US10059775B2 - Antibodies against the MUC1-C/extracellular domain (MUC1-C/ECD) - Google Patents
Antibodies against the MUC1-C/extracellular domain (MUC1-C/ECD) Download PDFInfo
- Publication number
- US10059775B2 US10059775B2 US15/113,956 US201515113956A US10059775B2 US 10059775 B2 US10059775 B2 US 10059775B2 US 201515113956 A US201515113956 A US 201515113956A US 10059775 B2 US10059775 B2 US 10059775B2
- Authority
- US
- United States
- Prior art keywords
- antibody
- cells
- muc1
- cell
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 87
- 150000007523 nucleic acids Chemical class 0.000 claims description 90
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 79
- 102000039446 nucleic acids Human genes 0.000 claims description 60
- 108020004707 nucleic acids Proteins 0.000 claims description 60
- 201000011510 cancer Diseases 0.000 claims description 51
- 102000004190 Enzymes Human genes 0.000 claims description 33
- 108090000790 Enzymes Proteins 0.000 claims description 33
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 24
- 239000002246 antineoplastic agent Substances 0.000 claims description 22
- 239000002502 liposome Substances 0.000 claims description 20
- 210000003719 b-lymphocyte Anatomy 0.000 claims description 19
- 230000001225 therapeutic effect Effects 0.000 claims description 18
- 108020001507 fusion proteins Proteins 0.000 claims description 12
- 102000037865 fusion proteins Human genes 0.000 claims description 12
- 229940041181 antineoplastic drug Drugs 0.000 claims description 9
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 7
- 241001529936 Murinae Species 0.000 claims description 7
- 239000003053 toxin Substances 0.000 claims description 7
- 231100000765 toxin Toxicity 0.000 claims description 7
- 108700012359 toxins Proteins 0.000 claims description 7
- 102000004127 Cytokines Human genes 0.000 claims description 6
- 108090000695 Cytokines Proteins 0.000 claims description 6
- 239000002105 nanoparticle Substances 0.000 claims description 4
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 claims description 3
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 claims description 3
- 101710160107 Outer membrane protein A Proteins 0.000 claims description 3
- 239000006249 magnetic particle Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 108
- 230000027455 binding Effects 0.000 abstract description 67
- 239000000427 antigen Substances 0.000 abstract description 51
- 108091007433 antigens Proteins 0.000 abstract description 51
- 102000036639 antigens Human genes 0.000 abstract description 51
- 102100034256 Mucin-1 Human genes 0.000 abstract description 2
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 636
- 108090000623 proteins and genes Proteins 0.000 description 257
- 102000004169 proteins and genes Human genes 0.000 description 127
- 235000018102 proteins Nutrition 0.000 description 118
- 239000013598 vector Substances 0.000 description 90
- 108010008707 Mucin-1 Proteins 0.000 description 78
- 102000007298 Mucin-1 Human genes 0.000 description 77
- 230000014509 gene expression Effects 0.000 description 65
- 238000011282 treatment Methods 0.000 description 62
- 241000701161 unidentified adenovirus Species 0.000 description 50
- 229940027941 immunoglobulin g Drugs 0.000 description 49
- 239000003550 marker Substances 0.000 description 49
- 239000000203 mixture Substances 0.000 description 47
- 229940024606 amino acid Drugs 0.000 description 46
- 108020004414 DNA Proteins 0.000 description 45
- 235000001014 amino acid Nutrition 0.000 description 44
- 239000003795 chemical substances by application Substances 0.000 description 44
- 102000004196 processed proteins & peptides Human genes 0.000 description 44
- 241000700605 Viruses Species 0.000 description 43
- 150000001413 amino acids Chemical class 0.000 description 41
- 210000001519 tissue Anatomy 0.000 description 38
- 239000012103 Alexa Fluor 488 Substances 0.000 description 33
- 241000282414 Homo sapiens Species 0.000 description 33
- 108091028043 Nucleic acid sequence Proteins 0.000 description 33
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 32
- 239000003446 ligand Substances 0.000 description 32
- 229940088598 enzyme Drugs 0.000 description 31
- 208000026310 Breast neoplasm Diseases 0.000 description 30
- 210000004408 hybridoma Anatomy 0.000 description 30
- 206010006187 Breast cancer Diseases 0.000 description 29
- 229920001184 polypeptide Polymers 0.000 description 29
- 102000005962 receptors Human genes 0.000 description 29
- 108020003175 receptors Proteins 0.000 description 29
- 241000699666 Mus <mouse, genus> Species 0.000 description 27
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 26
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 26
- 239000002953 phosphate buffered saline Substances 0.000 description 26
- 238000004519 manufacturing process Methods 0.000 description 25
- 230000006870 function Effects 0.000 description 24
- 208000015181 infectious disease Diseases 0.000 description 24
- 206010035226 Plasma cell myeloma Diseases 0.000 description 23
- 239000003814 drug Substances 0.000 description 23
- 239000003623 enhancer Substances 0.000 description 23
- 239000000047 product Substances 0.000 description 23
- 238000002965 ELISA Methods 0.000 description 22
- 201000008275 breast carcinoma Diseases 0.000 description 22
- 238000012546 transfer Methods 0.000 description 22
- 230000009257 reactivity Effects 0.000 description 21
- 239000000523 sample Substances 0.000 description 21
- 230000003612 virological effect Effects 0.000 description 21
- 238000002347 injection Methods 0.000 description 20
- 239000007924 injection Substances 0.000 description 20
- 239000012528 membrane Substances 0.000 description 20
- 201000000050 myeloid neoplasm Diseases 0.000 description 20
- 238000004806 packaging method and process Methods 0.000 description 20
- 238000010186 staining Methods 0.000 description 20
- 229940049595 antibody-drug conjugate Drugs 0.000 description 19
- 238000006243 chemical reaction Methods 0.000 description 19
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 18
- 229940079593 drug Drugs 0.000 description 18
- 238000011534 incubation Methods 0.000 description 18
- 230000001105 regulatory effect Effects 0.000 description 18
- 238000013518 transcription Methods 0.000 description 18
- 230000035897 transcription Effects 0.000 description 18
- 239000013603 viral vector Substances 0.000 description 18
- 230000015572 biosynthetic process Effects 0.000 description 17
- 238000001514 detection method Methods 0.000 description 17
- 210000004379 membrane Anatomy 0.000 description 17
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 17
- 210000004881 tumor cell Anatomy 0.000 description 17
- 241001430294 unidentified retrovirus Species 0.000 description 17
- 238000001262 western blot Methods 0.000 description 17
- 241000283707 Capra Species 0.000 description 16
- 241001465754 Metazoa Species 0.000 description 16
- 230000004927 fusion Effects 0.000 description 16
- 230000001404 mediated effect Effects 0.000 description 16
- 230000001177 retroviral effect Effects 0.000 description 16
- 238000003757 reverse transcription PCR Methods 0.000 description 16
- 210000002845 virion Anatomy 0.000 description 16
- 108010019670 Chimeric Antigen Receptors Proteins 0.000 description 15
- 241000700584 Simplexvirus Species 0.000 description 15
- 238000010166 immunofluorescence Methods 0.000 description 15
- 238000000338 in vitro Methods 0.000 description 15
- 238000001727 in vivo Methods 0.000 description 15
- 108060003951 Immunoglobulin Proteins 0.000 description 14
- 239000000611 antibody drug conjugate Substances 0.000 description 14
- 238000003556 assay Methods 0.000 description 14
- 230000008045 co-localization Effects 0.000 description 14
- 239000000562 conjugate Substances 0.000 description 14
- 239000012634 fragment Substances 0.000 description 14
- 102000018358 immunoglobulin Human genes 0.000 description 14
- 102100035360 Cerebellar degeneration-related antigen 1 Human genes 0.000 description 13
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 13
- 108700019146 Transgenes Proteins 0.000 description 13
- 230000008901 benefit Effects 0.000 description 13
- 230000012010 growth Effects 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- 238000003776 cleavage reaction Methods 0.000 description 12
- 238000011161 development Methods 0.000 description 12
- 230000018109 developmental process Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 239000013604 expression vector Substances 0.000 description 12
- 238000001476 gene delivery Methods 0.000 description 12
- 230000002458 infectious effect Effects 0.000 description 12
- 230000008488 polyadenylation Effects 0.000 description 12
- 230000010076 replication Effects 0.000 description 12
- 230000007017 scission Effects 0.000 description 12
- 241000894007 species Species 0.000 description 12
- 241000699670 Mus sp. Species 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- 238000013459 approach Methods 0.000 description 11
- 238000004520 electroporation Methods 0.000 description 11
- 238000000684 flow cytometry Methods 0.000 description 11
- 238000002649 immunization Methods 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 238000002560 therapeutic procedure Methods 0.000 description 11
- 230000014616 translation Effects 0.000 description 11
- 238000005406 washing Methods 0.000 description 11
- 239000004971 Cross linker Substances 0.000 description 10
- 239000004698 Polyethylene Substances 0.000 description 10
- 102100024952 Protein CBFA2T1 Human genes 0.000 description 10
- 210000000170 cell membrane Anatomy 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 230000001472 cytotoxic effect Effects 0.000 description 10
- 230000003203 everyday effect Effects 0.000 description 10
- 239000000499 gel Substances 0.000 description 10
- 230000003053 immunization Effects 0.000 description 10
- 229940127121 immunoconjugate Drugs 0.000 description 10
- 229920001223 polyethylene glycol Polymers 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 238000001890 transfection Methods 0.000 description 10
- 241000196324 Embryophyta Species 0.000 description 9
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 9
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 9
- 239000002202 Polyethylene glycol Substances 0.000 description 9
- -1 antibodies Proteins 0.000 description 9
- 229960002685 biotin Drugs 0.000 description 9
- 235000020958 biotin Nutrition 0.000 description 9
- 239000011616 biotin Substances 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 230000002401 inhibitory effect Effects 0.000 description 9
- 239000013642 negative control Substances 0.000 description 9
- 210000002569 neuron Anatomy 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000000746 purification Methods 0.000 description 9
- 210000002966 serum Anatomy 0.000 description 9
- 230000008685 targeting Effects 0.000 description 9
- 230000009466 transformation Effects 0.000 description 9
- 238000013519 translation Methods 0.000 description 9
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 8
- 238000012286 ELISA Assay Methods 0.000 description 8
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 8
- 108020004459 Small interfering RNA Proteins 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 8
- 125000003275 alpha amino acid group Chemical group 0.000 description 8
- 230000010261 cell growth Effects 0.000 description 8
- 230000001413 cellular effect Effects 0.000 description 8
- 229940127089 cytotoxic agent Drugs 0.000 description 8
- 210000001163 endosome Anatomy 0.000 description 8
- 230000002163 immunogen Effects 0.000 description 8
- 230000001939 inductive effect Effects 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 8
- 230000002441 reversible effect Effects 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 238000012216 screening Methods 0.000 description 8
- 239000003981 vehicle Substances 0.000 description 8
- 206010009944 Colon cancer Diseases 0.000 description 7
- 102000001301 EGF receptor Human genes 0.000 description 7
- 108060006698 EGF receptor Proteins 0.000 description 7
- 102100034349 Integrase Human genes 0.000 description 7
- 239000002671 adjuvant Substances 0.000 description 7
- 125000000539 amino acid group Chemical group 0.000 description 7
- 230000003321 amplification Effects 0.000 description 7
- 231100000433 cytotoxic Toxicity 0.000 description 7
- 230000002950 deficient Effects 0.000 description 7
- 238000012217 deletion Methods 0.000 description 7
- 230000037430 deletion Effects 0.000 description 7
- 238000003119 immunoblot Methods 0.000 description 7
- 238000013507 mapping Methods 0.000 description 7
- 201000001441 melanoma Diseases 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- 239000002773 nucleotide Substances 0.000 description 7
- 125000003729 nucleotide group Chemical group 0.000 description 7
- 210000003463 organelle Anatomy 0.000 description 7
- 238000012163 sequencing technique Methods 0.000 description 7
- 238000006467 substitution reaction Methods 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 6
- MFRNYXJJRJQHNW-DEMKXPNLSA-N (2s)-2-[[(2r,3r)-3-methoxy-3-[(2s)-1-[(3r,4s,5s)-3-methoxy-5-methyl-4-[methyl-[(2s)-3-methyl-2-[[(2s)-3-methyl-2-(methylamino)butanoyl]amino]butanoyl]amino]heptanoyl]pyrrolidin-2-yl]-2-methylpropanoyl]amino]-3-phenylpropanoic acid Chemical compound CN[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H]([C@@H](C)CC)[C@H](OC)CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 MFRNYXJJRJQHNW-DEMKXPNLSA-N 0.000 description 6
- 239000012099 Alexa Fluor family Substances 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 6
- 201000009030 Carcinoma Diseases 0.000 description 6
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 241000725303 Human immunodeficiency virus Species 0.000 description 6
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 6
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 6
- 206010061218 Inflammation Diseases 0.000 description 6
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 6
- 241000713666 Lentivirus Species 0.000 description 6
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 6
- 239000000020 Nitrocellulose Substances 0.000 description 6
- 241000710960 Sindbis virus Species 0.000 description 6
- 108091008874 T cell receptors Proteins 0.000 description 6
- 241000700618 Vaccinia virus Species 0.000 description 6
- 108700005077 Viral Genes Proteins 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 230000006907 apoptotic process Effects 0.000 description 6
- 229940098773 bovine serum albumin Drugs 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 238000010367 cloning Methods 0.000 description 6
- 230000001086 cytosolic effect Effects 0.000 description 6
- 238000010790 dilution Methods 0.000 description 6
- 239000012895 dilution Substances 0.000 description 6
- 239000012636 effector Substances 0.000 description 6
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 6
- 238000001415 gene therapy Methods 0.000 description 6
- 229940072221 immunoglobulins Drugs 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 239000000543 intermediate Substances 0.000 description 6
- 208000020816 lung neoplasm Diseases 0.000 description 6
- 210000003712 lysosome Anatomy 0.000 description 6
- 230000001868 lysosomic effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 108010059074 monomethylauristatin F Proteins 0.000 description 6
- 229920001220 nitrocellulos Polymers 0.000 description 6
- 210000000952 spleen Anatomy 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 5
- 241000282412 Homo Species 0.000 description 5
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 5
- 241001135569 Human adenovirus 5 Species 0.000 description 5
- 101150027427 ICP4 gene Proteins 0.000 description 5
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 5
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 5
- 239000004472 Lysine Substances 0.000 description 5
- 108700026244 Open Reading Frames Proteins 0.000 description 5
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 5
- 241000700159 Rattus Species 0.000 description 5
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 5
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 5
- 208000024313 Testicular Neoplasms Diseases 0.000 description 5
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 235000009697 arginine Nutrition 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 210000000234 capsid Anatomy 0.000 description 5
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 5
- 229960004316 cisplatin Drugs 0.000 description 5
- 235000018417 cysteine Nutrition 0.000 description 5
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 210000002919 epithelial cell Anatomy 0.000 description 5
- 210000003527 eukaryotic cell Anatomy 0.000 description 5
- 230000007717 exclusion Effects 0.000 description 5
- 230000002068 genetic effect Effects 0.000 description 5
- 210000003128 head Anatomy 0.000 description 5
- 210000003494 hepatocyte Anatomy 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- 230000028993 immune response Effects 0.000 description 5
- 238000003018 immunoassay Methods 0.000 description 5
- 230000004054 inflammatory process Effects 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 238000002372 labelling Methods 0.000 description 5
- 210000004072 lung Anatomy 0.000 description 5
- 208000008443 pancreatic carcinoma Diseases 0.000 description 5
- 244000052769 pathogen Species 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 235000013930 proline Nutrition 0.000 description 5
- 238000003127 radioimmunoassay Methods 0.000 description 5
- 108091008146 restriction endonucleases Proteins 0.000 description 5
- LPMXVESGRSUGHW-UHFFFAOYSA-N Acolongiflorosid K Natural products OC1C(O)C(O)C(C)OC1OC1CC2(O)CCC3C4(O)CCC(C=5COC(=O)C=5)C4(C)CC(O)C3C2(CO)C(O)C1 LPMXVESGRSUGHW-UHFFFAOYSA-N 0.000 description 4
- 239000004475 Arginine Substances 0.000 description 4
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 4
- 108090001008 Avidin Proteins 0.000 description 4
- 102000015735 Beta-catenin Human genes 0.000 description 4
- 108060000903 Beta-catenin Proteins 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 4
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 4
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 4
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 4
- 230000005778 DNA damage Effects 0.000 description 4
- 231100000277 DNA damage Toxicity 0.000 description 4
- 239000004471 Glycine Substances 0.000 description 4
- 208000009329 Graft vs Host Disease Diseases 0.000 description 4
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 4
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 4
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 4
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 4
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 4
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 4
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 4
- 102000015728 Mucins Human genes 0.000 description 4
- 108010063954 Mucins Proteins 0.000 description 4
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 4
- LPMXVESGRSUGHW-GHYGWZAOSA-N Ouabain Natural products O([C@@H]1[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O1)[C@H]1C[C@@H](O)[C@@]2(CO)[C@@](O)(C1)CC[C@H]1[C@]3(O)[C@@](C)([C@H](C4=CC(=O)OC4)CC3)C[C@@H](O)[C@H]21 LPMXVESGRSUGHW-GHYGWZAOSA-N 0.000 description 4
- 206010033128 Ovarian cancer Diseases 0.000 description 4
- 206010061535 Ovarian neoplasm Diseases 0.000 description 4
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 4
- 239000004365 Protease Substances 0.000 description 4
- 108010076504 Protein Sorting Signals Proteins 0.000 description 4
- 238000012300 Sequence Analysis Methods 0.000 description 4
- 241000713311 Simian immunodeficiency virus Species 0.000 description 4
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 4
- 208000000453 Skin Neoplasms Diseases 0.000 description 4
- 108010090804 Streptavidin Chemical class 0.000 description 4
- 244000166550 Strophanthus gratus Species 0.000 description 4
- 102000013530 TOR Serine-Threonine Kinases Human genes 0.000 description 4
- 108010065917 TOR Serine-Threonine Kinases Proteins 0.000 description 4
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 4
- IEDXPSOJFSVCKU-HOKPPMCLSA-N [4-[[(2S)-5-(carbamoylamino)-2-[[(2S)-2-[6-(2,5-dioxopyrrolidin-1-yl)hexanoylamino]-3-methylbutanoyl]amino]pentanoyl]amino]phenyl]methyl N-[(2S)-1-[[(2S)-1-[[(3R,4S,5S)-1-[(2S)-2-[(1R,2R)-3-[[(1S,2R)-1-hydroxy-1-phenylpropan-2-yl]amino]-1-methoxy-2-methyl-3-oxopropyl]pyrrolidin-1-yl]-3-methoxy-5-methyl-1-oxoheptan-4-yl]-methylamino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]-N-methylcarbamate Chemical compound CC[C@H](C)[C@@H]([C@@H](CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C)[C@@H](O)c1ccccc1)OC)N(C)C(=O)[C@@H](NC(=O)[C@H](C(C)C)N(C)C(=O)OCc1ccc(NC(=O)[C@H](CCCNC(N)=O)NC(=O)[C@@H](NC(=O)CCCCCN2C(=O)CCC2=O)C(C)C)cc1)C(C)C IEDXPSOJFSVCKU-HOKPPMCLSA-N 0.000 description 4
- 239000011543 agarose gel Substances 0.000 description 4
- 230000001093 anti-cancer Effects 0.000 description 4
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 4
- 235000009582 asparagine Nutrition 0.000 description 4
- 229960001230 asparagine Drugs 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 239000001506 calcium phosphate Substances 0.000 description 4
- 229910000389 calcium phosphate Inorganic materials 0.000 description 4
- 235000011010 calcium phosphates Nutrition 0.000 description 4
- 230000004611 cancer cell death Effects 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 4
- 239000003431 cross linking reagent Substances 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 239000002254 cytotoxic agent Substances 0.000 description 4
- 231100000599 cytotoxic agent Toxicity 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 206010017758 gastric cancer Diseases 0.000 description 4
- 238000001502 gel electrophoresis Methods 0.000 description 4
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 4
- 208000024908 graft versus host disease Diseases 0.000 description 4
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 4
- 210000004201 immune sera Anatomy 0.000 description 4
- 229940042743 immune sera Drugs 0.000 description 4
- 230000005847 immunogenicity Effects 0.000 description 4
- 238000003364 immunohistochemistry Methods 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 210000002510 keratinocyte Anatomy 0.000 description 4
- 208000032839 leukemia Diseases 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 201000005202 lung cancer Diseases 0.000 description 4
- 201000005296 lung carcinoma Diseases 0.000 description 4
- 230000003211 malignant effect Effects 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 229960000485 methotrexate Drugs 0.000 description 4
- 229940051875 mucins Drugs 0.000 description 4
- 210000004940 nucleus Anatomy 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- LPMXVESGRSUGHW-HBYQJFLCSA-N ouabain Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1O[C@@H]1C[C@@]2(O)CC[C@H]3[C@@]4(O)CC[C@H](C=5COC(=O)C=5)[C@@]4(C)C[C@@H](O)[C@@H]3[C@@]2(CO)[C@H](O)C1 LPMXVESGRSUGHW-HBYQJFLCSA-N 0.000 description 4
- 229960003343 ouabain Drugs 0.000 description 4
- 230000002018 overexpression Effects 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- 229960003330 pentetic acid Drugs 0.000 description 4
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 4
- 239000002644 phorbol ester Substances 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 108700004029 pol Genes Proteins 0.000 description 4
- 239000013641 positive control Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000002062 proliferating effect Effects 0.000 description 4
- 210000001938 protoplast Anatomy 0.000 description 4
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 239000006152 selective media Substances 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- 201000000849 skin cancer Diseases 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 210000001550 testis Anatomy 0.000 description 4
- 125000003396 thiol group Chemical group [H]S* 0.000 description 4
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 4
- 230000029812 viral genome replication Effects 0.000 description 4
- AGNGYMCLFWQVGX-AGFFZDDWSA-N (e)-1-[(2s)-2-amino-2-carboxyethoxy]-2-diazonioethenolate Chemical compound OC(=O)[C@@H](N)CO\C([O-])=C\[N+]#N AGNGYMCLFWQVGX-AGFFZDDWSA-N 0.000 description 3
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 3
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 3
- 102000009027 Albumins Human genes 0.000 description 3
- 108010088751 Albumins Proteins 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 3
- 206010008342 Cervix carcinoma Diseases 0.000 description 3
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 3
- 241000701022 Cytomegalovirus Species 0.000 description 3
- 230000004543 DNA replication Effects 0.000 description 3
- 229920002307 Dextran Polymers 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 3
- 102000003886 Glycoproteins Human genes 0.000 description 3
- 108090000288 Glycoproteins Proteins 0.000 description 3
- 101000914324 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 5 Proteins 0.000 description 3
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 3
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 3
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 3
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 3
- 208000034578 Multiple myelomas Diseases 0.000 description 3
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 3
- 229930193140 Neomycin Natural products 0.000 description 3
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 3
- 241000276498 Pollachius virens Species 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 108091081024 Start codon Proteins 0.000 description 3
- 208000005718 Stomach Neoplasms Diseases 0.000 description 3
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 3
- 206010057644 Testis cancer Diseases 0.000 description 3
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 3
- 239000004473 Threonine Substances 0.000 description 3
- 108020004440 Thymidine kinase Proteins 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 3
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 3
- 206010046865 Vaccinia virus infection Diseases 0.000 description 3
- 108010067390 Viral Proteins Proteins 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 239000008272 agar Substances 0.000 description 3
- 238000000246 agarose gel electrophoresis Methods 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 229960003896 aminopterin Drugs 0.000 description 3
- 230000000692 anti-sense effect Effects 0.000 description 3
- 230000000259 anti-tumor effect Effects 0.000 description 3
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 3
- 239000012736 aqueous medium Substances 0.000 description 3
- 210000001130 astrocyte Anatomy 0.000 description 3
- 229950011321 azaserine Drugs 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000013592 cell lysate Substances 0.000 description 3
- 201000010881 cervical cancer Diseases 0.000 description 3
- 239000003593 chromogenic compound Substances 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 239000013599 cloning vector Substances 0.000 description 3
- 208000029742 colonic neoplasm Diseases 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 238000012258 culturing Methods 0.000 description 3
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 3
- 239000002619 cytotoxin Substances 0.000 description 3
- 238000006471 dimerization reaction Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 108700004025 env Genes Proteins 0.000 description 3
- 229960005420 etoposide Drugs 0.000 description 3
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 3
- 239000012091 fetal bovine serum Substances 0.000 description 3
- 229960002949 fluorouracil Drugs 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 108700004026 gag Genes Proteins 0.000 description 3
- 230000001738 genotoxic effect Effects 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 101150028578 grp78 gene Proteins 0.000 description 3
- 208000014829 head and neck neoplasm Diseases 0.000 description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 3
- 210000005260 human cell Anatomy 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 210000002865 immune cell Anatomy 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 238000007912 intraperitoneal administration Methods 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 229960000310 isoleucine Drugs 0.000 description 3
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 3
- 230000002147 killing effect Effects 0.000 description 3
- 210000000265 leukocyte Anatomy 0.000 description 3
- 201000007270 liver cancer Diseases 0.000 description 3
- 208000014018 liver neoplasm Diseases 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- 230000002132 lysosomal effect Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 3
- 238000000520 microinjection Methods 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 229960004927 neomycin Drugs 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 238000011275 oncology therapy Methods 0.000 description 3
- 201000002528 pancreatic cancer Diseases 0.000 description 3
- 230000001717 pathogenic effect Effects 0.000 description 3
- 102000013415 peroxidase activity proteins Human genes 0.000 description 3
- 108040007629 peroxidase activity proteins Proteins 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 101150088264 pol gene Proteins 0.000 description 3
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 3
- 229920000136 polysorbate Polymers 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 150000003141 primary amines Chemical group 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- XOJVVFBFDXDTEG-UHFFFAOYSA-N pristane Chemical compound CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 3
- 230000002285 radioactive effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 238000010839 reverse transcription Methods 0.000 description 3
- 230000003248 secreting effect Effects 0.000 description 3
- 210000001082 somatic cell Anatomy 0.000 description 3
- 238000000527 sonication Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 230000009870 specific binding Effects 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 201000011549 stomach cancer Diseases 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000002626 targeted therapy Methods 0.000 description 3
- 201000003120 testicular cancer Diseases 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 208000007089 vaccinia Diseases 0.000 description 3
- CJDRUOGAGYHKKD-XMTJACRCSA-N (+)-Ajmaline Natural products O[C@H]1[C@@H](CC)[C@@H]2[C@@H]3[C@H](O)[C@@]45[C@@H](N(C)c6c4cccc6)[C@@H](N1[C@H]3C5)C2 CJDRUOGAGYHKKD-XMTJACRCSA-N 0.000 description 2
- GKSPIZSKQWTXQG-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-[1-(pyridin-2-yldisulfanyl)ethyl]benzoate Chemical group C=1C=C(C(=O)ON2C(CCC2=O)=O)C=CC=1C(C)SSC1=CC=CC=N1 GKSPIZSKQWTXQG-UHFFFAOYSA-N 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- VGIRNWJSIRVFRT-UHFFFAOYSA-N 2',7'-difluorofluorescein Chemical compound OC(=O)C1=CC=CC=C1C1=C2C=C(F)C(=O)C=C2OC2=CC(O)=C(F)C=C21 VGIRNWJSIRVFRT-UHFFFAOYSA-N 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 241000710929 Alphavirus Species 0.000 description 2
- 206010003571 Astrocytoma Diseases 0.000 description 2
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 2
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 2
- 208000003174 Brain Neoplasms Diseases 0.000 description 2
- 208000005623 Carcinogenesis Diseases 0.000 description 2
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 2
- 208000003322 Coinfection Diseases 0.000 description 2
- 108060005980 Collagenase Proteins 0.000 description 2
- 102000029816 Collagenase Human genes 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- 101710112752 Cytotoxin Proteins 0.000 description 2
- 150000008574 D-amino acids Chemical class 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 2
- 241000702421 Dependoparvovirus Species 0.000 description 2
- 102100024746 Dihydrofolate reductase Human genes 0.000 description 2
- 206010013801 Duchenne Muscular Dystrophy Diseases 0.000 description 2
- 108010069091 Dystrophin Proteins 0.000 description 2
- 101150029662 E1 gene Proteins 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 2
- 108700041152 Endoplasmic Reticulum Chaperone BiP Proteins 0.000 description 2
- 102100021451 Endoplasmic reticulum chaperone BiP Human genes 0.000 description 2
- 101710091045 Envelope protein Proteins 0.000 description 2
- 241000713730 Equine infectious anemia virus Species 0.000 description 2
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 2
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 2
- 101710193519 Glial fibrillary acidic protein Proteins 0.000 description 2
- 206010018338 Glioma Diseases 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 239000004366 Glucose oxidase Substances 0.000 description 2
- 108010015776 Glucose oxidase Proteins 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 108010051975 Glycogen Synthase Kinase 3 beta Proteins 0.000 description 2
- 102100038104 Glycogen synthase kinase-3 beta Human genes 0.000 description 2
- 101150112743 HSPA5 gene Proteins 0.000 description 2
- 208000031220 Hemophilia Diseases 0.000 description 2
- 208000009292 Hemophilia A Diseases 0.000 description 2
- 102100037907 High mobility group protein B1 Human genes 0.000 description 2
- 101710168537 High mobility group protein B1 Proteins 0.000 description 2
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 2
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 2
- 101001042049 Human herpesvirus 1 (strain 17) Transcriptional regulator ICP22 Proteins 0.000 description 2
- 101000999690 Human herpesvirus 2 (strain HG52) E3 ubiquitin ligase ICP22 Proteins 0.000 description 2
- 102000018251 Hypoxanthine Phosphoribosyltransferase Human genes 0.000 description 2
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- 102000003996 Interferon-beta Human genes 0.000 description 2
- 108090000467 Interferon-beta Proteins 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- 108090001005 Interleukin-6 Proteins 0.000 description 2
- ZQISRDCJNBUVMM-UHFFFAOYSA-N L-Histidinol Natural products OCC(N)CC1=CN=CN1 ZQISRDCJNBUVMM-UHFFFAOYSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- 150000008575 L-amino acids Chemical class 0.000 description 2
- ZQISRDCJNBUVMM-YFKPBYRVSA-N L-histidinol Chemical compound OC[C@@H](N)CC1=CNC=N1 ZQISRDCJNBUVMM-YFKPBYRVSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- 239000000232 Lipid Bilayer Substances 0.000 description 2
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 2
- 102000043131 MHC class II family Human genes 0.000 description 2
- 108091054438 MHC class II family Proteins 0.000 description 2
- 108010059343 MM Form Creatine Kinase Proteins 0.000 description 2
- 102000003792 Metallothionein Human genes 0.000 description 2
- 108090000157 Metallothionein Proteins 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 241000713869 Moloney murine leukemia virus Species 0.000 description 2
- 241000714177 Murine leukemia virus Species 0.000 description 2
- 108010021466 Mutant Proteins Proteins 0.000 description 2
- 102000008300 Mutant Proteins Human genes 0.000 description 2
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- 108010069196 Neural Cell Adhesion Molecules Proteins 0.000 description 2
- 102400000058 Neuregulin-1 Human genes 0.000 description 2
- 108090000556 Neuregulin-1 Proteins 0.000 description 2
- 108090001074 Nucleocapsid Proteins Proteins 0.000 description 2
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 2
- 241001452677 Ogataea methanolica Species 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 108010068647 P2 peptide Proteins 0.000 description 2
- 101800004193 Peptide P3 Proteins 0.000 description 2
- 108010071690 Prealbumin Proteins 0.000 description 2
- 102000007584 Prealbumin Human genes 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 2
- 108010072866 Prostate-Specific Antigen Proteins 0.000 description 2
- 102100038358 Prostate-specific antigen Human genes 0.000 description 2
- 108010039230 Protein Kinase C-delta Proteins 0.000 description 2
- 101710188315 Protein X Proteins 0.000 description 2
- 102100037340 Protein kinase C delta type Human genes 0.000 description 2
- 102000007615 Pulmonary Surfactant-Associated Protein A Human genes 0.000 description 2
- 108010007100 Pulmonary Surfactant-Associated Protein A Proteins 0.000 description 2
- 239000013614 RNA sample Substances 0.000 description 2
- 239000012980 RPMI-1640 medium Substances 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 208000015634 Rectal Neoplasms Diseases 0.000 description 2
- 241001068263 Replication competent viruses Species 0.000 description 2
- 108060006706 SRC Proteins 0.000 description 2
- 102000001332 SRC Human genes 0.000 description 2
- 101100111629 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR2 gene Proteins 0.000 description 2
- 108010071390 Serum Albumin Proteins 0.000 description 2
- 102000007562 Serum Albumin Human genes 0.000 description 2
- 102000054727 Serum Amyloid A Human genes 0.000 description 2
- 108700028909 Serum Amyloid A Proteins 0.000 description 2
- 240000003768 Solanum lycopersicum Species 0.000 description 2
- 101710172711 Structural protein Proteins 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- GAMYVSCDDLXAQW-AOIWZFSPSA-N Thermopsosid Natural products O(C)c1c(O)ccc(C=2Oc3c(c(O)cc(O[C@H]4[C@H](O)[C@@H](O)[C@H](O)[C@H](CO)O4)c3)C(=O)C=2)c1 GAMYVSCDDLXAQW-AOIWZFSPSA-N 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 102000006601 Thymidine Kinase Human genes 0.000 description 2
- 235000021307 Triticum Nutrition 0.000 description 2
- 244000098338 Triticum aestivum Species 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 2
- 102100040247 Tumor necrosis factor Human genes 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 108010046334 Urease Proteins 0.000 description 2
- 208000002495 Uterine Neoplasms Diseases 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 108010003205 Vasoactive Intestinal Peptide Proteins 0.000 description 2
- 102400000015 Vasoactive intestinal peptide Human genes 0.000 description 2
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 2
- 208000036142 Viral infection Diseases 0.000 description 2
- 102000013814 Wnt Human genes 0.000 description 2
- 108050003627 Wnt Proteins 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 239000007801 affinity label Substances 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 102000013529 alpha-Fetoproteins Human genes 0.000 description 2
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000001028 anti-proliverative effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 229940009098 aspartate Drugs 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 2
- 229960000074 biopharmaceutical Drugs 0.000 description 2
- 229960003008 blinatumomab Drugs 0.000 description 2
- 108010006025 bovine growth hormone Proteins 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 230000036952 cancer formation Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 231100000504 carcinogenesis Toxicity 0.000 description 2
- 230000032823 cell division Effects 0.000 description 2
- 238000000006 cell growth inhibition assay Methods 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000000973 chemotherapeutic effect Effects 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229960002424 collagenase Drugs 0.000 description 2
- 210000003022 colostrum Anatomy 0.000 description 2
- 235000021277 colostrum Nutrition 0.000 description 2
- 238000002648 combination therapy Methods 0.000 description 2
- 230000001268 conjugating effect Effects 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 210000000172 cytosol Anatomy 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 239000000032 diagnostic agent Substances 0.000 description 2
- 229940039227 diagnostic agent Drugs 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 108020001096 dihydrofolate reductase Proteins 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 229960001484 edetic acid Drugs 0.000 description 2
- 238000001378 electrochemiluminescence detection Methods 0.000 description 2
- 101150030339 env gene Proteins 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 201000004101 esophageal cancer Diseases 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 208000021045 exocrine pancreatic carcinoma Diseases 0.000 description 2
- 210000003722 extracellular fluid Anatomy 0.000 description 2
- XHEFDIBZLJXQHF-UHFFFAOYSA-N fisetin Chemical compound C=1C(O)=CC=C(C(C=2O)=O)C=1OC=2C1=CC=C(O)C(O)=C1 XHEFDIBZLJXQHF-UHFFFAOYSA-N 0.000 description 2
- 229930003944 flavone Natural products 0.000 description 2
- 150000002212 flavone derivatives Chemical class 0.000 description 2
- 235000011949 flavones Nutrition 0.000 description 2
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 2
- 101150098622 gag gene Proteins 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 102000034356 gene-regulatory proteins Human genes 0.000 description 2
- 108091006104 gene-regulatory proteins Proteins 0.000 description 2
- 231100000024 genotoxic Toxicity 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 210000005046 glial fibrillary acidic protein Anatomy 0.000 description 2
- 229940116332 glucose oxidase Drugs 0.000 description 2
- 235000019420 glucose oxidase Nutrition 0.000 description 2
- 108010017007 glucose-regulated proteins Proteins 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 125000001188 haloalkyl group Chemical group 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229940022353 herceptin Drugs 0.000 description 2
- 238000001794 hormone therapy Methods 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 239000012216 imaging agent Substances 0.000 description 2
- 230000003100 immobilizing effect Effects 0.000 description 2
- 239000012642 immune effector Substances 0.000 description 2
- 230000008105 immune reaction Effects 0.000 description 2
- 229940121354 immunomodulator Drugs 0.000 description 2
- 238000009169 immunotherapy Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- APFVFJFRJDLVQX-AHCXROLUSA-N indium-111 Chemical compound [111In] APFVFJFRJDLVQX-AHCXROLUSA-N 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 229940079322 interferon Drugs 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- VBUWHHLIZKOSMS-RIWXPGAOSA-N invicorp Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)C(C)C)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=C(O)C=C1 VBUWHHLIZKOSMS-RIWXPGAOSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- IYRMWMYZSQPJKC-UHFFFAOYSA-N kaempferol Chemical compound C1=CC(O)=CC=C1C1=C(O)C(=O)C2=C(O)C=C(O)C=C2O1 IYRMWMYZSQPJKC-UHFFFAOYSA-N 0.000 description 2
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 208000019423 liver disease Diseases 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 101710130522 mRNA export factor Proteins 0.000 description 2
- 108010026228 mRNA guanylyltransferase Proteins 0.000 description 2
- 235000009973 maize Nutrition 0.000 description 2
- 208000026037 malignant tumor of neck Diseases 0.000 description 2
- 210000002752 melanocyte Anatomy 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 210000003470 mitochondria Anatomy 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- UXOUKMQIEVGVLY-UHFFFAOYSA-N morin Natural products OC1=CC(O)=CC(C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 UXOUKMQIEVGVLY-UHFFFAOYSA-N 0.000 description 2
- 210000005170 neoplastic cell Anatomy 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 238000007500 overflow downdraw method Methods 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000005298 paramagnetic effect Effects 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 235000020030 perry Nutrition 0.000 description 2
- 238000002823 phage display Methods 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- CTRLRINCMYICJO-UHFFFAOYSA-N phenyl azide Chemical class [N-]=[N+]=NC1=CC=CC=C1 CTRLRINCMYICJO-UHFFFAOYSA-N 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 210000002826 placenta Anatomy 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 230000001566 pro-viral effect Effects 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 210000002307 prostate Anatomy 0.000 description 2
- 235000019419 proteases Nutrition 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 229950010131 puromycin Drugs 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 206010038038 rectal cancer Diseases 0.000 description 2
- 201000001275 rectum cancer Diseases 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 208000016691 refractory malignant neoplasm Diseases 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000003362 replicative effect Effects 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 210000004116 schwann cell Anatomy 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 208000000649 small cell carcinoma Diseases 0.000 description 2
- 208000000587 small cell lung carcinoma Diseases 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Inorganic materials [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- ABZLKHKQJHEPAX-UHFFFAOYSA-N tetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C([O-])=O ABZLKHKQJHEPAX-UHFFFAOYSA-N 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 230000017423 tissue regeneration Effects 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 229960000575 trastuzumab Drugs 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 241000701447 unidentified baculovirus Species 0.000 description 2
- 241001529453 unidentified herpesvirus Species 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 206010046766 uterine cancer Diseases 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 108700026220 vif Genes Proteins 0.000 description 2
- 230000006648 viral gene expression Effects 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- VHBFFQKBGNRLFZ-UHFFFAOYSA-N vitamin p Natural products O1C2=CC=CC=C2C(=O)C=C1C1=CC=CC=C1 VHBFFQKBGNRLFZ-UHFFFAOYSA-N 0.000 description 2
- 239000012130 whole-cell lysate Substances 0.000 description 2
- QGVLYPPODPLXMB-UBTYZVCOSA-N (1aR,1bS,4aR,7aS,7bS,8R,9R,9aS)-4a,7b,9,9a-tetrahydroxy-3-(hydroxymethyl)-1,1,6,8-tetramethyl-1,1a,1b,4,4a,7a,7b,8,9,9a-decahydro-5H-cyclopropa[3,4]benzo[1,2-e]azulen-5-one Chemical compound C1=C(CO)C[C@]2(O)C(=O)C(C)=C[C@H]2[C@@]2(O)[C@H](C)[C@@H](O)[C@@]3(O)C(C)(C)[C@H]3[C@@H]21 QGVLYPPODPLXMB-UBTYZVCOSA-N 0.000 description 1
- KYRUKRFVOACELK-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(4-hydroxyphenyl)propanoate Chemical compound C1=CC(O)=CC=C1CCC(=O)ON1C(=O)CCC1=O KYRUKRFVOACELK-UHFFFAOYSA-N 0.000 description 1
- JWDFQMWEFLOOED-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(pyridin-2-yldisulfanyl)propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCSSC1=CC=CC=N1 JWDFQMWEFLOOED-UHFFFAOYSA-N 0.000 description 1
- FFILOTSTFMXQJC-QCFYAKGBSA-N (2r,4r,5s,6s)-2-[3-[(2s,3s,4r,6s)-6-[(2s,3r,4r,5s,6r)-5-[(2s,3r,4r,5r,6r)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(e)-3-hydroxy-2-(octadecanoylamino)octadec-4-enoxy]oxan-3-yl]oxy-3-hy Chemical compound O[C@@H]1[C@@H](O)[C@H](OCC(NC(=O)CCCCCCCCCCCCCCCCC)C(O)\C=C\CCCCCCCCCCCCC)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@]2(O[C@@H]([C@@H](N)[C@H](O)C2)C(O)C(O)CO[C@]2(O[C@@H]([C@@H](N)[C@H](O)C2)C(O)C(O)CO)C(O)=O)C(O)=O)[C@@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](CO)O1 FFILOTSTFMXQJC-QCFYAKGBSA-N 0.000 description 1
- VVJYUAYZJAKGRQ-BGZDPUMWSA-N 1-[(2r,4r,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)C1 VVJYUAYZJAKGRQ-BGZDPUMWSA-N 0.000 description 1
- PNDPGZBMCMUPRI-HVTJNCQCSA-N 10043-66-0 Chemical compound [131I][131I] PNDPGZBMCMUPRI-HVTJNCQCSA-N 0.000 description 1
- NVKAWKQGWWIWPM-ABEVXSGRSA-N 17-β-hydroxy-5-α-Androstan-3-one Chemical compound C1C(=O)CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@H]21 NVKAWKQGWWIWPM-ABEVXSGRSA-N 0.000 description 1
- WUAPFZMCVAUBPE-NJFSPNSNSA-N 188Re Chemical compound [188Re] WUAPFZMCVAUBPE-NJFSPNSNSA-N 0.000 description 1
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 1
- QFWCYNPOPKQOKV-UHFFFAOYSA-N 2-(2-amino-3-methoxyphenyl)chromen-4-one Chemical compound COC1=CC=CC(C=2OC3=CC=CC=C3C(=O)C=2)=C1N QFWCYNPOPKQOKV-UHFFFAOYSA-N 0.000 description 1
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 1
- MIJDSYMOBYNHOT-UHFFFAOYSA-N 2-(ethylamino)ethanol Chemical compound CCNCCO MIJDSYMOBYNHOT-UHFFFAOYSA-N 0.000 description 1
- KISWVXRQTGLFGD-UHFFFAOYSA-N 2-[[2-[[6-amino-2-[[2-[[2-[[5-amino-2-[[2-[[1-[2-[[6-amino-2-[(2,5-diamino-5-oxopentanoyl)amino]hexanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-(diaminomethylideneamino)p Chemical compound C1CCN(C(=O)C(CCCN=C(N)N)NC(=O)C(CCCCN)NC(=O)C(N)CCC(N)=O)C1C(=O)NC(CO)C(=O)NC(CCC(N)=O)C(=O)NC(CCCN=C(N)N)C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(C(=O)NC(CC(C)C)C(O)=O)CC1=CC=C(O)C=C1 KISWVXRQTGLFGD-UHFFFAOYSA-N 0.000 description 1
- WYKHSBAVLOPISI-UHFFFAOYSA-N 2-phenyl-1,3-thiazole Chemical compound C1=CSC(C=2C=CC=CC=2)=N1 WYKHSBAVLOPISI-UHFFFAOYSA-N 0.000 description 1
- ZOOGRGPOEVQQDX-UUOKFMHZSA-N 3',5'-cyclic GMP Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=C(NC2=O)N)=C2N=C1 ZOOGRGPOEVQQDX-UUOKFMHZSA-N 0.000 description 1
- DODQJNMQWMSYGS-QPLCGJKRSA-N 4-[(z)-1-[4-[2-(dimethylamino)ethoxy]phenyl]-1-phenylbut-1-en-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 DODQJNMQWMSYGS-QPLCGJKRSA-N 0.000 description 1
- IDLISIVVYLGCKO-UHFFFAOYSA-N 6-carboxy-4',5'-dichloro-2',7'-dimethoxyfluorescein Chemical compound O1C(=O)C2=CC=C(C(O)=O)C=C2C21C1=CC(OC)=C(O)C(Cl)=C1OC1=C2C=C(OC)C(O)=C1Cl IDLISIVVYLGCKO-UHFFFAOYSA-N 0.000 description 1
- BZTDTCNHAFUJOG-UHFFFAOYSA-N 6-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=CC=C(C(=O)O)C=C21 BZTDTCNHAFUJOG-UHFFFAOYSA-N 0.000 description 1
- ZKZAGYAWABUULM-UHFFFAOYSA-N 7-(3-oxobutan-2-yloxy)-4-phenylchromen-2-one Chemical compound C=1C(=O)OC2=CC(OC(C)C(C)=O)=CC=C2C=1C1=CC=CC=C1 ZKZAGYAWABUULM-UHFFFAOYSA-N 0.000 description 1
- WVKLERKKJXUPIK-UHFFFAOYSA-N 7-phenylmethoxy-4-(trifluoromethyl)chromen-2-one Chemical compound C1=CC=2C(C(F)(F)F)=CC(=O)OC=2C=C1OCC1=CC=CC=C1 WVKLERKKJXUPIK-UHFFFAOYSA-N 0.000 description 1
- LPXQRXLUHJKZIE-UHFFFAOYSA-N 8-azaguanine Chemical compound NC1=NC(O)=C2NN=NC2=N1 LPXQRXLUHJKZIE-UHFFFAOYSA-N 0.000 description 1
- 229960005508 8-azaguanine Drugs 0.000 description 1
- 239000013607 AAV vector Substances 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 102100022900 Actin, cytoplasmic 1 Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 206010048998 Acute phase reaction Diseases 0.000 description 1
- 108010024223 Adenine phosphoribosyltransferase Proteins 0.000 description 1
- 208000010507 Adenocarcinoma of Lung Diseases 0.000 description 1
- 206010001258 Adenoviral infections Diseases 0.000 description 1
- 108700026758 Adenovirus hexon capsid Proteins 0.000 description 1
- 102100033312 Alpha-2-macroglobulin Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 208000031295 Animal disease Diseases 0.000 description 1
- 240000003291 Armoracia rusticana Species 0.000 description 1
- 235000011330 Armoracia rusticana Nutrition 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 241000711404 Avian avulavirus 1 Species 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 206010005949 Bone cancer Diseases 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 241000197194 Bulla Species 0.000 description 1
- RMERUDLYXPKRLQ-RDFAWOBMSA-N CC[C@H](C)[C@@H]([C@@H](CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)C[C@@H](CC1=CC=CC=C1)C(=O)O)OC)N(C)C(=O)C(CC(=O)[C@H](C(C)C)N(C)C(=O)OCC1=CC=C(NC(=O)C(CCCNC(N)=O)CC(=O)[C@@H](NC(=O)CCCCCN2C(=O)C=CC2=O)C(C)C)C=C1)C(C)C Chemical compound CC[C@H](C)[C@@H]([C@@H](CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)C[C@@H](CC1=CC=CC=C1)C(=O)O)OC)N(C)C(=O)C(CC(=O)[C@H](C(C)C)N(C)C(=O)OCC1=CC=C(NC(=O)C(CCCNC(N)=O)CC(=O)[C@@H](NC(=O)CCCCCN2C(=O)C=CC2=O)C(C)C)C=C1)C(C)C RMERUDLYXPKRLQ-RDFAWOBMSA-N 0.000 description 1
- 229940124293 CD30 monoclonal antibody Drugs 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 description 1
- 241000701157 Canine mastadenovirus A Species 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000016362 Catenins Human genes 0.000 description 1
- 108010067316 Catenins Proteins 0.000 description 1
- 102000005600 Cathepsins Human genes 0.000 description 1
- 108010084457 Cathepsins Proteins 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 102100023321 Ceruloplasmin Human genes 0.000 description 1
- 101710163595 Chaperone protein DnaK Proteins 0.000 description 1
- 108091007741 Chimeric antigen receptor T cells Proteins 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 102100028757 Chondroitin sulfate proteoglycan 4 Human genes 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- 102000012422 Collagen Type I Human genes 0.000 description 1
- 108010022452 Collagen Type I Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 239000012624 DNA alkylating agent Substances 0.000 description 1
- 239000012623 DNA damaging agent Substances 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 108700010025 DRD1 Proteins 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- UBSCDKPKWHYZNX-UHFFFAOYSA-N Demethoxycapillarisin Natural products C1=CC(O)=CC=C1OC1=CC(=O)C2=C(O)C=C(O)C=C2O1 UBSCDKPKWHYZNX-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 206010058314 Dysplasia Diseases 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 102000001039 Dystrophin Human genes 0.000 description 1
- 102100023431 E3 ubiquitin-protein ligase TRIM21 Human genes 0.000 description 1
- 101150029707 ERBB2 gene Proteins 0.000 description 1
- 241000710945 Eastern equine encephalitis virus Species 0.000 description 1
- 241000257465 Echinoidea Species 0.000 description 1
- 102100039328 Endoplasmin Human genes 0.000 description 1
- 102100030013 Endoribonuclease Human genes 0.000 description 1
- 101710199605 Endoribonuclease Proteins 0.000 description 1
- 102400000792 Endothelial monocyte-activating polypeptide 2 Human genes 0.000 description 1
- 101710121417 Envelope glycoprotein Proteins 0.000 description 1
- 108010055196 EphA2 Receptor Proteins 0.000 description 1
- 102100030340 Ephrin type-A receptor 2 Human genes 0.000 description 1
- 102000018651 Epithelial Cell Adhesion Molecule Human genes 0.000 description 1
- 108010066687 Epithelial Cell Adhesion Molecule Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 208000031637 Erythroblastic Acute Leukemia Diseases 0.000 description 1
- 208000036566 Erythroleukaemia Diseases 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 229940102550 Estrogen receptor antagonist Drugs 0.000 description 1
- 241000233756 Fabriciana elisa Species 0.000 description 1
- 102000015212 Fas Ligand Protein Human genes 0.000 description 1
- 108010039471 Fas Ligand Protein Proteins 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000724791 Filamentous phage Species 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- 108010001515 Galectin 4 Proteins 0.000 description 1
- 102100039556 Galectin-4 Human genes 0.000 description 1
- GYHNNYVSQQEPJS-OIOBTWANSA-N Gallium-67 Chemical compound [67Ga] GYHNNYVSQQEPJS-OIOBTWANSA-N 0.000 description 1
- 208000018522 Gastrointestinal disease Diseases 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 208000015872 Gaucher disease Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- JRZJKWGQFNTSRN-UHFFFAOYSA-N Geldanamycin Natural products C1C(C)CC(OC)C(O)C(C)C=C(C)C(OC(N)=O)C(OC)CCC=C(C)C(=O)NC2=CC(=O)C(OC)=C1C2=O JRZJKWGQFNTSRN-UHFFFAOYSA-N 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 241000699694 Gerbillinae Species 0.000 description 1
- 241000713813 Gibbon ape leukemia virus Species 0.000 description 1
- 102000053171 Glial Fibrillary Acidic Human genes 0.000 description 1
- 102100039289 Glial fibrillary acidic protein Human genes 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 102000001398 Granzyme Human genes 0.000 description 1
- 108060005986 Granzyme Proteins 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 102100028967 HLA class I histocompatibility antigen, alpha chain G Human genes 0.000 description 1
- 108010062347 HLA-DQ Antigens Proteins 0.000 description 1
- 108010067802 HLA-DR alpha-Chains Proteins 0.000 description 1
- 108010024164 HLA-G Antigens Proteins 0.000 description 1
- 101710178376 Heat shock 70 kDa protein Proteins 0.000 description 1
- 101710152018 Heat shock cognate 70 kDa protein Proteins 0.000 description 1
- 101710113864 Heat shock protein 90 Proteins 0.000 description 1
- 102100021519 Hemoglobin subunit beta Human genes 0.000 description 1
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 241000175212 Herpesvirales Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101710155188 Hexon-interlacing protein Proteins 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 101100005713 Homo sapiens CD4 gene Proteins 0.000 description 1
- 101000916489 Homo sapiens Chondroitin sulfate proteoglycan 4 Proteins 0.000 description 1
- 101000685877 Homo sapiens E3 ubiquitin-protein ligase TRIM21 Proteins 0.000 description 1
- 101000840258 Homo sapiens Immunoglobulin J chain Proteins 0.000 description 1
- 101100343328 Homo sapiens LIMK2 gene Proteins 0.000 description 1
- 101100346929 Homo sapiens MUC1 gene Proteins 0.000 description 1
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 description 1
- 101000829725 Homo sapiens Phospholipid hydroperoxide glutathione peroxidase Proteins 0.000 description 1
- 101001056234 Homo sapiens Sperm mitochondrial-associated cysteine-rich protein Proteins 0.000 description 1
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 241000598171 Human adenovirus sp. Species 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- 101100195053 Human herpesvirus 1 (strain 17) RIR1 gene Proteins 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 102100029098 Hypoxanthine-guanine phosphoribosyltransferase Human genes 0.000 description 1
- 101150090364 ICP0 gene Proteins 0.000 description 1
- 102000009438 IgE Receptors Human genes 0.000 description 1
- 108010073816 IgE Receptors Proteins 0.000 description 1
- 208000024781 Immune Complex disease Diseases 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 1
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 1
- 102100029571 Immunoglobulin J chain Human genes 0.000 description 1
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 1
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 241000712431 Influenza A virus Species 0.000 description 1
- 108020005350 Initiator Codon Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001117 Insulin-Like Growth Factor II Proteins 0.000 description 1
- 102100025947 Insulin-like growth factor II Human genes 0.000 description 1
- 108010061833 Integrases Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 102000010789 Interleukin-2 Receptors Human genes 0.000 description 1
- 108010038453 Interleukin-2 Receptors Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- ZCYVEMRRCGMTRW-AHCXROLUSA-N Iodine-123 Chemical compound [123I] ZCYVEMRRCGMTRW-AHCXROLUSA-N 0.000 description 1
- 102100040445 Keratin, type I cytoskeletal 14 Human genes 0.000 description 1
- 108010066321 Keratin-14 Proteins 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 1
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 1
- 102100038609 Lactoperoxidase Human genes 0.000 description 1
- 108010023244 Lactoperoxidase Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 208000032420 Latent Infection Diseases 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 102000043129 MHC class I family Human genes 0.000 description 1
- 108091054437 MHC class I family Proteins 0.000 description 1
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 description 1
- 102000000422 Matrix Metalloproteinase 3 Human genes 0.000 description 1
- 229930126263 Maytansine Natural products 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 101710201349 Metallothionein B Proteins 0.000 description 1
- 102100031347 Metallothionein-2 Human genes 0.000 description 1
- 101710094505 Metallothionein-2 Proteins 0.000 description 1
- YXOLAZRVSSWPPT-UHFFFAOYSA-N Morin Chemical compound OC1=CC(O)=CC=C1C1=C(O)C(=O)C2=C(O)C=C(O)C=C2O1 YXOLAZRVSSWPPT-UHFFFAOYSA-N 0.000 description 1
- 241000711408 Murine respirovirus Species 0.000 description 1
- 101100007124 Mus musculus Col11a2 gene Proteins 0.000 description 1
- 101100444898 Mus musculus Egr1 gene Proteins 0.000 description 1
- 208000021642 Muscular disease Diseases 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- NXTVQNIVUKXOIL-UHFFFAOYSA-N N-chlorotoluene-p-sulfonamide Chemical compound CC1=CC=C(S(=O)(=O)NCl)C=C1 NXTVQNIVUKXOIL-UHFFFAOYSA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- 108700019961 Neoplasm Genes Proteins 0.000 description 1
- 102000048850 Neoplasm Genes Human genes 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 102000001068 Neural Cell Adhesion Molecules Human genes 0.000 description 1
- 102100023616 Neural cell adhesion molecule L1-like protein Human genes 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 102000006570 Non-Histone Chromosomal Proteins Human genes 0.000 description 1
- 108010008964 Non-Histone Chromosomal Proteins Proteins 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 108091006033 O-glycosylated proteins Proteins 0.000 description 1
- AWZJFZMWSUBJAJ-UHFFFAOYSA-N OG-514 dye Chemical compound OC(=O)CSC1=C(F)C(F)=C(C(O)=O)C(C2=C3C=C(F)C(=O)C=C3OC3=CC(O)=C(F)C=C32)=C1F AWZJFZMWSUBJAJ-UHFFFAOYSA-N 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 102000004067 Osteocalcin Human genes 0.000 description 1
- 108090000573 Osteocalcin Proteins 0.000 description 1
- 108010058846 Ovalbumin Proteins 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 102000016387 Pancreatic elastase Human genes 0.000 description 1
- 108010067372 Pancreatic elastase Proteins 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 241000282520 Papio Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108010029182 Pectin lyase Proteins 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 108010043958 Peptoids Proteins 0.000 description 1
- KHGNFPUMBJSZSM-UHFFFAOYSA-N Perforine Natural products COC1=C2CCC(O)C(CCC(C)(C)O)(OC)C2=NC2=C1C=CO2 KHGNFPUMBJSZSM-UHFFFAOYSA-N 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000709664 Picornaviridae Species 0.000 description 1
- 102000037602 Platelet Endothelial Cell Adhesion Molecule-1 Human genes 0.000 description 1
- 108010069381 Platelet Endothelial Cell Adhesion Molecule-1 Proteins 0.000 description 1
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 1
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 1
- 208000000474 Poliomyelitis Diseases 0.000 description 1
- 108010076039 Polyproteins Proteins 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 108010015078 Pregnancy-Associated alpha 2-Macroglobulins Proteins 0.000 description 1
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 description 1
- 108050003267 Prostaglandin G/H synthase 2 Proteins 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 102000004245 Proteasome Endopeptidase Complex Human genes 0.000 description 1
- 108090000708 Proteasome Endopeptidase Complex Proteins 0.000 description 1
- 102000003923 Protein Kinase C Human genes 0.000 description 1
- 108090000315 Protein Kinase C Proteins 0.000 description 1
- 102000007568 Proto-Oncogene Proteins c-fos Human genes 0.000 description 1
- 108010071563 Proto-Oncogene Proteins c-fos Proteins 0.000 description 1
- 241000125945 Protoparvovirus Species 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 102000009572 RNA Polymerase II Human genes 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 238000011530 RNeasy Mini Kit Methods 0.000 description 1
- 101000868151 Rattus norvegicus Somatotropin Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 206010038111 Recurrent cancer Diseases 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 241000702263 Reovirus sp. Species 0.000 description 1
- PLXBWHJQWKZRKG-UHFFFAOYSA-N Resazurin Chemical compound C1=CC(=O)C=C2OC3=CC(O)=CC=C3[N+]([O-])=C21 PLXBWHJQWKZRKG-UHFFFAOYSA-N 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 238000011579 SCID mouse model Methods 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 241000710961 Semliki Forest virus Species 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 101710113029 Serine/threonine-protein kinase Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 240000006394 Sorghum bicolor Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 101100289792 Squirrel monkey polyomavirus large T gene Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical class [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229940123237 Taxane Drugs 0.000 description 1
- 241001116500 Taxus Species 0.000 description 1
- GKLVYJBZJHMRIY-OUBTZVSYSA-N Technetium-99 Chemical compound [99Tc] GKLVYJBZJHMRIY-OUBTZVSYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical class IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- GYDJEQRTZSCIOI-UHFFFAOYSA-N Tranexamic acid Chemical compound NCC1CCC(C(O)=O)CC1 GYDJEQRTZSCIOI-UHFFFAOYSA-N 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 102000013394 Troponin I Human genes 0.000 description 1
- 108010065729 Troponin I Proteins 0.000 description 1
- 102000004243 Tubulin Human genes 0.000 description 1
- 108090000704 Tubulin Proteins 0.000 description 1
- 102100022153 Tumor necrosis factor receptor superfamily member 4 Human genes 0.000 description 1
- 101710165473 Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 description 1
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 description 1
- 206010054000 Type II hypersensitivity Diseases 0.000 description 1
- 206010053614 Type III immune complex mediated reaction Diseases 0.000 description 1
- 102100039094 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 241000710959 Venezuelan equine encephalitis virus Species 0.000 description 1
- 102100035071 Vimentin Human genes 0.000 description 1
- 108010065472 Vimentin Proteins 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 108010087302 Viral Structural Proteins Proteins 0.000 description 1
- 241000710951 Western equine encephalitis virus Species 0.000 description 1
- 230000004156 Wnt signaling pathway Effects 0.000 description 1
- 241000269370 Xenopus <genus> Species 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-OUBTZVSYSA-N Yttrium-90 Chemical compound [90Y] VWQVUPCCIRVNHF-OUBTZVSYSA-N 0.000 description 1
- 108010084455 Zeocin Proteins 0.000 description 1
- VRGWBRLULZUWAJ-XFFXIZSCSA-N [(2s)-2-[(1r,3z,5s,8z,12z,15s)-5,17-dihydroxy-4,8,12,15-tetramethyl-16-oxo-18-bicyclo[13.3.0]octadeca-3,8,12,17-tetraenyl]propyl] acetate Chemical compound C1\C=C(C)/CC\C=C(C)/CC[C@H](O)\C(C)=C/C[C@@H]2C([C@@H](COC(C)=O)C)=C(O)C(=O)[C@]21C VRGWBRLULZUWAJ-XFFXIZSCSA-N 0.000 description 1
- ZWBTYMGEBZUQTK-PVLSIAFMSA-N [(7S,9E,11S,12R,13S,14R,15R,16R,17S,18S,19E,21Z)-2,15,17,32-tetrahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-1'-(2-methylpropyl)-6,23-dioxospiro[8,33-dioxa-24,27,29-triazapentacyclo[23.6.1.14,7.05,31.026,30]tritriaconta-1(32),2,4,9,19,21,24,26,30-nonaene-28,4'-piperidine]-13-yl] acetate Chemical compound CO[C@H]1\C=C\O[C@@]2(C)Oc3c(C2=O)c2c4NC5(CCN(CC(C)C)CC5)N=c4c(=NC(=O)\C(C)=C/C=C/[C@H](C)[C@H](O)[C@@H](C)[C@@H](O)[C@@H](C)[C@H](OC(C)=O)[C@@H]1C)c(O)c2c(O)c3C ZWBTYMGEBZUQTK-PVLSIAFMSA-N 0.000 description 1
- 0 [1*]c1c([2*])c([3*])C2C([4*])=C([5*])C([6*])=C([7*])C2O1 Chemical compound [1*]c1c([2*])c([3*])C2C([4*])=C([5*])C([6*])=C([7*])C2O1 0.000 description 1
- PNDPGZBMCMUPRI-XXSWNUTMSA-N [125I][125I] Chemical compound [125I][125I] PNDPGZBMCMUPRI-XXSWNUTMSA-N 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 208000021841 acute erythroid leukemia Diseases 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 229940009456 adriamycin Drugs 0.000 description 1
- 238000003314 affinity selection Methods 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000012996 alamarblue reagent Substances 0.000 description 1
- HAXFWIACAGNFHA-UHFFFAOYSA-N aldrithiol Chemical compound C=1C=CC=NC=1SSC1=CC=CC=N1 HAXFWIACAGNFHA-UHFFFAOYSA-N 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- 101150087698 alpha gene Proteins 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 210000002588 alveolar type II cell Anatomy 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 125000002344 aminooxy group Chemical group [H]N([H])O[*] 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229940124650 anti-cancer therapies Drugs 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 229940044684 anti-microtubule agent Drugs 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 238000009175 antibody therapy Methods 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- 238000011319 anticancer therapy Methods 0.000 description 1
- 230000007503 antigenic stimulation Effects 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- KZNIFHPLKGYRTM-UHFFFAOYSA-N apigenin Chemical compound C1=CC(O)=CC=C1C1=CC(=O)C2=C(O)C=C(O)C=C2O1 KZNIFHPLKGYRTM-UHFFFAOYSA-N 0.000 description 1
- XADJWCRESPGUTB-UHFFFAOYSA-N apigenin Natural products C1=CC(O)=CC=C1C1=CC(=O)C2=CC(O)=C(O)C=C2O1 XADJWCRESPGUTB-UHFFFAOYSA-N 0.000 description 1
- 235000008714 apigenin Nutrition 0.000 description 1
- 229940117893 apigenin Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000001484 arginines Chemical class 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- RYXHOMYVWAEKHL-OUBTZVSYSA-N astatine-211 Chemical compound [211At] RYXHOMYVWAEKHL-OUBTZVSYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 108010044540 auristatin Proteins 0.000 description 1
- 229940120638 avastin Drugs 0.000 description 1
- OHDRQQURAXLVGJ-HLVWOLMTSA-N azane;(2e)-3-ethyl-2-[(e)-(3-ethyl-6-sulfo-1,3-benzothiazol-2-ylidene)hydrazinylidene]-1,3-benzothiazole-6-sulfonic acid Chemical compound [NH4+].[NH4+].S/1C2=CC(S([O-])(=O)=O)=CC=C2N(CC)C\1=N/N=C1/SC2=CC(S([O-])(=O)=O)=CC=C2N1CC OHDRQQURAXLVGJ-HLVWOLMTSA-N 0.000 description 1
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 1
- 229960000817 bazedoxifene Drugs 0.000 description 1
- UCJGJABZCDBEDK-UHFFFAOYSA-N bazedoxifene Chemical compound C=1C=C(OCCN2CCCCCC2)C=CC=1CN1C2=CC=C(O)C=C2C(C)=C1C1=CC=C(O)C=C1 UCJGJABZCDBEDK-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 1
- WPIHMWBQRSAMDE-YCZTVTEBSA-N beta-D-galactosyl-(1->4)-beta-D-galactosyl-N-(pentacosanoyl)sphingosine Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](CO[C@@H]1O[C@H](CO)[C@H](O[C@@H]2O[C@H](CO)[C@H](O)[C@H](O)[C@H]2O)[C@H](O)[C@H]1O)[C@H](O)\C=C\CCCCCCCCCCCCC WPIHMWBQRSAMDE-YCZTVTEBSA-N 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000003012 bilayer membrane Substances 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 208000002352 blister Diseases 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 229960000455 brentuximab vedotin Drugs 0.000 description 1
- 230000000981 bystander Effects 0.000 description 1
- 238000010805 cDNA synthesis kit Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 description 1
- 229940127093 camptothecin Drugs 0.000 description 1
- 230000009702 cancer cell proliferation Effects 0.000 description 1
- 239000012830 cancer therapeutic Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 150000001720 carbohydrates Chemical group 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000012832 cell culture technique Methods 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 230000009087 cell motility Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 238000003570 cell viability assay Methods 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 108091092328 cellular RNA Proteins 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- 229960005395 cetuximab Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000004697 chelate complex Chemical class 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 210000003837 chick embryo Anatomy 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 210000003763 chloroplast Anatomy 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- BFGKITSFLPAWGI-UHFFFAOYSA-N chromium(3+) Chemical compound [Cr+3] BFGKITSFLPAWGI-UHFFFAOYSA-N 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 230000006020 chronic inflammation Effects 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 230000006395 clathrin-mediated endocytosis Effects 0.000 description 1
- 229960003608 clomifene Drugs 0.000 description 1
- GKIRPKYJQBWNGO-OCEACIFDSA-N clomifene Chemical compound C1=CC(OCCN(CC)CC)=CC=C1C(\C=1C=CC=CC=1)=C(\Cl)C1=CC=CC=C1 GKIRPKYJQBWNGO-OCEACIFDSA-N 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- 230000000112 colonic effect Effects 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000004154 complement system Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-AKLPVKDBSA-N copper-67 Chemical compound [67Cu] RYGMFSIKBFXOCR-AKLPVKDBSA-N 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 230000000139 costimulatory effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 210000005220 cytoplasmic tail Anatomy 0.000 description 1
- 230000021040 cytoplasmic transport Effects 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 208000037771 disease arising from reactivation of latent virus Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 229930004069 diterpene Natural products 0.000 description 1
- 125000000567 diterpene group Chemical group 0.000 description 1
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 238000003110 dot immunobinding assay Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 210000003027 ear inner Anatomy 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000000408 embryogenic effect Effects 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 230000002121 endocytic effect Effects 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- 201000010063 epididymitis Diseases 0.000 description 1
- 230000001973 epigenetic effect Effects 0.000 description 1
- YJGVMLPVUAXIQN-UHFFFAOYSA-N epipodophyllotoxin Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YJGVMLPVUAXIQN-UHFFFAOYSA-N 0.000 description 1
- 210000005081 epithelial layer Anatomy 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 229940082789 erbitux Drugs 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- XJRPTMORGOIMMI-UHFFFAOYSA-N ethyl 2-amino-4-(trifluoromethyl)-1,3-thiazole-5-carboxylate Chemical compound CCOC(=O)C=1SC(N)=NC=1C(F)(F)F XJRPTMORGOIMMI-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- OGPBJKLSAFTDLK-IGMARMGPSA-N europium-152 Chemical compound [152Eu] OGPBJKLSAFTDLK-IGMARMGPSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002270 exclusion chromatography Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000011990 fisetin Nutrition 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- VRGWBRLULZUWAJ-UHFFFAOYSA-N fusaproliferin Natural products C1C=C(C)CCC=C(C)CCC(O)C(C)=CCC2C(C(COC(C)=O)C)=C(O)C(=O)C21C VRGWBRLULZUWAJ-UHFFFAOYSA-N 0.000 description 1
- 108010074605 gamma-Globulins Proteins 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 208000010749 gastric carcinoma Diseases 0.000 description 1
- 210000001156 gastric mucosa Anatomy 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 1
- 238000001641 gel filtration chromatography Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- QTQAWLPCGQOSGP-GBTDJJJQSA-N geldanamycin Chemical compound N1C(=O)\C(C)=C/C=C\[C@@H](OC)[C@H](OC(N)=O)\C(C)=C/[C@@H](C)[C@@H](O)[C@H](OC)C[C@@H](C)CC2=C(OC)C(=O)C=C1C2=O QTQAWLPCGQOSGP-GBTDJJJQSA-N 0.000 description 1
- 238000010363 gene targeting Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000009395 genetic defect Effects 0.000 description 1
- 231100000025 genetic toxicology Toxicity 0.000 description 1
- 231100000734 genotoxic potential Toxicity 0.000 description 1
- 230000000762 glandular Effects 0.000 description 1
- 229940080856 gleevec Drugs 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- CBMIPXHVOVTTTL-UHFFFAOYSA-N gold(3+) Chemical compound [Au+3] CBMIPXHVOVTTTL-UHFFFAOYSA-N 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 201000000459 head and neck squamous cell carcinoma Diseases 0.000 description 1
- 238000003505 heat denaturation Methods 0.000 description 1
- 239000003481 heat shock protein 90 inhibitor Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000003067 hemagglutinative effect Effects 0.000 description 1
- 230000002489 hematologic effect Effects 0.000 description 1
- 238000011134 hematopoietic stem cell transplantation Methods 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 239000012145 high-salt buffer Substances 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- SCKNFLZJSOHWIV-UHFFFAOYSA-N holmium(3+) Chemical compound [Ho+3] SCKNFLZJSOHWIV-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 102000057860 human MUC1 Human genes 0.000 description 1
- 235000020256 human milk Nutrition 0.000 description 1
- 210000004251 human milk Anatomy 0.000 description 1
- 230000004727 humoral immunity Effects 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 238000012872 hydroxylapatite chromatography Methods 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000016178 immune complex formation Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000008076 immune mechanism Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000013115 immunohistochemical detection Methods 0.000 description 1
- 238000013388 immunohistochemistry analysis Methods 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000001024 immunotherapeutic effect Effects 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000001524 infective effect Effects 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000004068 intracellular signaling Effects 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 229940084651 iressa Drugs 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 238000001155 isoelectric focusing Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 235000008777 kaempferol Nutrition 0.000 description 1
- MWDZOUNAPSSOEL-UHFFFAOYSA-N kaempferol Natural products OC1=C(C(=O)c2cc(O)cc(O)c2O1)c3ccc(O)cc3 MWDZOUNAPSSOEL-UHFFFAOYSA-N 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 229940057428 lactoperoxidase Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- CZMAIROVPAYCMU-UHFFFAOYSA-N lanthanum(3+) Chemical compound [La+3] CZMAIROVPAYCMU-UHFFFAOYSA-N 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- GXESHMAMLJKROZ-IAPPQJPRSA-N lasofoxifene Chemical compound C1([C@@H]2[C@@H](C3=CC=C(C=C3CC2)O)C=2C=CC(OCCN3CCCC3)=CC=2)=CC=CC=C1 GXESHMAMLJKROZ-IAPPQJPRSA-N 0.000 description 1
- 229960002367 lasofoxifene Drugs 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- XZEUAXYWNKYKPL-WDYNHAJCSA-N levormeloxifene Chemical compound C1([C@H]2[C@@H](C3=CC=C(C=C3OC2(C)C)OC)C=2C=CC(OCCN3CCCC3)=CC=2)=CC=CC=C1 XZEUAXYWNKYKPL-WDYNHAJCSA-N 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- WKPWGQKGSOKKOO-RSFHAFMBSA-N maytansine Chemical compound CO[C@@H]([C@@]1(O)C[C@](OC(=O)N1)([C@H]([C@@H]1O[C@@]1(C)[C@@H](OC(=O)[C@H](C)N(C)C(C)=O)CC(=O)N1C)C)[H])\C=C\C=C(C)\CC2=CC(OC)=C(Cl)C1=C2 WKPWGQKGSOKKOO-RSFHAFMBSA-N 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 108010000525 member 1 small inducible cytokine subfamily E Proteins 0.000 description 1
- ANZJBCHSOXCCRQ-FKUXLPTCSA-N mertansine Chemical compound CO[C@@H]([C@@]1(O)C[C@H](OC(=O)N1)[C@@H](C)[C@@H]1O[C@@]1(C)[C@@H](OC(=O)[C@H](C)N(C)C(=O)CCS)CC(=O)N1C)\C=C\C=C(C)\CC2=CC(OC)=C(Cl)C1=C2 ANZJBCHSOXCCRQ-FKUXLPTCSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001455 metallic ions Chemical class 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 208000037819 metastatic cancer Diseases 0.000 description 1
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- DYQNRMCKBFOWKH-UHFFFAOYSA-N methyl 4-hydroxybenzenecarboximidate Chemical compound COC(=N)C1=CC=C(O)C=C1 DYQNRMCKBFOWKH-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 231100000782 microtubule inhibitor Toxicity 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 230000011278 mitosis Effects 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 108091005573 modified proteins Proteins 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 108010093470 monomethyl auristatin E Proteins 0.000 description 1
- 235000007708 morin Nutrition 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 239000003471 mutagenic agent Substances 0.000 description 1
- 231100000707 mutagenic chemical Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 101150008049 mx gene Proteins 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 210000001087 myotubule Anatomy 0.000 description 1
- 210000004897 n-terminal region Anatomy 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 238000007857 nested PCR Methods 0.000 description 1
- 210000004412 neuroendocrine cell Anatomy 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 102000026415 nucleotide binding proteins Human genes 0.000 description 1
- 108091014756 nucleotide binding proteins Proteins 0.000 description 1
- 230000004145 nucleotide salvage Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 210000004248 oligodendroglia Anatomy 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 230000014207 opsonization Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229960003327 ormeloxifene Drugs 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 229940092253 ovalbumin Drugs 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- VYNDHICBIRRPFP-UHFFFAOYSA-N pacific blue Chemical compound FC1=C(O)C(F)=C2OC(=O)C(C(=O)O)=CC2=C1 VYNDHICBIRRPFP-UHFFFAOYSA-N 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 230000000242 pagocytic effect Effects 0.000 description 1
- 229960001972 panitumumab Drugs 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 230000007030 peptide scission Effects 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 229930192851 perforin Natural products 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- 210000003200 peritoneal cavity Anatomy 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- CWCMIVBLVUHDHK-ZSNHEYEWSA-N phleomycin D1 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC[C@@H](N=1)C=1SC=C(N=1)C(=O)NCCCCNC(N)=N)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C CWCMIVBLVUHDHK-ZSNHEYEWSA-N 0.000 description 1
- QGVLYPPODPLXMB-QXYKVGAMSA-N phorbol Natural products C[C@@H]1[C@@H](O)[C@]2(O)[C@H]([C@H]3C=C(CO)C[C@@]4(O)[C@H](C=C(C)C4=O)[C@@]13O)C2(C)C QGVLYPPODPLXMB-QXYKVGAMSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 101150088856 pix gene Proteins 0.000 description 1
- 230000037039 plant physiology Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- YJGVMLPVUAXIQN-XVVDYKMHSA-N podophyllotoxin Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H]3[C@@H]2C(OC3)=O)=C1 YJGVMLPVUAXIQN-XVVDYKMHSA-N 0.000 description 1
- 229960001237 podophyllotoxin Drugs 0.000 description 1
- YVCVYCSAAZQOJI-UHFFFAOYSA-N podophyllotoxin Natural products COC1=C(O)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YVCVYCSAAZQOJI-UHFFFAOYSA-N 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- DTBMTXYWRJNBGK-UHFFFAOYSA-L potassium;sodium;phthalate Chemical compound [Na+].[K+].[O-]C(=O)C1=CC=CC=C1C([O-])=O DTBMTXYWRJNBGK-UHFFFAOYSA-L 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 210000001948 pro-b lymphocyte Anatomy 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 238000011165 process development Methods 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 229930185346 proliferin Natural products 0.000 description 1
- 150000003148 prolines Chemical class 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 201000001514 prostate carcinoma Diseases 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 239000002213 purine nucleotide Substances 0.000 description 1
- 230000006825 purine synthesis Effects 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000013608 rAAV vector Substances 0.000 description 1
- 230000003439 radiotherapeutic effect Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 229960004622 raloxifene Drugs 0.000 description 1
- GZUITABIAKMVPG-UHFFFAOYSA-N raloxifene Chemical compound C1=CC(O)=CC=C1C1=C(C(=O)C=2C=CC(OCCN3CCCCC3)=CC=2)C2=CC=C(O)C=C2S1 GZUITABIAKMVPG-UHFFFAOYSA-N 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 1
- 238000013322 recombinant adeno-associated virus production system Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- WUAPFZMCVAUBPE-IGMARMGPSA-N rhenium-186 Chemical compound [186Re] WUAPFZMCVAUBPE-IGMARMGPSA-N 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229960000885 rifabutin Drugs 0.000 description 1
- 229960004641 rituximab Drugs 0.000 description 1
- DOSGOCSVHPUUIA-UHFFFAOYSA-N samarium(3+) Chemical compound [Sm+3] DOSGOCSVHPUUIA-UHFFFAOYSA-N 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000003118 sandwich ELISA Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000000333 selective estrogen receptor modulator Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000013605 shuttle vector Substances 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 238000012868 site-directed mutagenesis technique Methods 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 235000009518 sodium iodide Nutrition 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 108090000586 somatostatin receptor 2 Proteins 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 235000014347 soups Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 210000004988 splenocyte Anatomy 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 201000000498 stomach carcinoma Diseases 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 108091007196 stromelysin Proteins 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 210000000106 sweat gland Anatomy 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- AYUNIORJHRXIBJ-TXHRRWQRSA-N tanespimycin Chemical compound N1C(=O)\C(C)=C\C=C/[C@H](OC)[C@@H](OC(N)=O)\C(C)=C\[C@H](C)[C@@H](O)[C@@H](OC)C[C@H](C)CC2=C(NCC=C)C(=O)C=C1C2=O AYUNIORJHRXIBJ-TXHRRWQRSA-N 0.000 description 1
- 238000010863 targeted diagnosis Methods 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- GKLVYJBZJHMRIY-UHFFFAOYSA-N technetium atom Chemical compound [Tc] GKLVYJBZJHMRIY-UHFFFAOYSA-N 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- CNHYKKNIIGEXAY-UHFFFAOYSA-N thiolan-2-imine Chemical compound N=C1CCCS1 CNHYKKNIIGEXAY-UHFFFAOYSA-N 0.000 description 1
- 150000003573 thiols Chemical group 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 239000005495 thyroid hormone Substances 0.000 description 1
- 229940036555 thyroid hormone Drugs 0.000 description 1
- 210000001578 tight junction Anatomy 0.000 description 1
- 230000009258 tissue cross reactivity Effects 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- XFCLJVABOIYOMF-QPLCGJKRSA-N toremifene Chemical compound C1=CC(OCCN(C)C)=CC=C1C(\C=1C=CC=CC=1)=C(\CCCl)C1=CC=CC=C1 XFCLJVABOIYOMF-QPLCGJKRSA-N 0.000 description 1
- 229960005026 toremifene Drugs 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229960001612 trastuzumab emtansine Drugs 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- 208000022679 triple-negative breast carcinoma Diseases 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 210000002993 trophoblast Anatomy 0.000 description 1
- 239000000439 tumor marker Substances 0.000 description 1
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 1
- 230000008026 type II hypersensitivity Effects 0.000 description 1
- 230000028063 type III hypersensitivity Effects 0.000 description 1
- 208000025883 type III hypersensitivity disease Diseases 0.000 description 1
- 102000025979 tyrosine binding proteins Human genes 0.000 description 1
- 108091009188 tyrosine binding proteins Proteins 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 206010046885 vaginal cancer Diseases 0.000 description 1
- 208000013139 vaginal neoplasm Diseases 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229960001722 verapamil Drugs 0.000 description 1
- 210000005048 vimentin Anatomy 0.000 description 1
- 230000007442 viral DNA synthesis Effects 0.000 description 1
- 230000006656 viral protein synthesis Effects 0.000 description 1
- 230000001018 virulence Effects 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- SUPVGFZUWFMATN-UHFFFAOYSA-N zelavespib Chemical compound N1=CN=C2N(CCCNC(C)C)C(SC=3C(=CC=4OCOC=4C=3)I)=NC2=C1N SUPVGFZUWFMATN-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
- C07K16/3076—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties
- C07K16/3092—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties against tumour-associated mucins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/08—Peptides having 5 to 11 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/39558—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A61K47/48384—
-
- A61K47/48561—
-
- A61K47/48569—
-
- A61K47/48584—
-
- A61K47/48715—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6801—Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
- A61K47/6803—Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
- A61K47/68031—Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being an auristatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6801—Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
- A61K47/6803—Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
- A61K47/6811—Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6835—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
- A61K47/6849—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6835—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
- A61K47/6851—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6835—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
- A61K47/6851—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
- A61K47/6855—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from breast cancer cell
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6889—Conjugates wherein the antibody being the modifying agent and wherein the linker, binder or spacer confers particular properties to the conjugates, e.g. peptidic enzyme-labile linkers or acid-labile linkers, providing for an acid-labile immuno conjugate wherein the drug may be released from its antibody conjugated part in an acidic, e.g. tumoural or environment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/7051—T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2809—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
- C07K16/3015—Breast
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
- C07K16/3023—Lung
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
- C07K16/3061—Blood cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/31—Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/34—Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/77—Internalization into the cell
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/02—Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/03—Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/32—Fusion polypeptide fusions with soluble part of a cell surface receptor, "decoy receptors"
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/33—Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
Definitions
- the present invention relates generally to the fields of medicine, oncology and immunotherapeutics. More particularly, it concerns the development of immunoreagents for use in detecting and treating MUC1-positive cancers.
- Mucins are extensively O-glycosylated proteins that are predominantly expressed by epithelial cells.
- the secreted and membrane-bound mucins form a physical barrier that protects the apical borders of epithelial cells from damage induced by toxins, microorganisms and other forms of stress that occur at the interface with the external environment.
- the transmembrane mucin 1 can also signal to the interior of the cell through its cytoplasmic domain.
- MUC1 has no sequence similarity with other membrane-bound mucins, except for the presence of a sea urchin sperm protein-enterokinase-agrin (SEA) domain (Duraisamy et al., 2006). In that regard, MUC1 is translated as a single polypeptide and then undergoes autocleavage at the SEA domain Macao, 2006).
- SEA sea urchin sperm protein-enterokinase-agrin
- MUC1 has been studied extensively by the inventors and others for its role in cancer. As discussed above, human MUC1 is heterodimeric glycoprotein, translated as a single polypeptide and cleaved into N- and C-terminal subunits (MUC1-N and MUC1-C) in the endoplasmic reticulum (Lipponberg et al., 1992; Macao et al., 2006; Levitin et al., 2005).
- MUC1 Aberrant overexpression of MUC1, as found in most human carcinomas (Kufe et al., 1984), confers anchorage-independent growth and tumorigenicity (Li et al., 2003a; Huang et al., 2003; Schroeder et al., 2004; Huang et al., 2005). Other studies have demonstrated that overexpression of MUC1 confers resistance to apoptosis induced by oxidative stress and genotoxic anti-cancer agents (Yin and Kufe, 2003; Ren et al., 2004; Raina et al., 2004; Yin et al., 2004; Raina et al., 2006; Yin et al., 2007).
- the family of tethered and secreted mucins functions in providing a protective barrier of the epithelial cell surface. With damage to the epithelial layer, the tight junctions between neighboring cells are disrupted, and polarity is lost as the cells initiate a heregulin-induced repair program (Vermeer et al., 2003). MUC1-N is shed from the cell surface (Abe and Kufe, 1989), leaving MUC1-C to function as a transducer of environmental stress signals to the interior of the cell.
- MUC1-C forms cell surface complexes with members of the ErbB receptor family, and MUC1-C is targeted to the nucleus in the response to heregulin stimulation (Li et al., 2001; Li et al., 2003c).
- MUC1-C also functions in integrating the ErbB receptor and Wnt signaling pathways through direct interactions between the MUC1 cytoplasmic domain (CD) and members of the catenin family (Huang et al., 2005; Li et al., 2003c; Yamamoto et al., 1997; Li et al., 1998; Li et al., 2001; Li and Kufe, 2001).
- MUC1-CD is phosphorylated by glycogen synthase kinase 3 ⁇ , c-Src, protein kinase C ⁇ , and c-Abl (Raina et al., 2006; Li et al., 1998; Li et al., 2001; Ren et al., 2002). Inhibiting any of the foregoing interactions represents a potential point of therapeutic intervention for MUC1-related cancers.
- an antibody that binds selectively to MUC1-C/extracellular domain defined by SEQ ID NO: 2, wherein said antibody:
- the antibody may be a single chain antibody, a a single domain antibody, a chimeric antibody, or a Fab fragment.
- the antibody may be a recombinant antibody having specificity for the MUC1-C/ECD and a distinct cancer cell surface antigen.
- the antibody may be a murine antibody, an IgG, a humanized antibody or a humanized IgG.
- the antibody may further comprise a label, such as a peptide tag, an enzyme, a magnetic particle, a chromophore, a fluorescent molecule, a chemiluminescent molecule, or a dye.
- the antibody may further comprise an antitumor drug linked thereto, such as linked to said antibody through a photolabile linker or an enzymatically-cleaved linker.
- the antitumor drug may be a toxin, a radioisotope, a cytokine or an enzyme.
- the antibody may be conjugated to a nanoparticle or a liposome.
- the induction of cell death may comprise antibody-dependent cell cytotoxicity or complement-mediated cytoxocity.
- the MUC1-positive cancer cell may be a solid tumor cell, such as a lung cancer cell, brain cancer cell, head & neck cancer cell, breast cancer cell, skin cancer cell, liver cancer cell, pancreatic cancer cell, stomach cancer cell, colon cancer cell, rectal cancer cell, uterine cancer cell, cervical cancer cell, ovarian cancer cell, testicular cancer cell, skin cancer cell, or esophageal cancer cell, or may be a leukemia or myeloma such as acute myeloid leukemia, chronic myelogenous leukemia or multiple myeloma.
- a leukemia or myeloma such as acute myeloid leukemia, chronic myelogenous leukemia or multiple myeloma.
- the method may further comprise contacting said MUC1-positive cancer cell with a second anti-cancer agent or treatment, such as chemotherapy, radiotherapy, immunotherapy, hormonal therapy, or toxin therapy.
- a second anti-cancer agent or treatment such as chemotherapy, radiotherapy, immunotherapy, hormonal therapy, or toxin therapy.
- the second anti-cancer agent or treatment may inhibit an intracellular MUC1 function.
- the second anti-cancer agent or treatment may be given at the same time as said first agent, or given before and/or after said first agent.
- the MUC1-positive cancer cell may be a metastatic cancer cell, a multiply drug resistant cancer cell or a recurrent cancer cell.
- the antibody may be a single chain antibody, a a single domain antibody, a chimeric antibody, or a Fab fragment.
- the antibody may be a recombinant antibody having specificity for the MUC1-C/ECD and a distinct cancer cell surface antigen.
- the antibody may be a murine antibody, an IgG, a humanized antibody or a humanized IgG.
- the antibody may further comprise a label, such as a peptide tag, an enzyme, a magnetic particle, a chromophore, a fluorescent molecule, a chemiluminescent molecule, or a dye.
- the antibody may further comprise an antitumor drug linked thereto, such as linked to said antibody through a photolabile linker or an enzymatically-cleaved linker.
- the antitumor drug may be a toxin, a radioisotope, a cytokine or an enzyme.
- the antibody may be conjugated to a nanoparticle or a liposome.
- fusion protein comprising:
- a chimeric antigen receptor comprising:
- FIGS. 1A-B Amino acid sequence of MUC1-C/ECD (58 aa: SEQ ID NO: 2).
- FIG. 1B The construct mFc-linker-MUC1-C/ECD-signal sequence was stably expressed in CHO-K1 cells. The protein is purified from the soup of CHO cells and used to immunize mice. Same protein was used to boost the mice. Serum titers were determined and following positive titer, spleen was fused to generate hybridomas.
- FIGS. 2A-B Agarose gel electrophoresis of total RNA of the provided hybridoma 536064-1.
- FIG. 2A DNA Marker III.
- FIG. 2B Lane M, DNA Marker III; Lane R, total RNA of 536064-1.
- FIG. 3 Three overlapping peptides from the MUC1-C/ECD protein were synthesized to use in linear epitope mapping for positive Mab clones using ELISA assays.
- the sequences for the three peptides are: P1:SVVVQLTLAFREGTINVHDVET (SEQ ID NO: 33); P2:VETQFNQYKTEAASRYNLTISD (SEQ ID NO: 34); P3:TISDVSVSDVPFPFSAQSGAG (SEQ ID NO: 35).
- FIG. 4 MUC1-C/ECD cDNAs with several point mutants (as described above) were generated (ECD-WT—SEQ ID NO: 2; ECD-L6A—SEQ ID NO: 36; ECD-L8A—SEQ ID NO: 37; ECD-L6,8A—SEQ ID NO: 38; ECD-Q23V—SEQ ID NO 39; ECD-Q26V—SEQ ID NO: 40; ECD-N36A—SEQ ID NO: 41).
- CHO-K1 cells were individually transfected with each of these cDNAs to express and secrete protein. Proteins were purified and will be used to define conformational epitope for positive Mab clones using ELISA assays. The positive control will be wt mFc-MUC1-C/ECD protein expressed and purified from CHO-K1 cells.
- FIG. 5 Agarose gel electrophoresis of PCR products of 536064-1. Lane M, DNA Marker III; Lane 1, V h 536064-1; Lane 2, V L 536064-1.
- FIGS. 6A-C FIGS. 6A-C .
- FIG. 6A Following immunizations, mice were bled and the immune sera was analyzed by immunoblotting with MUC1-C/ECD protein. MUC1-C/CD protein was used as negative control.
- FIG. 6B MAb clone 8E1, 8F1, 2A6 and 6A6 were analyzed by immunoblotting with mFc- and hFc-MUC1-C/ECD protein purified from CHO-K1 cells. Secondary Ab: anti-mouse-HRP (F(ab)2 specific) (1:5000)
- FIG. 6C MUC1-negative 293T cells, NSCLC H-1975 and MCF-7 & ZR-75-1 breast carcinoma cell lysates were analyzed by immunoblotting with clone 6A6 antibody.
- FIG. 7 MAb clones 8E1, 6A6, 2G11 and 2H11 were analyzed by immunoblotting with mFc-MUC1-C/ECD (p58-mFc), MUC1-SEA domain (p62-mFc) and p62 only proteins produced and purified from bacteria.
- FIG. 8 MAb clones 8E1, 6A6, 2G11 and 2H11 were analyzed by immunoblotting with mFc-MUC1-C/ECD (p58-mFc), MUC1-SEA domain (p62-mFc) and p62 only proteins purified from bacteria.
- FIG. 9 MAb clones 8E1, 6A6, 2G11 and 2H11 were analyzed by immunoblotting with mFc-MUC1-C/ECD (p58-mFc), MUC1-SEA domain (p62-mFc) and p62 only proteins purified from bacteria.
- FIG. 10 MAb clones 8E1, 6A6 and positive control DF3 were analyzed by Flow cytometry using MV4-11, MOLM-14 (AML); U266, RPMI8226 (Multiple Myeloma) and primary AML cells.
- FIG. 11 MAb clones 8E1 and 6A6 were analyzed by Flow cytometry using K562/CsiRNA and K562/MUC1siRNA CML cells.
- FIG. 12 Internalization of FITC-labeled anti-MUC1-C/ECD MAb 8E1 using H-1975 non-small cell lung carcinoma cells at 37° C. for 3 hours. Capping and punctate staining in late endosoma/lysosomal vesicles (arrows).
- FIG. 13 Internalization of FITC-labeled anti-MUC1-C/ECD MAb 6A6 using H-1975 non-small cell lung carcinoma cells at 37° C. for 3 hrs. Capping and punctate staining in late endosomal/lysosomal vesicles (arrows).
- FIG. 14 Internalization of Alexa Fluor 488-labeled anti-MUC1-C/ECD antibody 6A6 using ZR-75-1 breast carcinoma cells at 37° C. for 3 hours.
- FIG. 15 Little, if any, staining of Alexa Fluor 488-labeled anti-MUC1-C/ECD antibody 6A6 using MUC1-negative HEK-293T cells at 4° C. or 37° C. for 3 hours.
- FIG. 16 Internalization of Alexa Fluor 488-labeled anti-MUC1-C/ECD antibody 8E1 using MOLM-14 AML cells at 37° C. for 3 hours.
- FIG. 17 Internalization of Alexa Fluor 488-labeled anti-MUC1-C/ECD antibody 8E1 using K562/MUC1siRNA and K562/CsiRNA CML cells at 37° C. for 3 hrs.
- FIG. 18 Plasma membrane staining of Alexa Fluor 488-labeled anti-MUC1-C/ECD antibody 6A6 and its colocalization with RFP early endosomal marker in ZR-75-1 breast carcinoma cells at 4° C.
- FIG. 19 Internalization of Alexa Fluor 488-labeled anti-MUC1-C/ECD antibody 6A6 and its colocalization with RFP-endocyte marker in ZR-75-1 breast carcinoma cells at 37° C.
- FIG. 20 Internalization of Alexa Fluor 488-labeled anti-MUC1-C/ECD antibody 6A6 and its colocalization (arrows) with RFP-endocyte marker in H-1975 NSCLC cells at 37° C.
- FIG. 21 Internalization of Alexa Fluor 488-labeled anti-MUC1-C/ECD antibody 8E1 and its colocalization (arrows) with RFP-endocyte marker in H-1975 NSCLC cells at 37° C.
- FIG. 22 Internalization of Alexa Fluor 488-labeled anti-MUC1-C/ECD antibody 8E1 and its colocalization (arrows) with RFP-lysosomal marker in H-1975 NSCLC cells at 37° C.
- FIG. 23 Internalization of Alexa Fluor 488-labeled anti-MUC1-C/ECD antibody 6A6 and its colocalization (arrows) with RFP-lysosomal marker in H-1975 NSCLC cells at 37° C.
- FIG. 24 Internalization of Alexa Fluor 488-labeled anti-MUC1-C/ECD antibody 6A6 using mouse NSCLC (KW-814) cells at 37° C. for 3 hours.
- FIG. 25 Internalization of Alexa Fluor 488-labeled anti-MUC1-C/ECD antibody 8E1 and 6A6 using K562 CML cells at 37° C. for 3 hours. IgG labeling was used as negative control. RFP-Lysosomal IF was used as positive control.
- FIG. 26 Immunofluorescence of RFP-endocyte marker transfected H-1975 NSCLC cells at 37° C. (right panel). Staining of RFP-endocyte marker transfected H-1975 cells incubated with Alexa Fluor 488-labeled isotype control IgG antibody (middle panel).
- FIG. 27 Immunofluorescence of RFP-lysosomal marker transfected H-1975 NSCLC cells at 37° C. (right panel). Staining of RFP-lysosomal marker transfected H-1975 cells incubated with Alexa Fluor 488-labeled isotype control IgG antibody (middle panel).
- FIG. 28 Internalization of Alexa Fluor 488-labeled anti-MUC1-C/ECD antibody 8E1 and its co-localization with RFP-lysosomal marker in H-1975 NSCLC cells at 37° C.
- FIG. 29 Selection of antibody clones from mouse 384 immunization.
- FIG. 30 Interaction of anti-MUC1-C/ECD antibodies with MUC1 proteins made in bacteria.
- FIG. 31 HCT-116/vector and HCT-116/MUC1 cells were incubated with 7B8 or mouse IgG for 30 min, washed, incubated with goat anti-mouse immunoglobulin-flourescein-conjugated antibody (Santa Cruz Biotechnology), and fixed in 1% formaldehyde/PBS. Reactivity was detected by immunofluorescence FACScan. The results demonstrate that in contrast to HCT-116/vector cells (MUC1-negative), strong reactivity of 7B8 was seen in MUC1-positive HCT-116/MUC1 cells.
- FIG. 32 ZR-75-1 breast carcinoma cells were incubated with 7B8 or mouse IgG for 30 min, washed, incubated with goat anti-mouse immunoglobulin-flourescein-conjugated antibody (Santa Cruz Biotechnology), and fixed in 1% formaldehyde/PBS. Reactivity was detected by immunofluorescence FACScan. The results demonstrate that in contrast to IgG control, 7B8 reacted strongly with ZR-75-1 cells.
- FIG. 33 ZR-75-1 breast carcinoma cells, MCF-7 breast carcinoma cells and HCT-116/MUC1 colon carcinoma cells were incubated with 7B8 for 30 min, washed, incubated with goat anti-mouse immunoglobulin-flourescein-conjugated antibody (Santa Cruz Biotechnology), and fixed in 1% formaldehyde/PBS. Reactivity was detected by immunofluorescence FACScan. The results demonstrate that 7B8 reacted strongly with all these cell types.
- FIG. 34 MDA-MB-468/CshRNA and MDA-MB-468/MUC1shRNA triple breast carcinoma cells
- MCF-7 breast carcinoma cells were incubated either with IgG or with 7B8 for 30 min, washed, incubated with goat anti-mouse immunoglobulin-flourescein-conjugated antibody (Santa Cruz Biotechnology), and fixed in 1% formaldehyde/PBS. Reactivity was detected by immunofluorescence FACScan. The results demonstrate that in contrast to MDA-MB-468/MUC1shRNA (MUC1-down regulated) cells, strong reactivity of 7B8 was seen in MUC1-positive MDA-MB-468/CshRNA cells.
- FIG. 35 ZR-75-1 breast carcinoma cells, MCF-7 breast carcinoma cells and HCT-116/MUC1 colon carcinoma cells were incubated with 2B11 for 30 min, washed, incubated with goat anti-mouse immunoglobulin-flourescein-conjugated antibody (Santa Cruz Biotechnology), and fixed in 1% formaldehyde/PBS. Reactivity was detected by immunofluorescence FACScan. The results demonstrate that 2B11 reacted strongly with all three cell types.
- FIG. 36 ZR-75-1 breast carcinoma cells, MCF-7 breast carcinoma cells and HCT-116/MUC1 colon carcinoma cells were incubated with 4G5 for 30 min, washed, incubated with goat anti-mouse immunoglobulin-flourescein-conjugated antibody (Santa Cruz Biotechnology), and fixed in 1% formaldehyde/PBS. Reactivity was detected by immunofluorescence FACScan. The results demonstrate that 4G5 reacted strongly with all three cell types.
- FIG. 37 HCT116/MUC1-wild-type and HCT116/MUC1-CQC ⁇ AQA mutant cells 7B8 for 30 min, washed, incubated with goat anti-mouse immunoglobulin-flourescein-conjugated antibody (Santa Cruz Biotechnology), and fixed in 1% formaldehyde/PBS. Reactivity was detected by immunofluorescence FACScan. The results demonstrate strong reactivity of 7B8 with both cell types indicating that MUC1-C/MUC1-C homodimerization is not required for binding of 7B8.
- FIG. 38 ELISA assays were performed by coating plates with the antigen and reactivity with multiple different concentrations of purified antibodies 7B8, 4G5 and 2B11. The binding curves demonstrate similar reactivity with all the three antibodies.
- FIG. 39 Summary of results from 7B8, 2B11 and 4G5 clones.
- FIG. 40 ELISA assays were performed by coating plates with the wild type antigen and different mutant proteins (LTL ⁇ ATA; QFNQ ⁇ AFNQ and QFNA) reactivity with different purified antibodies 7B8, 4G5 and 2B11. The sensitivity of different antibody clones to mutant proteins is described in the figure.
- FIG. 41 Sequence analysis of the CDR regions from heavy and light chains of 2B11 clone.
- FIG. 42 Sequence analysis of the CDR regions from heavy and light chains of 4G5 clone.
- FIG. 43 Sequence analysis of the CDR regions from heavy and light chains of 7B8 clone.
- FIG. 44 IHC analysis using 7B8 antibody in FFPE section of colon carcinoma.
- FIG. 45 The performance of 7B8 in Western blotting using whole cell lysates was analyzed and the results demonstrate the specific reactivity of the anti-MUC1-C/ECD antibodies with MUC1-C protein. 293T cells do not express MUC1 and hence negative in the western blot analysis.
- FIG. 46 ELISA assays were performed using 2B11, 7B8 and 4G5 antibodies. The results demonstrate no inhibition of reactivity of three of these antibodies with any of the peptide indicating that the epitope is not linear.
- FIG. 47 Linear epitope mapping of 7B8 and 3D1 clones: overlapping peptides. Three overlapping peptides spanning the entire MUC1-C/ECD region (58 amino acids) were synthesized. ELISA assays were performed coating the plates with the MUC1-C/ECD antigen and incubating with 7B8 or 3D1 purified antibodies in the presence or absence of P1, P2 or P3 peptides.
- FIGS. 48A-B Conformational epitope mapping of 7B8 and 3D1 using point mutants. Eight critical individual point mutants were generated in the MUC1-C/ECD region and respective proteins were purified. Separate 96-well plates were coated with these eight purified proteins. 7B8 and 3D1 purified antibodies were incubated with each of these plates and ELISA assays were performed.
- FIG. 49 Conformational epitope mapping of 7B8 and 3D1.
- ZR-75-1 breast carcinoma cells were obtained from ATCC and maintained in DMEM with 10% heat-inactivated fetal bovine serum plus antibiotics. Cells were incubated either with purified MUC1-C/ECD protein or with corresponding volume of PBS. Following incubation, 7B8 or 3D1 antibodies were added and the cells prepared for flow cytometric analysis. DF3 antibody was used as a positive control and anti-MUC1-C/CD antibody (CD1) was used as a negative control. Following appropriate steps, cells were analyzed by FLOW.
- FIGS. 51A-B Antibody-Drug Conjugates (ADC) of 7B8 and 3D1 antibodies and biological activity of these antibody-drug-conjugates.
- ADC Antibody-Drug Conjugates
- the inventors have raised antibodies against a 58 amino acid non-shed portion of the external domain of the MUC1-C protein. These antibodies have been demonstrated to bind selectively to this portion of MUC1-C, and as such, present an opportunity to block the activity of MUC1 following cleavage of the N-terminal region. They also can be used to deliver therapeutic payloads to MUC1-expressing cancer cells even following the cleavage of the N-terminal MUC1 domain.
- MUC1 is a mucin-type glycoprotein that is expressed on the apical borders of normal secretory epithelial cells (Kufe et al., 1984). MUC1 forms a heterodimer following synthesis as a single polypeptide and cleavage of the precursor into two subunits in the endoplasmic reticulum (Lipponberg et al., 1992). The cleavage may be mediated by an autocatalytic process (Levitan et al., 2005).
- MUC1 N-ter, MUC1-N The >250 kDa MUC1 N-terminal (MUC1 N-ter, MUC1-N) subunit contains variable numbers of 20 amino acid tandem repeats that are imperfect with highly conserved variations and are modified by O-linked glycans (Gendler et al., 1988; Siddiqui et al., 1988).
- MUC1-N is tethered to the cell surface by dimerization with the ⁇ 23 kDa C-terminal subunit (MUC1 C-ter, MUC1-C), which includes a 58 amino acid extracellular region, a 28 amino acid transmembrane domain and a 72-amino acid cytoplasmic domain (CD) (Merlo et al., 1989). It is the 58 amino acid portion of the MUC1-C/ECD (italics) to which antibodies of the present invention bind.
- the human MUC1-C sequence is shown below:
- MUC1-C interacts with members of the ErbB receptor family (Li et al., 2001b; Li et al., 2003c; Schroeder et al., 2001) and with the Wnt effector, ⁇ -catenin (Yamamoto et al., 1997).
- the epidermal growth factor receptor and c-Src phosphorylate the MUC1 cytoplasmic domain (MUC1-CD) on Y-46 and thereby increase binding of MUC1 and ⁇ -catenin (Li et al., 2001a; Li et al., 2001b).
- MUC1 and ⁇ -catenin are also regulated by glycogen synthase kinase 3 ⁇ and protein kinase C ⁇ (Li et al., 1998; Ren et al., 2002).
- MUC1 colocalizes with ⁇ -catenin in the nucleus (Baldus et al., 2004; Li et al., 2003a; Li et al., 2003c; Wen et al., 2003) and coactivates transcription of Wnt target genes (Huang et al., 2003).
- Other studies have shown that MUC1 also binds directly to p53 and regulates transcription of p53 target genes (Wei et al., 2005).
- MUC1-C overexpression of MUC1-C is sufficient to induce anchorage-independent growth and tumorigenicity (Huang et al., 2003; Li et al., 2003b; Ren et al., 2002; Schroeder et al., 2004).
- Antibodies to the MUC1-C/ECD may be produced by standard methods as are well known in the art (see, e.g., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988; U.S. Pat. No. 4,196,265).
- the methods for generating monoclonal antibodies (MAbs) generally begin along the same lines as those for preparing polyclonal antibodies.
- the first step for both these methods is immunization of an appropriate host or identification of subjects who are immune due to prior natural infection.
- a given composition for immunization may vary in its immunogenicity. It is often necessary therefore to boost the host immune system, as may be achieved by coupling a peptide or polypeptide immunogen to a carrier.
- Exemplary and preferred carriers are keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA). Other albumins such as ovalbumin, mouse serum albumin or rabbit serum albumin can also be used as carriers.
- Means for conjugating a polypeptide to a carrier protein are well known in the art and include glutaraldehyde, m-maleimidobencoyl-N-hydroxysuccinimide ester, carbodiimide and bis-biazotized benzidine.
- the immunogenicity of a particular immunogen composition can be enhanced by the use of non-specific stimulators of the immune response, known as adjuvants.
- Exemplary and preferred adjuvants include complete Freund's adjuvant (a non-specific stimulator of the immune response containing killed Mycobacterium tuberculosis ), incomplete Freund's adjuvants and aluminum hydroxide adjuvant.
- the amount of immunogen composition used in the production of polyclonal antibodies varies upon the nature of the immunogen as well as the animal used for immunization.
- a variety of routes can be used to administer the immunogen (subcutaneous, intramuscular, intradermal, intravenous and intraperitoneal).
- the production of polyclonal antibodies may be monitored by sampling blood of the immunized animal at various points following immunization. A second, booster injection, also may be given. The process of boosting and titering is repeated until a suitable titer is achieved.
- the immunized animal can be bled and the serum isolated and stored, and/or the animal can be used to generate MAbs.
- somatic cells with the potential for producing antibodies, specifically B lymphocytes (B cells), are selected for use in the MAb generating protocol. These cells may be obtained from biopsied spleens or lymph nodes, or from circulating blood. The antibody-producing B lymphocytes from the immunized animal are then fused with cells of an immortal myeloma cell, generally one of the same species as the animal that was immunized or human or human/mouse chimeric cells.
- B lymphocytes B lymphocytes
- Myeloma cell lines suited for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency, and enzyme deficiencies that render then incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas).
- any one of a number of myeloma cells may be used, as are known to those of skill in the art (Goding, pp. 65-66, 1986; Campbell, pp. 75-83, 1984).
- the immunized animal is a mouse
- P3-X63/Ag8, X63-Ag8.653, NS1/1.Ag 4 1, Sp210-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7 and S194/5XX0 Bul for rats, one may use R210.RCY3, Y3-Ag 1.2.3, IR983F and 4B210; and U-266, GM1500-GRG2, LICR-LON-HMy2 and UC729-6 are all useful in connection with human cell fusions.
- NS-1 myeloma cell line also termed P3-NS-1-Ag4-1
- Another mouse myeloma cell line that may be used is the 8-azaguanine-resistant mouse murine myeloma SP2/0 non-producer cell line.
- additional fusion partner lines for use with human B cells including KR12 (ATCC CRL-8658; K6H6/B5 (ATCC CRL-1823 SHM-D33 (ATCC CRL-1668) and HMMA2.5 (Posner et al., 1987).
- the antibodies in this invention were generated using the SP2/0/mIL-6 cell line, an IL-6 secreting derivative of the SP2/0 line.
- Methods for generating hybrids of antibody-producing spleen or lymph node cells and myeloma cells usually comprise mixing somatic cells with myeloma cells in a 2:1 proportion, though the proportion may vary from about 20:1 to about 1:1, respectively, in the presence of an agent or agents (chemical or electrical) that promote the fusion of cell membranes.
- Fusion methods using Sendai virus have been described by Kohler and Milstein (1975; 1976), and those using polyethylene glycol (PEG), such as 37% (v/v) PEG, by Gefter et al. (1977).
- PEG polyethylene glycol
- the use of electrically induced fusion methods also is appropriate (Goding, pp. 71-74, 1986).
- Fusion procedures usually produce viable hybrids at low frequencies, about 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 8 . However, this does not pose a problem, as the viable, fused hybrids are differentiated from the parental, infused cells (particularly the infused myeloma cells that would normally continue to divide indefinitely) by culturing in a selective medium.
- the selective medium is generally one that contains an agent that blocks the de novo synthesis of nucleotides in the tissue culture media.
- Exemplary and preferred agents are aminopterin, methotrexate, and azaserine. Aminopterin and methotrexate block de novo synthesis of both purines and pyrimidines, whereas azaserine blocks only purine synthesis.
- the media is supplemented with hypoxanthine and thymidine as a source of nucleotides (HAT medium).
- HAT medium a source of nucleotides
- azaserine is used, the media is supplemented with hypoxanthine.
- Ouabain is added if the B cell source is an Epstein Barr virus (EBV) transformed human B cell line, in order to eliminate EBV transformed lines that have not fused to the myeloma.
- EBV Epstein Barr virus
- the preferred selection medium is HAT or HAT with ouabain. Only cells capable of operating nucleotide salvage pathways are able to survive in HAT medium.
- the myeloma cells are defective in key enzymes of the salvage pathway, e.g., hypoxanthine phosphoribosyl transferase (HPRT), and they cannot survive.
- HPRT hypoxanthine phosphoribosyl transferase
- the B cells can operate this pathway, but they have a limited life span in culture and generally die within about two weeks. Therefore, the only cells that can survive in the selective media are those hybrids formed from myeloma and B cells.
- EBV-transformed B cells When the source of B cells used for fusion is a line of EBV-transformed B cells, as here, ouabain is also used for drug selection of hybrids as EBV-transformed B cells are susceptible to drug killing, whereas the myeloma partner used is chosen to be ouabain resistant.
- Culturing provides a population of hybridomas from which specific hybridomas are selected. Typically, selection of hybridomas is performed by culturing the cells by single-clone dilution in microtiter plates, followed by testing the individual clonal supernatants (after about two to three weeks) for the desired reactivity.
- the assay should be sensitive, simple and rapid, such as radioimmunoassays, enzyme immunoassays, cytotoxicity assays, plaque assays dot immunobinding assays, and the like.
- the selected hybridomas are then serially diluted or single-cell sorted by flow cytometric sorting and cloned into individual antibody-producing cell lines, which clones can then be propagated indefinitely to provide mAbs.
- the cell lines may be exploited for MAb production in two basic ways.
- a sample of the hybridoma can be injected (often into the peritoneal cavity) into an animal (e.g., a mouse).
- the animals are primed with a hydrocarbon, especially oils such as pristane (tetramethylpentadecane) prior to injection.
- pristane tetramethylpentadecane
- the injected animal develops tumors secreting the specific monoclonal antibody produced by the fused cell hybrid.
- the body fluids of the animal such as serum or ascites fluid, can then be tapped to provide MAbs in high concentration.
- the individual cell lines could also be cultured in vitro, where the MAbs are naturally secreted into the culture medium from which they can be readily obtained in high concentrations.
- human hybridoma cells lines can be used in vitro to produce immunoglobulins in cell supernatant.
- the cell lines can be adapted for growth in serum-free medium to optimize the ability to recover human monoclonal immunoglobulins of high purity.
- MAbs produced by either means may be further purified, if desired, using filtration, centrifugation and various chromatographic methods such as FPLC or affinity chromatography.
- Fragments of the monoclonal antibodies of the invention can be obtained from the purified monoclonal antibodies by methods which include digestion with enzymes, such as pepsin or papain, and/or by cleavage of disulfide bonds by chemical reduction.
- monoclonal antibody fragments encompassed by the present invention can be synthesized using an automated peptide synthesizer.
- RNA can be isolated from the hybridoma line and the antibody genes obtained by RT-PCR and cloned into an immunoglobulin expression vector.
- combinatorial immunoglobulin phagemid libraries are prepared from RNA isolated from the cell lines and phagemids expressing appropriate antibodies are selected by panning using viral antigens.
- Antibodies according to the present invention may be defined, in the first instance, by their binding specificity, which in this case is for MUC1-C/ECD, and in particular: SVVVQLTLAFREGTINVHDVETQFNQYKTEAASRYNLTISDVSVSDVPFPFSAQSGAG (SEQ ID NO: 2).
- binding specificity which in this case is for MUC1-C/ECD
- SVVVQLTLAFREGTINVHDVETQFNQYKTEAASRYNLTISDVSVSDVPFPFSAQSGAG SEQ ID NO: 2
- the antibody is an Immunoglobulin G (IgG) antibody isotype. Representing approximately 75% of serum immunoglobulins in humans, IgG is the most abundant antibody isotype found in the circulation. IgG molecules are synthesized and secreted by plasma B cells. There are four IgG subclasses (IgG1, 2, 3, and 4) in humans, named in order of their abundance in serum (IgG1 being the most abundant). The range from having high to no affinity for the Fc receptor.
- IgG Immunoglobulin G
- IgG is the main antibody isotype found in blood and extracellular fluid allowing it to control infection of body tissues. By binding many kinds of pathogens—representing viruses, bacteria, and fungi—IgG protects the body from infection. It does this via several immune mechanisms: IgG-mediated binding of pathogens causes their immobilization and binding together via agglutination; IgG coating of pathogen surfaces (known as opsonization) allows their recognition and ingestion by phagocytic immune cells; IgG activates the classical pathway of the complement system, a cascade of immune protein production that results in pathogen elimination; IgG also binds and neutralizes toxins.
- IgG also plays an important role in antibody-dependent cell-mediated cytotoxicity (ADCC) and intracellular antibody-mediated proteolysis, in which it binds to TRIM21 (the receptor with greatest affinity to IgG in humans) in order to direct marked virions to the proteasome in the cytosol.
- ADCC antibody-dependent cell-mediated cytotoxicity
- IgG is also associated with Type II and Type III Hypersensitivity.
- IgG antibodies are generated following class switching and maturation of the antibody response and thus participate predominantly in the secondary immune response.
- IgG is secreted as a monomer that is small in size allowing it to easily perfuse tissues. It is the only isotype that has receptors to facilitate passage through the human placenta.
- IgG is a high percentage of IgG, especially bovine colostrum. In individuals with prior immunity to a pathogen, IgG appears about 24-48 hours after antigenic stimulation.
- the antibodies may be defined by their variable sequences that determine their binding specificity. Examples are provided below:
- SEQ ID NO: 7 SEQ ID NO: 13 8F1/8E1 CDR3 VRLYYGNVMDY SQSTHVPLT SEQ ID NO: 8 SEQ ID NO: 14 2H11 CDR1 GYTFTGYSMH RSSQSLVHSNGNTYLH SEQ ID NO: 27 SEQ ID NO: 30 2H11 CDR3 WINTETGEPTYDDFKG KVSNRFS SEQ ID NO: 28 SEQ ID NO: 31 2H11 CDR3 GTGGDD SQGTHVPPT SEQ ID NO: 29 SEQ ID NO: 32 7B8 CDR1 GHTFTSYWMH CRASESVQYSGTSLMH SEQ ID NO: 42 SEQ ID NO: 51 7B8 CDR3 EINPSNGRTYYNENFKT GASNVET SEQ ID NO: 43 SEQ ID NO: 52 7B8 CDR3 DGDYVSGFAY QQNWKVPWT SEQ ID NO: 44 SEQ ID NO: 53 4G5 CDR1 GFSLSTSGMGVS CKASQS
- the hydropathic index of amino acids may be considered.
- the importance of the hydropathic amino acid index in conferring interactive biologic function on a protein is generally understood in the art (Kyte and Doolittle, 1982). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like.
- hydrophilicity values have been assigned to amino acid residues: basic amino acids: arginine (+3.0), lysine (+3.0), and histidine ( ⁇ 0.5); acidic amino acids: aspartate (+3.0 ⁇ 1), glutamate (+3.0 ⁇ 1), asparagine (+0.2), and glutamine (+0.2); hydrophilic, nonionic amino acids: serine (+0.3), asparagine (+0.2), glutamine (+0.2), and threonine ( ⁇ 0.4), sulfur containing amino acids: cysteine ( ⁇ 1.0) and methionine ( ⁇ 1.3); hydrophobic, nonaromatic amino acids: valine ( ⁇ 1.5), leucine ( ⁇ 1.8), isoleucine ( ⁇ 1.8), proline ( ⁇ 0.5 ⁇ 1), alanine ( ⁇ 0.5), and glycine (0); hydrophobic, aromatic amino acids: tryptophan ( ⁇ 3.4), phenylalanine ( ⁇ 2.5), and tyrosine ( ⁇ 2.3).
- an amino acid can be substituted for another having a similar hydrophilicity and produce a biologically or immunologically modified protein.
- substitution of amino acids whose hydrophilicity values are within ⁇ 2 is preferred, those that are within ⁇ 1 are particularly preferred, and those within ⁇ 0.5 are even more particularly preferred.
- amino acid substitutions generally are based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like.
- Exemplary substitutions that take into consideration the various foregoing characteristics are well known to those of skill in the art and include: arginine and lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine.
- IgM antibodies may be converted to IgG antibodies. The following is a general discussion of relevant techniques for antibody engineering.
- Hybridomas may be cultured, then cells lysed, and total RNA extracted. Random hexamers may be used with RT to generate cDNA copies of RNA, and then PCR performed using a multiplex mixture of PCR primers expected to amplify all human variable gene sequences. PCR product can be cloned into pGEM-T Easy vector, then sequenced by automated DNA sequencing using standard vector primers. Assay of binding and neutralization may be performed using antibodies collected from hybridoma supernatants and purified by FPLC, using Protein G columns.
- Recombinant full length IgG antibodies can be generated by subcloning heavy and light chain Fv DNAs from the cloning vector into a Lonza pConIgG1 or pConK2 plasmid vector, transfected into 293 Freestyle cells or Lonza CHO cells, and collected and purified from the CHO cell supernatant.
- Lonza has developed a generic method using pooled transfectants grown in CDACF medium, for the rapid production of small quantities (up to 50 g) of antibodies in CHO cells. Although slightly slower than a true transient system, the advantages include a higher product concentration and use of the same host and process as the production cell line.
- pCon VectorsTM are an easy way to re-express whole antibodies.
- the constant region vectors are a set of vectors offering a range of immunoglobulin constant region vectors cloned into the pEE vectors. These vectors offer easy construction of full length antibodies with human constant regions and the convenience of the GS SystemTM.
- Antibody molecules will comprise fragments (such as F(ab′), F(ab′) 2 ) that are produced, for example, by the proteolytic cleavage of the mAbs, or single-chain immunoglobulins producible, for example, via recombinant means. Such antibody derivatives are monovalent. In one embodiment, such fragments can be combined with one another, or with other antibody fragments or receptor ligands to form “chimeric” binding molecules. Significantly, such chimeric molecules may contain substituents capable of binding to different epitopes of the same molecule.
- Humanized antibodies produced in non-human hosts in order to attenuate any immune reaction when used in human therapy.
- Such humanized antibodies may be studied in an in vitro or an in vivo context.
- Humanized antibodies may be produced, for example by replacing an immunogenic portion of an antibody with a corresponding, but non-immunogenic portion (i.e., chimeric antibodies).
- Humanized chimeric antibodies are provided by Morrison (1985); also incorporated herein by reference. “Humanized” antibodies can alternatively be produced by CDR or CEA substitution. Jones et al. (1986); Verhoeyen et al. (1988); Beidler et al. (1988); all of which are incorporated herein by reference.
- the antibody is a derivative of the disclosed antibodies, e.g., an antibody comprising the CDR sequences identical to those in the disclosed antibodies (e.g., a chimeric, humanized or CDR-grafted antibody).
- the antibody is a fully human recombinant antibody.
- the present invention also contemplates isotype modification.
- isotype modification By modifying the Fc region to have a different isotype, different functionalities can be achieved. For example, changing to IgG 4 can reduce immune effector functions associated with other isotypes.
- Modified antibodies may be made by any technique known to those of skill in the art, including expression through standard molecular biological techniques, or the chemical synthesis of polypeptides. Methods for recombinant expression are addressed elsewhere in this document.
- Nucleic acids according to the present invention will encode antibodies, optionally linked to other protein sequences.
- a nucleic acid encoding a MUC1-C antibody refers to a nucleic acid molecule that has been isolated free of total cellular nucleic acid.
- the invention concerns antibodies that are encoded by any of the sequences set forth herein.
- the DNA segments of the present invention include those encoding biologically functional equivalent proteins and peptides of the sequences described above. Such sequences may arise as a consequence of codon redundancy and amino acid functional equivalency that are known to occur naturally within nucleic acid sequences and the proteins thus encoded.
- functionally equivalent proteins or peptides may be created via the application of recombinant DNA technology, in which changes in the protein structure may be engineered, based on considerations of the properties of the amino acids being exchanged. Changes designed by man may be introduced through the application of site-directed mutagenesis techniques or may be introduced randomly and screened later for the desired function, as described below.
- expression vectors are employed to express a MUC1-C ligand trap in order to produce and isolate the polypeptide expressed therefrom.
- the expression vectors are used in gene therapy. Expression requires that appropriate signals be provided in the vectors, and which include various regulatory elements, such as enhancers/promoters from both viral and mammalian sources that drive expression of the genes of interest in host cells. Elements designed to optimize messenger RNA stability and translatability in host cells also are defined. The conditions for the use of a number of dominant drug selection markers for establishing permanent, stable cell clones expressing the products are also provided, as is an element that links expression of the drug selection markers to expression of the polypeptide.
- expression construct is meant to include any type of genetic construct containing a nucleic acid coding for a gene product in which part or all of the nucleic acid encoding sequence is capable of being transcribed.
- the transcript may be translated into a protein, but it need not be.
- expression includes both transcription of a gene and translation of mRNA into a gene product. In other embodiments, expression only includes transcription of the nucleic acid encoding a gene of interest.
- vector is used to refer to a carrier nucleic acid molecule into which a nucleic acid sequence can be inserted for introduction into a cell where it can be replicated.
- a nucleic acid sequence can be “exogenous,” which means that it is foreign to the cell into which the vector is being introduced or that the sequence is homologous to a sequence in the cell but in a position within the host cell nucleic acid in which the sequence is ordinarily not found.
- Vectors include plasmids, cosmids, viruses (bacteriophage, animal viruses, and plant viruses), and artificial chromosomes (e.g., YACs).
- plasmids include plasmids, cosmids, viruses (bacteriophage, animal viruses, and plant viruses), and artificial chromosomes (e.g., YACs).
- YACs artificial chromosomes
- expression vector refers to a vector containing a nucleic acid sequence coding for at least part of a gene product capable of being transcribed. In some cases, RNA molecules are then translated into a protein, polypeptide, or peptide. In other cases, these sequences are not translated, for example, in the production of antisense molecules or ribozymes.
- Expression vectors can contain a variety of “control sequences,” which refer to nucleic acid sequences necessary for the transcription and possibly translation of an operably linked coding sequence in a particular host organism. In addition to control sequences that govern transcription and translation, vectors and expression vectors may contain nucleic acid sequences that serve other functions as well and are described infra.
- a “promoter” is a control sequence that is a region of a nucleic acid sequence at which initiation and rate of transcription are controlled. It may contain genetic elements at which regulatory proteins and molecules may bind such as RNA polymerase and other transcription factors.
- the phrases “operatively positioned,” “operatively linked,” “under control,” and “under transcriptional control” mean that a promoter is in a correct functional location and/or orientation in relation to a nucleic acid sequence to control transcriptional initiation and/or expression of that sequence.
- a promoter may or may not be used in conjunction with an “enhancer,” which refers to a cis-acting regulatory sequence involved in the transcriptional activation of a nucleic acid sequence.
- a promoter may be one naturally-associated with a gene or sequence, as may be obtained by isolating the 5′ non-coding sequences located upstream of the coding segment and/or exon. Such a promoter can be referred to as “endogenous.”
- an enhancer may be one naturally associated with a nucleic acid sequence, located either downstream or upstream of that sequence.
- certain advantages will be gained by positioning the coding nucleic acid segment under the control of a recombinant or heterologous promoter, which refers to a promoter that is not normally associated with a nucleic acid sequence in its natural environment.
- a recombinant or heterologous enhancer refers also to an enhancer not normally associated with a nucleic acid sequence in its natural environment.
- Such promoters or enhancers may include promoters or enhancers of other genes, and promoters or enhancers isolated from any other prokaryotic, viral, or eukaryotic cell, and promoters or enhancers not “naturally-occurring,” i.e., containing different elements of different transcriptional regulatory regions, and/or mutations that alter expression.
- sequences may be produced using recombinant cloning and/or nucleic acid amplification technology, including PCRTM, in connection with the compositions disclosed herein (see U.S. Pat. No. 4,683,202, U.S. Pat. No. 5,928,906, each incorporated herein by reference).
- control sequences that direct transcription and/or expression of sequences within non-nuclear organelles such as mitochondria, chloroplasts, and the like, can be employed as well.
- promoter and/or enhancer that effectively directs the expression of the DNA segment in the cell type, organelle, and organism chosen for expression.
- Those of skill in the art of molecular biology generally know the use of promoters, enhancers, and cell type combinations for protein expression, for example, see Sambrook et al. (1989), incorporated herein by reference.
- the promoters employed may be constitutive, tissue-specific, inducible, and/or useful under the appropriate conditions to direct high level expression of the introduced DNA segment, such as is advantageous in the large-scale production of recombinant proteins and/or peptides.
- the promoter may be heterologous or endogenous.
- Table 3 lists several elements/promoters that may be employed, in the context of the present invention, to regulate the expression of a gene. This list is not intended to be exhaustive of all the possible elements involved in the promotion of expression but, merely, to be exemplary thereof.
- Table 4 provides examples of inducible elements, which are regions of a nucleic acid sequence that can be activated in response to a specific stimulus.
- IRES elements are used to create multigene, or polycistronic, messages.
- IRES elements are able to bypass the ribosome scanning model of 5′-methylated Cap dependent translation and begin translation at internal sites (Pelletier and Sonenberg, 1988).
- IRES elements from two members of the picornavirus family polio and encephalomyocarditis have been described (Pelletier and Sonenberg, 1988), as well an IRES from a mammalian message (Macejak and Sarnow, 1991).
- IRES elements can be linked to heterologous open reading frames. Multiple open reading frames can be transcribed together, each separated by an IRES, creating polycistronic messages.
- each open reading frame is accessible to ribosomes for efficient translation.
- Multiple genes can be efficiently expressed using a single promoter/enhancer to transcribe a single message (see U.S. Pat. Nos. 5,925,565 and 5,935,819, herein incorporated by reference).
- Vectors can include a multiple cloning site (MCS), which is a nucleic acid region that contains multiple restriction enzyme sites, any of which can be used in conjunction with standard recombinant technology to digest the vector.
- MCS multiple cloning site
- Restriction enzyme digestion refers to catalytic cleavage of a nucleic acid molecule with an enzyme that functions only at specific locations in a nucleic acid molecule. Many of these restriction enzymes are commercially available. Use of such enzymes is widely understood by those of skill in the art.
- a vector is linearized or fragmented using a restriction enzyme that cuts within the MCS to enable exogenous sequences to be ligated to the vector.
- “Ligation” refers to the process of forming phosphodiester bonds between two nucleic acid fragments, which may or may not be contiguous with each other. Techniques involving restriction enzymes and ligation reactions are well known to those of skill in the art of recombinant technology.
- RNA molecules will undergo RNA splicing to remove introns from the primary transcripts.
- Vectors containing genomic eukaryotic sequences may require donor and/or acceptor splicing sites to ensure proper processing of the transcript for protein expression (see Chandler et al., 1997, herein incorporated by reference).
- the vectors or constructs of the present invention will generally comprise at least one termination signal.
- a “termination signal” or “terminator” is comprised of the DNA sequences involved in specific termination of an RNA transcript by an RNA polymerase. Thus, in certain embodiments a termination signal that ends the production of an RNA transcript is contemplated. A terminator may be necessary in vivo to achieve desirable message levels.
- the terminator region may also comprise specific DNA sequences that permit site-specific cleavage of the new transcript so as to expose a polyadenylation site.
- RNA molecules modified with this polyA tail appear to more stable and are translated more efficiently.
- terminator comprises a signal for the cleavage of the RNA, and it is more preferred that the terminator signal promotes polyadenylation of the message.
- the terminator and/or polyadenylation site elements can serve to enhance message levels and/or to minimize read through from the cassette into other sequences.
- Terminators contemplated for use in the invention include any known terminator of transcription described herein or known to one of ordinary skill in the art, including but not limited to, for example, the termination sequences of genes, such as for example the bovine growth hormone terminator or viral termination sequences, such as for example the SV40 terminator.
- the termination signal may be a lack of transcribable or translatable sequence, such as due to a sequence truncation.
- polyadenylation signal In expression, particularly eukaryotic expression, one will typically include a polyadenylation signal to effect proper polyadenylation of the transcript.
- the nature of the polyadenylation signal is not believed to be crucial to the successful practice of the invention, and/or any such sequence may be employed.
- Preferred embodiments include the SV40 polyadenylation signal and/or the bovine growth hormone polyadenylation signal, convenient and/or known to function well in various target cells. Polyadenylation may increase the stability of the transcript or may facilitate cytoplasmic transport.
- a vector in a host cell may contain one or more origins of replication sites (often termed “ori”), which is a specific nucleic acid sequence at which replication is initiated.
- ori origins of replication sites
- ARS autonomously replicating sequence
- cells containing a nucleic acid construct of the present invention may be identified in vitro or in vivo by including a marker in the expression vector.
- markers would confer an identifiable change to the cell permitting easy identification of cells containing the expression vector.
- a selectable marker is one that confers a property that allows for selection.
- a positive selectable marker is one in which the presence of the marker allows for its selection, while a negative selectable marker is one in which its presence prevents its selection.
- An example of a positive selectable marker is a drug resistance marker.
- a drug selection marker aids in the cloning and identification of transformants
- genes that confer resistance to neomycin, puromycin, hygromycin, DHFR, GPT, zeocin and histidinol are useful selectable markers.
- markers conferring a phenotype that allows for the discrimination of transformants based on the implementation of conditions other types of markers including screenable markers such as GFP, whose basis is colorimetric analysis, are also contemplated.
- screenable enzymes such as herpes simplex virus thymidine kinase (tk) or chloramphenicol acetyltransferase (CAT) may be utilized.
- viral vectors have led to the development and application of a number of different viral vector systems (Robbins et al., 1998).
- Viral systems are currently being developed for use as vectors for ex vivo and in vivo gene transfer.
- adenovirus, herpes-simplex virus, retrovirus and adeno-associated virus vectors are being evaluated currently for treatment of diseases such as cancer, cystic fibrosis, Gaucher disease, renal disease and arthritis (Robbins and Ghivizzani, 1998; Imai et al., 1998; U.S. Pat. No. 5,670,488).
- the various viral vectors described below present specific advantages and disadvantages, depending on the particular gene-therapeutic application.
- an adenoviral expression vector is contemplated for the delivery of expression constructs.
- “Adenovirus expression vector” is meant to include those constructs containing adenovirus sequences sufficient to (a) support packaging of the construct and (b) to ultimately express a tissue or cell-specific construct that has been cloned therein.
- Adenoviruses comprise linear, double-stranded DNA, with a genome ranging from 30 to 35 kb in size (Reddy et al., 1998; Morrison et al., 1997; Chillon et al., 1999).
- An adenovirus expression vector according to the present invention comprises a genetically engineered form of the adenovirus. Advantages of adenoviral gene transfer include the ability to infect a wide variety of cell types, including non-dividing cells, a mid-sized genome, ease of manipulation, high infectivity and the ability to be grown to high titers (Wilson, 1996).
- adenoviral infection of host cells does not result in chromosomal integration because adenoviral DNA can replicate in an episomal manner, without potential genotoxicity associated with other viral vectors.
- Adenoviruses also are structurally stable (Marienfeld et al., 1999) and no genome rearrangement has been detected after extensive amplification (Parks et al., 1997; Bett et al., 1993).
- Salient features of the adenovirus genome are an early region (E1, E2, E3 and E4 genes), an intermediate region (pIX gene, Iva2 gene), a late region (L1, L2, L3, L4 and L5 genes), a major late promoter (MLP), inverted-terminal-repeats (ITRs) and a ⁇ sequence (Zheng, et al., 1999; Robbins et al., 1998; Graham and Prevec, 1995).
- the early genes E1, E2, E3 and E4 are expressed from the virus after infection and encode polypeptides that regulate viral gene expression, cellular gene expression, viral replication, and inhibition of cellular apoptosis.
- the MLP is activated, resulting in the expression of the late (L) genes, encoding polypeptides required for adenovirus encapsidation.
- the intermediate region encodes components of the adenoviral capsid.
- Adenoviral inverted terminal repeats ITRs; 100-200 bp in length
- ITRs are cis elements, and function as origins of replication and are necessary for viral DNA replication.
- the ⁇ sequence is required for the packaging of the adenoviral genome.
- adenovirus based vectors offer several unique advantages over other vector systems, they often are limited by vector immunogenicity, size constraints for insertion of recombinant genes and low levels of replication.
- the preparation of a recombinant adenovirus vector deleted of all open reading frames, comprising a full length dystrophin gene and the terminal repeats required for replication offers some potentially promising advantages to the above mentioned adenoviral shortcomings
- the vector was grown to high titer with a helper virus in 293 cells and was capable of efficiently transducing dystrophin in mdx mice, in myotubes in vitro and muscle fibers in vivo. Helper-dependent viral vectors are discussed below.
- a major concern in using adenoviral vectors is the generation of a replication-competent virus during vector production in a packaging cell line or during gene therapy treatment of an individual.
- the generation of a replication-competent virus could pose serious threat of an unintended viral infection and pathological consequences for the patient.
- Armentano et al. (1990) describe the preparation of a replication-defective adenovirus vector, claimed to eliminate the potential for the inadvertent generation of a replication-competent adenovirus (U.S. Pat. No. 5,824,544, specifically incorporated herein by reference).
- the replication-defective adenovirus method comprises a deleted E1 region and a relocated protein IX gene, wherein the vector expresses a heterologous, mammalian gene.
- the adenovirus may be of any of the 42 different known serotypes and/or subgroups A-F.
- Adenovirus type 5 of subgroup C is the preferred starting material in order to obtain the conditional replication-defective adenovirus vector for use in the present invention. This is because adenovirus type 5 is a human adenovirus about which a great deal of biochemical and genetic information is known, and it has historically been used for most constructions employing adenovirus as a vector.
- the typical vector according to the present invention is replication defective and will not have an adenovirus E1 region.
- Adenovirus growth and manipulation is known to those of skill in the art, and exhibits broad host range in vitro and in vivo (U.S. Pat. No. 5,670,488; U.S. Pat. No. 5,932,210; U.S. Pat. No. 5,824,544).
- This group of viruses can be obtained in high titers, e.g., 10 9 to 10 11 plaque-forming units per ml, and they are highly infective.
- the life cycle of adenovirus does not require integration into the host cell genome.
- adenoviral gene delivery-based gene therapies are being developed for liver diseases (Han et al., 1999), psychiatric diseases (Lesch, 1999), neurological diseases (Smith, 1998; Hermens and Verhaagen, 1998), coronary diseases (Feldman et al., 1996), muscular diseases (Petrof, 1998), gastrointestinal diseases (Wu, 1998) and various cancers such as colorectal (Fujiwara and Tanaka, 1998; Dorai et al., 1999), pancreatic, bladder (Irie et al., 1999), head and neck (Blackwell et al., 1999), breast (Stewart et al., 1999), lung (Batra et al., 1999) and ovarian (V
- Retroviruses are RNA viruses comprising an RNA genome.
- the genomic RNA is reverse transcribed into a DNA intermediate which is integrated into the chromosomal DNA of infected cells.
- This integrated DNA intermediate is referred to as a provirus.
- retroviruses can stably infect dividing cells with a gene of interest (e.g., a therapeutic gene) by integrating into the host DNA, without expressing immunogenic viral proteins. Theoretically, the integrated retroviral vector will be maintained for the life of the infected host cell, expressing the gene of interest.
- the retroviral genome and the proviral DNA have three genes: gag, pol, and env, which are flanked by two long terminal repeat (LTR) sequences.
- the gag gene encodes the internal structural (matrix, capsid, and nucleocapsid) proteins; the pol gene encodes the RNA-directed DNA polymerase (reverse transcriptase) and the env gene encodes viral envelope glycoproteins.
- the 5′ and 3′ LTRs serve to promote transcription and polyadenylation of the virion RNAs.
- the LTR contains all other cis-acting sequences necessary for viral replication.
- a recombinant retrovirus of the present invention may be genetically modified in such a way that some of the structural, infectious genes of the native virus have been removed and replaced instead with a nucleic acid sequence to be delivered to a target cell (U.S. Pat. No. 5,858,744; U.S. Pat. No. 5,739,018, each incorporated herein by reference).
- the virus injects its nucleic acid into the cell and the retrovirus genetic material can integrate into the host cell genome.
- the transferred retrovirus genetic material is then transcribed and translated into proteins within the host cell.
- the generation of a replication-competent retrovirus during vector production or during therapy is a major concern.
- Retroviral vectors suitable for use in the present invention are generally defective retroviral vectors that are capable of infecting the target cell, reverse transcribing their RNA genomes, and integrating the reverse transcribed DNA into the target cell genome, but are incapable of replicating within the target cell to produce infectious retroviral particles (e.g., the retroviral genome transferred into the target cell is defective in gag, the gene encoding virion structural proteins, and/or in pol, the gene encoding reverse transcriptase).
- infectious retroviral particles e.g., the retroviral genome transferred into the target cell is defective in gag, the gene encoding virion structural proteins, and/or in pol, the gene encoding reverse transcriptase.
- transcription of the provirus and assembly into infectious virus occurs in the presence of an appropriate helper virus or in a cell line containing appropriate sequences enabling encapsidation without coincident production of a contaminating helper virus.
- retroviruses The growth and maintenance of retroviruses is known in the art (U.S. Pat. No. 5,955,331; U.S. Pat. No. 5,888,502, each specifically incorporated herein by reference).
- Nolan et al. describe the production of stable high titre, helper-free retrovirus comprising a heterologous gene (U.S. Pat. No. 5,830,725, specifically incorporated herein by reference).
- retroviral vector gene delivery Currently, the majority of all clinical trials for vector-mediated gene delivery use murine leukemia virus (MLV)-based retroviral vector gene delivery (Robbins et al., 1998; Miller et al., 1993). Disadvantages of retroviral gene delivery include a requirement for ongoing cell division for stable infection and a coding capacity that prevents the delivery of large genes.
- MLV murine leukemia virus
- HIV lentivirus
- SIV simian immunodeficiency virus
- EIAV equine infectious-anemia virus
- retroviral vectors for gene therapy applications
- HIV-based vectors have been used to infect non-dividing cells such as neurons (Miyatake et al., 1999), islets (Leibowitz et al., 1999) and muscle cells (Johnston et al., 1999).
- genes via retroviruses are currently being assessed for the treatment of various disorders such as inflammatory disease (Moldawer et al., 1999), AIDS (Amado and Chen, 1999; Engel and Kohn, 1999), cancer (Clay et al., 1999), cerebrovascular disease (Weihl et al., 1999) and hemophilia (Kay, 1998).
- Herpes simplex virus (HSV) type I and type II contain a double-stranded, linear DNA genome of approximately 150 kb, encoding 70-80 genes. Wild type HSV are able to infect cells lytically and to establish latency in certain cell types (e.g., neurons).
- HSV Similar to adenovirus, HSV also can infect a variety of cell types including muscle (Yeung et al., 1999), ear (Derby et al., 1999), eye (Kaufman et al., 1999), tumors (Yoon et al., 1999; Howard et al., 1999), lung (Kohut et al., 1998), neuronal (Garrido et al., 1999; Lachmann and Efstathiou, 1999), liver (Miytake et al., 1999; Kooby et al., 1999) and pancreatic islets (Rabinovitch et al., 1999).
- HSV viral genes are transcribed by cellular RNA polymerase II and are temporally regulated, resulting in the transcription and subsequent synthesis of gene products in roughly three discernable phases or kinetic classes. These phases of genes are referred to as the Immediate Early (IE) or ⁇ genes, Early (E) or ⁇ genes and Late (L) or ⁇ genes.
- IE Immediate Early
- E Early
- L Late
- IE genes are transcribed.
- the efficient expression of these genes does not require prior viral protein synthesis.
- the products of IE genes are required to activate transcription and regulate the remainder of the viral genome.
- HSV For use in therapeutic gene delivery, HSV must be rendered replication-defective. Protocols for generating replication-defective HSV helper virus-free cell lines have been described (U.S. Pat. No. 5,879,934; U.S. Pat. No. 5,851,826, each specifically incorporated herein by reference in its entirety).
- One IE protein, ICP4 also known as ⁇ 4 or Vmw175, is absolutely required for both virus infectivity and the transition from IE to later transcription.
- ICP4 has typically been the target of HSV genetic studies.
- viruses deleted of ICP4 Phenotypic studies of HSV viruses deleted of ICP4 indicate that such viruses will be potentially useful for gene transfer purposes (Krisky et al., 1998a).
- One property of viruses deleted for ICP4 that makes them desirable for gene transfer is that they only express the five other IE genes: ICP0, ICP6, ICP27, ICP22 and ICP47 (DeLuca et al., 1985), without the expression of viral genes encoding proteins that direct viral DNA synthesis, as well as the structural proteins of the virus. This property is desirable for minimizing possible deleterious effects on host cell metabolism or an immune response following gene transfer.
- Further deletion of IE genes ICP22 and ICP27, in addition to ICP4, substantially improve reduction of HSV cytotoxicity and prevented early and late viral gene expression (Krisky et al., 1998b).
- HSV HSV in gene transfer
- diseases such as Parkinson's (Yamada et al., 1999), retinoblastoma (Hayashi et al., 1999), intracerebral and intradermal tumors (Moriuchi et al., 1998), B-cell malignancies (Suzuki et al., 1998), ovarian cancer (Wang et al., 1998) and Duchenne muscular dystrophy (Huard et al., 1997).
- Adeno-associated virus (AAV), a member of the parvovirus family, is a human virus that is increasingly being used for gene delivery therapeutics.
- AAV has several advantageous features not found in other viral systems. First, AAV can infect a wide range of host cells, including non-dividing cells. Second, AAV can infect cells from different species. Third, AAV has not been associated with any human or animal disease and does not appear to alter the biological properties of the host cell upon integration. For example, it is estimated that 80-85% of the human population has been exposed to AAV. Finally, AAV is stable at a wide range of physical and chemical conditions which lends itself to production, storage and transportation requirements.
- the AAV genome is a linear, single-stranded DNA molecule containing 4681 nucleotides.
- the AAV genome generally comprises an internal non-repeating genome flanked on each end by inverted terminal repeats (ITRs) of approximately 145 bp in length.
- ITRs inverted terminal repeats
- the ITRs have multiple functions, including origins of DNA replication, and as packaging signals for the viral genome.
- the internal non-repeated portion of the genome includes two large open reading frames, known as the AAV replication (rep) and capsid (cap) genes.
- the rep and cap genes code for viral proteins that allow the virus to replicate and package the viral genome into a virion.
- a family of at least four viral proteins is expressed from the AAV rep region, Rep 78, Rep 68, Rep 52, and Rep 40, named according to their apparent molecular weight.
- the AAV cap region encodes at least three proteins, VP1, VP2, and VP3.
- AAV is a helper-dependent virus requiring co-infection with a helper virus (e.g., adenovirus, herpesvirus or vaccinia) in order to form AAV virions.
- a helper virus e.g., adenovirus, herpesvirus or vaccinia
- AAV establishes a latent state in which the viral genome inserts into a host cell chromosome, but infectious virions are not produced.
- Subsequent infection by a helper virus “rescues” the integrated genome, allowing it to replicate and package its genome into infectious AAV virions.
- the helper virus must be of the same species as the host cell (e.g., human AAV will replicate in canine cells co-infected with a canine adenovirus).
- AAV has been engineered to deliver genes of interest by deleting the internal non-repeating portion of the AAV genome and inserting a heterologous gene between the ITRs.
- the heterologous gene may be functionally linked to a heterologous promoter (constitutive, cell-specific, or inducible) capable of driving gene expression in target cells.
- a suitable producer cell line is transfected with a rAAV vector containing a heterologous gene.
- the producer cell is concurrently transfected with a second plasmid harboring the AAV rep and cap genes under the control of their respective endogenous promoters or heterologous promoters.
- the producer cell is infected with a helper virus.
- the heterologous gene is replicated and packaged as though it were a wild-type AAV genome.
- target cells are infected with the resulting rAAV virions, the heterologous gene enters and is expressed in the target cells. Because the target cells lack the rep and cap genes and the adenovirus helper genes, the rAAV cannot further replicate, package or form wild-type AAV.
- helper virus presents a number of problems.
- the contaminating infectious adenovirus can be inactivated by heat treatment (56° C. for 1 hour). Heat treatment, however, results in approximately a 50% drop in the titer of functional rAAV virions.
- Second, varying amounts of adenovirus proteins are present in these preparations. For example, approximately 50% or greater of the total protein obtained in such rAAV virion preparations is free adenovirus fiber protein. If not completely removed, these adenovirus proteins have the potential of eliciting an immune response from the patient.
- helper virus particles in rAAV virion producing cells diverts large amounts of host cellular resources away from rAAV virion production, potentially resulting in lower rAAV virion yields.
- Lentiviruses are complex retroviruses, which, in addition to the common retroviral genes gag, pol, and env, contain other genes with regulatory or structural function. The higher complexity enables the virus to modulate its life cycle, as in the course of latent infection.
- Some examples of lentivirus include the Human Immunodeficiency Viruses: HIV-1, HIV-2 and the Simian Immunodeficiency Virus: SIV.
- Lentiviral vectors have been generated by multiply attenuating the HIV virulence genes, for example, the genes env, vif, vpr, vpu and nef are deleted making the vector biologically safe.
- Recombinant lentiviral vectors are capable of infecting non-dividing cells and can be used for both in vivo and ex vivo gene transfer and expression of nucleic acid sequences.
- the lentiviral genome and the proviral DNA have the three genes found in retroviruses: gag, pol and env, which are flanked by two long terminal repeat (LTR) sequences.
- the gag gene encodes the internal structural (matrix, capsid and nucleocapsid) proteins;
- the pol gene encodes the RNA-directed DNA polymerase (reverse transcriptase), a protease and an integrase; and the env gene encodes viral envelope glycoproteins.
- the 5′ and 3′ LTR's serve to promote transcription and polyadenylation of the virion RNA's.
- the LTR contains all other cis-acting sequences necessary for viral replication.
- Lentiviruses have additional genes including vif, vpr, tat, rev, vpu, nef and vpx.
- Adjacent to the 5′ LTR are sequences necessary for reverse transcription of the genome (the tRNA primer binding site) and for efficient encapsidation of viral RNA into particles (the Psi site). If the sequences necessary for encapsidation (or packaging of retroviral RNA into infectious virions) are missing from the viral genome, the cis defect prevents encapsidation of genomic RNA. However, the resulting mutant remains capable of directing the synthesis of all virion proteins.
- Lentiviral vectors are known in the art, see Naldini et al., (1996); Zufferey et al., (1997); U.S. Pat. Nos. 6,013,516; and 5,994,136.
- the vectors are plasmid-based or virus-based, and are configured to carry the essential sequences for incorporating foreign nucleic acid, for selection and for transfer of the nucleic acid into a host cell.
- the gag, pol and env genes of the vectors of interest also are known in the art. Thus, the relevant genes are cloned into the selected vector and then used to transform the target cell of interest.
- Recombinant lentivirus capable of infecting a non-dividing cell wherein a suitable host cell is transfected with two or more vectors carrying the packaging functions, namely gag, pol and env, as well as rev and tat is described in U.S. Pat. No. 5,994,136, incorporated herein by reference.
- This describes a first vector that can provide a nucleic acid encoding a viral gag and a pol gene and another vector that can provide a nucleic acid encoding a viral env to produce a packaging cell.
- Introducing a vector providing a heterologous gene, such as the STAT-1 ⁇ gene in this invention, into that packaging cell yields a producer cell which releases infectious viral particles carrying the foreign gene of interest.
- the env preferably is an amphotropic envelope protein which allows transduction of cells of human and other species.
- a sequence (including a regulatory region) of interest into the viral vector, along with another gene which encodes the ligand for a receptor on a specific target cell, for example, the vector is now target-specific.
- the vector providing the viral env nucleic acid sequence is associated operably with regulatory sequences, e.g., a promoter or enhancer.
- the regulatory sequence can be any eukaryotic promoter or enhancer, including for example, the Moloney murine leukemia virus promoter-enhancer element, the human cytomegalovirus enhancer or the vaccinia P7.5 promoter. In some cases, such as the Moloney murine leukemia virus promoter-enhancer element, the promoter-enhancer elements are located within or adjacent to the LTR sequences.
- the heterologous or foreign nucleic acid sequence is linked operably to a regulatory nucleic acid sequence.
- the heterologous sequence is linked to a promoter, resulting in a chimeric gene.
- the heterologous nucleic acid sequence may also be under control of either the viral LTR promoter-enhancer signals or of an internal promoter, and retained signals within the retroviral LTR can still bring about efficient expression of the transgene.
- Marker genes may be utilized to assay for the presence of the vector, and thus, to confirm infection and integration. The presence of a marker gene ensures the selection and growth of only those host cells which express the inserts.
- Typical selection genes encode proteins that confer resistance to antibiotics and other toxic substances, e.g., histidinol, puromycin, hygromycin, neomycin, methotrexate, etc., and cell surface markers.
- the vectors are introduced via transfection or infection into the packaging cell line.
- the packaging cell line produces viral particles that contain the vector genome. Methods for transfection or infection are well known by those of skill in the art. After cotransfection of the packaging vectors and the transfer vector to the packaging cell line, the recombinant virus is recovered from the culture media and titered by standard methods used by those of skill in the art.
- the packaging constructs can be introduced into human cell lines by calcium phosphate transfection, lipofection or electroporation, generally together with a dominant selectable marker, such as neo, DHFR, Gln synthetase or ADA, followed by selection in the presence of the appropriate drug and isolation of clones.
- the selectable marker gene can be linked physically to the packaging genes in the construct.
- Lentiviral transfer vectors Naldini et al. (1996) have been used to infect human cells growth-arrested in vitro and to transduce neurons after direct injection into the brain of adult rats.
- the vector was efficient at transferring marker genes in vivo into the neurons and long term expression in the absence of detectable pathology was achieved.
- Animals analyzed ten months after a single injection of the vector showed no decrease in the average level of transgene expression and no sign of tissue pathology or immune reaction (Blomer et al., 1997).
- one may graft or transplant cells infected with the recombinant lentivirus ex vivo, or infect cells in vivo.
- viral vectors for gene delivery are constantly improving and evolving.
- Other viral vectors such as poxvirus; e.g., vaccinia virus (Gnant et al., 1999; Gnant et al., 1999), alpha virus; e.g., Sindbis virus, Semliki forest virus (Lundstrom, 1999), reovirus (Coffey et al., 1998) and influenza A virus (Neumann et al., 1999) are contemplated for use in the present invention and may be selected according to the requisite properties of the target system.
- poxvirus e.g., vaccinia virus (Gnant et al., 1999; Gnant et al., 1999), alpha virus; e.g., Sindbis virus, Semliki forest virus (Lundstrom, 1999), reovirus (Coffey et al., 1998) and influenza A virus (Neumann et al., 1999) are contemplated for use in the present invention and may be selected according to
- vaccinia viral vectors are contemplated for use in the present invention.
- Vaccinia virus is a particularly useful eukaryotic viral vector system for expressing heterologous genes. For example, when recombinant vaccinia virus is properly engineered, the proteins are synthesized, processed and transported to the plasma membrane.
- Vaccinia viruses as gene delivery vectors have recently been demonstrated to transfer genes to human tumor cells, e.g., EMAP-II (Gnant et al., 1999), inner ear (Derby et al., 1999), glioma cells, e.g., p53 (Timiryasova et al., 1999) and various mammalian cells, e.g., P 450 (U.S. Pat. No. 5,506,138).
- EMAP-II Gnant et al., 1999
- inner ear Deby et al., 1999
- glioma cells e.g., p53 (Timiryasova et al., 1999)
- various mammalian cells e.g., P 450 (U.S. Pat. No. 5,506,138).
- the preparation, growth and manipulation of vaccinia viruses are described in U.S. Pat. No. 5,849,304 and U.S. Pat. No
- Sindbis viral vectors are contemplated for use in gene delivery.
- Sindbis virus is a species of the alphavirus genus (Garoff and Li, 1998) which includes such important pathogens as Venezuelan, Western and Eastern equine encephalitis viruses (Sawai et al., 1999; Mastrangelo et al., 1999).
- Sindbis virus infects a variety of avian, mammalian, reptilian, and amphibian cells.
- the genome of Sindbis virus consists of a single molecule of single-stranded RNA, 11,703 nucleotides in length.
- the genomic RNA is infectious, is capped at the 5′ terminus and polyadenylated at the 3′ terminus, and serves as mRNA.
- Translation of a vaccinia virus 26S mRNA produces a polyprotein that is cleaved co- and post-translationally by a combination of viral and presumably host-encoded proteases to give the three virus structural proteins, a capsid protein (C) and the two envelope glycoproteins (E1 and PE2, precursors of the virion E2).
- Sindbis virus Three features suggest that it would be a useful vector for the expression of heterologous genes. First, its wide host range, both in nature and in the laboratory. Second, gene expression occurs in the cytoplasm of the host cell and is rapid and efficient. Third, temperature-sensitive mutations in RNA synthesis are available that may be used to modulate the expression of heterologous coding sequences by simply shifting cultures to the non-permissive temperature at various time after infection. The growth and maintenance of Sindbis virus is known in the art (U.S. Pat. No. 5,217,879, specifically incorporated herein by reference).
- Chimeric or hybrid viral vectors are being developed for use in therapeutic gene delivery and are contemplated for use in the present invention.
- Chimeric poxviral/retroviral vectors Holzer et al., 1999
- adenoviral/retroviral vectors Feeng et al., 1997; Bilbao et al., 1997; Caplen et al., 1999
- adenoviral/adeno-associated viral vectors Fisher et al., 1996; U.S. Pat. No. 5,871,982 have been described.
- Wilson et al. provide a chimeric vector construct which comprises a portion of an adenovirus, AAV 5′ and 3′ ITR sequences and a selected transgene, described below (U.S. Pat. No. 5,871,983, specifically incorporate herein by reference).
- the adenovirus/AAV chimeric virus uses adenovirus nucleic acid sequences as a shuttle to deliver a recombinant AAV/transgene genome to a target cell.
- the adenovirus nucleic acid sequences employed in the hybrid vector can range from a minimum sequence amount, which requires the use of a helper virus to produce the hybrid virus particle, to only selected deletions of adenovirus genes, which deleted gene products can be supplied in the hybrid viral production process by a selected packaging cell.
- the adenovirus nucleic acid sequences employed in the pAdA shuttle vector are adenovirus genomic sequences from which all viral genes are deleted and which contain only those adenovirus sequences required for packaging adenoviral genomic DNA into a preformed capsid head. More specifically, the adenovirus sequences employed are the cis-acting 5′ and 3′ inverted terminal repeat (ITR) sequences of an adenovirus (which function as origins of replication) and the native 5′ packaging/enhancer domain, that contains sequences necessary for packaging linear Ad genomes and enhancer elements for the E1 promoter.
- ITR inverted terminal repeat
- the adenovirus sequences may be modified to contain desired deletions, substitutions, or mutations, provided that the desired function is not eliminated.
- the AAV sequences useful in the above chimeric vector are the viral sequences from which the rep and cap polypeptide encoding sequences are deleted. More specifically, the AAV sequences employed are the cis-acting 5′ and 3′ inverted terminal repeat (ITR) sequences. These chimeras are characterized by high titer transgene delivery to a host cell and the ability to stably integrate the transgene into the host cell chromosome (U.S. Pat. No. 5,871,983, specifically incorporate herein by reference). In the hybrid vector construct, the AAV sequences are flanked by the selected adenovirus sequences discussed above. The 5′ and 3′ AAV ITR sequences themselves flank a selected transgene sequence and associated regulatory elements, described below.
- ITR inverted terminal repeat
- the sequence formed by the transgene and flanking 5′ and 3′ AAV sequences may be inserted at any deletion site in the adenovirus sequences of the vector.
- the AAV sequences are desirably inserted at the site of the deleted E1a/E1b genes of the adenovirus.
- the AAV sequences may be inserted at an E3 deletion, E2a deletion, and so on. If only the adenovirus 5′ ITR/packaging sequences and 3′ ITR sequences are used in the hybrid virus, the AAV sequences are inserted between them.
- the transgene sequence of the vector and recombinant virus can be a gene, a nucleic acid sequence or reverse transcript thereof, heterologous to the adenovirus sequence, which encodes a protein, polypeptide or peptide fragment of interest.
- the transgene is operatively linked to regulatory components in a manner which permits transgene transcription.
- the composition of the transgene sequence will depend upon the use to which the resulting hybrid vector will be put.
- one type of transgene sequence includes a therapeutic gene which expresses a desired gene product in a host cell.
- These therapeutic genes or nucleic acid sequences typically encode products for administration and expression in a patient in vivo or ex vivo to replace or correct an inherited or non-inherited genetic defect or treat an epigenetic disorder or disease.
- a nucleic acid e.g., DNA
- Such methods include, but are not limited to, direct delivery of DNA such as by injection (U.S. Pat. Nos.
- a nucleic acid may be delivered to an organelle, a cell, a tissue or an organism via one or more injections (i.e., a needle injection), such as, for example, either subcutaneously, intradermally, intramuscularly, intravenously or intraperitoneally.
- injections i.e., a needle injection
- Methods of injection of vaccines are well known to those of ordinary skill in the art (e.g., injection of a composition comprising a saline solution).
- Further embodiments of the present invention include the introduction of a nucleic acid by direct microinjection. Direct microinjection has been used to introduce nucleic acid constructs into Xenopus oocytes (Harland and Weintraub, 1985).
- a nucleic acid is introduced into an organelle, a cell, a tissue or an organism via electroporation.
- Electroporation involves the exposure of a suspension of cells and DNA to a high-voltage electric discharge.
- certain cell wall-degrading enzymes such as pectin-degrading enzymes, are employed to render the target recipient cells more susceptible to transformation by electroporation than untreated cells (U.S. Pat. No. 5,384,253, incorporated herein by reference).
- recipient cells can be made more susceptible to transformation by mechanical wounding.
- Mouse pre-B lymphocytes have been transfected with human ⁇ -immunoglobulin genes (Potter et al., 1984), and rat hepatocytes have been transfected with the chloramphenicol acetyltransferase gene (Tur-Kaspa et al., 1986) in this manner.
- friable tissues such as a suspension culture of cells or embryogenic callus or alternatively one may transform immature embryos or other organized tissue directly.
- pectolyases pectolyases
- mechanically wounding in a controlled manner.
- pectolyases pectolyases
- One also may employ protoplasts for electroporation transformation of plant cells (Bates, 1994; Lazzeri, 1995).
- protoplasts for electroporation transformation of plant cells
- the generation of transgenic soybean plants by electroporation of cotyledon-derived protoplasts is described by Dhir and Widholm in International Patent Application No. WO 92/17598, incorporated herein by reference.
- Other examples of species for which protoplast transformation has been described include barley (Lazerri, 1995), sorghum (Battraw et al., 1991), maize (Bhattacharjee et al., 1997), wheat (He et al., 1994) and tomato (Tsukada, 1989).
- a nucleic acid is introduced to the cells using calcium phosphate precipitation.
- Human KB cells have been transfected with adenovirus 5 DNA (Graham and Van Der Eb, 1973) using this technique.
- mouse L(A9), mouse C127, CHO, CV-1, BHK, NIH3T3 and HeLa cells were transfected with a neomycin marker gene (Chen and Okayama, 1987), and rat hepatocytes were transfected with a variety of marker genes (Rippe et al., 1990).
- DEAE-Dextran In another embodiment, a nucleic acid is delivered into a cell using DEAE-dextran followed by polyethylene glycol. In this manner, reporter plasmids were introduced into mouse myeloma and erythroleukemia cells (Gopal, 1985).
- Additional embodiments of the present invention include the introduction of a nucleic acid by direct sonic loading.
- LTK ⁇ fibroblasts have been transfected with the thymidine kinase gene by sonication loading (Fechheimer et al., 1987).
- a nucleic acid may be entrapped in a lipid complex such as, for example, a liposome.
- Liposomes are vesicular structures characterized by a phospholipid bilayer membrane and an inner aqueous medium. Multilamellar liposomes have multiple lipid layers separated by aqueous medium. They form spontaneously when phospholipids are suspended in an excess of aqueous solution. The lipid components undergo self-rearrangement before the formation of closed structures and entrap water and dissolved solutes between the lipid bilayers (Ghosh and Bachhawat, 1991). Also contemplated is an nucleic acid complexed with Lipofectamine (Gibco BRL) or Superfect (Qiagen).
- Liposome-mediated nucleic acid delivery and expression of foreign DNA in vitro has been very successful (Nicolau and Sene, 1982; Fraley et al., 1979; Nicolau et al., 1987).
- the feasibility of liposome-mediated delivery and expression of foreign DNA in cultured chick embryo, HeLa and hepatoma cells has also been demonstrated (Wong et al., 1980).
- a liposome may be complexed with a hemagglutinating virus (HVJ). This has been shown to facilitate fusion with the cell membrane and promote cell entry of liposome-encapsulated DNA (Kaneda et al., 1989).
- a liposome may be complexed or employed in conjunction with nuclear non-histone chromosomal proteins (HMG-1) (Kato et al., 1991).
- HMG-1 nuclear non-histone chromosomal proteins
- a liposome may be complexed or employed in conjunction with both HVJ and HMG-1.
- a delivery vehicle may comprise a ligand and a liposome.
- a nucleic acid may be delivered to a target cell via receptor-mediated delivery vehicles.
- receptor-mediated delivery vehicles take advantage of the selective uptake of macromolecules by receptor-mediated endocytosis that will be occurring in a target cell.
- this delivery method adds another degree of specificity to the present invention.
- Certain receptor-mediated gene targeting vehicles comprise a cell receptor-specific ligand and a nucleic acid-binding agent. Others comprise a cell receptor-specific ligand to which the nucleic acid to be delivered has been operatively attached.
- Several ligands have been used for receptor-mediated gene transfer (Wu and Wu, 1987; Wagner et al., 1990; Perales et al., 1994; Myers, EPO 0273085), which establishes the operability of the technique. Specific delivery in the context of another mammalian cell type has been described (Wu and Wu, 1993; incorporated herein by reference).
- a ligand will be chosen to correspond to a receptor specifically expressed on the target cell population.
- a nucleic acid delivery vehicle component of a cell-specific nucleic acid targeting vehicle may comprise a specific binding ligand in combination with a liposome.
- the nucleic acid(s) to be delivered are housed within the liposome and the specific binding ligand is functionally incorporated into the liposome membrane.
- the liposome will thus specifically bind to the receptor(s) of a target cell and deliver the contents to a cell.
- Such systems have been shown to be functional using systems in which, for example, epidermal growth factor (EGF) is used in the receptor-mediated delivery of a nucleic acid to cells that exhibit upregulation of the EGF receptor.
- EGF epidermal growth factor
- the nucleic acid delivery vehicle component of a targeted delivery vehicle may be a liposome itself, which will preferably comprise one or more lipids or glycoproteins that direct cell-specific binding.
- lipids or glycoproteins that direct cell-specific binding.
- lactosyl-ceramide, a galactose-terminal asialganglioside have been incorporated into liposomes and observed an increase in the uptake of the insulin gene by hepatocytes (Nicolau et al., 1987). It is contemplated that the tissue-specific transforming constructs of the present invention can be specifically delivered into a target cell in a similar manner.
- Prokaryote- and/or eukaryote-based systems can be employed for use with the present invention to produce nucleic acid sequences, or their cognate polypeptides, proteins and peptides. Many such systems are commercially and widely available.
- the insect cell/baculovirus system can produce a high level of protein expression of a heterologous nucleic acid segment, such as described in U.S. Pat. Nos. 5,871,986 and 4,879,236, both herein incorporated by reference, and which can be bought, for example, under the name MaxBac® 2.0 from Invitrogen® and BacPackTM Baculovirus Expression System From Clontech®.
- Primary mammalian cell cultures may be prepared in various ways. In order for the cells to be kept viable while in vitro and in contact with the expression construct, it is necessary to ensure that the cells maintain contact with the correct ratio of oxygen and carbon dioxide and nutrients but are protected from microbial contamination. Cell culture techniques are well documented.
- One embodiment of the foregoing involves the use of gene transfer to immortalize cells for the production of proteins.
- the gene for the protein of interest may be transferred as described above into appropriate host cells followed by culture of cells under the appropriate conditions.
- the gene for virtually any polypeptide may be employed in this manner.
- the generation of recombinant expression vectors, and the elements included therein, are discussed above.
- the protein to be produced may be an endogenous protein normally synthesized by the cell in question.
- Examples of useful mammalian host cell lines are Vero and HeLa cells and cell lines of Chinese hamster ovary, W138, BHK, COS-7, 293, HepG2, NIH3T3, RIN and MDCK cells.
- a host cell strain may be chosen that modulates the expression of the inserted sequences, or modifies and process the gene product in the manner desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein.
- Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins. Appropriate cell lines or host systems can be chosen to insure the correct modification and processing of the foreign protein expressed.
- the antibodies of the present invention may be purified.
- purified is intended to refer to a composition, isolatable from other components, wherein the protein is purified to any degree relative to its naturally-obtainable state.
- a purified protein therefore also refers to a protein, free from the environment in which it may naturally occur.
- substantially purified this designation will refer to a composition in which the protein or peptide forms the major component of the composition, such as constituting about 50%, about 60%, about 70%, about 80%, about 90%, about 95% or more of the proteins in the composition.
- Protein purification techniques are well known to those of skill in the art. These techniques involve, at one level, the crude fractionation of the cellular milieu to polypeptide and non-polypeptide fractions. Having separated the polypeptide from other proteins, the polypeptide of interest may be further purified using chromatographic and electrophoretic techniques to achieve partial or complete purification (or purification to homogeneity). Analytical methods particularly suited to the preparation of a pure peptide are ion-exchange chromatography, exclusion chromatography; polyacrylamide gel electrophoresis; isoelectric focusing.
- protein purification include, precipitation with ammonium sulfate, PEG, antibodies and the like or by heat denaturation, followed by centrifugation; gel filtration, reverse phase, hydroxylapatite and affinity chromatography; and combinations of such and other techniques.
- polypeptide In purifying an antibody of the present invention, it may be desirable to express the polypeptide in a prokaryotic or eukaryotic expression system and extract the protein using denaturing conditions.
- the polypeptide may be purified from other cellular components using an affinity column, which binds to a tagged portion of the polypeptide.
- affinity column which binds to a tagged portion of the polypeptide.
- antibodies are fractionated utilizing agents (i.e., protein A) that bind the Fc portion of the antibody.
- agents i.e., protein A
- antigens may be used to simultaneously purify and select appropriate antibodies.
- Such methods often utilize the selection agent bound to a support, such as a column, filter or bead.
- the antibodies are bound to a support, contaminants removed (e.g., washed away), and the antibodies released by applying conditions (salt, heat, etc.).
- a Single Chain Variable Fragment is a fusion of the variable regions of the heavy and light chains of immunoglobulins, linked together with a short (usually serine, glycine) linker.
- This chimeric molecule also known as a single domain antibody, retains the specificity of the original immunoglobulin, despite removal of the constant regions and the introduction of a linker peptide. This modification usually leaves the specificity unaltered.
- These molecules were created historically to facilitate phage display where it is highly convenient to express the antigen binding domain as a single peptide.
- scFv can be created directly from subcloned heavy and light chains derived from a hybridoma.
- Single domain or single chain variable fragments lack the constant Fc region found in complete antibody molecules, and thus, the common binding sites (e.g., protein A/G) used to purify antibodies (single chain antibodies include the Fc region). These fragments can often be purified/immobilized using Protein L since Protein L interacts with the variable region of kappa light chains.
- Flexible linkers generally are comprised of helix- and turn-promoting amino acid residues such as alaine, serine and glycine. However, other residues can function as well.
- Tang et al. (1996) used phage display as a means of rapidly selecting tailored linkers for single-chain antibodies (scFvs) from protein linker libraries.
- scFvs single-chain antibodies
- a random linker library was constructed in which the genes for the heavy and light chain variable domains were linked by a segment encoding an 18-amino acid polypeptide of variable composition.
- the scFv repertoire (approx. 5 ⁇ 10 6 different members) was displayed on filamentous phage and subjected to affinity selection with hapten. The population of selected variants exhibited significant increases in binding activity but retained considerable sequence diversity.
- the recombinant antibodies of the present invention may also involve sequences or moieties that permit dimerization or multimerization of the receptors.
- sequences include those derived from IgA, which permit formation of multimers in conjunction with the J-chain.
- Another multimerization domain is the Gal4 dimerization domain.
- the chains may be modified with agents such as biotin/avidin, which permit the combination of two antibodies.
- a single-chain antibody can be created by joining receptor light and heavy chains using a non-peptide linker or chemical unit.
- the light and heavy chains will be produced in distinct cells, purified, and subsequently linked together in an appropriate fashion (i.e., the N-terminus of the heavy chain being attached to the C-terminus of the light chain via an appropriate chemical bridge).
- Cross-linking reagents are used to form molecular bridges that tie functional groups of two different molecules, e.g., a stabilizing and coagulating agent.
- a stabilizing and coagulating agent e.g., a stabilizing and coagulating agent.
- dimers or multimers of the same analog or heteromeric complexes comprised of different analogs can be created.
- hetero-bifunctional cross-linkers can be used that eliminate unwanted homopolymer formation.
- An exemplary hetero-bifunctional cross-linker contains two reactive groups: one reacting with primary amine group (e.g., N-hydroxy succinimide) and the other reacting with a thiol group (e.g., pyridyl disulfide, maleimides, halogens, etc.).
- primary amine group e.g., N-hydroxy succinimide
- a thiol group e.g., pyridyl disulfide, maleimides, halogens, etc.
- the cross-linker may react with the lysine residue(s) of one protein (e.g., the selected antibody or fragment) and through the thiol reactive group, the cross-linker, already tied up to the first protein, reacts with the cysteine residue (free sulfhydryl group) of the other protein (e.g., the selective agent).
- cross-linker having reasonable stability in blood will be employed.
- Numerous types of disulfide-bond containing linkers are known that can be successfully employed to conjugate targeting and therapeutic/preventative agents. Linkers that contain a disulfide bond that is sterically hindered may prove to give greater stability in vivo, preventing release of the targeting peptide prior to reaching the site of action. These linkers are thus one group of linking agents.
- SMPT cross-linking reagent
- Another cross-linking reagent is SMPT, which is a bifunctional cross-linker containing a disulfide bond that is “sterically hindered” by an adjacent benzene ring and methyl groups. It is believed that steric hindrance of the disulfide bond serves a function of protecting the bond from attack by thiolate anions such as glutathione which can be present in tissues and blood, and thereby help in preventing decoupling of the conjugate prior to the delivery of the attached agent to the target site.
- thiolate anions such as glutathione which can be present in tissues and blood
- the SMPT cross-linking reagent lends the ability to cross-link functional groups such as the SH of cysteine or primary amines (e.g., the epsilon amino group of lysine).
- Another possible type of cross-linker includes the hetero-bifunctional photoreactive phenylazides containing a cleavable disulfide bond such as sulfosuccinimidyl-2-(p-azido salicylamido) ethyl-1,3′-dithiopropionate.
- the N-hydroxy-succinimidyl group reacts with primary amino groups and the phenylazide (upon photolysis) reacts non-selectively with any amino acid residue.
- non-hindered linkers also can be employed in accordance herewith.
- Other useful cross-linkers include SATA, SPDP and 2-iminothiolane (Wawrzynczak & Thorpe, 1987). The use of such cross-linkers is well understood in the art. Another embodiment involves the use of flexible linkers.
- U.S. Pat. No. 4,680,3308 describes bifunctional linkers useful for producing conjugates of ligands with amine-containing polymers and/or proteins, especially for forming antibody conjugates with chelators, drugs, enzymes, detectable labels and the like.
- U.S. Pat. Nos. 5,141,648 and 5,563,250 disclose cleavable conjugates containing a labile bond that is cleavable under a variety of mild conditions.
- This linker is particularly useful in that the agent of interest may be bonded directly to the linker, with cleavage resulting in release of the active agent.
- Particular uses include adding a free amino or free sulfhydryl group to a protein, such as an antibody, or a drug.
- U.S. Pat. No. 5,856,456 provides peptide linkers for use in connecting polypeptide constituents to make fusion proteins, e.g., single chain antibodies.
- the linker is up to about 50 amino acids in length, contains at least one occurrence of a charged amino acid (preferably arginine or lysine) followed by a proline, and is characterized by greater stability and reduced aggregation.
- U.S. Pat. No. 5,880,270 discloses aminooxy-containing linkers useful in a variety of immunodiagnostic and separative techniques.
- T cell receptors also known as chimeric T cell receptors, chimeric immunoreceptors, chimeric antigen receptors (CARs)
- CARs chimeric antigen receptors
- these receptors are used to graft the specificity of a monoclonal antibody onto a T cell, with transfer of their coding sequence facilitated by retroviral vectors. In this way, a large number of cancer-specific T cells can be generated for adoptive cell transfer. Phase I clinical studies of this approach show efficacy.
- scFv single-chain variable fragments
- scFv single-chain variable fragments
- An example of such a construct is 14g2a-Zeta, which is a fusion of a scFv derived from hybridoma 14g2a (which recognizes disialoganglioside GD2).
- T cells express this molecule (usually achieved by oncoretroviral vector transduction), they recognize and kill target cells that express GD2 (e.g., neuroblastoma cells).
- GD2 e.g., neuroblastoma cells
- investigators have redirected the specificity of T cells using a chimeric immunoreceptor specific for the B-lineage molecule, CD19.
- variable portions of an immunoglobulin heavy and light chain are fused by a flexible linker to form a scFv.
- This scFv is preceded by a signal peptide to direct the nascent protein to the endoplasmic reticulum and subsequent surface expression (this is cleaved).
- a flexible spacer allows to the scFv to orient in different directions to enable antigen binding.
- the transmembrane domain is a typical hydrophobic alpha helix usually derived from the original molecule of the signalling endodomain which protrudes into the cell and transmits the desired signal.
- Type I proteins are in fact two protein domains linked by a transmembrane alpha helix in between.
- a signal peptide directs the nascent protein into the endoplasmic reticulum. This is essential if the receptor is to be glycosylated and anchored in the cell membrane. Any eukaryotic signal peptide sequence usually works fine. Generally, the signal peptide natively attached to the amino-terminal most component is used (e.g., in a scFv with orientation light chain-linker-heavy chain, the native signal of the light-chain is used
- the antigen recognition domain is usually an scFv.
- An antigen recognition domain from native T-cell receptor (TCR) alpha and beta single chains have been described, as have simple ectodomains (e.g., CD4 ectodomain to recognize HIV infected cells) and more exotic recognition components such as a linked cytokine (which leads to recognition of cells bearing the cytokine receptor).
- TCR T-cell receptor
- a spacer region links the antigen binding domain to the transmembrane domain. It should be flexible enough to allow the antigen binding domain to orient in different directions to facilitate antigen recognition.
- the simplest form is the hinge region from IgG1. Alternatives include the CH 2 CH 3 region of immunoglobulin and portions of CD3. For most scFv based constructs, the IgG1 hinge suffices. However the best spacer often has to be determined empirically.
- the transmembrane domain is a hydrophobic alpha helix that spans the membrane. Generally, the transmembrane domain from the most membrane proximal component of the endodomain is used. Interestingly, using the CD3-zeta transmembrane domain may result in incorporation of the artificial TCR into the native TCR a factor that is dependent on the presence of the native CD3-zeta transmembrane charged aspartic acid residue. Different transmembrane domains result in different receptor stability. The CD28 transmembrane domain results in a brightly expressed, stable receptor.
- CD3-zeta which contains 3 ITAMs. This transmits an activation signal to the T cell after antigen is bound.
- CD3-zeta may not provide a fully competent activation signal and additional co-stimulatory signaling is needed.
- chimeric CD28 and OX40 can be used with CD3-Zeta to transmit a proliferative/survival signal, or all three can be used together.
- First-generation CARs typically had the intracellular domain from the CD3 ⁇ -chain, which is the primary transmitter of signals from endogenous TCRs.
- “Second-generation” CARs add intracellular signaling domains from various costimulatory protein receptors (e.g., CD28, 41BB, ICOS) to the cytoplasmic tail of the CAR to provide additional signals to the T cell.
- costimulatory protein receptors e.g., CD28, 41BB, ICOS
- Preclinical studies have indicated that the second generation of CAR designs improves the antitumor activity of T cells.
- “third-generation” CARs combine multiple signaling domains, such as CD3z-CD28-41BB or CD3z-CD28-OX40, to further augment potency.
- T cells expressing chimeric antigen receptors Adoptive transfer of T cells expressing chimeric antigen receptors is a promising anti-cancer therapeutic as CAR-modified T cells can be engineered to target virtually any tumor associated antigen. There is great potential for this approach to improve patient-specific cancer therapy in a profound way. Following the collection of a patient's T cells, the cells are genetically engineered to express CARs specifically directed towards antigens on the patient's tumor cells, then infused back into the patient. Although adoptive transfer of CAR-modified T-cells is a unique and promising cancer therapeutic, there are significant safety concerns. Clinical trials of this therapy have revealed potential toxic effects of these CARs when healthy tissues express the same target antigens as the tumor cells, leading to outcomes similar to graft-versus-host disease (GVHD).
- GVHD graft-versus-host disease
- a potential solution to this problem is engineering a suicide gene into the modified T cells.
- administration of a prodrug designed to activate the suicide gene during GVHD triggers apoptosis in the suicide gene-activated CAR T cells.
- This method has been used safely and effectively in hematopoietic stem cell transplantation (HSCT).
- HSCT hematopoietic stem cell transplantation
- Adoption of suicide gene therapy to the clinical application of CAR-modified T cell adoptive cell transfer has potential to alleviate GVHD while improving overall anti-tumor efficacy.
- Antibody Drug Conjugates or ADCs are a new class of highly potent biopharmaceutical drugs designed as a targeted therapy for the treatment of people with cancer.
- ADCs are complex molecules composed of an antibody (a whole mAb or an antibody fragment such as a single-chain variable fragment, or scFv) linked, via a stable chemical linker with labile bonds, to a biological active cytotoxic (anticancer) payload or drug.
- Antibody Drug Conjugates are examples of bioconjugates and immunoconjugates.
- antibody-drug conjugates allow sensitive discrimination between healthy and diseased tissue. This means that, in contrast to traditional chemotherapeutic agents, antibody-drug conjugates target and attack the cancer cell so that healthy cells are less severely affected.
- an anticancer drug e.g., a cell toxin or cytotoxin
- an antibody that specifically targets a certain tumor marker e.g., a protein that, ideally, is only to be found in or on tumor cells; in this case MUC1.
- a certain tumor marker e.g., a protein that, ideally, is only to be found in or on tumor cells; in this case MUC1.
- Antibodies track these proteins down in the body and attach themselves to the surface of cancer cells.
- the biochemical reaction between the antibody and the target protein (antigen) triggers a signal in the tumor cell, which then absorbs or internalizes the antibody together with the cytotoxin.
- the cytotoxic drug is released and kills the cancer. Due to this targeting, ideally the drug has lower side effects and gives a wider therapeutic window than other chemotherapeutic agents.
- a stable link between the antibody and cytotoxic (anti-cancer) agent is a crucial aspect of an ADC.
- Linkers are based on chemical motifs including disulfides, hydrazones or peptides (cleavable), or thioethers (noncleavable) and control the distribution and delivery of the cytotoxic agent to the target cell. Cleavable and noncleavable types of linkers have been proven to be safe in preclinical and clinical trials.
- Brentuximab vedotin includes an enzyme-sensitive cleavable linker that delivers the potent and highly toxic antimicrotubule agent Monomethyl auristatin E or MMAE, a synthetic antineoplastic agent, to human specific CD30-positive malignant cells.
- MMAE which inhibits cell division by blocking the polymerization of tubulin, cannot be used as a single-agent chemotherapeutic drug.
- cAC10 a cell membrane protein of the tumor necrosis factor or TNF receptor
- Trastuzumab emtansine is a combination of the microtubule-formation inhibitor mertansine (DM-1), a derivative of the Maytansine, and antibody trastuzumab (Herceptin®/Genentech/Roche) attached by a stable, non-cleavable linker.
- DM-1 microtubule-formation inhibitor mertansine
- Maytansine a derivative of the Maytansine
- trastuzumab Herceptin®/Genentech/Roche
- linker cleavable or noncleavable
- linker cleavable or noncleavable
- cleavable linker keeps the drug within the cell.
- the entire antibody, linker and cytotoxic (anti-cancer) agent enter the targeted cancer cell where the antibody is degraded to the level of an amino acid.
- cleavable linkers are catalyzed by enzymes in the cancer cell where it releases the cytotoxic agent.
- the cytotoxic payload delivered via a cleavable linker can escape from the targeted cell and, in a process called “bystander killing,” attack neighboring cancer cells.
- cleavable linker Another type of cleavable linker, currently in development, adds an extra molecule between the cytotoxic drug and the cleavage site. This linker technology allows researchers to create ADCs with more flexibility without worrying about changing cleavage kinetics. researchers are also developing a new method of peptide cleavage based on Edman degradation, a method of sequencing amino acids in a peptide. Future direction in the development of ADCs also include the development of site-specific conjugation (TDCs) to further improve stability and therapeutic index and a emitting immunoconjugates and antibody-conjugated nanoparticles.
- TDCs site-specific conjugation
- Bi-specific T-cell engagers are a class of artificial bispecific monoclonal antibodies that are investigated for the use as anti-cancer drugs. They direct a host's immune system, more specifically the T cells' cytotoxic activity, against cancer cells. BiTE is a registered trademark of Micromet AG.
- BiTEs are fusion proteins consisting of two single-chain variable fragments (scFvs) of different antibodies, or amino acid sequences from four different genes, on a single peptide chain of about 55 kilodaltons.
- scFvs single-chain variable fragments
- One of the scFvs binds to T cells via the CD3 receptor, and the other to a tumor cell via a tumor specific molecule, in this case MUC1.
- BiTEs form a link between T cells and tumor cells. This causes T cells to exert cytotoxic activity on tumor cells by producing proteins like perforin and granzymes, independently of the presence of MHC I or co-stimulatory molecules. These proteins enter tumor cells and initiate the cell's apoptosis. This action mimics physiological processes observed during T cell attacks against tumor cells.
- BiTEs that were in clinical trials as of July 2010 include Blinatumomab (MT103) for the treatment of non-Hodgkin's lymphoma and acute lymphoblastic leukemia, directed towards CD19, a surface molecule expressed on B cells; and MT110 for the treatment of gastrointestinal and lung cancers, directed towards the EpCAM antigen.
- MT103 Blinatumomab
- MT110 for the treatment of non-Hodgkin's lymphoma and acute lymphoblastic leukemia, directed towards CD19, a surface molecule expressed on B cells
- MT110 for the treatment of gastrointestinal and lung cancers, directed towards the EpCAM antigen.
- melanoma with MCSP specific BiTEs
- acute myeloid leukemia with CD33 specific BiTEs
- BiTEs biologic response modifiers
- MCSP specific BiTEs with MCSP specific BiTEs
- CD33 specific BiTEs with CD33 specific BiTEs
- Another avenue for novel anti-cancer therapies is re-engineering some of the currently used conventional antibodies like trastuzumab (targeting HER2/neu), cetuximab and panitumumab (both targeting the EGF receptor), using the BiTE approach.
- BiTEs against CD66e and EphA2 are being developed as well.
- the development of cancer referred to as carcinogenesis
- carcinogenesis can be modeled and characterized in a number of ways.
- An association between the development of cancer and inflammation has long-been appreciated.
- the inflammatory response is involved in the host defense against microbial infection, and also drives tissue repair and regeneration.
- Considerable evidence points to a connection between inflammation and a risk of developing cancer, i.e., chronic inflammation can lead to dysplasia.
- Cancer cells to which the methods of the present invention can be applied include generally any cell that expresses MUC1, and more particularly, that overexpresses MUC1.
- An appropriate cancer cell can be a breast cancer, lung cancer, colon cancer, pancreatic cancer, renal cancer, stomach cancer, liver cancer, bone cancer, hematological cancer (e.g., leukemia or lymphoma), neural tissue cancer, melanoma, ovarian cancer, testicular cancer, prostate cancer, cervical cancer, vaginal cancer, or bladder cancer cell.
- the methods of the invention can be applied to a wide range of species, e.g., humans, non-human primates (e.g., monkeys, baboons, or chimpanzees), horses, cattle, pigs, sheep, goats, dogs, cats, rabbits, guinea pigs, gerbils, hamsters, rats, and mice.
- Cancers may also be recurrent, metastatic and/or multi-drug resistant, and the methods of the present invention may be particularly applied to such cancers so as to render them resectable, to prolong or re-induce remission, to inhibit angiogenesis, to prevent or limit metastasis, and/or to treat multi-drug resistant cancers. At a cellular level, this may translate into killing cancer cells, inhibiting cancer cell growth, or otherwise reversing or reducing the malignant phenotype of tumor cells.
- compositions comprising anti-MUC1-C antibodies.
- pharmaceutically acceptable means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
- carrier refers to a diluent, excipient, or vehicle with which the therapeutic is administered.
- Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like.
- Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, saline, dextrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene glycol, water, ethanol and the like.
- compositions can be formulated as neutral or salt forms.
- Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.
- the antibodies of the present invention may include classic pharmaceutical preparations. Administration of these compositions according to the present invention will be via any common route so long as the target tissue is available via that route. This includes oral, nasal, buccal, rectal, vaginal or topical. Alternatively, administration may be by intradermal, subcutaneous, intramuscular, intraperitoneal or intravenous injection. Such compositions would normally be administered as pharmaceutically acceptable compositions, described supra. Of particular interest is direct intratumoral administration, perfusion of a tumor, or administration local or regional to a tumor, for example, in the local or regional vasculature or lymphatic system, or in a resected tumor bed.
- the active compounds may also be administered parenterally or intraperitoneally.
- Solutions of the active compounds as free base or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose.
- Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- anti-MUC1-C antibodies described herein could be used similarly in conjunction with chemo- or radiotherapeutic intervention, or other treatments. It also may prove effective, in particular, to combine anti-MUC1-C/ECD antibodies with other therapies that target different aspects of MUC1 function, such as peptides and small molecules that target the MUC1 cytoplasmic domain.
- compositions of the present invention To kill cells, inhibit cell growth, inhibit metastasis, inhibit angiogenesis or otherwise reverse or reduce the malignant phenotype of tumor cells, using the methods and compositions of the present invention, one would generally contact a “target” cell with an anti-MUC1-C antibody according to the present invention and at least one other agent. These compositions would be provided in a combined amount effective to kill or inhibit proliferation of the cell. This process may involve contacting the cells with the anti-MUC1-C antibody according to the present invention and the other agent(s) or factor(s) at the same time.
- This may be achieved by contacting the cell with a single composition or pharmacological formulation that includes both agents, or by contacting the cell with two distinct compositions or formulations, at the same time, wherein one composition includes the anti-MUC1-C antibody according to the present invention and the other includes the other agent.
- the anti-MUC1-C antibody therapy may precede or follow the other agent treatment by intervals ranging from minutes to weeks.
- the other agent and the anti-MUC1 antibody are applied separately to the cell, one would generally ensure that a significant period of time did not expire between the time of each delivery, such that the agent and expression construct would still be able to exert an advantageously combined effect on the cell.
- an anti-MUC1-C antibody according to the present invention therapy is “A” and the other therapy is “B”, as exemplified below:
- Agents or factors suitable for cancer therapy include any chemical compound or treatment method that induces DNA damage when applied to a cell. Such agents and factors include radiation and waves that induce DNA damage such as, irradiation, microwaves, electronic emissions, and the like.
- a variety of chemical compounds, also described as “chemotherapeutic” or “genotoxic agents,” may be used. This may be achieved by irradiating the localized tumor site; alternatively, the tumor cells may be contacted with the agent by administering to the subject a therapeutically effective amount of a pharmaceutical composition.
- SERMs selective estrogen receptor antagonists
- Tamoxifen 4-hydroxy Tamoxifen (Afimoxfene)
- Falsodex Raloxifene
- Bazedoxifene Raloxifene
- Clomifene Femarelle
- Lasofoxifene Ormeloxifene
- Toremifene Toremifene
- Chemotherapeutic agents contemplated to be of use include, e.g., camptothecin, actinomycin-D, mitomycin C.
- the invention also encompasses the use of a combination of one or more DNA damaging agents, whether radiation-based or actual compounds, such as the use of X-rays with cisplatin or the use of cisplatin with etoposide.
- the agent may be prepared and used as a combined therapeutic composition, or kit, by combining it with a MUC1 peptide, as described above.
- Heat shock protein 90 is a regulatory protein found in many eukaryotic cells. HSP90 inhibitors have been shown to be useful in the treatment of cancer. Such inhibitors include Geldanamycin, 17-(Allylamino)-17-demethoxygeldanamycin, PU-H71 and Rifabutin.
- Agents that directly cross-link DNA or form adducts are also envisaged. Agents such as cisplatin, and other DNA alkylating agents may be used. Cisplatin has been widely used to treat cancer, with efficacious doses used in clinical applications of 20 mg/m 2 for 5 days every three weeks for a total of three courses. Cisplatin is not absorbed orally and must therefore be delivered via injection intravenously, subcutaneously, intratumorally or intraperitoneally.
- Agents that damage DNA also include compounds that interfere with DNA replication, mitosis and chromosomal segregation.
- chemotherapeutic compounds include adriamycin, also known as doxorubicin, etoposide, verapamil, podophyllotoxin, and the like. Widely used in a clinical setting for the treatment of neoplasms, these compounds are administered through bolus injections intravenously at doses ranging from 25-75 mg/m 2 at 21 day intervals for doxorubicin, to 35-50 mg/m 2 for etoposide intravenously or double the intravenous dose orally.
- Microtubule inhibitors such as taxanes, also are contemplated. These molecules are diterpenes produced by the plants of the genus Taxus , and include paclitaxel and docetaxel.
- Epidermal growth factor receptor inhibitors such as Iressa, mTOR, the mammalian target of rapamycin, also known as FK506-binding protein 12-rapamycin associated protein 1 (FRAP1) is a serine/threonine protein kinase that regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. Rapamycin and analogs thereof (“rapalogs”) are therefore contemplated for use in cancer therapy in accordance with the present invention.
- TNF- ⁇ tumor necrosis factor-alpha
- TNF- ⁇ tumor necrosis factor-alpha
- cytokine involved in systemic inflammation
- cytokines that stimulate the acute phase reaction.
- the primary role of TNF is in the regulation of immune cells. TNF is also able to induce apoptotic cell death, to induce inflammation, and to inhibit tumorigenesis and viral replication.
- nucleic acid precursors and subunits also lead to DNA damage.
- nucleic acid precursors have been developed.
- agents that have undergone extensive testing and are readily available are particularly useful.
- agents such as 5-fluorouracil (5-FU) are preferentially used by neoplastic tissue, making this agent particularly useful for targeting to neoplastic cells.
- 5-FU is applicable in a wide range of carriers, including topical, however intravenous administration with doses ranging from 3 to 15 mg/kg/day being commonly used.
- Dosage ranges for x-rays range from daily doses of 50 to 200 roentgens for prolonged periods of time (3 to 4 weeks), to single doses of 2000 to 6000 roentgens.
- Dosage ranges for radioisotopes vary widely, and depend on the half-life of the isotope, the strength and type of radiation emitted, and the uptake by the neoplastic cells.
- immunotherapy hormone therapy, toxin therapy and surgery can be used.
- targeted therapies such as Avastin, Erbitux, Gleevec, Herceptin and Rituxan.
- One particularly advantageous approach to combination therapy is to select a second agent that targets MUC1.
- methods of inhibiting a MUC1-positive tumor cell in a subject comprising administering to said subject a MUC1 peptide of at least 4 consecutive MUC1 residues and no more than 20 consecutive MUC1 residues and comprising the sequence CQC, wherein the amino-terminal cysteine of CQC is covered on its NH 2 -terminus by at least one amino acid residue that need not correspond to the native MUC-1 transmembrane sequence.
- the peptide may comprise at least 5 consecutive MUC1 residues, at least 6 consecutive MUC1 residues, at least 7 consecutive MUC1 residues, at least 8 consecutive MUC1 residues and the sequence may more specifically comprise CQCR (SEQ ID NO: 84), CQCRR (SEQ ID NO: 85), CQCRRR (SEQ ID NO: 86), CQCRRRR (SEQ ID NO: 87), CQCRRK (SEQ ID NO: 88), CQCRRKN (SEQ ID NO: 89), or RRRRRRRCQCRRKN (SEQ ID NO: 90).
- the peptide may contain no more than 10 consecutive residues, 11 consecutive residues, 12 consecutive residues, 13 consecutive residues, 14 consecutive residues, 15 consecutive residues, 16 consecutive residues, 17 consecutive residues, 18 consecutive residues or 19 consecutive residues of MUC1.
- the peptide may be fused to a cell delivery domain, such as poly-D-R, poly-D-P or poly-D-K.
- the peptide may comprise all L amino acids, all D amino acids, or a mix of L and D amino acids. See U.S. Pat. No. 8,524,669.
- methods of inhibiting a MUC1-positive cancer cell comprising contacting the cell with a MUC1 peptide of at least 4 consecutive MUC1 residues and no more than 20 consecutive MUC1 residues and comprising the sequence CQC, wherein (i) the amino-terminal cysteine of CQC is covered on its NH 2 -terminus by at least one amino acid residue that need not correspond to the native MUC1 transmembrane sequence; and (ii) the peptide comprises 3-5 consecutive positively-charged amino acid residues in addition to those positively-charged amino acid residues corresponding to native MUC1 residues.
- the MUC1-positive cell may be a solid tumor cell, such as a lung cancer cell, a brain cancer cell, a head & neck cancer cell, a breast cancer cell, a skin cancer cell, a liver cancer cell, a pancreatic cancer cell, a stomach cancer cell, a colon cancer cell, a rectal cancer cell, a uterine cancer cell, a cervical cancer cell, an ovarian cancer cell, a testicular cancer cell, a skin cancer cell or a esophageal cancer cell.
- the MUC1-positive cell may be a leukemia or myeloma cell, such as acute myeloid leukemia, chronic myelogenous leukemia or multiple myeloma.
- the peptide may be a stapled peptide, a cyclized peptide, a peptidomimetic or peptoid.
- the method may further comprise contacting the cell with a second anti-cancer agent, such as where the second anti-cancer agent is contacted prior to the peptide, after the peptide or at the same time as the peptide.
- Inhibiting may comprise inhibiting cancer cell growth, cancer cell proliferation or inducing cancer cell death, such as by apoptosis.
- Another technology advanced by the inventors involves methods of inhibiting inflammatory signaling in a cell comprising contacting said cell with a flavone having the structure of:
- Antibodies may be linked to at least one agent to form an antibody conjugate.
- it is conventional to link or covalently bind or complex at least one desired molecule or moiety.
- a molecule or moiety may be, but is not limited to, at least one effector or reporter molecule.
- Effector molecules comprise molecules having a desired activity, e.g., immunosuppression/anti-inflammation. Non-limiting examples of such molecules are set out above.
- Such molecules are optionally attached via cleavable linkers designed to allow the molecules to be released at or near the target site.
- reporter molecule is defined as any moiety which may be detected using an assay.
- reporter molecules which have been conjugated to antibodies include enzymes, radiolabels, haptens, fluorescent labels, phosphorescent molecules, chemiluminescent molecules, chromophores, photoaffinity molecules, colored particles or ligands, such as biotin.
- Antibody conjugates are generally preferred for use as diagnostic agents.
- Antibody diagnostics generally fall within two classes, those for use in in vitro diagnostics, such as in a variety of immunoassays, and those for use in vivo diagnostic protocols, generally known as “antibody-directed imaging.”
- Many appropriate imaging agents are known in the art, as are methods for their attachment to antibodies (see, for e.g., U.S. Pat. Nos. 5,021,236, 4,938,948, and 4,472,509).
- the imaging moieties used can be paramagnetic ions, radioactive isotopes, fluorochromes, NMR-detectable substances, and X-ray imaging agents.
- paramagnetic ions such as chromium (III), manganese (II), iron (III), iron (II), cobalt (II), nickel (II), copper (II), neodymium (III), samarium (III), ytterbium (III), gadolinium (III), vanadium (II), terbium (III), dysprosium (III), holmium (III) and/or erbium (III), with gadolinium being particularly preferred.
- Ions useful in other contexts, such as X-ray imaging include but are not limited to lanthanum (III), gold (III), lead (II), and especially bismuth (III).
- radioactive isotopes for therapeutic and/or diagnostic application, one might mention astatine 211 , 14 carbon, 51 chromium, 36 chlorine, 57 cobalt, 58 cobalt, copper 67 , 152 Eu, gallium 67 , 3 hydrogen, iodine 123 , iodine 125 , iodine 131 , indium 111 , 59 iron, 32 phosphorus, rhenium 186 , rhenium 188 , 75 selenium, 35 sulphur, technicium 99m and/or yttrium 90 .
- Radioactively labeled monoclonal antibodies may be produced according to well-known methods in the art. For instance, monoclonal antibodies can be iodinated by contact with sodium and/or potassium iodide and a chemical oxidizing agent such as sodium hypochlorite, or an enzymatic oxidizing agent, such as lactoperoxidase.
- Monoclonal antibodies may be labeled with technetium 99m by ligand exchange process, for example, by reducing pertechnate with stannous solution, chelating the reduced technetium onto a Sephadex column and applying the antibody to this column.
- direct labeling techniques may be used, e.g., by incubating pertechnate, a reducing agent such as SNCl 2 , a buffer solution such as sodium-potassium phthalate solution, and the antibody.
- Intermediary functional groups are often used to bind radioisotopes to antibody and exist as metallic ions are diethylenetriaminepentaacetic acid (DTPA) or ethylene diaminetetracetic acid (EDTA).
- DTPA diethylenetriaminepentaacetic acid
- EDTA ethylene diaminetetracetic acid
- fluorescent labels contemplated for use as conjugates include Alexa 350, Alexa 430, AMCA, BODIPY 630/650, BODIPY 650/665, BODIPY-FL, BODIPY-R6G, BODIPY-TMR, BODIPY-TRX, Cascade Blue, Cy3, Cy5,6-FAM, Fluorescein Isothiocyanate, HEX, 6-JOE, Oregon Green 488, Oregon Green 500, Oregon Green 514, Pacific Blue, REG, Rhodamine Green, Rhodamine Red, Renographin, ROX, TAMRA, TET, Tetramethylrhodamine, and/or Texas Red.
- antibody conjugates contemplated are those intended primarily for use in vitro, where the antibody is linked to a secondary binding ligand and/or to an enzyme (an enzyme tag) that will generate a colored product upon contact with a chromogenic substrate.
- suitable enzymes include urease, alkaline phosphatase, (horseradish) hydrogen peroxidase or glucose oxidase.
- Preferred secondary binding ligands are biotin and avidin and streptavidin compounds. The use of such labels is well known to those of skill in the art and are described, for example, in U.S. Pat. Nos. 3,817,837, 3,850,752, 3,939,350, 3,996,345, 4,277,437, 4,275,149 and 4,366,241.
- hapten-based affinity labels react with amino acids in the antigen binding site, thereby destroying this site and blocking specific antigen reaction. However, this may not be advantageous since it results in loss of antigen binding by the antibody conjugate.
- Molecules containing azido groups may also be used to form covalent bonds to proteins through reactive nitrene intermediates that are generated by low intensity ultraviolet light (Potter and Haley, 1983).
- 2- and 8-azido analogues of purine nucleotides have been used as site-directed photoprobes to identify nucleotide binding proteins in crude cell extracts (Owens & Haley, 1987; Atherton et al., 1985).
- the 2- and 8-azido nucleotides have also been used to map nucleotide binding domains of purified proteins (Khatoon et al., 1989; King et al., 1989; Dholakia et al., 1989) and may be used as antibody binding agents.
- Some attachment methods involve the use of a metal chelate complex employing, for example, an organic chelating agent such as diethylenetriaminepentaacetic acid anhydride (DTPA); ethylenetriaminetetraacetic acid; N-chloro-p-toluenesulfonamide; and/or tetrachloro-3 ⁇ -6 ⁇ -diphenylglycouril-3 attached to the antibody (U.S. Pat. Nos. 4,472,509 and 4,938,948).
- DTPA diethylenetriaminepentaacetic acid anhydride
- ethylenetriaminetetraacetic acid N-chloro-p-toluenesulfonamide
- tetrachloro-3 ⁇ -6 ⁇ -diphenylglycouril-3 attached to the antibody
- Monoclonal antibodies may also be reacted with an enzyme in the presence of a coupling agent such as glutaraldehyde or periodate.
- Conjugates with fluorescein markers are prepared in the presence of these coupling agents or by reaction with an isothiocyanate.
- imaging of breast tumors is achieved using monoclonal antibodies and the detectable imaging moieties are bound to the antibody using linkers such as methyl-p-hydroxybenzimidate or N-succinimidyl-3-(4-hydroxyphenyl)propionate.
- derivatization of immunoglobulins by selectively introducing sulfhydryl groups in the Fc region of an immunoglobulin, using reaction conditions that do not alter the antibody combining site are contemplated.
- Antibody conjugates produced according to this methodology are disclosed to exhibit improved longevity, specificity and sensitivity (U.S. Pat. No. 5,196,066, incorporated herein by reference).
- Site-specific attachment of effector or reporter molecules, wherein the reporter or effector molecule is conjugated to a carbohydrate residue in the Fc region have also been disclosed in the literature (O'Shannessy et al., 1987). This approach has been reported to produce diagnostically and therapeutically promising antibodies which are currently in clinical evaluation.
- immunodetection methods for binding, purifying, removing, quantifying and otherwise generally detecting MUC1 and its associated antigens.
- Some immunodetection methods include enzyme linked immunosorbent assay (ELISA), radioimmunoassay (RIA), immunoradiometric assay, fluoroimmunoassay, chemiluminescent assay, bioluminescent assay, and Western blot to mention a few.
- ELISA enzyme linked immunosorbent assay
- RIA radioimmunoassay
- immunoradiometric assay immunoradiometric assay
- fluoroimmunoassay chemiluminescent assay
- bioluminescent assay bioluminescent assay
- Western blot to mention a few.
- a competitive assay for the detection and quantitation of MUC1-C antibodies also is provided.
- the immunobinding methods include obtaining a sample and contacting the sample with a first antibody in accordance with embodiments discussed herein, as the case may be, under conditions effective to allow the formation of immunocomplexes.
- the chosen biological sample with the antibody under effective conditions and for a period of time sufficient to allow the formation of immune complexes is generally a matter of simply adding the antibody composition to the sample and incubating the mixture for a period of time long enough for the antibodies to form immune complexes with, i.e., to bind to MUC1 present.
- the sample-antibody composition such as a tissue section, ELISA plate, dot blot or Western blot, will generally be washed to remove any non-specifically bound antibody species, allowing only those antibodies specifically bound within the primary immune complexes to be detected.
- the antibody employed in the detection may itself be linked to a detectable label, wherein one would then simply detect this label, thereby allowing the amount of the primary immune complexes in the composition to be determined.
- the first antibody that becomes bound within the primary immune complexes may be detected by means of a second binding ligand that has binding affinity for the antibody.
- the second binding ligand may be linked to a detectable label.
- the second binding ligand is itself often an antibody, which may thus be termed a “secondary” antibody.
- the primary immune complexes are contacted with the labeled, secondary binding ligand, or antibody, under effective conditions and for a period of time sufficient to allow the formation of secondary immune complexes.
- the secondary immune complexes are then generally washed to remove any non-specifically bound labeled secondary antibodies or ligands, and the remaining label in the secondary immune complexes is then detected.
- Further methods include the detection of primary immune complexes by a two step approach.
- a second binding ligand such as an antibody that has binding affinity for the antibody, is used to form secondary immune complexes, as described above.
- the secondary immune complexes are contacted with a third binding ligand or antibody that has binding affinity for the second antibody, again under effective conditions and for a period of time sufficient to allow the formation of immune complexes (tertiary immune complexes).
- the third ligand or antibody is linked to a detectable label, allowing detection of the tertiary immune complexes thus formed. This system may provide for signal amplification if this is desired.
- One method of immunodetection uses two different antibodies.
- a first biotinylated antibody is used to detect the target antigen, and a second antibody is then used to detect the biotin attached to the complexed biotin.
- the sample to be tested is first incubated in a solution containing the first step antibody. If the target antigen is present, some of the antibody binds to the antigen to form a biotinylated antibody/antigen complex.
- the antibody/antigen complex is then amplified by incubation in successive solutions of streptavidin (or avidin), biotinylated DNA, and/or complementary biotinylated DNA, with each step adding additional biotin sites to the antibody/antigen complex.
- the amplification steps are repeated until a suitable level of amplification is achieved, at which point the sample is incubated in a solution containing the second step antibody against biotin.
- This second step antibody is labeled, as for example with an enzyme that can be used to detect the presence of the antibody/antigen complex by histoenzymology using a chromogen substrate.
- a conjugate can be produced which is macroscopically visible.
- PCR Polymerase Chain Reaction
- the PCR method is similar to the Cantor method up to the incubation with biotinylated DNA, however, instead of using multiple rounds of streptavidin and biotinylated DNA incubation, the DNA/biotin/streptavidin/antibody complex is washed out with a low pH or high salt buffer that releases the antibody. The resulting wash solution is then used to carry out a PCR reaction with suitable primers with appropriate controls.
- the enormous amplification capability and specificity of PCR can be utilized to detect a single antigen molecule.
- Immunoassays in their most simple sense, are binding assays. Certain preferred immunoassays are the various types of enzyme linked immunosorbent assays (ELISAs) and radioimmunoassays (RIA) known in the art Immunohistochemical detection using tissue sections is also particularly useful. However, it will be readily appreciated that detection is not limited to such techniques, and western blotting, dot blotting, FACS analyses, and the like may also be used.
- ELISAs enzyme linked immunosorbent assays
- RIA radioimmunoassays
- the antibodies of the invention are immobilized onto a selected surface exhibiting protein affinity, such as a well in a polystyrene microtiter plate. Then, a test composition suspected of containing the MUC1 is added to the wells. After binding and washing to remove non-specifically bound immune complexes, the bound antigen may be detected. Detection may be achieved by the addition of another anti-MUC1-C antibody that is linked to a detectable label.
- ELISA is a simple “sandwich ELISA.” Detection may also be achieved by the addition of a second anti-MUC1-C antibody, followed by the addition of a third antibody that has binding affinity for the second antibody, with the third antibody being linked to a detectable label.
- the samples suspected of containing the MUC1 antigen are immobilized onto the well surface and then contacted with anti-MUC1-C antibody. After binding and washing to remove non-specifically bound immune complexes, the bound anti-MUC1-C antibodies are detected. Where the initial anti-MUC1-C antibodies are linked to a detectable label, the immune complexes may be detected directly. Again, the immune complexes may be detected using a second antibody that has binding affinity for the first anti-MUC1-C antibody, with the second antibody being linked to a detectable label.
- ELISAs have certain features in common, such as coating, incubating and binding, washing to remove non-specifically bound species, and detecting the bound immune complexes. These are described below.
- a plate with either antigen or antibody In coating a plate with either antigen or antibody, one will generally incubate the wells of the plate with a solution of the antigen or antibody, either overnight or for a specified period of hours. The wells of the plate will then be washed to remove incompletely adsorbed material. Any remaining available surfaces of the wells are then “coated” with a nonspecific protein that is antigenically neutral with regard to the test antisera. These include bovine serum albumin (BSA), casein or solutions of milk powder.
- BSA bovine serum albumin
- the coating allows for blocking of nonspecific adsorption sites on the immobilizing surface and thus reduces the background caused by nonspecific binding of antisera onto the surface.
- a secondary or tertiary detection means rather than a direct procedure.
- the immobilizing surface is contacted with the biological sample to be tested under conditions effective to allow immune complex (antigen/antibody) formation. Detection of the immune complex then requires a labeled secondary binding ligand or antibody, and a secondary binding ligand or antibody in conjunction with a labeled tertiary antibody or a third binding ligand.
- Under conditions effective to allow immune complex (antigen/antibody) formation means that the conditions preferably include diluting the antigens and/or antibodies with solutions such as BSA, bovine gamma globulin (BGG) or phosphate buffered saline (PBS)/Tween. These added agents also tend to assist in the reduction of nonspecific background.
- suitable conditions also mean that the incubation is at a temperature or for a period of time sufficient to allow effective binding. Incubation steps are typically from about 1 to 2 to 4 hours or so, at temperatures preferably on the order of 25° C. to 27° C., or may be overnight at about 4° C. or so.
- the contacted surface is washed so as to remove non-complexed material.
- a preferred washing procedure includes washing with a solution such as PBS/Tween, or borate buffer. Following the formation of specific immune complexes between the test sample and the originally bound material, and subsequent washing, the occurrence of even minute amounts of immune complexes may be determined.
- the second or third antibody will have an associated label to allow detection.
- this will be an enzyme that will generate color development upon incubating with an appropriate chromogenic substrate.
- a urease, glucose oxidase, alkaline phosphatase or hydrogen peroxidase-conjugated antibody for a period of time and under conditions that favor the development of further immune complex formation (e.g., incubation for 2 hours at room temperature in a PBS-containing solution such as PBS-Tween).
- the amount of label is quantified, e.g., by incubation with a chromogenic substrate such as urea, or bromocresol purple, or 2,2′-azino-di-(3-ethyl-benzthiazoline-6-sulfonic acid (ABTS), or H 2 O 2 , in the case of peroxidase as the enzyme label. Quantification is then achieved by measuring the degree of color generated, e.g., using a visible spectra spectrophotometer.
- a chromogenic substrate such as urea, or bromocresol purple, or 2,2′-azino-di-(3-ethyl-benzthiazoline-6-sulfonic acid (ABTS), or H 2 O 2 , in the case of peroxidase as the enzyme label.
- Quantification is then achieved by measuring the degree of color generated, e.g., using a visible spectra spectrophotometer.
- the Western blot is an analytical technique used to detect specific proteins in a given sample of tissue homogenate or extract. It uses gel electrophoresis to separate native or denatured proteins by the length of the polypeptide (denaturing conditions) or by the 3-D structure of the protein (native/non-denaturing conditions). The proteins are then transferred to a membrane (typically nitrocellulose or PVDF), where they are probed (detected) using antibodies specific to the target protein.
- a membrane typically nitrocellulose or PVDF
- Samples may be taken from whole tissue or from cell culture. In most cases, solid tissues are first broken down mechanically using a blender (for larger sample volumes), using a homogenizer (smaller volumes), or by sonication. Cells may also be broken open by one of the above mechanical methods. However, it should be noted that bacteria, virus or environmental samples can be the source of protein and thus Western blotting is not restricted to cellular studies only. Assorted detergents, salts, and buffers may be employed to encourage lysis of cells and to solubilize proteins. Protease and phosphatase inhibitors are often added to prevent the digestion of the sample by its own enzymes. Tissue preparation is often done at cold temperatures to avoid protein denaturing.
- the proteins of the sample are separated using gel electrophoresis. Separation of proteins may be by isoelectric point (pI), molecular weight, electric charge, or a combination of these factors. The nature of the separation depends on the treatment of the sample and the nature of the gel. This is a very useful way to determine a protein. It is also possible to use a two-dimensional (2-D) gel which spreads the proteins from a single sample out in two dimensions. Proteins are separated according to isoelectric point (pH at which they have neutral net charge) in the first dimension, and according to their molecular weight in the second dimension.
- isoelectric point pH at which they have neutral net charge
- the proteins In order to make the proteins accessible to antibody detection, they are moved from within the gel onto a membrane made of nitrocellulose or polyvinylidene difluoride (PVDF).
- PVDF polyvinylidene difluoride
- the membrane is placed on top of the gel, and a stack of filter papers placed on top of that. The entire stack is placed in a buffer solution which moves up the paper by capillary action, bringing the proteins with it.
- Another method for transferring the proteins is called electroblotting and uses an electric current to pull proteins from the gel into the PVDF or nitrocellulose membrane.
- the proteins move from within the gel onto the membrane while maintaining the organization they had within the gel. As a result of this blotting process, the proteins are exposed on a thin surface layer for detection (see below).
- Both varieties of membrane are chosen for their non-specific protein binding properties (i.e., binds all proteins equally well). Protein binding is based upon hydrophobic interactions, as well as charged interactions between the membrane and protein. Nitrocellulose membranes are cheaper than PVDF, but are far more fragile and do not stand up well to repeated probings. The uniformity and overall effectiveness of transfer of protein from the gel to the membrane can be checked by staining the membrane with Coomassie Brilliant Blue or Ponceau S dyes. Once transferred, proteins are detected using labeled primary antibodies, or unlabeled primary antibodies followed by indirect detection using labeled protein A or secondary labeled antibodies binding to the Fc region of the primary antibodies.
- the antibodies may also be used in conjunction with both fresh-frozen and/or formalin-fixed, paraffin-embedded tissue blocks prepared for study by immunohistochemistry (IHC).
- IHC immunohistochemistry
- frozen-sections may be prepared by rehydrating 50 ng of frozen “pulverized” tissue at room temperature in phosphate buffered saline (PBS) in small plastic capsules; pelleting the particles by centrifugation; resuspending them in a viscous embedding medium (OCT); inverting the capsule and/or pelleting again by centrifugation; snap-freezing in ⁇ 70° C. isopentane; cutting the plastic capsule and/or removing the frozen cylinder of tissue; securing the tissue cylinder on a cryostat microtome chuck; and/or cutting 25-50 serial sections from the capsule.
- whole frozen tissue samples may be used for serial section cuttings.
- Permanent-sections may be prepared by a similar method involving rehydration of the 50 mg sample in a plastic microfuge tube; pelleting; resuspending in 10% formalin for 4 hours fixation; washing/pelleting; resuspending in warm 2.5% agar; pelleting; cooling in ice water to harden the agar; removing the tissue/agar block from the tube; infiltrating and/or embedding the block in paraffin; and/or cutting up to 50 serial permanent sections. Again, whole tissue samples may be substituted.
- immunodetection kits for use with the immunodetection methods described above.
- the immunodetection kits will thus comprise, in suitable container means, a first antibody that binds to MUC1 antigen, and optionally an immunodetection reagent.
- the MUC1-C antibody may be pre-bound to a solid support, such as a column matrix and/or well of a microtitre plate.
- the immunodetection reagents of the kit may take any one of a variety of forms, including those detectable labels that are associated with or linked to the given antibody. Detectable labels that are associated with or attached to a secondary binding ligand are also contemplated. Exemplary secondary ligands are those secondary antibodies that have binding affinity for the first antibody.
- suitable immunodetection reagents for use in the present kits include the two-component reagent that comprises a secondary antibody that has binding affinity for the first antibody, along with a third antibody that has binding affinity for the second antibody, the third antibody being linked to a detectable label.
- a number of exemplary labels are known in the art and all such labels may be employed in connection with embodiments discussed herein.
- kits may further comprise a suitably aliquoted composition of the MUC1 antigen, whether labeled or unlabeled, as may be used to prepare a standard curve for a detection assay.
- the kits may contain antibody-label conjugates either in fully conjugated form, in the form of intermediates, or as separate moieties to be conjugated by the user of the kit.
- the components of the kits may be packaged either in aqueous media or in lyophilized form.
- the container means of the kits will generally include at least one vial, test tube, flask, bottle, syringe or other container means, into which the antibody may be placed, or preferably, suitably aliquoted.
- the kits will also include a means for containing the antibody, antigen, and any other reagent containers in close confinement for commercial sale.
- Such containers may include injection or blow-molded plastic containers into which the desired vials are retained.
- mice C57Bl/6 mice were immunized with the protein that contained the ECD of MUC1-C fused to Fc portion of mouse immunoglobulin (MUC1-C/ECD-mFc).
- MUC1-C/ECD-mFc mouse immunoglobulin
- FCA Freund's complete adjuvant
- mice were repeatedly boosted 8 times every 3 days with 50 ⁇ g of MUC1-C/ECD-mFc in FCA alternating with 50 ⁇ g of MUC1-C/ECD-mFc in PBS as shown in Table 6.
- Final boosting was performed with 50 ⁇ g of antigen intravenously after checking the immune sera.
- Preimmune serum was collected to be used as negative control.
- Immune serum was collected after the 7 th injection as per the schedule and the serum was tested by both Western blotting and ELISA as per the methods described below.
- ELISA was performed by coating the plates with 100 ⁇ l of 1 ⁇ g/ml MUC1-C/ECD-hFc or MUC1-C/ECD-mFc or hFc (as negative control). Hybridoma supernatants or immune sera were screened against the coated proteins by incubating with the plate for 1 hr. The bound antibody was detected by incubating with specific secondary antibody (anti-mouse Ig, F(ab) 2 specific) conjugated to HRP (horse radish peroxidase). Further, the reaction was developed with HRP-specific substrate for 30 min and the plate was read at 405 nm.
- spleen from both mice was used for fusion with myeloma cells to generate hybridoma.
- Spleen-myeloma fusion was performed by mixing mouse myeloma cells sp2/0-Ag14 and splenocytes in 1:3 ratio in the presence of polyethylene glycol (PEG).
- Post fusion cell culture was carried out in selective HAT medium.
- Hybridomas selected by indirect ELISA or Western blot using recombinant MUC-C/ECD-mFc or MUC1-C/ECD-hFc as the antigen and were subjected to subcloning by limiting dilution protocol until the clones become stable.
- the fusion clones obtained from the spleen of mouse 1 is termed as 315.1 clones and similarly the one from mouse 2 is called 315.2 clones.
- the fusion clones obtained from the spleen of mouse 1 from other immunization batch is termed as 384 clones. From the 315.2 clones, 7 parental positive clones (3G1. 3H7, 4A11, 4H3, 5A4, 8E1 and 8F1) were identified. From mouse 315.1, 6 parental positive clones (1A4, 1G4, 2A6, 6D12, 6A6, 5G6) were selected. From mouse 384, two parental positive clones (2G11,2H11) were selected. These clones were reconfirmed by ELISA and while screening, we excluded any clones that is reactive to hFc protein alone as the mice were immunized with MUC1-C/ECD-hFc as the antigen.
- the selected parental clones were subjected to subcloning by limiting dilution in 96-well plates and the supernatants from these wells were subjected to further screening by ELISA.
- the subclones which had higher absorbance values were expanded in larger wells and the supernatants were selected for confirmation by ELISA.
- a maximum of 3 sub-clones from each parental clone were chosen. These selected sub-clones were confirmed to be reactive only to MUC1-C/ECD protein but not hFc protein.
- sub-clones were chosen as per the above mentioned criteria and proceeded either for production and purification of mAb or further sub-cloning depending on the purity (single cell clone) and stability of the clones. Accordingly, the following sub-clones were finally selected for production and purification, after sub-cloning to stability:
- Hybridomas were grown in DMEM (Invitrogen, Carlsbad, Calif.) supplemented with 10% FBS containing low bovine IgG. Culture supernatants were passed through proteinA sepharose equilibrated with 50 mM sodium phosphate/300 mM NaCl using an Akta Xpress FPLC system (Amersham Pharmacia, Piscataway, N.J.). After washing, antibodies were eluted using 0.1M citrate buffer (pH 3.0). Eluted fractions were neutralized, pooled, dialyzed against PBS, and concentrated using an Amicon Ultracel 10K filter (Millipore, Billerica, Mass.). All these purified antibodies were tested in ELISA at different dilutions for their reactivity against Muc1-ECD.
- the inventors have developed and purified 7 different monoclonal antibodies directed against the ECD of MUC1-C protein which are identified after the name of the subclone from which they are purified. However for simplicity reason, they have named them after their parental clones as indicate below.
- MUC1-ECD-mFc and/or MUC1-ECD-hFc (0.5 and 1 ⁇ g/lane) was subjected to SDSPAGE and transferred to nitrocellulose membrane at 20V for 60 min.
- the monoclonal antibodies were incubated with the membrane and the antibody bound to the antigen was detected with HRP-conjugated goat anti-mouse Ig, F(ab)2 specific (1:5000 dilution; GE Healthcare) followed by enhanced chemiluminescence (GE Healthcare).
- the ability of the antibodies to bind the cell surface MUC1-C protein was analyzed by flow cytometry.
- Cells were incubated with anti-MUC1-C/ECD antibody or mouse IgG for 30 min, washed, incubated with goat anti-mouse immunoglobulinflourescein-conjugated antibody (Santa Cruz Biotechnology), and fixed in 1% formaldehyde/PBS. Reactivity was detected by immunofluorescence FACScan. Reactivity was detected by immunofluorescence FACScan (Table 8).
- Trypan Blue Exclusion Assay Estimated number of cells based on their growth rate was plated in a 24-well plate. Following overnight growing of the cells in the wells, 2-4 ⁇ g/ml of the antibody was added and mixed to the culture at various intervals (e.g., once in three days) at 37° C., 5% CO 2 . After 6 days of incubation with the antibody, cells were harvested by trypsinization and the viable cells were counted by trypan blue exclusion method.
- alamarBlue reagent was added to the wells and incubated for 3-5 hrs and the absorbance measured by reading the plate at 570 nm (excitation wavelength) and 600 nm (emission wave length) using Thermomax plate reader (Molecular Devices). The percentage reduction of alamarBlue is proportional to the percentage of the live cells in the assay and it was computed using SoftMax Pro software and plotted as a 4-parameter curve.
- MAbs 8E1 and 6A6 were directly labeled with either FITC or Alexa Fluor 488 and following labeling, the antibodies were purified according to the manufacturer's instructions Immunofluorescence was assessed on ZR-75-1 or H-1975 cells grown on glass bottom culture plates. FITC- or Alexa Fluor 488-conjugated MAbs 6A6 or 8E1 were used at concentrations of 4 and 2 ⁇ g/ml. MUC1-negative HEK-293T cells were used as a negative control. Initially, surface labeling was carried out at 4° C. for 60 min. Internalization of surface-bound antibodies was initiated by incubation at 37° C. in media for additional 3 hr. Live cells were subsequently analyzed with an epifluorescent microscope using appropriate wavelengths.
- Alexa Fluor 488-labeled non-specific IgG was used as a negative control.
- MUC1-negative HEK-293T cells were used as an additional negative control.
- ZR-75-1 or H-1975 cells were transfected with RFP-endocyte marker (Invitrogen) for 16-18 h prior to incubation with the MAbs. At the appropriate time, cells were washed with PBS and blocked with 0.5% BSA in PBS. Alexa Fluor 488-labeled MAb 8E1 or 6A6 (2 ⁇ g/ml) were used to label the cells at 4° C. for 60 min.
- cells were subsequently washed thrice with PBS and allowed to incubate in culture media for an additional 3 h at either 4° C. to monitor membrane binding or 37° C. for internalization.
- cells were washed thrice with PBS and were examined using a Nikon deconvolution wide-field epifluorescence system using 60 ⁇ oil immersion objective and images were captured using NIS-element software (Nikon). All the Images were analyzed using Image J software.
- H-1975 NSCLC cells were transfected with RFP-endocyte marker for 16-18 h prior to incubation with the anti-MUC1-C/ECD Mabs 6A6 or 8E1. Furthermore, as control, RFP-endocyte marker transfected H-1975 cells were also incubated separately with Alexa Fluor 488-labeled isotype control antibody (IgG) Immunoflourescence analysis confirmed staining of endosomes after transfection of cells with RFP-endocyte marker ( FIG. 26 ).
- IgG Alexa Fluor 488-labeled isotype control antibody
- the results demonstrate little, if any, staining of cells when incubated with an IgG isotype control antibody ( FIG. 26 ).
- immunoflourescence analysis demonstrated internalization of Alexa Fluor 488-labeled MAb 6A6 in H-1975 cells when incubated at 37° C. for three hours ( FIG. 20 ). Similar staining was observed when H-1975 cells were transfected with the RFP-endocyte marker and analyzed at 37° C. More importantly, the results demonstrate that Alexa Fluor 488-labeled 6A6 clearly co-localized with endosomes at 37° C. This internalization and localization of Alexa Fluor 488-tagged 6A6 antibody within the late endosomes at 37° C.
- the specificity of the conjugates was further examined by evaluating the binding of fluorescently-labeled 6A6 in MUC1-negative HEK-293T cells.
- the results demonstrate little, if any, staining of Alexa Fluor 488-labeled 6A6 antibody when HEK-293T cells were incubated with the tagged antibody at 4° C. or at 37° C. for 3 hr ( FIG. 26 ).
- no immunofluorescence was observed when Alexa Fluor 488-labeled isotype control (IgG) antibody was used in ZR-75-1 cells at 4° C. or at 37° C. for 3 hr (data not shown).
- the inventors next assessed internalization of Alexa Fluor 488-6A6 and 8E1 MAbs and their colocalization with lysosomes in H-1975 NSCLC cells.
- H-1975 cells were transfected with RFP-lysosomal marker for 16-18 h prior to incubation with the anti-MUC1-C/ECD Mabs 6A6 or 8E1.
- RFP-lysosomal marker transfected H-1975 cells were also incubated separately with Alexa Fluor 488-labeled isotype control antibody (IgG).
- Immunoflourescence analysis confirmed staining of lysosomes after transfection of cells with RFP-lysosomal marker ( FIG. 27 ). Interestingly, the results demonstrate little, if any, staining of cells when incubated with an IgG isotype control antibody ( FIG. 27 ). Furthermore, immunoflourescence analysis demonstrated internalization of Alexa Fluor 488-labeled MAb 8E1 in H-1975 cells when incubated at 37° C. for three hours ( FIG. 28 ). Similar staining was observed when H-1975 cells were transfected with the RFP-lysosomal marker and analyzed at 37° C.
- FIG. 3 shows sequence of three overlapping peptides from the MUC1-C/ECD (58 aa). All of the described antibodies fail to react with any of these three peptides.
- ELISA data on reactivity and isotype flow data (specificity and selectivity), Western blot analysis (purified proteins and cell lysates), immunofluorescence (internalization; co-localization with endosomes & lysosomes), linear and conformational epitope mapping (using overlapping ECD peptides and multiple single point mutants) and biological activity studies (multiple cell lines in vitro) have been conducted.
- Multiple IgG clones were identified (6A6, 8E1/8F1, 2A6, 2G11, 2H11) and are described further below.
- Linear epitope mapping of 7B8 and 3D1 clones was performed using three overlapping peptides spanning the entire MUC1-C/ECD region (58 amino acids) were synthesized.
- ELISA assays were performed using 7B8 or 3D1 purified antibodies in the presence or absence of P1, P2 or P3 peptides. The results, shown in FIG. 47 , demonstrate that the binding of 7B8 and 3D1 to the antigen was not inhibited by any of these three overlapping peptides.
- Conformational epitope mapping of 7B8 and 3D1 was performed using eight critical individual point mutants in the MUC1-C/ECD region by ELISA.
- ADC Antibody-Drug Conjugates
- 7B8 and 3D1 were generated by conjugating 2 mg each of the monoclonal antibodies to monomethyl auristatin F (MMAF) via a cleavable linker valine-citrulline-p-aminobenzyl (Val-Cit-PAB).
- MMAF is a new auristatin derivative with a charged C-terminal phenylalanine that attenuates its cytotoxic activity.
- the structure of the generated ADC is as shown below.
- QIAGEN® OneStep RT-PCR Kit (Cat No. 210210) was used.
- RT-PCR was performed with primer sets specific for the heavy and light chains. For each RNA sample, 12 individual heavy chain and 11 light chain RT-PCR reactions were set up using degenerate forward primer mixtures covering the leader sequences of variable regions. Reverse primers are located in the constant regions of heavy and light chains. No restriction sites were engineered into the primers.
- PCR positive bands are cloned by TOPO, then PCR-amplified, followed by gel electrophoresis and recovery from agarose gel. Approximately 24 clones were sequenced and CDR analysis was performed using sequencing data, and two heavy chains and one light chain were identified and are shown below:
- PCR reaction samples were analyzed on an agarose gel to visualize the amplified DNA fragments.
- the correct antibody variable region DNA fragments should have a size between 400-500 base pairs.
- PCR positive bands were cloned by TOPO, and then PCR-amplified, followed by gel electrophoresis and recovery from agarose gel. Approximately 24 clones were sequenced and CDR analysis was performed using sequencing data (CDR regions were defined using VBASE2, world-wide-web at vbase2.org).
- One heavy chain and one light chain were identified:
- Amplified antibody fragments were separately cloned into a standard cloning vector using standard molecular cloning procedures. Colony PCR screening was performed to identify clones with inserts of correct sizes. No less than five single colonies with inserts of correct sizes were sequenced for each antibody fragment.
- RNA of the sample was run alongside a DNA Marker III (Tiangen Cat. No. MD103) on a 1.5% agarose/GelRedTM gel ( FIGS. 2A-B ).
- PCR products were purified and stored at ⁇ 20° C. until further use.
- compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Cell Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Gastroenterology & Hepatology (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/113,956 US10059775B2 (en) | 2014-01-29 | 2015-01-29 | Antibodies against the MUC1-C/extracellular domain (MUC1-C/ECD) |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461933001P | 2014-01-29 | 2014-01-29 | |
PCT/US2015/013410 WO2015116753A1 (fr) | 2014-01-29 | 2015-01-29 | Anticorps contre le domaine extracellulaire de muc1-c (muc1-c/ecd) |
US15/113,956 US10059775B2 (en) | 2014-01-29 | 2015-01-29 | Antibodies against the MUC1-C/extracellular domain (MUC1-C/ECD) |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2015/013410 A-371-Of-International WO2015116753A1 (fr) | 2014-01-29 | 2015-01-29 | Anticorps contre le domaine extracellulaire de muc1-c (muc1-c/ecd) |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/028,662 Division US11136410B2 (en) | 2014-01-29 | 2018-07-06 | Antibodies against the MUC1-C/extracellular domain (MUC1-C/ECD) |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160340442A1 US20160340442A1 (en) | 2016-11-24 |
US10059775B2 true US10059775B2 (en) | 2018-08-28 |
Family
ID=52463213
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/113,956 Active US10059775B2 (en) | 2014-01-29 | 2015-01-29 | Antibodies against the MUC1-C/extracellular domain (MUC1-C/ECD) |
US16/028,662 Active 2035-06-29 US11136410B2 (en) | 2014-01-29 | 2018-07-06 | Antibodies against the MUC1-C/extracellular domain (MUC1-C/ECD) |
US17/494,577 Pending US20220049014A1 (en) | 2014-01-29 | 2021-10-05 | Antibodies against the muc1-c/extracellular domain (muc1-c/ecd) |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/028,662 Active 2035-06-29 US11136410B2 (en) | 2014-01-29 | 2018-07-06 | Antibodies against the MUC1-C/extracellular domain (MUC1-C/ECD) |
US17/494,577 Pending US20220049014A1 (en) | 2014-01-29 | 2021-10-05 | Antibodies against the muc1-c/extracellular domain (muc1-c/ecd) |
Country Status (11)
Country | Link |
---|---|
US (3) | US10059775B2 (fr) |
EP (1) | EP3099719B1 (fr) |
JP (2) | JP6908381B2 (fr) |
KR (1) | KR102448454B1 (fr) |
CN (1) | CN106132992B (fr) |
AU (1) | AU2015211034B2 (fr) |
CA (1) | CA2938111C (fr) |
ES (1) | ES2794088T3 (fr) |
IL (1) | IL246997A0 (fr) |
MX (1) | MX2016009954A (fr) |
WO (1) | WO2015116753A1 (fr) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015116753A1 (fr) * | 2014-01-29 | 2015-08-06 | Dana-Farber Cancer Institute, Inc. | Anticorps contre le domaine extracellulaire de muc1-c (muc1-c/ecd) |
EP3131929B1 (fr) * | 2014-04-16 | 2022-06-01 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Anticorps pour la prévention ou le traitement d'épisodes de saignement |
AU2015270912B9 (en) * | 2014-06-02 | 2021-01-21 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Chimeric antigen receptors targeting CD-19 |
CN116199790A (zh) | 2015-02-10 | 2023-06-02 | 米纳瓦生物技术公司 | 人源化抗MUCl*抗体 |
JP6996728B2 (ja) * | 2016-01-07 | 2022-01-17 | 学校法人自治医科大学 | グルコーストランスポーター1発現用アデノ随伴ウイルスベクター |
GB201610902D0 (en) * | 2016-06-22 | 2016-08-03 | Bergen Teknologioverforing As And Bergenbio As | Anti-Axl Antagonistic Antibodies |
WO2018014039A1 (fr) * | 2016-07-15 | 2018-01-18 | Poseida Therapeutics, Inc. | Récepteurs d'antigènes chimériques (cars) spécifiques pour muc1 et leurs procédés d'utilisation |
JOP20170154B1 (ar) * | 2016-08-01 | 2023-03-28 | Omeros Corp | تركيبات وطرق لتثبيط masp-3 لعلاج أمراض واضطرابات مختلفة |
US10617773B2 (en) | 2016-08-05 | 2020-04-14 | Dana-Farber Cancer Institute, Inc. | Antibodies against the MUC1-C/extracellular domain (MUC1-C/ECD) |
EP3525804A4 (fr) * | 2016-10-11 | 2020-09-09 | Minerva Biotechnologies Corporation | Anticorps anti-muc1* humanisés et utilisation de l'enzyme de clivage |
EP3538141A4 (fr) | 2016-11-10 | 2020-07-15 | Merck Sharp & Dohme Corp. | Ligand ilt3 |
CN111201240B (zh) | 2017-03-21 | 2024-03-22 | 株式会社菲特伦 | 特异性地结合muc1的抗体及其用途 |
WO2018174544A2 (fr) * | 2017-03-21 | 2018-09-27 | 주식회사 펩트론 | Anticorps se liant spécifiquement à muc1 et son utilisation |
TW201908341A (zh) * | 2017-07-18 | 2019-03-01 | 日商協和醱酵麒麟有限公司 | 抗人類ccr1單株抗體 |
CN109336980B (zh) * | 2017-07-27 | 2022-04-12 | 上海细胞治疗研究院 | 一种靶向Muc1的嵌合抗原受体修饰T细胞及其用途 |
GB201806333D0 (en) * | 2018-04-18 | 2018-05-30 | Glaxosmithkline Ip Dev Ltd | Parvovirus vector production |
WO2019219891A1 (fr) * | 2018-05-18 | 2019-11-21 | Daiichi Sankyo Co., Ltd. | Conjugué anticorps-médicament anti-muc1 |
AU2019339452A1 (en) * | 2018-09-11 | 2021-03-25 | Washington University | Anti-trem-2 agonist antibodies |
EP3983447A4 (fr) * | 2019-06-14 | 2023-06-28 | Dana-Farber Cancer Institute, Inc. | Anticorps contre muc1 et leurs méthodes d'utilisation |
EP4182354A4 (fr) * | 2020-07-16 | 2024-12-25 | Dana-Farber Cancer Institute, Inc. | Anticorps contre le domaine extracellulaire/muc1-c (muc1-c/ecd) |
AU2021401052A1 (en) | 2020-12-18 | 2023-06-22 | Century Therapeutics, Inc. | Chimeric antigen receptor systems with adaptable receptor specificity |
WO2022150803A1 (fr) * | 2021-01-05 | 2022-07-14 | Musc Foundation For Research Development | Élément de liaison bispécifique à agr2xcd3 pour le traitement du cancer |
WO2022183101A1 (fr) * | 2021-02-26 | 2022-09-01 | Teneobio, Inc. | Anticorps anti-muc1-c et structures de car-t |
MX2023014109A (es) * | 2021-05-28 | 2024-01-17 | Xyone Therapeutics Inc | Constructos de anticuerpos multiespecificos contra dominio extracelular/muc1-c (muc1-c/ecd). |
WO2023240135A2 (fr) | 2022-06-07 | 2023-12-14 | Actinium Pharmaceuticals, Inc. | Chélateurs et conjugués bifonctionnels |
WO2024159087A1 (fr) * | 2023-01-26 | 2024-08-02 | Dana-Farber Cancer Institute, Inc. | Développement d'une plateforme d'activateurs-récepteurs chimériques de l'antigène (car) pour améliorer la fonctionnalité et/ou la persistance de lymphocytes t car |
US20240261406A1 (en) | 2023-02-02 | 2024-08-08 | Minerva Biotechnologies Corporation | Chimeric antigen receptor compositions and methods for treating muc1* diseases |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991016353A1 (fr) | 1990-04-23 | 1991-10-31 | Corvas International N.V. | Derives d'anticorps specifiques au thrombus |
WO2004005470A2 (fr) | 2002-07-03 | 2004-01-15 | Immunogen, Inc. | Anticorps contre muc1 et muc16 non liberees et leurs utilisations |
US20050042209A1 (en) * | 2000-09-11 | 2005-02-24 | KUFE Donald W. | MUC1 extracellular domain and cancer treatment compositions and methods derived therefrom |
US7897351B2 (en) | 2001-03-29 | 2011-03-01 | Ramot At Tel-Aviv University Ltd. | Peptides and antibodies to MUC 1 proteins |
US8344113B2 (en) | 2000-11-27 | 2013-01-01 | Minerva Biotechnologies Corporation | Diagnostic tumor markers, drug screening for tumorigenesis inhibition, and compositions and methods for treatment of cancer |
Family Cites Families (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL154598B (nl) | 1970-11-10 | 1977-09-15 | Organon Nv | Werkwijze voor het aantonen en bepalen van laagmoleculire verbindingen en van eiwitten die deze verbindingen specifiek kunnen binden, alsmede testverpakking. |
US3817837A (en) | 1971-05-14 | 1974-06-18 | Syva Corp | Enzyme amplification assay |
US3939350A (en) | 1974-04-29 | 1976-02-17 | Board Of Trustees Of The Leland Stanford Junior University | Fluorescent immunoassay employing total reflection for activation |
US3996345A (en) | 1974-08-12 | 1976-12-07 | Syva Company | Fluorescence quenching with immunological pairs in immunoassays |
US4196265A (en) | 1977-06-15 | 1980-04-01 | The Wistar Institute | Method of producing antibodies |
US4277437A (en) | 1978-04-05 | 1981-07-07 | Syva Company | Kit for carrying out chemically induced fluorescence immunoassay |
US4275149A (en) | 1978-11-24 | 1981-06-23 | Syva Company | Macromolecular environment control in specific receptor assays |
US4366241A (en) | 1980-08-07 | 1982-12-28 | Syva Company | Concentrating zone method in heterogeneous immunoassays |
US4554101A (en) | 1981-01-09 | 1985-11-19 | New York Blood Center, Inc. | Identification and preparation of epitopes on antigens and allergens on the basis of hydrophilicity |
US4957939A (en) | 1981-07-24 | 1990-09-18 | Schering Aktiengesellschaft | Sterile pharmaceutical compositions of gadolinium chelates useful enhancing NMR imaging |
NL8200523A (nl) | 1982-02-11 | 1983-09-01 | Univ Leiden | Werkwijze voor het in vitro transformeren van planteprotoplasten met plasmide-dna. |
US4867973A (en) | 1984-08-31 | 1989-09-19 | Cytogen Corporation | Antibody-therapeutic agent conjugates |
US4472509A (en) | 1982-06-07 | 1984-09-18 | Gansow Otto A | Metal chelate conjugated monoclonal antibodies |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US4879236A (en) | 1984-05-16 | 1989-11-07 | The Texas A&M University System | Method for producing a recombinant baculovirus expression vector |
JPS6147500A (ja) | 1984-08-15 | 1986-03-07 | Res Dev Corp Of Japan | キメラモノクロ−ナル抗体及びその製造法 |
EP0173494A3 (fr) | 1984-08-27 | 1987-11-25 | The Board Of Trustees Of The Leland Stanford Junior University | Récepteurs chimériques par liaison et expression de l'ADN |
GB8422238D0 (en) | 1984-09-03 | 1984-10-10 | Neuberger M S | Chimeric proteins |
JPS61134325A (ja) | 1984-12-04 | 1986-06-21 | Teijin Ltd | ハイブリツド抗体遺伝子の発現方法 |
US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US4938948A (en) | 1985-10-07 | 1990-07-03 | Cetus Corporation | Method for imaging breast tumors using labeled monoclonal anti-human breast cancer antibodies |
US4680338A (en) | 1985-10-17 | 1987-07-14 | Immunomedics, Inc. | Bifunctional linker |
IL82104A0 (en) | 1986-04-08 | 1987-10-30 | Usa | Recombinant vaccinia virus expressing human retrovirus genes and method for producing htlb-iii envelope proteins |
EP0273085A1 (fr) | 1986-12-29 | 1988-07-06 | IntraCel Corporation | Procédé pour faire entrer des acides nucléiques dans des cellules eucaryotes |
US5164313A (en) | 1987-06-05 | 1992-11-17 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Recombinant vaccinia virus encoding cytochromes P-450 |
US5563250A (en) | 1987-12-02 | 1996-10-08 | Neorx Corporation | Cleavable conjugates for the delivery and release of agents in native form |
US5141648A (en) | 1987-12-02 | 1992-08-25 | Neorx Corporation | Methods for isolating compounds using cleavable linker bound matrices |
US4952500A (en) | 1988-02-01 | 1990-08-28 | University Of Georgia Research Foundation, Inc. | Cloning systems for Rhodococcus and related bacteria |
US5716826A (en) | 1988-03-21 | 1998-02-10 | Chiron Viagene, Inc. | Recombinant retroviruses |
CA1339354C (fr) | 1988-09-01 | 1997-08-26 | The Whitehead Institute For Biomedical Research | Retrovirus recombinants avec spectres d'activite amphotropes et ecotropes |
US5217879A (en) | 1989-01-12 | 1993-06-08 | Washington University | Infectious Sindbis virus vectors |
US5703055A (en) | 1989-03-21 | 1997-12-30 | Wisconsin Alumni Research Foundation | Generation of antibodies through lipid mediated DNA delivery |
US5302523A (en) | 1989-06-21 | 1994-04-12 | Zeneca Limited | Transformation of plant cells |
US7705215B1 (en) | 1990-04-17 | 2010-04-27 | Dekalb Genetics Corporation | Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof |
US5550318A (en) | 1990-04-17 | 1996-08-27 | Dekalb Genetics Corporation | Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof |
US5322783A (en) | 1989-10-17 | 1994-06-21 | Pioneer Hi-Bred International, Inc. | Soybean transformation by microparticle bombardment |
US5484956A (en) | 1990-01-22 | 1996-01-16 | Dekalb Genetics Corporation | Fertile transgenic Zea mays plant comprising heterologous DNA encoding Bacillus thuringiensis endotoxin |
US5670488A (en) | 1992-12-03 | 1997-09-23 | Genzyme Corporation | Adenovirus vector for gene therapy |
JPH049249A (ja) | 1990-04-27 | 1992-01-14 | Kusuda:Kk | 塗型剤吹き付け機 |
US5384253A (en) | 1990-12-28 | 1995-01-24 | Dekalb Genetics Corporation | Genetic transformation of maize cells by electroporation of cells pretreated with pectin degrading enzymes |
AU1871492A (en) | 1991-03-29 | 1992-11-02 | Board Of Trustees Of The University Of Illinois, The | Production fo transgenic soybean plants |
WO1993004169A1 (fr) | 1991-08-20 | 1993-03-04 | Genpharm International, Inc. | Ciblage de genes dans des cellules animales au moyen de produits de synthese d'adn isogeniques |
US5565332A (en) | 1991-09-23 | 1996-10-15 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
US5610042A (en) | 1991-10-07 | 1997-03-11 | Ciba-Geigy Corporation | Methods for stable transformation of wheat |
US5702932A (en) | 1992-07-20 | 1997-12-30 | University Of Florida | Microinjection methods to transform arthropods with exogenous DNA |
CA2140910C (fr) | 1992-07-27 | 1999-03-23 | Jeffrey A. Townsend | Methode amelioree de transformation via agrobacterium de cellules de soya en culture |
US5879934A (en) | 1992-07-31 | 1999-03-09 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Herpes simplex virus strains for gene transfer |
DE4228457A1 (de) | 1992-08-27 | 1994-04-28 | Beiersdorf Ag | Herstellung von heterodimerem PDGF-AB mit Hilfe eines bicistronischen Vektorsystems in Säugerzellen |
GB9222888D0 (en) | 1992-10-30 | 1992-12-16 | British Tech Group | Tomography |
WO1994012520A1 (fr) | 1992-11-20 | 1994-06-09 | Enzon, Inc. | Segment de liaison pour polypeptides fusionnes lies |
TW442569B (en) | 1993-10-25 | 2001-06-23 | Canji Inc | Recombinant adenoviral vector |
US5656610A (en) | 1994-06-21 | 1997-08-12 | University Of Southern California | Producing a protein in a mammal by injection of a DNA-sequence into the tongue |
FR2722208B1 (fr) | 1994-07-05 | 1996-10-04 | Inst Nat Sante Rech Med | Nouveau site interne d'entree des ribosomes, vecteur le contenant et utilisation therapeutique |
US5858744A (en) | 1994-09-08 | 1999-01-12 | Boehringer Mannheim Gmbh | Retroviral vector hybrids and the use thereof for gene transfer |
US5871986A (en) | 1994-09-23 | 1999-02-16 | The General Hospital Corporation | Use of a baculovirus to express and exogenous gene in a mammalian cell |
US5856152A (en) | 1994-10-28 | 1999-01-05 | The Trustees Of The University Of Pennsylvania | Hybrid adenovirus-AAV vector and methods of use therefor |
US5736524A (en) | 1994-11-14 | 1998-04-07 | Merck & Co.,. Inc. | Polynucleotide tuberculosis vaccine |
US5707618A (en) | 1995-03-24 | 1998-01-13 | Genzyme Corporation | Adenovirus vectors for gene therapy |
US5830725A (en) | 1995-04-28 | 1998-11-03 | The Board Of Trustees For The Leland Stanford Junior University | Rapid, stable high-titre production of recombing retrovirus |
WO1996040662A2 (fr) | 1995-06-07 | 1996-12-19 | Cellpro, Incorporated | Composes de liaison contenant un groupe aminooxy et leur utilisation pour la formation de conjugues |
US5851826A (en) | 1995-07-26 | 1998-12-22 | Children's Medical Center Corporation | Helper virus-free herpesvirus vector packaging system |
US6013516A (en) | 1995-10-06 | 2000-01-11 | The Salk Institute For Biological Studies | Vector and method of use for nucleic acid delivery to non-dividing cells |
US5780448A (en) | 1995-11-07 | 1998-07-14 | Ottawa Civic Hospital Loeb Research | DNA-based vaccination of fish |
US5928906A (en) | 1996-05-09 | 1999-07-27 | Sequenom, Inc. | Process for direct sequencing during template amplification |
US5945100A (en) | 1996-07-31 | 1999-08-31 | Fbp Corporation | Tumor delivery vehicles |
US5739018A (en) | 1996-08-07 | 1998-04-14 | The Regents Of The University Of California | Packaging cell lines for pseudotyped retroviral vectors |
US5871983A (en) | 1996-09-13 | 1999-02-16 | Eli Lilly And Company | Glucosyltransferase gene GTFE from amycolatopsis orientalis |
US5981274A (en) | 1996-09-18 | 1999-11-09 | Tyrrell; D. Lorne J. | Recombinant hepatitis virus vectors |
US5994624A (en) | 1997-10-20 | 1999-11-30 | Cotton Incorporated | In planta method for the production of transgenic plants |
US5994136A (en) | 1997-12-12 | 1999-11-30 | Cell Genesys, Inc. | Method and means for producing high titer, safe, recombinant lentivirus vectors |
US10421819B2 (en) | 2008-10-06 | 2019-09-24 | Minerva Biotechnologies Corporation | MUC1* antibodies |
PL2352508T3 (pl) | 2008-10-17 | 2014-09-30 | Dana Farber Cancer Inst Inc | Peptydy domeny cytoplazmatycznej MUC-1 jako inhibitory nowotworu |
IT1395574B1 (it) | 2009-09-14 | 2012-10-16 | Guala Dispensing Spa | Dispositivo di erogazione |
WO2015116753A1 (fr) * | 2014-01-29 | 2015-08-06 | Dana-Farber Cancer Institute, Inc. | Anticorps contre le domaine extracellulaire de muc1-c (muc1-c/ecd) |
-
2015
- 2015-01-29 WO PCT/US2015/013410 patent/WO2015116753A1/fr active Application Filing
- 2015-01-29 JP JP2016549460A patent/JP6908381B2/ja active Active
- 2015-01-29 EP EP15703414.1A patent/EP3099719B1/fr active Active
- 2015-01-29 AU AU2015211034A patent/AU2015211034B2/en active Active
- 2015-01-29 KR KR1020167023436A patent/KR102448454B1/ko active IP Right Grant
- 2015-01-29 ES ES15703414T patent/ES2794088T3/es active Active
- 2015-01-29 CN CN201580011813.3A patent/CN106132992B/zh active Active
- 2015-01-29 CA CA2938111A patent/CA2938111C/fr active Active
- 2015-01-29 MX MX2016009954A patent/MX2016009954A/es unknown
- 2015-01-29 US US15/113,956 patent/US10059775B2/en active Active
-
2016
- 2016-07-28 IL IL246997A patent/IL246997A0/en unknown
-
2018
- 2018-07-06 US US16/028,662 patent/US11136410B2/en active Active
-
2021
- 2021-03-05 JP JP2021035405A patent/JP7117410B2/ja active Active
- 2021-10-05 US US17/494,577 patent/US20220049014A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991016353A1 (fr) | 1990-04-23 | 1991-10-31 | Corvas International N.V. | Derives d'anticorps specifiques au thrombus |
US20050042209A1 (en) * | 2000-09-11 | 2005-02-24 | KUFE Donald W. | MUC1 extracellular domain and cancer treatment compositions and methods derived therefrom |
US8344113B2 (en) | 2000-11-27 | 2013-01-01 | Minerva Biotechnologies Corporation | Diagnostic tumor markers, drug screening for tumorigenesis inhibition, and compositions and methods for treatment of cancer |
US7897351B2 (en) | 2001-03-29 | 2011-03-01 | Ramot At Tel-Aviv University Ltd. | Peptides and antibodies to MUC 1 proteins |
WO2004005470A2 (fr) | 2002-07-03 | 2004-01-15 | Immunogen, Inc. | Anticorps contre muc1 et muc16 non liberees et leurs utilisations |
US20040057952A1 (en) | 2002-07-03 | 2004-03-25 | Immunogen Inc. | Antibodies to non-shed Muc1 and Muc16, and uses thereof |
US7202346B2 (en) | 2002-07-03 | 2007-04-10 | Immunogen Inc. | Antibodies to non-shed Muc1 and Muc16, and uses thereof |
Non-Patent Citations (7)
Title |
---|
Hartman et al., "MUC1 isoform specific monoclonal antibody 6E6/2 detects preferential expression of the novel MUC1/Y protein in breast and ovarian cancer," Int. J. Cancer, 82:256-267, 1999. |
Matsushita et al., "A straightforward protocol for the preparation of high performance microarray displaying synthetic MUC1 glycopeptides," Biochima et Biophysica Acta, 1840(3):1105-1116, 2014. |
Office Communication issued in European Patent Application No. 15703414.1, dated Jan. 2, 2018. |
PCT International Search Report and Writen Opinion issued in International Application No. PCT/US2015/013410, dated Jul. 3, 2015. |
PCT Invitation to Pay Additional Fees issued in International Application No. PCT/US2015/013410, dated Apr. 28, 2015. |
Pichinuk et al., "Antibody targeting of cell-bound MUC1 SEA domain kills tumor cells," Cancer Research, 72(13):3324-3336, 2012. |
Ren et al Cancer Cell Feb 5:163-175, 2004 (Year: 2004). * |
Also Published As
Publication number | Publication date |
---|---|
ES2794088T3 (es) | 2020-11-17 |
EP3099719B1 (fr) | 2020-04-01 |
CN106132992B (zh) | 2020-08-07 |
JP7117410B2 (ja) | 2022-08-12 |
CN106132992A (zh) | 2016-11-16 |
AU2015211034A1 (en) | 2016-08-11 |
JP2017505625A (ja) | 2017-02-23 |
US20220049014A1 (en) | 2022-02-17 |
KR102448454B1 (ko) | 2022-09-28 |
CA2938111C (fr) | 2024-02-06 |
US20180312605A1 (en) | 2018-11-01 |
US20160340442A1 (en) | 2016-11-24 |
WO2015116753A1 (fr) | 2015-08-06 |
IL246997A0 (en) | 2016-09-29 |
JP6908381B2 (ja) | 2021-07-28 |
KR20160132012A (ko) | 2016-11-16 |
EP3099719A1 (fr) | 2016-12-07 |
JP2021100942A (ja) | 2021-07-08 |
US11136410B2 (en) | 2021-10-05 |
MX2016009954A (es) | 2017-02-23 |
CA2938111A1 (fr) | 2015-08-06 |
AU2015211034B2 (en) | 2020-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220049014A1 (en) | Antibodies against the muc1-c/extracellular domain (muc1-c/ecd) | |
US10617773B2 (en) | Antibodies against the MUC1-C/extracellular domain (MUC1-C/ECD) | |
JP2017505625A5 (fr) | ||
US7807630B2 (en) | Targeting of Notch3 receptor function for cancer therapy | |
EP3065775B1 (fr) | Anticorps vh4 dirigés contre les astrocytes et les neurones de la matière grise | |
US20230265208A1 (en) | Antibodies against the muc1-c/extracellular domain (muc1-c/ecd) | |
US20230382982A1 (en) | Mutations that drive vh4 antibody autoreactivity | |
US20240262930A1 (en) | Multi-specific antibody constructs against the muc1-c/extracellular domain (muc1-c/ed) | |
US20180153978A1 (en) | TUMORS EXPRESSING IgG1 Fc INDUCE ROBUST CD8 T CELL RESPONSES | |
US20090263396A1 (en) | Inhibitors of t-darpp for use in combination anti-cancer therapies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:DANA-FARBER CANCER INST;REEL/FRAME:039673/0087 Effective date: 20160809 |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:DANA-FARBER CANCER INST;REEL/FRAME:040609/0590 Effective date: 20161111 |
|
AS | Assignment |
Owner name: DANA-FARBER CANCER INSTITUTE, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KUFE, DONALD W.;REEL/FRAME:042371/0842 Effective date: 20160808 Owner name: GENUS ONCOLOGY, LLC, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KHARBANDA, SURENDER;REEL/FRAME:042371/0826 Effective date: 20170427 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: XYONE THERAPEUTICS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENUS ONCOLOGY LLC;REEL/FRAME:069610/0582 Effective date: 20220330 |