US10047764B2 - Propeller fan, and air blower, air conditioner, and hot-water supply outdoor unit including the same - Google Patents

Propeller fan, and air blower, air conditioner, and hot-water supply outdoor unit including the same Download PDF

Info

Publication number
US10047764B2
US10047764B2 US14/417,894 US201314417894A US10047764B2 US 10047764 B2 US10047764 B2 US 10047764B2 US 201314417894 A US201314417894 A US 201314417894A US 10047764 B2 US10047764 B2 US 10047764B2
Authority
US
United States
Prior art keywords
blade
propeller fan
outer peripheral
fan according
peripheral end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/417,894
Other languages
English (en)
Other versions
US20150176597A1 (en
Inventor
Takahide Tadokoro
Yasuaki Kato
Atsushi Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Assigned to MITSUBISHI ELECTRIC CORPORATION reassignment MITSUBISHI ELECTRIC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KONO, ATSUSHI, KATO, YASUAKI, TADOKORO, TAKAHIDE
Publication of US20150176597A1 publication Critical patent/US20150176597A1/en
Application granted granted Critical
Publication of US10047764B2 publication Critical patent/US10047764B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/164Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/545Ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/301Cross-sectional characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a propeller fan, and an air blower, an air conditioner, and a hot-water supply outdoor unit including the propeller fan.
  • Patent Literature 1 discloses such a propeller fan that a part of the propeller fan on an outer peripheral side thereof is formed into a concave arc shape in a blade cross section, and the radius of curvature of the arc is increased as approaching from a leading edge to a trailing edge so as to suppress generation of a blade tip vortex caused by a leakage flow directed from a leeward side to a windward side.
  • Patent Literature 2 discloses such a configuration that a force applied from a blade to air is directed inwardly by tilting the blade to a downstream side as approaching toward a trailing edge so that air blow speed is made uniform to suppress noise.
  • Patent Literature 1 there is a risk in that the blade tip vortex generated from the outer peripheral portion of the blade interferes with a bellmouth while flowing to the downstream side, thereby increasing noise.
  • the bellmouth is set on an outer peripheral side of the propeller fan used in air conditioners, and the clearance between the bellmouth and the outer periphery of the fan is generally as narrow as about 5 mm to about 10 mm so that noise may increase when a disturbed air current impinges against the bellmouth. Further, the loss of energy is also caused due to the friction resistance generated between the swirling air current and the bellmouth.
  • a propeller fan including: a boss including a rotation axis; a plurality of blades formed on an outer periphery of the boss; and a bellmouth arranged so as to surround the plurality of blades at a trailing edge side of each of the blades.
  • the blade has a bending portion that bulges toward an upstream side in a cross-sectional shape in a radial direction.
  • a tangent at an end of the outer periphery is defined as LQ
  • an imaginary line orthogonal to the rotation axis O is defined as LO
  • an angle formed by the tangent LQ and the imaginary line LO is defined as an outer peripheral end tangent angle ⁇
  • a position at which an imaginary plane including a position of an intake-side end portion of the bellmouth and a peripheral edge of the blade cross each other is defined as an overlap starting point
  • the outer peripheral end tangent angle ⁇ on a trailing edge portion side with respect to a blade cross section including the overlap starting point is set to be smaller than the outer peripheral end tangent angle ⁇ on a leading edge portion side with respect to the blade cross section including the overlap starting point.
  • the propeller fan of the present invention it is possible to achieve lower noise by suppressing the leakage flow of the air current, and to achieve higher efficiency by increasing the rate of air to be blown.
  • FIG. 1 is a perspective view of a propeller fan according to a first embodiment of the present invention when seen from a downstream side.
  • FIG. 2 is a view of the propeller fan of FIG. 1 when seen from a lateral side.
  • FIG. 3 is a view of the propeller fan of FIG. 1 when seen from a direction of a rotation axis.
  • FIG. 4 is a radial sectional view taken along the line IV-IV of FIG. 3 .
  • FIG. 5 are radial sectional views of the vicinity of a leading edge of a blade of the propeller fan.
  • FIG. 6 are radial sectional views illustrating a backward side with respect to FIG. 5 in the same manner as that of FIG. 5 .
  • FIG. 7 are radial sectional views of the vicinity of a trailing edge of the blade of the propeller fan.
  • FIG. 8 is a view illustrating a relationship between an outer peripheral end tangent angle ⁇ and a point T at a position from a leading edge to a trailing edge according to a second embodiment of the present invention.
  • FIG. 9 is a view illustrating cross sections of a blade at T 0 , T 1 , T 2 , and T 3 .
  • FIG. 10 are views illustrating a state of a flow leaking to an outer side and an inner side in the vicinity of the leading edge of the blade.
  • FIG. 11 is a view illustrating a third embodiment of the present invention in the same manner as that of FIG. 8 .
  • FIG. 12 is a view illustrating the third embodiment of the present invention in the same manner as that of FIG. 9 .
  • FIG. 13 is a radial sectional view of a blade of a propeller fan according to a fourth embodiment of the present invention.
  • FIG. 1 is a perspective view of a propeller fan according to a first embodiment of the present invention when seen from a downstream side.
  • a propeller fan 1 a plurality of blades 3 are arranged around a boss 2 set at a rotation axis O.
  • the arrow denoted by reference symbol 4 indicates a rotation direction.
  • a peripheral edge of each of the blades 3 includes a leading edge 5 positioned on a forward side in the rotation direction, a trailing edge 6 positioned on an opposite side of the leading edge 5 , and an outer side edge 7 positioned on a radially outer side so as to connect the leading edge 5 and the trailing edge 6 to each other.
  • the arrow denoted by reference symbol 8 indicates an air current direction.
  • FIG. 2 is a view of the propeller fan of FIG. 1 when seen from a lateral side.
  • the propeller fan 1 is illustrated so that a rotation locus is projected on a surface including the rotation axis O.
  • the propeller fan 1 is arranged so as to be surrounded by an annular bellmouth 9 from outside in the radial direction. A predetermined clearance is secured between the propeller fan 1 and the bellmouth 9 .
  • an upstream side A and a downstream side B of the propeller fan 1 are partitioned by the bellmouth 9 . Further, as illustrated in FIG. 2 , the propeller fan 1 also includes a region not surrounded by the bellmouth 9 . Assuming that an imaginary plane 10 a has the rotation axis O as a normal to the imaginary plane 10 a and includes a position of an intake-side end portion 9 a of the bellmouth 9 , a position where the imaginary plane 10 a and the peripheral edge of the blade 3 cross each other is referred to as an overlap starting point 10 in the description. In FIG. 2 , a region of each of the blades 3 on the upstream side with respect to the overlap starting point 10 is not surrounded by the bellmouth 9 and is kept open in a space on the upstream side A.
  • FIG. 3 is a view of the propeller fan when seen from a direction of the rotation axis
  • FIG. 4 is a radial sectional view taken along the line IV-IV of FIG. 3
  • a blade surface on the downstream side with respect to the air current direction serves to push an air current by the rotation of the fan and is referred to as a pressure surface 11 or a positive pressure surface
  • a blade surface on the upstream side with respect to the air current direction is referred to, on the other hand, as a negative pressure surface 12 .
  • each of the blades 3 has a bending portion 13 that bulges toward the upstream side of a blade cross section, that is, on the negative pressure surface 12 side.
  • An apex of the bending portion 13 is defined as “P”.
  • an outer peripheral end of the blade on the radially outer side with respect to the apex P when seen in the blade cross section is defined as “Q”.
  • a tangent on the outer peripheral end Q of the blade is defined as “LQ”
  • an imaginary line orthogonal to the rotation axis O when seen in the blade cross section is defined as “LO”.
  • An angle formed by the two lines LQ and LO is defined as an outer peripheral end tangent angle ⁇ .
  • the outer peripheral end tangent angle ⁇ is an angle formed by a part of the imaginary line LO on an outer peripheral side with respect to the intersection IP and a part of a line segment of the tangent LQ in a range between the outer peripheral end Q of the blade and the intersection IP.
  • one of the features of this embodiment resides in that the outer peripheral end tangent angle ⁇ in the trailing edge portion is smaller than that in the leading edge portion, that is, the outer peripheral end tangent angle ⁇ becomes smaller toward the trailing edge portion.
  • one of the features of this embodiment resides in that, when a position of the blade cross section including the above-mentioned overlap starting point 10 is defined as a corresponding point of the overlap starting point, the outer peripheral and tangent angle ⁇ on the trailing edge portion side with respect to the corresponding point of the overlap starting point is smaller than the outer peripheral end tangent angle ⁇ on the leading edge portion side with respect to the corresponding point of the overlap starting point.
  • the diameter of the boss is about 30% of the diameter of the fan
  • the apex P of the bending portion 13 is set at a position away from the rotation axis O by about 60% or more of the radius so as to serve to suppress a flow leaking from the outer periphery of the blade.
  • the outer peripheral end of the blade serves as a swept blade mounted on the downstream side.
  • FIG. 5( b ) illustrates a cross section in a radial direction taken along the line V-V of FIG. 5 ( a ) .
  • the leading edge of the blade has, in most cases, a shape that extends further forward in the rotation direction toward the outer periphery side, and as illustrated in FIG. 5( a ) , the entire cross section from the boss to the outer peripheral edge may not appear in the cross section in the radial direction connecting the rotation center to the leading edge.
  • the apex of the bending portion is set at a position away from the rotation axis O by about 60% or more of the radius as described above, and hence a cross-sectional shape is considered within a range in which the blade cross section on an outer side of from about 50% to about 90% of a radius Ro of the fan appears.
  • the “leading edge portion” and the “trailing edge portion” as used herein respectively refer to a cross section on the most leading edge side and a cross section on the most trailing edge side in the range in which the blade cross section appears as described above.
  • FIGS. 6 and 7 are views illustrating the blade in the same manner as that of FIG. 5 .
  • FIGS. 6( b ) and 7( b ) illustrate cross sections in a radial direction respectively taken along the lines VI-VI and VII-VII of FIGS. 6( a ) and 7( a ) corresponding thereto.
  • FIG. 6 illustrate a position on a backward side in the rotation direction with respect to FIG. 5
  • FIG. 7 illustrate a position on a further backward side in the rotation direction with respect to FIG. 6 .
  • an outer peripheral end tangent angle ⁇ a is large, and a normal to the blade surface on the outer peripheral side with respect to the bending portion is directed to the inner peripheral side (rotation axis side). Therefore, when the air current flowing onto the pressure surface 11 passes by the bending portion 13 , a force 14 a applied from the blade to the air current works at the inner side. As a result, an air current 8 in in the vicinity of the leading edge is gathered toward the rotation axis of the fan, and thus a large amount of air current is supplied to the downstream side, that is, the increase in air-blowing rate is achieved.
  • the normal to the blade surface is directed to the inner peripheral side, and thus an air current 8 a flows along the blade surface without leaking from the outer periphery of the blade so that energy is supplied to the air current from the blade. Further, the leakage flow hardly occurs, and hence a vortex generated at an end of the blade can be suppressed, and noise can be reduced with the disturbance of the flow being suppressed. Further, the air current 8 in gathered as described above joins the air current 8 a flowing along the blade surface without leaking from the outer periphery of the blade, and thus a larger amount of air current is supplied to the downstream side. Also with this, the air-blowing rate can be further increased.
  • an outer peripheral end tangent angle ⁇ b is smaller than the above-mentioned angle ⁇ a on the leading edge side, and the normal to the blade surface of the bending portion 13 is directed in the axial direction compared to the leading edge side. Therefore, the air current receives a force 14 b in the axial direction. As a result, a flow 8 b of the air current, which has flowed on the blade surface to increase in energy, is pushed out to the downstream side from the blade surface. In this case, the trailing edge side is surrounded by the bellmouth.
  • the friction is suppressed on the trailing edge side by rapidly discharging the air current in the overlapping region between the trailing edge side and the bellmouth in the axial direction.
  • the air current flowing on the pressure surface is prevented from leaking to the outer periphery with the bending portion that bulges toward the upstream side so that the air current is allowed to flow along the blade surface so as to be supplied with energy.
  • the angle of the bending portion is set to be gentler toward the trailing edge portion, and the direction of the normal to the blade surface is directed in the axial direction so that the air-blowing rate can be increased while the loss of energy caused by the friction between the air current and bellmouth is suppressed. Further, the leakage flow is suppressed, and hence the disturbance of the air current is suppressed so as to reduce the noise.
  • FIG. 8 is a view illustrating a relationship between an outer peripheral end tangent angle ⁇ and each point T at a position from a leading edge to a trailing edge according to the second embodiment.
  • FIG. 9 is a view illustrating cross sections of a blade at T 0 , T 1 , T 2 , and T 3 .
  • the outer peripheral end tangent angle ⁇ takes a constant value up to the point T 1 located between the leading edge portion T 0 and the trailing edge portion T 3 and then decreases from the point T 1 to the trailing edge portion T 3 .
  • the outer peripheral end tangent angle ⁇ decreases linearly.
  • the outer peripheral end tangent angle ⁇ is constant as indicated by ⁇ 1 in the blade cross sections at the leading edge portion T 0 and the point T 1 , and the outer peripheral end tangent angle ⁇ decreases to an angle ⁇ 2 and an angle ⁇ 3 respectively from the point T 1 to the points T 2 and T 3 .
  • a chord length of the propeller fan is longest on the outer peripheral side, and as illustrated in FIG. 10( a ) , on the upstream side, only a part of the blade cross section appears in the cross section in the radial direction. Consequently, the air current leaks easily from the blade. As illustrated in FIG. 10( a ) , on the upstream side, only a part of the blade cross section appears in the cross section in the radial direction. Consequently, the air current leaks easily from the blade. As illustrated in FIG.
  • the outer peripheral end tangent angle ⁇ is kept constant from the leading edge portion T 0 to the point T 1 on the way to the downstream side so that the air current does not leak to the radially outer side, and thus the energy is supplied to the air current without fail.
  • the angle ⁇ from the point T 1 that is the terminal of the constant value ⁇ 1 to the trailing edge portion T 3 may also decrease in a smooth curved line as indicated by a broken line instead of decreasing in a straight line as illustrated in FIG. 8 .
  • a pressure difference between the pressure surface and the negative pressure surface increases, and hence the formed angle is decreased gently so as to prevent the leakage of the air current.
  • the angle ⁇ may be decreased more rapidly compared to the above-mentioned solid-line embodiment so as to push out the air current to the downstream side. It is appropriate that the angle be decreased so as to be suited to the environment in which the fan is used.
  • the air-blowing rate can be increased and the occurrence of the leakage and the generation of a vortex can be suppressed more efficiently while achieving lower noise.
  • FIGS. 11 and 12 are views illustrating the third embodiment respectively corresponding to FIGS. 8 and 9 .
  • a point T 4 of FIG. 11 is a corresponding point of an overlap starting point located at a position of the blade cross section including the above-mentioned overlap starting point 10 .
  • the outer peripheral end tangent angle ⁇ takes a constant value from the leading edge point T 0 to the corresponding point T 4 of the overlap starting point and then decreases from the corresponding point T 4 to the trailing edge portion T 3 . In the illustrated example of FIG. 11 , the outer peripheral end tangent angle ⁇ decreases linearly.
  • the outer periphery of the propeller fan 201 is kept open in a space from the leading edge portion T 1 to the corresponding point T 4 of the overlap starting point that overlaps the bellmouth, and hence the air current leaks easily to the outer side. Therefore, the outer peripheral end tangent angle ⁇ is kept constant from the leading edge portion T 1 to the corresponding point T 4 of the overlap starting point so as to suppress the leakage of the air current. Then, the outer peripheral end tangent angle ⁇ is decreased to ⁇ 2 and ⁇ 3 respectively from the corresponding point T 4 of the overlap starting point to the point T 2 and the trailing edge portion T 3 on the downstream side. Note that, the process of decreasing the angle is the same as that in the above-mentioned second embodiment.
  • the same advantages as those in the second embodiment are obtained, and further, in the third embodiment, in particular, the effect of suppressing the leakage in the open region of the propeller fan 201 efficiently can be obtained.
  • FIG. 13 is a radial sectional view of a blade of a propeller fan according to the fourth embodiment.
  • an outer peripheral bending portion 15 that bulges toward the downstream side is formed in an outer peripheral portion of the blade 3 with respect to the bending portion 13 .
  • the outer peripheral end tangent angle ⁇ is also the same as any of the above-mentioned first to third embodiments.
  • the pressure difference between a pressure surface lie and a negative pressure surface 12 a in a vicinity 15 a of an outer peripheral edge at the outer side with respect to the outer peripheral bending portion 15 is reduced so as to weaken a vortex (blade tip vortex 16 ) generated due to the leakage of the air current from the outer peripheral portion.
  • the outer peripheral bending portion 15 is used in addition so that the air current can be prevented from generating a strong vortex even in the case of the leakage of the air current, and thus the disturbance of the air current in the case of the leakage thereof is minimized to further reduce the disturbance of the air current that is caused by the vortex, thereby achieving lower noise.
  • the air current is prevented from generating a strong vortex even in the case of the leakage of the air current, considering also the state after the air current leaks, thereby being capable of achieving still lower noise.
  • the propeller fans according to the above-mentioned embodiments relate to the higher efficiency and the lower noise of the propeller fans.
  • the propeller fans are mounted on air blowers, highly efficient air blowing and an increase in air-blowing rate can be achieved.
  • the propeller fans are mounted on air conditioners and hot-water supply outdoor units, which are refrigerating cycle devices including compressors and heat exchangers, the amount of an air current passing through the heat exchanger can be increased also due to the highly efficient air blowing, and hence the energy saving of the devices can be realized.
  • any of the air blowers, air conditioners, and hot-water supply outdoor units there is no particular limit to the configurations other than those of the propeller fans, and for example, well-known and existing configurations may be used.
US14/417,894 2012-08-10 2013-07-18 Propeller fan, and air blower, air conditioner, and hot-water supply outdoor unit including the same Active 2035-02-17 US10047764B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPPCT/JP2012/070507 2012-08-10
PCT/JP2012/070507 WO2014024305A1 (ja) 2012-08-10 2012-08-10 プロペラファン、並びに、それを備えた送風機、空気調和機及び給湯用室外機
WOPCT/JP2012/070507 2012-08-10
PCT/JP2013/069505 WO2014024654A1 (ja) 2012-08-10 2013-07-18 プロペラファン、並びに、それを備えた送風機、空気調和機及び給湯用室外機

Publications (2)

Publication Number Publication Date
US20150176597A1 US20150176597A1 (en) 2015-06-25
US10047764B2 true US10047764B2 (en) 2018-08-14

Family

ID=50067586

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/417,894 Active 2035-02-17 US10047764B2 (en) 2012-08-10 2013-07-18 Propeller fan, and air blower, air conditioner, and hot-water supply outdoor unit including the same

Country Status (5)

Country Link
US (1) US10047764B2 (ja)
EP (1) EP2884114B1 (ja)
JP (1) JP5933721B2 (ja)
CN (1) CN104520593B (ja)
WO (2) WO2014024305A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010058A1 (ja) * 2012-07-12 2014-01-16 三菱電機株式会社 プロペラファン、並びに、それを備えた送風機、空気調和機及び給湯用室外機
JP6902315B2 (ja) 2015-07-07 2021-07-14 プラクレンツ エルエルシー 光触媒清浄のための反応コアシステム
JP6524331B2 (ja) * 2016-02-24 2019-06-05 三菱電機株式会社 送風機及びそれを用いた空気調和機
JP6849366B2 (ja) 2016-09-29 2021-03-24 山洋電気株式会社 リバーシブルフローファン
US20200240430A1 (en) * 2017-10-03 2020-07-30 Mitsubishi Electric Corporation Propeller fan and axial flow blower
FR3078116B1 (fr) * 2018-02-22 2021-09-10 Ksb Sas Pompe a doigt
JP6625291B1 (ja) * 2018-12-26 2019-12-25 三菱電機株式会社 羽根車、送風機及び空気調和機
JP7292405B2 (ja) * 2019-11-12 2023-06-16 三菱電機株式会社 軸流ファン、送風装置、及び、冷凍サイクル装置
WO2022191034A1 (ja) * 2021-03-12 2022-09-15 ダイキン工業株式会社 プロペラファンおよび冷凍装置

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1041913A (en) * 1909-12-06 1912-10-22 James R Tyson Aerial propeller.
US1041912A (en) * 1906-11-19 1912-10-22 James R Tyson Marine propeller.
US1964525A (en) * 1932-07-30 1934-06-26 Gen Electric Fan blade
US1995193A (en) * 1933-08-05 1935-03-19 Charles A Stilphen Propeller fan
JPS62282198A (ja) 1986-05-30 1987-12-08 Mitsubishi Electric Corp 軸流フアン
JPH06229398A (ja) 1993-02-02 1994-08-16 Toshiba Corp 軸流ファン
US5616004A (en) * 1995-04-19 1997-04-01 Valeo Thermique Moteur Axial flow fan
JPH09287595A (ja) 1996-04-23 1997-11-04 Matsushita Electric Works Ltd ファン
US6116856A (en) * 1998-09-18 2000-09-12 Patterson Technique, Inc. Bi-directional fan having asymmetric, reversible blades
JP2002257381A (ja) 2000-12-28 2002-09-11 Daikin Ind Ltd 送風装置および空気調和機用室外機
US6503060B1 (en) * 1999-08-09 2003-01-07 Daikin Industries, Ltd. Fan guard of blower unit and air conditioner
JP2003148395A (ja) 2001-11-09 2003-05-21 Matsushita Electric Ind Co Ltd 空調用送風機羽根車
WO2003072948A1 (fr) 2002-02-28 2003-09-04 Daikin Industries, Ltd. Ventilateur
US6796771B2 (en) * 2002-02-15 2004-09-28 Usui Kokusai Sangyo Kaisha Limited Axial-flow fan
US7025642B1 (en) * 2004-09-16 2006-04-11 Lear Baylor, Inc. Boat propeller
US20060171804A1 (en) * 2005-01-07 2006-08-03 Brown Fred A Fluid moving device
JP2006233886A (ja) 2005-02-25 2006-09-07 Mitsubishi Electric Corp プロペラファン
US8007243B2 (en) * 2004-07-26 2011-08-30 Mitsubishi Electric Corporation Blower including blades attached to a boss
JP2011179330A (ja) 2010-02-26 2011-09-15 Panasonic Corp 羽根車と送風機及びそれを用いた空気調和機
US20130101420A1 (en) * 2010-05-13 2013-04-25 Seiji Nakashima Axial flow fan
EP2873867A1 (en) 2012-07-12 2015-05-20 Mitsubishi Electric Corporation Propeller fan, and fan, air-conditioner and outdoor unit for hot-water supply provided with propeller fan

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2253066A (en) * 1938-12-29 1941-08-19 Gen Electric Fan
US3794443A (en) * 1972-08-30 1974-02-26 Gen Electric Wide dispersion fan impeller
CN86207338U (zh) * 1986-09-27 1988-02-10 杭州光明节能空调设备厂 轴流通风机
KR950007521B1 (ko) * 1992-08-14 1995-07-11 엘지전자주식회사 시로코우 팬
JP3050144B2 (ja) * 1996-11-12 2000-06-12 ダイキン工業株式会社 軸流ファン
JP3127850B2 (ja) * 1997-02-13 2001-01-29 ダイキン工業株式会社 プロペラファン用羽根車
JP4467952B2 (ja) * 2003-11-10 2010-05-26 東芝キヤリア株式会社 プロペラファン、これを用いた空気調和機用室外ユニット
JP4710613B2 (ja) * 2006-01-05 2011-06-29 株式会社日立プラントテクノロジー 軸流ポンプ

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1041912A (en) * 1906-11-19 1912-10-22 James R Tyson Marine propeller.
US1041913A (en) * 1909-12-06 1912-10-22 James R Tyson Aerial propeller.
US1964525A (en) * 1932-07-30 1934-06-26 Gen Electric Fan blade
US1995193A (en) * 1933-08-05 1935-03-19 Charles A Stilphen Propeller fan
JPS62282198A (ja) 1986-05-30 1987-12-08 Mitsubishi Electric Corp 軸流フアン
JPH06229398A (ja) 1993-02-02 1994-08-16 Toshiba Corp 軸流ファン
US5616004A (en) * 1995-04-19 1997-04-01 Valeo Thermique Moteur Axial flow fan
JPH09287595A (ja) 1996-04-23 1997-11-04 Matsushita Electric Works Ltd ファン
US6116856A (en) * 1998-09-18 2000-09-12 Patterson Technique, Inc. Bi-directional fan having asymmetric, reversible blades
US6503060B1 (en) * 1999-08-09 2003-01-07 Daikin Industries, Ltd. Fan guard of blower unit and air conditioner
JP2002257381A (ja) 2000-12-28 2002-09-11 Daikin Ind Ltd 送風装置および空気調和機用室外機
JP2003148395A (ja) 2001-11-09 2003-05-21 Matsushita Electric Ind Co Ltd 空調用送風機羽根車
US6796771B2 (en) * 2002-02-15 2004-09-28 Usui Kokusai Sangyo Kaisha Limited Axial-flow fan
WO2003072948A1 (fr) 2002-02-28 2003-09-04 Daikin Industries, Ltd. Ventilateur
US6994523B2 (en) * 2002-02-28 2006-02-07 Daikin Industries Ltd. Air blower apparatus having blades with outer peripheral bends
US8007243B2 (en) * 2004-07-26 2011-08-30 Mitsubishi Electric Corporation Blower including blades attached to a boss
US7025642B1 (en) * 2004-09-16 2006-04-11 Lear Baylor, Inc. Boat propeller
US20060171804A1 (en) * 2005-01-07 2006-08-03 Brown Fred A Fluid moving device
JP2006233886A (ja) 2005-02-25 2006-09-07 Mitsubishi Electric Corp プロペラファン
JP2011179330A (ja) 2010-02-26 2011-09-15 Panasonic Corp 羽根車と送風機及びそれを用いた空気調和機
US20130101420A1 (en) * 2010-05-13 2013-04-25 Seiji Nakashima Axial flow fan
EP2873867A1 (en) 2012-07-12 2015-05-20 Mitsubishi Electric Corporation Propeller fan, and fan, air-conditioner and outdoor unit for hot-water supply provided with propeller fan
US20150159671A1 (en) * 2012-07-12 2015-06-11 Mitsubishi Electric Corporation Propeller fan, and air blower, air conditioner, and hot-water supply outdoor unit including the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Communication pursuant to Article 94(3) EPC dated Jan. 2, 2017 issued in corresponding EP patent application No. 13 828 647.1.
Extended European Search Report dated Feb. 10, 2016 issued in corresponding EP patent application No. 13828647.1.
International Search Report of the International Searching Authority dated Aug. 13, 2013 for the corresponding international application No. PCT/JP2013/069505 (and English translation).

Also Published As

Publication number Publication date
US20150176597A1 (en) 2015-06-25
JPWO2014024654A1 (ja) 2016-07-25
CN104520593B (zh) 2016-08-17
EP2884114B1 (en) 2018-08-22
EP2884114A4 (en) 2016-03-09
EP2884114A1 (en) 2015-06-17
JP5933721B2 (ja) 2016-06-15
CN104520593A (zh) 2015-04-15
WO2014024654A1 (ja) 2014-02-13
WO2014024305A1 (ja) 2014-02-13

Similar Documents

Publication Publication Date Title
US10047764B2 (en) Propeller fan, and air blower, air conditioner, and hot-water supply outdoor unit including the same
US9863433B2 (en) Propeller fan, and air blower, air conditioner, and hot-water supply outdoor unit including the same
US10634161B2 (en) Propeller fan, propeller fan device, and air conditioner outdoor unit
US9970454B2 (en) Propeller fan, blower device, and outdoor equipment
AU2013321833B2 (en) Propeller fan and air conditioner equipped with same
EP2447542B1 (en) Air conditioner with outdoor unit
US10052931B2 (en) Outdoor cooling unit in vehicle air-conditioning apparatus
EP3018362B1 (en) Air blower and outdoor unit
US20160348699A1 (en) Axial flow fan
US9897108B2 (en) Propeller fan, air blower, outdoor unit
EP2476913A2 (en) Outdoor unit for air conditioner
EP3372841B1 (en) Axial fan and air-conditioning device having said axial fan
JP2010236371A (ja) 軸流送風機、空気調和機及び換気扇
EP3722615A1 (en) Propeller fan

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI ELECTRIC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TADOKORO, TAKAHIDE;KATO, YASUAKI;KONO, ATSUSHI;SIGNING DATES FROM 20141218 TO 20150108;REEL/FRAME:034829/0836

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4