TWM581591U - Microchannel chip having slack flow block with small aperture, and microchannel structure - Google Patents

Microchannel chip having slack flow block with small aperture, and microchannel structure Download PDF

Info

Publication number
TWM581591U
TWM581591U TW108203415U TW108203415U TWM581591U TW M581591 U TWM581591 U TW M581591U TW 108203415 U TW108203415 U TW 108203415U TW 108203415 U TW108203415 U TW 108203415U TW M581591 U TWM581591 U TW M581591U
Authority
TW
Taiwan
Prior art keywords
micro
aperture
flow
section
depth
Prior art date
Application number
TW108203415U
Other languages
Chinese (zh)
Inventor
董久源
蔡松錡
Original Assignee
來富可得生物科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 來富可得生物科技股份有限公司 filed Critical 來富可得生物科技股份有限公司
Priority to TW108203415U priority Critical patent/TWM581591U/en
Publication of TWM581591U publication Critical patent/TWM581591U/en

Links

Abstract

本創作為一種具有小孔徑緩流區段的微流道結構,包括:具第一端及第二端的偵測區段,其中第一端用以接受該微流體樣本,俾於該偵測區段檢驗或處理該微流體樣本,且第二端具第一孔徑;以及與第二端連接的緩流區段,並具有一第二孔徑,其中第二孔徑小於第一孔徑,以遲滯該微流體樣本流經該偵測區段的速度。 This creation is a microchannel structure with a small-aperture slow-flow section, including: a detection section with a first end and a second end, wherein the first end is used to receive the microfluid sample and rest in the detection area Test or process the microfluidic sample with a first aperture at the second end; and a slow-flow section connected to the second end with a second aperture, wherein the second aperture is smaller than the first aperture to delay the micro The velocity of the fluid sample flowing through the detection zone.

Description

具有小孔徑緩流區段的微流道晶片及微流道結構 Micro-flow channel wafer with small-aperture slow-flow section and micro-flow channel structure

本創作係關於一種增加生物物質之捕捉率的微流道晶片及微流道結構,尤指一種具有小孔徑緩流區段的微流道晶片及微流道結構。 This creation is about a micro-channel chip and a micro-channel structure that increases the capture rate of biological substances, especially a micro-channel chip and a micro-channel structure with a small-aperture slow flow section.

偵測血液循環腫瘤細胞(Circulating tumor cells,CTC)是一具有潛力的方式來判斷癌症的發生與擴散,因此對於癌症發生嚴重程度常依照精準計數CTCs或分子標記。根據研究指出,對於腫瘤患者的預後判斷療效評估,血液中癌細胞轉移是造成病患死亡的原因,因此癌症檢測與CTCs有密不可分的關係。 Detecting blood circulating tumor cells (Circulating tumor cells, CTC) is a potential way to judge the occurrence and spread of cancer, so the severity of cancer often depends on accurate counting of CTCs or molecular markers. According to research, for the prognostic evaluation of tumor patients, cancer cell metastasis in blood is the cause of patient death, so cancer detection is closely related to CTCs.

CTC數量會有動態變化,依據腫瘤本身變化以及對治療反應等,因此可用於體外早期診斷,藥物之快速評估,個體化治療等應用。然而,在患有轉移性癌症之患者中,CTC為稀有細胞,每109個血細胞有一個CTC,使在技術上偵測及分離CTC具有難度。因此,必須使用集中收集方法來有效偵測及分離CTC。 The number of CTCs will change dynamically, depending on the changes in the tumor itself and the response to treatment, so it can be used for early diagnosis in vitro, rapid evaluation of drugs, personalized treatment and other applications. However, in patients with metastatic cancer, CTCs are rare cells, with one CTC per 109 blood cells, making it technically difficult to detect and isolate CTCs. Therefore, a centralized collection method must be used to effectively detect and isolate CTCs.

目前集中收集方法之一實例為使用對CTC具有高特異性及敏感性之高度過度表現的細胞表面生物標記,諸如上皮細胞黏著分子(Epithelial Cell Adhesion Molecule,EpCAM)。Nagrath 等人(Nature 2007,450:1235-9)開發基於抗EpCAM抗體塗佈之微流體晶片,用於CTC的偵測及收集。然而,上述技術之缺陷為純CTC之低偵測率,此係歸因於血細胞與抗EpCAM抗體的非特異性結合。 One example of the current centralized collection method is the use of highly overexpressing cell surface biomarkers, such as epithelial cell adhesion molecules (EpCAM), that are highly specific and sensitive to CTC. Nagrath Et al. (Nature 2007, 450: 1235-9) developed anti-EpCAM antibody-coated microfluidic wafers for CTC detection and collection. However, the drawback of the above technique is the low detection rate of pure CTC, which is attributed to the non-specific binding of blood cells to anti-EpCAM antibodies.

儘管偵測及分離CTC之技術在進步,仍需要特異性更高且更有效之方法來偵測、純化及釋放CTC及其他生物物質用於進一步培育及特性描述。 Despite advances in the technology for detecting and isolating CTCs, more specific and effective methods are needed to detect, purify, and release CTCs and other biological substances for further cultivation and characterization.

職是之故,申請人有鑑於習知技術之缺失,乃經悉心試驗與研究,並一本鍥而不捨的精神,終創作出本案「具有小孔徑緩流區段的微流道晶片及微流道結構」,以改善上述習知技術之缺失。 The reason for this is that the applicant, in view of the lack of known technology, has carefully studied and researched, and has persevered in the spirit, and finally created this case, "Microchannel Chips and Microchannels with Small Aperture Slow Flow Section Structure "to improve the shortcomings of the conventional techniques.

本創作是一種新型的微流體系統,包含微流道晶片及位於微流道晶片中且能抓取循環腫瘤細胞的珠體,以從血液細胞中分離循環腫瘤細胞。本創作的微流道結構及微流道晶片特別包括小孔徑的緩流區段,可以減緩微流體樣本在微流道結構及微流道晶片中的流動速度,並可防止珠體進入緩流區段中。 This creation is a new type of microfluidic system, which includes a microfluidic wafer and beads located in the microfluidic wafer and capable of grasping circulating tumor cells to separate circulating tumor cells from blood cells. The created microchannel structure and microchannel chip especially include a small-aperture slow-flow section, which can slow down the flow rate of microfluid samples in the microchannel structure and the microchannel chip, and prevent beads from entering the slow-flow Section.

本創作的微流體系統原理是利用循環腫瘤細胞表面抗原的特性與種植於珠體表面的抗體做抓取,該珠體結構導致單位體積中最大之接觸面積,其次是微流道結構之流體阻力與曲型結構致使擾流產生,導致循環腫瘤細胞旋轉或滾動並增加與珠體的接觸機會來增強抓取效果,且藉由微流道結構的特殊設計,降低血液細胞與抗EpCAM抗體的非特異性結合。 The principle of the created microfluidic system is to use the characteristics of circulating tumor cell surface antigens and antibodies implanted on the bead surface to capture the bead structure. The bead structure leads to the largest contact area per unit volume, followed by the fluid resistance of the microfluidic structure. The curved structure causes turbulence, which causes the circulating tumor cells to rotate or roll and increase the chance of contact with the beads to enhance the grasping effect, and the special design of the microfluidic channel structure reduces the non-EpCAM antibody Specific binding.

本創作之一面向係提供一種載有具有一粒徑的一珠體的微流道晶片,包括:一基板;一本體,具一第一表面及一第二表面,其中該第二表面密合覆蓋於該基板上;以及一微流道結構,嵌於該第二表面,使該微流道結構在該本體與該基板之間形成一微流道,供一血液樣本在該微流道結構中流動,其中該微流道結構包括:一偵測區段,該珠體設置於該偵測區段中;以及一緩流區段,與該偵測區段連接,具有一深度,其中該粒徑大於該深度,以遲滯該血液樣本流經該偵測區段的速度及防止該珠體進入該流阻限制區段。 One aspect of this creation is to provide a micro-flow channel wafer carrying a bead having a particle size, including: a substrate; a body having a first surface and a second surface, wherein the second surface is closely adhered Covering the substrate; and a microfluidic channel structure embedded in the second surface, so that the microfluidic channel structure forms a microfluidic channel between the body and the substrate for a blood sample to be in the microfluidic channel structure Medium flow, wherein the microchannel structure includes: a detection section, the bead is disposed in the detection section; and a slow-flow section, connected to the detection section, with a depth, wherein the The particle size is greater than the depth to retard the speed at which the blood sample flows through the detection zone and prevent the beads from entering the flow resistance restriction zone.

本創作之另一面向係提供一種微流道結構,包括一結構本體,用以使一微流體樣本流經該微流道結構而受一檢驗或處理,其中該結構本體包括:一偵測區段,具一第一端及一第二端,其中該第一端用以接受該微流體樣本,俾於該偵測區段檢驗或處理該微流體樣本,且該第二端具一第一孔徑;以及一緩流區段,與該第二端連接,並具有一第二孔徑,其中該第二孔徑小於該第一孔徑,以遲滯該微流體樣本流經該偵測區段的速度。 Another aspect of this creation is to provide a microfluidic channel structure including a structural body for passing a microfluid sample through the microfluidic channel structure to be inspected or processed. The structural body includes: a detection area The segment has a first end and a second end, wherein the first end is used to receive the microfluid sample, and the microfluid sample is tested or processed in the detection section, and the second end is provided with a first An aperture; and a slow flow section connected to the second end and having a second aperture, wherein the second aperture is smaller than the first aperture to retard the velocity of the microfluidic sample flowing through the detection section.

為讓本創作之上述和其他目的、特徵及優點能更明顯易懂,以下舉較佳之實施例,並配合所附圖式,以作一詳細說明。 In order to make the above and other objects, features, and advantages of this creation more comprehensible, the preferred embodiments are described below in conjunction with the accompanying drawings for a detailed description.

10‧‧‧微流道晶片 10‧‧‧Micro channel chip

100‧‧‧基板 100‧‧‧ substrate

200‧‧‧本體 200‧‧‧ Ontology

210‧‧‧第一表面 210‧‧‧first surface

220‧‧‧第二表面 220‧‧‧ second surface

300‧‧‧微流道結構 300‧‧‧Micro channel structure

310‧‧‧血液樣本入口 310‧‧‧ Blood sample entrance

320‧‧‧擴充區段 320‧‧‧ Expansion Section

330‧‧‧增阻區段 330‧‧‧Resistance section

340‧‧‧偵測區段 340‧‧‧ Detection section

341‧‧‧第一端 341‧‧‧ the first end

342‧‧‧偵測主區 342‧‧‧Detect main area

343‧‧‧第二端 343‧‧‧second end

350‧‧‧緩流區段 350‧‧‧ Slow stream section

360‧‧‧血液樣本出口 360‧‧‧ blood sample export

40‧‧‧珠體 40‧‧‧ beads

50‧‧‧微流道結構 50‧‧‧Micro channel structure

500‧‧‧結構本體 500‧‧‧ structure ontology

510‧‧‧微流體樣本入口 510‧‧‧Microfluid sample inlet

520‧‧‧增阻區段 520‧‧‧Increase resistance section

530‧‧‧偵測區段 530‧‧‧ Detection section

540‧‧‧緩流區段 540‧‧‧ Slow section

550‧‧‧微流體樣本出口 550‧‧‧Microfluidic sample outlet

60‧‧‧珠體 60‧‧‧ Beads

第1圖為本創作微流道晶片的俯視示意圖; 第2圖為本創作延第1圖中A-A’的縱剖面示意圖;第3圖為本創作微流道晶片的偵測區段中設置珠體的示意圖;第4圖為微流道晶片中緩流區段深度小於珠體粒徑的示意圖;第5圖為本創作中另一實施例的微流道結構的示意圖;第6圖為無微流體系統的回收效率與偵測極限的結果圖;第7圖為本創作微流道晶片的回收效率與偵測極限的結果圖;第8(A)-8(C)圖為血液檢體經由本創作的微流道晶片的分離結果影像圖。 FIG. 1 is a schematic top view of a creative microchannel wafer; Figure 2 is a schematic diagram of the longitudinal section of AA 'in Figure 1; Figure 3 is a schematic diagram of the beads set in the detection section of the creative microchannel chip; Figure 4 is a microchannel chip Schematic diagram of the depth of the middle slow flow section smaller than the particle size of the beads; Figure 5 is a schematic diagram of the microchannel structure in another embodiment of the creation; Figure 6 is the result of the recovery efficiency and detection limit of the microfluid-free system Figure; Figure 7 is the result of the recovery efficiency and detection limit of the creative microchannel chip; Figures 8 (A) -8 (C) are the separation results of the blood sample passing through the creative microchannel chip Illustration.

以下針對本案之「具有小孔徑緩流區段的微流道晶片及微流道結構」的各實施例進行描述,請參考附圖,但實際之配置及所採行的方法並不必須完全符合所描述的內容,熟習本技藝者當能在不脫離本案之實際精神及範圍的情況下,做出種種變化及修改。 The following describes the embodiments of the "microchannel chip and microchannel structure with a small-aperture slow-flow section" in this case. Please refer to the drawings, but the actual configuration and the method adopted do not have to be completely consistent. The content described, those skilled in the art can make various changes and modifications without departing from the actual spirit and scope of the case.

本創作的實施例是將循環腫瘤細胞由血液中分離。微流道晶片內部具有複數個透明珠體,當珠體捕捉到循環腫瘤細胞後,會將循環腫瘤細胞從血液中分離並定位於偵測區段中,剩餘之正常血液細胞將會從出口流出而流入廢液儲存槽。為了捕捉及分離血液中循環腫瘤細胞,珠體表面塗佈的物質最佳為上皮細胞黏著分子(Epithelial Cell Adhesion Molecule,EpCAM)的抗體。 An example of this creation is the separation of circulating tumor cells from the blood. The microfluidic chip has a plurality of transparent beads inside. When the beads capture the circulating tumor cells, the circulating tumor cells will be separated from the blood and positioned in the detection section, and the remaining normal blood cells will flow out from the outlet. Instead, it flows into the waste storage tank. In order to capture and isolate circulating tumor cells in the blood, the substance coated on the surface of the beads is preferably an antibody against epithelial cell adhesion molecules (Epithelial Cell Adhesion Molecule, EpCAM).

本創作微流道晶片上所載有的珠體特別為大型珠體,其粒徑為100-200μm,珠體表面塗佈反應物質,反應物質包 含(1)釋放或移除非特異性血細胞及其他血液組分(諸如蛋白質)的可釋放組成;(2)捕捉生物物質的生物活性組成;或(3)連接至可釋放組成及生物活性組成之連結分子。當微流體樣本流經珠體,珠體可吸附微流體樣本中可與珠體表面的反應物質產生反應的生物物質,並可釋放吸附到的生物物質,以進行進一步的研究及檢測。珠體的材料為透明塑膠或透明樹脂。微流體樣本可為體液或菌液,體液包括血液、腦脊髓液、各種消化液、精液、唾液、汗液、尿液、陰道分泌液或是含有生物物質的溶液。生物物質包括CTC、CTC循環幹細胞(例如腫瘤幹細胞、肝臟幹細胞及骨髓幹細胞)、胎兒細胞、細菌、病毒、上皮細胞、內皮細胞或其他生物物質。因此,針對要抓取的對象(生物物質)不同,珠體表面塗佈的反應物質也不同。 The bead carried on the microchannel wafer of this creation is especially a large bead with a particle size of 100-200 μm. The surface of the bead is coated with a reactive substance, and the reactive substance package Contains (1) a releasable composition that releases or removes non-specific blood cells and other blood components (such as proteins); (2) a biologically active composition that captures biological substances; or (3) a link to a releasable composition and a biologically active composition Linker. When the microfluidic sample flows through the bead, the bead can adsorb the biological material in the microfluidic sample that can react with the reactive material on the surface of the bead, and can release the adsorbed biological material for further research and detection. The material of the beads is transparent plastic or transparent resin. The microfluidic sample may be a body fluid or a bacterial fluid, and the body fluid includes blood, cerebrospinal fluid, various digestive fluids, semen, saliva, sweat, urine, vaginal fluid, or a solution containing biological substances. Biological substances include CTC, CTC circulating stem cells (such as tumor stem cells, liver stem cells, and bone marrow stem cells), fetal cells, bacteria, viruses, epithelial cells, endothelial cells, or other biological substances. Therefore, depending on the object (biological substance) to be grasped, the reactive substance applied on the bead surface is also different.

請參見第1、2及3圖,其為本創作的微流道晶片的俯視示意圖及延A-A’的縱剖面示意圖。本創作的微流道晶片10包括基板100、本體200及微流道結構300。本體200具有第一表面210及與第一表面210相對設置的第二表面220,微流道結構300嵌於本體200的第二表面220,且第二表面220會密合的覆蓋於基板100上,使微流道結構300在本體200與基板100之間形成微流道。 Please refer to FIGS. 1, 2 and 3, which are a schematic plan view of the microfluidic wafer and a vertical cross section along A-A '. The created microfluidic wafer 10 includes a substrate 100, a body 200 and a microfluidic structure 300. The body 200 has a first surface 210 and a second surface 220 opposite to the first surface 210. The microchannel structure 300 is embedded in the second surface 220 of the body 200, and the second surface 220 is closely covered on the substrate 100. The microfluidic channel structure 300 is formed between the body 200 and the substrate 100.

本創作的微流道結構300從入口至出口依序包括血液樣本入口310、擴充區段320、增阻區段330、偵測區段340、緩流區段350及血液樣本出口360。 The created microfluidic channel structure 300 includes a blood sample inlet 310, an expansion section 320, a resistance increasing section 330, a detection section 340, a slow flow section 350, and a blood sample outlet 360 in order from the entrance to the exit.

本創作血液樣本入口310從本體200的第一表面210 延伸至第二表面220,供血液樣本進入流道中。血液樣本入口310可為圓孔或多邊形孔洞,較佳為圓孔。本創作血液樣本入口310的直徑介於0.8-1.2mm之間,可容納18~21G針頭(約0.7~0.9mm)的注射器。 The author creates a blood sample inlet 310 from the first surface 210 of the body 200 Extends to the second surface 220 for blood samples to enter the flow channel. The blood sample inlet 310 may be a circular hole or a polygonal hole, preferably a circular hole. The diameter of the blood sample inlet 310 of this creation is between 0.8-1.2mm, and it can accommodate a syringe with an 18-21G needle (about 0.7-0.9mm).

本創作擴充區段320的一端與血液樣本入口310連接,另一端與增阻區段330連接。擴充區段320的孔徑可為圓形或多邊形,較佳為方形。本創作擴充區段320的寬度介於0.8-1.5mm之間,且深度為1mm。 One end of the creative expansion section 320 is connected to the blood sample inlet 310 and the other end is connected to the resistance increasing section 330. The aperture of the expansion section 320 may be circular or polygonal, preferably square. The width of this creative expansion section 320 is between 0.8-1.5mm, and the depth is 1mm.

本創作增阻區段330的一端與擴充區段320連接,另一端與偵測區段340連接。增阻區段330的孔徑可為圓形或多邊形,較佳為方形。本創作增阻區段330的寬度介於250-500μm之間,且深度為1mm。 One end of the creative resistance increasing section 330 is connected to the expansion section 320 and the other end is connected to the detecting section 340. The aperture of the resistance increasing section 330 may be circular or polygonal, preferably square. The width of the resistance-increasing section 330 is 250-500 μm, and the depth is 1 mm.

本創作偵測區段340包括第一端341、偵測主區342及第二端343,其中第一端341與增阻區段330連接,第二端343與緩流區段350連接,偵測主區342位於第一端341及第二端343之間,且設置有可吸附血液中循環腫瘤細胞的珠體40(如第3圖所示)。偵測區段340的孔徑可為圓形或多邊形,較佳為方形。在本創作的實施例中,偵測區段340的孔徑為方形。偵測區段340的深度為珠體40的粒徑加上20-50μm,因此,偵測區段340的深度介於120-250μm之間。偵測區段340的第一端341及偵測主區342的寬度為可讓珠體40通過即可,故介於250μm-1.5mm之間。偵測區段340的第一端341的寬度可與增阻區段330的寬度相同,或從增阻區段330的寬 度逐漸增加至第一端341的寬度。本創作的偵測區段340的第二端343的寬度介於150-250μm之間。 The creation detection section 340 includes a first end 341, a detection main area 342, and a second end 343. The first end 341 is connected to the resistance increasing section 330, and the second end 343 is connected to the slow flow section 350. The main measurement region 342 is located between the first end 341 and the second end 343, and a bead 40 (as shown in FIG. 3) capable of adsorbing circulating tumor cells in the blood is provided. The aperture of the detection section 340 may be circular or polygonal, preferably square. In the embodiment of the present invention, the aperture of the detection section 340 is square. The depth of the detection section 340 is the particle size of the bead 40 plus 20-50 μm. Therefore, the depth of the detection section 340 is between 120-250 μm. The widths of the first end 341 and the main detection area 342 of the detection section 340 are sufficient for the beads 40 to pass through, and therefore are between 250 μm and 1.5 mm. The width of the first end 341 of the detection section 340 may be the same as the width of the resistance increasing section 330 or from the width of the resistance increasing section 330. The degree gradually increases to the width of the first end 341. The width of the second end 343 of the detection section 340 of the present creation is between 150-250 μm.

本創作緩流區段350的一端與偵測區段340的第二端343連接,另一端與血液樣本出口360連接。緩流區段350的孔徑可為圓形或多邊形,較佳為方形。在本創作的實施例中,緩流區段350的孔徑為方形。緩流區段350的寬度可以等於或小於偵測區段340第二端343的寬度,且緩流區段350的深度小於偵測區段340的深度。本創作緩流區段350的寬度介於150-250μm之間,緩流區段350的深度介於50-100μm之間。 One end of the creation slow flow section 350 is connected to the second end 343 of the detection section 340, and the other end is connected to the blood sample outlet 360. The aperture of the slow-flow section 350 may be circular or polygonal, preferably square. In the present creative embodiment, the aperture of the slow-flow section 350 is square. The width of the slow-flow section 350 may be equal to or smaller than the width of the second end 343 of the detection section 340, and the depth of the slow-flow section 350 is smaller than the depth of the detection section 340. The width of the slow-flow section 350 is between 150-250 μm, and the depth of the slow-flow section 350 is between 50-100 μm.

為了防止珠體40進入緩流區段350,珠體40的粒徑大於緩流區段350的深度(如第4圖所示),以將珠體40抵擋於偵測區段340的第二端343。 In order to prevent the bead 40 from entering the slow-flow section 350, the particle diameter of the bead 40 is larger than the depth of the slow-flow section 350 (as shown in FIG. 4), so that the bead 40 can resist the second part of the detection section 340. End 343.

為了穩定血液樣本在微流道晶片10中的流動速度,本創作特別設計小孔徑的緩流區段350。小孔徑的緩流區段350包括:(1)緩流區段350的孔徑小於偵測區段340的孔徑(如第1及3圖所示),偵測區340段的孔徑可以是緩流區段350孔徑的1.2-50倍;及(2)珠體40粒徑大於緩流區段的深度(如第4圖所示)。小孔徑的緩流區段350可以增加流體阻力,使血液樣本在微流道晶片10中的流速減緩,讓血液樣本不會因從血液樣本入口310注入時的加強壓力或不穩定施力而有流速不均的情形,可確保循環腫瘤細胞通過偵測主區342時始終為同一流速,進而增加循環腫瘤細胞吸附至珠體40的機率。 In order to stabilize the flow velocity of the blood sample in the micro-channel wafer 10, the author specially designed a slow-flow section 350 with a small aperture. The small-aperture slow-flow section 350 includes: (1) the pore size of the slow-flow section 350 is smaller than the pore size of the detection section 340 (as shown in Figures 1 and 3), and the pore diameter of the 340 section of the detection area may be a slow-flow 1.2-50 times the pore diameter of section 350; and (2) the particle diameter of bead 40 is greater than the depth of the slow-flow section (as shown in Figure 4). The small-aperture slow-flow section 350 can increase the fluid resistance and slow down the flow rate of the blood sample in the microchannel wafer 10, so that the blood sample will not be caused by the increased pressure or unstable force when injected from the blood sample inlet 310. The uneven flow rate can ensure that the circulating tumor cells always have the same flow rate when detecting the main region 342, thereby increasing the probability of the circulating tumor cells adsorbing to the beads 40.

當血液樣本的流速愈慢,珠體40吸附效率愈高。表1顯示緩流區段350的深度對珠體40吸附血液樣本中生物物質的影響。 The slower the flow rate of the blood sample, the higher the adsorption efficiency of the beads 40. Table 1 shows the effect of the depth of the slow flow section 350 on the adsorption of biological substances in the blood sample by the beads 40.

由表1可以得知,當緩流區段350的深度為100μm時,其珠體40的吸附效率為10-20%,而當緩流區段350的深度為50μm時,其珠體40的吸附效率為88%。因此,緩流區段350的深度愈小,導致緩流區段350的截面積愈小,進而降低血液樣本在微流道結構300中的流速及流量,可使珠體40的吸附效率愈高。 It can be known from Table 1 that when the depth of the slow-flow section 350 is 100 μm, the adsorption efficiency of the beads 40 is 10-20%, and when the depth of the slow-flow section 350 is 50 μm, the The adsorption efficiency is 88%. Therefore, the smaller the depth of the slow-flow section 350 is, the smaller the cross-sectional area of the slow-flow section 350 is, and the lower the flow velocity and the flow rate of the blood sample in the micro-flow channel structure 300 is. The higher the adsorption efficiency of the beads 40 is. .

本創作血液樣本出口360的一端與緩流區段350連接,另一端從本體200的第二表面220延伸至第一表面210。未被珠體40抓取的血液細胞會經由血液樣本出口360流至廢液的回收區(圖未示出)。血液樣本出口360可為圓孔或方孔,較佳為圓孔,且其直徑介於0.8-1.2mm之間。 One end of the creative blood sample outlet 360 is connected to the slow-flow section 350, and the other end extends from the second surface 220 to the first surface 210 of the body 200. Blood cells not captured by the bead 40 will flow to the waste liquid recovery area (not shown) through the blood sample outlet 360. The blood sample outlet 360 may be a round hole or a square hole, preferably a round hole, and its diameter is between 0.8-1.2 mm.

下表2為本創作的珠體40粒徑及微流道結構300中各區段孔徑的較佳實施例。 The following table 2 is a preferred embodiment of the particle diameter of the bead 40 and the pore diameter of each section in the microchannel structure 300.

表2 Table 2

本創作的基板100的材料可以是壓克力(polymethylmethacrylate,PMMA)、聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)、聚碳酸脂(polycarbonate,PC)、聚二甲基矽氧烷(polydimethylsilicon,PDMS)、矽膠、橡膠、塑膠或玻璃。本體200的材料可以是壓克力 (polymethylmethacrylate,PMMA)、聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)、聚碳酸脂(polycarbonate,PC)、聚二甲基矽氧烷(polydimethylsilicon,PDMS)、矽膠、橡膠或塑膠。在選用基板100與本體200的材料時,必需考慮到基板100與本體200兩者之間的材料特性。在本創作的實施例中,基板100為玻璃,本體200為聚二甲基矽氧烷。 The material of the substrate 100 can be acrylic (polymethylmethacrylate, PMMA), polyethylene terephthalate (PET), polycarbonate (PC), or polydimethylsiloxane ( polydimethylsilicon (PDMS), silicone, rubber, plastic or glass. The material of the body 200 may be acrylic (polymethylmethacrylate (PMMA)), polyethylene terephthalate (PET), polycarbonate (PC), polydimethylsilicon (PDMS), silicone, rubber or plastic. When selecting materials for the substrate 100 and the body 200, the material characteristics between the substrate 100 and the body 200 must be considered. In the embodiment of the present invention, the substrate 100 is glass, and the body 200 is polydimethylsiloxane.

本創作的更提供一種微流道結構50的另一實施例,如第5圖所示。微流道結構50載有珠體60且具有結構本體500,結構本體500從入口至出口依序包括微流體樣本入口510、增阻區段520、偵測區段530、緩流區段540及微流體樣本出口550,其中珠體60位於偵測區段530中,且緩流區段540的孔徑小於偵測區段530的孔徑,以遲滯微流體樣本的流動速度。當微流體樣本從微流體樣本入口510進入後,可直接經由增阻區段520進入偵測區段530,經過偵測區段530中的珠體60抓取微流體樣本中的生物物質,以進行微流體樣本的檢驗或處理後,再進入緩流區段540,最後從微流體樣本出口550流出微流道結構50。 The present invention further provides another embodiment of the microchannel structure 50, as shown in FIG. The microchannel structure 50 contains beads 60 and has a structure body 500. The structure body 500 includes a microfluid sample inlet 510, a resistance increasing section 520, a detection section 530, a slow flow section 540, and The fluid sample outlet 550, in which the bead 60 is located in the detection section 530, and the pore diameter of the slow flow section 540 is smaller than the pore diameter of the detection section 530 to retard the flow velocity of the microfluid sample. After the microfluidic sample enters from the microfluidic sample inlet 510, it can directly enter the detection section 530 through the resistance increasing section 520, and the beads 60 in the detection section 530 capture the biological material in the microfluidic sample to After the microfluidic sample is inspected or processed, it enters the slow flow section 540, and finally flows out of the microfluidic channel structure 50 from the microfluidic sample outlet 550.

本創作的微流道晶片的製備方法是先利用3D印表機印製母模,母模為光固化樹酯經過95%酒精沖洗,UV光固化2分鐘後,再次以酒精沖洗後放置烘箱烘烤10分鐘。利用食品級材料PDMS液狀體依比例倒入母模中經過50分鐘80度之固化步驟後,利用氧電漿機與玻璃基板接合。 The method of preparing the micro-fluidic wafer of this creation is to first use a 3D printer to print a master mold. The master mold is a light-curing resin, which is rinsed with 95% alcohol, and then cured by UV light for 2 minutes. Bake for 10 minutes. The food-grade material PDMS liquid was poured into the master mold in proportion to the curing process for 50 minutes and 80 degrees, and then bonded to the glass substrate with an oxygen plasma machine.

實驗例 Experimental example

培養之循環腫瘤細胞珠放入生理實驗水緩衝液後以大型珠體抓取循環腫瘤細胞之研究 Study on the Circulating Tumor Cell Beads in Cultured Circulating Tumor Cells

1.大型珠體(直徑200微米)於無微流體系統的回收效率與偵測極限 1. Recovery efficiency and detection limit of large beads (200 microns in diameter) in microfluid-free systems

分別將10個、1000個及10萬個循環腫瘤細胞與珠體及1mL生理食鹽水緩衝液(模擬血液環境)放入離心管中,並將循環腫瘤細胞及珠體於生理食鹽水緩衝液充分混合均勻後,觀察珠體的抓取效率。根據第6圖,實驗結果顯示只有放入10萬個循環腫瘤細胞之實驗組中,珠體有抓到1.5%細胞(約為1500個),然而放入10個與1000個循環腫瘤細胞之實驗組中,珠體未抓取任何循環腫瘤細胞,表示小於1000個循環腫瘤細胞之血液環境,珠體無法抓取到任何循環腫瘤細胞。 Put 10, 1,000, and 100,000 circulating tumor cells and beads and 1 mL of physiological saline buffer solution (simulating blood environment) into a centrifuge tube, and fully circulate the tumor cells and beads in physiological saline buffer solution. After mixing, observe the grasping efficiency of the beads. According to Figure 6, the experimental results show that only 1.5% of the cells (about 1500) were captured by the beads in the experimental group with 100,000 circulating tumor cells, but the experiments with 10 and 1000 circulating tumor cells In the group, the beads did not capture any circulating tumor cells, which means that the blood environment of less than 1000 circulating tumor cells, the beads could not capture any circulating tumor cells.

2.大型珠體(直徑200微米)於本創作的微流道晶片的回收效率與偵測極限 2.Recycling efficiency and detection limit of large beads (200 microns in diameter) in the microchannel wafer

分別將10個、50個、100個、500個及1000個循環腫瘤細胞與1mL生理食鹽水緩衝液混合,將混合後的液體樣本流經本創作的微流道晶片中的珠體,並觀察珠體的抓取效率。根據第7圖,實驗結果表示利用本創作的微流道晶片,液體樣本中含有50個以上的循環腫瘤細胞就可抓取,相較於無微流體系統處理之結果(需10萬個細胞才能抓取到,如第7圖所示),偵測極限明顯縮小2000倍,且利用本創作的微流道晶片的回收效率平均高於5%,比無微流體系統的回收效率高約3倍。 10, 50, 100, 500, and 1000 circulating tumor cells were mixed with 1 mL of physiological saline buffer solution, and the mixed liquid sample was passed through the beads in the microchannel wafer of this creation, and the beads were observed Body grabbing efficiency. According to Figure 7, the experimental results show that using the microfluidic wafer of this creation, a liquid sample containing more than 50 circulating tumor cells can be grasped, compared with the results obtained without a microfluidic system (requiring 100,000 cells to (Captured, as shown in Figure 7), the detection limit is significantly reduced by 2000 times, and the recycling efficiency of the micro-fluidic wafers using this creation is on average higher than 5%, which is about 3 times higher than the recycling efficiency of microfluid-free systems .

當人體體內血液中的循環腫瘤細胞平均每10mL中約有50個以上時,表示該人罹癌的風險性很高。因此,本實驗證明只有大型珠體(直徑200微米)無法區分人體罹癌的風險性,然而大型珠體搭配本創作的微流道晶片可有效且精準的抓取血液中的循環腫瘤細胞,可以更快的判斷出是否罹癌。 When an average of about 50 circulating tumor cells in the blood of a human body per 10 mL, it means that the person has a high risk of cancer. Therefore, this experiment proves that only large beads (200 micrometers in diameter) cannot distinguish the risk of human cancer. However, large beads combined with the microchannel chip created by this method can effectively and accurately capture circulating tumor cells in the blood, which can Find out faster if you have cancer.

請參閱第8(A)-8(C)圖,其為實際將癌症病人的血液檢體染色後,經由本創作的微流道晶片的分離結果,其中綠色為循環腫瘤細胞,紅色為白血球。第8(A)圖為循環腫瘤細胞(綠色點狀)被抓取於透明珠體上,第8(B)圖為白血球(紅色點狀)錯誤抓取後,第8(C)圖為將第8(A)圖及第8(B)圖合成後得到所有抓取之細胞位置。本實驗證明癌症二期的病人於本創作微流道晶片中展現之結果,該結果顯示約抓取到13個循環腫瘤細胞,且僅有3個白血球細胞被抓取(由於人體1mL血液中的白血球數量約為106~107個之間,依照嚴謹定義,以106個白血球細胞來推估,即一百萬個白血球細胞僅抓取到3個白血球細胞,遠低於現行經過FDA proof的Cellsearch儀器的抓錯率(106個白血球細胞抓到約3000~4000個))。此外,本實驗結果從取得血液樣本至影像結果顯示僅需30分鐘,相較於以往經過前處理、循環腫瘤細胞分離至影像結果讀取需6~9小時,時間上縮短很多。因此,利用本創作的微流道晶片可以有效的抓取到血液中微量的循環腫瘤細胞,具有很低的抓錯率,且僅需30分鐘即可得到結果,故本創作的微流道晶片可以作為初步檢測是否具有癌症的快篩生物晶片。 Please refer to Figures 8 (A) -8 (C), which are the separation results of the microfluidic wafer created by the actual staining of blood samples of cancer patients, where green is circulating tumor cells and red is white blood cells. Figure 8 (A) shows that circulating tumor cells (green dots) are captured on transparent beads, and Figure 8 (B) is white blood cells (red dots). After incorrect capture, Figure 8 (C) is Figures 8 (A) and 8 (B) are synthesized to obtain the positions of all captured cells. This experiment demonstrates the results exhibited by patients with stage II cancer in the microfluidic chip of this creation. The results show that about 13 circulating tumor cells were captured, and only 3 white blood cells were captured (because of 1mL of blood in the human body) The number of white blood cells is between about 10 6 and 10 7. According to strict definition, it is estimated by 10 6 white blood cells, that is, only 3 white blood cells are captured by one million white blood cells, which is far lower than the current FDA proof. Cellsearch instrument's catch rate (10 6 white blood cells caught about 3000 ~ 4000)). In addition, the results of this experiment took only 30 minutes from the blood sample acquisition to the imaging results display, compared with the previous pre-processing and circulating tumor cell separation to read the imaging results in 6-9 hours, which is much shorter in time. Therefore, using the microfluidic chip of this creation can effectively capture a small amount of circulating tumor cells in the blood, has a very low error rate, and the result can be obtained in only 30 minutes, so the microfluidic chip of this creation It can be used as a quick-screen biochip for preliminary detection of cancer.

其他實施例 Other embodiments

1.一種載有具有一粒徑的一珠體的微流道晶片,包括:一基板;一本體,具一第一表面及一第二表面,其中該第二表面密合覆蓋於該基板上;以及一微流道結構,嵌於該第二表面,使該微流道結構在該本體與該基板之間形成一微流道,供一血液樣本在該微流道結構中流動,其中該微流道結構包括:一偵測區段,該珠體設置於該偵測區段中;以及一緩流區段,與該偵測區段連接,具有一深度,其中該粒徑大於該深度,以遲滯該血液樣本流經該偵測區段的速度及防止該珠體進入該流阻限制區段。 1. A micro-flow channel wafer carrying a bead having a particle size, comprising: a substrate; a body having a first surface and a second surface, wherein the second surface is closely covered on the substrate And a microchannel structure embedded in the second surface, so that the microchannel structure forms a microchannel between the body and the substrate for a blood sample to flow in the microchannel structure, wherein the The micro-channel structure includes: a detection section in which the beads are arranged; and a slow-flow section connected to the detection section with a depth, wherein the particle diameter is greater than the depth To retard the speed at which the blood sample flows through the detection zone and prevent the beads from entering the flow resistance restriction zone.

2.如實施例1所述之微流道晶片,其中該粒徑為100-200μm,且該深度為50-100μm。 2. The micro-channel wafer according to embodiment 1, wherein the particle diameter is 100-200 μm, and the depth is 50-100 μm.

3.如實施例2所述之微流道晶片,其中當該粒徑為100μm時,該深度為50μm,以及當該粒徑為200μm時,該深度為100μm。 3. The micro-channel wafer according to embodiment 2, wherein when the particle diameter is 100 μm, the depth is 50 μm, and when the particle diameter is 200 μm, the depth is 100 μm.

4.如實施例1所述之微流道晶片,其中該基板的材料為壓克力(polymethylmethacrylate,PMMA)、聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)、聚碳酸脂(polycarbonate,PC)、聚二甲基矽氧烷(polydimethylsilicon,PDMS)、矽膠、橡膠、塑膠或玻璃,且該本體的材料為壓克力(polymethylmethacrylate,PMMA)、聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)、聚碳酸脂(polycarbonate,PC)、聚二甲基矽氧烷(polydimethylsilicon,PDMS)、矽膠、橡膠或塑膠。 4. The micro-flow channel wafer according to embodiment 1, wherein the material of the substrate is polymethylmethacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (polycarbonate, PC), polydimethylsilicon (PDMS), silicone, rubber, plastic or glass, and the material of the body is polymethylmethacrylate (PMMA), polyethylene terephthalate , PET), polycarbonate (PC), polydimethylsilicon (PDMS), silicone, rubber or plastic.

5.如實施例4所述之微流道晶片,其中該第一表面與該第二表面相對設置。 5. The micro-channel wafer according to embodiment 4, wherein the first surface is disposed opposite to the second surface.

6.一種微流道結構,包括一結構本體,用以使一微流體樣本流經該微流道結構而受一檢驗或處理,其中該結構本體包括:一偵測區段,具一第一端及一第二端,其中該第一端用以接受該微流體樣本,俾於該偵測區段檢驗或處理該微流體樣本,且該第二端具一第一孔徑;以及一緩流區段,與該第二端連接,並具有一第二孔徑,其中該第二孔徑小於該第一孔徑,以遲滯該微流體樣本流經該偵測區段的速度。 6. A microfluidic channel structure comprising a structural body for passing a microfluid sample through the microfluidic channel structure to be inspected or processed, wherein the structural body includes: a detection section with a first And a second end, wherein the first end is used to receive the microfluid sample, and the microfluid sample is tested or processed in the detection section, and the second end has a first aperture; and a slow flow The segment is connected to the second end and has a second aperture, wherein the second aperture is smaller than the first aperture to delay the velocity of the microfluidic sample flowing through the detection segment.

7.如實施例6所述之微流道結構,其中該偵測區段於該第一端及該第二端間包括一偵測主區,該偵測主區具一第三孔徑,且該第三孔徑係該第一孔徑的1.2至50倍。 7. The microchannel structure according to embodiment 6, wherein the detection section includes a detection main area between the first end and the second end, the detection main area has a third aperture, and The third aperture is 1.2 to 50 times the first aperture.

8.如實施例7所述之微流道結構,其中該第一孔徑具一第一寬度,該第二孔徑具一第二寬度,且該第一寬度與該第二寬度相同。 8. The micro-channel structure according to embodiment 7, wherein the first aperture has a first width, the second aperture has a second width, and the first width is the same as the second width.

9.如實施例6所述之微流道結構,其中該偵測區段具一珠體,該珠體具一珠體孔徑,該第二孔徑具一深度,且該珠體孔徑大於該深度。 9. The microchannel structure according to embodiment 6, wherein the detection section has a bead, the bead has a bead pore size, the second pore size has a depth, and the bead pore size is greater than the depth .

10.如實施例6所述之微流道結構,其中該微流體樣本為體液或菌液。 10. The microchannel structure according to embodiment 6, wherein the microfluidic sample is a body fluid or a bacterial fluid.

綜上所述,本新型確能以一新穎的概念,藉由使本創作的微流道晶片與大型珠體的搭配,可以有效的抓取血液中微 量的循環腫瘤細胞,並降低抓錯率,以早期判斷癌症的發生。此外,本創作的微流道晶片藉由孔徑比偵測區段小且深度比珠體小的小孔徑緩流區段,增加微流道晶片中的流體阻力,以減緩微流體樣本在微流道結構中的流動速度,並可防止珠體進入緩流區段中。故凡熟習本技藝之人士,得任施匠思而為諸般修飾,然皆不脫如附申請專利範圍所欲保護者。 To sum up, the new model can indeed use a novel concept to match the micro-fluidic chip created by this creation with large beads, which can effectively capture the micro- The amount of circulating tumor cells and reduce the rate of false positives to determine the occurrence of cancer early. In addition, the microfluidic chip created by this invention has a small-aperture slow-flow section with a smaller pore diameter than the detection section and a smaller depth than the bead to increase the fluid resistance in the microfluidic chip to slow the microfluidic sample in the microfluidic flow. The flow velocity in the channel structure and prevents beads from entering the slow flow section. Therefore, those who are familiar with this technique can be modified by various techniques, but they are not inferior to those who want to protect the scope of patent application.

Claims (10)

一種載有具有一粒徑的一珠體的微流道晶片,包括:一基板;一本體,具一第一表面及一第二表面,其中該第二表面密合覆蓋於該基板上;以及一微流道結構,嵌於該第二表面,使該微流道結構在該本體與該基板之間形成一微流道,供一血液樣本在該微流道結構中流動,其中該微流道結構包括:一偵測區段,該珠體設置於該偵測區段中;以及一緩流區段,與該偵測區段連接,具有一深度,其中該粒徑大於該深度,以遲滯該血液樣本流經該偵測區段的速度及防止該珠體進入該流阻限制區段。A micro-flow channel wafer carrying a bead having a particle size, comprising: a substrate; a body having a first surface and a second surface, wherein the second surface is closely covered on the substrate; and A micro-channel structure is embedded on the second surface, so that the micro-channel structure forms a micro-channel between the body and the substrate for a blood sample to flow in the micro-channel structure, wherein the micro-flow The channel structure includes: a detection section in which the beads are arranged; and a slow flow section connected to the detection section with a depth, wherein the particle diameter is greater than the depth, and Delaying the speed at which the blood sample flows through the detection zone and preventing the beads from entering the flow restriction zone. 如申請專利範圍第1項所述之微流道晶片,其中該粒徑為100-200μm,且該深度為50-100μm。The micro-channel wafer according to item 1 of the patent application range, wherein the particle diameter is 100-200 μm, and the depth is 50-100 μm. 如申請專利範圍第2項所述之微流道晶片,其中當該粒徑為100μm時,該深度為50μm,以及當該粒徑為200μm時,該深度為100μm。The micro-channel wafer according to item 2 of the scope of patent application, wherein when the particle diameter is 100 μm, the depth is 50 μm, and when the particle diameter is 200 μm, the depth is 100 μm. 如申請專利範圍第1項所述之微流道晶片,其中該基板的材料為壓克力(polymethylmethacrylate,PMMA)、聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)、聚碳酸脂(polycarbonate,PC)、聚二甲基矽氧烷(polydimethylsilicon,PDMS)、矽膠、橡膠、塑膠或玻璃,且該本體的材料為壓克力(polymethylmethacrylate,PMMA)、聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)、聚碳酸脂(polycarbonate,PC)、聚二甲基矽氧烷(polydimethylsilicon,PDMS)、矽膠、橡膠或塑膠。The micro-fluidic wafer as described in item 1 of the patent application scope, wherein the material of the substrate is polymethylmethacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC), polydimethylsilicon (PDMS), silicone, rubber, plastic or glass, and the material of the body is polymethylmethacrylate (PMMA), polyethylene terephthalate (polyethylene terephthalate (PET), polycarbonate (PC), polydimethylsilicon (PDMS), silicone, rubber or plastic. 如申請專利範圍第1項所述之微流道晶片,其中該第一表面與該第二表面相對設置。The micro-flow channel wafer according to item 1 of the patent application scope, wherein the first surface is disposed opposite to the second surface. 一種微流道結構,包括一結構本體,用以使一微流體樣本流經該微流道結構而受一檢驗或處理,其中該結構本體包括:一偵測區段,具一第一端及一第二端,其中該第一端用以接受該微流體樣本,俾於該偵測區段檢驗或處理該微流體樣本,且該第二端具一第一孔徑;以及一緩流區段,與該第二端連接,並具有一第二孔徑,其中該第二孔徑小於該第一孔徑,以遲滯該微流體樣本流經該偵測區段的速度。A microfluidic channel structure includes a structural body for passing a microfluid sample through the microfluidic channel structure to be inspected or processed, wherein the structural body includes: a detection section having a first end and A second end, wherein the first end is used for receiving the microfluid sample, and the microfluid sample is tested or processed in the detection section, and the second end has a first aperture; and a slow-flow section Is connected to the second end and has a second aperture, wherein the second aperture is smaller than the first aperture to delay the velocity of the microfluidic sample flowing through the detection section. 如申請專利範圍第6項所述之微流道結構,其中該偵測區段於該第一端及該第二端間包括一偵測主區,該偵測主區具一第三孔徑,且該第三孔徑係該第一孔徑的1.2至50倍。According to the micro channel structure described in the patent application item 6, wherein the detection section includes a detection main area between the first end and the second end, the detection main area has a third aperture, And the third aperture is 1.2 to 50 times the first aperture. 如申請專利範圍第7項所述之微流道結構,其中該第一孔徑具一第一寬度,該第二孔徑具一第二寬度,且該第一寬度與該第二寬度相同。The micro-channel structure according to item 7 of the scope of patent application, wherein the first aperture has a first width, the second aperture has a second width, and the first width is the same as the second width. 如申請專利範圍第6項所述之微流道結構,其中該偵測區段具一珠體,該珠體具一珠體孔徑,該第二孔徑具一深度,且該珠體孔徑大於該深度。The microchannel structure according to item 6 of the patent application scope, wherein the detection section has a bead, the bead has a bead pore size, the second pore size has a depth, and the bead pore size is larger than the depth. 如申請專利範圍第6項所述之微流道結構,其中該微流體樣本為體液或菌液。The microfluidic channel structure described in item 6 of the patent application scope, wherein the microfluidic sample is a body fluid or a bacterial fluid.
TW108203415U 2019-03-20 2019-03-20 Microchannel chip having slack flow block with small aperture, and microchannel structure TWM581591U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108203415U TWM581591U (en) 2019-03-20 2019-03-20 Microchannel chip having slack flow block with small aperture, and microchannel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108203415U TWM581591U (en) 2019-03-20 2019-03-20 Microchannel chip having slack flow block with small aperture, and microchannel structure

Publications (1)

Publication Number Publication Date
TWM581591U true TWM581591U (en) 2019-08-01

Family

ID=68316926

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108203415U TWM581591U (en) 2019-03-20 2019-03-20 Microchannel chip having slack flow block with small aperture, and microchannel structure

Country Status (1)

Country Link
TW (1) TWM581591U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11731128B2 (en) 2020-03-19 2023-08-22 Lifecode Biotech Microchannel chip, microchannel structure and detecting method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11731128B2 (en) 2020-03-19 2023-08-22 Lifecode Biotech Microchannel chip, microchannel structure and detecting method using the same

Similar Documents

Publication Publication Date Title
TWI691724B (en) Apparatus for detecting particle in fluid sample and method for isolating aliquot of fluid sample within microfluidic chip
KR102243597B1 (en) Selective delivery of material to cells
US9186668B1 (en) Microfluidic devices, systems, and methods for quantifying particles using centrifugal force
CN106796164A (en) The blood platelet targeting microfluidic separation of cell
US10144911B2 (en) Method and device for separation of particles and cells using gradient magnetic ratcheting
Qi et al. Probing single cells using flow in microfluidic devices
US9908117B2 (en) Microfluidic separation device, separation method using the same and kit for separating circulating rare cells from blood using the same
JP6611223B2 (en) Fine particle separation chip, fine particle separation system using the fine particle separation chip, fine particle separation method and fine particle extraction method using the partial particle separation system
US20150076049A1 (en) Microfilter and apparatus for separating a biological entity from a sample volume
WO2015156343A1 (en) Microparticle separation chip, and microparticle separation system and microparticle separation method which employ said microparticle separation chip
CN108795693B (en) Micro-fluidic chip for capturing rare cells in blood
JP6326582B2 (en) Microchannel chip for particle separation, particle separation system using the chip, and particle separation method
TWM583456U (en) Microfluidic chip with bead retention structure and microfluidic channel structure
TWM581591U (en) Microchannel chip having slack flow block with small aperture, and microchannel structure
CN108546676A (en) The method that tunnel magnetic field technology detaches and is enriched with rare cell in peripheral blood
CN210230002U (en) Micro flow channel chip and micro flow channel structure
CN107213927A (en) A kind of micro-fluidic chip of high flux illicit drugs inspection and application
TWM583855U (en) Micro-runner chip and micro-runner structure with uneven structure
JP6244589B2 (en) Micro-channel chip for separating fine particles, advection integrated unit, system for separating fine particles, and method for separating fine particles
TWM583455U (en) Microfluidic chip with resistance enhancement section and microfluidic channel structure
CN210506296U (en) Micro flow channel chip and micro flow channel structure
CN210115073U (en) Micro flow channel chip and micro flow channel structure
CN210506297U (en) Micro flow channel chip and micro flow channel structure
CN210230001U (en) Micro flow channel chip and micro flow channel structure
TWM581592U (en) Microchannel chip having curved flowing path, and microchannel structure