TWM617989U - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
TWM617989U
TWM617989U TW110209332U TW110209332U TWM617989U TW M617989 U TWM617989 U TW M617989U TW 110209332 U TW110209332 U TW 110209332U TW 110209332 U TW110209332 U TW 110209332U TW M617989 U TWM617989 U TW M617989U
Authority
TW
Taiwan
Prior art keywords
layer
type
heavily doped
window
light
Prior art date
Application number
TW110209332U
Other languages
Chinese (zh)
Inventor
林志遠
歐政宜
紀政孝
Original Assignee
兆勁科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兆勁科技股份有限公司 filed Critical 兆勁科技股份有限公司
Priority to TW110209332U priority Critical patent/TWM617989U/en
Publication of TWM617989U publication Critical patent/TWM617989U/en

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

本新型提供一種發光元件,其結構是由下而上依序形成有:一基底、一下披覆層、一下侷限層、一主動層、一上侷限層、一上披覆層、一窗口層及一穿隧接面層。該穿隧接面層包含一重摻雜p型層及一重摻雜n型層,該重摻雜n型層毗鄰設置於該重摻雜p型層的上方,該重摻雜p型層設置於該窗口層的上方,藉由該重摻雜n型層做為歐姆接觸層與外部電源接觸而有利於歐姆接觸。本新型的歐姆接觸層其摻雜濃度大於傳統LED中的摻雜濃度,因此比傳統LED的歐姆接觸層電阻還低而有利於電流橫向擴散,發光總能量也大於傳統LED,同時該主動層溫度也低於傳統LED。The present model provides a light-emitting element whose structure is sequentially formed from bottom to top: a substrate, a lower cladding layer, a lower confinement layer, an active layer, an upper confinement layer, an upper cladding layer, a window layer and A tunnel junction surface layer. The tunnel junction layer includes a heavily doped p-type layer and a heavily doped n-type layer. The heavily doped n-type layer is adjacently disposed above the heavily doped p-type layer, and the heavily doped p-type layer is disposed on Above the window layer, the heavily doped n-type layer is used as an ohmic contact layer to contact an external power source to facilitate ohmic contact. The doping concentration of the ohmic contact layer of the new type is greater than that of the traditional LED, so it has lower resistance than the ohmic contact layer of the traditional LED, which is conducive to the lateral diffusion of current, and the total luminous energy is also greater than that of the traditional LED. At the same time, the temperature of the active layer is It is also lower than traditional LEDs.

Description

發光元件Light-emitting element

本新型係有關於窗口層具有更佳的電流分佈功效之發光元件。The present invention relates to a light-emitting element with a better current distribution effect in the window layer.

光學半導體元件例如發光元件,其包含發光二極體(Light-Emitting Diode, LED)及雷射二極體(Laser Diode, LD),發光元件是藉著磊晶技術在半導體底材上形成p-n接面或p-i-n接面,以達到發光之目的。請參照第1圖,傳統習知技術中之發光元件(例如LED)是由磊晶形成,其結構由下而上依序包括:一基底(Substate)1、一分佈式布拉格反射鏡(Distributed Braggre Flector, DBR)層2、一下披覆層(lower cladding layer)3、一下侷限層(confinement layer)4、一主動層(active layer)5、一上侷限層6、一上披覆層(upper cladding layer)7及一窗口層(window layer)8。另有二個接觸層(Contact),例如為一下電極(electrode)C1及一上電極C2,在該基底1的下方則為該下電極C1,至於在該窗口層8之上方則形成該上電極C2,該下電極C1及該上電極C2分別與該基底1及該窗口層8形成歐姆接觸(ohmic contact)以對該主動層5提供電能並注入載子。該下電極C1、該基底1、該DBR層2及該下披覆層3是第一傳導型例如n型,該上電極C2、該窗口層8及該上披覆層7是第二傳導型例如p型,該下侷限層6、該主動層5及該上侷限層4則是未摻雜。例如,磷化鋁鎵銦(AlGaInP)系LED的磊晶片結構是在砷化鎵(GaAs)構成的n型基底1上依序生長n型之該DBR層2、n型之該下披覆層3,以及未摻雜AlGaInP構成之該下侷限層4、該主動層5及該上侷限層6,接著p型之該上披覆層7、磷化鎵(GaP)構成p型之該窗口層8,以及接著GaP構成p型之該上電極C2。Optical semiconductor devices such as light-emitting devices, which include light-emitting diodes (Light-Emitting Diode, LED) and laser diodes (Laser Diode, LD), light-emitting devices are formed by epitaxial technology on the semiconductor substrate pn Surface or pin connection to achieve the purpose of luminescence. Please refer to Figure 1. The light-emitting element (such as LED) in the conventional conventional technology is formed by epitaxial, and its structure from bottom to top includes: a substrate (substate) 1, a distributed Bragg reflector (Distributed Braggre) Flector, DBR layer 2, lower cladding layer 3, lower confinement layer 4, active layer 5, upper confinement layer 6, and upper cladding layer layer) 7 and a window layer (window layer) 8. There are also two contact layers (Contact), for example, a bottom electrode (electrode) C1 and a top electrode C2, below the substrate 1 is the bottom electrode C1, and above the window layer 8 is formed the top electrode C2, the bottom electrode C1 and the top electrode C2 respectively form an ohmic contact with the substrate 1 and the window layer 8 to provide electrical energy to the active layer 5 and inject carriers. The lower electrode C1, the substrate 1, the DBR layer 2 and the lower cladding layer 3 are of the first conductivity type, such as n-type, and the upper electrode C2, the window layer 8 and the upper cladding layer 7 are of the second conductivity type For example, for the p-type, the lower confinement layer 6, the active layer 5, and the upper confinement layer 4 are undoped. For example, the epitaxial chip structure of aluminum gallium indium phosphide (AlGaInP) LED is to sequentially grow the n-type DBR layer 2 and the n-type lower cladding layer on an n-type substrate 1 made of gallium arsenide (GaAs). 3, and the lower confinement layer 4, the active layer 5, and the upper confinement layer 6 composed of undoped AlGaInP, then the p-type upper cladding layer 7, and gallium phosphide (GaP) form the p-type window layer 8, and then GaP forms the p-type upper electrode C2.

一般而言,該窗口層8是做為電流分佈(Current Spreading)層,這是利用該窗口層8的高導電率(低電阻)而使電流橫向擴散,以提高LED的發光效率。而在該窗口層8上方的該上電極C2一般是以圓形做為接線用,其以蝕刻方式使得面積小於該窗口層8,因此大部分電流會被先侷限於該上電極C2的圓形面積下方,然後再藉由該窗口層8使電流橫向擴散。然而,這樣的結構設計只適合用於低電流(例如小於8mA(毫安培))的操作條件,因為較低的電流使得載子有足夠的時間在窗口層8橫向擴散。Generally speaking, the window layer 8 is used as a current spreading layer, which utilizes the high conductivity (low resistance) of the window layer 8 to spread the current laterally to improve the luminous efficiency of the LED. The upper electrode C2 above the window layer 8 is generally circular for wiring, which is etched to make the area smaller than the window layer 8, so most of the current will be limited to the circular shape of the upper electrode C2. Below the area, and then through the window layer 8 to spread the current laterally. However, such a structural design is only suitable for low current (for example, less than 8 mA (milliampere)) operating conditions, because the lower current allows sufficient time for carriers to diffuse laterally in the window layer 8.

當為了提高LED發光總能量(total power)時,通常是以提高電流(例如大於或等於8mA)的方式從該上電極C2輸入,高電流並無法如低電流般在該窗口層8有足夠的時間橫向擴散,換言之,相對於低電流而言,在高電流的操作條件下使得載子更被侷限在圓形面積下方,因而圓形面積下方的載子密度較大,即使將該窗口層8的厚度再增厚也無法及時使高電流橫向擴散。前述高電流無法及時橫向擴散造成了該主動層5的量子井結構只有一部分被運用到,另外前述圓形面積下方的載子密度較大也造成LED運作時該主動層5的溫度會較高,例如高達485℃(於高電流為10mA),然而較高的主動層溫度卻會使得LED的發光總能量無法隨著電流的提高而有效地增加。When in order to increase the total power of the LED light, it is usually input from the upper electrode C2 by increasing the current (for example, greater than or equal to 8mA). The high current cannot be as low as the low current in the window layer 8 Time lateral diffusion, in other words, compared to low current, under high current operating conditions, carriers are more confined under the circular area, so the carrier density under the circular area is greater, even if the window layer 8 No matter how thick the thickness is, it will not be able to spread the high current laterally in time. The inability of the aforementioned high current to diffuse laterally in time causes only a part of the quantum well structure of the active layer 5 to be used. In addition, the higher carrier density under the aforementioned circular area also causes the temperature of the active layer 5 to be higher when the LED is operating. For example, it is as high as 485°C (10mA at high current), but the higher temperature of the active layer will make the total luminous energy of the LED unable to increase effectively with the increase of the current.

再者,如前所述製作該上電極C2必須以蝕刻方式進行,這使得製作LED時必須經歷磊晶與蝕刻製程,因此製造的程序繁瑣、風險也提高及良率面臨了挑戰。Furthermore, as mentioned above, the upper electrode C2 must be manufactured in an etching manner, which makes it necessary to undergo an epitaxial and etching process when manufacturing the LED. Therefore, the manufacturing process is cumbersome, the risk is increased, and the yield is challenged.

有鑑於上述問題,本新型之目的旨在提供一種發光元件,其於高電流操作時的主動層溫度較低且發光總能量可以提高,以及不需要蝕刻製程。In view of the above-mentioned problems, the object of the present invention is to provide a light-emitting device whose active layer temperature is lower during high current operation and the total light-emitting energy can be increased, and no etching process is required.

為達上述目的,本新型係揭露一種發光元件,至少包含:一基底;一下披覆層,該下披覆層設置於該基底的上方;一下侷限層,該下侷限層設置於該下披覆層的上方;一主動層,該主動層設置於該下侷限層的上方;一上侷限層,該上侷限層設置於該主動層的上方;一上披覆層,該上披覆層設置於該上侷限層的上方;一窗口層,該窗口層設置於該上披覆層的上方;一穿隧接面層,該穿隧接面層設置於該窗口層的上方。In order to achieve the above objective, the present invention discloses a light-emitting element, which at least includes: a substrate; a lower cladding layer, the lower cladding layer is disposed above the substrate; a lower confined layer, the lower confined layer is disposed on the lower cladding Above the layer; an active layer, the active layer is disposed above the lower confinement layer; an upper confinement layer, the upper confinement layer is disposed above the active layer; an upper cladding layer, the upper cladding layer is disposed on Above the upper confinement layer; a window layer, the window layer is arranged above the upper cladding layer; a tunnel interface layer, the tunnel interface layer is arranged above the window layer.

在另一實施例中,該穿隧接面層包含一重摻雜p型層及一重摻雜n型層,該重摻雜n型層係毗鄰設置於該重摻雜p型層的上方。In another embodiment, the tunnel junction layer includes a heavily doped p-type layer and a heavily doped n-type layer, and the heavily doped n-type layer is adjacently disposed above the heavily doped p-type layer.

在另一實施例中,該重摻雜p型層係設置於該窗口層的上方。In another embodiment, the heavily doped p-type layer is disposed above the window layer.

在另一實施例中,該穿隧接面層的一上表面的面積及一下表面的面積分別是等於該窗口層的一窗口層上表面的面積。In another embodiment, the area of an upper surface and the area of the lower surface of the tunnel junction layer are respectively equal to the area of an upper surface of a window layer of the window layer.

在另一實施例中,該穿隧接面層的上方設置一接觸補充層。In another embodiment, a contact supplementary layer is provided above the tunnel junction layer.

為使本領域具有通常知識者能清楚了解本新型之內容,謹以下列說明搭配圖式,敬請參閱。In order to enable those with ordinary knowledge in the field to clearly understand the content of this new model, please refer to the following descriptions and diagrams.

首先,請參閱第2圖,本新型的一種發光元件(Light-Emitting Diode)100,該發光元件100可以是發光二極體(Light-Emitting Diode, LED)及雷射二極體(Laser Diode, LD)。為了方便理解本新型的精神,以下實施方式是以LED的結構為舉例,然而本領域技術人員應當可以理解本新型的精神及結構也適用於LD。於第一種實施態樣中,該發光元件100係至少包含:一下電極10;一基底11,該基底11與該下電極10接觸,該基底11可以設置於該下電極10的上方或下方;一分佈式布拉格反射鏡(DBR)層12,該DBR層12設置於該基底11的上方,該DBR層12可以與該基底11的上表面接觸;一下披覆層13,該下披覆層13設置於該DBR層12的上方,該下披覆層13可以與該DBR層12的上表面接觸;一下侷限層14,該下侷限層14設置於該下披覆層13的上方,該下侷限層14可以與該下披覆層13的上表面接觸;一主動層15,該主動層15設置於該下侷限層14的上方,該主動層15可以與該下侷限層14的上表面接觸;一上侷限層16,該上侷限層16設置於該主動層15的上方,該上侷限層16可以與該主動層15的上表面接觸;一上披覆層17,該上披覆層17設置於該上侷限層16的上方,該上披覆層17可以與該上侷限層16的上表面接觸;一窗口層18,該窗口層18設置於該上披覆層17的上方,該窗口層18可以與該上披覆層17的上表面接觸;一穿隧接面(tunnel junction)層TJ,該穿隧接面層TJ設置於該窗口層18的上方,該穿隧接面層TJ可以與該窗口層18的上表面接觸。該下電極10及該穿隧接面層TJ分別為一歐姆接觸層(ohmic contact),以對該主動層15提供電能並注入載子。換言之,該發光元件100的結構是由下而上藉著磊晶技術依序形成有:該基底11、該DBR層12、該下披覆層13、該下侷限層14、該主動層15、該上侷限層16、該上披覆層17、該窗口層18及該穿隧接面層TJ,例如以分子束磊晶法(Molecular Beam Epitaxy, MBE)、金屬有機氣相磊晶法(metal organic vapor phase epitaxy, MOPVE)、低壓氣相磊晶法(low pressure vapor phase epitaxial method, LPMOVPE)或有機金屬氣相沈積法(Metal Organic Chemical Vapor Deposition, MOCVD)等相關技術於反應腔室中的原位(in-suit)形成。當然,也可以不設置該DBR層12,此時該下披覆層13係設置於該基底11的上方,該下披覆層13可以與該基底11的上表面接觸。First of all, please refer to Figure 2. The light-emitting element (Light-Emitting Diode) 100 of the present invention can be a light-emitting diode (Light-Emitting Diode, LED) and a laser diode (Laser Diode, LD). In order to facilitate the understanding of the spirit of the present invention, the following embodiments take the structure of the LED as an example. However, those skilled in the art should understand that the spirit and structure of the present invention are also applicable to LD. In the first embodiment, the light-emitting element 100 includes at least: a bottom electrode 10; a substrate 11, the substrate 11 is in contact with the bottom electrode 10, and the substrate 11 can be disposed above or below the bottom electrode 10; A distributed Bragg reflector (DBR) layer 12, the DBR layer 12 is disposed above the substrate 11, the DBR layer 12 can be in contact with the upper surface of the substrate 11; the lower cladding layer 13, the lower cladding layer 13 Is disposed above the DBR layer 12, the lower cladding layer 13 can be in contact with the upper surface of the DBR layer 12; the lower confinement layer 14, the lower confinement layer 14 is disposed above the lower cladding layer 13, The layer 14 can be in contact with the upper surface of the lower cladding layer 13; an active layer 15, the active layer 15 is disposed above the lower confinement layer 14, and the active layer 15 can be in contact with the upper surface of the lower confinement layer 14; An upper confinement layer 16, the upper confinement layer 16 is disposed above the active layer 15, the upper confinement layer 16 can be in contact with the upper surface of the active layer 15; an upper cladding layer 17, the upper cladding layer 17 is disposed Above the upper confinement layer 16, the upper cladding layer 17 can be in contact with the upper surface of the upper confinement layer 16; a window layer 18, the window layer 18 is disposed above the upper cladding layer 17, the window layer 18 can be in contact with the upper surface of the upper cladding layer 17; a tunnel junction layer TJ, the tunnel junction layer TJ is disposed above the window layer 18, the tunnel junction layer TJ can It is in contact with the upper surface of the window layer 18. The bottom electrode 10 and the tunnel junction layer TJ are respectively an ohmic contact layer to provide electrical energy to the active layer 15 and inject carriers. In other words, the structure of the light-emitting device 100 is sequentially formed by epitaxial technology from bottom to top: the substrate 11, the DBR layer 12, the lower cladding layer 13, the lower confinement layer 14, the active layer 15, The upper confinement layer 16, the upper cladding layer 17, the window layer 18, and the tunnel junction layer TJ, such as molecular beam epitaxy (MBE), metal organic vapor phase epitaxy (metal Organic vapor phase epitaxy (MOPVE), low pressure vapor phase epitaxial method (LPMOVPE) or metal organic chemical vapor deposition (MOCVD) and other related technologies are used in the reaction chamber. In-suit formation. Of course, the DBR layer 12 may not be provided. In this case, the lower cladding layer 13 is provided above the substrate 11, and the lower cladding layer 13 may be in contact with the upper surface of the substrate 11.

該下電極10為一第一傳導型電極,例如為n型電極,例如為n型砷化鎵(GaAs)。該基底11為一第一傳導型基底,例如為n型GaAs。該DBR層12為一第一傳導型DBR層,例如為n型DBR層,該DBR層12可以為砷化鋁鎵(AlGaAs)。該下披覆層13為一第一傳導型披覆層,例如為n型披覆層,該下披覆層13可以為磷化鋁銦(AlInP)。該下侷限層14的材料可以為(Al xGa 1-x0.5In 0.5P,其中0<x<1,例如為0.65。該主動層15可以是具有一多重量子井結構的發光層,該多重量子井結構是由複數個堆疊對(圖未繪出)重複堆疊所構成,每一個該堆疊對包括一井層和一能障層。該主動層15的材料可以為(Al yGa 1-y0.5In 0.5P,其中0<y<1,例如為0.65。該上侷限層16的材料可以為(Al zGa 1-z0.5In 0.5P,其中0<z<1,例如為0.65。該下侷限層14、該主動層15及該上侷限層16則是未摻雜。該上披覆層17為一第二傳導型披覆層,例如為p型披覆層,該上披覆層17可以為磷化鋁銦(AlInP)。 The bottom electrode 10 is a first conductivity type electrode, such as an n-type electrode, such as n-type gallium arsenide (GaAs). The substrate 11 is a first conductivity type substrate, for example, n-type GaAs. The DBR layer 12 is a first conductivity type DBR layer, such as an n-type DBR layer, and the DBR layer 12 may be aluminum gallium arsenide (AlGaAs). The lower cladding layer 13 is a first conductivity type cladding layer, for example, an n-type cladding layer, and the lower cladding layer 13 may be aluminum indium phosphide (AlInP). The material of the lower confinement layer 14 may be (Al x Ga 1-x ) 0.5 In 0.5 P, where 0<x<1, for example, 0.65. The active layer 15 may be a light-emitting layer having a multiple quantum well structure. The multiple quantum well structure is composed of multiple stacked pairs (not shown in the figure) repeatedly stacked, and each stacked pair includes a well layer and a well layer. Barrier layer. The material of the active layer 15 may be (Al y Ga 1-y ) 0.5 In 0.5 P, where 0<y<1, for example, 0.65. The material of the upper confinement layer 16 may be (Al z Ga 1-z ) 0.5 In 0.5 P, where 0<z<1, for example, 0.65. The lower confinement layer 14, the active layer 15, and the upper confinement layer 16 are undoped. The upper cladding layer 17 is a second conductivity type cladding layer, for example, a p-type cladding layer, and the upper cladding layer 17 may be aluminum indium phosphide (AlInP).

該窗口層18為一第二傳導型窗口層,例如為p型窗口層,該窗口層18具有較寬或不直接(indirect)的能隙(energy gap)以及較高的傳導性,該窗口層18可以為GaP、GaAsP(磷砷化鎵)或AlGaAs。該窗口層18可以是鎂(Mg)摻雜的GaP。The window layer 18 is a second conductivity type window layer, for example, a p-type window layer. The window layer 18 has a wider or indirect energy gap and higher conductivity. The window layer 18 can be GaP, GaAsP (gallium arsenide phosphorous) or AlGaAs. The window layer 18 may be GaP doped with magnesium (Mg).

該穿隧接面層TJ可以為包含一重摻雜第二型層及一重摻雜第一型層的多層結構,例如分別為重摻雜p型層TJ1及重摻雜n型層TJ2,該重摻雜n型層TJ2係毗鄰設置於該重摻雜p型層TJ1的上方,換言之,重摻雜第一型層係毗鄰設置於該重摻雜第二型層的上方。該穿隧接面層TJ之該重摻雜p型層TJ1係設置於該窗口層18的上方,例如該穿隧接面層TJ之該重摻雜p型層TJ1係毗鄰該窗口層18。該穿隧接面層TJ的材料可以是與該基底11匹配(match)的材料,例如該基底11使用GaAs,則該穿隧接面層TJ可以使用GaAs、AlGaAs、InGaP(磷化銦鎵)、AlInP(磷化鋁銦)、AlGaInP或GaP。The tunnel junction layer TJ may be a multilayer structure including a heavily doped second-type layer and a heavily doped first-type layer, such as a heavily doped p-type layer TJ1 and a heavily doped n-type layer TJ2, respectively. The hetero n-type layer TJ2 is adjacently arranged above the heavily doped p-type layer TJ1, in other words, the heavily doped first type layer is adjacently arranged above the heavily doped second type layer. The heavily doped p-type layer TJ1 of the tunnel junction layer TJ is disposed above the window layer 18, for example, the heavily doped p-type layer TJ1 of the tunnel junction layer TJ is adjacent to the window layer 18. The material of the tunnel junction layer TJ can be a material that matches with the substrate 11. For example, if the substrate 11 uses GaAs, the tunnel junction layer TJ can use GaAs, AlGaAs, InGaP (indium gallium phosphide). , AlInP (aluminum indium phosphide), AlGaInP or GaP.

特別說明的是,於前述該穿隧接面層TJ為該歐姆接觸層的陳述中,該穿隧接面層TJ的該重摻雜n型層TJ2為該歐姆接觸層,且於第2圖中,該穿隧接面層TJ的上表面TJA的面積及下表面TJB的面積分別是等於該窗口層18的窗口層上表面18A的面積。請同時比對代表實施例1的第2圖與代表比較例1的第1圖,如前所述由於該重摻雜n型層TJ2為該歐姆接觸層,所以在本新型發光元件100實施例1的該重摻雜n型層TJ2是對應於傳統LED比較例1中的上電極(歐姆接觸層),也就是說,本新型實施例1並不設置傳統LED較例1中的圓形上電極。又由於該穿隧接面層TJ的上表面TJA的面積及下表面TJB的面積分別是等於該窗口層18的窗口層上表面18A的面積,因此該重摻雜n型層TJ2並不需要如比較例1(第1圖)以蝕刻方式把上電極面積減少而小於窗口層,因此本新型發光元件100相較於傳統LED而言,本新型具有製程簡單、風險降低及良率提高的優勢。Specifically, in the foregoing statement that the tunnel junction layer TJ is the ohmic contact layer, the heavily doped n-type layer TJ2 of the tunnel junction layer TJ is the ohmic contact layer, and is shown in FIG. 2 In this case, the area of the upper surface TJA and the area of the lower surface TJB of the tunnel junction layer TJ are respectively equal to the area of the upper surface 18A of the window layer of the window layer 18. Please compare the second figure representing Example 1 with the first figure representing Comparative Example 1. As mentioned above, since the heavily doped n-type layer TJ2 is the ohmic contact layer, the light-emitting element 100 in the embodiment of the present invention The heavily doped n-type layer TJ2 of 1 corresponds to the upper electrode (ohmic contact layer) in Comparative Example 1 of the traditional LED. electrode. Since the area of the upper surface TJA and the area of the lower surface TJB of the tunnel junction layer TJ are respectively equal to the area of the upper surface 18A of the window layer of the window layer 18, the heavily doped n-type layer TJ2 does not need to be as In Comparative Example 1 (Figure 1), the area of the upper electrode is reduced by etching to be smaller than the window layer. Therefore, compared with the conventional LED, the light-emitting element 100 of the present invention has the advantages of simple manufacturing process, reduced risk and improved yield.

下表一列出傳統LED比較例1的結構對照表。The following table 1 lists the structure comparison table of the traditional LED comparative example 1.

表一(比較例1) 註釋 材料 摻雜劑 摻雜劑含量(atoms/cm 3 類型 1 下電極 GaAs Si 大於1.0x10 18 n 2 基底 GaAs Si 大於1.0x10 18 n 3 DBR層 AlGaAs Si 6.0x10 17 n 4 下披覆層 AlInP Si 6.0x10 17 n 5 下侷限層 (Al 0.65Ga 0.350.5In 0.5P -- -- -- 6 主動層 (Al 0.65Ga 0.350.5In 0.5P -- -- -- 7 上侷限層 (Al 0.65Ga 0.350.5In0.5P -- -- -- 8 上披覆層 Al 0.5In 0.5P Mg 9.0x10 17 p 9 窗口層 GaP Mg 9.0x10 17 p 10 上電極* GaP C 1.0x10 19 p *:上電極的面積小於窗口層的面積。 Table 1 (Comparative Example 1) Floor Annotation Material Dopant Dopant content (atoms/cm 3 ) type 1 Lower electrode GaAs Si Greater than 1.0x10 18 n 2 Base GaAs Si Greater than 1.0x10 18 n 3 DBR layer AlGaAs Si 6.0x10 17 n 4 Lower cladding layer AlInP Si 6.0x10 17 n 5 Lower confinement layer (Al 0.65 Ga 0.35 ) 0.5 In 0.5 P - - - 6 Active layer (Al 0.65 Ga 0.35 ) 0.5 In 0.5 P - - - 7 Upper limit layer (Al 0.65 Ga 0.35 ) 0.5 In0.5P - - - 8 Overlay Al 0.5 In 0.5 P Mg 9.0x10 17 p 9 Window layer GaP Mg 9.0x10 17 p 10 Upper electrode* GaP C 1.0x10 19 p *: The area of the upper electrode is smaller than the area of the window layer.

下表二列出本新型發光元件100實施例1的結構對照表。Table 2 below lists the structure comparison table of Embodiment 1 of the new light-emitting element 100.

表二(實施例1) 註釋 材料 摻雜劑 摻雜劑含量(atoms/cm 3 類型 1 下電極10 GaAs Si 大於1.0x10 18 n 2 基底11 GaAs Si 大於1.0x10 18 n 3 DBR層12 AlGaAs Si 6.0x10 17 n 4 下披覆層13 AlInP Si 6.0x10 17 n 5 下侷限層14 (Al 0.65Ga 0.350.5In 0.5P -- -- -- 6 主動層15 (Al 0.65Ga 0.350.5In 0.5P -- -- -- 7 上侷限層16 (Al 0.65Ga 0.350.5In 0.5P -- -- -- 8 上披覆層17 Al 0.5In 0.5P Mg 9.0x10 17 p 9 窗口層18 GaP Mg 9.0x10 17 p 穿 隧接面層TJ * 重摻雜p型層TJ1 GaP C 大於5.0x10 19 p 重摻雜n型層TJ1 GaP Te 大於5.0x10 19 n *:該穿隧接面層TJ的上表面TJA的面積及下表面TJB的面積分別是等於該窗口層18的窗口層上表面18A的面積。 Table 2 (Example 1) Floor Annotation Material Dopant Dopant content (atoms/cm 3 ) type 1 Lower electrode 10 GaAs Si Greater than 1.0x10 18 n 2 Base 11 GaAs Si Greater than 1.0x10 18 n 3 DBR layer 12 AlGaAs Si 6.0x10 17 n 4 Lower cladding layer 13 AlInP Si 6.0x10 17 n 5 Lower limit layer 14 (Al 0.65 Ga 0.35 ) 0.5 In 0.5 P - - - 6 Active layer 15 (Al 0.65 Ga 0.35 ) 0.5 In 0.5 P - - - 7 Upper limit layer 16 (Al 0.65 Ga 0.35 ) 0.5 In 0.5 P - - - 8 Upper cladding layer 17 Al 0.5 In 0.5 P Mg 9.0x10 17 p 9 Window layer 18 GaP Mg 9.0x10 17 p Tunnel junction surface layer TJ * Heavy doped p-type layer TJ1 GaP C Greater than 5.0x10 19 p Heavily doped n-type layer TJ1 GaP Te Greater than 5.0x10 19 n *: The area of the upper surface TJA and the area of the lower surface TJB of the tunnel junction layer TJ are respectively equal to the area of the upper surface 18A of the window layer of the window layer 18.

下表三列出本新型發光元件100實施例1與比較例1在高電流(大於或等於8mA)操作條件下的發光總能量。也請一併參閱第3圖。Table 3 below lists the total luminous energy of Example 1 and Comparative Example 1 of the new light-emitting element 100 under high current (greater than or equal to 8 mA) operating conditions. Please also refer to Figure 3.

表三   操作電流8mA下的發光 總能量mW(毫瓦)(C) 操作電流10mA的發 光總能量mW(D) (C)/(D) 比較例1(A) 5.282 5.517 1.04 實施例1(B) 5.484 5.941 1.08 (B)/(A) 1.0382 1.0769 -- Table Three The total luminous energy mW (milliwatts) under the operating current of 8mA (C) Operating current 10mA total luminous energy mW (D) (C)/(D) Comparative example 1 (A) 5.282 5.517 1.04 Example 1 (B) 5.484 5.941 1.08 (B)/(A) 1.0382 1.0769 -

下表四列出本新型發光元件100實施例1的該主動層15與比較例1的主動層在操作電流10mA操作條件下的溫度。Table 4 below lists the temperature of the active layer 15 of Example 1 of the new light-emitting element 100 and the active layer of Comparative Example 1 under the operating current of 10 mA.

表四   操作電流10mA 比較例1的主動層(E) 485℃ 實施例1的主動層15(F) 390℃ (F)-(E) -95℃ Table Four Operating current 10mA Active layer of Comparative Example 1 (E) 485°C The active layer 15 of Example 1 (F) 390°C (F)-(E) -95℃

由上述表一至表四可以得知,本新型發光元件100實施例1與傳統LED比較例1相比較,實施例1產生了以下優勢:(1)實施例1的該歐姆接觸層為n型(該重摻雜n型層TJ2),而比較例1的歐姆接觸層(上電極)為p型,由於n型的電阻比p型的電阻小得多,因此實施例1的該歐姆接觸層(該重摻雜n型層TJ2)相對於比較例1的歐姆接觸層(p型上電極)而言,更有利於歐姆接觸。(2)由表三,在操作電流8mA下的發光總能量而言,實施例1是比較例1的1.0382倍,而在操作電流10mA下的發光總能量而言,實施例1是比較例1的1.0769倍,這是因為實施例1的該歐姆接觸層(該重摻雜n型層TJ2)為重摻雜(摻雜濃度高達大於5.0x10 19atoms/cm 3)而比較例1的歐姆接觸層(p型上電極)的摻雜濃度僅為1.0x10 19atoms/cm 3,因此實施例1的該歐姆接觸層比比較例1的電阻還低,所以實施例1的該歐姆接觸層有利於電流橫向擴散,當高電流被導入時電流會先快速地橫向擴散;而且實施例1的該重摻雜n型層TJ2其面積與該窗口層18相同,所以已經在該歐姆接觸層橫向擴散的高電流,其電流橫向覆蓋面積必然大於比較例1受限的圓形面積,因此實施例1的該主動層15的量子井結構可以有比較多的部分被運用到,載子複合區域也比較大,所以實施例1的發光總能量會大於比較例1的發光總能量,例如於操作電流8mA下實施例1的發光總能量5.484mW大於比較例1的發光總能量5.282mW。(3)當導入高電流時,如前述實施例1的電流橫向覆蓋面積必然大於比較例1受限的圓形面積,因此在實施例1的該歐姆接觸層(該重摻雜n型層TJ2)下方的載子密度必然小於在比較例1的歐姆接觸層(p型上電極)下方的載子密度,所以實施例1的該主動層15的溫度只有390℃,遠低於比較例1的主動層的溫度485℃達95℃(表四),而較低的該主動層15溫度使得實施例1的發光總能量可以隨著電流的提高而有效地增加;例如,在表三中,當操作電流從8mA提升到10mA時,比較例1的發光總能量只提升至1.04倍,然而實施例1卻可以提升至1.08倍。(3)意外的發現是,基於載子在n型半導體的移動速率大於載子在p型半導體的移動速率,因此電子/電洞在比較例1是在主動層的上半部耦合而發光,使得光場大部分偏在主動層的上半部,主動層的下半部並無法被有效的運用;然而實施例1是利用種摻雜的該穿隧接面層TJ,因此相較於比較例1而言,實施例1的載子由上而下在該穿隧接面層TJ、該窗口層18及該上披覆層17的移動速率大於比較例1的載子由上而下在上電極及窗口層的移動速率,這使得實施例1中之光場L與該主動層15的量子井耦合更趨向在該主動層15的中間位置,使得該主動層15的上半部及下半部皆可以被有效的運用並補償了垂直方向的光場偏移,進而提高模態增益及降低臨界電流值,並使得發光元件100滿足高溫條件下操作及能夠具有高操作速率。 From Table 1 to Table 4 above, it can be seen that, compared with the conventional LED comparative example 1, the embodiment 1 of the new light-emitting element 100 of the present invention has the following advantages: (1) the ohmic contact layer of the embodiment 1 is n-type ( The heavily doped n-type layer TJ2), and the ohmic contact layer (upper electrode) of Comparative Example 1 is p-type. Since the resistance of the n-type is much lower than that of the p-type, the ohmic contact layer ( Compared with the ohmic contact layer (p-type upper electrode) of Comparative Example 1, the heavily doped n-type layer (TJ2) is more conducive to ohmic contact. (2) From Table 3, in terms of the total luminous energy at an operating current of 8 mA, Example 1 is 1.0382 times that of Comparative Example 1, and in terms of the total luminous energy at an operating current of 10 mA, Example 1 is Comparative Example 1. This is because the ohmic contact layer (the heavily doped n-type layer TJ2) of Example 1 is heavily doped (the doping concentration is higher than 5.0x10 19 atoms/cm 3 ) and the ohmic contact layer of Comparative Example 1 The doping concentration of the (p-type upper electrode) is only 1.0x10 19 atoms/cm 3 , so the ohmic contact layer of Example 1 has lower resistance than that of Comparative Example 1, so the ohmic contact layer of Example 1 is beneficial to current Lateral diffusion, when a high current is introduced, the current will first rapidly diffuse laterally; and the heavily doped n-type layer TJ2 of Example 1 has the same area as the window layer 18, so it has been diffused laterally in the ohmic contact layer. For current, the current lateral coverage area must be larger than the restricted circular area of Comparative Example 1. Therefore, the quantum well structure of the active layer 15 of Example 1 can be used in more parts, and the carrier recombination area is also relatively large. Therefore, the total luminous energy of Example 1 is greater than the total luminous energy of Comparative Example 1. For example, the total luminous energy of Example 1 is 5.484 mW at an operating current of 8 mA, which is greater than the total luminous energy of Comparative Example 1, which is 5.282 mW. (3) When a high current is introduced, the current lateral coverage area of the aforementioned example 1 must be greater than the restricted circular area of the comparative example 1, so the ohmic contact layer (the heavily doped n-type layer TJ2 ) The carrier density below must be lower than the carrier density below the ohmic contact layer (p-type upper electrode) of Comparative Example 1, so the temperature of the active layer 15 of Example 1 is only 390°C, which is much lower than that of Comparative Example 1. The temperature of the active layer is 485°C up to 95°C (Table 4), and the lower temperature of the active layer 15 enables the total luminescence energy of Example 1 to be effectively increased with the increase of current; for example, in Table 3, when When the operating current is increased from 8 mA to 10 mA, the total luminous energy of Comparative Example 1 is only increased to 1.04 times, but Example 1 can be increased to 1.08 times. (3) The unexpected finding is that based on the fact that the movement rate of carriers in the n-type semiconductor is greater than the movement rate of the carriers in the p-type semiconductor, in Comparative Example 1, electrons/holes are coupled in the upper half of the active layer to emit light. Most of the light field is in the upper half of the active layer, and the lower half of the active layer cannot be effectively used; however, embodiment 1 uses the tunnel junction layer TJ doped with species, so it is compared with the comparative example. 1. In terms of 1, the carrier moving from top to bottom in the tunnel junction layer TJ, the window layer 18, and the upper cladding layer 17 in Example 1 is greater than that in Comparative Example 1 from top to bottom. The moving speed of the electrode and the window layer makes the coupling of the light field L and the quantum well of the active layer 15 in the first embodiment more likely to be in the middle of the active layer 15 so that the upper and lower half of the active layer 15 All parts can be effectively used and compensate the light field deviation in the vertical direction, thereby increasing the modal gain and lowering the critical current value, and enabling the light-emitting element 100 to operate under high temperature conditions and have a high operating speed.

另外,當然也可以在該穿隧接面層TJ的上方設置一接觸補充層19,請一併參閱第4圖。該接觸補充層19的材質為以Si/Te摻雜的n型GaP,其摻雜濃度為5.0x10 18atoms/cm 3In addition, of course, a contact supplementary layer 19 can also be provided above the tunnel junction layer TJ, please refer to FIG. 4 together. The contact supplement layer 19 is made of n-type GaP doped with Si/Te, and its doping concentration is 5.0×10 18 atoms/cm 3 .

本新型發光元件是在窗口層的上方設置穿隧接面層,穿隧接面層的重摻雜n型層(歐姆接觸層)是對應於傳統LED中的p型上電極(歐姆接觸層)而與外部電源接觸,而穿隧接面層的上表面的面積及下表面的面積分別是等於窗口層的上表面的面積。由於n型的電阻比p型的電阻小得多,因此本新型發光元件的歐姆接觸層更有利於歐姆接觸。本新型發光元件的歐姆接觸層其摻雜濃度大於傳統LED中的摻雜濃度,因此本新型的歐姆接觸層電阻比傳統LED的歐姆接觸層電阻還低,所以本新型的歐姆接觸層有利於電流橫向擴散,發光總能量也大於傳統LED,本新型的主動層溫度也低於傳統LED。The new type of light-emitting element is provided with a tunnel interface layer above the window layer. The heavily doped n-type layer (ohmic contact layer) of the tunnel interface layer corresponds to the p-type upper electrode (ohmic contact layer) in the traditional LED In contact with an external power source, the area of the upper surface and the area of the lower surface of the tunnel interface layer are respectively equal to the area of the upper surface of the window layer. Since the resistance of the n-type is much smaller than that of the p-type, the ohmic contact layer of the new light-emitting element is more conducive to ohmic contact. The doping concentration of the ohmic contact layer of the new type of light-emitting element is greater than that of the traditional LED, so the resistance of the ohmic contact layer of the new type is lower than that of the traditional LED, so the ohmic contact layer of the new type is beneficial to current With lateral diffusion, the total luminous energy is also greater than that of traditional LEDs, and the temperature of the active layer of the present invention is also lower than that of traditional LEDs.

惟以上所述者,僅為本新型之較佳實施例而已,當不能以此限定本新型實施之範圍,即大凡依本新型申請專利範圍及新型說明內容所作之簡單的等效變化與修飾,皆仍屬本新型專利涵蓋之範圍內。另外,本新型的任一實施例或申請專利範圍不須達成本新型所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本新型之權利範圍。However, the above are only the preferred embodiments of the present model, and should not be used to limit the scope of implementation of the present model, that is, simple equivalent changes and modifications made in accordance with the scope of the patent application for the present model and the description of the model, All are still within the scope of this new patent. In addition, any embodiment of the present invention or the scope of the patent application does not have to achieve all the objectives or advantages or features disclosed in the present invention. In addition, the abstract part and title are only used to assist the search of patent documents, not to limit the scope of the rights of this model.

[先前技術] 1:基底 2:DBR層 3:下披覆層 4:下侷限層 5:主動層 6:上侷限層 7:上披覆層 8:窗口層 C1:下電極 C2:上電極 [本新型] 100:發光元件 10:下電極 11:基底 12:DBR層 13:下披覆層 14:下侷限層 15:主動層 16:上侷限層 17:上披覆層 18:窗口層 18A:窗口層上表面 19:接觸補充層 L:光場 TJ:穿隧接面層 TJ1:重摻雜p型層 TJ2:重摻雜n型層 TJA:上表面 TJB:下表面 [Prior Art] 1: base 2: DBR layer 3: Lower cladding layer 4: Lower limit layer 5: Active layer 6: Upper limit layer 7: Upper cladding layer 8: Window layer C1: Lower electrode C2: Upper electrode [This new model] 100: light-emitting element 10: Lower electrode 11: Base 12: DBR layer 13: Lower cladding layer 14: Lower limit layer 15: active layer 16: upper limit layer 17: Upper cladding layer 18: Window layer 18A: Upper surface of window layer 19: Contact supplementary layer L: light field TJ: Tunnel junction surface layer TJ1: heavily doped p-type layer TJ2: heavily doped n-type layer TJA: upper surface TJB: bottom surface

第1圖,為傳統LED的結構圖。 第2圖,為本新型發光元件的結構圖。 第3圖,為本新型實施例1與比較例1的發光總能量與操作電流的關係圖。 第4圖,為本新型發光元件設置接觸補充層的結構圖。 Figure 1 shows the structure of a traditional LED. Figure 2 is a structural diagram of the new type of light-emitting element. Figure 3 is a graph showing the relationship between the total luminous energy and the operating current of Example 1 and Comparative Example 1 of the new model. Figure 4 is a structural diagram of the new type of light-emitting element provided with a contact supplementary layer.

100:發光元件 100: light-emitting element

10:下電極 10: Lower electrode

11:基底 11: Base

12:DBR層 12: DBR layer

13:下披覆層 13: Lower cladding layer

14:下侷限層 14: Lower limit layer

15:主動層 15: active layer

16:上侷限層 16: upper limit layer

17:上披覆層 17: Upper cladding layer

18:窗口層 18: Window layer

18A:窗口層上表面 18A: Upper surface of window layer

L:光場 L: light field

TJ:穿隧接面層 TJ: Tunnel junction surface layer

TJ1:重摻雜p型層 TJ1: heavily doped p-type layer

TJ2:重摻雜n型層 TJ2: heavily doped n-type layer

TJA:上表面 TJA: upper surface

TJB:下表面 TJB: bottom surface

Claims (5)

一種發光元件,係至少包含: 一基底; 一下披覆層,該下披覆層設置於該基底的上方; 一下侷限層,該下侷限層設置於該下披覆層的上方; 一主動層,該主動層設置於該下侷限層的上方; 一上侷限層,該上侷限層設置於該主動層的上方; 一上披覆層,該上披覆層設置於該上侷限層的上方; 一窗口層,該窗口層設置於該上披覆層的上方;及 一穿隧接面層,該穿隧接面層設置於該窗口層的上方。 A light-emitting element, which contains at least: A base A lower cladding layer, the lower cladding layer is disposed above the substrate; The lower confinement layer, the lower confinement layer is arranged above the lower cladding layer; An active layer, the active layer is disposed above the lower limited layer; An upper confined layer, the upper confined layer is arranged above the active layer; An upper cladding layer, the upper cladding layer is disposed above the upper confined layer; A window layer, the window layer being arranged above the upper cladding layer; and A tunneling surface layer, the tunneling surface layer is arranged above the window layer. 如請求項1所述之發光元件,其中該穿隧接面層包含一重摻雜p型層及一重摻雜n型層,其中該重摻雜n型層係毗鄰設置於該重摻雜p型層的上方。The light-emitting device according to claim 1, wherein the tunnel junction layer includes a heavily doped p-type layer and a heavily doped n-type layer, wherein the heavily doped n-type layer is disposed adjacent to the heavily doped p-type layer Above the layer. 如請求項2所述之發光元件,其中該重摻雜p型層係設置於該窗口層的上方。The light-emitting device according to claim 2, wherein the heavily doped p-type layer is disposed above the window layer. 如請求項3所述之發光元件,其中該穿隧接面層的一上表面的面積及一下表面的面積分別是等於該窗口層的一窗口層上表面的面積。The light emitting device according to claim 3, wherein the area of an upper surface and the area of the lower surface of the tunnel junction layer are respectively equal to the area of an upper surface of a window layer of the window layer. 如請求項4所述之發光元件,其中該穿隧接面層的上方設置一接觸補充層。The light-emitting device according to claim 4, wherein a contact supplementary layer is provided above the tunnel junction layer.
TW110209332U 2021-03-16 2021-03-16 Light-emitting device TWM617989U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110209332U TWM617989U (en) 2021-03-16 2021-03-16 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110209332U TWM617989U (en) 2021-03-16 2021-03-16 Light-emitting device

Publications (1)

Publication Number Publication Date
TWM617989U true TWM617989U (en) 2021-10-01

Family

ID=79603193

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110209332U TWM617989U (en) 2021-03-16 2021-03-16 Light-emitting device

Country Status (1)

Country Link
TW (1) TWM617989U (en)

Similar Documents

Publication Publication Date Title
TWI540751B (en) Improved quantum efficiency of multiple quantum wells
KR100869962B1 (en) The Manufacturing Method of Light Emission Device including Current Spreading Layer
US20220181513A1 (en) Hybrid growth method for iii-nitride tunnel junction devices
US5789768A (en) Light emitting diode having transparent conductive oxide formed on the contact layer
JP3643665B2 (en) Semiconductor light emitting device
TWI403002B (en) Semiconductor light-emitting device
US20120119182A1 (en) Semiconductor light emitting device
JP2015046598A (en) Semiconductor light emitting device including hole injection layer, and method of manufacturing the same
JP2007150066A (en) Nitride semiconductor light-emitting element
US20090146163A1 (en) High brightness light emitting diode structure
US11043609B2 (en) Light emitting diode and method of manufacturing the same
US20220224080A1 (en) Vertical cavity surface emitting laser device and manufacturing method thereof
CN108933186A (en) The manufacturing method of light emitting diode and tunnel junction layer
US20230051484A1 (en) Epitaxial structure and manufacturing method thereof, and light-emitting diode device
Wong et al. Progress in III-Nitride Tunnel Junctions for Optoelectronic Devices
TWM617989U (en) Light-emitting device
TWI601308B (en) Infrared LED
TWI763377B (en) light-emitting element
KR101007086B1 (en) Semiconductor light emitting device and fabrication method thereof
CN114361307A (en) Light-emitting element
TWM617988U (en) Light-emitting device
Rajan et al. III-nitride tunnel junctions and their applications
JPH11220172A (en) Gallium nitride compound semiconductor light-emitting element
TWI792190B (en) Light emitting element
TW202109919A (en) Light-emitting device and manufacturing method thereof