TWI792190B - Light emitting element - Google Patents

Light emitting element Download PDF

Info

Publication number
TWI792190B
TWI792190B TW110105883A TW110105883A TWI792190B TW I792190 B TWI792190 B TW I792190B TW 110105883 A TW110105883 A TW 110105883A TW 110105883 A TW110105883 A TW 110105883A TW I792190 B TWI792190 B TW I792190B
Authority
TW
Taiwan
Prior art keywords
layer
light
confinement layer
emitting element
energy gap
Prior art date
Application number
TW110105883A
Other languages
Chinese (zh)
Other versions
TW202234719A (en
Inventor
林志遠
歐政宜
紀政孝
Original Assignee
兆勁科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兆勁科技股份有限公司 filed Critical 兆勁科技股份有限公司
Priority to TW110105883A priority Critical patent/TWI792190B/en
Publication of TW202234719A publication Critical patent/TW202234719A/en
Application granted granted Critical
Publication of TWI792190B publication Critical patent/TWI792190B/en

Links

Images

Abstract

本發明提出一種發光元件,至少包含:第一傳導型半導體,包含下侷限層;主動層,係設置於下侷限層的上方;第二傳導型半導體,包含上侷限層,上侷限層設置於主動層的上方;其中,主動層具有多重量子井結構,多重量子井結構是由複數個堆疊對重複堆疊所構成,每一個堆疊對包括井層和能障層,能障層具有漸變成分,漸變成分在下侷限層的能隙與井層的能隙之間以線性方式改變能障層的能隙。本發明能夠提高主動層的量子效率以提升整個發光元件的亮度,並且延遲電子通過主動層以提高光產生率。The present invention proposes a light-emitting element, which at least includes: a first conduction type semiconductor including a lower confinement layer; an active layer arranged above the lower confinement layer; a second conduction type semiconductor including an upper confinement layer, and the upper confinement layer is disposed on the active layer. Above the layer; wherein, the active layer has a multi-quantum well structure, and the multi-quantum well structure is composed of a plurality of stacked pairs repeatedly stacked, each stacked pair includes a well layer and an energy barrier layer, and the energy barrier layer has a gradual composition, and a gradual composition The energy gap of the barrier layer is varied linearly between the energy gap of the lower confining layer and the energy gap of the well layer. The invention can improve the quantum efficiency of the active layer to increase the brightness of the whole light-emitting element, and delay electrons passing through the active layer to increase the light generation rate.

Description

發光元件Light emitting element

本發明係有關於具有漸變成分(graded composition)之能障層(barrier layer)的多重量子井(multiple quantum well)及使用此多重量子井的半導體元件,尤其是光學半導體元件中的發光元件。The present invention relates to a multiple quantum well with a barrier layer of graded composition and a semiconductor element using the multiple quantum well, especially a light-emitting element in an optical semiconductor element.

光學半導體元件例如發光元件,其包含發光二極體(Light-emitting diode,LED)及雷射二極體(Laser Diode,LD),發光元件是藉著磊晶技術在半導體底材上形成p-n接面或p-i-n接面,以達到發光之目的。請參照第1圖,傳統習知技術中之發光元件(例如LED)是由磊晶形成,其結構由下而上依序包括:基底(Substate)1、分佈式布拉格反射鏡(distributed Bragg reflector,DBR)層2、下披覆層(lower cladding layer)3、下侷限層(confinement layer)LC、主動層(active layer)4、上侷限層UC、上披覆層(upper cladding layer)5及窗口層(window layer)6,在基底(Substate)1下則為下電極(electrode)8,至於在窗口層6之上則形成上電極7 。下電極8、基底1、分佈式布拉格反射層2及下披覆層3是第一傳導型例如n型,上電極7、上披覆層5及窗口層6是第二傳導型例如p型,下侷限層LC、主動層4及上侷限層UC則是未摻雜。Optical semiconductor elements such as light-emitting elements include light-emitting diodes (Light-emitting diodes, LEDs) and laser diodes (Laser Diodes, LDs). Surface or p-i-n junction, in order to achieve the purpose of light. Please refer to Figure 1. The light-emitting element (such as LED) in the conventional conventional technology is formed by epitaxy, and its structure includes from bottom to top: substrate (Substate) 1, distributed Bragg reflector (distributed Bragg reflector, DBR) layer 2, lower cladding layer (lower cladding layer) 3, lower confinement layer (confinement layer) LC, active layer (active layer) 4, upper confinement layer UC, upper cladding layer (upper cladding layer) 5 and window The window layer 6 is a lower electrode 8 under the substrate 1 , and an upper electrode 7 is formed on the window layer 6 . The lower electrode 8, the substrate 1, the distributed Bragg reflection layer 2, and the lower cladding layer 3 are of the first conductivity type, such as n-type, and the upper electrode 7, the upper cladding layer 5, and the window layer 6 are of the second conductivity type, such as p-type, The lower confinement layer LC, the active layer 4 and the upper confinement layer UC are undoped.

一般而言主動層4是具有多重量子井(multiple quantum well)結構的發光層,多重量子井是由複數個堆疊對(pair)40重複堆疊所構成,每一個堆疊對40包括井層(well layer)41和能障層(barrier layer)42。例如井層41的材料是磷化銦鎵(InGaP),In 0.5Ga 0.5P,厚度為10~15埃(Å),能隙(energy band gap)為1.805eV。能障層42的材料是磷化鋁鎵銦(AlGaInP),Al 0.7Ga 0.3InP,厚度為25埃,能隙為2.249eV。請一併參閱第2A圖,主動層4的多重量子井之能帶圖。從第2A圖中可以明顯看出井層41之井口H1至井底H2的寬度都維持一致,因此井層41的井內H可以容納的載子(電子/電洞)的數量也受到限制。換言之,在井內H的載子複合率受到了限制,因而井層41及主動層4的量子效率也受到了限制,整個發光元件的亮度就受到限制而無法提高。 Generally speaking, the active layer 4 is a light-emitting layer with a multiple quantum well structure. The multiple quantum wells are composed of a plurality of stacked pairs 40 that are repeatedly stacked. Each stacked pair 40 includes a well layer. )41 and energy barrier layer (barrier layer)42. For example, the material of the well layer 41 is indium gallium phosphide (InGaP), In 0.5 Ga 0.5 P, with a thickness of 10-15 angstroms (Å), and an energy band gap of 1.805 eV. The energy barrier layer 42 is made of aluminum gallium indium phosphide (AlGaInP), Al 0.7 Ga 0.3 InP, with a thickness of 25 angstroms and an energy gap of 2.249 eV. Please also refer to FIG. 2A , the energy band diagram of the multiple quantum wells in the active layer 4 . It can be clearly seen from FIG. 2A that the width from the head H1 to the bottom H2 of the well layer 41 is consistent, so the number of carriers (electrons/holes) that can be accommodated in the well H of the well layer 41 is also limited. In other words, the carrier recombination rate of H in the well is limited, so the quantum efficiencies of the well layer 41 and the active layer 4 are also limited, and the brightness of the entire light-emitting element is limited and cannot be improved.

基於電洞的移動速度小於電子的移動速度之因素,請一併參閱第2B圖,顯示出傳統發光元件的主動層4中的電子/電洞複合(recombination)區域偏向集中於靠近上侷限層UC的區域,且電子/電洞複合區域的面積較小。換言之,多重量子井中只有偏向上侷限層UC的部分量子井被使用到,因此主動層4的量子效率也受到了限制。Based on the factor that the moving speed of holes is lower than that of electrons, please refer to Figure 2B together, which shows that the electron/hole recombination (recombination) region in the active layer 4 of the traditional light-emitting device is biased to concentrate near the upper confinement layer UC area, and the area of the electron/hole recombination area is small. In other words, only part of the quantum wells biased towards the upper confinement layer UC in the multiple quantum wells are used, so the quantum efficiency of the active layer 4 is also limited.

傳統發光元件還存在可靠度(reliability)和壽命的問題,請一併參閱第3圖,由於下侷限層LC、上侷限層UC及能障層42的材料都是Al 0.7Ga 0.3InP,且能隙都為2.249eV,又由於電子的移動速度大於電洞的移動速度,因此有部分的電子會快速地由左側的下侷限層LC經主動層4及上侷限層UC而大量匯集於p型金屬電極型態之上電極7。電子快速通過主動層4導致了光產生率下降而使得發光元件可靠度降低,電子聚集在p型金屬電極還導致了p型金屬電極受損而使得發光元件的壽命減短。 Traditional light-emitting devices still have problems of reliability and lifetime. Please refer to Figure 3 together. Since the materials of the lower confinement layer LC, upper confinement layer UC and energy barrier layer 42 are all Al 0.7 Ga 0.3 InP, and can Both gaps are 2.249eV, and because the moving speed of electrons is faster than that of holes, some electrons will quickly gather in a large amount in the p-type metal from the lower confinement layer LC on the left through the active layer 4 and the upper confinement layer UC. Electrode Type Top Electrode 7 . Electrons passing through the active layer 4 quickly leads to a decrease in light generation rate, which reduces the reliability of the light-emitting element, and the accumulation of electrons in the p-type metal electrode also causes damage to the p-type metal electrode, which shortens the life of the light-emitting element.

有鑑於此,本發明的目的在於提供一種發光元件,其能夠提高主動層的量子效率以提升整個發光元件的亮度,並且延遲電子通過主動層以提高光產生率,以及避免p型金屬電極受損而提高發光元件的壽命。In view of this, the object of the present invention is to provide a light-emitting element, which can increase the quantum efficiency of the active layer to enhance the brightness of the entire light-emitting element, and delay electrons from passing through the active layer to improve the light generation rate, and avoid damage to the p-type metal electrode And improve the life of the light-emitting element.

本發明之一種發光元件,至少包含:一第一傳導型半導體,包含一下侷限層;一主動層,係設置於該下侷限層的上方;及一第二傳導型半導體,包含一上侷限層,該上侷限層設置於該主動層的上方;其中,該主動層具有一多重量子井結構,該多重量子井結構是由複數個堆疊對重複堆疊所構成,每一個該堆疊對包括一井層和一能障層,該能障層具有一漸變成分,該漸變成分在該下侷限層的能隙與該井層的能隙之間以線性方式改變該能障層的能隙;該漸變成分在該能障層中,橫過該能障層的厚度並朝著該上侷限層的方向而以線性方式減少。A light-emitting element of the present invention at least includes: a first conduction type semiconductor including a lower confinement layer; an active layer disposed above the lower confinement layer; and a second conduction type semiconductor including an upper confinement layer, The upper confinement layer is disposed above the active layer; wherein, the active layer has a multiple quantum well structure, and the multiple quantum well structure is composed of a plurality of stacked pairs stacked repeatedly, and each stacked pair includes a well layer and an energy barrier layer, the energy barrier layer has a graded composition that changes the energy gap of the energy barrier layer in a linear manner between the energy gap of the lower confinement layer and the energy gap of the well layer; the graded composition In the barrier layer, the thickness across the barrier layer decreases in a linear fashion towards the upper confinement layer.

在另一實施例中,該下侷限層的材料為Al xGa 1-xInP,其中0<x<1;該能障層的材料是Al zGa 1-zInP,其中0≤z<1;且,0≤z≤x。 In another embodiment, the material of the lower confinement layer is Al x Ga 1-x InP, where 0<x<1; the material of the barrier layer is Al z Ga 1-z InP, where 0≤z<1 ; and, 0≤z≤x.

在另一實施例中,該上侷限層的能隙高於該下侷限層的能隙。In another embodiment, the energy gap of the upper confinement layer is higher than the energy gap of the lower confinement layer.

在另一實施例中,該下侷限層的材料為Al xGa 1-xInP,其中0<x<1;該上侷限層的材料為Al yGa 1-yInP,其中0<y≤1,且y>x。 In another embodiment, the material of the lower confinement layer is AlxGa1 - xInP, where 0<x<1; the material of the upper confinement layer is AlyGa1 - yInP, where 0<y≤1 , and y>x.

在另一實施例中,該下侷限層的材料為Al xGa 1-xInP,其中0<x<1;該能障層的材料是Al zGa 1-zInP,其中0≤z<1;且,0≤z≤x。 In another embodiment, the material of the lower confinement layer is Al x Ga 1-x InP, where 0<x<1; the material of the barrier layer is Al z Ga 1-z InP, where 0≤z<1 ; and, 0≤z≤x.

在另一實施例中,該第二傳導型半導體更包含一上披覆層,一重摻雜電洞傳導層設置於該上披覆層與該上侷限層之間。In another embodiment, the second conductivity type semiconductor further includes an upper cladding layer, and a heavily doped hole conduction layer is disposed between the upper cladding layer and the upper confinement layer.

首先請參閱第4圖,本發明的一種發光元件(Light-emitting diode,發光元件)100,該發光元件100可以是發光二極體(Light-emitting diode,LED)及雷射二極體(Laser Diode,LD)。為了方便理解本發明的精神,以下實施方式是以LED的結構為舉例,然而本領域技術人員應當可以理解本發明的精神及結構也適用於LD。該發光元件100係至少包含:一第一電極10;一基底11,該基底11與該第一電極10接觸,該基底11可以設置於該第一電極10的上方或下方;一分佈式布拉格反射鏡(DBR)層12,該DBR層12設置於該基底11的上方,該DBR層12可以與該基底11的上表面接觸;一下披覆層13,該下披覆層13設置於該DBR層12的上方,該下披覆層13可以與該DBR層12的上表面接觸;一下侷限層1_LC,該下侷限層1_LC設置於該下披覆層13的上方,該下侷限層1_LC可以與該下披覆層13的上表面接觸;一主動層14,該主動層14設置於該下侷限層1_LC的上方,該主動層14可以與該下侷限層1_LC的上表面接觸;一上侷限層1_UC,該上侷限層1_UC設置於該主動層14的上方,該上侷限層1_UC可以與該主動層14的上表面接觸;一上披覆層15,該上披覆層15設置於該上侷限層1_UC的上方,該上披覆層15可以與該上侷限層1_UC的上表面接觸;一窗口層16,該窗口層16設置於該上披覆層15的上方,該窗口層16可以與該上披覆層15的上表面接觸;一第二電極17,該第二電極17設置於該窗口層16的上方,該第二電極17可以與該窗口層16接觸。換言之,該發光元件100的結構是由下而上藉著磊晶技術依序形成有:該基底11、該DBR層12、該下披覆層13、該下侷限層1_LC、該主動層14、該上侷限層1_UC、該上披覆層15及該窗口層16,例如以分子束磊晶法(Molecular Beam Epitaxy,MBE)、金屬有機氣相磊晶法(metal organic vapor phase epitaxy, MOPVE)、低壓氣相磊晶法(low pressure vapor phase epitaxial method, LPMOVPE)或有機金屬氣相沈積法(Metal Organic Chemical Vapor Deposition,MOCVD)等相關技術於腔室中的原位(in-suit)形成。Please refer to Fig. 4 at first, a kind of light-emitting element (Light-emitting diode, light-emitting element) 100 of the present invention, this light-emitting element 100 can be light-emitting diode (Light-emitting diode, LED) and laser diode (Laser) Diode, LD). In order to facilitate understanding of the spirit of the present invention, the following embodiments take the structure of an LED as an example, but those skilled in the art should understand that the spirit and structure of the present invention are also applicable to LDs. The light-emitting element 100 comprises at least: a first electrode 10; a substrate 11, the substrate 11 is in contact with the first electrode 10, and the substrate 11 can be arranged above or below the first electrode 10; a distributed Bragg reflection Mirror (DBR) layer 12, the DBR layer 12 is arranged on the top of the substrate 11, the DBR layer 12 can be in contact with the upper surface of the substrate 11; a lower cladding layer 13, the lower cladding layer 13 is arranged on the DBR layer 12, the lower cladding layer 13 can be in contact with the upper surface of the DBR layer 12; the lower confinement layer 1_LC, the lower confinement layer 1_LC is arranged above the lower cladding layer 13, and the lower confinement layer 1_LC can be in contact with the The upper surface of the lower cladding layer 13 is in contact; an active layer 14, the active layer 14 is arranged above the lower confinement layer 1_LC, and the active layer 14 can be in contact with the upper surface of the lower confinement layer 1_LC; an upper confinement layer 1_UC , the upper confinement layer 1_UC is disposed above the active layer 14, the upper confinement layer 1_UC can be in contact with the upper surface of the active layer 14; an upper cladding layer 15, the upper cladding layer 15 is disposed on the upper confinement layer 1_UC, the upper cladding layer 15 can be in contact with the upper surface of the upper confinement layer 1_UC; a window layer 16, the window layer 16 is arranged above the upper cladding layer 15, and the window layer 16 can be in contact with the upper confinement layer 1_UC The upper surface of the cladding layer 15 is in contact with a second electrode 17 , the second electrode 17 is disposed above the window layer 16 , and the second electrode 17 can be in contact with the window layer 16 . In other words, the structure of the light-emitting element 100 is sequentially formed by epitaxial technology from bottom to top: the substrate 11, the DBR layer 12, the lower cladding layer 13, the lower confinement layer 1_LC, the active layer 14, The upper confinement layer 1_UC, the upper cladding layer 15 and the window layer 16 are, for example, formed by molecular beam epitaxy (Molecular Beam Epitaxy, MBE), metal organic vapor phase epitaxy (metal organic vapor phase epitaxy, MOPVE), Low pressure vapor phase epitaxial method (LPMOVPE) or Metal Organic Chemical Vapor Deposition (MOCVD) and other related technologies are formed in-situ in a chamber.

該基底11為一第一傳導型基底,例如為n型砷化鎵(GaAs),厚度介於300μm至350μm間。該DBR層12為一第一傳導型DBR層,例如為n型DBR層,該DBR層12可以為砷化鋁鎵(AlGaAs)。該下披覆層13為一第一傳導型披覆層,例如為n型披覆層,該下披覆層13可以為磷化鋁銦(AlInP)。該下侷限層1_LC的材料可以為Al xGa 1-xInP,其中0<x<1。該主動層14則是發光層,該主動層14的結構及材料則於後述說明。該上侷限層1_UC的材料可以為Al yGa 1-yInP,其中0<y≤1。該上披覆層15為一第二傳導型披覆層,例如為p型披覆層,該上披覆層15可以為磷化鋁銦(AlInP)。該窗口層16為一第二傳導型窗口層,例如為p型窗口層,該窗口層16具有較寬或不直接(indirect)的能隙(energy gap)以及較高的傳導性,該窗口層16可以為磷化鎵(GaP)、磷砷化鎵(GaAsP)或砷化鋁鎵(AlGaAs)。該第一電極10為一第一傳導型電極,例如為n型電極;該第二電極17為一第二傳導型電極,例如為p型電極; n型電極可以為金鍺鎳(AuGeNi)合金,而p型電極則可以為鈹金(BeAu)合金。換言之,當第一傳導型為n型,則第二傳導型為p型;或者,當第一傳導型為p型,則第二傳導型為n型。又換言之,該基底11、該DBR層12及該下披覆層13構成一第一傳導型半導體,該上披覆層15及該窗口層16構成一第二傳導型半導體。該下侷限層1_LC、該主動層14及該上侷限層1_UC則是未摻雜。換言之,該發光元件100由下而上係依序包含:該第一傳導型半導體、該主動層14及該第二傳導型半導體。 The substrate 11 is a substrate of a first conductivity type, such as n-type gallium arsenide (GaAs), with a thickness between 300 μm and 350 μm. The DBR layer 12 is a first conductive type DBR layer, such as an n-type DBR layer, and the DBR layer 12 may be aluminum gallium arsenide (AlGaAs). The lower cladding layer 13 is a first conductive cladding layer, such as an n-type cladding layer, and the lower cladding layer 13 may be aluminum indium phosphide (AlInP). The material of the lower confinement layer 1_LC may be AlxGa1 - xInP, where 0<x<1. The active layer 14 is a light-emitting layer, and the structure and materials of the active layer 14 will be described later. The material of the upper confinement layer 1_UC may be AlyGa1 -yInP , where 0<y≤1. The upper cladding layer 15 is a second conductive cladding layer, such as a p-type cladding layer, and the upper cladding layer 15 may be aluminum indium phosphide (AlInP). The window layer 16 is a second conduction type window layer, such as a p-type window layer, and the window layer 16 has a wider or indirect (indirect) energy gap (energy gap) and higher conductivity. 16 may be gallium phosphide (GaP), gallium arsenide phosphide (GaAsP) or aluminum gallium arsenide (AlGaAs). The first electrode 10 is a first conductivity type electrode, such as an n-type electrode; the second electrode 17 is a second conductivity type electrode, such as a p-type electrode; the n-type electrode can be a gold-germanium-nickel (AuGeNi) alloy , and the p-type electrode can be beryllium gold (BeAu) alloy. In other words, when the first conductivity type is n-type, the second conductivity type is p-type; or, when the first conductivity type is p-type, the second conductivity type is n-type. In other words, the substrate 11 , the DBR layer 12 and the lower cladding layer 13 constitute a semiconductor of the first conduction type, and the upper cladding layer 15 and the window layer 16 constitute a semiconductor of the second conduction type. The lower confinement layer 1_LC, the active layer 14 and the upper confinement layer 1_UC are undoped. In other words, the light emitting device 100 sequentially includes from bottom to top: the first conductive type semiconductor, the active layer 14 and the second conductive type semiconductor.

該主動層14是具有一多重量子井結構的發光層,該多重量子井結構是由複數個堆疊對141重複堆疊所構成,每一個堆疊對141包括一井層1411和一能障層1412。例如該井層1411的材料是磷化銦鎵(InGaP),In wGa 1-wP,其中0<w<1;該能障層1412的材料是磷化鋁鎵銦(AlGaInP),Al zGa 1-zInP,其中0≤z<1。 The active layer 14 is a light-emitting layer with a multiple quantum well structure. The multiple quantum well structure is composed of a plurality of stacked pairs 141 repeatedly stacked. Each stacked pair 141 includes a well layer 1411 and an energy barrier layer 1412 . For example, the material of the well layer 1411 is indium gallium phosphide (InGaP), In w Ga 1-w P, where 0<w<1; the material of the barrier layer 1412 is aluminum gallium indium phosphide (AlGaInP), Al z Ga 1-z InP, where 0≤z<1.

該能障層1412具有一漸變成分(例如為Al),該漸變成分(Al)在該下侷限層1_LC的能隙與該井層1411的能隙之間以線性方式改變該能障層1412的能隙。該漸變成分(Al)在該能障層1412中,橫過該能障層1412的厚度並朝著該上侷限層1_UC的方向而以線性方式減少。例如,請一併參閱第5圖,該下侷限層1_LC的材料可以為Al xGa 1-xInP,其中0<x<1且x=0.7(此時為Al 0.7Ga 0.3InP),該下侷限層1_LC的能隙為2.249eV。該井層1411的厚度為10~15埃(Å),且w=0.5(此時為In 0.5Ga 0.5P),該井層1411的能隙為1.805eV。該能障層1412的厚度為25埃,當z=0時(此時為Ga 1.0InP),該能障層1412的能隙為1.805eV(這與該井層1411的能隙1.805eV相同);當z=0.7時,該能障層1412的能隙為2.249eV(這與該下侷限層1_LC的能隙2.249eV相同)。該能障層1412中該漸變成分(Al)的z值,是由相對靠近該下侷限層1_LC的z=0.7,以橫過該能障層1412的厚度並朝著該上侷限層1_UC的方向,並且以線性方式減少至z=0。換言之,該能障層1412中該漸變成分(Al)的z值,是由相對靠近該下侷限層1_LC的該能障層1412之下表面z=0.7(此時為Al 0.7Ga 0.3InP,相當於該下侷限層1_LC的x=0.7),以橫過該能障層1412的厚度並朝著該上侷限層1_UC的方向,並且以線性方式於該能障層1412之上表面減少至z=0(此時為Ga 1.0InP),0≤z≤x。又換言之,該漸變成分(Al)使得該能障層1412的能隙在該下侷限層1_LC的能隙與該井層1411的能隙之間以線性方式改變。從第5圖中可以明顯看出該井層1411之井口H1’的寬度大於井底H2’的寬度,因此本發明該發光元件100的該井層1411的井內H’可以容納的載子(電子/電洞)的數量也多於傳統發光元件的井層。換言之,在該井層1411的井內H’的載子複合率及量子效率得以提高,本發明該發光元件100的亮度因而提高。 The energy barrier layer 1412 has a graded composition (such as Al), and the graded composition (Al) changes the energy barrier layer 1412 linearly between the energy gap of the lower confinement layer 1_LC and the energy gap of the well layer 1411. Energy gap. The graded composition (Al) decreases in the barrier layer 1412 in a linear manner across the thickness of the barrier layer 1412 and towards the upper confinement layer 1_UC. For example, please also refer to Fig. 5, the material of the lower confinement layer 1_LC can be Al x Ga 1-x InP, where 0<x<1 and x=0.7 (in this case, Al 0.7 Ga 0.3 InP), the lower confinement layer The energy gap of the confinement layer 1_LC is 2.249eV. The well layer 1411 has a thickness of 10-15 angstroms (Å), and w=0.5 (In 0.5 Ga 0.5 P at this time), and the energy gap of the well layer 1411 is 1.805eV. The energy barrier layer 1412 has a thickness of 25 angstroms. When z=0 (Ga 1.0 InP at this time), the energy barrier layer 1412 has an energy gap of 1.805eV (which is the same as the well layer 1411's energy gap of 1.805eV) ; When z=0.7, the energy gap of the energy barrier layer 1412 is 2.249eV (this is the same as the energy gap of the lower confinement layer 1_LC of 2.249eV). The z value of the graded composition (Al) in the energy barrier layer 1412 is from z=0.7 relatively close to the lower confinement layer 1_LC, to cross the thickness of the energy barrier layer 1412 and towards the direction of the upper confinement layer 1_UC , and decreases linearly to z=0. In other words, the z value of the graded composition (Al) in the energy barrier layer 1412 is derived from the lower surface of the energy barrier layer 1412 relatively close to the lower confinement layer 1_LC at z=0.7 (in this case, Al 0.7 Ga 0.3 InP, equivalent to In the lower confinement layer 1_LC x=0.7), to traverse the thickness of the energy barrier layer 1412 and towards the direction of the upper confinement layer 1_UC, and reduce to z= 0 (Ga 1.0 InP at this time), 0≤z≤x. In other words, the graded composition (Al) makes the energy gap of the energy barrier layer 1412 change in a linear manner between the energy gap of the lower confinement layer 1_LC and the energy gap of the well layer 1411 . It can be clearly seen from Fig. 5 that the width of the well head H1' of the well layer 1411 is greater than the width of the bottom H2', so the carrier in the well H' of the well layer 1411 of the light-emitting element 100 of the present invention can accommodate ( The number of electrons/holes) is also more than the well layer of traditional light-emitting elements. In other words, the carrier recombination rate and quantum efficiency of H′ in the well layer 1411 are improved, and thus the brightness of the light-emitting device 100 of the present invention is improved.

該上侷限層1_UC的能隙可以是高於該下侷限層1_LC的能隙。例如該上侷限層1_UC的材料可以為Al yGa 1-yInP,其中0<y≤1且y>x,又例如y=1(此時為Al 1.0InP),該上侷限層1_UC的能隙為2.275eV,高於該下侷限層1_LC的Al 0.7Ga 0.3InP之能隙2.249eV。此時即使電子的移動速度大於電洞的移動速度,部分的電子由左側的該下侷限層1_LC經該主動層14而往該上侷限層1_UC時,會因該上侷限層1_UC的能隙(2.275eV)高於該下披覆層13的Al 0.7Ga 0.3InP之能隙2.249eV而形成一能隙差距G(請一併參閱第6圖),該能隙差距G使得部分電子的前進於該上侷限層1_UC受到阻礙而匯集於該上侷限層1_UC與該主動層14之間而不會大量地匯集於p型金屬電極型態之該第二電極17。由於電子匯集於該上侷限層1_UC與該主動層14之間,使得光產生率提高及該主動層14之多重量子井結構中靠近該上侷限層1_UC的部分區域之使用率也提高,因而本發明該發光元件100的量子效率、亮度及可靠度也提高;又由於電子減少在p型金屬電極的匯集,也使得p型金屬電極減少受損而使得本發明該發光元件100的壽命(包含亮度壽命及電壓壽命)增加。 The energy gap of the upper confinement layer 1_UC may be higher than that of the lower confinement layer 1_LC. For example, the material of the upper confinement layer 1_UC can be AlyGa 1-y InP, where 0<y≤1 and y>x, and for example y=1 (Al 1.0 InP at this time), the energy of the upper confinement layer 1_UC The gap is 2.275eV, which is higher than the energy gap of 2.249eV of Al 0.7 Ga 0.3 InP of the lower confinement layer 1_LC. At this time, even if the moving speed of the electrons is greater than that of the holes, when part of the electrons go from the lower confinement layer 1_LC on the left side to the upper confinement layer 1_UC through the active layer 14, due to the energy gap of the upper confinement layer 1_UC ( 2.275eV) higher than the energy gap 2.249eV of the Al 0.7 Ga 0.3 InP of the lower cladding layer 13 to form an energy gap G (please also refer to Figure 6), the energy gap G makes some electrons advance in The upper confinement layer 1_UC is hindered from concentrating between the upper confinement layer 1_UC and the active layer 14 and will not largely collect in the second electrode 17 of p-type metal electrode type. Since the electrons are collected between the upper confinement layer 1_UC and the active layer 14, the light generation rate is improved and the usage rate of a part of the multiple quantum well structure of the active layer 14 close to the upper confinement layer 1_UC is also increased. The quantum efficiency, brightness and reliability of the light-emitting element 100 of the invention are also improved; and because the collection of electrons in the p-type metal electrode is reduced, the damage to the p-type metal electrode is also reduced, so that the life (including brightness) of the light-emitting element 100 of the present invention is reduced. life and voltage life) increase.

另一個使該主動層14提升載子複合率及提高內部量子效率的方式,請一併參閱第7圖,是在前述實施例中的該上披覆層15與該上侷限層1_UC之間設置同樣為Al 1.0InP的一重摻雜電洞傳導層C,其以四溴化碳(CBr 4,carbon tetrabromide)摻雜濃度為大於1.0x10 20atoms/cm 3。相較於第2B圖之傳統發光元件而言,本發明的第7圖之該發光元件100由於該重摻雜電洞傳導層C的設置,使得來自該上披覆層15的電洞能夠快速地進入該主動層14,因此使得電洞能夠更深入該主動層14而更往該下侷限層1_LC方向移動,這使得電子/電洞複合區域的面積變大。換言之,該主動層14之多重量子井結構中偏向上侷限層1_UC的部分量子井、中央區域的部分量子井及偏向下侷限層1_UC的部分量子井都有被使用到,因此該主動層14的量子效率可以顯著地被提升。 Another way to increase the carrier recombination rate and improve the internal quantum efficiency of the active layer 14, please refer to FIG. 7, is to set between the upper cladding layer 15 and the upper confinement layer 1_UC in the previous embodiment Also a heavily doped hole conduction layer C of Al 1.0 InP, which is doped with carbon tetrabromide (CBr 4 , carbon tetrabromide) at a concentration greater than 1.0×10 20 atoms/cm 3 . Compared with the traditional light-emitting element in FIG. 2B, the light-emitting element 100 in FIG. 7 of the present invention can quickly generate holes from the upper cladding layer 15 due to the setting of the heavily doped hole conducting layer C. Therefore, the holes can move deeper into the active layer 14 and move toward the lower confinement layer 1_LC, which makes the area of the electron/hole recombination region larger. In other words, in the multi-quantum well structure of the active layer 14, some of the quantum wells biased towards the upper confinement layer 1_UC, some of the quantum wells in the central region, and some of the quantum wells biased towards the lower confinement layer 1_UC are used, so the active layer 14 Quantum efficiency can be significantly improved.

請一併參閱第8A圖及第8B圖,當然本發明該發光元件100也可以是在該主動層14中的多重量子井結構中,只有部分量子井結構採用前述該漸變成分,其餘量子井結構則可以採用傳統如第2A圖所示的非漸變成分的量子井結構。Please refer to FIG. 8A and FIG. 8B together. Of course, the light-emitting element 100 of the present invention can also be in the multiple quantum well structure in the active layer 14. Only part of the quantum well structure adopts the aforementioned gradient composition, and the rest of the quantum well structure Then a conventional quantum well structure with non-gradient composition as shown in FIG. 2A can be used.

本發明發光元件是在主動層中的能障層利用漸變成分,使得該漸變成分在下侷限層的能隙與井層的能隙之間以線性方式改變能障層的能隙,因而井層的井內的載子複合率及量子效率得以提高,本發明發光元件的亮度因而提高。本發明發光元件之上侷限層的能隙高於該下侷限層的能隙,因此電子匯集於上侷限層與主動層之間,使得光產生率提高及主動層之多重量子井結構之使用率也提高,因而量子效率、亮度及可靠度也提高;又由於電子減少在p型金屬電極的匯集,也使得p型金屬電極減少受損而使得本發明發光元件的壽命增加。本發明發光元件又於上披覆層與上侷限層之間設置重摻雜電洞傳導層,來自上披覆層的電洞能夠快速地進入該主動層,因此使得電洞能夠更深入主動層而電子/電洞複合區域的面積變大,主動層的量子效率顯著地被提升。The light-emitting element of the present invention uses a graded composition in the energy barrier layer in the active layer, so that the graded composition changes the energy gap of the energy barrier layer in a linear manner between the energy gap of the lower confinement layer and the energy gap of the well layer, so that the energy gap of the well layer The carrier recombination rate and quantum efficiency in the well are improved, and thus the brightness of the light-emitting element of the present invention is improved. The energy gap of the upper confinement layer of the light-emitting element of the present invention is higher than that of the lower confinement layer, so electrons are collected between the upper confinement layer and the active layer, which improves the light generation rate and the utilization rate of the multiple quantum well structure of the active layer Therefore, the quantum efficiency, brightness and reliability are also improved; and because the collection of electrons in the p-type metal electrode is reduced, the damage to the p-type metal electrode is also reduced, so that the life of the light-emitting element of the present invention is increased. The light-emitting element of the present invention is also provided with a heavily doped hole conduction layer between the upper cladding layer and the upper confinement layer, and the holes from the upper cladding layer can quickly enter the active layer, so that the holes can go deeper into the active layer The area of the electron/hole recombination region becomes larger, and the quantum efficiency of the active layer is significantly improved.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及新型說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。另外,本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。此外,本說明書或申請專利範圍中提及的「第一」、「第二」等用語僅用以命名元件(element)的名稱或區別不同實施例或範圍,而並非用來限制元件數量上的上限或下限。But what is described above is only a preferred embodiment of the present invention, and should not limit the scope of implementation of the present invention with this, that is, all simple equivalent changes and modifications made according to the patent scope of the present invention and the new description content, All still belong to the scope covered by the patent of the present invention. In addition, any embodiment or scope of claims of the present invention does not necessarily achieve all the objectives or advantages or features disclosed in the present invention. In addition, the abstract and the title are only used to assist the search of patent documents, and are not used to limit the scope of rights of the present invention. In addition, terms such as "first" and "second" mentioned in this specification or the scope of the patent application are only used to name elements (elements) or to distinguish different embodiments or ranges, and are not used to limit the number of elements. upper or lower limit.

[傳統] 1:基底 2:DBR層 3:下披覆層 4:主動層 40:堆疊對 41:井層 42:能障層 5:上披覆層 6:窗口層 7:上電極 8:下電極 H:井內 H1:井口 H2:井底 LC:下侷限層 UC:上侷限層 [本發明] 100:發光元件 10:第一電極 11:基底 12:DBR層 13:下披覆層 14:主動層 141:堆疊對 1411:井層 1412:能障層 15:上披覆層 16:窗口層 17:第二電極 1_LC:下侷限層 1_UC:上侷限層 C:重摻雜電洞傳導層 G:能隙差距 H’:井內 H1’:井口 H2’:井底 [Tradition] 1: base 2: DBR layer 3: Lower cladding layer 4: Active layer 40: stacked pairs 41: well layer 42: Barrier layer 5: Upper cladding layer 6: window layer 7: Upper electrode 8: Bottom electrode H: Well H1: wellhead H2: bottom of the well LC: Lower Confined Layer UC: Upper Confined Layer [this invention] 100: light emitting element 10: The first electrode 11: Base 12: DBR layer 13: Lower cladding layer 14:Active layer 141: stacked pair 1411: well layer 1412: barrier layer 15: Upper cladding layer 16: window layer 17: Second electrode 1_LC: lower limited layer 1_UC: Upper Confinement Layer C: Heavily doped hole conduction layer G: energy gap gap H': inside the well H1': wellhead H2': Bottom of the well

第1圖為傳統發光元件的結構剖視圖。 第2A圖為傳統發光元件的主動層的多重量子井結構之能帶示意圖。 第2B圖為傳統發光元件的主動層的電子/電洞複合區域示意圖。 第3圖為傳統發光元件之電子匯集於金屬電極示意圖。 第4圖為本發明發光元件的結構剖視圖。 第5圖為本發明發光元件的主動層的多重量子井結構之能帶示意圖。 第6圖為本發明發光元件之能隙差距使得部分電子受到上侷限層阻礙示意圖。 第7圖為本發明發光元件設置有重摻雜電洞傳導層之電子/電洞複合區域示意圖。 第8A圖為本發明發光元件的主動層的部分量子井結構採用漸變成分之能帶示意圖(一)。 第8B圖為本發明發光元件的主動層的部分量子井結構採用漸變成分之能帶示意圖(二)。 Fig. 1 is a structural cross-sectional view of a conventional light-emitting element. FIG. 2A is a schematic diagram of the energy bands of the multiple quantum well structure of the active layer of a conventional light-emitting device. FIG. 2B is a schematic diagram of the electron/hole recombination region of the active layer of a conventional light-emitting device. Figure 3 is a schematic diagram of the collection of electrons in a metal electrode in a conventional light-emitting device. Fig. 4 is a cross-sectional view of the structure of the light-emitting element of the present invention. Fig. 5 is a schematic diagram of the energy bands of the multiple quantum well structure of the active layer of the light-emitting device of the present invention. Fig. 6 is a schematic diagram showing that part of the electrons are hindered by the upper confinement layer due to the difference in energy gap of the light-emitting device of the present invention. Fig. 7 is a schematic diagram of the electron/hole recombination region provided with the heavily doped hole conducting layer of the light-emitting element of the present invention. Fig. 8A is a schematic diagram (1) of the energy bands of the partial quantum well structure of the active layer of the light-emitting element of the present invention using graded composition. Fig. 8B is a schematic diagram (2) of the energy bands of the partial quantum well structure of the active layer of the light-emitting element of the present invention using graded composition.

14:主動層 14:Active layer

141:堆疊對 141: stacked pair

1411:井層 1411: well layer

1412:能障層 1412: barrier layer

1_LC:下侷限層 1_LC: lower limited layer

1_UC:上侷限層 1_UC: Upper Confinement Layer

H’:井內 H': inside the well

H1’:井口 H1': wellhead

H2’:井底 H2': Bottom of the well

Claims (6)

一種發光元件,至少包含: 一第一傳導型半導體,包含一下侷限層(1_LC); 一主動層(14),係設置於該下侷限層(1_LC)的上方;及 一第二傳導型半導體,包含一上侷限層(1_UC),該上侷限層(1_UC)設置於該主動層(14)的上方; 其中,該主動層(14)具有一多重量子井結構,該多重量子井結構是由複數個堆疊對(141)重複堆疊所構成,每一個該堆疊對(141)包括一井層(1411)和一能障層(1412),該能障層(1412)具有一漸變成分,該漸變成分在該下侷限層(1_LC)的能隙與該井層(1411)的能隙之間以線性方式改變該能障層(1412)的能隙;該漸變成分在該能障層(1412)中,橫過該能障層(1412)的厚度並朝著該上侷限層(1_UC)的方向而以線性方式減少。 A light emitting element, at least comprising: A semiconductor of the first conductivity type, including a lower confinement layer (1_LC); an active layer (14) disposed above the lower confinement layer (1_LC); and A second conductivity type semiconductor, comprising an upper confinement layer (1_UC), the upper confinement layer (1_UC) is arranged above the active layer (14); Wherein, the active layer (14) has a multiple quantum well structure, and the multiple quantum well structure is composed of a plurality of stacked pairs (141) repeatedly stacked, and each of the stacked pairs (141) includes a well layer (1411) and an energy barrier layer (1412) having a graded composition linearly between the energy gap of the lower confinement layer (1_LC) and the energy gap of the well layer (1411) changing the energy gap of the energy barrier layer (1412); the graded composition in the energy barrier layer (1412), across the thickness of the energy barrier layer (1412) and towards the direction of the upper confinement layer (1_UC) Decreases in a linear fashion. 如請求項1所述之發光元件,其中該下侷限層(1_LC)的材料為Al xGa 1-xInP,其中0<x<1;該能障層(1412)的材料是Al zGa 1-zInP,其中0≤z<1;且,0≤z≤x。 The light-emitting element as claimed in item 1, wherein the material of the lower confinement layer (1_LC) is Al x Ga 1-x InP, where 0<x<1; the material of the energy barrier layer (1412) is Al z Ga 1 -z InP, where 0≤z<1; and, 0≤z≤x. 如請求項1所述之發光元件,其中該上侷限層(1_UC)的能隙高於該下侷限層(1_LC)的能隙。The light-emitting device according to claim 1, wherein the energy gap of the upper confinement layer (1_UC) is higher than the energy gap of the lower confinement layer (1_LC). 如請求項3所述之發光元件,其中該下侷限層(1_LC)的材料為Al xGa 1-xInP,其中0<x<1;該上侷限層(1_UC)的材料為Al yGa 1-yInP,其中0<y≤1,且y>x。 The light-emitting element as claimed in item 3, wherein the material of the lower confinement layer (1_LC) is AlxGa1 - xInP, where 0<x<1; the material of the upper confinement layer ( 1_UC ) is AlyGa1 - yInP, where 0<y≤1, and y>x. 如請求項4所述之發光元件,其中該下侷限層(1_LC)的材料為Al xGa 1-xInP,其中0<x<1;該能障層(1412)的材料是Al zGa 1-zInP,其中0≤z<1;且,0≤z≤x。 The light-emitting element as claimed in item 4, wherein the material of the lower confinement layer (1_LC) is Al x Ga 1-x InP, where 0<x<1; the material of the energy barrier layer (1412) is Al z Ga 1 -z InP, where 0≤z<1; and, 0≤z≤x. 如請求項5所述之發光元件,其中該第二傳導型半導體更包含一上披覆層(15),一重摻雜電洞傳導層(C)設置於該上披覆層(15)與該上侷限層(1_UC)之間。The light-emitting device as described in Claim 5, wherein the second conduction type semiconductor further comprises an upper cladding layer (15), and a heavily doped hole conduction layer (C) is arranged on the upper cladding layer (15) and the between the upper confinement layer (1_UC).
TW110105883A 2021-02-20 2021-02-20 Light emitting element TWI792190B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110105883A TWI792190B (en) 2021-02-20 2021-02-20 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110105883A TWI792190B (en) 2021-02-20 2021-02-20 Light emitting element

Publications (2)

Publication Number Publication Date
TW202234719A TW202234719A (en) 2022-09-01
TWI792190B true TWI792190B (en) 2023-02-11

Family

ID=84957273

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110105883A TWI792190B (en) 2021-02-20 2021-02-20 Light emitting element

Country Status (1)

Country Link
TW (1) TWI792190B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10910519B2 (en) * 2016-09-13 2021-02-02 Lg Innotek Co., Ltd. Semiconductor device having layers including aluminum and semiconductor device package including same
TW202107730A (en) * 2019-08-06 2021-02-16 日商日機裝股份有限公司 Nitride semiconductor light-emitting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10910519B2 (en) * 2016-09-13 2021-02-02 Lg Innotek Co., Ltd. Semiconductor device having layers including aluminum and semiconductor device package including same
TW202107730A (en) * 2019-08-06 2021-02-16 日商日機裝股份有限公司 Nitride semiconductor light-emitting element

Also Published As

Publication number Publication date
TW202234719A (en) 2022-09-01

Similar Documents

Publication Publication Date Title
US6057562A (en) High efficiency light emitting diode with distributed Bragg reflector
US20220181513A1 (en) Hybrid growth method for iii-nitride tunnel junction devices
US6853663B2 (en) Efficiency GaN-based light emitting devices
US5153889A (en) Semiconductor light emitting device
JP3643665B2 (en) Semiconductor light emitting device
US4439782A (en) Semiconductor device with heterojunction of Alx Ga1-x As--AlAs--Ga
JP3290672B2 (en) Semiconductor light emitting diode
US20090146163A1 (en) High brightness light emitting diode structure
Sheu et al. Enhanced output power in an InGaN-GaN multiquantum-well light-emitting diode with an InGaN current-spreading layer
EP2289117B1 (en) Semiconductor light emitting device including graded region
JP4288030B2 (en) Semiconductor structure using group III nitride quaternary material system
JP2002050790A (en) Compound semiconductor light-emitting diode array
TWI792190B (en) Light emitting element
US6100544A (en) Light-emitting diode having a layer of AlGaInP graded composition
TWI763377B (en) light-emitting element
JP2661576B2 (en) Semiconductor light emitting device
KR101305793B1 (en) Light emitting diode and Method of fabricating the same
CN115036789B (en) GaAs-based high-speed vertical cavity surface emitting laser based on type-II tunnel junction
JP2748570B2 (en) Semiconductor laser device
US20220247154A1 (en) Edge emitting laser device
CN114361306A (en) Light-emitting element
JP3674410B2 (en) Compound semiconductor light emitting device and light emitting diode array
CN114361307A (en) Light-emitting element
TWM617988U (en) Light-emitting device
KR101014720B1 (en) Manufacturing process of semiconductor laser diode