TWM615647U - 具磁性之生物載體結合無動力生物反應器之系統應用於細胞放大之套組 - Google Patents

具磁性之生物載體結合無動力生物反應器之系統應用於細胞放大之套組 Download PDF

Info

Publication number
TWM615647U
TWM615647U TW110205003U TW110205003U TWM615647U TW M615647 U TWM615647 U TW M615647U TW 110205003 U TW110205003 U TW 110205003U TW 110205003 U TW110205003 U TW 110205003U TW M615647 U TWM615647 U TW M615647U
Authority
TW
Taiwan
Prior art keywords
gooseneck
cell
tube
cell culture
biological carrier
Prior art date
Application number
TW110205003U
Other languages
English (en)
Inventor
林峯輝
陳靖昀
王韻儀
王雲銘
Original Assignee
財團法人國家衛生研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人國家衛生研究院 filed Critical 財團法人國家衛生研究院
Priority to TW110205003U priority Critical patent/TWM615647U/zh
Publication of TWM615647U publication Critical patent/TWM615647U/zh

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本創作提供一種具磁性之生物載體結合無動力生物反應器之系統,其包含一生物載體、一無動力生物反應器及一磁場裝置。生物載體能透過溫度的調節使細胞脫離,且能被磁場裝置吸附,以穩定在鵝頸細胞培養槽底部;無動力生物反應器包括一微量輸液元件、一培養液收集元件及一鵝頸細胞培養槽;鵝頸細胞培養槽內部空間與所述微量輸液元件及所述培養液收集元件相互連通,微量輸液元件緩慢注入新鮮培養液至鵝頸管細胞培養槽,當鵝頸管細胞培養槽內培養液高於一溢流位置時,即能藉由連通管原理自動將細胞代謝物排至培養液收集元件,減少細胞受污染的風險。

Description

具磁性之生物載體結合無動力生物反應器之系統應用於細胞放大之套組
本新型係關於一種培養細胞之生物反應器系統,尤指一種穩定地放大培養細胞之生物反應器系統,且培養出的細胞功能與型態更接近人體內之細胞並應用於再生醫學領域。
隨著再生醫學的市場應用逐年增加以及各國對相關法規之修法與開放,作為細胞治療材料的幹細胞需求也隨之上升。
目前細胞治療最大的挑戰是尚未有一個良好的培養系統,能在放大培養的過程中還能維持幹細胞的特性與功能,因此欲在體外進行大量的幹細胞培養技術有限。
傳統用的二維(2D)培養方式,雖然可增生細胞,但平坦、僵硬的二維環境不能提供相似生物體的生長環境,不僅無法重現體內幹細胞功能與型態,還需耗費相當大的人力與實驗室成本。現有技術搭載生醫材料發展出以生物反應器(bioreactor)搭配細胞支架(scaffolds)或微載體(carriers)三維(3D)方式細胞培養。在體外利用生醫材料模擬體內細胞外基質(extracellular matrix,ECM)網絡結構與功能,也可以調控載體的機械強度符合細胞需求。
既有生物反應器的細胞培養方式是指在不斷攪動或搖動的液體培養基中培養細胞和小細胞團的組織培養系統,細胞團塊需貼附於生物培養基上 培養,但生物培養基多為化學合成物質,可能會誘導細胞分化。轉而發現細胞懸浮培養是最佳的培養方式,然而,此技術無法自動更換培養液。
再者,在三維培養之細胞懸浮培養方式中,常用的生物載體有兩種,一種是將細胞種植在內部有孔洞的人工支架上,另一種是種植在直徑約130-380μm微載體上。但第一種在細胞回收時,需長時間浸泡在胰蛋白酶(Trypsin)或分解載體的溶液中,隨著浸泡的時間越久,細胞活性與其ECM受傷害的數量也越多。第二種由於其密度小,在流灌式生物反應器會隨著培養液漂流,最後造成細胞不易集中管理與培養系統堵塞的問題。
另外,在現有技術中,細胞在不同強度的靜磁場刺激下培養,能有助細胞活性與促進增生。
因此,需要一種具磁性之生物載體結合無動力的生物反應器,以解決至今生物反應器所使用的懸浮式培養中,無法長期自動更換培養液、生物載體不易集中管理造成培養系統的堵塞、以及提升種植於生物載體上的細胞回收率。
為達上述目的,本新型提供一種具磁性之生物載體結合無動力生物反應器之系統,用於培養細胞,包含:一生物載體,其表面具有孔洞,非平滑具有皺褶能幫助種植細胞於細胞培養液不易滑落,且內部為三維結構供細胞生長的表面積與空間提升,所述生物載體能透過溫度的調節能使細胞脫離原依附的所述生物載體;一無動力生物反應器,其包括:一微量輸液元件,其負責注入新鮮培養液至細胞培養槽中;一培養液收集元件,其回收細胞培養槽中所排出含有細胞代謝物之培養液;以及一鵝頸細胞培養槽,其包括一蓋體、一瓶體,所述蓋體包括一氣管和一輸液管,所述蓋體包括一第一孔和一第二孔,所述第一孔的連結的氣管,是具有一出氣管和一輸氣管,所述輸氣管以通入氧氣供給細胞,所述出氣管則以 排出細胞釋放的二氧化碳,至於所述輸液管負責注入新鮮培養液至所述鵝頸細胞培養槽中,所述瓶體包括一鵝頸管,所述鵝頸管負責排出含有細胞代謝物之培養液至所述培養液收集元件;其中,所述鵝頸細胞培養槽與所述微量輸液元件及所述培養液收集元件相互連通,所述微量輸液元件透過所述輸液管緩慢注入新鮮培養液至所述鵝頸管細胞培養槽,當所述鵝頸管細胞培養槽內培養液高於一溢流位置時,即能藉由連通管原理透過所述鵝頸管自動將細胞代謝物排至所述培養液收集元件,減少了培養期間更換培養液可能受污染的風險,所述鵝頸管細胞培養槽中養分為半置換形式係模擬體內養分與代謝物共存的動態環境;以及一磁場裝置,能吸附住所述生物載體;其中,所述生物載體以天然高分子生物材料明膠摻入磁性奈米粒子,利用化學交聯劑增強明膠的機械性質,並於明膠上的胺基形成穩固交聯,再利用另一種為水溶性的交聯劑碳二亞胺(EDC)和N-基琥珀醯亞胺(NHS)增加明膠的交聯度,接著接枝聚異丙基丙烯醯胺(PIPAAm),製備成具有溫度響應之所述生物載體,並能被所述磁場裝置吸附,以幫助所述生物載體穩定在所述鵝頸細胞培養槽底部。
本新型進一步提供所述生物載體之微流道裝置,其包括:一連續相輸液元件,其包括一微流管,所述連續相輸液元件與所述微流管內裝有橄欖油;一分散相輸液元件,其包括一注射針頭,所述分散相輸液元件內裝有10%明膠水溶液,並透過所述注射針頭注射10%明膠水溶液至所述微流管中;以及一冰鎮元件,其包括一容器及一冰桶,所述容器盛裝上述微流管中液體,並將液體冰鎮; 其中,所述分散相輸液元件內可包括0.1g/mL四氧化三鐵(Fe3O4)溶液。依照所述分散相輸液元件內的體積比1:1比例混合Fe3O4溶液(10% w/v)與明膠水溶液(10% w/v)。
本新型之具磁性生物載體結合無動力生物反應器系統,透過生物載體製備技術、自動更換培養液技術、電磁場刺激細胞生成技術、以及優化細胞集中管理和細胞回收率,形成一個可以連續提供培養液的生物培養器系統。因此,本新型之磁性生物載體與生物培養器系統可以提高細胞培養的效率,以大量培養細胞並穩定細胞培養的品質。
100:具磁性之生物載體結合無動力生物反應器之系統
1:生物載體
2:無動力生物反應器
21:微量輸液元件
211:輸液管
212:供給容器
22:培養液收集元件
221:收集管
222:收集容器
23:鵝頸細胞培養槽
231:蓋體
232:瓶體
233:第一孔
234:第二孔
235:出氣管
236:進氣管
237:鵝頸管
3:磁場裝置
400:微流道裝置
41:連續相輸液元件
411:微流管
42:分散相輸液元件
421:注射針頭
43:冰鎮元件
431:容器
432:冰桶
L:溢流位置
圖1為本新型之具磁性生物載體結合無動力生物反應器之系統示意圖。
圖2為本新型之製造生物載體的微流道裝置示意圖。
圖3為本新型透過FTIR分析生物載體之PIPAAm接枝結果示意圖。
圖4為本新型生物載體與現有載體在SEM觀察結果示意圖。
圖5為本新型生物材料毒性測試結果示意圖。
圖6為本新型系統之細胞增生結果示意圖。
圖7為本新型系統之細胞回收比較結果示意圖。
圖8為本新型系統之細胞回收Q-PCR結果示意圖。
為方便對本新型之目的、結構組成、應用功能特徵及其功效,做更進一步之介紹與揭露,茲舉實施例配合圖式,詳細說明如下:請參閱第1圖至第8圖所示,本新型所提出之一種具磁性之生物載體結合無動力生物反應器之系統 100,用於培養細胞,其包含一生物載體1、一無動力生物反應器2、以及一磁場裝置3,其中:所述生物載體1,其表面具有多個孔洞,非平滑具有皺褶能幫助種植細胞於細胞培養液不易滑落,且內部為三維立體的多孔隙結構,有良好的孔洞連通性與高比例表面積,所述生物載體1內孔洞大小適合細胞貼附、生長與增殖。所述生物載體1係透過三維培養的方式模擬內細胞外基質(extracellular matrix,ECM)網絡的三維空間與物理訊息,所述生物載體1三維多孔隙結構能助於細胞增生、養分與代謝物的交換、氣體擴散、以及細胞所分泌的生長因子與訊息傳遞功能,增加細胞間或細胞與ECM相互作用。針對細胞特性來設計生物載體、支架的材料、幾何形狀、及微結構,以模擬細胞於生物體內穩定的生長環境。所述生物載體1直徑落在0.01~20mm。於本新型實施例中,生物載體大小係選自直徑8~9mm作示範,但於實際應用上,生物載體1直徑大小及外型不受到此限制。
其中,本新型中所述生物載體1以天然高分子生物材料明膠摻入一磁性奈米粒子,利用化學交聯劑增強明膠載體的機械性質和強度,以符合細胞的生長需求,從而促進細胞增殖或是誘導細胞分化成組織,並於明膠上的胺基形成穩固交聯。
其中,所述生物載體1使用的磁性奈米粒子能為鎳(Ni)奈米粒子、鈷(Co)奈米粒子或氧化鐵奈米粒子,例如γ-Fe2O3和四氧化三鐵(Fe3O4),或是複合形奈米粒子,例如FePt、CoPt、CoFe2O4、MgFe2O4等等。於本新型實施例中,磁性奈米粒子係選自四氧化三鐵(Fe3O4)作示範,但於實際應用上,磁性奈米粒子的成份選用不受到此限制。
其中,所述生物載體1使用的化學交聯劑為戊二醛(glutaraldehyde)。戊二醛來源取得方便、價格低廉等因素,其水溶液能在短時間內,有顯著高效率且穩定地交聯生物組織材料,因此也能穩定地交聯本新型明膠的結構。
接著,再用另一種為水溶性的交聯劑碳二亞胺(carbodiimide,EDC)和N-基琥珀醯亞胺(N-hydroxysuccinimide,NHS)增加本新型之明膠的交聯度,接著接枝聚異丙基丙烯醯胺(Poly-N-isopropylacrylamide,PIPAAm),製備成具有溫度響應之所述生物載體1,並能被所述磁場裝置3吸附,以幫助所述生物載體1穩定在所述無動力生物反應器2底部。
其中,所述生物載體1使用的PIPAAm聚合物具有較低的臨界溶液溫度(lower critical solution temperature,LCST),在溫度升高時會產生相轉變,從疏水性的高分子轉變為親水性高分子,本新型利用PIPAAm的相轉移特性,在所述生物載體1表面接枝PIPAAm,以製備溫度響應性材料,當溫度低於LCST時,PIPAAm接枝的表面呈親水性;當溫度高於LCST時,接枝的表面則呈疏水性,只要控制溫度變化即可調控細胞的貼附和脫離。
換句話說,本新型透過所述生物載體1培養細胞在37℃時會貼附於所述生物載體1的孔洞,並細胞擴散和細胞增殖;只要將培養溫度降低至20℃時,所述生物載體1內的PIPAAm就會從疏水性轉變為親水性,因此在所述生物載體1上培養的細胞都會自行脫落。
如圖1所示,所述無動力生物反應器2包括一微量輸液元件21、一培養液收集元件22、以及一鵝頸細胞培養槽23。
所述微量輸液元件21包括一輸液管211及一供給容器212。所述微量輸液元件21負責注入新鮮培養液至一鵝頸細胞培養槽23中。
所述培養液收集元件22包括一收集管221及一收集容器222。所述培養液收集元件22回收所述鵝頸細胞培養槽23中所排出含有細胞代謝物之培養液。
所述鵝頸細胞培養槽23包括一蓋體231、一瓶體232。所述蓋體231包括一第一孔233和一第二孔234,所述第一孔233上具有一出氣管235和一進氣 管236,所述進氣管236以通入氧氣供給細胞,所述出氣管235則以排出細胞釋放的二氧化碳,至於所述第二孔234負責注入新鮮培養液至所述鵝頸細胞培養槽23中,所述瓶體232包括一鵝頸管237,所述鵝頸管237負責排出含有細胞代謝物之培養液至所述培養液收集元件22。
其中,所述鵝頸細胞培養槽23內部空間與所述微量輸液元件21及所述培養液收集元件22相互連通,所述微量輸液元件21透過所述輸液管211緩慢注入新鮮培養液至所述鵝頸細胞培養槽23;當所述鵝頸細胞培養槽23內培養液高於一溢流位置L時,即能藉由連通管原理透過所述鵝頸管237自動將細胞代謝物排至所述培養液收集元件22,減少了培養期間更換培養液可能受污染的風險,所述鵝頸細胞培養槽23中養分採用半置換形式係模擬體內養分與代謝物共存的動態環境。
所述磁場裝置3包括至少一磁鐵用於產生靜磁場,所述磁場裝置3連接磁鐵,提供固定0.1T的磁場強度,藉以吸附住所述生物載體1。
所述具磁性之生物載體結合無動力系統之回收方法,其包括以下步驟:(a)將培養生物載體利用PBS清洗;(b)加入一預冷之培養液;(c)利用手持式細胞計數儀進行細胞數分析;其中培養液之溫度介於10℃~20℃之間,並均處理30分鐘。
如圖2所示,本新型進一步提供一種製造所述生物載體1之微流道裝置400,其包括一連續相輸液元件41、一分散相輸液元件42以及一冰鎮元件43。
所述連續相輸液元件41包括一微流管411,所述連續相輸液元件41與所述微流管411互相連接,且所述連續相輸液元件41與所述微流管411內裝有橄欖油,使橄欖油從所述連續相輸液元件41流至所述微流管411。
所述分散相輸液元件42包括一注射針頭421,所述分散相輸液元件42內裝有10%明膠水溶液,另外,所述注射針頭421扎入所述微流管411,並透過所述注射針頭421注射10%明膠水溶液至所述微流管411中。其中,所述分散相輸液元件42內可包括0.1g/mL四氧化三鐵(Fe3O4)溶液。依照所述分散相輸液元件42內的溶液體積比1:1比例混合Fe3O4溶液(10% w/v)與明膠水溶液(10% w/v)。
所述冰鎮元件43包括一容器431及一冰桶432。所述冰桶432內盛裝冰塊,接著放置所述容器431於內。所述容器431盛裝上述微流管411中液體,並將液體冰鎮,也就是說,所述容器431內的液體包含來自所述連續相輸液元件41的橄欖油及所述分散相輸液元件42混合Fe3O4溶液與明膠水溶液。
再者,所述微流道裝置400之使用方法,其包括以下步驟:(1)以二次水作為溶劑配製0.1g/mL明膠水溶液(10% w/v);(2)以微流道裝置製備生物載體。使用橄欖油作為連續相注入微流道,其流速為500mL/hr。分散相為10%明膠水溶液,注入微流道的流速為30mL/hr;(3)將步驟(2)製備之生物載體於冰上固化15分鐘,並以丙酮多次潤洗生物載體洗去橄欖油;(4)在室溫以1%戊二醛交聯生物載體兩小時,而後以去離子水清洗3次以洗去多餘的戊二醛;(5)將交聯劑EDC/NHS溶於0.1M MES buffer(pH 6)中,並加入步驟(5)之生物載體,於室溫的旋轉反應器旋轉一天;(6)接著加入末端帶有胺基的PIPAAm(27μM)於步驟(6)中,於室溫的旋轉反應器旋轉一天,使PIPAAM接枝於明膠載體上; (7)將步驟(6)反應完成接枝過的明膠載體以二次水清洗3次,並移至-80℃冷凍一夜,利用凍乾機去除水分即可製備出上述生物載體,並以掃描式電子顯微鏡(Scanning Electron Microscope,SEM)觀測出多孔之結構;其中,步驟1依體積比1:1混合加入Fe3O4溶液(10% w/v)。
依上所述,所述生物載體1除了能透過所述微流道裝置400製成,另外,所述生物載體1也能透過以下製備方法製成,其包括以下步驟:(1)配製0.1g/mL四氧化三鐵(Fe3O4)溶液,以二次水作為溶劑配製0.1g/mL明膠水溶液,以體積比1:1比例混合Fe3O4溶液(10% w/v)與明膠水溶液(10% w/v),放置於超音波震盪機震盪3小時,均勻分散Fe3O4奈米粒子,以pipette吸取250μL滴在PTFE膜上,並放置於冰上成膠後將膠體自PTFE膜上取下後放置-20℃冰箱冷凍1天,之後進行冷凍乾燥;(2)將步驟(1)完成凍乾之明膠-Fe3O4以濃度0.1%戊二醛(glutaraldehyde)進行交聯,在25℃反應兩天後以二次水潤洗;(3)將末端帶有胺基的PIPAAm(27mM)溶於0.1M MES buffer(pH 6)中並加入步驟(2)完成潤洗之明膠-Fe3O4載體澎潤一天;(4)接著加入交聯劑EDC/NHS於步驟(3)中使PIPAAm接枝於明膠-Fe3O4於4℃反應2天。反應完成後將接枝過的明膠載體以二次水清洗,移至-20℃冷凍一天,利用凍乾機去除水分即可製備出所述磁性載體1,並以掃描式電子顯微鏡(Scanning Electron Microscope,SEM)觀測出多孔之結構。
將所述生物載體1與現有技術生物載體進行實驗比對
Figure 110205003-A0305-02-0012-2
Figure 110205003-A0305-02-0013-3
如圖3所示,為了確定本新型生物載體1是否有形成醯胺鍵(amide bond),利用傅立葉轉換紅外光譜儀(Fourier-transform Infrared,FTIR)確立接枝之情形。比較Gelatin(GD)、PIPAAm、Fe3O4-GD、P-Fe3O4-GD之圖譜。醯胺I為1650cm-1,其為C=0之Stretch;醯胺II為1530cm-1,其為N-H之Deformation;醯胺III為C-N之伸展。
如圖4所示,利用掃描式電子顯微鏡來觀察上述生物載體之表面形態,從觀察結果來看,本新型生物載體(P-Fe3O4-GD)接枝PIPAAm並未造成載體表面結構的改變,其餘各組載體(GD、Fe3O4-GD、PGD)也皆為非平滑具有皺褶的表面結構。
細胞株培養:
本新型之研究材料選用的細胞株為cbMSC-hTERT人類臍帶血來源的間葉幹細胞,購自財團法人食品工業發展研究所生物資源保存及研究中心,細胞解凍後利用含有20%胎牛血清(FBS)和1%抗生素之培養液α-MEM(Minimum Essential Medium Alpha Medium)進行培養,放置於37℃、5% CO2的細胞培養箱中。
生物載體材料毒性試驗
將已培養一天cbMSC-hTERT細胞的96孔盤,加入各組載體的材料萃取液共培養一天。接著利用一種水溶性的四氮唑鹽(tetrazolium salt)WST-1試劑來進行細胞增殖之活性。
表2. 生物相容性實驗組別
Figure 110205003-A0305-02-0014-4
細胞活性測試WST-1
以1×104的細胞密度將cbMSC-hTERT種植在96孔盤培養,並置於37℃、5% CO2細胞培養箱,培養一天。第二天移除培養液並以磷酸鹽緩衝溶液(PBS)清洗,接著加入100μl/well材料萃取液、ZDEC萃取液、HDPE萃取液、GD萃取液、Fe3O4-GD萃取液、P-GD萃取液、P-Fe3O4-GD萃取液和僅加入細胞培養液,一同放置於培養箱培養一天後,將萃取液移除,並以PBS清洗,再加入100μL用細胞培養液稀釋成一倍的WST-1試劑至每個孔中,全程避光置於細胞培養箱反應1個小時,再將培養盤中每孔吸取100μl至新的96孔盤,檢測波長450nm之吸收值。搭配圖5所示,從結果顯示經由以下公式算出皆高於ISO10993規範之75%,結果顯示本新型生物材料不具有毒性,且具有良好的生物相容性。
Figure 110205003-A0305-02-0014-5
本新型系統培養之細胞分析
探討磁場於細胞增生
將細胞種植在明膠載體(GD)以及接枝PIPAAm生物載體(P-Fe3O4-GD)上,利用生物反應器培養7天,分別培養在有/無0.1T磁場刺激7天。利用Presto blue細胞活性試劑,來檢測細胞的增生狀態。接著,利用高感度多功能微光子偵測儀(Enspire)檢測各組載體的種植效率,如圖6所示,結果顯示有磁場刺激的生物反應器組合可以改善細胞之間的養分傳遞,有助於細胞穩定增生。而沒有磁場作用的組別,由於載體密度小漂浮在培養液上方,造成載體上的細胞被帶走,致使標準差大。*:p<0.05,**:p<0.01,***:p<0.001(相較於GD組);#:p<0.05,##:p<0.01,###:p<0.001(相較於P-Fe3O4-GD組);$:p<0.05,$$:p<0.01,$$$:p<0.001(相較於有磁場的GD組)。
本新型培養系統之細胞回收比較
將細胞種植在Fe3O4-GD、P-Fe3O4-GD生物載體上培養7天,分別使用Trypsin與使用降低溫度分離細胞,均處理30分鐘後,利用細胞計數儀計算細胞數。如圖7所示,結果顯示本新型培養系統之生物載體利用降溫也能有效的回收細胞。*:p<0.05,**:p<0.01,***:p<0.001(相較於Fe3O4-GD組)。
探討本新型培養系統之細胞回收Real-time PCR分析
將細胞種植在10cm培養皿以及本新型生物載體(P-Fe3O4-GD),分別給予兩種培養系統靜磁場刺激培養7天,利用Q-PCR進行基因表現量分析,探討細胞在本新型培養系統的環境中長時間培養是否會改變幹細胞的表型及同時比較靜磁場刺激是否會影響幹細胞的表型。根據ISCT規範,幹細胞的生物標記需表現CD73、CD90,而不表現CD34、CD45。另外,也有文獻顯示,源自臍帶血的間葉幹細胞會表現CD29、CD44。如圖8所示,結果顯示培養在本新型培養系統的組別皆表現CD29、CD44、CD73、CD90幹細胞,證實細胞在本新型培養系統多天培養仍維持著幹細胞的表型。
本新型之具磁性生物載體結合無動力生物反應器系統,透過生物載體製備技術、自動更換培養液技術、靜磁場刺激細胞生成技術、以及優化細胞集中管理和細胞回收率,形成一個可以連續提供培養液的生物培養器系統。因此,本新型之磁性生物載體與生物培養器系統可以提高細胞培養的效率,以大量培養細胞並穩定細胞培養的品質。
以上所述僅為舉例性,而非為限制性者。任何未脫離本新型之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。
100:具磁性之生物載體結合無動力生物反應器之系統
1:生物載體
2:無動力生物反應器
21:微量輸液元件
211:輸液管
212:供給容器
22:培養液收集元件
221:收集管
222:收集容器
23:鵝頸細胞培養槽
231:蓋體
232:瓶體
233:第一孔
234:第二孔
235:出氣管
236:進氣管
237:鵝頸管
3:磁場裝置
L:溢流位置

Claims (7)

  1. 一種具磁性之生物載體結合無動力生物反應器之系統,用於培養細胞,包含:一生物載體,其表面具有多個孔洞,非平滑具有皺褶能幫助種植細胞於細胞培養液不易落,且內部為三維結構供細胞生長的表面積與空間提升,所述生物載體能透過溫度的調節能使細胞脫離原依附的所述生物載體;一無動力生物反應器,其包括:一微量輸液元件,其包括一輸液管及一供給容器,所述微量輸液元件負責注入新鮮培養液至細胞培養槽中;一培養液收集元件,其包括一收集管及一收集容器,所述培養液收集元件回收細胞培養槽中所排出含有細胞代謝物之培養液;以及一鵝頸細胞培養槽,其包括一蓋體、一瓶體,所述蓋體包括一第一孔和一第二孔,所述第一孔的連結的氣管,是具有一出氣管和一進氣管,所述進氣管以通入氧氣供給細胞,所述出氣管則以排出細胞釋放的二氧化碳,至於所述第二孔負責注入新鮮培養液至所述鵝頸細胞培養槽中,所述瓶體包括一鵝頸管,所述鵝頸管負責排出含有細胞代謝物之培養液至所述培養液收集元件;其中,所述鵝頸細胞培養槽內部空間與所述微量輸液元件及所述培養液收集元件相互連通,所述微量輸液元件透過所述輸液管緩慢注入新鮮培養液至所述鵝頸管細胞培養槽,當所述鵝頸管細胞培養槽內培養液高於一溢流位置時,即能藉由連通管原理透過所述鵝頸管自動將細胞代謝物排至所述培養液收集元件,所述鵝頸管細胞培養槽中養分為半置換形式係模擬體內養分與代謝物共存的動態環境;以及一磁場裝置,能以靜磁場吸附住所述生物載體; 其中,所述生物載體以天然高分子生物材料明膠摻入磁性奈米粒子,再利用化學交聯劑增強明膠的機械性質,並於明膠上的胺基形成穩固交聯,再利用另一種為水溶性的交聯劑碳二亞胺(carbodiimide,EDC)和N-基琥珀醯亞胺(N-hydroxysuccinimide,NHS)增加明膠的交聯度,接著接枝聚異丙基丙烯醯胺(Poly-N-isopropylacrylamide,PIPAAm),製備成具有溫度響應之所述生物載體,並能被所述磁場裝置吸附,以幫助所述生物載體穩定在所述鵝頸細胞培養槽底部。
  2. 如請求項1所述的系統,其中所述生物載體使用的磁性奈米粒子能為鎳(Ni)奈米粒子、鈷(Co)奈米粒子或氧化鐵(γ-Fe2O3、Fe3O4)奈米粒子,或是複合形奈米粒子(FePt、CoPt、CoFe2O4、MgFe2O4)。
  3. 如請求項1所述的系統,其中所述生物載體大小範圍為直徑落在0.01~20mm。
  4. 如請求項1所述的系統,其中所述生物載體使用的化學交聯劑為戊二醛。
  5. 如請求項1所述的系統,其中所述微量輸液元件透過所述輸液管連接於所述鵝頸細胞培養槽之所述第二孔,所述培養液收集元件透過所述收集管連接於所述鵝頸細胞培養槽之所述鵝頸管。
  6. 如請求項1所述的系統,其中所述磁場裝置包括至少一磁鐵用於產生所述靜磁場。
  7. 一種製造如請求項1所述的系統,其中製造該生物載體之一微流道裝置,其包括:一連續相輸液元件,其包括一微流管,所述連續相輸液元件與所述微流管內裝有橄欖油; 一分散相輸液元件,其包括一注射針頭,所述分散相輸液元件內裝有10%明膠水溶液,並透過所述注射針頭注射10%明膠水溶液至所述微流管中;以及一冰鎮元件,其包括一容器及一冰桶,所述容器盛裝上述微流管中液體,並將液體冰鎮;其中,所述分散相輸液元件內可包括0.1g/mL四氧化三鐵(Fe3O4)溶液,依照所述分散相輸液元件內的體積比1:1比例混合Fe3O4溶液(10% w/v)與明膠水溶液(10% w/v)。
TW110205003U 2021-05-04 2021-05-04 具磁性之生物載體結合無動力生物反應器之系統應用於細胞放大之套組 TWM615647U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110205003U TWM615647U (zh) 2021-05-04 2021-05-04 具磁性之生物載體結合無動力生物反應器之系統應用於細胞放大之套組

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110205003U TWM615647U (zh) 2021-05-04 2021-05-04 具磁性之生物載體結合無動力生物反應器之系統應用於細胞放大之套組

Publications (1)

Publication Number Publication Date
TWM615647U true TWM615647U (zh) 2021-08-11

Family

ID=78285989

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110205003U TWM615647U (zh) 2021-05-04 2021-05-04 具磁性之生物載體結合無動力生物反應器之系統應用於細胞放大之套組

Country Status (1)

Country Link
TW (1) TWM615647U (zh)

Similar Documents

Publication Publication Date Title
US7122371B1 (en) Modular cell culture bioreactor
CN104640974B (zh) 培养基组合物以及使用所述组合物培养细胞或组织的方法
CN109593704B (zh) 一种三维微载体细胞吸附培养的方法
Kumar et al. Large scale industrialized cell expansion: producing the critical raw material for biofabrication processes
CN106544270B (zh) 一种用于细胞共培养的微流控芯片及其细胞培养方法
CN110475856B (zh) 使用纳米纤维的细胞培养
CN103328625A (zh) 生物反应器
CN103849593B (zh) 一种磁分离式细胞三维共培养方法
CN104480066A (zh) 一种软骨细胞培养基及软骨细胞培养方法
CN113423816A (zh) 一种用于干细胞大规模制备的三维培养方法
WO2005014774A1 (ja) 動物細胞の培養担体と、該培養担体を用いた動物細胞の培養方法および移植方法
CN108486035A (zh) 一种三维类器官的液滴培养方法
JP2014060991A (ja) 多孔質中空糸の内腔を用いる幹細胞の培養方法
CN110885779A (zh) 一种基于器官芯片的三维类肝组织模型构建方法
CN108118025A (zh) 一种基于定性滤纸的三维肝模型的建立及其应用
CN113846016A (zh) 一种高通量多孔阵列芯片、装置、制备方法及应用
CN110373378B (zh) 一种基于原代肠道细胞的体外肠道模型及其构建方法和应用
TWM615647U (zh) 具磁性之生物載體結合無動力生物反應器之系統應用於細胞放大之套組
CN106834232A (zh) 人垂体腺瘤细胞系及其用途
CN116478925A (zh) 一种体外快速制备肿瘤细胞球的方法
CN110894492A (zh) 一种基于胰腺脱细胞支架的胰腺癌体外3d模型的构建方法
US20220356434A1 (en) Magnetic cell carrier combined with a powerless bioreactor system to cell amplification kit
CN105695392A (zh) 一种可提高肝细胞体外分化表型及功能的培养方法
CN112813029B (zh) 一种髓母细胞瘤细胞的3d培养方法及其在药物筛选中的应用
CN112608899B (zh) 一种无血清培养基在培养癌组织起源球状体中的应用