JP6244589B2 - Micro-channel chip for separating fine particles, advection integrated unit, system for separating fine particles, and method for separating fine particles - Google Patents

Micro-channel chip for separating fine particles, advection integrated unit, system for separating fine particles, and method for separating fine particles Download PDF

Info

Publication number
JP6244589B2
JP6244589B2 JP2013106824A JP2013106824A JP6244589B2 JP 6244589 B2 JP6244589 B2 JP 6244589B2 JP 2013106824 A JP2013106824 A JP 2013106824A JP 2013106824 A JP2013106824 A JP 2013106824A JP 6244589 B2 JP6244589 B2 JP 6244589B2
Authority
JP
Japan
Prior art keywords
fine particles
sheath liquid
flow path
chip
advection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013106824A
Other languages
Japanese (ja)
Other versions
JP2014226065A (en
Inventor
新井 史人
史人 新井
泰輔 益田
泰輔 益田
京 新美
京 新美
速夫 中西
速夫 中西
誠二 伊藤
誠二 伊藤
亜希子 遊佐
亜希子 遊佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AICHI SCIENCE & TECHNOLOGY FOUNDATION
Nagoya University NUC
Aichi Prefecture
Tokai National Higher Education and Research System NUC
Original Assignee
AICHI SCIENCE & TECHNOLOGY FOUNDATION
Nagoya University NUC
Aichi Prefecture
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AICHI SCIENCE & TECHNOLOGY FOUNDATION, Nagoya University NUC, Aichi Prefecture, Tokai National Higher Education and Research System NUC filed Critical AICHI SCIENCE & TECHNOLOGY FOUNDATION
Priority to JP2013106824A priority Critical patent/JP6244589B2/en
Publication of JP2014226065A publication Critical patent/JP2014226065A/en
Application granted granted Critical
Publication of JP6244589B2 publication Critical patent/JP6244589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、液体中に混在するサイズの異なる微粒子を分離するための微粒子分離用マイクロ流路チップ、移流集積ユニット、微粒子分離用システム及び微粒子分離方法に関するもので、特に、血液中の循環腫瘍細胞(Circulating tumor cell、以下「CTC」と略記することもある。)を選択的に捕捉できるCTC分離用マイクロ流路チップ、該チップを用いたCTC分離用システム、該CTC分離システムに用いられる移流集積ユニット及びCTC分離方法に関する。   The present invention relates to a microfluidic chip for separating fine particles, a convection collecting unit, a system for separating fine particles, and a method for separating fine particles for separating fine particles of different sizes mixed in a liquid, and in particular, circulating tumor cells in blood (Circulating tumor cell, which may be abbreviated as “CTC” hereinafter.) CTC separation microchannel chip capable of selectively capturing, CTC separation system using the chip, advection integration used in the CTC separation system The present invention relates to a unit and a CTC separation method.

CTCはがん患者の末梢血流を循環する腫瘍細胞と定義され、原発腫瘍又は転移腫瘍から血管中へ浸潤した腫瘍細胞である。このCTCの検出は、転移性悪性腫瘍の早期発見の方法の一つとして近年注目されている。その理由は、X線写真や血清中の腫瘍マーカー検出よりも低侵襲かつ正確に転移性悪性腫瘍の診断を行え、患者の予後予測や治療効果の指標として利用できる点にある。   CTCs are defined as tumor cells that circulate in the peripheral bloodstream of cancer patients and are tumor cells that have infiltrated into blood vessels from primary or metastatic tumors. The detection of this CTC has recently attracted attention as one of the methods for early detection of metastatic malignant tumors. The reason is that metastatic malignant tumors can be diagnosed more accurately and less invasively than X-ray photographs and tumor marker detection in serum, and can be used as an indicator of patient prognosis and therapeutic effects.

CTCは非常に稀少な細胞であり、転移性がん患者の血液に含まれる108〜109個の血液細胞の内、わずか1細胞程度しか存在しないことが知られている。そのため、末梢血から稀少なCTCを正確に検出するための技術開発に多大な努力が注がれている。これまでに開発されてきた主要な検出方法には、免疫組織化学法、PCR法、フローサイトメトリー法などがある。しかしながら、前述したようにCTCは非常に稀少な細胞であるため、血液をそのままこれらの検出方法に供することは出来ないので、通常は前処理として、CTCの濃縮操作が必須であり、検出法に則したレベルまでCTC存在比を濃縮させる必要がある。 CTC is a very rare cell, and it is known that only about 1 cell is present among 10 8 to 10 9 blood cells contained in the blood of patients with metastatic cancer. For this reason, much effort has been put into technology development for accurately detecting rare CTCs from peripheral blood. Major detection methods that have been developed so far include immunohistochemistry, PCR, flow cytometry, and the like. However, as described above, since CTC is a very rare cell, blood cannot be directly used for these detection methods. Therefore, it is usually necessary to concentrate CTC as a pretreatment. It is necessary to concentrate the CTC abundance ratio to the compliant level.

CTCの濃縮方法として開発されてきた様々な手法の中で、最も広く利用されているのは、細胞表面の特異的抗原を標的とした腫瘍細胞の濃縮である。その多くは、上皮細胞接着分子(Epithelial cell adhesion molecule:EpCAM)に対するモノクローナル抗体を固定化した磁気微粒子を血液と混合した後、磁石を用いて腫瘍細胞を濃縮する方法をとっている(例えば、非特許文献1参照)。しかしながら、EpCAMの発現量は腫瘍のタイプに依存し大きく変動することが知られている。   Among various techniques that have been developed as CTC enrichment methods, the most widely used is the enrichment of tumor cells targeting specific antigens on the cell surface. Many of them employ a method of concentrating tumor cells using a magnet after mixing magnetic particles on which a monoclonal antibody against an epithelial cell adhesion molecule (EpCAM) is immobilized with blood (for example, non-cells). Patent Document 1). However, it is known that the expression level of EpCAM varies greatly depending on the type of tumor.

その他の濃縮方法としては、細胞のサイズなどの形態を基準として濃縮する手法がある。白血球に比べてサイズが大きな上皮性腫瘍細胞をフィルトレーションによって選別する方法は、ISET法(Isolation by Size of Epithelial Tumor cells)と呼ばれている。ISETは、孔径8μmのポリカーボネートメンブレンフィルターを用いて血液をフィルトレーションするという簡便な手法であり、安価かつユーザーフレンドリーな手法である。ここで用いられているポリカーボネートメンブレンフィルターは、重イオンを照射した後、エッチングを行うトラックエッチングという手法によって、孔が形成されている。しかし、孔が比較的低密度であり、二つ又はそれ以上の孔が重なりあったりする問題があるため、CTCの捕捉に利用した場合、その捕捉効率は50〜60%とされており、濃縮法が簡便かつ効率も良い手法は未だ開発されていない。   As another concentration method, there is a method of concentrating on the basis of a form such as a cell size. A method of selecting epithelial tumor cells having a size larger than that of leukocytes by filtration is called an ISET method (Isolation by Size of Experimental Tumor cells). ISET is a simple method of filtering blood using a polycarbonate membrane filter having a pore diameter of 8 μm, and is an inexpensive and user-friendly method. The polycarbonate membrane filter used here has holes formed by a technique called track etching in which etching is performed after irradiation with heavy ions. However, since the holes have a relatively low density and there is a problem that two or more holes overlap, the trapping efficiency is 50-60% when used for trapping CTC. A method that is simple and efficient is not yet developed.

CTCの検出を効率的かつ正確なものにするためには、濃縮と検出といった技術を首尾一貫して行うことが必要である。多段階のハンドリング操作、例えば細胞の染色、洗浄、分離、分注などの操作はCTCのロスを引き起こすため、可能な限りこれらの操作を避け、一体の検出装置中で分析が一貫して行える形が好ましい。Cellsearch(VeridexTM,Warren,PA)はCTC検出装置として唯一FDAの認可を受けた装置である。この装置では、全血に対し抗EpCAM抗体固定化磁気微粒子によるCTCの濃縮を行い、腫瘍細胞に対して免疫染色を行った後、自動化蛍光顕微鏡を用いて腫瘍細胞の計数が行われる(例えば、非特許文献2参照)。しかしながら、当該装置を用いる場合、一般的に大型の装置導入と訓練されたオペレーターの確保が必要であり、ベッドサイドで短時間且つ正確に検査をすることは困難である。   In order for CTC detection to be efficient and accurate, techniques such as enrichment and detection need to be performed consistently. Multi-stage handling operations such as cell staining, washing, separation, and dispensing cause CTC loss. Therefore, avoid these operations as much as possible, and perform analysis in an integrated detector. Is preferred. Cellsearch (Veridex ™, Warren, PA) is the only CTC detector that has received FDA approval. In this apparatus, CTC is concentrated on whole blood using anti-EpCAM antibody-immobilized magnetic microparticles, and tumor cells are immunostained, and then tumor cells are counted using an automated fluorescent microscope (for example, Non-patent document 2). However, when using the apparatus, it is generally necessary to introduce a large apparatus and secure a trained operator, and it is difficult to perform an inspection at a bedside in a short time and accurately.

一方で、CTC検出のための小型のマイクロ流体デバイスも知られている。例えば、Tonerらが開発したCTC検出用マイクロ流体デバイスはCTC−chipと呼ばれ、フォトリソグラフィーによって形成されたシリコン製の流路内に、円筒状構造物(マイクロポスト)が78000個構成されている。このマイクロポストには、抗EpCAM抗体がコーティングされており、本流路に血液を送液すると、血液中のCTCがマイクロポスト上に捕捉される。捕捉されたCTCに対して、上皮細胞マーカー(cytokeratin)をターゲットとした蛍光免疫染色を行い、蛍光顕微鏡を用いて腫瘍細胞の計数が行われる。本装置は、手のひらに乗る小型デバイスでありながら、5mL以上の血液をそのまま分析に供することができるという大きな利点を持っている。実際に転移性がん患者血液からCTC検出を行っており、回収したCTCからチロシンキナーゼ阻害薬に対する耐性を生む変異を検出することが出来る。しかしながら、CellsearchやCTC−chipを用いたCTC検出は、転移性がん患者血液などの実サンプルを用いた実験が精力的に行われ実績を挙げているが、これらの手法は抗EpCAM抗体でCTCを濃縮するという原理になっている。そのため、EpCAM陰性又は弱陽性の腫瘍細胞は検出できないという問題点が挙げられる。   On the other hand, small microfluidic devices for CTC detection are also known. For example, a microfluidic device for CTC detection developed by Toner et al. Is called CTC-chip, and 78000 cylindrical structures (microposts) are formed in a silicon flow path formed by photolithography. . The micropost is coated with an anti-EpCAM antibody, and when blood is fed into the channel, CTC in the blood is captured on the micropost. The captured CTC is subjected to fluorescent immunostaining targeting an epithelial cell marker (cytokeratin), and tumor cells are counted using a fluorescence microscope. Although this device is a small device placed on the palm, it has a great advantage that it is possible to use 5 mL or more of blood as it is for analysis. Actually, CTC is detected from the blood of a metastatic cancer patient, and a mutation that produces resistance to a tyrosine kinase inhibitor can be detected from the collected CTC. However, CTC detection using Cellsearch or CTC-chip has been performed vigorously through experiments using actual samples such as blood from metastatic cancer patients, but these methods are anti-EpCAM antibodies and CTCs have been used. The principle is to concentrate. Therefore, there is a problem that EpCAM negative or weak positive tumor cells cannot be detected.

その他の方法としては、腫瘍細胞のサイズと形態を指標として、CTCを検出するマイクロ流体デバイスが開発されている。これらのデバイスでは、その流路構造内にメンブレンマイクロフィルター、三日月型の細胞捕捉ウェル(非特許文献3参照)、4段階の細さの流路(非特許文献4参照)を配して、血液中の血球細胞と腫瘍細胞をサイズによって選別し、腫瘍細胞を選択的に濃縮している。また、その流路を利用して、濃縮後の細胞に対して溶解などの操作を連続的に行うことが出来る。これらのデバイスを用いたモデル腫瘍細胞の回収効率の評価実験においては、80%以上のCTC回収効率を得ている。しかしながら、この評価はあくまでモデル細胞を用いた実験で行われており、実際にCTC検出時に必要となる細胞の染色操作や洗浄操作といった要素技術項目については検討されていない上、がん患者血液などの実サンプルを用いた実験は行われておらず、実際にCTC検出に利用できるかどうかは明らかにされていない。   As another method, a microfluidic device that detects CTC using tumor cell size and morphology as an index has been developed. In these devices, a membrane microfilter, a crescent-shaped cell capture well (see Non-Patent Document 3), and a four-stage channel (see Non-Patent Document 4) are arranged in the channel structure, and blood The blood cells and tumor cells are sorted according to size, and the tumor cells are selectively enriched. In addition, by using the flow channel, operations such as lysis can be continuously performed on the concentrated cells. In the evaluation experiment of the recovery efficiency of model tumor cells using these devices, a CTC recovery efficiency of 80% or more is obtained. However, this evaluation is only conducted in an experiment using model cells, and elemental technical items such as cell staining and washing operations that are actually required for CTC detection have not been studied, and blood of cancer patients, etc. Experiments using real samples were not conducted, and it was not clarified whether they could actually be used for CTC detection.

更に、抗EpCAM抗体を使用しない小型のデバイスとしては、マイクロ流路内にマイクロキャビティアレイ(微細貫通孔)を設け、CTCを捕捉することができるマイクロ流体デバイスが知られている(特許文献1参照)。しかしながら、前記マイクロ流体デバイスは、微細貫通孔にCTCを捕捉するタイプであるので、CTCの目詰まりによる作業効率の低下、更には分離したCTCの回収が困難であるという問題がある。   Furthermore, as a small device that does not use an anti-EpCAM antibody, there is known a microfluidic device that can capture a CTC by providing a microcavity array (fine through-hole) in a microchannel (see Patent Document 1). ). However, since the microfluidic device is a type that captures CTC in a fine through-hole, there is a problem that the work efficiency is lowered due to clogging of the CTC, and further, it is difficult to collect the separated CTC.

上記問題点を解決するため、本出願人らは、(1)主流路、及び該主流路の幅より大きな捕捉部位が形成された微粒子分離用マイクロ流路チップ、又は(2)主流路、該主流路から分岐し再び主流路に接続する分岐流路、及び該分岐流路に分岐流路の幅より大きな捕捉部位が形成されている微粒子分離用マイクロ流路チップ、を用いて気液界面のメニスカスで生じる力を利用して微粒子を沈降させ、目的とする微粒子のみを捕捉部位で捕捉することができ、特に、サンプルとして濃縮等の前処理をしていない全血を用いても、CTCのみを連続的に分離・回収ができることを新たに見出し、特許出願を行っている(特許文献2参照)。   In order to solve the above problems, the present applicants have (1) a microchannel chip for separating fine particles in which a trapping site larger than the width of the main channel and the main channel is formed, or (2) the main channel, Using a branch channel that branches from the main channel and connects to the main channel again, and a microchannel chip for fine particle separation in which a trapping part larger than the width of the branch channel is formed in the branch channel, the gas-liquid interface The force generated in the meniscus can be used to settle the microparticles, and only the target microparticles can be captured at the capture site. In particular, even if whole blood that has not been pretreated such as concentrated is used as a sample, only CTC Have been newly found that they can be separated and recovered continuously (see Patent Document 2).

前記特許文献2に記載されている微粒子の分離方法は、微粒子分離用マイクロ流路チップとサンプル用薄板の間にサンプルを注入し、微粒子分離用マイクロ流路チップとシース液用薄板の間にシース液を注入し、微粒子分離用マイクロ流路チップとサンプル用薄板及びシース液用薄板を相対移動させることで発生するメニスカスにより、目的とする微粒子を前記微粒子分離用マイクロ流路チップに形成された捕捉部位に捕捉している。ところで、上記特許出願に記載されている微粒子分離用マイクロ流路チップとサンプル用薄板の間に注入できるサンプル量は100μl程度である。しかしながら、特にがん転移が初期の患者、又はがん治療後の患者の経過観察等、血液細胞に含まれるCTC細胞が非常に少ない患者のサンプルからCTCが含まれているか否かを正確に判断するには、5ml程度の血液サンプルを分析することが好ましく、前記特許文献2に記載されている方法ではサンプルの再導入が必要で、微粒子の分離操作が非常に煩雑になり且つ時間がかかるという問題がある。   In the method of separating fine particles described in Patent Document 2, a sample is injected between a microchannel chip for microparticle separation and a thin plate for sample, and a sheath is interposed between the microchannel chip for microparticle separation and a thin plate for sheath liquid. The target microparticles are captured on the microchannel chip for particle separation by a meniscus generated by injecting the liquid and moving the microchannel chip for microparticle separation, the thin plate for sample, and the thin plate for sheath liquid relative to each other. It is trapped in the site. By the way, the amount of sample that can be injected between the microchannel chip for fine particle separation described in the above patent application and the thin plate for sample is about 100 μl. However, it is possible to accurately determine whether or not CTC is contained from a sample of a patient having very few CTC cells in blood cells, such as a follow-up of a patient with early cancer metastasis or a patient after cancer treatment. Therefore, it is preferable to analyze a blood sample of about 5 ml, and the method described in Patent Document 2 requires reintroduction of the sample, which makes the separation operation of microparticles very complicated and time consuming. There's a problem.

更に、分離した個々のCTC細胞を分析するためには、PCRで核酸増幅する必要があるが、血液サンプルからCTCを分離・回収し、自動分析を行えるシステムは知られていない。   Furthermore, in order to analyze individual separated CTC cells, it is necessary to amplify nucleic acids by PCR. However, a system that can separate and recover CTC from a blood sample and perform automatic analysis is not known.

特開2011−163830号公報JP 2011-163830 A 特願2012−227717号Japanese Patent Application No. 2012-227717

Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AG, Uhr JW, Terstappen LW. 2004. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 10(20):6897−904.Allard WJ, Matera J, Miller MC, Repolet M, Connelly MC, Rao C, Tibbe AG, Uhr JW, Terstrappen LW. 2004. Tumor cells circulate in the peripheral block of all major carcinomas but not in health subjects with valents diligents. Clin Cancer Res 10 (20): 6897-904. Riethdorf S, Fritsche H, Muller V, Rau T, Schindlbeck C, Rack B, Janni W, Coith C, Beck K, Janicke F and others. 2007. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin Cancer Res 13(3):920−8.Riethdorf S, Fritsch H, Muller V, Rau T, Schindlbeck C, Rack B, Janni W, Coith C, Beck K, Janice F and others. 2007. Detection of circling tutor cells in peripheral blood of patents with metallic breast cancer: avalidation study of the CellSearch. Clin Cancer Res 13 (3): 920-8. Tan SJ, Yobas L, Lee GY, Ong CN, Lim CT. 2009. Microdevice for the isolation and enumeration of cancer cells from blood. Biomed Microdevices 11(4):883−92.Tan SJ, Yobas L, Lee GY, Ong CN, Lim CT. 2009. Microdevice for the isolation and enumeration of cancer cells from blood. Biomed Microdevices 11 (4): 883-92. Mohamed H, Murray M, Turner JN, Caggana M. 2009. Isolation of tumor cells using size and deformation. J Chromatogr A 1216(47):8289−95.Mohamed H, Murray M, Turner JN, Cagana M. et al. 2009. Isolation of tutor cells using size and deformation. J Chromatogr A 1216 (47): 8289-95.

本発明は、上記従来の問題を解決するためになされた発明であり、鋭意研究を行ったところ、(1)基板、該基板上に形成された主流路、該主流路から分岐し再び主流路に接続する分岐流路、及び該分岐流路に形成され分岐流路の幅より大きな捕捉部位を含み、前記主流路が基板の中心から放射状に形成されている微粒子分離用マイクロ流路チップ、又は(2)基板、該基板上に形成された主流路、及び該主流路の幅より大きく且つ主流路上に形成された捕捉部位を含み、前記主流路が基板の中心から放射状に形成されている微粒子分離用マイクロ流路チップ、を該微粒子分離用マイクロ流路チップを回転させる回転手段上に載置し、前記微粒子分離用マイクロ流路チップの表面に、シース液注入口、サンプル注入口、シース液移流集積用平面部及びサンプル移流集積用平面部を少なくとも含む移流集積ユニットを配置し、前記回転手段を回転させながら、前記シース液注入口からシース液を注入し、且つ前記サンプル注入口からサンプルを注入し、前記微粒子分離用マイクロ流路チップとシース液移流集積用平面部及びサンプル移流集積用平面部を相対移動させてメニスカスを発生させ、吸引手段によりシース液を吸引することで、目的とする微粒子を前記微粒子分離用マイクロ流路チップに形成された捕捉部位に捕捉し、除去される微粒子をシース液とともに微粒子分離用マイクロ流路チップから除去することで、サンプルを前記微粒子分離用マイクロ流路チップに連続的に供給することができ、目的とする微粒子を効率よく捕捉・分離できることを新たに見出した。更に、CTC等の核酸を含む生体材料を捕捉する場合、捕捉部位で捕捉された生体材料を微粒子抽出手段で取り出し、核酸を増幅するPCR手段に移すことで、サンプル中の生体材料の抽出・増幅を自動化できることを見出し、本発明を完成した。   The present invention has been made in order to solve the above-described conventional problems, and as a result of extensive research, (1) a substrate, a main flow channel formed on the substrate, a branch from the main flow channel, and a main flow channel again. A microchannel chip for separating fine particles in which the main channel is formed radially from the center of the substrate, including a branch channel connected to the channel, and a capture site formed in the branch channel and larger than the width of the branch channel, or (2) A fine particle including a substrate, a main channel formed on the substrate, and a trapping portion that is larger than the width of the main channel and formed on the main channel, and the main channel is formed radially from the center of the substrate A separation microchannel chip is placed on a rotating means for rotating the microparticle separation microchannel chip, and a sheath liquid inlet, a sample inlet, and a sheath liquid are placed on the surface of the microchannel chip for microparticle separation. Flat for advection accumulation And an advection and accumulation unit including at least a flat part for sample advection and accumulation, and while rotating the rotating means, the sheath liquid is injected from the sheath liquid inlet, and the sample is injected from the sample inlet, A microfluidic chip for separating fine particles, a sheath liquid advection and accumulation plane and a sample advection and accumulation plane are moved relative to each other to generate a meniscus, and the sheath liquid is aspirated by a suction means, so that the intended fine particles The sample is continuously captured by the microfluidic chip for particle separation by capturing the captured microparticles in the microfluidic chip for separation and removing the removed microparticles together with the sheath liquid from the microfluidic chip for separating microparticles. It was newly found that target fine particles can be efficiently captured and separated. Furthermore, when capturing biomaterials containing nucleic acids such as CTC, the biomaterial captured at the capture site is taken out by the fine particle extraction means and transferred to the PCR means for amplifying the nucleic acid, thereby extracting and amplifying the biomaterial in the sample. The present invention has been completed.

すなわち、本発明は、微粒子分離用マイクロ流路チップ、移流集積ユニット、微粒子分離用システム及び微粒子分離方法を提供することである。   That is, the present invention is to provide a microchannel chip for particle separation, an advection accumulation unit, a particle separation system, and a particle separation method.

本発明は、以下に示す、微粒子分離用マイクロ流路チップ、移流集積ユニット、微粒子分離用システム及び微粒子分離方法に関する。   The present invention relates to a microfluidic chip for separating fine particles, an advection and accumulation unit, a system for separating fine particles, and a method for separating fine particles described below.

(1)基板、該基板上に形成された主流路、該主流路から分岐し再び主流路に接続する分岐流路、及び該分岐流路に形成され分岐流路の幅より大きな微粒子の捕捉部位を含み、前記主流路が基板の中心から放射状に形成されていることを特徴とする微粒子分離用マイクロ流路チップ。
(2)前記捕捉部位で捕捉される微粒子の大きさをX、分離・除去される微粒子の大きさをYとした場合、前記主流路及び前記分岐流路の幅FはY<F<X、前記捕捉部位の幅Gは1X<G<10X、前記主流路、前記分岐流路及び前記捕捉部位の深さHは1X<H<10Xであることを特徴とする上記(1)に記載の微粒子分離用マイクロ流路チップ。
(3)前記幅Gが1X<G<2X、前記深さHが1X<H<2Xであることを特徴とする上記(2)に記載の微粒子分離用マイクロ流路チップ。
(4)前記幅FがY<F<0.8Xであることを特徴とする上記(2)又は(3)に記載の微粒子分離用マイクロ流路チップ。
(5)前記主流路、前記分岐流路及び前記捕捉部位の下方に、幅がF、深さJがY<Jの流路が更に形成されていることを特徴とする上記(1)〜(4)の何れか一に記載の微粒子分離用マイクロ流路チップ。
(6)基板、該基板上に形成された主流路、及び該主流路の幅より大きく且つ主流路上に形成された捕捉部位を含み、前記主流路が基板の中心から放射状に形成されていることを特徴とする微粒子分離用マイクロ流路チップ。
(7)前記捕捉部位で捕捉される微粒子の大きさをX、分離・除去される微粒子の大きさをYとした場合、前記主流路の幅AはY<A<X、前記捕捉部位の幅Bは1X<B<10Xであり、前記捕捉部位の深さCは1X<C<10X、前記捕捉部位における主流路の深さDはY<Dであり、前記捕捉部位以外の主流路の深さEはE=C+Dであることを特徴とする上記(6)に記載の微粒子分離用マイクロ流路チップ。
(8)前記幅Bが1X<B<2X、前記深さCが1X<C<2Xであることを特徴とする上記(7)に記載の微粒子分離用マイクロ流路チップ。
(9)前記幅AがY<A<0.8Xであることを特徴とする上記(7)又は(8)に記載の微粒子分離用マイクロ流路チップ。
(10)前記基板上に、放射状に伸びた前記主流路の先端部分を連結する円状の溝部が形成されていることを特徴とする上記(1)〜(9)の何れか一に記載の微粒子分離用マイクロ流路チップ。
(11)前記捕捉部位で捕捉される微粒子がCTCで、除去される微粒子が血球細胞であることを特徴とする上記(1)〜(10)の何れか一に記載の微粒子分離用マイクロ流路チップ。
(12)シース液注入口、サンプル注入口、シース液移流集積用平面部及びサンプル移流集積用平面部を少なくとも含む移流集積ユニット。
(13)シース液吸引パッドを装着する孔及びシース液吸引口を更に含むことを特徴とする上記(12)に記載の移流集積ユニット。
(14)シース液を毛管力で吸引する孔及びシース液吸引口を更に含むことを特徴とする上記(12)に記載の移流集積ユニット。
(15)上記(1)〜(11)の何れか一に記載されている微粒子分離用マイクロ流路チップ、
上記(12)〜(14)の何れか一に記載されている移流集積ユニット、
前記微粒子分離用マイクロ流路チップを回転させる回転手段、及び
シース液吸引手段、
を少なくとも含む微粒子分離用システム。
(16)前記微粒子分離用マイクロ流路チップに形成されている捕捉部位に捕捉された微粒子を取り出す微粒子抽出手段及び微粒子を検出する検出手段を更に含むことを特徴とする上記(15)に記載の微粒子分離用システム。
(17)核酸を増幅するPCR手段を更に含むことを特徴とする上記(16)に記載の微粒子分離用システム。
(18)前記微粒子分離用マイクロ流路チップの捕捉部位に磁場を発生させる磁場発生装置及び/又は電場を発生させる電場発生装置を更に含むことを特徴とする上記(15)〜(17)の何れか一に記載の微粒子分離用システム。
(19)上記(1)〜(11)の何れか一に記載されている微粒子分離用マイクロ流路チップを、
該微粒子分離用マイクロ流路チップを回転させる回転手段上に載置し、前記微粒子分離用マイクロ流路チップ上に、シース液注入口、サンプル注入口、シース液移流集積用平面部及びサンプル移流集積用平面部を少なくとも含む移流集積ユニットを配置し、
前記回転手段を回転させながら、前記シース液注入口からシース液を注入し、前記サンプル注入口からサンプルを注入することで前記微粒子分離用マイクロ流路チップとシース液移流集積用平面部及びサンプル移流集積用平面部を相対移動させ、相対移動により発生したメニスカスにより目的とする微粒子を前記微粒子分離用マイクロ流路チップに形成された捕捉部位に捕捉し、
シース液吸引手段によりシース液を吸引することで、除去される微粒子をシース液とともに微粒子分離用マイクロ流路チップから除去することを特徴とする微粒子分離方法。
(20)前記捕捉部位で捕捉される微粒子がCTCで、除去される微粒子が血球細胞であることを特徴とする上記(19)に記載の微粒子分離方法。
(1) Substrate, main flow channel formed on the substrate, a branch flow channel branched from the main flow channel and connected to the main flow channel again, and a particulate trapping portion formed in the branch flow channel and larger than the width of the branch flow channel A microchannel chip for separating fine particles, wherein the main channel is formed radially from the center of the substrate.
(2) When the size of the fine particles captured at the capture site is X and the size of the fine particles to be separated / removed is Y, the width F of the main channel and the branch channel is Y <F <X, The fine particle according to (1), wherein the capture region has a width G of 1X <G <10X, and the main channel, the branch channel, and the depth H of the capture site are 1X <H <10X. Microchannel chip for separation.
(3) The microchannel chip for microparticle separation according to (2), wherein the width G is 1X <G <2X and the depth H is 1X <H <2X.
(4) The microchannel chip for separating fine particles according to (2) or (3) above, wherein the width F is Y <F <0.8X.
(5) The above-mentioned (1) to (1), wherein a flow path having a width F and a depth J Y <J is further formed below the main flow path, the branch flow path, and the capture site. The microchannel chip for fine particle separation according to any one of 4).
(6) It includes a substrate, a main channel formed on the substrate, and a capture portion that is larger than the width of the main channel and formed on the main channel, and the main channel is formed radially from the center of the substrate. A microchannel chip for fine particle separation characterized by the above.
(7) When the size of the fine particles captured at the capture site is X and the size of the fine particles to be separated / removed is Y, the width A of the main channel is Y <A <X, and the width of the capture site B is 1X <B <10X, the depth C of the capture site is 1X <C <10X, the depth D of the main channel at the capture site is Y <D, and the depth of the main channel other than the capture site The microfluidic chip for separating fine particles according to (6) above, wherein E is E = C + D.
(8) The microchannel chip for separating fine particles according to (7), wherein the width B is 1X <B <2X and the depth C is 1X <C <2X.
(9) The microchannel chip for microparticle separation according to (7) or (8) above, wherein the width A is Y <A <0.8X.
(10) The circular groove part which connects the front-end | tip part of the said main flow path extended radially is formed on the said board | substrate, The said any one of said (1)-(9) characterized by the above-mentioned. Microchannel chip for fine particle separation.
(11) The microchannel for microparticle separation according to any one of the above (1) to (10), wherein the microparticles captured at the capture site are CTC, and the microparticles to be removed are blood cells. Chip.
(12) An advection and accumulation unit including at least a sheath liquid inlet, a sample inlet, a sheath liquid advection and accumulation plane and a sample advection and accumulation plane.
(13) The advection accumulation unit according to (12), further including a hole for mounting the sheath liquid suction pad and a sheath liquid suction port.
(14) The advection accumulation unit according to (12), further including a hole for sucking the sheath liquid by capillary force and a sheath liquid suction port.
(15) The microchannel chip for separating fine particles according to any one of (1) to (11) above,
The advection accumulation unit according to any one of the above (12) to (14),
Rotating means for rotating the micro-channel chip for separating fine particles, and sheath liquid suction means,
A system for separating fine particles.
(16) The method as described in (15) above, further comprising a fine particle extraction means for taking out the fine particles captured at a capture site formed in the microchannel chip for fine particle separation and a detection means for detecting the fine particles. Fine particle separation system.
(17) The system for separating fine particles according to (16) above, further comprising PCR means for amplifying the nucleic acid.
(18) Any one of the above (15) to (17), further including a magnetic field generator for generating a magnetic field and / or an electric field generator for generating an electric field at a capturing part of the micro-channel chip for microparticle separation The system for separating fine particles according to claim 1.
(19) The microchannel chip for microparticle separation described in any one of (1) to (11) above,
The microparticle chip for microparticle separation is placed on a rotating means for rotating, and a sheath liquid inlet, a sample inlet, a flat section for sheath liquid advection and accumulation, and a sample advection and accumulation are placed on the microchannel chip for microparticle separation. Arranging an advection accumulating unit including at least a plane part for
The microfluidic chip for fine particle separation, the flat portion for sheath liquid advection and accumulation, and the sample advection by injecting a sheath liquid from the sheath liquid inlet and injecting a sample from the sample inlet while rotating the rotating means Relative movement of the flat part for accumulation, capture the target fine particles by the meniscus generated by the relative movement to the capture site formed in the micro-channel chip for fine particle separation,
A fine particle separation method comprising removing fine particles to be removed together with a sheath liquid from a fine particle separation microchannel chip by sucking a sheath liquid with a sheath liquid suction means.
(20) The fine particle separation method according to (19), wherein the fine particles captured at the capture site are CTCs, and the removed fine particles are blood cells.

本発明の微粒子分離用システムは、捕捉部位を有する主流路を基板の中心から放射状に設けた微粒子分離用マイクロ流路チップを回転させ、移流集積ユニットに形成されたサンプル注入口からサンプル及びシース液注入口からシース液を連続的に前記微粒子分離用マイクロ流路チップに投入することができる。したがって、例えば、赤血球、白血球等が混在している全血中から前処理なしに含有量の少ないCTCのみを短時間で高精度に分離することができる。そのため、例えば、がん転移が初期の患者又はがん治療後の患者の経過観察等、血液細胞に含まれるCTC細胞が非常に少ない患者のサンプルであっても効率よくCTCを分離することができ、簡便な操作によるベッドサイド型がん診断が可能となる。   The particle separation system according to the present invention rotates a particle separation microchannel chip in which a main channel having a capture site is provided radially from the center of a substrate, and a sample and a sheath liquid from a sample inlet formed in an advection accumulation unit The sheath liquid can be continuously introduced into the microparticle chip for separating fine particles from the injection port. Therefore, for example, only a CTC with a low content can be separated with high accuracy in a short time from whole blood in which red blood cells, white blood cells, and the like are mixed, without pretreatment. Therefore, CTC can be efficiently separated even in samples of patients with very few CTC cells in blood cells, such as follow-up of patients with early cancer metastasis or after cancer treatment. Thus, bedside cancer diagnosis can be performed by simple operation.

本発明の微粒子分離用システムに用いられる微粒子分離用マイクロ流路チップは抗EpCAM抗体を使用していないので、CTC陰性又は弱陽性の腫瘍細胞であっても確実に検出することができる。また、本発明の微粒子分離用マイクロ流路チップは、赤血球、白血球等のサイズの小さい細胞はシース液によりチップの外に流し、CTC等のサイズが大きな細胞は流路に設けた捕捉部位で捕捉することができるので、従来のフィルタタイプのデバイスと異なり、デバイスの目詰まりが無く、連続的に処理することが可能となる。   Since the microfluidic chip for particle separation used in the particle separation system of the present invention does not use an anti-EpCAM antibody, even CTC-negative or weakly positive tumor cells can be reliably detected. In addition, the microchannel chip for particle separation of the present invention allows small cells such as red blood cells and white blood cells to flow out of the chip with a sheath liquid, and large cells such as CTCs are captured at a capture site provided in the channel. Therefore, unlike a conventional filter type device, the device is not clogged and can be processed continuously.

分離する微粒子がCTC等の核酸を含む生体材料の場合、捕捉部位で捕捉された生体材料を微粒子抽出手段で取り出し、核酸を増幅するPCR手段に移すことで、サンプル中の生体材料の抽出・増幅を自動化することができる。   When the microparticles to be separated are biomaterials containing nucleic acids such as CTC, the biomaterial captured at the capture site is extracted by the microparticle extraction means and transferred to the PCR means for amplifying the nucleic acid, thereby extracting and amplifying the biomaterial in the sample. Can be automated.

また、プレート上の細胞を抽出手段で自動的に抽出して、核酸を増幅するためのPCR手段に移植する公知の細胞ピッキングシステムに回転手段を取り付け、本発明の移流集積ユニット及び微粒子分離用マイクロ流路チップを用いることで、従来装置を微粒子分離用システムとして用いることができる。   Further, a rotating means is attached to a known cell picking system in which cells on the plate are automatically extracted by the extracting means and transplanted to the PCR means for amplifying the nucleic acid. By using a channel chip, a conventional apparatus can be used as a system for separating fine particles.

更に、本発明の微粒子分離用システムに用いられる微粒子分離用マイクロ流路チップは、半導体形成プロセスを用いて量産が可能であることから、CTC検査のコストを大幅に削減することができる。   Furthermore, since the microchannel chip for particle separation used in the system for particle separation of the present invention can be mass-produced using a semiconductor formation process, the cost of CTC inspection can be greatly reduced.

図1は、本発明の微粒子分離用マイクロ流路チップの一例を示す概略図である。FIG. 1 is a schematic view showing an example of a microchannel chip for separating fine particles of the present invention. 図2は、主流路12、該主流路12から分岐し再び主流路12に接続する分岐流路13、該分岐流路13に形成される捕捉部位14の拡大図である。FIG. 2 is an enlarged view of the main flow path 12, the branch flow path 13 branched from the main flow path 12 and connected again to the main flow path 12, and the capture site 14 formed in the branch flow path 13. 図3は、本発明の微粒子分離用マイクロ流路チップの他の実施形態を示す図である。FIG. 3 is a diagram showing another embodiment of the microchannel chip for separating fine particles of the present invention. 図4は、本発明の微粒子分離用マイクロ流路チップの他の実施形態を示す図である。FIG. 4 is a view showing another embodiment of the microchannel chip for separating fine particles of the present invention. 図5は、本発明の微粒子分離用マイクロ流路チップの主流路20及び捕捉部位21の他の形態を示す図である。FIG. 5 is a diagram showing another form of the main channel 20 and the capture site 21 of the microchannel chip for particle separation of the present invention. 図6は、本発明の微粒子分離用マイクロ流路チップを作製する手順を示したフローチャートである。FIG. 6 is a flowchart showing a procedure for producing the microchannel chip for separating fine particles of the present invention. 図7は、本発明の微粒子分離用システムの概略を示す図である。FIG. 7 is a diagram showing an outline of the fine particle separation system of the present invention. 図8は、メニスカスの発生原理を説明する図である。FIG. 8 is a diagram illustrating the principle of meniscus generation. 図9は、図面代用写真で、移流集積ユニット50の構成と、システム30に移流集積ユニット50とチップ1をセットした際の位置関係を示す写真である。FIG. 9 is a drawing-substituting photograph showing the configuration of the advection accumulation unit 50 and the positional relationship when the advection accumulation unit 50 and the chip 1 are set in the system 30. 図10は、図面代用写真で、システム30の移流集積ユニット50を斜め上から拡大した写真である。FIG. 10 is a drawing-substituting photograph that is an enlarged view of the advection stacking unit 50 of the system 30 from above. 図11は、図面代用写真で、移流集積ユニット50の側面からの写真である。FIG. 11 is a drawing-substituting photograph from the side of the advection stacking unit 50. 図12は、図面代用写真で、本発明の微粒子分離用システムの全体を示す写真である。FIG. 12 is a drawing-substituting photograph showing the entire particulate separation system of the present invention. 図13は、図面代用写真で、本発明のシステムを用いて微粒子を分離した後に、捕捉部位で捕捉した微粒子を取り出す様子を示す写真である。FIG. 13 is a drawing-substituting photograph showing a state in which fine particles captured at a capture site are taken out after the fine particles are separated using the system of the present invention. 図14は、図面代用写真で、実施例1で得られたチップの外観を示す写真である。FIG. 14 is a drawing-substituting photograph showing the appearance of the chip obtained in Example 1. 図15は、図面代用写真で、実施例3で得られたた移流集積ユニットの外観を示す写真である。FIG. 15 is a drawing-substituting photograph showing the appearance of the advection accumulation unit obtained in Example 3. 図16は、図面代用写真で、実施例4で得られたた移流集積ユニットのシース液を毛管力で吸引する孔部分を拡大した写真である。FIG. 16 is a photograph substituted for a drawing, and is an enlarged photograph of a hole portion for sucking the sheath liquid of the advection accumulation unit obtained in Example 4 by capillary force.

以下に、微粒子分離用マイクロ流路チップ、移流集積ユニット、微粒子分離用システム及び微粒子分離方法について詳しく説明する。   Hereinafter, the micro-channel chip for separating fine particles, the advection collecting unit, the system for separating fine particles, and the method for separating fine particles will be described in detail.

図1は、本発明の微粒子分離用マイクロ流路チップ(以下、単に「チップ」と記載することもある。)の一例を示しており、チップ1は、基板10、該基板10の中心11から放射状に形成された主流路12、前記主流路12から分岐し再び主流路12に接続する分岐流路13、該分岐流路13に形成され目的とする微粒子を捕捉する捕捉部位14、を少なくとも含んでいる。また、主流路12の先端部分には、各々の主流路12の先端部分を連結する円状の溝部15が形成されてもよく、後述する移流集積ユニットから注入されたシース液及びサンプル中の除去すべき微粒子を溝部15に導き、シース液吸引手段のシース液に当接する部分18を介して、溝部15から吸引・除去できるようにしてもよい。   FIG. 1 shows an example of a micro-channel chip for separating fine particles according to the present invention (hereinafter sometimes simply referred to as “chip”). The chip 1 is formed from a substrate 10 and a center 11 of the substrate 10. It includes at least a main channel 12 formed radially, a branch channel 13 that branches from the main channel 12 and connects to the main channel 12 again, and a capture site 14 that is formed in the branch channel 13 and captures target particles. It is out. In addition, a circular groove portion 15 that connects the tip portions of the main flow channels 12 may be formed at the tip portions of the main flow channels 12, and removed from the sheath liquid and the sample injected from the advection accumulation unit described later. The fine particles to be guided may be guided to the groove portion 15 so that they can be sucked and removed from the groove portion 15 via the portion 18 in contact with the sheath liquid of the sheath liquid suction means.

なお、本発明において、「微粒子」とは、液体に分散できる粒子を意味し、粒子の形態は単独又は凝集状態のどちらでもよい。また、微粒子の大きさは、メニスカスの原理が適用できる範囲であれば特に制限はなく、約1mm以下の大きさであればよい。前記の条件を満たす微粒子であれば、非生体材料又は生体材料を問わず用いることができる。なお、図1では、捕捉すべき微粒子がCTCで、除去すべき微粒子が血液細胞の例を示している。   In the present invention, the term “fine particles” means particles that can be dispersed in a liquid, and the form of the particles may be either single or aggregated. The size of the fine particles is not particularly limited as long as the meniscus principle can be applied, and may be about 1 mm or less. Any non-biological material or biomaterial can be used as long as it satisfies the above conditions. FIG. 1 shows an example in which the fine particles to be captured are CTC and the fine particles to be removed are blood cells.

チップ1は、後述する微粒子分離用システムの回転手段に載置し回転することができれば形状等に特に制限は無いが、スペース及び取扱いの利便性から円形状が好ましい。また、回転手段上に載置した後はチップ1がずれないようにすることが好ましく、回転手段を形成する材料と密着性の高い材料で基板10を形成してもよいし、例えば、回転手段に凸部を形成し基板10に凹部を形成してもよい。基板10の材料としては、ポリジメチルシロキサン(PDMS)、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、硬質ポリエチレン製等のプラスチック、ガラス等が挙げられるが、これらに限定されるものではない。   The chip 1 is not particularly limited in shape and the like as long as it can be mounted and rotated on a rotating means of a particle separation system described later, but a circular shape is preferable from the viewpoint of space and convenience of handling. Further, it is preferable that the chip 1 is not displaced after being placed on the rotating means, and the substrate 10 may be formed of a material having high adhesion to the material forming the rotating means. A convex portion may be formed on the substrate 10 and a concave portion may be formed on the substrate 10. Examples of the material of the substrate 10 include, but are not limited to, polydimethylsiloxane (PDMS), polymethyl methacrylate (PMMA), polycarbonate (PC), plastic made of hard polyethylene, glass, and the like.

本発明のチップ1を用いて微粒子を分離する際には、後述する移流集積ユニットのシース液移流集積用平面部(以下、「シース液平面部」と記載することもある。)に対応するエリアでシース液にメニスカスを発生させ、そして、シース液にメニスカスを発生させるエリアより外周側であって、サンプル移流集積用平面部(以下、「サンプル平面部」と記載することもある。)に対応するエリアでサンプルにメニスカスを発生させる。したがって、主流路12は、捕捉部位14が形成されていない部分16及び捕捉部位14が形成されている部分17で形成されてもよいが、様々な形状の移流集積ユニットに対応するため、主流路12の全長に渡り捕捉部位14が形成されていてもよい。   When the fine particles are separated using the chip 1 of the present invention, an area corresponding to a sheath liquid advection and accumulation plane portion (hereinafter also referred to as “sheath liquid plane portion”) of an advection and accumulation unit described later. Thus, a meniscus is generated in the sheath liquid, and the outer peripheral side of the area where the meniscus is generated in the sheath liquid corresponds to a sample advection and accumulation plane part (hereinafter also referred to as “sample plane part”). A meniscus is generated in the sample in the area to be used. Therefore, the main flow path 12 may be formed by the portion 16 where the capture site 14 is not formed and the portion 17 where the capture site 14 is formed. The capture site 14 may be formed over the entire length of 12.

図2は、主流路12、該主流路12から分岐し再び主流路12に接続する分岐流路13、該分岐流路13に形成される捕捉部位14の拡大図である。なお、分岐流路13に形成される捕捉部位14は、分岐流路13の途中に形成されてもよいし、図2の(1)〜(4)に示されるように、捕捉部位14の一部が主流路12と接触していてもよい。図2(1)は捕捉部位14が円形状の例を示しており、該円形状の捕捉部位14の一部が主流路12と接触しており、(2)は主流路12の流れ方向の鉛直方向に、角が滑らかな略正方形の捕捉部位14が形成された例を示しており、該略正方形の捕捉部位14の一辺が主流路12と接触しており、(3)は主流路12の流れ方向に角を滑らかにした略正方形の捕捉部位14が形成されるとともに主流路12の流れ方向を約90度変化させた例を示しており、前記略正方形の捕捉部位14の一辺が主流路12と接触しており、(4)は分岐流路13に形成された捕捉部位14が略楕円形状の例を示しており、該楕円形状の捕捉部位14の一部が主流路12と接触している。なお、前記(1)〜(4)に記載されている捕捉部位14の形状は単なる例示に過ぎず、例えば、6角形又は8角形の多角形等、微粒子が捕捉できれば他の形状であってもよい。また、1本の分岐流路13に1個の捕捉部位14が形成されてもよいし、複数本の分岐流路に1個の捕捉部位14が形成されてもよい。更に、主流路12及び分岐流路13は、直線又は曲線でもよいし、直線の途中で方向を変える折れ線でもよい。   FIG. 2 is an enlarged view of the main flow path 12, the branch flow path 13 branched from the main flow path 12 and connected again to the main flow path 12, and the capture site 14 formed in the branch flow path 13. The capture site 14 formed in the branch channel 13 may be formed in the middle of the branch channel 13, or as shown in (1) to (4) of FIG. The part may be in contact with the main flow path 12. FIG. 2 (1) shows an example in which the capture part 14 is circular, a part of the circular capture part 14 is in contact with the main flow path 12, and (2) is the flow direction of the main flow path 12. An example in which a substantially square capturing part 14 having a smooth corner is formed in the vertical direction, one side of the substantially square capturing part 14 is in contact with the main flow path 12, and (3) is the main flow path 12. An example is shown in which a substantially square capturing part 14 having a smoothed corner is formed in the flow direction and the flow direction of the main flow path 12 is changed by about 90 degrees, and one side of the substantially square capturing part 14 is the main stream. (4) shows an example in which the capture part 14 formed in the branch flow path 13 is substantially elliptical, and a part of the elliptical capture part 14 is in contact with the main flow path 12. doing. In addition, the shape of the capture | acquisition site | part 14 described in said (1)-(4) is only a mere illustration, For example, as long as microparticles | fine-particles can be capture | acquired, such as a hexagon or an octagon polygon, it is another shape. Good. In addition, one capture site 14 may be formed in one branch channel 13, or one capture site 14 may be formed in a plurality of branch channels. Further, the main flow path 12 and the branch flow path 13 may be straight lines or curved lines, or may be broken lines that change directions in the middle of the straight lines.

主流路12、分岐流路13及び捕捉部位14の幅及び深さは、捕捉する微粒子の大きさに応じて適宜設定すればよいが、捕捉部位14で捕捉される微粒子の大きさをX、分離・除去される微粒子の大きさをYとした場合、前記主流路12及び分岐流路13の幅FはY<F<Xが好ましい。前記捕捉部位14の幅G(なお、捕捉部位14の幅Gとは、捕捉部位14の形状が円形の場合は直径、正方形の場合は1辺、6又は8角形等の多角形や楕円の場合は多角形や楕円の中心を通る最短となる長さを意味する。)は、1X<G<10Xが好ましい。また、前記主流路12、分岐流路13及び捕捉部位14の深さHは、1X<H<10Xの範囲で同じ深さとすることが好ましい。G及びHを10以上にすると、捕捉部位14の大きさに対する分岐流路13の幅が小さくなりすぎ、微粒子の分離・除去の処理能力が低下するので好ましくない。なお、捕捉部位14に連結する分岐流路13の数を複数本設ける場合、微粒子分離の処理能力が向上することから、G及びHは10X以上であってもよい。また、前記の数値は捕捉した微粒子の濃縮等、個々の捕捉部位14で複数個の微粒子を捕捉する場合の範囲であるが、捕捉した微粒子を分析等するために個々の捕捉部位14で捕捉する微粒子を1個とする場合は、1X<G<2X、1X<H<2Xとすることが好ましい。更に、捕捉部位14で捕捉される微粒子が生体細胞等、形状が変化し易い場合は、捕捉部位14で捕捉した生体細胞等が流体力により形状が変化し分岐流路13に流れ出ないようにするため、分岐流路13の幅Fを生体細胞の形状の変化割合に応じて適宜選択すればよく、例えば、CTCの場合は、Y<F<0.8Xとすることが好ましい。なお、主流路及び分岐流路の幅Fについては、前記Fの範囲内であれば同じでも異なっていてもよい。また、主流路12、分岐流路13及び捕捉部位14の深さHは、前記Hの範囲内であれば同じでも異なっていてもよい。更に、本発明では、捕捉部位14の下方に流路を形成してもよい。その場合、主流路12、分岐流路13及び捕捉部位14の下方に、幅がF、深さJがY<Jの流路を更に設ければよく、図2(5)は更に流路を設けた際の捕捉部位14部分の断面図を表している。   The width and depth of the main flow path 12, the branch flow path 13, and the capture site 14 may be set as appropriate according to the size of the fine particles to be captured. When the size of the fine particles to be removed is Y, the width F of the main channel 12 and the branch channel 13 is preferably Y <F <X. Width G of the capture site 14 (Note that the width G of the capture site 14 is a diameter when the shape of the capture site 14 is circular, and a polygon or ellipse such as one side, 6 or octagon when it is square) Means the shortest length passing through the center of the polygon or ellipse.) Is preferably 1X <G <10X. Moreover, it is preferable that the depth H of the main flow path 12, the branch flow path 13, and the capture part 14 be the same depth in the range of 1X <H <10X. If G and H are set to 10 or more, the width of the branch flow path 13 with respect to the size of the capture site 14 becomes too small, and the processing capacity for separating and removing fine particles is not preferable. In the case where a plurality of branch flow paths 13 connected to the capture site 14 are provided, G and H may be 10X or more because the processing capacity for separating fine particles is improved. The above numerical value is a range in the case where a plurality of fine particles are captured at each capture site 14 such as concentration of captured fine particles, but is captured at each capture site 14 in order to analyze the captured fine particles. When the number of fine particles is one, it is preferable that 1X <G <2X and 1X <H <2X. Further, when the shape of the microparticles captured at the capturing site 14 is likely to change, such as a living cell, the shape of the living cell captured at the capturing site 14 is changed by the fluid force so that it does not flow out to the branch channel 13. Therefore, the width F of the branch channel 13 may be appropriately selected according to the change rate of the shape of the living cell. For example, in the case of CTC, it is preferable to satisfy Y <F <0.8X. The width F of the main channel and the branch channel may be the same or different as long as they are within the range of F. Moreover, the depth H of the main flow path 12, the branch flow path 13, and the capture | acquisition site | part 14 may be the same or different, if it is in the range of said H. Furthermore, in the present invention, a flow path may be formed below the capture site 14. In that case, a flow path having a width F and a depth J of Y <J may be further provided below the main flow path 12, the branch flow path 13 and the capture site 14, and FIG. Sectional drawing of the capture | acquisition part 14 part at the time of providing is represented.

例えば、全血からCTCを捕捉し、CTC以外の赤血球、白血球等の細胞を除去する場合、主流路12及び分岐流路13の幅Fは、CTCの直径(15〜30μm)よりは小さく、血球細胞(約7μm)より大きくすればよく、8〜12μmが好ましい。一方、捕捉部位14は、CTCを捕捉する必要があることから、捕捉部位14の幅は、CTCの直径より大きい必要がある。例えば、図2(1)に示す捕捉部位14が円形状の場合は、直径Gが16〜36μmであることが好ましく、図2(2)及び(3)に示す捕捉部位14が略正方形の場合は、一辺Gが、16〜36μmであることが好ましく、図2(4)に示す捕捉部位14が略楕円形状の場合は、短軸Gが16〜36μmであることが好ましい。なお、捕捉部位14の形状が多角形の場合は、上記のとおり、中心を通る最短となる線の長さが16〜36μmとすればよい。   For example, when CTC is captured from whole blood and cells such as red blood cells and white blood cells other than CTC are removed, the width F of the main flow path 12 and the branch flow path 13 is smaller than the diameter (15 to 30 μm) of the CTC. What is necessary is just to make it larger than a cell (about 7 micrometers), and 8-12 micrometers is preferable. On the other hand, since the capture site 14 needs to capture CTC, the width of the capture site 14 needs to be larger than the diameter of the CTC. For example, when the capture site 14 shown in FIG. 2 (1) is circular, the diameter G is preferably 16 to 36 μm, and when the capture site 14 shown in FIGS. 2 (2) and (3) is substantially square. The side G is preferably 16 to 36 [mu] m, and the short axis G is preferably 16 to 36 [mu] m when the capture site 14 shown in FIG. In addition, when the shape of the capture | acquisition site | part 14 is a polygon, the length of the shortest line | wire which passes along a center should just be 16-36 micrometers as above-mentioned.

図2(1)〜(4)に示される捕捉部位を含むチップ1の場合、CTCは捕捉部位14にトラップされるが、後述するシース液は主流路12を流れるため、CTCはシース液の流体力を受けることがない。さらに、CTCより小さな血球細胞の多くは、後述するシース液と共に主流路12を流れ、捕捉部位14に流入してしまった血球細胞は、捕捉部位14から更に伸びている分岐流路13を通り再び主流路12に戻すことができる。したがって、図2に示されるチップ1では、CTCとCTC以外の細胞の主要な流れが異なることから、捕捉部位14の下方に流路を形成することは必須ではない。下方に流路を設けない場合、主流路12、分岐流路13及び捕捉部位14の深さは16〜36μmが好ましい。捕捉部位14の下方に流路を設ける場合は、捕捉部位14の下方の流路の深さは8〜20μmが好ましく、捕捉部位14以外の主流路12及び分岐流路13については、捕捉部位14と流路の深さを合計した深さとすればよい。   In the case of the chip 1 including the capture site shown in FIGS. 2 (1) to 2 (4), CTC is trapped in the capture site 14, but the sheath liquid described later flows through the main flow path 12, and therefore CTC is the flow of the sheath liquid. No physical strength. Furthermore, many blood cells smaller than CTC flow through the main flow path 12 together with the sheath liquid described later, and the blood cells that have flowed into the capture site 14 pass again through the branch flow channel 13 extending further from the capture site 14. It can be returned to the main flow path 12. Therefore, in the chip 1 shown in FIG. 2, since the main flows of cells other than CTC and CTC are different, it is not essential to form a flow path below the capture site 14. In the case where no flow path is provided below, the depth of the main flow path 12, the branch flow path 13 and the capture portion 14 is preferably 16 to 36 μm. When a flow path is provided below the capture site 14, the depth of the flow path below the capture site 14 is preferably 8 to 20 μm. For the main flow channel 12 and the branch flow channel 13 other than the capture site 14, the capture site 14 is used. And the total depth of the flow paths.

上記の例は、全血からCTCを分離する場合の大きさであるが、例えば、腹腔洗浄液において血球細胞または中皮細胞(約7〜15μm)から胃がん細胞塊(25〜50μm)を分離する場合は、主流路12及び分岐流路13の幅Fは8〜24μmとすればよく、主流路12、分岐流路13及び捕捉部位14の幅G及び深さHは26μm〜60μmとすればよい。   The above example is the size when separating CTC from whole blood, for example, when separating gastric cancer cell mass (25-50 μm) from blood cells or mesothelial cells (about 7-15 μm) in the peritoneal lavage fluid The width F of the main flow path 12 and the branch flow path 13 may be 8 to 24 μm, and the width G and the depth H of the main flow path 12, the branch flow path 13 and the capture site 14 may be 26 μm to 60 μm.

図1の溝部15の幅及び深さは、主流路12からシース液が流入できれば特に制限は無いが、溝部15の幅は、シース液吸引手段のシース液に当接する部分18より大きくすることが望ましい。また、溝部15の深さは、シース液がスムーズに流れ込むようにするため、主流路12と同じ深さにすることが好ましい。   The width and depth of the groove 15 in FIG. 1 are not particularly limited as long as the sheath liquid can flow from the main flow path 12, but the width of the groove 15 may be larger than the portion 18 that contacts the sheath liquid of the sheath liquid suction means. desirable. The depth of the groove 15 is preferably the same as that of the main channel 12 so that the sheath liquid flows smoothly.

図3は、本発明の微粒子分離用マイクロ流路チップの他の実施形態を示す図で、溝部15は図1に示す形状に限定されず、例えば、放射状に伸びた各主流路12の先端部分を連結する円形状の幅をシース液吸引手段のシース液に当接する部分18より小さくし、シース液吸引手段のシース液に当接する部分18の一部が溝部15に重なるように配置してもよい。また、溝部15を形成することは必須ではなく、例えば、図4に示すように、主流路12の先端部分に、シース液吸引手段のシース液に当接する部分18を当接するようにしてもよい。   FIG. 3 is a view showing another embodiment of the micro-channel chip for separating fine particles according to the present invention. The groove 15 is not limited to the shape shown in FIG. 1, and for example, the tip portion of each main channel 12 extending radially. The width of the circular shape connecting the two is made smaller than the portion 18 of the sheath liquid suction means that contacts the sheath liquid, and the part of the portion 18 of the sheath liquid suction means that contacts the sheath liquid overlaps the groove 15. Good. In addition, it is not essential to form the groove portion 15. For example, as shown in FIG. 4, a portion 18 that contacts the sheath liquid of the sheath liquid suction unit may be in contact with the distal end portion of the main flow path 12. .

図5(1)は、主流路20及び捕捉部位21の他の形態を示しており、本形態では、分岐流路を形成せず、主流路20上に捕捉部位21を配置している。捕捉部位21の形状は、前記捕捉部位14と同様、円形、略正方形、6角形や8角形等の多角形、楕円形等、目的とする微粒子を捕捉できるものであれば特に制限は無い。また、捕捉部位の幅の定義も捕捉部位14と同様である。   FIG. 5 (1) shows another form of the main channel 20 and the capture site 21. In this embodiment, the capture site 21 is arranged on the main channel 20 without forming a branch channel. The shape of the capture site 21 is not particularly limited as long as it can capture the target fine particles, such as a circle, a substantially square, a polygon such as a hexagon or an octagon, and an ellipse, like the capture site 14. The definition of the width of the capture site is the same as that of the capture site 14.

図5(2)は、図5(1)の主流路20上に捕捉部位21が形成されていない位置a−aの断面図、図5(3)は主流路20上に捕捉部位21が形成されている位置b−bの断面図である。主流路20の幅及び深さ、捕捉部位21の幅及び深さは、捕捉する微粒子の大きさに応じて適宜設定すればよいが、本形態では、図5(3)に示す下段部分の流路で除去すべき微粒子をシース液を用いて排出し、上段の捕捉部位21で目的とする微粒子を捕捉することから、前記捕捉部位21で捕捉される微粒子の大きさをX、分離・除去される微粒子の大きさをYとした場合、前記主流路20の幅AはY<A<X、前記捕捉部位21の幅Bは1X<B<10X、前記捕捉部位21の深さCは1X<C<10X、前記捕捉部位21における流路の深さDはY<Dとすることが好ましく、前記捕捉部位21以外の流路の深さEはE=C+Dとすることが好ましい。B及びCを10以上にすると、捕捉部位21の大きさに対する主流路20の幅Aが小さくなりすぎ、微粒子の分離・除去の処理能力が低下するので好ましくない。なお、前記の1X<B<10X、1X<C<10Xは、捕捉部位21の下段の主流路20が一本の例であるが、捕捉部位21の下段に複数本の主流路20を設けて微粒子分離の処理能力を上げれば、B及びCは10X以上であってもよい。   5 (2) is a cross-sectional view of the position aa where the capture site 21 is not formed on the main channel 20 of FIG. 5 (1), and FIG. 5 (3) is the capture site 21 formed on the main channel 20. It is sectional drawing of the position bb made. The width and depth of the main channel 20 and the width and depth of the trapping part 21 may be set as appropriate according to the size of the particulates to be trapped. In this embodiment, the flow of the lower part shown in FIG. Since the fine particles to be removed in the passage are discharged using the sheath liquid and the target fine particles are captured at the upper capture site 21, the size of the fine particles captured at the capture site 21 is separated and removed. When the size of the fine particles is Y, the width A of the main flow path 20 is Y <A <X, the width B of the capture site 21 is 1X <B <10X, and the depth C of the capture site 21 is 1X < It is preferable that C <10X, and the depth D of the flow path in the capture part 21 is Y <D, and the depth E of the flow path other than the capture part 21 is preferably E = C + D. If B and C are 10 or more, the width A of the main flow path 20 with respect to the size of the capture site 21 becomes too small, and the processing capacity for separation / removal of fine particles is not preferable. The above-mentioned 1X <B <10X and 1X <C <10X are examples in which the lower main flow path 20 of the capture site 21 is one example, but a plurality of main flow paths 20 are provided at the lower level of the capture site 21. B and C may be 10X or more as long as the processing capacity for fine particle separation is increased.

また、前記捕捉部位14と同様、個々の捕捉部位21で捕捉する微粒子を1個とする場合は、1X<B<2X、1X<C<2Xとすればよく、目的の微粒子がCTCの場合は、前記主流路20の幅AをY<A<0.8Xとすることが好ましい。   Similarly to the trapping site 14, when one particle is captured at each trapping site 21, 1X <B <2X, 1X <C <2X, and when the target particle is CTC, The width A of the main channel 20 is preferably Y <A <0.8X.

全血から、CTCを捕捉し、CTC以外の赤血球、白血球等の血球細胞を除去する場合も、前記と同様、主流路20の幅Aは8〜12μmが好ましく、捕捉部位21の幅B及び深さCは16〜36μmが好ましい。   When capturing CTC from whole blood and removing blood cells such as red blood cells and white blood cells other than CTC, the width A of the main flow path 20 is preferably 8 to 12 μm, and the width B and depth of the capture site 21 are the same as described above. The length C is preferably 16 to 36 μm.

また、捕捉部位21においては、図5(3)で示される上段部分でCTCを捕捉し、下段部分でシース液により血球細胞を除去することから、捕捉部位21が形成されている部分の主流路20の下段部分の深さDは、少なくとも血球細胞の直径より大きい必要があり、また、1以上の血球細胞を同時に除去できることが好ましいことから、深さDは、8〜20μmが好ましい。捕捉部位21が形成されていない主流路20の深さEはC+Dとすればよい。   Moreover, in the capture part 21, since CTC is captured by the upper stage part shown by FIG. 5 (3), and a blood cell is removed by a sheath liquid in a lower part part, the main flow path of the part in which the capture part 21 is formed The depth D of the lower portion 20 needs to be at least larger than the diameter of blood cells, and it is preferable that one or more blood cells can be removed at the same time. Therefore, the depth D is preferably 8 to 20 μm. The depth E of the main channel 20 in which the capture site 21 is not formed may be C + D.

上記の例は、全血からCTCを分離する場合の大きさであるが、例えば、腹腔洗浄液において血球細胞または中皮細胞(約7〜15μm)から胃がん細胞塊(25〜50μm)を分離する場合は、主流路20の深さDは8〜24μmとすればよく、捕捉部位21の幅B及び深さCは26μm〜60μmとすればよい。   The above example is the size when separating CTC from whole blood, for example, when separating gastric cancer cell mass (25-50 μm) from blood cells or mesothelial cells (about 7-15 μm) in the peritoneal lavage fluid The depth D of the main flow path 20 may be 8 to 24 μm, and the width B and the depth C of the capture site 21 may be 26 μm to 60 μm.

チップ1に形成される主流路12、20の数は少なくとも2以上であって、隣の主流路に形成されている捕捉部位14、21に干渉しなければ、形成する主流路の数は特に制限は無い。また、各主流路12、20に形成される捕捉部位14、21の数は少なくとも1以上で、主流路12、20の長さ、形成する捕捉部位の幅等を考慮し適宜調整すればよい。また、主流路12,20の形状は直線でも良いし、図1に示すように曲線であってもよい。本発明においては、チップ1と移流集積ユニットを相対移動することでメニスカスを発生させているが、チップ1は基板10の中心11を中心に回転していることから、シース液平面部及びサンプル平面部におけるメニスカスが発生するラインは直線ではなく曲線になる。したがって、メニスカスが発生するラインと主流路12、20のラインは一致した方が好ましく、また捕捉部位数を多く確保するためにも、主流路12、20は曲線の方が好ましい。曲線の曲がり具合は、チップ1の回転速度等を考慮しながら、適宜調整すればよい。   The number of the main flow paths 12 and 20 formed in the chip 1 is at least 2 or more, and the number of main flow paths to be formed is particularly limited as long as it does not interfere with the capturing portions 14 and 21 formed in the adjacent main flow paths. There is no. Moreover, the number of the capture | acquisition parts 14 and 21 formed in each main flow path 12 and 20 is at least 1 or more, What is necessary is just to adjust suitably in consideration of the length of the main flow paths 12 and 20, the width | variety of the capture | acquisition part to form. Moreover, the shape of the main flow paths 12 and 20 may be a straight line, or may be a curve as shown in FIG. In the present invention, the meniscus is generated by relatively moving the tip 1 and the advection integrated unit. However, since the tip 1 rotates around the center 11 of the substrate 10, the sheath liquid plane portion and the sample plane The line where the meniscus occurs in the part is not a straight line but a curved line. Therefore, it is preferable that the line where the meniscus is generated coincides with the lines of the main flow paths 12 and 20, and the main flow paths 12 and 20 are preferably curved so as to secure a large number of capture sites. What is necessary is just to adjust the curve | curvature degree of a curve suitably, considering the rotational speed of the chip | tip 1, etc. FIG.

前記チップ1は、フォトリソグラフィー技術を用いて作製することができる。図6は作製手順の一例を示したフローチャートで、図5に示すように捕捉部位21の下に流路が設けられている2段形状のチップを作製する場合の2段露光技術を用いた手順を示している。   The chip 1 can be manufactured using a photolithography technique. FIG. 6 is a flowchart showing an example of a manufacturing procedure. As shown in FIG. 5, a procedure using a two-stage exposure technique in the case of manufacturing a two-stage chip in which a flow path is provided below the capturing portion 21. Is shown.

先ず、シリコン基板を超音波洗浄機により有機洗浄し、ベイクする。次いで、図6に示す以下の手順で作製する。
1.ネガティブフォトレジスト(SU−8)をSiの基板上にスピンコートし、ホットプレート上でプリベイクする。
2.捕捉部位、捕捉部位以外の主流路部分及び溝部を形成するためのクロムマスク等のフォトマスクを用い露光する。
3.ホットプレート上でポストエクスポージャーベイクを行い、現像液(PMシンナー等)を用い現像した後、超純水を用いリンスし、スピンドライヤー等で水分をとばし乾燥させる。
4.2段目のSU−8のネガティブフォトレジストをスピンコートし、プリベイクする。
5.捕捉部位の下段の主流路、捕捉部位以外の主流路部分及び溝部を形成するためのクロムマスク等を用い露光する。
6.ポストエクスポージャーベイク、現像、リンスを行い、パターンを形成する。
7.形成されたパターンを、ポリジメチルシロキサン(PDMS)に転写する。
8.形成されたパターンからPDMSを分離する。
9.PDMS表面を親水化する。
First, the silicon substrate is organically cleaned with an ultrasonic cleaner and baked. Next, it is manufactured by the following procedure shown in FIG.
1. A negative photoresist (SU-8) is spin-coated on a Si substrate and prebaked on a hot plate.
2. The exposure is performed using a photomask such as a chrome mask for forming the capture site, the main flow path portion other than the capture site and the groove.
3. After performing post-exposure baking on a hot plate and developing with a developer (PM thinner or the like), rinse with ultrapure water, and then dry with a spin dryer or the like.
4. Spin coat the second stage SU-8 negative photoresist and pre-bake.
5). The exposure is performed using a lower main channel of the capture site, a main flow channel portion other than the capture site, and a chrome mask for forming a groove.
6). Post-exposure baking, development and rinsing are performed to form a pattern.
7). The formed pattern is transferred to polydimethylsiloxane (PDMS).
8). PDMS is separated from the formed pattern.
9. PDMS surface is hydrophilized.

有機洗浄は、アセトン、エタノール等、半導体製造分野で一般的に用いられている洗浄剤であれば特に制限はされない。また、上記の手順では、基板としてSiを用いた例を示したが、フォトリソグラフィー技術分野で一般的に用いられている材料であれば基板の材料は特に限定はされず、例えば、シリコンカーバイド、サファイア、リン化ガリウム、ヒ化ガリウム、リン化ガリウム、窒化ガリウム等が挙げられる。ネガティブフォトレジストもSU−8に限定されず、例えば、KMPR等、また、ポジティブフォトレジストであれば、例えば、PMER、AZ等一般的に使用されているレジストを用いることもできる。   The organic cleaning is not particularly limited as long as it is a cleaning agent generally used in the semiconductor manufacturing field, such as acetone and ethanol. In the above procedure, an example in which Si is used as a substrate has been shown. However, the material of the substrate is not particularly limited as long as it is a material generally used in the photolithography technical field. For example, silicon carbide, Examples include sapphire, gallium phosphide, gallium arsenide, gallium phosphide, and gallium nitride. The negative photoresist is not limited to SU-8. For example, a commonly used resist such as PMER or AZ can be used as long as it is a positive photoresist.

上記の手順は、捕捉部位21の下側に主流路20を形成する場合の手順であるが、図2に示されるような主流路12、分岐流路13、捕捉部位14及び溝部15が同じ深さの場合は、それらの形状のマスクを用い、上記手順「4.〜6.」の2段目のレジスト層を設ける手順を省略する以外は、上記と同様の手順で作製することができる。   The above procedure is a procedure in the case of forming the main channel 20 below the capture site 21, but the main channel 12, the branch channel 13, the capture site 14 and the groove 15 as shown in FIG. In this case, it can be produced in the same procedure as described above except that the masks of those shapes are used and the procedure of providing the second resist layer in the procedure “4.-6.” Is omitted.

チップ1の表面は親水化処理されることで、マイクロチップに液体を注入した際、溝に気泡が入ることを防止できる。親水化処理方法等しては、プラズマ処理、界面活性剤処理、PVP(ポリビニルピロリドン)処理、光触媒等が挙げられ、例えば、チップ表面を10〜30秒間プラズマ処理することで、チップ表面に水酸基を導入することができる。   Since the surface of the chip 1 is hydrophilized, it is possible to prevent bubbles from entering the groove when a liquid is injected into the microchip. Examples of the hydrophilization treatment method include plasma treatment, surfactant treatment, PVP (polyvinylpyrrolidone) treatment, photocatalyst and the like. For example, by subjecting the chip surface to plasma treatment for 10 to 30 seconds, hydroxyl groups are formed on the chip surface. Can be introduced.

図7は、本発明の微粒子分離用システム(以下、単に「システム」と記載することもある。)30の概略を示す図で、チップ1を載置して回転させる回転手段40、移流集積ユニット50、図示しないシース液吸引手段を少なくとも含んでおり、捕捉部位で捕捉した微粒子を取り出す場合は微粒子抽出手段70を含んでもよい。更に、捕捉した微粒子が核酸を含む生体材料で、分離後にPCRを行う場合はPCR手段80を含んでいてもよく、図7ではPCRに用いられるウェルを配置した例を示している。また、後述する移流集積ユニットのシース液注入口にシース液を送液するシース液インジェクション61及びサンプル注入口にサンプルを送液するサンプルインジェクション62を設けてもよい。シース液インジェクション61及びサンプルインジェクション62は、送液できるものであれば特に制限は無く、シリンジ等を用いて手動で送液してもよいし、市販の定流量ポンプ等を用いてもよい。また、送液に動力を使用せず、ボトル等から重量により滴下してもよく、その場合、点滴の流量調整に用いられるクレンメを設けて流量を調整してもよい。   FIG. 7 is a diagram showing an outline of a fine particle separation system (hereinafter sometimes simply referred to as “system”) 30 according to the present invention. Rotating means 40 for mounting and rotating the chip 1 and an advection accumulation unit 50, which includes at least a sheath liquid suction means (not shown), and may include a fine particle extraction means 70 when taking out the fine particles captured at the capture site. Furthermore, when the captured microparticles are biomaterials containing nucleic acids and PCR is performed after separation, PCR means 80 may be included, and FIG. 7 shows an example in which wells used for PCR are arranged. Further, a sheath liquid injection 61 for feeding a sheath liquid to the sheath liquid inlet of the advection accumulation unit described later and a sample injection 62 for feeding a sample to the sample inlet may be provided. The sheath liquid injection 61 and the sample injection 62 are not particularly limited as long as the liquid can be fed, and may be manually fed using a syringe or a commercially available constant flow pump or the like. Moreover, you may drop by weight from a bottle etc., without using motive power for liquid feeding, In that case, you may provide the clamp used for the flow volume adjustment of drip, and may adjust a flow volume.

図8は、回転手段40によりチップ1と移流集積ユニット50を相対移動させた際に発生するメニスカスの原理を説明する図で、移流集積法と呼ばれる、気液界面に存在する微粒子間の毛管力(特に横毛管力:lateral capillary forceと呼ばれる。)を利用して、微粒子同士を細密充填構造に配列する手法を用いている。チップ1と移流集積ユニット50のシース液平面部53及びサンプル平面部54を相対移動すると、微粒子が溶液に分散した懸濁液のメニスカスがチップ1とシース液平面部53及びサンプル平面部54に間に形成され、メニスカスの先端において、図8に示すように微粒子が溶液から頭を出す箇所が形成される。この頭が出ている箇所では、界面張力及び重力により下に押し付けられる力が微粒子に発生しながらメニスカスと共に移動し、微粒子はチップ1に押し付けられ、そして目的とする微粒子が主流路に形成された捕捉部位に捕捉される。   FIG. 8 is a diagram for explaining the principle of meniscus generated when the chip 1 and the advection accumulating unit 50 are relatively moved by the rotating means 40. Capillary force between fine particles existing at the gas-liquid interface, called advection accumulation method. A technique is used in which fine particles are arranged in a closely packed structure by utilizing (especially called lateral capillary force). When the tip 1 and the sheath liquid plane portion 53 and the sample plane portion 54 of the advection and accumulation unit 50 are relatively moved, the meniscus of the suspension in which the fine particles are dispersed in the solution is interposed between the tip 1 and the sheath liquid plane portion 53 and the sample plane portion 54. In the tip of the meniscus, as shown in FIG. 8, a portion where the fine particles protrude from the solution is formed. At the point where the head protrudes, the force pressed down by the interfacial tension and gravity is generated along with the meniscus while being generated in the fine particles, the fine particles are pressed against the chip 1, and the target fine particles are formed in the main flow path. Captured at the capture site.

回転手段40は、チップ1を載置して回転できるものであれば特に制限は無く、例えば、チップ1を載置できる回転可能な円盤の下にモーター等の駆動手段を設けて、円盤を回転するようにすればよい。なお、発生するメニスカスの大きさを一定にすることが好ましいことから、駆動手段は円盤を一定速度で回転制御できるものであることが好ましい。   The rotating means 40 is not particularly limited as long as the chip 1 can be placed and rotated. For example, a driving means such as a motor is provided under the rotatable disk on which the chip 1 can be placed to rotate the disk. You just have to do it. In addition, since it is preferable to make the magnitude | size of the meniscus to generate | occur | produce constant, it is preferable that a drive means is what can carry out rotation control of the disk at a fixed speed.

図9は、移流集積ユニット50の構成と、システム30に移流集積ユニット50とチップ1をセットした際の位置関係を示す写真である。移流集積ユニット50は、シース液注入口51、サンプル注入口52、シース液平面部53及びサンプル平面部54が少なくとも形成されている。また、本発明の移流集積ユニット50には、シース液吸引パッドを装着又はシース液を毛管力で吸引する孔55、該孔55に連通し図示しないシース液吸引装置と接続するためのシース液吸引口56が設けられていてもよい。シース液平面部53及びサンプル平面部54は、チップ1と相対移動することでメニスカスを発生させるため、チップ1に相対する面は平面形状であることが好ましい。また、シース液平面部53及びサンプル平面部54とチップ1との間でメニスカスが発生し、シース液平面部53及びサンプル平面部54以外ではメニスカスが発生する必要は無いことから、移流集積ユニットのシース液平面部53及びサンプル平面部54は、他の部分より厚くし段差を設ける必要がある。一方、孔55に関しては、孔55にシース液吸引パッドを装着する場合は、シース液吸引パッドがシース液に当接するように、シース液吸引パッドを装着する孔55からの突出量を調整すればよいので、孔55は前記他の部分と同じ面に形成してもよいし、シース液平面部53及びサンプル平面部54と同じ高さとなる位置に孔55を設ける平面部を形成し、該平面部に孔55を形成してもよいし、孔55は溝部15に対応して設けられることから、孔55を設ける平面部をシース液平面部53及びサンプル平面部54より厚くしてもよい。また、孔55をシース液を毛管力で吸引する孔として用いる場合には、孔55はチップ1と摩擦が発生しない程度でほぼ当接するように配置することが好ましい。後述するように、チップ1とシース液平面部53及びサンプル平面部54は、500〜1000μm離れた位置にセットされるので、シース液を毛管力で吸引する孔55を形成する平面部は、シース液平面部53及びサンプル平面部54より500〜1000μm程度、厚めに形成することが好ましい。   FIG. 9 is a photograph showing the configuration of the advection accumulation unit 50 and the positional relationship when the advection accumulation unit 50 and the chip 1 are set in the system 30. The advection accumulation unit 50 includes at least a sheath liquid inlet 51, a sample inlet 52, a sheath liquid flat portion 53, and a sample flat portion 54. Further, the advection accumulation unit 50 of the present invention is equipped with a sheath liquid suction pad or a hole 55 for sucking the sheath liquid by capillary force, and a sheath liquid suction for connecting to the hole 55 and connecting to a sheath liquid suction device (not shown). A mouth 56 may be provided. Since the sheath liquid plane portion 53 and the sample plane portion 54 generate a meniscus by moving relative to the tip 1, the surface facing the tip 1 is preferably a planar shape. Further, a meniscus is generated between the sheath liquid plane part 53 and the sample plane part 54 and the chip 1, and it is not necessary to generate a meniscus other than the sheath liquid plane part 53 and the sample plane part 54. The sheath liquid flat portion 53 and the sample flat portion 54 need to be thicker than other portions and provided with a step. On the other hand, with respect to the hole 55, when a sheath liquid suction pad is attached to the hole 55, the amount of protrusion from the hole 55 where the sheath liquid suction pad is attached can be adjusted so that the sheath liquid suction pad contacts the sheath liquid. Therefore, the hole 55 may be formed on the same surface as the other portions, or a flat surface portion in which the hole 55 is provided at the same height as the sheath liquid flat surface portion 53 and the sample flat surface portion 54 is formed. The hole 55 may be formed in the part, or the hole 55 is provided corresponding to the groove part 15, and therefore the flat part provided with the hole 55 may be thicker than the sheath liquid flat part 53 and the sample flat part 54. Further, when the hole 55 is used as a hole for sucking the sheath liquid by capillary force, the hole 55 is preferably disposed so as to substantially contact with the tip 1 without causing friction. As will be described later, since the tip 1, the sheath liquid plane part 53, and the sample plane part 54 are set at positions 500 to 1000 μm apart, the plane part forming the hole 55 for sucking the sheath liquid by capillary force is the sheath part. It is preferable to form it thicker by about 500 to 1000 μm than the liquid plane portion 53 and the sample plane portion 54.

また、図9に示すように、シース液注入口51はシース液平面部53内に、サンプル注入口52はサンプル平面部54内に形成されてもよいし、移流集積ユニット50とチップ1を相対移動させる際に、シース液平面部53の上流側にシース液注入口51を、サンプル平面部54の上流側にサンプル注入口52を形成してもよい。システム30にチップ1と移流集積ユニット50をセットする際、チップ1に捕捉部位14が形成されていない部分16がある場合は、シース液平面部53は前記部分16に対応してセットされ、サンプル平面部54は捕捉部位が形成されている部分17に対応してセットされる。したがって、シース液平面部53は前記部分16と一部が対応していれば形状は特に制限は無いが、前記部分16と同心となる2つの円弧を含む形状に形成されることが好ましく、前記2つの円弧の幅を前記部分16と同じ幅R1とすることがより好ましい。円弧の長さは適宜調整すればよい。サンプル平面部54も同様に、前記部分17と一部が対応していれば形状は特に制限は無いが、前記部分17と同心となる2つの円弧を含む形状に形成されることが好ましく、前記2つの円弧の幅を前記部分17と同じ幅R2とすることがより好ましい。円弧の長さは適宜調整すればよい。本実施形態においては、シース液吸引パッドを装着する孔55は溝部15に対応するように配置されるので、該孔55はシース液吸引パッドを装着でき溝部15より小さければ孔55の幅及び形状に特に制限はないが、溝部15と同心となる円弧状の孔であることが好ましい。また、シース液吸引口56は前記孔55に連通していれば形成する個数、位置は特に制限は無く、適宜調整すればよい。   Further, as shown in FIG. 9, the sheath liquid inlet 51 may be formed in the sheath liquid plane portion 53, and the sample inlet 52 may be formed in the sample plane portion 54. When moving, the sheath liquid inlet 51 may be formed on the upstream side of the sheath liquid flat portion 53, and the sample inlet 52 may be formed on the upstream side of the sample flat portion 54. When the chip 1 and the advection integration unit 50 are set in the system 30, if there is a portion 16 in which the capture site 14 is not formed on the chip 1, the sheath liquid plane portion 53 is set corresponding to the portion 16, and the sample The flat surface portion 54 is set corresponding to the portion 17 where the capturing site is formed. Therefore, the shape of the sheath liquid plane portion 53 is not particularly limited as long as the portion 16 and the portion 16 correspond to each other. However, the sheath liquid plane portion 53 is preferably formed in a shape including two arcs concentric with the portion 16. More preferably, the two arcs have the same width R1 as that of the portion 16. The length of the arc may be adjusted as appropriate. Similarly, the sample plane part 54 is not particularly limited as long as the part 17 and the part 17 correspond to each other. However, the sample flat part 54 is preferably formed into a shape including two arcs concentric with the part 17. More preferably, the width of the two arcs is the same width R2 as the portion 17. The length of the arc may be adjusted as appropriate. In the present embodiment, the hole 55 for mounting the sheath liquid suction pad is disposed so as to correspond to the groove portion 15. Therefore, if the hole 55 can be mounted with the sheath liquid suction pad and is smaller than the groove portion 15, the width and shape of the hole 55. Although there is no restriction | limiting in particular, It is preferable that it is a circular-arc-shaped hole concentric with the groove part 15. FIG. Further, the number and position of the sheath liquid suction port 56 formed as long as it communicates with the hole 55 is not particularly limited, and may be adjusted as appropriate.

図10はシステム30の移流集積ユニット50を斜め上から拡大撮影した写真で、移流集積ユニット50は、回転手段40に載置されたチップ1との間隔を保つための高さ調整手段57に取り付けられている。高さ調整手段57は、螺子等により移流集積ユニットの高さを調整できるものであれば特に制限は無い。また、移流集積ユニット50を使用する際には、シリコン等のチューブ58を介して、シース液注入口51はシース液インジェクション61、サンプル注入口52はサンプルインジェクション62、及びシース液吸引口56は図示しないシース液吸引装置に接続すればよい。   FIG. 10 is a photograph of an enlarged view of the advection accumulation unit 50 of the system 30 from above, and the advection accumulation unit 50 is attached to a height adjusting means 57 for keeping a distance from the chip 1 mounted on the rotation means 40. It has been. The height adjusting means 57 is not particularly limited as long as the height of the advection stacking unit can be adjusted by a screw or the like. Further, when the advection accumulation unit 50 is used, the sheath liquid injection port 51 is a sheath liquid injection 61, the sample injection port 52 is a sample injection 62, and the sheath liquid suction port 56 is illustrated via a tube 58 such as silicon. What is necessary is just to connect with the sheath liquid suction apparatus which does not.

シース液吸引手段は、チップ1の溝部15又は主流路12、20からシース液を吸引できるものであれば特に制限は無い。例えば、布、コットン、スポンジ、セーム皮等のシース液吸引パッドを直接又は移流集積ユニット50の孔55を介して溝部15又は主流路12、20に当接してシース液を吸引すればよい。   The sheath liquid suction means is not particularly limited as long as the sheath liquid can be sucked from the groove portion 15 of the chip 1 or the main flow paths 12 and 20. For example, the sheath liquid may be sucked by contacting a sheath liquid suction pad such as cloth, cotton, sponge, chamois or the like directly or through the hole 55 of the advection and accumulation unit 50 with the groove 15 or the main flow paths 12 and 20.

また、孔55にシース液吸引パッドを挿入する代わりに、孔55の幅を毛管力が発生する幅に調整し、孔55を溝部15又は主流路12、20に当接することで、毛管力によりシース液を吸引してもよい。その場合、孔55の幅は、少なくともシース液と共に除去された微粒子を通過させる必要があることから、サンプルが全血の場合は少なくとも8μm以上、処理能力を上げるためには10μm以上とすることがより好ましい。一方、孔55の幅は毛管力が発生すれば特に上限は無く、吸引するシース液量や毛管力等を考慮して適宜調整すればよく、例えば、200μm程度の幅を設けてもよい。   Further, instead of inserting the sheath liquid suction pad into the hole 55, the width of the hole 55 is adjusted to a width at which the capillary force is generated, and the hole 55 is brought into contact with the groove portion 15 or the main flow paths 12 and 20 by the capillary force. The sheath liquid may be aspirated. In that case, since it is necessary to pass at least the fine particles removed together with the sheath liquid, the width of the hole 55 should be at least 8 μm or more when the sample is whole blood, and 10 μm or more in order to increase the processing capability. More preferred. On the other hand, the width of the hole 55 is not particularly limited as long as a capillary force is generated, and may be appropriately adjusted in consideration of the amount of sheath liquid to be sucked, the capillary force, etc. For example, a width of about 200 μm may be provided.

シース液吸引手段としては、上記に例示した他、吸引ポンプ等の吸引装置を用い、該吸引装置に接続する吸引口を溝部15又は主流路12、20に当接してシース液を吸引してもよい。なお、本発明においては、主流路12、20を流れるシース液の流速は、シース液吸引手段の吸引力で調整する。そのため、微粒子の分離に使用するシース液量及びサンプル量が多くなり、シース液吸引パッド又は毛管力を発生させる孔が、シース液で飽和状態になるとシース液の吸引速度が安定しなくなるおそれがある。そのため、シース液の流速をより安定に保てるよう、上記のシース液吸引手段を組合せて用いてもよい。例えば、コットン等のシース液吸引パッドの一端をシース液に接触させてシース液を吸収しつつ、吸引ポンプ等の吸引装置を用いて、シース液吸引パッドの他端からシース液吸引パッドに吸収されたシース液を吸引してもよい。また、シース液を毛管力で吸引できる孔55の一端から毛管力によりシース液を吸引しつつ、前記孔55に連通する吸引口から吸引装置でシース液を吸引してもよい。更に、移流集積ユニット50に前記孔55を設けず、シース液吸引ポンプ等の吸引装置に接続する吸引口を毛管力が発生する大きさ又は吸引口に吸引パッドを差し込み、前記吸引口を溝部15や主流路12、20に当接するようにしてもよい。   As the sheath liquid suction means, in addition to the above-described examples, a suction device such as a suction pump is used, and the suction port connected to the suction device is brought into contact with the groove portion 15 or the main flow paths 12 and 20 to suck the sheath liquid. Good. In the present invention, the flow rate of the sheath liquid flowing through the main flow paths 12 and 20 is adjusted by the suction force of the sheath liquid suction means. For this reason, the amount of sheath liquid and sample used for separating fine particles increases, and if the sheath liquid suction pad or the hole for generating capillary force is saturated with the sheath liquid, the suction speed of the sheath liquid may not be stable. . Therefore, the sheath liquid suction means may be used in combination so that the flow rate of the sheath liquid can be kept more stable. For example, one end of a sheath liquid suction pad such as cotton is brought into contact with the sheath liquid to absorb the sheath liquid, and is absorbed into the sheath liquid suction pad from the other end of the sheath liquid suction pad using a suction device such as a suction pump. The sheath liquid may be aspirated. Further, the sheath liquid may be sucked by a suction device from the suction port communicating with the hole 55 while the sheath liquid is sucked by the capillary force from one end of the hole 55 that can suck the sheath liquid by the capillary force. Further, the advancing and accumulating unit 50 is not provided with the hole 55, and the suction port connected to a suction device such as a sheath liquid suction pump is inserted into a suction pad of a size or a suction port where capillary force is generated. Alternatively, the main channels 12 and 20 may be contacted.

図11は、移流集積ユニット50の側面からの写真で、孔55に、シース液吸引パッド59を装着し、シース液吸引口56にシリコン等のチューブ58を連結している状態を示す写真である。シース液吸引パッド59の下端はチップ1の溝部15のシース液に接触し、シース液吸引パッド59に吸引されたシース液は、シース液吸引口56に接続しているシリコン等のチューブ58を介して接続している吸引ポンプ等の吸引装置により吸引され、シース液吸引パッド59から排除される。   FIG. 11 is a photograph taken from the side of the advection and accumulation unit 50, showing a state in which a sheath liquid suction pad 59 is attached to the hole 55 and a tube 58 such as silicon is connected to the sheath liquid suction port 56. . The lower end of the sheath liquid suction pad 59 is in contact with the sheath liquid in the groove portion 15 of the chip 1, and the sheath liquid sucked by the sheath liquid suction pad 59 passes through a tube 58 made of silicon or the like connected to the sheath liquid suction port 56. Are sucked by a suction device such as a suction pump connected to the sheath liquid and removed from the sheath liquid suction pad 59.

移流集積ユニット50を構成する材料は、アクリル、ナイロン、テフロン(登録商標)等の樹脂、又はガラス等、サンプルやシース液と反応しないものであれば特に制限はない。移流集積ユニット50は、ドリル及びエンドミル等の切削工具を用いた切削加工、又は移流集積ユニット50の形状のモールドを作製し射出成形により作製することができる。なお、本発明における移流集積ユニット50は、シース液注入口51、サンプル注入口52、シース液平面部53及びサンプル平面部54、更に必要に応じて形成される孔55及びシース液吸引口56が含まれていれば、単一の部材で形成されていても、別々に作製した部材を組み合わせてもよい。   The material constituting the advection stacking unit 50 is not particularly limited as long as it does not react with the sample or the sheath liquid, such as resin such as acrylic, nylon, and Teflon (registered trademark), or glass. The advection accumulation unit 50 can be produced by cutting using a cutting tool such as a drill and an end mill, or by producing a mold having the shape of the advection accumulation unit 50 and injection molding. In addition, the advection accumulation unit 50 in the present invention includes a sheath liquid injection port 51, a sample injection port 52, a sheath liquid flat surface portion 53 and a sample flat surface portion 54, and a hole 55 and a sheath liquid suction port 56 that are formed as necessary. As long as it is included, it may be formed of a single member or may be a combination of separately prepared members.

微粒子抽出手段70は、捕捉部位14、21で捕捉された微粒子を抽出できるものであれば特に制限は無く、例えば、細胞吸引手段を備えたマニピュレータ等が挙げられる。前記微粒子抽出手段70は、捕捉部位14、21に捕捉された目的とする微粒子を検出する検出手段90と連動したマニピュレータにより自動的に回収できるようにすればよく、例えば、特開2010−29178号公報に記載されているような細胞ピッキングシステムを用いることができる。また、検出手段90としては、捕捉された微粒子がCTCの場合、FITCやPEで標識された抗EpCAM抗体等のCTC特異的な抗体を用いて蛍光染色したCTCを観察できる蛍光顕微鏡等を用いることができる。また、光学顕微鏡を用いて明視野観察を行う場合には、パパニコロウ染色やギムザ染色を行うことで細胞内の核、細胞質等の形態的特徴を指標としてCTC検出を行うことが出来る。   The particulate extraction means 70 is not particularly limited as long as it can extract the particulates captured at the capture sites 14 and 21, and examples thereof include a manipulator provided with a cell suction means. The fine particle extraction means 70 may be automatically collected by a manipulator interlocked with a detection means 90 for detecting target fine particles captured by the capture sites 14 and 21. For example, Japanese Patent Application Laid-Open No. 2010-29178. A cell picking system as described in the publication can be used. Further, as the detection means 90, when the captured fine particles are CTC, a fluorescence microscope or the like capable of observing CTC fluorescently stained with a CTC-specific antibody such as an anti-EpCAM antibody labeled with FITC or PE is used. Can do. In addition, when performing bright field observation using an optical microscope, CTC detection can be performed using morphological features such as intracellular nuclei and cytoplasm as an index by performing Papanicolaou staining or Giemsa staining.

微粒子抽出手段70で抽出した微粒子が核酸を含む生体材料で、抽出後にPCRを行う場合は、PCR手段80に抽出した生体材料を移せばよい。また、PCR手段は公知の装置を用いればよい。   When the fine particles extracted by the fine particle extraction means 70 are biomaterials containing nucleic acids and PCR is performed after extraction, the extracted biomaterials may be transferred to the PCR means 80. The PCR means may be a known device.

次に、システム30を用いた微粒子分離方法について説明する。図12はシステム30の全体を示す写真で、回転手段40の上にチップ1が載置され、チップ1から500〜1000μm離れた位置に移流集積ユニット50のシース液平面部53及びサンプル平面部54が位置するように配置されている。チップ1と移流集積ユニット50のシース液平面部53及びサンプル平面部54との間隔が500μm以下であるとサンプル液の導入量が減少し処理能力が低下し、1000μm以上であるとメニスカス力が低下し十分な分離が得られない。   Next, a fine particle separation method using the system 30 will be described. FIG. 12 is a photograph showing the entire system 30. The chip 1 is placed on the rotating means 40, and the sheath liquid plane portion 53 and the sample plane portion 54 of the advection accumulation unit 50 are located at a position 500 to 1000 μm away from the chip 1. Is arranged to be located. When the distance between the tip 1 and the sheath liquid plane portion 53 and the sample plane portion 54 of the advection stacking unit 50 is 500 μm or less, the amount of sample liquid introduced decreases and the processing capacity decreases, and when it is 1000 μm or more, the meniscus force decreases. However, sufficient separation cannot be obtained.

シース液は、分離すべき微粒子に損傷等を与えないものであれば特に制限はなく、全血をサンプルとして用いる場合は、リン酸緩衝生理食塩水(PBS)、トリス緩衝液等各種緩衝液、疑似体液(SBF)、一般的な細胞培養液等、一般的に使用されているシース液であれば特に制限はない。図12に示す例では、ボトル61に貯めたシース液を重力により滴下し、その際クレンメを用いて流量を調整している。サンプルはシリンジ62に入れ、重力により滴下している。サンプルは、全血の場合はそのまま注入してもよいし、非生物材料又は生物材料の混合物から目的とする微粒子を分離・抽出する場合は、上記シース液と同様の組成の溶液に懸濁してもよい。   The sheath liquid is not particularly limited as long as it does not damage the fine particles to be separated. When whole blood is used as a sample, various buffer solutions such as phosphate buffered saline (PBS), Tris buffer, There is no particular limitation as long as it is a commonly used sheath fluid such as simulated body fluid (SBF) and general cell culture fluid. In the example shown in FIG. 12, the sheath liquid stored in the bottle 61 is dropped by gravity, and the flow rate is adjusted using a clamp at that time. The sample is put in the syringe 62 and dropped by gravity. The sample may be injected as it is in the case of whole blood, or in the case of separating / extracting the desired microparticles from a non-biological material or a mixture of biological materials, the sample is suspended in a solution having the same composition as the sheath liquid. Also good.

シース液平面部53とサンプル平面部54は半径方向の位置が異なるので、チップ1を回転させた場合の両者の相対速度は異なるが、何れも、チップ1との相対速度が50〜1500μm/sの範囲となるようチップ1を回転させることが好ましく、60〜1000μm/sがより好ましい。50μm/sより遅いと処理時間が長くなり処理能力が低下し、1500μm/sより速いと微粒子が捕捉されずに分離効率が低減する。なお、図12に示すシステムでは、移流集積ユニット50を固定しチップ1を回転させているが、チップ1を固定して移流集積ユニット50を回転させてもよい。   Since the sheath liquid plane part 53 and the sample plane part 54 are different in radial position, the relative speeds of the two when the chip 1 is rotated are different, but both of them have a relative speed of 50 to 1500 μm / s. It is preferable to rotate the chip 1 so as to be in the range of 60 to 1000 μm / s. When it is slower than 50 μm / s, the processing time becomes longer and the processing capacity is lowered, and when it is faster than 1500 μm / s, fine particles are not captured and the separation efficiency is reduced. In the system shown in FIG. 12, the advection accumulation unit 50 is fixed and the chip 1 is rotated, but the chip 1 may be fixed and the advection accumulation unit 50 may be rotated.

注入するサンプル量は、1.0〜10.0μl/sが好ましい。1.0μlより少ないと処理時間が長くなり処理能力が低下し、10.0μlより多いと移流集積ユニットのサンプル平面部とチップの間にサンプルを保持できなくなり好ましくない。主流路12を流れるシース液の流速は、主流路の深さ及び幅や捕捉部位の形状及び大きさ等により異なるものの、10〜1000μm/sが好ましく、100〜700μm/sがより好ましくい。10μm/sより遅いと血球細胞を洗浄する能力の低下により分離効率が低減し、1000μm/sより速いと捕捉されたCTCが吸引され分離効率が低減する。シース液の流速は、シース液吸引手段の吸引力により調整すればよい。また、シース液は、吸引されるシース液の量と同じになるように注入すればよい。   The amount of sample to be injected is preferably 1.0 to 10.0 μl / s. When the amount is less than 1.0 μl, the processing time becomes long and the processing capacity is lowered. The flow rate of the sheath liquid flowing through the main channel 12 is preferably 10 to 1000 μm / s, more preferably 100 to 700 μm / s, although it varies depending on the depth and width of the main channel and the shape and size of the capturing site. If it is slower than 10 μm / s, the separation efficiency is reduced due to a decrease in the ability to wash blood cells, and if it is faster than 1000 μm / s, the captured CTC is sucked and the separation efficiency is reduced. The flow rate of the sheath liquid may be adjusted by the suction force of the sheath liquid suction means. The sheath liquid may be injected so as to be the same as the amount of sheath liquid to be sucked.

図13は、本システムを用いて微粒子を分離した後に、捕捉部位で捕捉した微粒子を取り出す様子を示している。微粒子の取り出しの際には、微粒子抽出手段70が移動し易くするため、移流集積ユニット50を取り付けている高さ調整手段57をX,Y,Z軸方向に移動できるようにしておき、チップ1から離間できるようにしてもよい。検出手段90により検出された目的の微粒子は、微粒子抽出手段70で吸引され、PCR手段80のウェルに移される。   FIG. 13 shows how the fine particles captured at the capture site are taken out after the fine particles are separated using this system. In order to facilitate movement of the fine particle extraction means 70 when taking out the fine particles, the height adjusting means 57 to which the advection accumulating unit 50 is attached can be moved in the X, Y, and Z axis directions. It may be possible to be separated from. The target fine particles detected by the detection means 90 are sucked by the fine particle extraction means 70 and transferred to the well of the PCR means 80.

本発明のシステム30は、微粒子の捕捉効率を上げるための磁場発生装置及び/又は電場発生装置等を設けてもよい。例えば、チップ1の捕捉部位が形成されている部分17に対応する回転手段40の円盤部分を永久磁石等で形成してもよいし、前記部分17に対応する円盤部分の下側に磁場発生装置として永久磁石又は電磁石を設置して磁場ポテンシャル場を発生させてもよい。EpCAM抗体等を標識した磁性粒子を特異的に吸着させたCTC、又は磁性粒子を非特異的に吸着させたCTC(エンドサイトーシスから取り込む)等、捕捉したい粒子に磁性を帯びさせた上で、本発明の微粒子分離用システムを用いると、磁性標識されていない他の微粒子から精度よく目的とする微粒子を分離することが可能である。   The system 30 of the present invention may be provided with a magnetic field generator and / or an electric field generator for increasing the capture efficiency of fine particles. For example, the disk part of the rotating means 40 corresponding to the part 17 where the capturing part of the chip 1 is formed may be formed of a permanent magnet or the like, or the magnetic field generator is provided below the disk part corresponding to the part 17. As an alternative, a permanent magnet or electromagnet may be installed to generate a magnetic field potential field. After magnetizing particles to be captured, such as CTC that specifically adsorbs magnetic particles labeled with EpCAM antibody or the like, or CTC that adsorbs magnetic particles nonspecifically (taken from endocytosis), By using the fine particle separation system of the present invention, it is possible to accurately separate target fine particles from other fine particles not magnetically labeled.

また、捕捉部位に対応する円盤部分又は当該円盤部分の下側に、電場発生装置として電極を設けて電場ポテンシャル場(不均一電場中)を発生させ、CTCと周囲媒質の分極と電場の勾配により生じる静電気力(クーロン力)を用いてCTCの捕捉をアシストすることも可能である。   In addition, an electric field generator is provided on the disk portion corresponding to the capture site or below the disk portion to generate an electric field potential field (in a non-uniform electric field), and the polarization of the CTC and the surrounding medium and the electric field gradient It is also possible to assist the capture of CTC using the electrostatic force (Coulomb force) that is generated.

以下に実施例を掲げ、本発明を具体的に説明するが、この実施例は単に本発明の説明のため、その具体的な態様の参考のために提供されているものである。これらの例示は本発明の特定の具体的な態様を説明するためのものであるが、本願で開示する発明の範囲を限定したり、あるいは制限することを表すものではない。   The present invention will be described in detail with reference to the following examples, which are provided merely for the purpose of illustrating the present invention and for reference to specific embodiments thereof. These exemplifications are for explaining specific specific embodiments of the present invention, but are not intended to limit or limit the scope of the invention disclosed in the present application.

〔微粒子分離用マイクロ流路チップの作製〕
<実施例1>
先ず、シリコン基板をアセトン・エタノール・超純水の順に、45kHzで5分間ずつ超音波洗浄機により有機洗浄し、145℃で20分間ベイクした。次に、シリコン基板上にSU−8をスピンコートし、ホットプレート上で95℃で30分間、プリベイクした。次に、捕捉部位14が図2(4)の形状で、溝部15が図1に示す形状のクロムマスクを用い露光後、ホットプレート上で95℃で2分間、ポストエクスポージャーベイクを行い、PMシンナーを用い現像した。現像後は、超純水を用いリンスし、スピンドライヤー等で水分をとばし乾燥させた。形成されたパターンを、ポリジメチルシロキサン(PDMS)に転写し、転写後、両者を分離し、PDMS表面をプラズマ処理(周波数50kHz,出力700W、30秒間)により親水化した。
[Preparation of microchannel chip for fine particle separation]
<Example 1>
First, the silicon substrate was subjected to organic cleaning with an ultrasonic cleaner at 45 kHz for 5 minutes in order of acetone, ethanol, and ultrapure water, and baked at 145 ° C. for 20 minutes. Next, SU-8 was spin-coated on a silicon substrate, and prebaked at 95 ° C. for 30 minutes on a hot plate. Next, after exposure using a chromium mask in which the trapping portion 14 has the shape shown in FIG. 2 (4) and the groove 15 has the shape shown in FIG. 1, post exposure baking is performed on a hot plate at 95 ° C. for 2 minutes to obtain PM thinner. And developed. After development, the substrate was rinsed with ultrapure water, dried with a spin dryer or the like. The formed pattern was transferred to polydimethylsiloxane (PDMS), and after transfer, both were separated, and the PDMS surface was hydrophilized by plasma treatment (frequency 50 kHz, output 700 W, 30 seconds).

図14(1)は実施例1で得られたチップの外観を示す写真で、チップの中心11は直径5mmの孔、主流路に捕捉部位が形成されていない部分16の幅は10mm、主流路に捕捉部位が形成されている部分17の幅は10mm、溝部15の幅は10mmであった。また、主流路、捕捉部位、溝部の深さは約30μmであった。図14(2)は、主流路、分岐流路、捕捉部位を拡大した写真で、主流路及び分岐流路の幅Fは約8μm、捕捉部位の中心を通る最短となる線の長さGは約30μmであった。また、主流路の中心と隣の主流路の中心の距離は約66μmで、形成した主流路の数は736本、捕捉部位の数は62652個であった。   FIG. 14 (1) is a photograph showing the appearance of the chip obtained in Example 1. The center 11 of the chip is a hole with a diameter of 5 mm, the width of the portion 16 where the capture site is not formed in the main channel is 10 mm, and the main channel The width of the portion 17 where the capturing site is formed is 10 mm, and the width of the groove 15 is 10 mm. Moreover, the depth of the main flow path, the capture site, and the groove was about 30 μm. FIG. 14 (2) is an enlarged photograph of the main channel, the branch channel, and the capture site. The width F of the main channel and the branch channel is about 8 μm, and the length G of the shortest line passing through the center of the capture site is It was about 30 μm. The distance between the center of the main channel and the center of the adjacent main channel was about 66 μm, the number of formed main channels was 736, and the number of capture sites was 62,651.

<実施例2>
図4に示されているように、溝部を形成せず主流路を伸ばした以外は、上記実施例1と同様の手順でチップを作製した。
<Example 2>
As shown in FIG. 4, a chip was fabricated in the same procedure as in Example 1 except that the main channel was extended without forming a groove.

〔移流集積ユニットの作製〕
<実施例3>
移流集積ユニットは、アクリルを材料にして、切削工具(三菱マテリアル社製のドリル及びエンドミル)を用いた切削加工により作製した。図15は実施例2で作製した移流集積ユニットをチップ1に対面する方向から撮影した写真で、シース液注入口51、サンプル注入口52、及びシース液吸引口56の孔のサイズは直径2mmであった。また、シース液平面部53の2つの円弧の幅は8mm、短い円弧の長さは4.1mmで、サンプル平面部54の2つの円弧の幅は10mm、短い円弧の長さは9.2mmであった。更に、孔55の幅は4mm、孔55の円弧の長さは46mmであった。
<実施例4>
シース液を毛管力で吸引する孔55の幅を150μm、前記孔55を設ける平面部をシース液平面部及びサンプル平面部より約500μm厚くした以外は、上記実施例3と同様の手順で移流集積ユニットを作製した。図16は、実施例4で作製した移流集積ユニットのシース液を毛管力で吸引する孔55部分の拡大写真である。
[Production of advection integrated unit]
<Example 3>
The advection accumulation unit was manufactured by cutting using an acrylic material and a cutting tool (a drill and end mill manufactured by Mitsubishi Materials Corporation). FIG. 15 is a photograph of the advection integrated unit produced in Example 2 taken from the direction facing the chip 1. The sizes of the sheath liquid inlet 51, the sample inlet 52, and the sheath liquid inlet 56 are 2 mm in diameter. there were. The width of the two arcs of the sheath liquid plane portion 53 is 8 mm, the length of the short arc is 4.1 mm, the width of the two arcs of the sample plane portion 54 is 10 mm, and the length of the short arc is 9.2 mm. there were. Further, the width of the hole 55 was 4 mm, and the length of the arc of the hole 55 was 46 mm.
<Example 4>
Advection and accumulation in the same procedure as in Example 3 except that the width of the hole 55 for sucking the sheath liquid by capillary force is 150 μm, and the plane part where the hole 55 is provided is about 500 μm thicker than the sheath liquid plane part and the sample plane part A unit was made. FIG. 16 is an enlarged photograph of the hole 55 portion for sucking the sheath liquid of the advection and accumulation unit produced in Example 4 by capillary force.

〔血液サンプルの作製〕
採取したヒト血液20μlに、10×105個の緑色蛍光タンパク質(GFP)導入MKN−45(人胃がん)細胞を添加して、がん患者の血液を模した血液サンプル(CTCを含む全血)を作製した。なお、がん細胞の平均粒径は25μmであった。
[Preparation of blood sample]
10 × 10 5 green fluorescent protein (GFP) -introduced MKN-45 (human stomach cancer) cells were added to 20 μl of collected human blood, and a blood sample simulating the blood of a cancer patient (whole blood including CTC) Was made. The average particle size of the cancer cells was 25 μm.

<実施例5>
〔血液サンプルからのCTC分離実験〕
実施例1で作製した微粒子分離用マイクロ流路チップをシステム30の回転手段40の上に載置し、実施例2で作製した移流集積ユニットを前記微粒子分離用マイクロ流路チップとの間隔が約500μmとなるようにセットした。また、移流集積ユニットの孔55には、微粒子分離用マイクロ流路チップの溝部15に均一に当接するようにコットンを挿入した。回転手段40を0.3rpmで回転しながら、主流路を流れるシース液(リン酸緩衝生理食塩水(PBS))の速度が600μm/sとなるようにシース液を貯めたボトルからクレンメを用いてシース液を供給する一方、シース液吸引口56にシリコンチューブ(アズワン社製)の一端を接続し、他端をマイクロシリング(KD Scientific社製)に接続してシース液を吸引した。また、サンプルは8.3μl/sとなるように供給した。捕捉されたCTCは、蛍光顕微鏡により確認した。
<Example 5>
[CTC separation experiment from blood sample]
The microfluidic chip for separating fine particles produced in Example 1 is placed on the rotating means 40 of the system 30, and the distance between the advancing and integrating unit produced in Example 2 and the microfluidic chip for separating microparticles is about It set so that it might become 500 micrometers. In addition, cotton was inserted into the holes 55 of the advection accumulation unit so as to be in uniform contact with the grooves 15 of the microchannel chip for particle separation. Using the clamp from the bottle storing the sheath liquid so that the speed of the sheath liquid (phosphate buffered saline (PBS)) flowing through the main channel is 600 μm / s while rotating the rotating means 40 at 0.3 rpm. While supplying the sheath liquid, one end of a silicon tube (manufactured by ASONE) was connected to the sheath liquid suction port 56, and the other end was connected to micro-shilling (manufactured by KD Scientific) to suck the sheath liquid. Moreover, the sample was supplied so that it might become 8.3 microliters / s. The captured CTC was confirmed by a fluorescence microscope.

上記実施例5の結果を表1に示す。なお、表1中、「1視野あたりの細胞数」とは、上記〔血液サンプルの作製〕で作製したサンプルのみをチップ1上にメニスカスを発生させずに塗布し、チップ1上で選択した任意の4か所(表1中のa〜d)に含まれるCTC細胞の数を表す。「捕捉された細胞数」とは、実施例5によりメニスカスを発生させ且つシース液を流すことで血液細胞を除去しながら前記任意の4か所(a〜d)の捕捉部位で捕捉されたCTCの数を表す。表1に示すように、実施例5においては、サンプル中の約60%のCTCを捕捉することができた。従来の抗EpCAM抗体を用いたCTCの捕捉の場合、血中のCTCの100乃至1000分の1程度しか捕捉することができないといわれているが、本発明の微粒子分離用マイクロ流路チップを用いると、非常に効率よくCTCを捕捉できることが明らかとなった。   The results of Example 5 are shown in Table 1. In Table 1, “number of cells per field of view” means any sample selected on the chip 1 by applying only the sample prepared in the above [Preparation of blood sample] on the chip 1 without generating a meniscus. 4 represents the number of CTC cells contained in 4 places (a to d in Table 1). “The number of captured cells” refers to CTCs captured at any of the four capture sites (a to d) while removing blood cells by generating a meniscus and flowing sheath fluid according to Example 5. Represents the number of As shown in Table 1, in Example 5, about 60% of CTCs in the sample could be captured. In the case of capturing CTC using a conventional anti-EpCAM antibody, it is said that only about 100 to 1/1000 of CTC in blood can be captured, but the microchannel chip for microparticle separation of the present invention is used. It was revealed that CTC can be captured very efficiently.

<実施例6>
〔主流路を流れるシース液の速度変化実験〕
実施例2で作製したチップ及び実施例4で作製した移流集積ユニットを用い、チップと移流集積ユニットのシース液平面部及びサンプル平面部の間隔が約500μm、チップと移流集積ユニットの孔55がほぼ当接するようにセットした以外は、実施例5と同様の条件で実験を行った。実験中、任意の間隔で主流路を流れるシース液の流速をビデオ撮影により測定したところ、シース液が移流集積ユニットの孔から毛管力により吸引が開始された以降は、シース液がほぼ一定の流速で主流路を流れたことを確認できた。
<Example 6>
[Velocity change experiment of sheath liquid flowing in main channel]
Using the chip produced in Example 2 and the advection accumulation unit produced in Example 4, the distance between the sheath liquid plane part and the sample plane part of the chip and the advection accumulation unit was about 500 μm, and the hole 55 of the chip and the advection accumulation unit was almost The experiment was performed under the same conditions as in Example 5, except that the contact was set. During the experiment, the flow rate of the sheath liquid flowing through the main channel at arbitrary intervals was measured by video shooting. After the sheath liquid started to be sucked by capillary force through the holes of the advection and accumulation unit, the sheath liquid flowed at a substantially constant flow rate. It was confirmed that the gas flowed through the main channel.

本発明の微粒子分離用マイクロ流路チップを含む微粒子分離用システムを使用することで、サンプル中のサイズの異なる微粒子を、抗体等を用いることなく迅速かつ高効率で分離することができる。したがって、全血からのCTCの分離等、臨床の場において非常に有効であることから、病院や救急センターなどの医療機関や大学医学部などの研究機関、教育機関において、がん診断のシステムとして利用が可能である。   By using the microparticle separation system including the microchannel chip for microparticle separation of the present invention, microparticles having different sizes in a sample can be separated quickly and efficiently without using an antibody or the like. Therefore, it is very effective in clinical settings such as separation of CTC from whole blood, so it can be used as a cancer diagnosis system in medical institutions such as hospitals and emergency centers, research institutions such as university medical departments, and educational institutions. Is possible.

Claims (20)

基板、該基板上に形成された主流路、該主流路から分岐し再び主流路に接続する分岐流路、及び該分岐流路に形成され分岐流路の幅より大きな微粒子の捕捉部位を含み、前記主流路が基板の中心から放射状に形成されていることを特徴とする微粒子分離用マイクロ流路チップ。   A substrate, a main flow path formed on the substrate, a branch flow path branched from the main flow path and connected to the main flow path again, and a trapping part of fine particles formed in the branch flow path and larger than the width of the branch flow path, A microchannel chip for separating fine particles, wherein the main channel is formed radially from the center of the substrate. 前記捕捉部位で捕捉される微粒子の大きさをX、分離・除去される微粒子の大きさをYとした場合、前記主流路及び前記分岐流路の幅FはY<F<X、前記捕捉部位の幅Gは1X<G<10X、前記主流路、前記分岐流路及び前記捕捉部位の深さHは1X<H<10Xであることを特徴とする請求項1に記載の微粒子分離用マイクロ流路チップ。   When the size of the fine particles captured at the capture site is X and the size of the fine particles to be separated / removed is Y, the width F of the main channel and the branch channel is Y <F <X, and the capture site 2. The micro flow for separating fine particles according to claim 1, wherein the width G is 1X <G <10X, and the depth H of the main flow path, the branch flow path, and the capture site is 1X <H <10X. Road chip. 前記幅Gが1X<G<2X、前記深さHが1X<H<2Xであることを特徴とする請求項2に記載の微粒子分離用マイクロ流路チップ。   The microchannel chip for microparticle separation according to claim 2, wherein the width G is 1X <G <2X, and the depth H is 1X <H <2X. 前記幅FがY<F<0.8Xであることを特徴とする請求項2又は3に記載の微粒子分離用マイクロ流路チップ。   4. The microchannel chip for separating fine particles according to claim 2, wherein the width F is Y <F <0.8X. 前記主流路、前記分岐流路及び前記捕捉部位の下方に、幅がF、深さJがY<Jの流路が更に形成されていることを特徴とする請求項〜4の何れか一項に記載の微粒子分離用マイクロ流路チップ。 The flow path according to any one of claims 2 to 4, wherein a flow path having a width F and a depth J <Y <J is further formed below the main flow path, the branch flow path, and the capture portion. The microchannel chip for separating fine particles according to Item. 基板、該基板上に形成された主流路、及び該主流路の幅より大きく且つ主流路上に形成された捕捉部位を含み、
前記主流路は、前記捕捉部位が設けられている部分では、前記捕捉部位の下方に前記捕捉部位よりも小さい幅で設けられ、
前記捕捉部位、及び前記捕捉部位が設けられていない部分の主流路は、基板上で開口しており、
前記主流路が基板の中心から放射状に形成されていることを特徴とする微粒子分離用マイクロ流路チップ。
Including a substrate, a main flow path formed on the substrate, and a capture portion that is larger than the width of the main flow path and formed on the main flow path,
The main flow path is provided in a portion where the capture site is provided, with a width smaller than the capture site below the capture site,
The main flow path of the part where the capture part and the capture part are not provided is open on the substrate,
A microchannel chip for separating fine particles, wherein the main channel is formed radially from the center of the substrate.
前記捕捉部位で捕捉される微粒子の大きさをX、分離・除去される微粒子の大きさをYとした場合、前記主流路の幅AはY<A<X、前記捕捉部位の幅Bは1X<B<10Xであり、前記捕捉部位の深さCは1X<C<10X、前記捕捉部位における主流路の深さDはY<Dであり、前記捕捉部位以外の主流路の深さEはE=C+Dであることを特徴とする請求項6に記載の微粒子分離用マイクロ流路チップ。   When the size of the fine particles captured at the capture site is X and the size of the fine particles to be separated / removed is Y, the width A of the main channel is Y <A <X, and the width B of the capture site is 1X. <B <10X, the depth C of the capture site is 1X <C <10X, the depth D of the main channel at the capture site is Y <D, and the depth E of the main channel other than the capture site is The microchannel chip for microparticle separation according to claim 6, wherein E = C + D. 前記幅Bが1X<B<2X、前記深さCが1X<C<2Xであることを特徴とする請求項7に記載の微粒子分離用マイクロ流路チップ。   8. The microchannel chip for separating fine particles according to claim 7, wherein the width B is 1X <B <2X, and the depth C is 1X <C <2X. 前記幅AがY<A<0.8Xであることを特徴とする請求項7又は8に記載の微粒子分離用マイクロ流路チップ。   9. The microchannel chip for fine particle separation according to claim 7, wherein the width A is Y <A <0.8X. 前記基板上に、放射状に伸びた前記主流路の先端部分を連結する円状の溝部が形成されていることを特徴とする請求項1〜9の何れか一項に記載の微粒子分離用マイクロ流路チップ。   10. The microfluidic for microparticle separation according to claim 1, wherein a circular groove portion that connects the distal end portions of the main flow paths extending radially is formed on the substrate. Road chip. 前記捕捉部位で捕捉される微粒子がCTCで、除去される微粒子が血球細胞であることを特徴とする請求項1〜10の何れか一項に記載の微粒子分離用マイクロ流路チップ。   The microchannel chip for microparticle separation according to any one of claims 1 to 10, wherein the microparticles captured at the capture site are CTC and the microparticles to be removed are blood cells. シース液注入口、サンプル注入口、シース液移流集積用平面部及びサンプル移流集積用平面部を少なくとも含む移流集積ユニット。   An advection and accumulation unit comprising at least a sheath liquid inlet, a sample inlet, a sheath liquid advection and accumulation plane and a sample advection and accumulation plane. シース液吸引パッドを装着する孔及びシース液吸引口を更に含むことを特徴とする請求項12に記載の移流集積ユニット。   13. The advection accumulation unit according to claim 12, further comprising a hole for mounting the sheath liquid suction pad and a sheath liquid suction port. シース液を毛管力で吸引する孔及びシース液吸引口を更に含むことを特徴とする請求項12に記載の移流集積ユニット。   The advection accumulation unit according to claim 12, further comprising a hole for sucking the sheath liquid by capillary force and a sheath liquid suction port. 請求項1〜11の何れか一項に記載されている微粒子分離用マイクロ流路チップ、
請求項12〜14の何れか一項に記載されている移流集積ユニット、
前記微粒子分離用マイクロ流路チップを回転させる回転手段、及び
シース液吸引手段、
を少なくとも含む微粒子分離用システム。
A microchannel chip for separating fine particles according to any one of claims 1 to 11,
An advection accumulation unit according to any one of claims 12 to 14,
Rotating means for rotating the micro-channel chip for separating fine particles, and sheath liquid suction means,
A system for separating fine particles.
前記微粒子分離用マイクロ流路チップに形成されている捕捉部位に捕捉された微粒子を取り出す微粒子抽出手段及び微粒子を検出する検出手段を更に含むことを特徴とする請求項15に記載の微粒子分離用システム。   The system for separating fine particles according to claim 15, further comprising a fine particle extracting means for taking out the fine particles captured at a capture site formed in the fine particle separation microchannel chip and a detecting means for detecting the fine particles. . 核酸を増幅するPCR手段を更に含むことを特徴とする請求項16に記載の微粒子分離用システム。   The system for separating fine particles according to claim 16, further comprising PCR means for amplifying the nucleic acid. 前記微粒子分離用マイクロ流路チップの捕捉部位に磁場を発生させる磁場発生装置及び/又は電場を発生させる電場発生装置を更に含むことを特徴とする請求項15〜17の何れか一項に記載の微粒子分離用システム。   The magnetic field generator for generating a magnetic field and / or the electric field generator for generating an electric field are further included in the capture part of the microchannel chip for microparticle separation. Fine particle separation system. 請求項1〜11の何れか一項に記載されている微粒子分離用マイクロ流路チップを、該微粒子分離用マイクロ流路チップを回転させる回転手段上に載置し、
前記微粒子分離用マイクロ流路チップ上に、シース液注入口、サンプル注入口、シース液移流集積用平面部及びサンプル移流集積用平面部を少なくとも含む移流集積ユニットを配置し、
前記回転手段を回転させながら、前記シース液注入口からシース液を注入し、前記サンプル注入口からサンプルを注入することで前記微粒子分離用マイクロ流路チップとシース液移流集積用平面部及びサンプル移流集積用平面部を相対移動させ、相対移動により発生したメニスカスにより目的とする微粒子を前記微粒子分離用マイクロ流路チップに形成された捕捉部位に捕捉し、
シース液吸引手段によりシース液を吸引することで、除去される微粒子をシース液とともに微粒子分離用マイクロ流路チップから除去することを特徴とする微粒子分離方法。
The microfluidic chip for microparticle separation described in any one of claims 1 to 11 is placed on a rotating means that rotates the microfluidic chip for microparticle separation,
On the microchannel chip for fine particle separation, an advection and accumulation unit including at least a sheath liquid inlet, a sample inlet, a sheath liquid advection and accumulation plane and a sample advection and accumulation plane is disposed,
The microfluidic chip for fine particle separation, the flat portion for sheath liquid advection and accumulation, and the sample advection by injecting a sheath liquid from the sheath liquid inlet and injecting a sample from the sample inlet while rotating the rotating means Relative movement of the flat part for accumulation, capture the target fine particles by the meniscus generated by the relative movement to the capture site formed in the micro-channel chip for fine particle separation,
A fine particle separation method comprising removing fine particles to be removed together with a sheath liquid from a fine particle separation microchannel chip by sucking a sheath liquid with a sheath liquid suction means.
前記捕捉部位で捕捉される微粒子がCTCで、除去される微粒子が血球細胞であることを特徴とする請求項19に記載の微粒子分離方法。
The fine particle separation method according to claim 19, wherein the fine particles to be captured at the capture site are CTC, and the fine particles to be removed are blood cells.
JP2013106824A 2013-05-21 2013-05-21 Micro-channel chip for separating fine particles, advection integrated unit, system for separating fine particles, and method for separating fine particles Active JP6244589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013106824A JP6244589B2 (en) 2013-05-21 2013-05-21 Micro-channel chip for separating fine particles, advection integrated unit, system for separating fine particles, and method for separating fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013106824A JP6244589B2 (en) 2013-05-21 2013-05-21 Micro-channel chip for separating fine particles, advection integrated unit, system for separating fine particles, and method for separating fine particles

Publications (2)

Publication Number Publication Date
JP2014226065A JP2014226065A (en) 2014-12-08
JP6244589B2 true JP6244589B2 (en) 2017-12-13

Family

ID=52126492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013106824A Active JP6244589B2 (en) 2013-05-21 2013-05-21 Micro-channel chip for separating fine particles, advection integrated unit, system for separating fine particles, and method for separating fine particles

Country Status (1)

Country Link
JP (1) JP6244589B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9757728B2 (en) * 2016-01-26 2017-09-12 Lidong Qin Microfluidic aliquoting for single-cell isolation
WO2017188346A1 (en) * 2016-04-27 2017-11-02 国立大学法人 東京大学 Material for capturing and collecting blood circulating cells by using microfiber and method of using said material
KR102077643B1 (en) * 2018-02-09 2020-04-07 광운대학교 산학협력단 Apparatus for Separating Particles of Sample with Meniscuss and Method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063589A (en) * 1997-05-23 2000-05-16 Gamera Bioscience Corporation Devices and methods for using centripetal acceleration to drive fluid movement on a microfluidics system
JP4997522B2 (en) * 2006-01-13 2012-08-08 財団法人生産技術研究奨励会 Method for producing single diameter alginate microbeads and apparatus for producing the same
JP2008116211A (en) * 2006-10-31 2008-05-22 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Cell separator and method for separating cells using the same
JP5504690B2 (en) * 2008-05-15 2014-05-28 東レ株式会社 Analysis chip
JP5766178B2 (en) * 2009-03-24 2015-08-19 ザ・ユニバーシティ・オブ・シカゴThe University Of Chicago Slipchip apparatus and method

Also Published As

Publication number Publication date
JP2014226065A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
JP6752338B2 (en) Microfluidic methods and systems for isolating particle clusters
JP5704590B2 (en) Detection of circulating tumor cells using size-selective microcavity array
TWI588262B (en) Methods and compositions for separating or enriching cells
Moon et al. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP)
JP6308525B2 (en) Particle separation chip, particle separation system and particle separation method using the particle separation chip
JP6611223B2 (en) Fine particle separation chip, fine particle separation system using the fine particle separation chip, fine particle separation method and fine particle extraction method using the partial particle separation system
JP6326582B2 (en) Microchannel chip for particle separation, particle separation system using the chip, and particle separation method
CN104073428A (en) Cell separating micro-structural system
KR20170088166A (en) Method For Separating And Washing Of Microparticles Via A Stratified Coflow Of Non-Newtonian And Newtonian Fluids
CN109486653A (en) Trace cell capture system based on micro-fluidic and immune Magneto separate dual strategy
US20150076049A1 (en) Microfilter and apparatus for separating a biological entity from a sample volume
Gourikutty et al. An integrated on-chip platform for negative enrichment of tumour cells
JP6244589B2 (en) Micro-channel chip for separating fine particles, advection integrated unit, system for separating fine particles, and method for separating fine particles
Zhou et al. Nanoparticle modification of microfluidic cell separation for cancer cell detection and isolation
CN108795692B (en) Rare cell capture system and application thereof
JP2017508614A (en) Particle filtration apparatus and particle filtration method
KR20140142097A (en) Method of recollecting target material
TWM583456U (en) Microfluidic chip with bead retention structure and microfluidic channel structure
CN206570309U (en) A kind of circulating tumor cell sorts enriching apparatus
TWM583855U (en) Micro-runner chip and micro-runner structure with uneven structure
TWM583455U (en) Microfluidic chip with resistance enhancement section and microfluidic channel structure
Mengzheng et al. A Novel Rare Cell Sorting Microfluidic Chip Based on Magnetic Nanoparticle Labels
US20230383239A1 (en) Microscale cell filter
TWM581592U (en) Microchannel chip having curved flowing path, and microchannel structure
JP5849466B2 (en) Separation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171025

R150 Certificate of patent or registration of utility model

Ref document number: 6244589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350