, for example, salts with bases, for example mineral salts such as alkali metal or alkaline earth metal salts, for example sodium, potassium or magnesium salts, or salts with ammonia or an organic amine, such as morpholine, piperidine, pyrrolidine, a mono-, di- or tri-lower-alkylamine, for example ethyl-, diethyl-, triethyl- or dimethylpropylamine, or a mono-, di- or trihydroxy-lower-alkylamine, for example mono-, di- or triethanolamine.
  • bases for example mineral salts such as alkali metal or alkaline earth metal salts, for example sodium, potassium or magnesium salts
  • salts with ammonia or an organic amine such as morpholine, piperidine, pyrrolidine, a mono-, di- or tri-lower-alkylamine, for example ethyl-, diethy
  • alkyl groups occurring in the definitions of the substituents can be straight-chain or branched and are, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, pentyl, hexyl, nonyl, decyl and their branched isomers.
  • Alkylsulfanyl, alkylsulfinyl, alkylsulfonyl, alkoxy, alkenyl and alkynyl radicals are derived from the alkyl radicals mentioned.
  • the alkenyl and alkynyl groups can be mono- or polyunsaturated.
  • Halogen is generally fluorine, chlorine, bromine or iodine. This also applies, correspondingly, to halogen in combination with other meanings, such as haloalkyl or halophenyl.
  • Haloalkyl groups preferably have a chain length of from 1 to 6 carbon atoms.
  • Haloalkyl is, for example, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 2-fluoroethyl, 2-chloroethyl, pentafluoroethyl, 1,1-difluoro-2,2,2-trichloroethyl, 2,2,3,3-tetrafluoroethyl and 2,2,2-trichloroethyl.
  • haloalkyl groups are preferably trichloromethyl, difluorochloromethyl, difluoromethyl, trifluoromethyl and dichlorofluoromethyl.
  • Alkoxy groups preferably have a preferred chain length of from 1 to 6 carbon atoms.
  • Alkoxy is, for example, methoxy, ethoxy, propoxy, i-propoxy, n-butoxy, isobutoxy, sec-butoxy and tert-butoxy and also the isomeric pentyloxy and hexyloxy radicals.
  • alkoxy groups are preferably methoxy and ethoxy.
  • Alkoxyalkyl groups preferably have a chain length of 1 to 6 carbon atoms.
  • Alkoxyalkyl is, for example, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, n-propoxymethyl, n-propoxyethyl, isopropoxymethyl or isopropoxyethyl.
  • Alkoxycarbonyl is for example methoxycarbonyl (which is C 1 alkoxycarbonyl), ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, tert-butoxycarbonyl, n-pentoxycarbonyl or hexoxycarbonyl.
  • Alkylsulfanyl is for example methylsulfanyl, ethylsulfanyl, propylsulfanyl, isopropylsulfanyl, butylsulfanyl, pentylsulfanyl, and hexylsulfanyl.
  • Alkylsulfinyl is for example methylsulfinyl, ethylsulfinyl, propylsulfinyl, isopropylsulfinyl, a butylsulfinyl, pentylsulfinyl, and hexylsulfinyl.
  • Alkylsulfonyl is for example methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, pentylsulfonyl, and hexylsulfonyl.
  • the cycloalkyl groups preferably have from 3 to 6 ring carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • Haloalkoxy groups preferably have a chain length of from 1 to 4 carbon atoms.
  • Haloalkoxy is, for example, difluoromethoxy, trifluoromethoxy or 2,2,2-trifluoroethoxy.
  • Haloalkylsulfanyl groups preferably have a chain length of from 1 to 4 carbon atoms.
  • Haloalkylsulfanyl is, for example, difluoromethylsulfanyl, trifluoromethylsulfanyl or 2,2,2-trifluoroethylsulfanyl. Similar considerations apply to the radicals C 1 -C 4 haloalkylsulfinyl and C 1 -C 4 haloalkylsulfonyl, which may be, for example, trifluoromethylsulfinyl, trifluoromethylsulfonyl or 2,2,2-trifluoroethylsulfonyl.
  • “mono- to polysubstituted” in the definition of the substituents means typically, depending on the chemical structure of the substituents, monosubstituted to seven-times substituted, preferably monosubstituted to five-times substituted, more preferably mono-, double- or triple-substituted.
  • Free radicals represent methyl groups.
  • the compounds of formula I according to the invention also include hydrates which may be formed during the salt formation.
  • Q is always in the 4-position and is C 3 -C 6 cycloalkyl, or C 3 -C 6 cycloalkyl mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 3 -C 6 cycloalkyl, phenyl and phenyl which can be mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 1 -C 4 haloalkoxy, C 1 -C 4 alkoxy, C 1 -C 4 haloalkylsulfanyl, C 1 -C 4 halo-alkylsulfinyl, C 1 -C 4 haloalkylsulfonyl and —C(O)C 1
  • a preferred group of compounds of formula I is represented by the compounds of formula I-1
  • R 2 and Q are as defined under formula I above; and wherein Xa 1 is S, SO or SO 2 ; Ra 1 is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl; and agrochemically acceptable salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds.
  • Q is preferably C 3 -C 6 cycloalkyl or C 3 -C 6 cycloalkyl monosubstituted by substituents selected from the group consisting of cyano, —C(O)OH and —C(O)NH 2 , in particular Q is C 3 -C 6 cycloalkyl or 1-cyanocycloalkyl; R 2 is preferably C 1 -C 4 haloalkyl; Xa 1 is preferably S or SO 2 and Ra 1 is preferably ethyl.
  • Q is preferably C 3 -C 6 cycloalkyl or C 3 -C 6 cycloalkyl monosubstituted by cyano, —C(O)OH or —C(O)NH 2 , in particular Q is C 3 -C 6 cycloalkyl;
  • R 2 is preferably C 1 -C 4 haloalkylsulfanyl, C 1 -C 4 haloalkylsulfinyl or C 1 -C 4 haloalkylsulfonyl;
  • Xa 1 is preferably S or SO 2 and Ra 1 is preferably ethyl.
  • a further preferred group of compounds of formula I is represented by the compounds of formula I-2
  • R 2 and Q are as defined under formula I above; Xa 2 is S, SO or SO 2 ; and Ra 2 is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl; and agrochemically acceptable salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds.
  • Q is preferably C 3 -C 6 cycloalkyl or 1-cyanocycloalkyl; R 2 is preferably C 1 -C 4 haloalkyl, Xa 2 is preferably S or SO 2 and Ra 2 is preferably ethyl.
  • Q is preferably C 3 -C 6 cycloalkyl;
  • R 2 is preferably C 1 -C 4 haloalkylsulfanyl, C 1 -C 4 haloalkylsulfinyl or C 1 -C 4 haloalkylsulfonyl,
  • Xa 1 is preferably S or SO 2 and Ra 1 is preferably ethyl.
  • a further preferred group of compounds of formula I is represented by the compounds of formula I-10
  • R 2 and Q are as defined under formula I in claim 1 ;
  • Xa 10 is S, SO or SO 2 ; and
  • Ra 10 is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl.
  • Preferred compounds of formula I-10 are those, wherein
  • Q is C 3 -C 6 cycloalkyl, or C 3 -C 6 cycloalkyl mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 3 -C 6 cycloalkyl, —C(O)OH, —C(O)NH 2 and phenyl, or is phenyl which can be mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 1 -C 4 haloalkoxy, C 1 -C 4 alkoxy, C 1 -C 4 haloalkylsulfanyl, C 1 -C 4 halo-alkylsulfinyl, C 1 -C 4 haloalkylsulfonyl and
  • Q is C 3 -C 6 cycloalkyl, or C 3 -C 6 cycloalkyl monosubstituted by substituents selected from the group consisting of cyano, —C(O)OH and —C(O)NH 2 .
  • a further preferred group of compounds of formula I is represented by the compounds of formula I-20
  • R 2 and Q are as defined under formula I in claim 1 ;
  • Xa 20 is S, SO or SO 2 ; and
  • Ra 20 is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl.
  • Preferred compounds of formula I-20 are those, wherein
  • Q is C 3 -C 6 cycloalkyl, or C 3 -C 6 cycloalkyl mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 3 -C 6 cycloalkyl and phenyl, or is phenyl which can be mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 1 -C 4 haloalkoxy, C 1 -C 4 alkoxy, C 1 -C 4 haloalkylsulfanyl, C 1 -C 4 halo-alkylsulfinyl, C 1 -C 4 haloalkylsulfonyl and —C(O)C 1 -C 4 haloalky
  • Q a is preferably C 3 -C 6 cycloalkyl, or C 3 -C 6 cycloalkyl monosubstituted by substituents selected from the group consisting of cyano, —C(O)OH and —C(O)NH 2 ; in particular Q a is preferably C 3 -C 6 cycloalkyl.
  • A is CH or N;
  • X 4 is N—(C 1 -C 4 alkyl);
  • R 6 is C 1 -C 4 haloalkyl or C 1 -C 4 haloalkylsulfanyl, in particular C 1 -C 4 haloalkyl;
  • Q b is C 3 -C 6 cycloalkyl, or C 3 -C 6 cycloalkyl monosubstituted by substituents selected from the group consisting of cyano, —C(O)OH and —C(O)NH 2 ; in particular Q b is C 3 -C 6 cycloalkyl.
  • A, R 2 and Q are as defined under formula I above; and wherein Xa 3 is S, SO or SO 2 ; Ra 3 is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl; and agrochemically acceptable salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds.
  • Q is preferably C 3 -C 6 cycloalkyl or C 3 -C 6 cycloalkyl monosubstituted by substituents selected from the group consisting of cyano, —C(O)OH and —C(O)NH 2 ;
  • R 2 is preferably C 1 -C 4 haloalkyl or C 1 -C 4 haloalkylsulfanyl;
  • Xa 3 is preferably S or SO 2 and Ra 3 is preferably ethyl.
  • a further preferred group of compounds of formula I is represented by the compounds of formula I-30.
  • A, R 2 and Q are as defined under formula I in claim 1 ;
  • Xa 30 is S, SO or SO 2 ; and
  • Ra 30 is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl.
  • Preferred compounds of formula I-30 are those, wherein
  • Q is C 3 -C 6 cycloalkyl, or C 3 -C 6 cycloalkyl mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 3 -C 6 cycloalkyl, —C(O)OH, —C(O)NH 2 and phenyl, or is phenyl which can be mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 1 -C 4 haloalkoxy, C 1 -C 4 alkoxy, C 1 -C 4 haloalkylsulfanyl, C 1 -C 4 halo-alkylsulfinyl, C 1 -C 4 haloalkylsulfonyl and
  • A is CH or N, preferably N;
  • X 2p is S or SO 2 ;
  • X 3p is N—(C 1 -C 4 alkyl);
  • R 4p is C 1 -C 4 alkyl;
  • R 5p is C 1 -C 4 haloalkyl or C 1 -C 4 haloalkylsulfanyl, preferably C 1 -C 4 haloalkyl;
  • Q ap is C 3 -C 6 cycloalkyl, or C 3 -C 6 cycloalkyl mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, —C(O)OH, —C(O)NH 2 and phenyl.
  • Q ap is preferably C 3 -C 6 cycloalkyl, or C 3 -C 6 cycloalkyl monosubstituted by substituents selected from the group consisting of cyano, —C(O)OH and —C(O)NH 2 .
  • A is CH or N, preferably N;
  • X 4p is N—(C 1 -C 4 alkyl);
  • R 6p is C 1 -C 4 haloalkyl or C 1 -C 4 haloalkylsulfanyl, preferably C 1 -C 4 haloalkyl;
  • Q bp is C 3 -C 6 cycloalkyl, or C 3 -C 6 cycloalkyl monosubstituted by substituents selected from the group consisting of cyano, —C(O)OH and —C(O)NH 2 .
  • A is N;
  • X 4p is N—(C 1 -C 4 alkyl);
  • R 6p is C 1 -C 4 haloalkyl
  • Q bp is C 3 -C 6 cycloalkyl, or C 3 -C 6 cycloalkyl monosubstituted by cyano.
  • R 1 is C 1 -C 4 alkyl
  • R 2 is C 1 -C 4 haloalkyl or C 1 -C 4 haloalkylsulfanyl
  • X is S or SO 2 ;
  • X 1 is N—(C 1 -C 4 alkyl);
  • A is N;
  • Q is C 3 -C 6 cycloalkyl, or C 3 -C 6 cycloalkyl monosubstituted by substituents selected from the group consisting of cyano, —C(O)OH or —C(O)NH 2 ; and Q can be in the 3- or 4-position; and the N-oxides of said outstanding compounds of formula I.
  • compounds of formula I can be prepared (as depicted in scheme 1) by reacting compounds of formula II with compounds of formula III, wherein X b1 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate and Y b1 can be a boron-derived functional group, as for example B(OH) 2 or B(OR b1 ) 2 wherein R b1 can be a C 1 -C 6 alkyl group or the two groups OR b1 can form together with the boron atom a five- or six-membered ring, as for example a pinacol boronic ester (Suzuki cross-coupling, see for example Tetrahedron Letters, 43(39), 6987-6990; 2002).
  • X b1 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate
  • A, X 1 , R 1 , R 2 , X and Q are as described in formula I.
  • the reaction can be catalyzed by a palladium based catalyst, for example tetrakis(triphenylphosphine) palladium(0), bis(triphenylphosphine)palladium(II) dichloride, chloro(2-dicyclohexylphosphino-2′,4′,6′-triisopropyl-1,1′-biphenyl)[2-(2′-amino-1,1′-biphenyl)]palladium(II) (XPhos palladacycle), (1,1′bis(diphenylphosphino)-ferrocene)dichloropalladium-dichloromethane (1:1 complex) or palladium acetate plus phosphine ligands (such as, for example, triphenylphosphine or tricyclohexyl
  • compounds of formula II wherein X b1 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, may be reacted with compounds of formula III, wherein Y b1 is a magnesium halide group, such as —MgBr (Kumada cross-coupling), optionally in the presence of additives, such as zind halides (Journal of Organic Chemistry, 75(19), 6677-6680; 2010).
  • X b1 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate
  • the reaction may be catalyzed by a palladium based catalyst, or may involve a nickel based catalyst, such as 1,3-is(diphenylphosphino)propanenickel dichloride (dppp)NiCl 2 .
  • a palladium based catalyst or may involve a nickel based catalyst, such as 1,3-is(diphenylphosphino)propanenickel dichloride (dppp)NiCl 2 .
  • X b1 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, with compounds of formula III, wherein Y b1 is a zinc halide group, such as —ZnBr (Negishi cross-coupling), as illustrated for example in Synthetic Communications, 28(2), 225-232; 1998.
  • X b1 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate
  • Y b1 is a zinc halide group, such as —ZnBr (Negishi cross-coupling), as illustrated for example in Synthetic Communications, 28(2), 225-232; 1998.
  • the reaction may be catalyzed by a palladium based catalyst, such as for example, (1,1′bis(diphenylphosphino)-ferrocene)dichloropalladium Pd(dppf)Cl 2 or bis(triphenylphosphine)palladium(II) dichloride, optionally in the presence of phosphine additives (such as, for example, 2-dicyclohexyl-phosphino-2′,6′-dimethoxy-biphenyl S-PHOS), in a solvent, like, for example 1,2-dimethoxyethane, dioxane, toluene, or tetrahydrofuran, preferably under inert atmosphere.
  • the reaction temperature can preferentially range from ambient temperature to the boiling point of the reaction mixture.
  • Compounds of formula I can also be made (as depicted in scheme 2) by reacting compounds of formula IV with compounds of formula V, wherein X b2 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate and Y b2 can be a boron-derived functional group, as for example B(OH) 2 or B(OR b2 ) 2 wherein R b2 can be a C 1 -C 6 alkyl group or the two groups OR b2 can form together with the boron atom a five- or six-membered ring, as for example a pinacol boronic ester.
  • X b2 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate
  • Y b2 can be a
  • A, X 1 , R 1 , R 2 , X and Q are as described in formula I.
  • the reaction can be catalyzed by a palladium based catalyst, for example tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine) palladium(II) dichloride or (1,1′bis(diphenylphosphino)-ferrocene)dichloropalladium-dichloromethane (1:1 complex), in presence of a base, like sodium carbonate, tripotassium phosphate or cesium fluoride, in a solvent (such as toluene, 1,2-dimethoxy-ethane DME, tetrahydrofuran or dioxane) or a solvent mixture, like, for example a mixture of 1,2-dimethoxyethane and water, or of dioxane and water, preferably under inert atmosphere.
  • the reaction temperature can preferentiallyze
  • the reaction can be performed with reagents like, for example, a peracid such as peracetic acid or m-chloroperbenzoic acid, or a hydroperoxide, as for example, hydrogen peroxide or tert-butylhydroperoxide, or an inorganic oxidant, like a monoperoxo-disulfate salt or potassium permanganate.
  • a peracid such as peracetic acid or m-chloroperbenzoic acid
  • a hydroperoxide as for example, hydrogen peroxide or tert-butylhydroperoxide
  • an inorganic oxidant like a monoperoxo-disulfate salt or potassium permanganate.
  • compounds of formula I-a2 wherein A, R 1 , R 2 , X 1 and Q have the values defined in formula I, and X is —SO—
  • compounds of formula I-a1 wherein A, R 1 , R 2 , X 1 and Q have the values defined in formula I, and X is —S—, under analogous conditions described above.
  • These reactions can be performed in various organic (dichloromethane for example) or aqueous solvents compatible to these conditions, by temperatures from below 0° C. up to the boiling point of the solvent system.
  • the transformation of compounds of the formula 1-a1 into compounds of the formula 1-a2 and 1-a3 is represented in scheme 3.
  • Compounds of formula I-a1 may also be prepared (scheme 4) by reacting a compound of the formula VI with a compound of the formula VII, wherein A, R 1 , R 2 , X 1 and Q have the values defined in formula I and X is sulphur and M is a metal or non-metal cation.
  • the cation M is assumed to be monovalent, but polyvalent cations associated with more than one S—R 1 group can also be considered.
  • Preferred cations are, for example lithium, sodium, potassium or cesium.
  • Xb 3 is a leaving group like, for example, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate, but many other leaving groups could be considered.
  • the reaction can be performed in a solvent, preferably aprotic (such as N,N-dimethylformamide or acetonitrile), at temperatures below 0° C. or up to the boiling temperature of the reaction mixture.
  • aprotic such as N,N-dimethylformamide or acetonitrile
  • A, Q, X 1 and R 2 are as defined under formula I in claim 1 ; and Xb 30 is halogen; are novel and especially developed for the preparation of the compounds according to the present invention.
  • the compounds of formula VI-a therefore constitute a further object of the invention.
  • Xb 3 is a leaving group like, for example, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethanesulfonate, or any other similar leaving group
  • Xb4 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, most preferably bromine or iodine
  • Y b4 can be a boron-derived functional group, as for example B(OH) 2 or B(OR b4 ) 2 wherein R b4 can be a C 1 -C 6 alkyl group or the two groups OR b4 can form together with the boron atom a five- or six-membered ring, as for example a
  • the reaction can be catalyzed by a palladium based catalyst, for example tetrakis(triphenyl-phosphine)palladium(0), bis(triphenylphosphine) palladium(II) dichloride or (1,1′bis(diphenyl-phosphino)-ferrocene)dichloropalladium-dichloromethane (1:1 complex), in presence of a base, like sodium carbonate, tripotassium phosphate or cesium fluoride, in a solvent (such as toluene, 1,2-dimethoxy-ethane DME, tetrahydrofuran or dioxane) or a solvent mixture, like, for example a mixture of 1,2-dimethoxyethane and water, or of dioxane and water, preferably under inert atmosphere.
  • the reaction temperature can preferentially range from ambient
  • compounds of formula VIII wherein X b4 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, may be reacted with compounds of formula IX, wherein Y b4 is a magnesium halide group, such as —MgBr (Kumada cross-coupling), optionally in the presence of additives, such as zind halides (Journal of Organic Chemistry, 75(19), 6677-6680; 2010).
  • X b4 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate
  • Y b4 is a magnesium halide group, such as —MgBr (Kumada cross-coupling), optionally in the presence of additives, such as zind halides (
  • the reaction may be catalyzed by a palladium based catalyst, or may involve a nickel based catalyst, such as 1,3-is(diphenylphosphino)propanenickel dichloride (dppp)NiCl 2 .
  • a palladium based catalyst or may involve a nickel based catalyst, such as 1,3-is(diphenylphosphino)propanenickel dichloride (dppp)NiCl 2 .
  • X b4 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, with compounds of formula IX, wherein Y b4 is a zinc halide group, such as —ZnBr (Negishi cross-coupling), as illustrated for example in Synthetic Communications, 28(2), 225-232; 1998.
  • the reaction may be catalyzed by a palladium based catalyst, such as for example, (1,1′bis(diphenylphosphino)-ferrocene)dichloropalladium Pd(dppf)C 2 or bis(triphenylphosphine)palladium(II) dichloride, optionally in the presence of phosphine additives (such as, for example, 2-dicyclohexyl-phosphino-2′,6′-dimethoxy-biphenyl S-PHOS), in a solvent, like, for example 1,2-dimethoxyethane, dioxane, toluene, or tetrahydrofuran, preferably under inert atmosphere.
  • the reaction temperature can preferentially range from ambient temperature to the boiling point of the reaction mixture.
  • compounds of formula VI can also be prepared by reacting compounds of formula X, wherein Xb 3 is a leaving group like, for example, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethanesulfonate, or any other similar leaving group, with compounds of formula XI, wherein X b5 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, most preferably bromine or iodine, and Y b5 can be a boron-derived functional group, as for example B(OH) 2 or B(OR b5 ) 2 wherein R b5 can be a C 1 -C 6 alkyl group or the two groups OR b5 can form together with the boron atom a five- or six-membered
  • X and XI, A, X 1 , R 2 and Q are as described in formula I.
  • the reaction can be catalyzed by a palladium based catalyst, for example tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine) palladium(II) dichloride or (1,1′bis(diphenylphosphino)-ferrocene)dichloropalladium-dichloromethane (1:1 complex), in presence of a base, like sodium carbonate, tripotassium phosphate or cesium fluoride, in a solvent (such as toluene, 1,2-dimethoxy-ethane DME, tetrahydrofuran or dioxane) or a solvent mixture, like, for example a mixture of 1,2-dimethoxyethane and water, or of dioxane and water, preferably under inert atmosphere.
  • the reaction temperature can preferentially range from
  • Compounds of formula I can also be prepared (scheme 7) by reacting compounds of formula XIII and compounds of formula XIV under various formal dehydration conditions, wherein A, R 1 , R 2 , X, X 1 and Q have the values defined in formula I.
  • These methods are known to those skilled in the art or described for example in WO 2009/131237, WO 2011/043404, WO 2011/040629, WO 2010/125985, WO 2012/086848, WO 2013/018928, WO 2013/191113, WO 2013/180193 and WO 2013/180194.
  • Such processes are well known and have been described for example in WO 2011/040629 or WO 2009131237 (X 1 is oxygen), WO 2011088990 or Inorg.
  • XIV-a Treatment of XIV-a with compounds of formula XIII, wherein R 2 and X 1 are as described in formula I, optionally in the presence of a base, e.g. triethylamine or pyridine, leads to compounds of formula XV.
  • compounds of formula I can be prepared by treatment of compounds of formula XIV with dicyclohexyl carbodiimide (DCC) or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) to give the activated species XIV-a, wherein X 0 is X 01 and X 02 respectively, in an inert solvent, e.g.
  • compounds of formula XV can be converted to compounds of formula I (wherein X 1 is O) using triphenylphosphine, di-isopropyl azodicarboxylate in an inert solvent such as THF at temperatures between 25-50° C.
  • THF inert solvent
  • compounds of formula VI wherein Xb 3 is a leaving group like, for example, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethane-sulfonate, or any other similar leaving group, can be prepared by reacting compounds of formula XVI,
  • a and Q have the values defined for formula I, with an activating agent, like, for example oxalyl chloride or thionyl chloride or a carbodiimid reagent to generate the activated species XVI-a, followed by reaction with compounds of formula XIII, wherein R 2 and X 1 are as described in formula I.
  • the intermediate compounds of formula XVII may be isolated, but are preferentially converted into the compounds of formula VI in a similar way as described above for the transformation of compounds XV into compounds of formula I.
  • XVIII by reacting compounds of formula XVIII, respectively an activated form XVIII-a of compounds of formula XVIII, wherein A is carbon or nitrogen, and X b3 is a leaving group like, for example fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethane-sulfonate, and X b4 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, most preferably bromine or iodine, with compounds of the formula XIII, wherein X 1 and R 2 are as defined in formula I.
  • the intermediate compounds of formula XIX may be isolated, but are preferentially converted into the compounds of formula VIII in a similar way as described above (transformation of compounds XV into compounds of formula I).
  • Compounds of formula XXI can be prepared as described in scheme 10a, by reacting compounds of formula XX, wherein A is CH or nitrogen, and X b3 is a leaving group like, for example nitro, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethanesulfonate, and X b4 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, most preferably bromine or iodine, with a compound of formula VII, wherein R 1 is as defined in formula I, and M is a metal or non-metal cation.
  • R 1 is as defined in formula I
  • M is a metal or non-metal cation.
  • the cation M is assumed to be monovalent, but polyvalent cations associated with more than one S—R 1 group can also be considered.
  • Preferred cations are, for example lithium, sodium, potassium or cesium.
  • the reaction can be performed in a solvent, preferably polar aprotic, such as THF, N,N-dimethylformamide or MeCN, at temperatures between ⁇ 78° C. and the boiling temperature of the reaction mixture.
  • Compounds of formula XVIII-c can be prepared by hydrolysis of compounds of formula XXI under acidic (e.g. HCl or H 2 SO 4 ) or basic conditions (e.g. NaOH or KOH) as described in scheme 10a, under conditions known to a person skilled in the art.
  • Compounds of formula II-a1 can be prepared, as described in scheme 10a, by reacting compounds of formula XVIII-c respectively an activated form XVIII-d of compounds of formula XVIII-c with compounds of formula XIII, wherein X 1 and R 2 are as defined in formula I.
  • the intermediate compounds of formula XXII may be isolated, but are preferentially converted into the compounds of formula II-a1 in a similar way as described above (transformation of compounds XV into compounds of formula I).
  • X can be S, SO or SO 2 (when X is SO, compounds of formula II-a1 become compounds of formula II-a2; respectively, when X is SO 2 , compounds of formula II-a1 become compounds of formula II-a3; see scheme 12).
  • the reaction can be performed with reagents like, for example a peracid as peracetic acid or m-chloroperbenzoic acid, or a hydroperoxide as for example hydrogen peroxide or tert-butylhydroperoxide, or an inorganic oxidant, like a mono-peroxodisulfate salt or potassium permanganate, preferentially meta-chloroperbenzoic acid as described before.
  • reagents like, for example a peracid as peracetic acid or m-chloroperbenzoic acid, or a hydroperoxide as for example hydrogen peroxide or tert-butylhydroperoxide, or an inorganic oxidant, like a mono-peroxodisulfate salt or potassium permanganate, preferentially meta-chloroperbenzoic acid as described before.
  • a compound of formula XVIII-c, wherein X is S, SO or SO 2 can alternatively be prepared by analogous methods to those described in the literature (scheme 10b).
  • a compound of formula XVIII-c, wherein X is S may be prepared by saponification of a compound of formula XXIV, wherein R LG is C 1 -C 4 alkyl, under conditions known to a person skilled in the art (R 1 is as defined in formula I, A is N or CH, and X b4 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, most preferably bromine or iodine).
  • Compounds of formula XXIV, wherein R LG is C 1 -C 4 alkyl may be prepared by treatment of compounds of formula XXIII, wherein Xb 3 a is a leaving group like, for example nitro, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethanesulfonate, and wherein R LG is C 1 -C 4 alkyl, with a reagent M-S—R 1 of formula VII, wherein R 1 is as defined in formula I and M is a metal or non-metal cation, under conditions described above.
  • Xb 3 a is a leaving group like, for example nitro, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethanesulfonate
  • R LG is C 1 -C 4 alkyl
  • ester compounds of formula XXIV may be prepared from the corresponding carboxylic acid compounds of formula XVIII-c, wherein X is S, by reaction with an alcohol of formula R LG OH, wherein R LG is C 1 -C 4 alkyl, optionally in the presence of an acid (such as sulfuric acid), or alternatively optionally in presence of an activating agent, such as for example oxalyl chloride (COCl) 2 .
  • an activating agent such as for example oxalyl chloride (COCl) 2 .
  • Compounds of formula II-a1, wherein X is sulfur can be prepared (scheme 11) by reacting a compound of the formula VIII, wherein A, R 2 and X 1 are as defined in formula I, and wherein X b3 is a leaving group like, for example, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethanesulfonate, preferentially fluorine or chlorine, and wherein X b4 is a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, most preferably bromine or iodine, with a compound of the formula VII, wherein R 1 is as defined in formula I, and M is a metal or non-metal cation.
  • R 1 is as defined in formula I
  • M is a metal or non-metal cation.
  • the cation M is assumed to be monovalent, but polyvalent cations associated with more than one S—R 1 group can also be considered. Preferred cations are, for example lithium, sodium, potassium or cesium.
  • the reaction can be performed in a solvent, preferably polar aprotic, at temperatures below 0° C. or up to boiling temperature of the reaction mixture.
  • the reaction can be performed with reagents like, for example a peracid as peracetic acid or m-chloroperbenzoic acid, or a hydroperoxide as for example hydrogen peroxide or tert-butylhydroperoxide, or an inorganic oxidant, like a mono-peroxodisulfate salt or potassium permanganate, preferentially meta-chloroperbenzoic acid.
  • reagents like, for example a peracid as peracetic acid or m-chloroperbenzoic acid, or a hydroperoxide as for example hydrogen peroxide or tert-butylhydroperoxide, or an inorganic oxidant, like a mono-peroxodisulfate salt or potassium permanganate, preferentially meta-chloroperbenzoic acid.
  • compounds of formula II-a2 wherein A, R 1 , R 2 and X 1 have the values defined in formula I, and X is —SO—, and wherein X b4 is a halogen, preferentially chlorine, bromine or iodine, or a sulfonate like for example a trifluoromethane-sulfonate, can be prepared by oxidation of compounds of formula II-a1, wherein A, R 1 , R 2 and X 1 have the values defined in formula I, and X is —S—, and wherein X b4 is a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate.
  • These reactions can be performed in various organic or aqueous solvents compatible to these conditions, by temperatures from below 0° C. up to the boiling point of the solvent system.
  • step A hydrogen abstraction on a compound of the formula III-a wherein Zb 1 is hydrogen, with a strong base (step A), like butyllithium or lithium diisopropylamide or (i-PrMgCl, LiCl), followed by reaction of the metallated intermediate of the formula III-b, wherein Zb 2 is a metal such as Li + or MgCl + for example, with, for example, a trialkylborate (step B).
  • Another way to access an organometal intermediate of the formula III-b is from a compound of the formula III-a wherein Zb 1 is chlorine, bromine or iodine, via metal-halogen exchange with an organometallic species (step C), like butyllithium or an organomagnesium compound, or direct metallation with a metal, like magnesium.
  • organometallic species like butyllithium or an organomagnesium compound, or direct metallation with a metal, like magnesium.
  • Compounds of formula IV wherein A, X, X 1 , R 1 and R 2 are as described in formula I, can be prepared from compounds of formula II (scheme 14), wherein A, X, X 1 , R 1 and R 2 are as described in formula I.
  • compounds of formula II, wherein Xb 1 is chlorine, bromine or iodine can be treated with an organometallic species like, for example, butyllithium or an organomagnesium compound, to generate an intermediate compound of the formula II-a, wherein Zb 3 is as defined in the scheme, via metal-halogen exchange.
  • This reaction is preferentially performed in an anhydrous aprotic solvent, such as THF, at low temperature (between ⁇ 120° C.
  • the intermediate organometal compound of formula II-a is preferably directly converted into compound of formula IV by reaction with a boronate compound B(OR b2 ) 3 , wherein R b2 is a C 1 -C 6 alkyl group.
  • a boronate compound B(OR b2 ) 3 wherein R b2 is a C 1 -C 6 alkyl group.
  • the boronic acid IV wherein Yb 2 is —B(OH) 2
  • a dialkylboronate IV wherein Yb 2 is —B(OR b2 ) 2
  • aprotic solvent in presence of a base, preferentially a weak base, such as potassium acetate KOAc.
  • a base preferentially a weak base, such as potassium acetate KOAc.
  • [1,1′-Bis(diphenylphosphino)ferrocene]dichloropalladium(II), also known as palladium dppf dichloride or Pd(dppf)Cl 2 is a common catalyst for this type of reaction.
  • the temperature of the reaction is preferably comprised between 0° C. and the boiling point of the reaction mixture.
  • compounds of formula Iaa can be prepared directly from compounds of formula II by treatment with compounds of formula XXXIII, wherein Qx is is as described in XXII, in presence of a catalyst such as Pd 2 (dba) 3 , with a ligand, such as BINAP, a strong base such as lithium hexamethyldisilazane LiHMDS, in an inert solvent such as tetrahydrofuran THF, at temperatures between 30-80° C.
  • a catalyst such as Pd 2 (dba) 3
  • a ligand such as BINAP
  • a strong base such as lithium hexamethyldisilazane LiHMDS
  • inert solvent such as tetrahydrofuran THF
  • Compounds of the formula Iaa may further be utilized for the preparation of compounds of formula Iad (scheme 15). Indeed, compounds of formula Iaa, wherein X is S, SO or SO 2 , and wherein A, X 1 , R 1 and R 2 are as defined above and in which Qx is a direct bond or is (CH 2 ) n and n is 1, 2 or 3, may be hydrolyzed, under conditions known to a person skilled in the art (aqueous basic or acidic conditions; for example, lithium or sodium hydroxide in an alcoholic solvent such as methanol, at temperatures between 20° C.
  • aqueous basic or acidic conditions for example, lithium or sodium hydroxide in an alcoholic solvent such as methanol
  • compounds of formula Iaa wherein X is S, SO or SO 2 , and wherein A, X 1 , R 1 and R 2 are as defined above and in which Qx is a direct bond or is (CH 2 ) n and n is 1, 2 or 3, may be hydrolyzed, under conditions known to a person skilled in the art (aqueous basic or acidic conditions; for example, lithium or sodium hydroxide in an alcoholic solvent such as methanol, at temperatures between 20° C. to refluxing conditions; or aqueous sulphuric acid, optionally in presence of a co-solvent, at temperatures between 20° C.
  • aqueous basic or acidic conditions for example, lithium or sodium hydroxide in an alcoholic solvent such as methanol
  • R 1 , R 2 , R 3 , X and A are as defined under formula I above, and wherein Q is a group
  • R 0002 is cyano
  • R 0002 is cyano
  • R 02 is halogen, preferably fluorine, chlorine or bromine.
  • XXVIII-a wherein A, R 1 , R 2 and X 1 are as described in formula I, with chloroform CHCl 3 or bromoform CHBr 3 (possibly acting as reagent and solvent) in presence of concentrated aqueous sodium or potassium hydroxide, optionally in presence of a phase transfer catalyst PTC, such as for example tetrabutyl ammonium bromide or triethyl benzyl ammonium chloride, optionally in the presence of an additional solvent such as dichloromethane, preferably at temperatures around 0° C. to 30° C.
  • a phase transfer catalyst PTC such as for example tetrabutyl ammonium bromide or triethyl benzyl ammonium chloride
  • an additional solvent such as dichloromethane
  • compounds of the formula I-b-1 wherein A, R 1 , R 2 and X 1 are as described in formula I and in which R 02 is fluorine, may be prepared, for example, by reacting compounds of formula XXVIII-a, wherein A, R 1 , R 2 and X 1 are as described in formula I, with reagents such as sodium chlorodifluoro-acetate (ClCF 2 CO 2 Na), sodium bromodifluoro-acetate (BrCF 2 CO 2 Na) or sodium trifluoro-acetate (CF 3 CO 2 Na) in solvents such as diglyme, tetrahydrofuran, dioxane or dimethoxyethane, at temperatures between 100 and 200° C. (preferably in the range 150-200° C.).
  • solvents such as diglyme, tetrahydrofuran, dioxane or dimethoxyethane
  • compounds of formula I-b-2 wherein X is SO or SO 2
  • compounds of formula I-b-2 may be prepared from the sulfide compounds of formula XXVIII-a by involving the same chemistry as described above, but by changing the order of the steps (i.e. by running the sequence XXVIII-a to XXVIII-b via oxidation, followed by a dihalo cyclopropanation step to form I-b-2, wherein X is SO or SO 2 ).
  • R 0020 is cyano and Qx is as defined above.
  • the reactants can be reacted in the presence of a base.
  • suitable bases are alkali metal or alkaline earth metal hydroxides, alkali metal or alkaline earth metal hydrides, alkali metal or alkaline earth metal amides, alkali metal or alkaline earth metal alkoxides, alkali metal or alkaline earth metal acetates, alkali metal or alkaline earth metal carbonates, alkali metal or alkaline earth metal dialkylamides or alkali metal or alkaline earth metal alkylsilylamides, alkylamines, alkylenediamines, free or N-alkylated saturated or unsaturated cycloalkylamines, basic heterocycles, ammonium hydroxides and carbocyclic amines.
  • Examples which may be mentioned are sodium hydroxide, sodium hydride, sodium amide, sodium methoxide, sodium acetate, sodium carbonate, potassium tert-butoxide, potassium hydroxide, potassium carbonate, potassium hydride, lithium diisopropylamide, potassium bis(trimethylsilyl)amide, calcium hydride, triethylamine, diisopropylethylamine, triethylenediamine, cyclohexylamine, N-cyclohexyl-N,N-dimethylamine, N,N-diethylaniline, pyridine, 4-(N,N-dimethylamino)pyridine, quinuclidine, N-methylmorpholine, benzyltrimethylammonium hydroxide and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU).
  • DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
  • the reactants can be reacted with each other as such, i.e. without adding a solvent or diluent. In most cases, however, it is advantageous to add an inert solvent or diluent or a mixture of these. If the reaction is carried out in the presence of a base, bases which are employed in excess, such as triethylamine, pyridine, N-methylmorpholine or N,N-diethylaniline, may also act as solvents or diluents.
  • the reaction is advantageously carried out in a temperature range from approximately ⁇ 80° C. to approximately +140° C., preferably from approximately ⁇ 30° C. to approximately +100° C., in many cases in the range between ambient temperature and approximately +80° C.
  • a compound of formula I can be converted in a manner known per se into another compound of formula I by replacing one or more substituents of the starting compound of formula I in the customary manner by (an)other substituent(s) according to the invention.
  • Salts of compounds of formula I can be prepared in a manner known per se.
  • acid addition salts of compounds of formula I are obtained by treatment with a suitable acid or a suitable ion exchanger reagent and salts with bases are obtained by treatment with a suitable base or with a suitable ion exchanger reagent.
  • Salts of compounds of formula I can be converted in the customary manner into the free compounds I, acid addition salts, for example, by treatment with a suitable basic compound or with a suitable ion exchanger reagent and salts with bases, for example, by treatment with a suitable acid or with a suitable ion exchanger reagent.
  • Salts of compounds of formula I can be converted in a manner known per se into other salts of compounds of formula I, acid addition salts, for example, into other acid addition salts, for example by treatment of a salt of inorganic acid such as hydrochloride with a suitable metal salt such as a sodium, barium or silver salt, of an acid, for example with silver acetate, in a suitable solvent in which an inorganic salt which forms, for example silver chloride, is insoluble and thus precipitates from the reaction mixture.
  • a salt of inorganic acid such as hydrochloride
  • a suitable metal salt such as a sodium, barium or silver salt
  • the compounds of formula I which have salt-forming properties can be obtained in free form or in the form of salts.
  • the compounds of formula I and, where appropriate, the tautomers thereof, in each case in free form or in salt form, can be present in the form of one of the isomers which are possible or as a mixture of these, for example in the form of pure isomers, such as antipodes and/or diastereomers, or as isomer mixtures, such as enantiomer mixtures, for example racemates, diastereomer mixtures or racemate mixtures, depending on the number, absolute and relative configuration of asymmetric carbon atoms which occur in the molecule and/or depending on the configuration of non-aromatic double bonds which occur in the molecule; the invention relates to the pure isomers and also to all isomer mixtures which are possible and is to be understood in each case in this sense hereinabove and hereinbelow, even when stereochemical details are not mentioned specifically in each case.
  • Diastereomer mixtures or racemate mixtures of compounds of formula I, in free form or in salt form, which can be obtained depending on which starting materials and procedures have been chosen can be separated in a known manner into the pure diasteromers or racemates on the basis of the physicochemical differences of the components, for example by fractional crystallization, distillation and/or chromatography.
  • Enantiomer mixtures such as racemates, which can be obtained in a similar manner can be resolved into the optical antipodes by known methods, for example by recrystallization from an optically active solvent, by chromatography on chiral adsorbents, for example high-performance liquid chromatography (HPLC) on acetyl cellulose, with the aid of suitable microorganisms, by cleavage with specific, immobilized enzymes, via the formation of inclusion compounds, for example using chiral crown ethers, where only one enantiomer is complexed, or by conversion into diastereomeric salts, for example by reacting a basic end-product racemate with an optically active acid, such as a carboxylic acid, for example camphor, tartaric or malic acid, or sulfonic acid, for example camphorsulfonic acid, and separating the diastereomer mixture which can be obtained in this manner, for example by fractional crystallization based on their differing solubilities, to give the di
  • Pure diastereomers or enantiomers can be obtained according to the invention not only by separating suitable isomer mixtures, but also by generally known methods of diastereoselective or enantioselective synthesis, for example by carrying out the process according to the invention with starting materials of a suitable stereochemistry.
  • N-oxides can be prepared by reacting a compound of the formula I with a suitable oxidizing agent, for example the H 2 O 2 /urea adduct in the presence of an acid anhydride, e.g. trifluoroacetic anhydride.
  • a suitable oxidizing agent for example the H 2 O 2 /urea adduct
  • an acid anhydride e.g. trifluoroacetic anhydride
  • the compounds of formula I and, where appropriate, the tautomers thereof, in each case in free form or in salt form, can, if appropriate, also be obtained in the form of hydrates and/or include other solvents, for example those which may have been used for the crystallization of compounds which are present in solid form.
  • Ra 1 , R 2 , G 1 , G 2 , G 3 , G 4 and G 5 are as defined below:
  • This table discloses the 18 compounds 2.001 to 2.018 of the formula I-1a, wherein Xa 1 is SO, and Ra 1 , R 2 , G 1 , G 2 , G 3 , G 4 and G 5 are as defined in Table X.
  • This table discloses the 18 compounds 3.001 to 3.018 of the formula I-1a, wherein Xa 1 is SO 2 , and Ra 1 , R 2 , G 1 , G 2 , G 3 , G 4 and G 5 are as defined in Table X.
  • Ra 2 , R 2 , G 1 , G 2 , G 3 , G 4 and G 5 are as defined below:
  • This table discloses the 18 compounds 4.001 to 4.018 of the formula I-2a, wherein Xa 2 is S, and Ra 2 , R 2 , G 1 , G 2 , G 3 , G 4 and G 5 are as defined in Table Y.
  • This table discloses the 18 compounds 5.001 to 5.018 of the formula I-2a, wherein Xa 2 is SO, and Ra 2 , R 2 , G 1 , G 2 , G 3 , G 4 and G 5 are as defined in Table Y.
  • This table discloses the 18 compounds 6.001 to 6.018 of the formula I-2a, wherein Xa 2 is SO 2 , and Ra 2 , R 2 , G 1 , G 2 , G 3 , G 4 and G 5 are as defined in Table Y.
  • Ra 3 , R 7 and Q Rx are as defined below:
  • This table discloses the 6 compounds 7.001 to 7.006 of the formula I-3a, wherein Xa 3 is S, and Ra 3 , R 7 , A and Q Rx are as defined in Table Z.
  • This table discloses the 6 compounds 8.001 to 8.006 of the formula I-3a, wherein Xa 3 is SO, and Ra 3 , R 7 , A and Q Rx are as defined in Table Z.
  • Ra 4 , R 2 , G 1 , G 2 , G 3 , G 4 and G 5 are as defined below:
  • This table discloses the 18 compounds 10.001 to 10.018 of the formula I-4a, wherein Xa 4 is S, and Ra 4 , R 2 , G 1 , G 2 , G 3 , G 4 and G 5 are as defined in Table U.
  • This table discloses the 18 compounds 11.001 to 11.018 of the formula I-4a, wherein Xa 4 is SO, and Ra 4 , R 2 , G 1 , G 2 , G 3 , G 4 and G 5 are as defined in Table U.
  • This table discloses the 18 compounds 12.001 to 12.018 of the formula I-4a, wherein Xa 4 is SO 2 , and Ra 4 , R 2 , G 1 , G 2 , G 3 , G 4 and G 5 are as defined in Table U.
  • Ra 5 , R 2 , G 1 , G 2 , G 3 , G 4 and G 5 are as defined below:
  • This table discloses the 18 compounds 13.001 to 13.018 of the formula I-5a, wherein Xa 5 is S, and Ra 5 , R 2 , G 1 , G 2 , G 3 , G 4 and G 5 are as defined in Table V.
  • This table discloses the 18 compounds 14.001 to 14.018 of the formula I-5a, wherein Xa 5 is SO, and Ra 5 , R 2 , G 1 , G 2 , G 3 , G 4 and G 5 are as defined in Table V.
  • This table discloses the 18 compounds 15.001 to 15.018 of the formula I-5a, wherein Xa 5 is SO 2 , and Ra 5 , R 2 , G 1 , G 2 , G 3 , G 4 and G 5 are as defined in Table V.
  • Ra 6 , R 8 and Q Rx are as defined below:
  • This table discloses the 6 compounds 16.001 to 16.006 of the formula I-6a, wherein Xa 6 is S, and Ra 6 , R 8 , A and Q Rx are as defined in Table W.
  • This table discloses the 6 compounds 17.001 to 17.006 of the formula I-6a, wherein Xa 6 is SO, and Ra 6 , R 8 , A and Q Rx are as defined in Table W.
  • This table discloses the 6 compounds 18.001 to 18.006 of the formula I-6a, wherein Xa 6 is SO 2 , and Ra 6 , R 8 , A and Q Rx are as defined in Table W.
  • the compounds of formula I according to the invention are preventively and/or curatively valuable active ingredients in the field of pest control, even at low rates of application, which have a very favorable biocidal spectrum and are well tolerated by warm-blooded species, fish and plants.
  • the active ingredients according to the invention act against all or individual developmental stages of normally sensitive, but also resistant, animal pests, such as insects or representatives of the order Acarina.
  • the insecticidal or acaricidal activity of the active ingredients according to the invention can manifest itself directly, i.e. in destruction of the pests, which takes place either immediately or only after some time has elapsed, for example during ecdysis, or indirectly, for example in a reduced oviposition and/or hatching rate.
  • Tetranychus spp. from the order Anoplura, for example, Haematopinus spp., Linognathus spp., Pediculus spp., Pemphigus spp. and Phylloxera spp.; from the order Coleoptera, for example, Agriotes spp., Amphimallon majale, Anomala orientalis, Anthonomus spp., Aphodius spp, Astylus atromaculatus, Ataenius spp, Atomaria linearis, Chaetocnema tibialis, Cerotoma spp, Conoderus spp, Cosmopolites spp., Cotinis nitida, Curculio spp., Cyclocephala spp, Dermestes spp., Diabrotica spp., Diloboderus abderus, Epilachna spp., Eremnus s
  • Trogoderma spp. from the order Diptera, for example, Aedes spp., Anopheles spp, Antherigona soccata, Bactrocea oleae, Bibio hortulanus, Bradysia spp, Calliphora erythrocephala, Ceratitis spp., Chrysomyia spp., Culex spp., Cuterebra spp., Dacus spp., Delia spp, Drosophila melanogaster, Fannia spp., Gastrophilus spp., Geomyza tripunctata, Glossina spp., Hypoderma spp., Hyppobosca spp., Liriomyza spp., Lucilia spp., Melanagromyza spp., Musca spp., Oestrus spp., Orseolia spp., Oscinella fri
  • Hemiptera for example, Acanthocoris scabrator, Acrosternum spp, Adelphocoris lineolatus, Amblypelta nitida, Bathycoelia thalassina, Blissus spp, Cimex spp., Clavigralla tomentosicollis, Creontiades spp, Distantiella theobroma, Dichelops furcatus, Dysdercus spp., Edessa spp, Euchistus spp., Eurydema pulchrum, Eurygaster spp., Halyomorpha halys, Horcias nobilellus, Leptocorisa spp., Lygus spp, Margarodes spp, Murgantia histrionic, Neomegalotomus spp, Nesidiocoris tenuis, Nezara spp., Nysius simul
  • Thyanta spp Triatoma spp., Vatiga illudens; Acyrthosium pisum, Adalges spp, Agalliana ensigera, Agonoscena targionii, Aleurodicus spp, Aleurocanthus spp, Aleurolobus barodensis, Aleurothrixus floccosus, Aleyrodes brassicae, Amarasca biguttula, Amritodus atkinsoni, Aonidiella spp., Aphididae, Aphis spp., Aspidiotus spp., Aulacorthum solani, Bactericera cockerelli, Bemisia spp, Brachycaudus spp, Brevicoryne brassicae, Cacopsylla spp, Cavariella aegopodii Scop., Ceroplaster spp., Chrysomphalus aonidium
  • Vespa spp. from the order Isoptera, for example, Coptotermes spp, Corniternes cumulans, Incisitermes spp, Macrotermes spp, Mastotermes spp, Microtermes spp, Reticulitermes spp.; Solenopsis geminate from the order Lepidoptera, for example, Acleris spp., Adoxophyes spp., Aegeria spp., Agrotis spp., Alabama argillaceae, Amylois spp., Anticarsia gemmatalis, Archips spp., Argyresthia spp, Argyrotaenia spp., Autographa spp., Bucculatrix thurberiella, Busseola fusca, Cadra cautella, Carposina nipponensis, Chilo spp., Choristoneura spp., Chrysoteuchia topiaria, Cly
  • Trichodectes spp. from the order Orthoptera, for example, Blatta spp., Blattella spp., Gryllotalpa spp., Leucophaea maderae, Locusta spp., Neocurtilla hexadactyla, Periplaneta spp. , Scapteriscus spp, and Schistocerca spp.; from the order Psocoptera, for example, Liposcelis spp.; from the order Siphonaptera, for example, Ceratophyllus spp., Ctenocephalides spp.
  • Orthoptera for example, Blatta spp., Blattella spp., Gryllotalpa spp., Leucophaea maderae, Locusta spp., Neocurtilla hexadactyla, Periplaneta spp. , Scapteriscus spp, and Schisto
  • Thysanoptera for example, Calliothrips phaseoli, Frankliniella spp., Heliothrips spp, Hercinothrips spp., Parthenothrips spp, Scirtothrips aurantii, Sericothrips variabilis, Taeniothrips spp., Thrips spp; from the order Thysanura, for example, Lepisma saccharina.
  • the active ingredients according to the invention can be used for controlling, i.e. containing or destroying, pests of the abovementioned type which occur in particular on plants, especially on useful plants and ornamentals in agriculture, in horticulture and in forests, or on organs, such as fruits, flowers, foliage, stalks, tubers or roots, of such plants, and in some cases even plant organs which are formed at a later point in time remain protected against these pests.
  • Suitable target crops are, in particular, cereals, such as wheat, barley, rye, oats, rice, maize or sorghum; beet, such as sugar or fodder beet; fruit, for example pomaceous fruit, stone fruit or soft fruit, such as apples, pears, plums, peaches, almonds, cherries or berries, for example strawberries, raspberries or blackberries; leguminous crops, such as beans, lentils, peas or soya; oil crops, such as oilseed rape, mustard, poppies, olives, sunflowers, coconut, castor, cocoa or ground nuts; cucurbits, such as pumpkins, cucumbers or melons; fibre plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruit or tangerines; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes or bell peppers; Lauraceae, such as avocado, Cinnamonium or camphor; and also tobacco, nuts,
  • the active ingredients according to the invention can be used for controlling, i.e. containing or destroying, pests of the abovementioned type which occur in particular on plants, especially on useful plants and ornamentals in agriculture, in horticulture and in forests, or on organs, such as fruits, flowers, foliage, stalks, tubers or roots, of such plants, and in some cases even plant organs which are formed at a later point in time remain protected against these pests.
  • Suitable target crops are, in particular, cereals, such as wheat, barley, rye, oats, rice, maize or sorghum; beet, such as sugar or fodder beet; fruit, for example pomaceous fruit, stone fruit or soft fruit, such as apples, pears, plums, peaches, almonds, cherries or berries, for example strawberries, raspberries or blackberries; leguminous crops, such as beans, lentils, peas or soya; oil crops, such as oilseed rape, mustard, poppies, olives, sunflowers, coconut, castor, cocoa or ground nuts; cucurbits, such as pumpkins, cucumbers or melons; fibre plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruit or tangerines; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes or bell peppers; Lauraceae, such as avocado, Cinnamonium or camphor; and also tobacco, nuts,
  • compositions and/or methods of the present invention may be also used on any ornamental and/or vegetable crops, including flowers, shrubs, broad-leaved trees and evergreens.
  • the invention may be used on any of the following ornamental species: Ageratum spp., Alonsoa spp., Anemone spp., Anisodontea capsenisis, Anthemis spp., Antirrhinum spp., Aster spp., Begonia spp. (e.g. B. elatior, B. semperflorens, B. tubéreux ), Bougainvillea spp., Brachycome spp., Brassica spp.
  • Ageratum spp. Ageratum spp., Alonsoa spp., Anemone spp., Anisodontea capsenisis, Anthemis spp., Antirrhinum spp., Aster spp., Begonia spp. (e.g. B. elatior, B. semperflorens, B. tubéreux ), Bougainvillea spp., Brachycome
  • Iresines spp. Kalanchoe spp., Lantana camara, Lavatera trimestris, Leonotis leonurus, Lilium spp., Mesembryanthemum spp., Mimulus spp., Monarda spp., Nemesia spp., Tagetes spp., Dianthus spp. (carnation), Canna spp., Oxalis spp., Bellis spp., Pelargonium spp. ( P. peltatum, P. Zonale ), Viola spp.
  • the invention may be used on any of the following vegetable species: Allium spp. ( A. sativum, A. cepa, A. oschaninii, A. Porrum, A. ascalonicum, A. fistulosum ), Anthriscus cerefolium, Apium graveolus, Asparagus officinalis, Beta vulgarus, Brassica spp. ( B. Oleracea, B. Pekinensis, B. rapa ), Capsicum annuum, Cicer arietinum, Cichorium endivia, Cichorum spp. ( C. intybus, C. endivia ), Citrillus lanatus, Cucumis spp. ( C.
  • Preferred ornamental species include African violet, Begonia, Dahlia, Gerbera, Hydrangea, Verbena, Rosa, Kalanchoe, Poinsettia, Aster, Centaurea, Coreopsis, Delphinium, Monarda, Phlox, Rudbeckia, Sedum, Petunia, Viola, Impatiens, Geranium, Chrysanthemum, Ranunculus, Fuchsia, Salvia, Hortensia , rosemary, sage, St. Johnswort, mint, sweet pepper, tomato and cucumber.
  • the active ingredients according to the invention are especially suitable for controlling Aphis craccivora, Diabrotica balteata, Heliothis virescens, Myzus persicae, Plutella xylostella and Spodoptera littoralis in cotton, vegetable, maize, rice and soya crops.
  • the active ingredients according to the invention are further especially suitable for controlling Mamestra (preferably in vegetables), Cydia pomonella (preferably in apples), Empoasca (preferably in vegetables, vineyards), Leptinotarsa (preferably in potatoes) and Chilo supressalis (preferably in rice).
  • the invention may also relate to a method of controlling damage to plant and parts thereof by plant parasitic nematodes (Endoparasitic-, Semiendoparasitic- and Ectoparasitic nematodes), especially plant parasitic nematodes such as root knot nematodes, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica, Meloidogyne arenaria and other Meloidogyne species; cyst-forming nematodes, Globodera rostochiensis and other Globodera species; Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii , and other Heterodera species; Seed gall nematodes, Anguina species; Stem and foliar nematodes, Aphelenchoides species; Sting nematodes, Belonola
  • the compounds of the invention may also have activity against the molluscs.
  • Examples of which include, for example, Ampullariidae; Arion ( A. ater, A. circumscriptus, A. hortensis, A. rufus ); Bradybaenidae ( Bradybaena fruticum ); Cepaea ( C. hortensis, C. Nemoralis ); ochlodina; Deroceras ( D. agrestis, D. empiricorum, D. laeve, D. reticulatum ); Discus ( D. rotundatus ); Euomphalia; Galba ( G. trunculata ); Helicelia ( H. itala, H.
  • H. aperta Limax ( L. cinereoniger, L. flavus, L. marginatus, L. maximus, L. tenellus ); Lymnaea; Milax ( M. gagates, M. marginatus, M. sowerbyi ); Opeas; Pomacea ( P. canaticulata ); Vallonia and Zanitoides.
  • crops is to be understood as including also crop plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria, especially those of the genus Bacillus.
  • Toxins that can be expressed by such transgenic plants include, for example, insecticidal proteins, for example insecticidal proteins from Bacillus cereus or Bacillus popilliae ; or insecticidal proteins from Bacillus thuringiensis , such as ⁇ -endotoxins, e.g. Cry1Ab, Cry1Ac, Cry1F, Cry1Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), e.g. Vip1, Vip2, Vip3 or Vip3A; or insecticidal proteins of bacteria colonising nematodes, for example Photorhabdus spp.
  • insecticidal proteins for example insecticidal proteins from Bacillus cereus or Bacillus popilliae
  • Bacillus thuringiensis such as ⁇ -endotoxins, e.g. Cry1Ab, Cry1Ac, Cry1F, Cry1
  • Xenorhabdus spp. such as Photorhabdus luminescens, Xenorhabdus nematophilus ; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins and other insect-specific neurotoxins; toxins produced by fungi, such as Streptomycetes toxins, plant lectins, such as pea lectins, barley lectins or snowdrop lectins; agglutinins; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxysteroidoxidase, ecdysteroid-UDP-glycosyl-transferase, cholesterol oxidases, ec
  • ⁇ -endotoxins for example Cry1Ab, Cry1Ac, Cry1F, Cry1Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), for example Vip1, Vip2, Vip3 or Vip3A
  • Vip vegetative insecticidal proteins
  • Hybrid toxins are produced recombinantly by a new combination of different domains of those proteins (see, for example, WO 02/15701).
  • Truncated toxins for example a truncated Cry1Ab, are known.
  • modified toxins one or more amino acids of the naturally occurring toxin are replaced.
  • preferably non-naturally present protease recognition sequences are inserted into the toxin, such as, for example, in the case of Cry3A055, a cathepsin-G-recognition sequence is inserted into a Cry3A toxin (see WO 03/018810).
  • Examples of such toxins or transgenic plants capable of synthesising such toxins are disclosed, for example, in EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529, EP-A-451 878 and WO 03/052073.
  • Cry1-type deoxyribonucleic acids and their preparation are known, for example, from WO 95/34656, EP-A-0 367 474, EP-A-0 401 979 and WO 90/13651.
  • the toxin contained in the transgenic plants imparts to the plants tolerance to harmful insects.
  • insects can occur in any taxonomic group of insects, but are especially commonly found in the beetles (Coleoptera), two-winged insects (Diptera) and moths (Lepidoptera).
  • Transgenic plants containing one or more genes that code for an insecticidal resistance and express one or more toxins are known and some of them are commercially available. Examples of such plants are: YieldGard® (maize variety that expresses a Cry1Ab toxin); YieldGard Rootworm® (maize variety that expresses a Cry3Bb1 toxin); YieldGard Plus® (maize variety that expresses a Cry1Ab and a Cry3Bb1 toxin); Starlink® (maize variety that expresses a Cry9C toxin); Herculex I® (maize variety that expresses a Cry1 Fa2 toxin and the enzyme phosphinothricine N-acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a Cry1Ac toxin); Bollgard I® (cotton variety that expresse
  • transgenic crops are:
  • Bt11 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Genetically modified Zea mays which has been rendered resistant to attack by the European corn borer ( Ostrinia nubilalis and Sesamia nonagrioides ) by transgenic expression of a truncated Cry1Ab toxin. Btl 1 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium. 2. Bt176 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10.
  • MON 863 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/DE/02/9. MON 863 expresses a Cry3Bb1 toxin and has resistance to certain Coleoptera insects. 5. IPC 531 Cotton from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/ES/96/02. 6. 1507 Maize from Pioneer Overseas Corporation, Avenue Tedesco, 7 B-1160 Brussels, Belgium, registration number C/NL/00/10.
  • NK603 ⁇ MON 810 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/GB/02/M3/03. Consists of conventionally bred hybrid maize varieties by crossing the genetically modified varieties NK603 and MON 810. NK603 ⁇ MON 810 Maize transgenically expresses the protein CP4 EPSPS, obtained from Agrobacterium sp.
  • strain CP4 which imparts tolerance to the herbicide Roundup® (contains glyphosate), and also a Cry1Ab toxin obtained from Bacillus thuringiensis subsp. kurstaki which brings about tolerance to certain Lepidoptera, include the European corn borer.
  • Transgenic crops of insect-resistant plants are also described in BATS (Zentrum für Bioschreib und Nachhalttechnik, Zentrum BATS, Clarastrasse 13, 4058 Basel, Switzerland) Report 2003, (http://bats.ch).
  • crops is to be understood as including also crop plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising antipathogenic substances having a selective action, such as, for example, the so-called “pathogenesis-related proteins” (PRPs, see e.g. EP-A-0 392 225).
  • PRPs pathogenesis-related proteins
  • Examples of such antipathogenic substances and transgenic plants capable of synthesising such antipathogenic substances are known, for example, from EP-A-0 392 225, WO 95/33818 and EP-A-0 353 191.
  • the methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
  • Crops may also be modified for enhanced resistance to fungal (for example Fusarium, Anthracnose , or Phytophthora ), bacterial (for example Pseudomonas ) or viral (for example potato leafroll virus, tomato spotted wilt virus, cucumber mosaic virus) pathogens.
  • fungal for example Fusarium, Anthracnose , or Phytophthora
  • bacterial for example Pseudomonas
  • viral for example potato leafroll virus, tomato spotted wilt virus, cucumber mosaic virus pathogens.
  • Crops also include those that have enhanced resistance to nematodes, such as the soybean cyst nematode.
  • Crops that are tolerance to abiotic stress include those that have enhanced tolerance to drought, high salt, high temperature, chill, frost, or light radiation, for example through expression of NF-YB or other proteins known in the art.
  • Antipathogenic substances which can be expressed by such transgenic plants include, for example, ion channel blockers, such as blockers for sodium and calcium channels, for example the viral KP1, KP4 or KP6 toxins; stilbene synthases; bibenzyl synthases; chitinases; glucanases; the so-called “pathogenesis-related proteins” (PRPs; see e.g. EP-A-0 392 225); antipathogenic substances produced by microorganisms, for example peptide antibiotics or heterocyclic antibiotics (see e.g. WO 95/33818) or protein or polypeptide factors involved in plant pathogen defence (so-called “plant disease resistance genes”, as described in WO 03/000906).
  • ion channel blockers such as blockers for sodium and calcium channels
  • the viral KP1, KP4 or KP6 toxins stilbene synthases; bibenzyl synthases; chitinases; glucanases; the so-called “pathogenesis
  • compositions according to the invention are the protection of stored goods and store ambients and the protection of raw materials, such as wood, textiles, floor coverings or buildings, and also in the hygiene sector, especially the protection of humans, domestic animals and productive livestock against pests of the mentioned type.
  • the present invention also provides a method for controlling pests (such as mosquitoes and other disease vectors; see also http://www.who.int/malaria/vector_control/irs/en/).
  • the method for controlling pests comprises applying the compositions of the invention to the target pests, to their locus or to a surface or substrate by brushing, rolling, spraying, spreading or dipping.
  • an IRS (indoor residual spraying) application of a surface such as a wall, ceiling or floor surface is contemplated by the method of the invention.
  • the method for controlling such pests comprises applying a pesticidally effective amount of the compositions of the invention to the target pests, to their locus, or to a surface or substrate so as to provide effective residual pesticidal activity on the surface or substrate.
  • a pesticidally effective amount of the compositions of the invention to the target pests, to their locus, or to a surface or substrate so as to provide effective residual pesticidal activity on the surface or substrate.
  • Such application may be made by brushing, rolling, spraying, spreading or dipping the pesticidal composition of the invention.
  • an IRS application of a surface such as a wall, ceiling or floor surface is contemplated by the method of the invention so as to provide effective residual pesticidal activity on the surface.
  • it is contemplated to apply such compositions for residual control of pests on a substrate such as a fabric material in the form of (or which can be used in the manufacture of) netting, clothing, bedding, curtains and tents.
  • Substrates including non-woven, fabrics or netting to be treated may be made of natural fibres such as cotton, raffia, jute, flax, sisal, hessian, or wool, or synthetic fibres such as polyamide, polyester, polypropylene, polyacrylonitrile or the like.
  • the polyesters are particularly suitable.
  • the methods of textile treatment are known, e.g. WO 2008/151984, WO 2003/034823, U.S. Pat. No. 5,631,072, WO 2005/64072, WO2006/128870, EP 1724392, WO 2005113886 or WO 2007/090739.
  • compositions according to the invention are the field of tree injection/trunk treatment for all ornamental trees as well all sort of fruit and nut trees.
  • the compounds according to the present invention are especially suitable against wood-boring insects from the order Lepidoptera as mentioned above and from the order Coleoptera, especially against woodborers listed in the following tables A and B:
  • the present invention may be also used to control any insect pests that may be present in turfgrass, including for example beetles, caterpillars, fire ants, ground pearls, millipedes, sow bugs, mites, mole crickets, scales, mealybugs ticks, spittlebugs, southern chinch bugs and white grubs.
  • the present invention may be used to control insect pests at various stages of their life cycle, including eggs, larvae, nymphs and adults.
  • the present invention may be used to control insect pests that feed on the roots of turfgrass including white grubs (such as Cyclocephala spp. (e.g. masked chafer, C. lurida ), Rhizotrogus spp. (e.g. European chafer, R. majalis ), Cotinus spp. (e.g. Green June beetle, C. nitida ), Popillia spp. (e.g. Japanese beetle, P. japonica ), Phyllophaga spp. (e.g. May/June beetle), Ataenius spp. (e.g. Black turfgrass ataenius, A.
  • white grubs such as Cyclocephala spp. (e.g. masked chafer, C. lurida ), Rhizotrogus spp. (e.g. European chafer, R. majalis ), Co
  • Maladera spp. e.g. Asiatic garden beetle, M. castanea ) and Tomarus spp.
  • ground pearls Margarodes spp.
  • mole crickets tawny, southern, and short-winged; Scapteriscus spp., Gryllotalpa africana ) and leatherjackets (European crane fly, Tipula spp.).
  • the present invention may also be used to control insect pests of turfgrass that are thatch dwelling, including armyworms (such as fall armyworm Spodoptera frugiperda , and common armyworm Pseudaletia unipuncta ), cutworms, billbugs ( Sphenophorus spp., such as S. venatus verstitus and S. parvulus ), and sod webworms (such as Crambus spp. and the tropical sod webworm, Herpetogramma phaeopteralis ).
  • armyworms such as fall armyworm Spodoptera frugiperda , and common armyworm Pseudaletia unipuncta
  • cutworms such as S. venatus verstitus and S. parvulus
  • sod webworms such as Crambus spp. and the tropical sod webworm, Herpetogramma phaeopteralis
  • the present invention may also be used to control insect pests of turfgrass that live above the ground and feed on the turfgrass leaves, including chinch bugs (such as southern chinch bugs, Blissus insularis ), Bermudagrass mite ( Eriophyes cynodoniensis ), rhodesgrass mealybug ( Antonina graminis ), two-lined spittlebug ( Propsapia bicincta ), leafhoppers, cutworms (Noctuidae family), and greenbugs.
  • chinch bugs such as southern chinch bugs, Blissus insularis
  • Bermudagrass mite Eriophyes cynodoniensis
  • rhodesgrass mealybug Antonina graminis
  • two-lined spittlebug Propsapia bicincta
  • leafhoppers cutworms (Noctuidae family), and greenbugs.
  • the present invention may also be used to control other pests of turfgrass such as red imported fire ants ( Solenopsis invicta ) that create ant mounds in turf.
  • red imported fire ants Solenopsis invicta
  • compositions according to the invention are active against ectoparasites such as hard ticks, soft ticks, mange mites, harvest mites, flies (biting and licking), parasitic fly larvae, lice, hair lice, bird lice and fleas.
  • ectoparasites such as hard ticks, soft ticks, mange mites, harvest mites, flies (biting and licking), parasitic fly larvae, lice, hair lice, bird lice and fleas.
  • Anoplurida Haematopinus spp., Linognathus spp., Pediculus spp. and Phtirus spp., Solenopotes spp.
  • Nematocerina and Brachycerina for example Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Glossina spp., Calliphora spp., Glossina spp., Call
  • Siphonapta for example Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp.
  • Heteropterida for example Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp.
  • Blattarida for example Blatta orientalis, Periplaneta americana, Blattelagermanica and Supella spp.
  • Actinedida Prostigmata
  • Acaridida Acaridida
  • Acarapis spp. Cheyletiella spp., Ornitrocheyletia spp., Myobia spp., Psorergatesspp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp. and Laminosioptes spp.
  • compositions according to the invention are also suitable for protecting against insect infestation in the case of materials such as wood, textiles, plastics, adhesives, glues, paints, paper and card, leather, floor coverings and buildings.
  • compositions according to the invention can be used, for example, against the following pests: beetles such as Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium rufovillosum, Ptilinuspecticornis, Dendrobium pertinex, Ernobius mollis, Priobium carpini, Lyctus brunneus, Lyctus africanus, Lyctus planicollis, Lyctus linearis, Lyctus pubescens, Trogoxylon aequale, Minthesrugicollis, Xyleborus spec., Tryptodendron spec., Apate monachus, Bostrychus capucins, Heterobostrychus brunneus, Sinoxylon spec.
  • hymenopterans such as Sirex juvencus, Urocerus gigas, Urocerus gigas taignus and Urocerus augur , and termites such as Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis and Coptotermes formosanus , and bristletails such as Lepisma saccharina.
  • the compounds according to the invention can be used as pesticidal agents in unmodified form, but they are generally formulated into compositions in various ways using formulation adjuvants, such as carriers, solvents and surface-active substances.
  • formulation adjuvants such as carriers, solvents and surface-active substances.
  • the formulations can be in various physical forms, e.g.
  • Such formulations can either be used directly or diluted prior to use.
  • the dilutions can be made, for example, with water, liquid fertilisers, micronutrients, biological organisms, oil or solvents.
  • the formulations can be prepared e.g. by mixing the active ingredient with the formulation adjuvants in order to obtain compositions in the form of finely divided solids, granules, solutions, dispersions or emulsions.
  • the active ingredients can also be formulated with other adjuvants, such as finely divided solids, mineral oils, oils of vegetable or animal origin, modified oils of vegetable or animal origin, organic solvents, water, surface-active substances or combinations thereof.
  • the active ingredients can also be contained in very fine microcapsules.
  • Microcapsules contain the active ingredients in a porous carrier. This enables the active ingredients to be released into the environment in controlled amounts (e.g. slow-release).
  • Microcapsules usually have a diameter of from 0.1 to 500 microns. They contain active ingredients in an amount of about from 25 to 95% by weight of the capsule weight.
  • the active ingredients can be in the form of a monolithic solid, in the form of fine particles in solid or liquid dispersion or in the form of a suitable solution.
  • the encapsulating membranes can comprise, for example, natural or synthetic rubbers, cellulose, styrene/butadiene copolymers, polyacrylonitrile, polyacrylate, polyesters, polyamides, polyureas, polyurethane or chemically modified polymers and starch xanthates or other polymers that are known to the person skilled in the art.
  • very fine microcapsules can be formed in which the active ingredient is contained in the form of finely divided particles in a solid matrix of base substance, but the microcapsules are not themselves encapsulated.
  • liquid carriers there may be used: water, toluene, xylene, petroleum ether, vegetable oils, acetone, methyl ethyl ketone, cyclohexanone, acid anhydrides, acetonitrile, acetophenone, amyl acetate, 2-butanone, butylene carbonate, chlorobenzene, cyclohexane, cyclohexanol, alkyl esters of acetic acid, diacetone alcohol, 1,2-dichloropropane, diethanolamine, p-diethylbenzene, diethylene glycol, diethylene glycol abietate, diethylene glycol butyl ether, diethylene glycol ethyl ether, diethylene glycol methyl ether, N,N-dimethylformamide, dimethyl sulfoxide, 1,4-dioxane, dipropylene glycol
  • Suitable solid carriers are, for example, talc, titanium dioxide, pyrophyllite clay, silica, attapulgite clay, kieselguhr, limestone, calcium carbonate, bentonite, calcium montmorillonite, cottonseed husks, wheat flour, soybean flour, pumice, wood flour, ground walnut shells, lignin and similar substances.
  • a large number of surface-active substances can advantageously be used in both solid and liquid formulations, especially in those formulations which can be diluted with a carrier prior to use.
  • Surface-active substances may be anionic, cationic, non-ionic or polymeric and they can be used as emulsifiers, wetting agents or suspending agents or for other purposes.
  • Typical surface-active substances include, for example, salts of alkyl sulfates, such as diethanolammonium lauryl sulfate; salts of alkylarylsulfonates, such as calcium dodecylbenzenesulfonate; alkylphenol/alkylene oxide addition products, such as nonylphenol ethoxylate; alcohol/alkylene oxide addition products, such as tridecylalcohol ethoxylate; soaps, such as sodium stearate; salts of alkylnaphthalenesulfonates, such as sodium dibutylnaphthalenesulfonate; dialkyl esters of sulfosuccinate salts, such as sodium di(2-ethylhexyl)sulfosuccinate; sorbitol esters, such as sorbitol oleate; quaternary amines, such as lauryltrimethylammonium chloride, polyethylene glycol esters of fatty
  • Further adjuvants that can be used in pesticidal formulations include crystallisation inhibitors, viscosity modifiers, suspending agents, dyes, anti-oxidants, foaming agents, light absorbers, mixing auxiliaries, antifoams, complexing agents, neutralising or pH-modifying substances and buffers, corrosion inhibitors, fragrances, wetting agents, take-up enhancers, micronutrients, plasticisers, glidants, lubricants, dispersants, thickeners, antifreezes, microbicides, and liquid and solid fertilisers.
  • compositions according to the invention can include an additive comprising an oil of vegetable or animal origin, a mineral oil, alkyl esters of such oils or mixtures of such oils and oil derivatives.
  • the amount of oil additive in the composition according to the invention is generally from 0.01 to 10%, based on the mixture to be applied.
  • the oil additive can be added to a spray tank in the desired concentration after a spray mixture has been prepared.
  • Preferred oil additives comprise mineral oils or an oil of vegetable origin, for example rapeseed oil, olive oil or sunflower oil, emulsified vegetable oil, alkyl esters of oils of vegetable origin, for example the methyl derivatives, or an oil of animal origin, such as fish oil or beef tallow.
  • Preferred oil additives comprise alkyl esters of C 8 -C 22 fatty acids, especially the methyl derivatives of C 12 -C 18 fatty acids, for example the methyl esters of lauric acid, palmitic acid and oleic acid (methyl laurate, methyl palmitate and methyl oleate, respectively).
  • Many oil derivatives are known from the Compendium of Herbicide Adjuvants, 10 th Edition, Southern Illinois University, 2010.
  • inventive compositions generally comprise from 0.1 to 99% by weight, especially from 0.1 to 95% by weight, of compounds of the present invention and from 1 to 99.9% by weight of a formulation adjuvant which preferably includes from 0 to 25% by weight of a surface-active substance.
  • a formulation adjuvant which preferably includes from 0 to 25% by weight of a surface-active substance.
  • the rates of application vary within wide limits and depend on the nature of the soil, the method of application, the crop plant, the pest to be controlled, the prevailing climatic conditions, and other factors governed by the method of application, the time of application and the target crop.
  • a general guideline compounds may be applied at a rate of from 1 to 2000 l/ha, especially from 10 to 1000 l/ha.
  • Preferred formulations can have the following compositions (weight %):
  • active ingredient 1 to 95%, preferably 60 to 90%
  • surface-active agent 1 to 30%, preferably 5 to 20%
  • liquid carrier 1 to 80%, preferably 1 to 35%
  • active ingredient 0.1 to 10%, preferably 0.1 to 5%
  • solid carrier 99.9 to 90%, preferably 99.9 to 99%
  • active ingredient 5 to 75%, preferably 10 to 50%
  • surface-active agent 1 to 40%, preferably 2 to 30%
  • active ingredient 0.5 to 90%, preferably 1 to 80%
  • surface-active agent 0.5 to 20%, preferably 1 to 15%
  • solid carrier 5 to 95%, preferably 15 to 90%
  • active ingredient 0.1 to 30%, preferably 0.1 to 15%
  • solid carrier 99.5 to 70%, preferably 97 to 85%
  • Wettable powders a) b) c) active ingredients 25% 50% 75% sodium lignosulfonate 5% 5% — sodium lauryl sulfate 3% — 5% sodium diisobutylnaphthalenesulfonate — 6% 10% phenol polyethylene glycol ether (7-8 mol of — 2% — ethylene oxide) highly dispersed silicic acid 5% 10% 10% Kaolin 62% 27% —
  • the combination is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders that can be diluted with water to give suspensions of the desired concentration.
  • Powders for dry seed treatment a) b) c) active ingredients 25% 50% 75% light mineral oil 5% 5% 5% highly dispersed silicic acid 5% 5% — Kaolin 65% 40% — Talcum — 20
  • the combination is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording powders that can be used directly for seed treatment.
  • Emulsifiable concentrate active ingredients 10% octylphenol polyethylene glycol ether (4-5 mol of ethylene oxide) 3% calcium dodecylbenzenesulfonate 3% castor oil polyglycol ether (35 mol of ethylene oxide) 4% Cyclohexanone 30% xylene mixture 50%
  • Emulsions of any required dilution which can be used in plant protection, can be obtained from this concentrate by dilution with water.
  • Dusts a) b) c) Active ingredients 5% 6% 4% Talcum 95% — — Kaolin — 94% — mineral filler — — 96%
  • Ready-for-use dusts are obtained by mixing the combination with the carrier and grinding the mixture in a suitable mill. Such powders can also be used for dry dressings for seed.
  • the combination is mixed and ground with the adjuvants, and the mixture is moistened with water.
  • the mixture is extruded and then dried in a stream of air.
  • the finely ground combination is uniformly applied, in a mixer, to the kaolin moistened with polyethylene glycol.
  • Non-dusty coated granules are obtained in this manner.
  • Suspension concentrate active ingredients 40% propylene glycol 10% nonylphenol polyethylene glycol ether (15 mol of ethylene oxide) 6% Sodium lignosulfonate 10% carboxymethylcellulose 1% silicone oil (in the form of a 75% emulsion in water) 1% Water 32%
  • the finely ground combination is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
  • Flowable concentrate for seed treatment active ingredients 40% propylene glycol 5% copolymer butanol PO/EO 2% Tristyrenephenole with 10-20 moles EO 2% 1,2-benzisothiazolin-3-one (in the form of a 20% 0.5% solution in water) monoazo-pigment calcium salt 5% Silicone oil (in the form of a 75% emulsion in water) 0.2% Water 45.3%
  • the finely ground combination is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
  • 28 parts of the combination are mixed with 2 parts of an aromatic solvent and 7 parts of toluene diisocyanate/polymethylene-polyphenylisocyanate-mixture (8:1).
  • This mixture is emulsified in a mixture of 1.2 parts of polyvinylalcohol, 0.05 parts of a defoamer and 51.6 parts of water until the desired particle size is achieved.
  • a mixture of 2.8 parts 1,6-diaminohexane in 5.3 parts of water is added.
  • the mixture is agitated until the polymerization reaction is completed.
  • the obtained capsule suspension is stabilized by adding 0.25 parts of a thickener and 3 parts of a dispersing agent.
  • the capsule suspension formulation contains 28% of the active ingredients.
  • the medium capsule diameter is 8-15 microns.
  • the resulting formulation is applied to seeds as an aqueous suspension in an apparatus suitable for that purpose.
  • Formulation types include an emulsion concentrate (EC), a suspension concentrate (SC), a suspo-emulsion (SE), a capsule suspension (CS), a water dispersible granule (WG), an emulsifiable granule (EG), an emulsion, water in oil (EO), an emulsion, oil in water (EW), a micro-emulsion (ME), an oil dispersion (OD), an oil miscible flowable (OF), an oil miscible liquid (OL), a soluble concentrate (SL), an ultra-low volume suspension (SU), an ultra-low volume liquid (UL), a technical concentrate (TK), a dispersible concentrate (DC), a wettable powder (WP), a soluble granule (SG) or any technically feasible formulation in combination with agriculturally acceptable adjuvants.
  • EC emulsion concentrate
  • SC suspension concentrate
  • SE suspo-emulsion
  • CS capsule suspension
  • WG water dispersible granule
  • EG
  • Mp melting point in ° C. Free radicals represent methyl groups. 1 H NMR measurements were recorded on a Brucker 400 MHz spectrometer, chemical shifts are given in ppm relevant to a TMS standard. Spectra measured in deuterated solvents as indicated. Either one of the LCMS or GCMS methods below was used to characterize the compounds. The characteristic LCMS values obtained for each compound were the retention time (“R t ”, recorded in minutes) and the measured molecular ion (M+H) ⁇ .
  • Spectra were recorded on a Mass Spectrometer from Waters (SQD or ZQ Single quadrupole mass spectrometer) equipped with an electrospray source (Polarity: positive or negative ions, Capillary: 3.00 kV, Cone range: 30-60 V, Extractor: 2.00 V, Source Temperature: 150° C., Desolvation Temperature: 350° C., Cone Gas Flow: 0 L/Hr, Desolvation Gas Flow: 650 L/Hr, Mass range: 100 to 900 Da) and an Acquity UPLC from Waters: Binary pump, heated column compartment and diode-array detector. Solvent degasser, binary pump, heated column compartment and diode-array detector.
  • GCMS analyses were performed on a Thermo Electron instrument where a TRACE GC ULTRA gas chromatograph (equipped with a Zebron Phenomenex ZB-5 ms 15 m, diam: 0.25 mm, 0.25 ⁇ m column; H 2 flow 1.2 mL/min; temp injector: 250° C.; temp detector: 220° C.; method: start at 70° C., then 25° C./min until 320° C., hold 2 min at 320° C.) was linked to a DSQ mass spectrometer characterizing the compounds by electron ionisation (EI).
  • EI electron ionisation
  • Step 1 Preparation of 5-bromo-3-chloro-N-[2-(methylamino)-5-(trifluoromethyl)-3-pyridyl]pyridine-2-carboxamide
  • Step 3 Preparation of 2-(3-chloro-5-cyclopropyl-2-pyridyl)-3-methyl-6-(trifluoromethyl)imidazo [4,5-b]pyridine
  • reaction mixture was again degassed with N 2 over 10 minutes before adding palladium(II) acetate Pd(OAc) 2 (57 mg, 0.25 mmol) and water (3.0 ml). After addition, temperature of the reaction mixture was slowly raised to reflux condition and stirring continued for 16 hours. After completion of the reaction, the mixture was diluted with ethyl acetate (250 ml), washed with water (250 ml) and brine (250 ml), dried over sodium sulfate and concentrated under reduced pressure.
  • Step 4 Preparation of 2-(5-cyclopropyl-3-ethylsulfanyl-2-pyridyl)-3-methyl-6-(trifluoromethyl) imidazo[4,5-b]pyridine (compound P1)
  • Step 1 Preparation of 2-(3-chloro-5-cyclopentyl-2-pyridyl)-3-methyl-6-(trifluoromethyl)imidazo [4,5-b]pyridine
  • the reaction was stirred at 50° C. for 30 minutes, cycloplentylbromide was added dropwise at the same temperature.
  • the reaction was stirred at 50° C. for 16 hours, cooled to ambient temperature and stirring stopped to settle all suspended solid materials. The upper clear solution was used for the reaction.
  • the reaction mixture was again degassed with argon over 10 min and stirred for 16 hours at ambient temperature. After completion of the reaction, the mixture was quenched with water (50 ml), filtered through a celite bed, the residue was washed with ethyl acetate and the aqueous layer extracted with ethyl acetate (3 ⁇ 10 ml). The combined organic layers were washed with brine (10 ml), dried over sodium sulfate and concentrated under reduced pressure. The crude compound was purified by column chromatography (gradient 10-15% ethyl acetate in dichloromethane) to give the desired compound as an orange sticky solid.
  • Step 2 Preparation of 2-(5-cyclopentyl-3-ethylsulfanyl-2-pyridyl)-3-methyl-6-(trifluoromethyl) imidazo [4,5-b]pyridine (compound P2)
  • Step 1 Preparation of 2-(3-chloro-5-cyclohexyl-2-pyridyl)-3-methyl-6-(trifluoromethyl)imidazo [4,5-b]pyridine
  • the temperature of the reaction mixture was slowly raised to 70° C. and stirring was continued for 16 hours.
  • the reaction was monitored by TLC and after completion of the reaction, the mixture was quenched with water (50 ml), filtered through a celite bed and the residue was washed with ethyl acetate.
  • the aqueous layer was extracted with ethyl acetate (3 ⁇ 10 ml) and the combined organic layers were washed with brine (10 ml), dried over sodium sulfate and concentrated under reduced pressure.
  • the crude compound was purified by column chromatography (gradient 10-15% ethyl acetate in dichloromethane) to give the desired compound as an orange sticky solid.
  • Step 2 Preparation of 2-(5-cyclohexyl-3-ethylsulfanyl-2-pyridyl)-3-methyl-6-(trifluoromethyl) imidazo [4,5-b]pyridine (compound P3)
  • Step 3 Preparation of methyl 5-bromo-3-ethylsulfanyl-pyridine-2-carboxylate
  • Step 4 Preparation of methyl 5-bromo-3-ethylsulfonyl-pyridine-2-carboxylate
  • Methyl 5-bromo-3-ethylsulfanyl-pyridine-2-carboxylate (24.4 g, 88.4 mmol) was suspended in dichloromethane (250 mL), cooled to 00° C., and treated portion wise with mCPBA (37.6 g, 185.7 mmol). The mixture was stirred at ambient temperature for 18 hours. The mixture was diluted with water and dichloromethane, the aqueous phase was back extracted with dichloromethane (2 ⁇ ), and the combined organic phases washed with Na 2 S 2 O 4 , dried over Na 2 SO 4 . Partial concentration of the solvent, led to a solid (the desired title compound) that was filtered.
  • Step 5 Preparation of methyl 5-(cyanomethyl)-3-ethylsulfonyl-pyridine-2-carboxylate
  • Step 6 Preparation of methyl 5-(1-cyanocyclopropyl)-3-ethylsulfonyl-pyridine-2-carboxylate
  • Step 7 Preparation of 5-(1-cyanocyclopropyl)-3-ethylsulfonyl-pyridine-2-carboxylic acid
  • Step 8 Preparation of 5-(1-cyanocyclopropyl)-3-ethylsulfonyl-N-[2-(methylamino)-5-(trifluoromethyl)-3-pyridyl]pyridine-2-carboxamide
  • Step 9 Preparation of 1-[5-ethylsulfonyl-6-[3-methyl-6-(trifluoromethyl)imidazo[4,5-b]pyridin-2-yl]-3-pyridyl]cyclopropanecarbonitrile (compound P9)
  • Step 1 Preparation of 5-(1-cyanocyclopropyl)-3-ethylsulfonyl-N-[2-(methylamino)-5-(trifluoromethylsulfanyl)-3-pyridyl]pyridine-2-carboxamide
  • Step 2 Preparation of 1-[5-ethylsulfonyl-6-[3-methyl-6-(trifluoromethylsulfanyl)imidazo[4,5-b]pyridin-2-yl]-3-pyridyl]cyclopropanecarbonitrile (compound P13)
  • Step 1 Preparation of 2-[5-ethylsulfonyl-6-[3-methyl-6-(trifluoromethyl)imidazo[4,5-b]pyridin-2-yl]-2-pyridyl]acetonitrile
  • Step 2 Preparation of 1-[5-ethylsulfonyl-6-[3-methyl-6-(trifluoromethyl)imidazo[4,5-b]pyridin-2-yl]-2-pyridyl]cyclopropanecarbonitrile (compound P15)
  • compositions according to the invention can be broadened considerably, and adapted to prevailing circumstances, by adding other insecticidally, acaricidally and/or fungicidally active ingredients.
  • mixtures of the compounds of formula I with other insecticidally, acaricidally and/or fungicidally active ingredients may also have further surprising advantages which can also be described, in a wider sense, as synergistic activity. For example, better tolerance by plants, reduced phytotoxicity, insects can be controlled in their different development stages or better behaviour during their production, for example during grinding or mixing, during their storage or during their use.
  • Suitable additions to active ingredients here are, for example, representatives of the following classes of active ingredients: organophosphorus compounds, nitrophenol derivatives, thioureas, juvenile hormones, formamidines, benzophenone derivatives, ureas, pyrrole derivatives, carbamates, pyrethroids, chlorinated hydrocarbons, acylureas, pyridylmethyleneamino derivatives, macrolides, neonicotinoids and Bacillus thuringiensis preparations.
  • TX means “one compound selected from the group consisting of the compounds described in Tables 1 to 18 and Table P of the present invention”: an adjuvant selected from the group of substances consisting of petroleum oils (628)+TX, an acaricide selected from the group of substances consisting of 1,1-bis(4-chlorophenyl)-2-ethoxyethanol (IUPAC name) (910)+TX, 2,4-dichlorophenyl benzenesulfonate (IUPAC/Chemical Abstracts name) (1059)+TX, 2-fluoro-N-methyl-N-1-naphthylacetamide (IUPAC name) (1295)+TX, 4-chlorophenyl phenyl sulfone (IUPAC name) (981)+TX, abamectin (1)+TX, acequinocyl (3)+TX, acetoprole [CCN]+TX,
  • an avicide selected from the group of substances consisting of chloralose (127)+TX, endrin (1122)+TX, fenthion (346)+TX, pyridin-4-amine (IUPAC name) (23) and strychnine (745)+TX, a bactericide selected from the group of substances consisting of 1-hydroxy-1H-pyridine-2-thione (IUPAC name) (1222)+TX, 4-(quinoxalin-2-ylamino)benzenesulfonamide (IUPAC name) (748)+TX, 8-hydroxyquinoline sulfate (446)+TX, bronopol (97)+TX, copper dioctanoate (IUPAC name) (170)+TX, copper hydroxide (IUPAC name) (169)+TX, cresol [CCN]+TX, dichlorophen (232)+TX, dipyrithione (1105)+TX, dodicin (1112)+TX, fenaminosulf
  • the active ingredient mixture of the compounds of formula I selected from Tables 1 to 18 and Table P with active ingredients described above comprises a compound selected from Tables 1 to 18 and Table P and an active ingredient as described above preferably in a mixing ratio of from 100:1 to 1:6000, especially from 50:1 to 1:50, more especially in a ratio of from 20:1 to 1:20, even more especially from 10:1 to 1:10, very especially from 5:1 and 1:5, special preference being given to a ratio of from 2:1 to 1:2, and a ratio of from 4:1 to 2:1 being likewise preferred, above all in a ratio of 1:1, or 5:1, or 5:2, or 5:3, or 5:4, or 4:1, or 4:2, or 4:3, or 3:1, or 3:2, or 2:1, or 1:5, or 2:5, or 3:5, or 4:5, or 1:4, or 2:4, or 3:4, or 1:3, or 2:3, or 1:2, or 1:600, or 1:300, or 1:150, or 1:35, or 2:35, or 4:35, or 1
  • the mixtures as described above can be used in a method for controlling pests, which comprises applying a composition comprising a mixture as described above to the pests or their environment, with the exception of a method for treatment of the human or animal body by surgery or therapy and diagnostic methods practised on the human or animal body.
  • the mixtures comprising a compound of formula I selected from Tables 1 to 18 and Table P and one or more active ingredients as described above can be applied, for example, in a single “ready-mix” form, in a combined spray mixture composed from separate formulations of the single active ingredient components, such as a “tank-mix”, and in a combined use of the single active ingredients when applied in a sequential manner, i.e. one after the other with a reasonably short period, such as a few hours or days.
  • the order of applying the compounds of formula I selected from Tables 1 to 18 and Table P and the active ingredients as described above is not essential for working the present invention.
  • compositions according to the invention can also comprise further solid or liquid auxiliaries, such as stabilizers, for example unepoxidized or epoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, fertilizers or other active ingredients for achieving specific effects, for example bactericides, fungicides, nematocides, plant activators, molluscicides or herbicides.
  • auxiliaries such as stabilizers, for example unepoxidized or epoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, fertilizers or other active ingredients for achieving specific effects, for example bactericides, fungicides, nematocides
  • compositions according to the invention are prepared in a manner known per se, in the absence of auxiliaries for example by grinding, screening and/or compressing a solid active ingredient and in the presence of at least one auxiliary for example by intimately mixing and/or grinding the active ingredient with the auxiliary (auxiliaries).
  • auxiliaries for example by grinding, screening and/or compressing a solid active ingredient and in the presence of at least one auxiliary for example by intimately mixing and/or grinding the active ingredient with the auxiliary (auxiliaries).
  • compositions that is the methods of controlling pests of the abovementioned type, such as spraying, atomizing, dusting, brushing on, dressing, scattering or pouring—which are to be selected to suit the intended aims of the prevailing circumstances—and the use of the compositions for controlling pests of the abovementioned type are other subjects of the invention.
  • Typical rates of concentration are between 0.1 and 1000 ppm, preferably between 0.1 and 500 ppm, of active ingredient.
  • the rate of application per hectare is generally 1 to 2000 g of active ingredient per hectare, in particular 10 to 1000 g/ha, preferably 10 to 600 g/ha.
  • a preferred method of application in the field of crop protection is application to the foliage of the plants (foliar application), it being possible to select frequency and rate of application to match the danger of infestation with the pest in question.
  • the active ingredient can reach the plants via the root system (systemic action), by drenching the locus of the plants with a liquid composition or by incorporating the active ingredient in solid form into the locus of the plants, for example into the soil, for example in the form of granules (soil application). In the case of paddy rice crops, such granules can be metered into the flooded paddy-field.
  • the compounds of the invention and compositions thereof are also be suitable for the protection of plant propagation material, for example seeds, such as fruit, tubers or kernels, or nursery plants, against pests of the abovementioned type.
  • the propagation material can be treated with the compound prior to planting, for example seed can be treated prior to sowing.
  • the compound can be applied to seed kernels (coating), either by soaking the kernels in a liquid composition or by applying a layer of a solid composition. It is also possible to apply the compositions when the propagation material is planted to the site of application, for example into the seed furrow during drilling.
  • These treatment methods for plant propagation material and the plant propagation material thus treated are further subjects of the invention.
  • Typical treatment rates would depend on the plant and pest/fungi to be controlled and are generally between 1 to 200 grams per 100 kg of seeds, preferably between 5 to 150 grams per 100 kg of seeds, such as between 10 to 100 grams per 100 kg of seeds.
  • seed embraces seeds and plant propagules of all kinds including but not limited to true seeds, seed pieces, suckers, corns, bulbs, fruit, tubers, grains, rhizomes, cuttings, cut shoots and the like and means in a preferred embodiment true seeds.
  • the present invention also comprises seeds coated or treated with or containing a compound of formula I.
  • coated or treated with and/or containing generally signifies that the active ingredient is for the most part on the surface of the seed at the time of application, although a greater or lesser part of the ingredient may penetrate into the seed material, depending on the method of application.
  • the seed product When the said seed product is (re)planted, it may absorb the active ingredient.
  • the present invention makes available a plant propagation material adhered thereto with a compound of formula (I). Further, it is hereby made available, a composition comprising a plant propagation material treated with a compound of formula (I).
  • Seed treatment comprises all suitable seed treatment techniques known in the art, such as seed dressing, seed coating, seed dusting, seed soaking and seed pelleting.
  • the seed treatment application of the compound formula (I) can be carried out by any known methods, such as spraying or by dusting the seeds before sowing or during the sowing/planting of the seeds.
  • Example B1 Activity against Spodoptera littoralis (Egyptian Cotton Leaf Worm)
  • Cotton leaf discs were placed on agar in 24-well microtiter plates and sprayed with aqueous test solutions prepared from 10,000 ppm DMSO stock solutions. After drying the leaf discs were infested with five L1 larvae. The samples were assessed for mortality, anti-feedant effect, and growth inhibition in comparison to untreated samples 3 days after infestation. Control of Spodoptera littoralis by a test sample is when at least one of mortality, anti-feedant effect, and growth inhibition is higher than the untreated sample. The following compound gave an effect of at least 80% control in at least one of the three categories (mortality, anti-feedancy or growth inhibition) at an application rate of 200 ppm: P1, P4, P5, P8, P9, P10, P12 and P13.
  • Example B2 Activity against Spodoptera littoralis (Egyptian Cotton Leaf Worm)
  • Test compounds were applied by pipette from 10,000 ppm DMSO stock solutions into 24-well plates and mixed with agar. Lettuce seeds were placed on the agar and the multi well plate was closed by another plate which contains also agar. After 7 days the roots have absorbed the compound and the lettuce has grown into the lid plate. The lettuce leafs were now cut off into the lid plate. Spodoptera eggs were pipetted through a plastic stencil on a humid gel blotting paper and the plate closed with it. The samples were assessed for mortality, anti-feedant effect and growth inhibition in comparison to untreated samples 6 days after infestation. The following compound gave an effect of at least 80% control in at least one of the three categories (mortality, anti-feedancy or growth inhibition) at an application rate of 12.5 ppm: P1, P4, P9, P12 and P13.
  • Example B3 Activity Against Plutella xylostella (Diamond Back Moth)
  • 24-well microtiter plates with artificial diet were treated with aqueous test solutions prepared from 10,000 ppm DMSO stock solutions by pipetting. After drying, the plates were infested with L2 larvae (10 to 15 per well). The samples were assessed for mortality and growth inhibition in comparison to untreated samples 5 days after infestation.
  • the following compound gave an effect of at least 80% in at least one of the two categories (mortality or growth inhibition) at an application rate of 200 ppm: P1, P4, P5, P6, P8, P9, P10, P11, P12 and P13.
  • Example B4 Activity Against Diabrotica balteata (Corn Root Worm)
  • Maize sprouts, placed on an agar layer in 24-well microtiter plates were treated with aqueous test solutions prepared from 10,000 ppm DMSO stock solutions by spraying. After drying, the plates were infested with L2 larvae (6 to 10 per well). The samples were assessed for mortality and growth inhibition in comparison to untreated samples 4 days after infestation.
  • the following compounds gave an effect of at least 80% in at least one of the two categories (mortality or growth inhibition) at an application rate of 200 ppm: P1, P4, P5, P6, P8, P9, P10, P11, P12 and P13.
  • Example B5 Activity Against Myzus persicae (Green Peach Aphid)
  • Sunflower leaf discs were placed on agar in a 24-well microtiter plate and sprayed with aqueous test solutions prepared from 10,000 ppm DMSO stock solutions. After drying, the leaf discs were infested with an aphid population of mixed ages. The samples were assessed for mortality 6 days after infestation. The following compound resulted in at least 80% mortality at an application rate of 200 ppm: P1, P4, P5, P6, P8, P9, P10, P11, P12 and P13.
  • Example B6 Activity Against Myzus persicae (Green Peach Aphid)
  • Test compounds from 10,000 ppm DMSO stock solutions were applied by pipette into 24-well microtiter plates and mixed with sucrose solution. The plates were closed with a stretched Parafilm. A plastic stencil with 24 holes was placed onto the plate and infested pea seedlings were placed directly on the Parafilm. The infested plate was closed with a gel blotting paper and another plastic stencil and then turned upside down. The samples were assessed for mortality 5 days after infestation.
  • Example B7 Activity against Bemisia tabaci (Cotton White Fly)
  • Cotton leaf discs were placed on agar in 24-well microtiter plates and sprayed with aqueous test solutions prepared from 10,000 ppm DMSO stock solutions. After drying the leaf discs were infested with adult white flies. The samples were checked for mortality 6 days after incubation. The following compound resulted in at least 80% mortality at an application rate of 200 ppm: P4, P6, P8, P9, P10, P11, P12 and P13.
  • Example B8 Activity against Euschistus heros (Neotropical Brown Stink Bug)
  • Soybean leaf on agar in 24-well microtiter plates were sprayed with aqueous test solutions prepared from 10,000 ppm DMSO stock solutions. After drying the leaf were infested with N-2 nymphs. The samples were assessed for mortality 5 days after infestation. The following compound resulted in at least 80% mortality at an application rate of 200 ppm: P1, P4, P5, P6, P8, P9, P10, P11, P12 and P13.
  • Example B9 Activity Against Myzus persicae (Green Peach Aphid)
  • Roots of pea seedlings infested with an aphid population of mixed ages were placed directly into aqueous test solutions prepared from 10,000 DMSO stock solutions. The samples were assessed for mortality 6 days after placing seedlings into test solutions.
  • Example B10 Activity against Frankliniella occidentalis (Western Flower Thrips )
  • Sunflower leaf discs were placed on agar in 24-well microtiter plates and sprayed with aqueous test solutions prepared from 10,000 DMSO stock solutions. After drying the leaf discs were infested with a Frankliniella population of mixed ages. The samples were assessed for mortality 7 days after infestation. The following compounds resulted in at least 80% mortality at an application rate of 200 ppm: P4, P9, P11 and P13.
  • Example B11 Activity against Thrips tabaci (Onion Thrips )
  • Sunflower leaf discs were placed on agar in 24-well microtiter plates and sprayed with aqueous test solutions prepared from 10,000 ppm DMSO stock solutions. After drying the leaf discs were infested with a thrips population of mixed ages. The samples were assessed for mortality 6 days after infestation. The following compounds resulted in at least 80% mortality at an application rate of 200 ppm: P9 and P13.
  • Example B12 Activity against Aedes aegypti (Yellow Fever Mosquito)
  • Test solutions at an application rate of 200 ppm in ethanol, were applied to 12 well tissue culture plates. Once the deposits were dry, five, two to five day old adult female Aedes aegypti were added to each well, and sustained with a 10% sucrose solution in a cotton wool plug. Assessment of knockdown was made one hour after introduction, and mortality was assessed at 24 and 48 hours after introduction. The following compounds gave at least 80% control of Aedes aegypti after 48 h and/or 24 h: P9 and P13.
  • Example B13 Activity Against Anopheles stephensi (Indian Malaria Mosquito)
  • Test solutions at an application rate of 200 ppm in ethanol, were applied to 12 well tissue culture plates. Once the deposits were dry, five, two to five day old adult female Anopheles stephensi were added to each well, and sustained with a 10% sucrose solution in a cotton wool plug. Assessment of knockdown was made one hour after introduction, and mortality was assessed at 24 and 48 hours after introduction. The following compounds gave at least 80% control of Anopheles stephensi after 48 h and/or 24 h: P4, P9 and P13.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Zoology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Cultivation Of Plants (AREA)
  • Catching Or Destruction (AREA)
US15/536,820 2014-12-17 2015-12-10 Pesticidally active heterocyclic derivatives with sulphur containing substituents Active US10323030B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP14198495 2014-12-17
EP14198495.5 2014-12-17
EP14198495 2014-12-17
PCT/EP2015/079188 WO2016096584A1 (en) 2014-12-17 2015-12-10 Pesticidally active heterocyclic derivatives with sulphur containing substituents

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/079188 A-371-Of-International WO2016096584A1 (en) 2014-12-17 2015-12-10 Pesticidally active heterocyclic derivatives with sulphur containing substituents

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/443,596 Division US11072608B2 (en) 2014-12-17 2019-06-17 Pesticidally active heterocyclic derivatives with sulphur containing substituents

Publications (2)

Publication Number Publication Date
US20170342065A1 US20170342065A1 (en) 2017-11-30
US10323030B2 true US10323030B2 (en) 2019-06-18

Family

ID=52146179

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/536,820 Active US10323030B2 (en) 2014-12-17 2015-12-10 Pesticidally active heterocyclic derivatives with sulphur containing substituents
US16/443,596 Active US11072608B2 (en) 2014-12-17 2019-06-17 Pesticidally active heterocyclic derivatives with sulphur containing substituents
US17/350,374 Pending US20210317119A1 (en) 2014-12-17 2021-06-17 Pesticidally active heterocyclic derivatives with sulphur containing substituents

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/443,596 Active US11072608B2 (en) 2014-12-17 2019-06-17 Pesticidally active heterocyclic derivatives with sulphur containing substituents
US17/350,374 Pending US20210317119A1 (en) 2014-12-17 2021-06-17 Pesticidally active heterocyclic derivatives with sulphur containing substituents

Country Status (25)

Country Link
US (3) US10323030B2 (es)
EP (1) EP3233851B1 (es)
JP (1) JP6675404B2 (es)
KR (1) KR102540827B1 (es)
CN (2) CN107001365B (es)
AU (1) AU2015366548B2 (es)
BR (1) BR112017012638B1 (es)
CA (1) CA2969600C (es)
CL (1) CL2017001533A1 (es)
CO (1) CO2017005790A2 (es)
DK (1) DK3233851T3 (es)
ES (1) ES2813952T3 (es)
HR (1) HRP20201355T1 (es)
HU (1) HUE050562T2 (es)
LT (1) LT3233851T (es)
MX (1) MX2017007900A (es)
MY (1) MY182124A (es)
PH (1) PH12017501013A1 (es)
PL (1) PL3233851T3 (es)
PT (1) PT3233851T (es)
RS (1) RS60709B1 (es)
RU (1) RU2765282C2 (es)
SI (1) SI3233851T1 (es)
UA (1) UA122781C2 (es)
WO (1) WO2016096584A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190308971A1 (en) * 2014-12-17 2019-10-10 Syngenta Participations Ag Pesticidally active hetrocyclic derivatives with sulphur containing substituents

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112017002598B1 (pt) * 2014-08-12 2022-03-03 Syngenta Participations Ag Derivados heterocíclicos ativos do ponto de vista pesticida com substituintes contendo enxofre
WO2016071214A1 (en) * 2014-11-07 2016-05-12 Syngenta Participations Ag Pesticidally active polycyclic derivatives with sulfur containing substituents
CN107001352B (zh) * 2014-12-01 2021-06-04 先正达参股股份有限公司 具有含硫取代基的杀有害生物活性酰胺杂环衍生物
TWI696612B (zh) 2015-01-29 2020-06-21 日商日本農藥股份有限公司 具有環烷基吡啶基的稠合雜環化合物或其鹽類及含有該化合物的農園藝用殺蟲劑以及其使用方法
EP3487860B1 (de) * 2016-07-19 2021-04-14 Bayer CropScience Aktiengesellschaft Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
ES2877814T3 (es) 2016-10-06 2021-11-17 Bayer Cropscience Ag Derivados de heterociclos bicíclicos condensados sustituidos con 2-(het)arilo como pesticidas
WO2018065288A1 (de) 2016-10-07 2018-04-12 Bayer Cropscience Aktiengesellschaft 2-[2-phenyl-1-(sulfonylmethyl)vinyl]-imidazo[4,5-b]pyridin-derivate und verwandte verbindungen als schädlingsbekämpfungsmittel im pflanzenschutz
BR112019012127A2 (pt) 2016-12-15 2019-11-05 Syngenta Participations Ag derivados heterocíclicos ativos em termos pesticidas com substituintes contendo enxofre
UA123249C2 (uk) 2016-12-27 2021-03-03 Ніхон Нохіяку Ко., Лтд. Сполука 4н-піролопіридину або її сіль, сільськогосподарський і садівницький інсектицид, який включає зазначену сполуку або її сіль, і спосіб застосування інсектициду
ES2867600T3 (es) 2017-01-10 2021-10-20 Bayer Ag Derivados de imidazol como pesticidas
AU2018208422B2 (en) 2017-01-10 2021-11-11 Bayer Aktiengesellschaft Heterocyclene derivatives as pest control agents
TWI793104B (zh) 2017-02-21 2023-02-21 瑞士商先正達合夥公司 具有含硫取代基的殺有害生物活性雜環衍生物
WO2018197315A1 (en) 2017-04-25 2018-11-01 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2018215304A1 (en) 2017-05-22 2018-11-29 Syngenta Participations Ag Tetracyclic pyridazine sulphur containing compounds and their use as pesticides
EP3686195A4 (en) 2017-09-21 2021-04-07 Nihon Nohyaku Co., Ltd. BENZIMIDAZOLE COMPOUND WITH A CYCLOPROPYLPYRIDYL GROUP OR SALT THEREOF, AGRICULTURAL OR HORTICULTURAL PESTICIDE CONTAINING THIS COMPOUND AND METHOD OF USING THIS PESTICIDE
EP4342297A3 (en) 2018-06-06 2024-05-15 Syngenta Crop Protection AG Pesticidally active heterocyclic derivatives with sulfoximine containing substituents
US11926623B2 (en) 2018-06-26 2024-03-12 Bayer Aktiengesellschaft Heterocycle derivatives as pesticides
EP3835301A4 (en) 2018-07-10 2022-03-16 Nihon Nohyaku Co., Ltd. BENZIMIDAZOLE COMPOUND HAVING A HALOGENABLE ALKYLENEDIOXY GROUP OR A SALT THEREOF, AGRICULTURAL AND HORTICULTURAL PESTICIDE CONTAINING SUCH COMPOUND, AND METHOD OF USE THEREOF
TW202035404A (zh) 2018-10-24 2020-10-01 瑞士商先正達農作物保護公司 具有含亞碸亞胺的取代基之殺有害生物活性雜環衍生物
AU2019371591B2 (en) * 2018-10-29 2024-05-02 Nippon Soda Co., Ltd. (Hetero)arylimidazole compound and harmful organism control agent
EP3931192B1 (de) * 2019-02-26 2024-03-20 Bayer Aktiengesellschaft Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
JPWO2020175491A1 (ja) * 2019-02-26 2021-11-11 日本曹達株式会社 ピリジン n−オキサイド化合物および有害生物防除剤
TW202120479A (zh) 2019-11-27 2021-06-01 瑞士商先正達農作物保護公司 用於製備具有3-含硫取代基的5-氯-吡啶-2-羧酸及羧酸酯之方法
TW202134214A (zh) 2020-03-04 2021-09-16 瑞士商先正達農作物保護公司 用於製備具有3-含硫取代基的5-氯-吡啶-2-甲酸醯胺以及甲酸鹽之方法
KR20230039665A (ko) 2020-07-02 2023-03-21 바이엘 악티엔게젤샤프트 해충 방제제로서의 헤테로사이클 유도체
CN115996921A (zh) 2020-08-26 2023-04-21 先正达农作物保护股份公司 具有含硫取代基的2,2-二氟-1,3-苯并间二氧杂环戊烯衍生物的制备方法
BR112023025278A2 (pt) 2021-06-02 2024-02-27 Syngenta Crop Protection Ag Derivados heterocíclicos com substituintes contendo sulfoximina ativos em termos pesticidas

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125985A1 (en) 2009-04-28 2010-11-04 Sumitomo Chemical Company, Limited Fused heterocyclic compound and use thereof
WO2011040629A1 (en) 2009-09-30 2011-04-07 Sumitomo Chemical Company, Limited Composition and method for controlling arthropod pests
WO2012086848A1 (en) 2010-12-24 2012-06-28 Sumitomo Chemical Company, Limited Fused heterocyclic compound and use for pest control thereof
WO2013018928A1 (en) 2011-08-04 2013-02-07 Sumitomo Chemical Company, Limited Fused heterocyclic compound and use thereof for pest control
WO2013180194A1 (ja) 2012-05-30 2013-12-05 住友化学株式会社 縮合複素環化合物
WO2014119494A1 (ja) 2013-01-31 2014-08-07 住友化学株式会社 有害生物防除組成物及び有害生物の防除方法
US20170260182A1 (en) * 2014-09-16 2017-09-14 Syngenta Participations Ag Pesticidally active tetracyclic derivatives with sulphur containing substituents

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES517193A0 (es) * 1981-11-10 1983-12-01 Wellcome Found Un procedimiento para la preparacion de nuevos derivados de imidazo (4,5-c)piridina.
US4772600A (en) * 1986-06-09 1988-09-20 A. H. Robins Company, Inc. Fused imidazoheterocyclic compounds and pharmaceutical compositions
NZ242756A (en) * 1991-06-03 1994-07-26 Sumitomo Chemical Co Benzimidazole derivatives having a fused ring which contains 1 or 2 o atoms and at least 1 -cf2- unit; use as fungicides; and precursors
WO2012033548A2 (en) * 2010-09-07 2012-03-15 E. I. Du Pont De Nemours And Company Herbicidal bis-nitrogen-containing oxo and sulfono heterocycles
UY35421A (es) * 2013-03-15 2014-10-31 Nihon Nohyaku Co Ltd Compuesto heterocíclico condensado o su sal, insecticida agrícola u hortícola que comprende el comp uesto y método de uso del insecticida
CA2939575A1 (en) * 2014-02-17 2015-08-20 Bayer Cropscience Aktiengesellschaft 2-(het)aryl-substituted condensed bicyclic heterocycle derivatives as pest control agents
JP2014208695A (ja) * 2014-07-04 2014-11-06 住友化学株式会社 有害生物防除組成物およびその用途
CA2969600C (en) * 2014-12-17 2023-09-12 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulphur containing substituents

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125985A1 (en) 2009-04-28 2010-11-04 Sumitomo Chemical Company, Limited Fused heterocyclic compound and use thereof
WO2011040629A1 (en) 2009-09-30 2011-04-07 Sumitomo Chemical Company, Limited Composition and method for controlling arthropod pests
WO2012086848A1 (en) 2010-12-24 2012-06-28 Sumitomo Chemical Company, Limited Fused heterocyclic compound and use for pest control thereof
WO2013018928A1 (en) 2011-08-04 2013-02-07 Sumitomo Chemical Company, Limited Fused heterocyclic compound and use thereof for pest control
WO2013180194A1 (ja) 2012-05-30 2013-12-05 住友化学株式会社 縮合複素環化合物
WO2014119494A1 (ja) 2013-01-31 2014-08-07 住友化学株式会社 有害生物防除組成物及び有害生物の防除方法
US20170260182A1 (en) * 2014-09-16 2017-09-14 Syngenta Participations Ag Pesticidally active tetracyclic derivatives with sulphur containing substituents

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Extended European Search Report for EP14198495, dated Mar. 27, 2015.
International Search Report and Written Opinion for PCT/EP2015/079188, dated Feb. 19, 2016.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190308971A1 (en) * 2014-12-17 2019-10-10 Syngenta Participations Ag Pesticidally active hetrocyclic derivatives with sulphur containing substituents
US11072608B2 (en) * 2014-12-17 2021-07-27 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulphur containing substituents
US20210317119A1 (en) * 2014-12-17 2021-10-14 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulphur containing substituents

Also Published As

Publication number Publication date
UA122781C2 (uk) 2021-01-06
CA2969600C (en) 2023-09-12
KR102540827B1 (ko) 2023-06-05
CN110526911B (zh) 2022-09-13
EP3233851A1 (en) 2017-10-25
CN107001365A (zh) 2017-08-01
RU2017125267A3 (es) 2019-05-30
HUE050562T2 (hu) 2020-12-28
US20190308971A1 (en) 2019-10-10
LT3233851T (lt) 2020-09-25
JP2018509379A (ja) 2018-04-05
BR112017012638B1 (pt) 2021-07-27
RU2765282C2 (ru) 2022-01-28
DK3233851T3 (da) 2020-08-31
US20210317119A1 (en) 2021-10-14
PT3233851T (pt) 2020-08-28
KR20170095242A (ko) 2017-08-22
JP6675404B2 (ja) 2020-04-01
HRP20201355T1 (hr) 2020-11-27
AU2015366548B2 (en) 2020-08-20
CO2017005790A2 (es) 2017-08-31
RU2017125267A (ru) 2019-01-17
US20170342065A1 (en) 2017-11-30
CA2969600A1 (en) 2016-06-23
WO2016096584A1 (en) 2016-06-23
PL3233851T3 (pl) 2020-12-14
BR112017012638A2 (pt) 2018-04-10
US11072608B2 (en) 2021-07-27
SI3233851T1 (sl) 2020-10-30
CN107001365B (zh) 2019-09-24
CN110526911A (zh) 2019-12-03
MY182124A (en) 2021-01-18
RS60709B1 (sr) 2020-09-30
AU2015366548A1 (en) 2017-06-08
EP3233851B1 (en) 2020-05-27
ES2813952T3 (es) 2021-03-25
CL2017001533A1 (es) 2018-01-26
MX2017007900A (es) 2017-09-05
PH12017501013A1 (en) 2017-11-27

Similar Documents

Publication Publication Date Title
US11072608B2 (en) Pesticidally active heterocyclic derivatives with sulphur containing substituents
US10494368B2 (en) Pesticidally active tetracyclic derivatives with sulfur containing substituents
US9949483B2 (en) Pesticidally active heterocyclic derivatives with sulphur containing substituents
US10435401B2 (en) Pesticidally active tetracyclic derivatives with sulphur containing substituents
US10323031B2 (en) Pesticidally active tetracyclic derivatives with sulfur containing substituents
US10202380B2 (en) Pesticidally active tetracyclic derivatives with sulfur containing substituents
US9988366B2 (en) Pesticidally active heterocyclic derivatives with sulphur containing substituents
US9926294B2 (en) Pesticidally active heterocyclic derivatives with sulphur containing substituents
US20210403478A1 (en) Pesticidally active heterocyclic derivatives with sulfur containing substituents
US20190031667A1 (en) Pesticidally active heterocyclic derivatives with sulphur containing substituents
US11413291B2 (en) Pesticidally active heterocyclic derivatives with sulfur containing substituents
EP3245192A1 (en) Pesticidally active heterocyclic derivatives with sulphur containing substituents
US10894792B2 (en) Pesticidally active heterocyclic derivatives with sulfur containing substituents
US9701659B2 (en) Insecticidally active amide derivatives with sulfur-substituted phenyl or pyridine groups
US11252963B2 (en) Pesticidally active pyrazole derivatives
US20200253210A1 (en) Pesticidally Active Heterocyclic Derivatives With Sulphur Containing Substituents

Legal Events

Date Code Title Description
AS Assignment

Owner name: SYNGENTA PARTICIPATIONS AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUETER, OTTMAR FRANZ;EDMUNDS, ANDREW;JEANGUENAT, ANDRE;AND OTHERS;SIGNING DATES FROM 20151214 TO 20151215;REEL/FRAME:045861/0174

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4