TWM438033U - Battery heating circuit - Google Patents

Battery heating circuit Download PDF

Info

Publication number
TWM438033U
TWM438033U TW100222186U TW100222186U TWM438033U TW M438033 U TWM438033 U TW M438033U TW 100222186 U TW100222186 U TW 100222186U TW 100222186 U TW100222186 U TW 100222186U TW M438033 U TWM438033 U TW M438033U
Authority
TW
Taiwan
Prior art keywords
energy
switch
unit
circuit
turned
Prior art date
Application number
TW100222186U
Other languages
Chinese (zh)
Inventor
Wen-Jin Xia
wen-hui Xu
Yao-Chuan Han
Wei Feng
Qin-Yao Yang
shi-bin Ma
Original Assignee
Byd Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201010605772XA external-priority patent/CN102088116B/en
Application filed by Byd Co Ltd filed Critical Byd Co Ltd
Publication of TWM438033U publication Critical patent/TWM438033U/en

Links

Classifications

    • Y02T10/7005
    • Y02T90/127

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A battery heating circuit provided in the utility comprises: a switchgear, a switch control module and an energy storage circuit. The energy storage circuit for connecting with the battery comprises a first current storage element and a first charge storage element. The switchgear, the first current storage element and the first charge storage element are connected in series. The switch control module is connected with the switchgear for controlling the switchgear to switch on and off so as to control energy to only flow from the battery to the energy storage circuit. The heating circuit provided in the utility can improve charge-discharge performance of the battery and improve security when heating the battery.

Description

M438033 101年〇5月10日修正香換頁 五、新型說明: :~ 【新型所屬之技術領域】 [〇〇〇1]本創作屬於電子設備技術領域,尤其涉及一種電池的加 熱電路。 【先前技術】 [0002]考慮到汽車需要在複雜的路況和環境條件下行駛,或者 •冑些電子設備需要在較差的環境條件中使用的情況,所 Μ ’作為電動車或f子設備電源的電池就需要適應這些 複雜的狀況。而且除了需要考慮這些狀況,還需考慮電 池的使用壽命及電池的充放電迴圈性能,尤其是當電動 車或電子設備處於低溫環境中時,更需要電池具有優異 的低溫充放電性能和較高的輸入輸出功率性能。 一般而言,如果在低溫條件下對電池充電的話,將會導 致電池的阻抗增大,極化增強,從而導致電池的容量下 降,最終導致電池壽命的降低。 【新型内容】 -_ I創作的目的是針對電池在低溫條件下會導致電池的阻 抗増大,極化增強,由此導致電池的容量下降的問題, 提供-種電池的加熱電路。為了保持電池在低溫條件下 的容量,提高電池的充放電性能,本創作提供了—種電 Ά的加熱電路。 本創作提供的電池的加熱電路包括開關裝置、開關控制 模組'阻尼元件以及儲能電路,所述儲能電路用於與所 述電池連接,所述儲能電路包括電流記憶元件和電荷記 憶元件,所述阻尼元件、開關裝置、電流記憶元件和電 10022218#單編號AQ1Q1 第3頁/共41頁 1013176578-0 M438033 101年05月10日修正替換頁 荷記憶元件串聯,所述開關控制模組與開關裝置連接, 用於控制開關裝置導通和關斷,以控制能量僅從電池流 向儲能電路。 本創作提供的加熱電路能夠提高電池的充放電性能,並 且在該加熱電路中,儲能電路與電池串聯,當給電池加 熱時,由於串聯的電荷記憶元件的存在,能夠避免開關 裝置失效短路引起的安全性問題,能夠有效地保護電池 。同時,由於本創作的加熱電路中,能量僅從電池流向 儲能電路,避免了電荷記憶元件給處於低溫情況下的電 池充電,能夠更好地保證電池的充放電性能。 本創作的其他特徵和優點將在隨後的具體實施方式部分 予以詳細說明。 【實施方式】 [0004] 以下結合附圖對本創作的具體實施方式進行詳細說明。 應當理解的是,此處所描述的具體實施方式僅用於說明 和解釋本創作,並不用於限制本創作。 需要指出的是,除非特別說明,當下文中提及時,術語 “開關控制模組”為任意能夠根據設定的條件或者設定 的時刻輸出相應的控制指令(例如具有相應占空比的脈 衝波形)從而控制與其連接的開關裝置相應地導通或關 斷的控制器,例如可以為PLC (可编程控制器)等;當下 文中提及時,術語“開關”指的是可以通過電信號實現 通斷控制或者根據元器件自身的特性實現通斷控制的開 關,既可以是單向開關,例如由雙向開關與二極體串聯 構成的可單嚮導通的開關等,也可以是雙向開關,例如 金屬氧化物半導體型場效應管(Metal Oxide 10022218#單編號 AQ1(U 第 4 頁 / 共 41 頁 1013176578-0 M438033 * t> 101年.05月10日按正^頁M438033 101 years old 〇 May 10th revised scent page 5. New description: :~ [New technology field] [〇〇〇1] This creation belongs to the field of electronic equipment technology, especially related to a heating circuit for batteries. [Prior Art] [0002] Considering that a car needs to travel under complicated road conditions and environmental conditions, or that some electronic devices need to be used in poor environmental conditions, it is used as a power source for electric vehicles or f sub-devices. The battery needs to adapt to these complex conditions. In addition to the need to consider these conditions, you also need to consider the battery life and battery charge and discharge loop performance, especially when the electric vehicle or electronic equipment is in a low temperature environment, it is more desirable that the battery has excellent low temperature charge and discharge performance and higher Input and output power performance. In general, if the battery is charged under low temperature conditions, the impedance of the battery will increase and the polarization will increase, resulting in a decrease in the capacity of the battery, which ultimately leads to a decrease in battery life. [New content] -_ I is aiming at the problem that the battery will cause a large impedance of the battery under low temperature conditions, and the polarization will be enhanced, thereby causing a decrease in the capacity of the battery, and providing a heating circuit for the battery. In order to maintain the capacity of the battery under low temperature conditions and improve the charge and discharge performance of the battery, the present invention provides a heating circuit for the electric raft. The heating circuit of the battery provided by the present invention comprises a switching device, a switch control module 'damping element and an energy storage circuit for connecting to the battery, the energy storage circuit comprising a current memory element and a charge memory element The damping element, the switching device, the current memory element and the electric 10022218# single number AQ1Q1 page 3 / 41 pages 1013176578-0 M438033 101 May 10 correction replacement page load memory element series, the switch control module It is connected to the switching device for controlling the switching device to be turned on and off to control the energy flowing only from the battery to the energy storage circuit. The heating circuit provided by the present invention can improve the charge and discharge performance of the battery, and in the heating circuit, the energy storage circuit is connected in series with the battery. When the battery is heated, due to the existence of the series of charge memory elements, the failure of the switching device can be avoided. The safety issue can effectively protect the battery. At the same time, due to the energy flowing from the battery to the energy storage circuit in the heating circuit of the present invention, the charge memory element is prevented from charging the battery under low temperature conditions, and the charge and discharge performance of the battery can be better ensured. Other features and advantages of the present work will be described in detail in the Detailed Description section that follows. [Embodiment] [0004] Specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be understood that the specific embodiments described herein are merely illustrative and illustrative of the invention and are not intended to limit the invention. It should be noted that, unless otherwise specified, the term "switch control module" is used to control the output of a corresponding control command (for example, a pulse waveform having a corresponding duty ratio) according to a set condition or a set time. A controller that is turned on or off correspondingly to a switching device connected thereto, for example, may be a PLC (Programmable Controller) or the like; when referred to hereinafter, the term "switch" refers to an on-off control that can be realized by an electrical signal or according to a The switch of the device itself can realize the on-off control, which can be a one-way switch, such as a one-way switch composed of a bidirectional switch and a diode in series, or a bidirectional switch, such as a metal oxide semiconductor field. Effect tube (Metal Oxide 10022218# single number AQ1 (U Page 4 / Total 41 page 1013176578-0 M438033 * t> 101 years. May 10th according to the positive page

Semiconductor Field Effect Transistor, MOSFET)或帶有反並續流二極體的IGBT (Insulated Gate Bipolar Transistor,絕緣柵雙極型電晶體)等 ;當下文中提及時,術語“雙向開關”指的是可以通過 電信號實現通斷控制或者根據元器件自身的特性實現通 斷控制的可雙嚮導通的開關,例如MOSFET或帶有反並續 流二極體的IGBT等;當下文中提及時,單向半導體元件 指的是具有單嚮導通功能的半導體元件,例如二極體等 ;當下文中提及時,術語“電荷記憶元件”指任意可以 實現電荷存儲的裝置,例如電容等;當下文中提及時, 術語“電流記憶元件”指任意可以對電流進行存儲的裝 置,例如電感等;當下文中提及時,術語“正向”指能 量從電池向儲能電路流動的方向,術語“反向”指能量 從儲能電路向電池流動的方向;當下文中提及時,術語 “電池”包括一次電池(例如乾電池、鹼性電池等)和 二次電池(例如鋰離子電池、鎳鎘電池、鎳氫電池或鉛 酸電池等);當下文中提及時,術語“阻尼元件”指任 意通過對電流的流動起阻礙作用以實現能量消耗的裝置 ,例如電阻等;當下文中提及時,術語“主回路”指的 是電池與阻尼元件、開關裝置以及儲能電路串聯組成的 回路。 這裏還需要特別說明的是,考慮到不同類型的電池的不 同特性,在本創作中,“電池”可以指不包含内部寄生 電阻和寄生電感、或者内部寄生電阻的阻值和寄生電感 的電感值較小的理想電池,也可以指包含有内部寄生電 阻和寄生電感的電池包。因此,本領域技術人員應當理 10022218#單舰删1 第5頁/共41頁 1013176578-0 M438033 101年05月10日梭正替换頁 解的是,當“電池”為不包含内部寄生電阻和寄生電感 、或者内部寄生電阻的阻值和寄生電感的電感值較小的 理想電池時,第一阻尼元件R1指的是電池外部的阻尼元 件,第一電流記憶元件L1指的是電池外部的電流記憶元 件;當“電池”為包含有内部寄生電阻和寄生電感的電 池包時,第一阻尼元件R1既可以指電池外部的阻尼元件 ,也可以指電池包内部的寄生電阻,同樣地,第一電流 記憶元件L1既可以指電池外部的電流記憶元件,也可以 指電池包内部的寄生電感。 在本創作的實施例中,為了保證電池的使用壽命,需要 在低溫情況下對電池進行加熱,當達到加熱條件時,控 制加熱電路開始工作,對電池進行加熱,當達到停止加 熱條件時,控制加熱電路停止工作。 在電池的實際應用中,隨著環境的改變,可以根據實際 的環境情況對電池的加熱條件和停止加熱條件進行設置 ,以對電池的溫度進行更精確的控制,從而保證電池的 充放電性能。 為了對處於低溫環境中的電池E進行加熱,本創作提供了 一種電池E的加熱電路,如第1圖所示,該加熱電路包括 開關裝置1、開關控制模組100、第一阻尼元件R1以及儲 能電路,所述儲能電路用於與所述電池連接,所述儲能 電路包括第一電流記憶元件L1和第一電荷記憶元件C1, 所述第一阻尼元件R1、開關裝置1、第一電流記憶元件L1 和第一電荷記憶元件C1串聯,所述開關控制模組100與開 關裝置1連接,用於控制開關裝置1導通和關斷,以控制 能量僅從電池流向儲能電路。 10〇2221#料號删1 第6頁/共41頁 1013176578-0 M438033 101年.05月10日梭正替換百 為了避免對電池E進行充電,根據本創作的技術方案,當 達到加熱條件時,開關控制模組100控制開關裝置1導通 ,電池E與所述第一阻尼元件R1、開關裝置1、第一電流 記憶元件L1和第一電荷記憶元件C1串聯構成回路,電池E 通過該回路放電,所述開關控制模組100用於在電池E的 放電過程中當開關裝置1導通後流經開關裝置1的電流為 零時或為零前控制開關裝置1關斷,只要保證電流僅從電 池E流向第一電荷記憶元件C1即可。在電池E的放電過程 中,回路中的電流正向流過第一阻尼元件R1,通過第一 阻尼元件R1的發熱可以達到給電池E加熱的目的。上述放 電過程迴圈進行,直到達到停止加熱條件,開關控制模 組100控制開關裝置1關斷,加熱電路停止工作。 根據本創作的一種實施方式,如第2圖所示,所述開關裝 置1包括第三開關K1和第二單向半導體元件£)1,所述第三 開關K1和第二單向半導體元件D1彼此串聯之後串聯在所 述儲能電路中,所述開關控制模組100與第三開關K1連接 ,用於通過控制第三開關K1的導通和關斷來控制開關裝 置1導通和關斷。通過串聯第二單向半導體元件D1,在第 三開關K1失效的情況下,可以阻止第一電荷記憶元件C1 中的能量回流,避免對電池E充電。 由於第三開關K1關斷時導致的電流下降速率較高會在第 一電流記憶元件L1上感應出較高的過電壓,容易導致第 三開關K1關斷時由於其電流、電壓超出安全工作區而損 壞,因此,優選情況下,所述開關控制模組100用於在流 經開關裝置1的電流為零時控制第三開關K1關斷。 為了提高加熱效率,優選情況下,根據本創作的另一種 10022218^^^^ A0101 第7頁/共41頁 1013176578-0 M438033 101年05月10日修正替換頁 實施方式,如第3圖所示,所述開關控制模組1〇〇用於在 開關裝置1 V通後流經開關裝置1的電流為零前控制開關 裝置1關斷,所述開關裝置1包括第三單向半導體元件D9 、第四單向半導體元件!)10、第四開關1(2、第三阻尼元件 R4以及第二電荷記憶元件C3,所述第三單向半導體元件 D9與第四開關K2順次串聯在所述儲能電路中,所述第三 阻尼元件R4與第二電荷記憶元件C3串聯之後並聯在所述 第四開關K2的兩端,所述第四單向半導體元件D1〇並聯在 第三阻尼元件R4兩端,用於在第四開關K2關斷時對第一 電流記憶元件L1進行續流,所述開關控制模組丨〇 〇與所述 第四開關K2連接,用於通過控制第四開關K2的導通和關 斷來控制開關裝置1導通和關斷》 所述第四單向半導體元件D10、第三阻尼元件R4以及第三 電荷記憶元件C3組成了吸收回路,用於在第四開關K2關 斷時降低儲能電路中電流的下降速率。由此,當第四開 關K2關斷時’第一電流記憶元件L1上產生的感應電壓會 迫使第四單向半導體元件D10導通並通過第三電荷記憶元 件C3實現續流’使得第一電流記憶元件li中電流變化速 率降低,限制了第一電流記憶元件L1兩端的感應電壓, 可以保證第四開關K2兩端的電壓在安全工作區内。當第 四開關K2再次閉合時,存儲在第三電荷記憶元件C3上的 能量可以通過第三阻尼元件R4進行消耗。 為了提高加熱電路的工作效率,根據本創作的一種優選 實施方式,如第4圖所示,本創作提供的加熱電路可以包 括能量疊加單元,該能量疊加單元與所述儲能電路連接 1013176578-0 ’用於在開關裝置1導通再關斷後,將儲能電路中的能量 10022218#單編號A〇101 第8頁/共41頁 M438033 • < 101年.05月10日修正替換頁 與電池E中的能量進行疊加。所述能量疊加單元使得在開 關裝置1再次導通時,能夠提高加熱回路中的放電電流, 由此提高加熱電路的工作效率。 根據本創作的一種實施方式,如第5圖所示,所述能量疊 加單元包括極性反轉單元102,該極性反轉單元102與所 述儲能電路連接,_用於在開關裝置1導通再關斷後,對第 一電荷記憶元件C1的電壓極性進行反轉,極性反轉後的 第一電荷記憶元件C1的電壓能夠與電池E的電壓串聯相加 〇 作為極性反轉單元102的一種實施方式,如第6圖所示, 所述極性反轉單元102包括第一單刀雙擲開關J1和第二單 刀雙擲開關J2,所述第一單刀雙擲開關J1和第二單刀雙 擲開關J2分別位於所述第一電荷記憶元件C1兩端,所述 第一單刀雙擲開關J1的入線連接在所述儲能電路中,所 述第一單刀雙擲開關J1的第一出線連接所述第一電荷記 憶元件C1的第一極板,所述第一單刀雙擲開關J1的第二 出線連接所述第一電荷記憶元件C1的第二極板,所述第 二單刀雙擲開關J2的入線連接在所述儲能電路中,所述 第二單刀雙擲開關J2的第一出線連接所述第一電荷記憶 元件C1的第二極板,所述第二單刀雙擲開關J2的第二出 線連接在所述第一電荷記憶元件C1的第一極板,所述開 關控制模組100還與所述第一單刀雙擲開關J1和第二單刀 雙擲開關J2分別連接,用於通過改變所述第一單刀雙擲 開關J1和第二單刀雙擲開關J2各自的入線和出線的連接 關係來對所述第一電荷記憶元件C1的電壓極性進行反轉 〇 10022218产單編號 A〇101 第9頁/共41頁 1013176578-0 M438033 101年05月10日梭正替换百 根據該實施方式,可以預先對第一單刀雙擲開關J1和第 二單刀雙擲開關J2各自的入線和出線的連接關係進行設 置,使得當開關裝置K1導通時,所述第一單刀雙擲開關 J1的入線與其第一出線連接,而所述第二單刀雙擲開關 J2的入線與其第一出線連接,當開關裝置K1關斷時,通 過開關控制模組10 0控制第一單刀.雙擲開關J1的入線切換 到與其第二出線連接,而所述第二單刀雙擲開關J2的入 線切換到與其第二出線連接,由此第一電荷記憶元件C1 達到電壓極性反轉的目的。 作為極性反轉單元102的另一種實施方式,如第7圖所示 ,所述極性反轉單元102包括第一單向半導體元件D3、第 二電流記憶元件L2以及第一開關K9,所述第一電荷記憶 元件C1、第二電流記憶元件L2和第一開關K9順次串聯形 成回路,所述第一單向半導體元件D3和串聯在所述第一 電荷記憶元件C1與第二電流記憶元件L 2或所述第二電流 記憶元件L2與第一開關K9之間,所述開關控制模組100還 與所述第一開關K9連接,用於通過控制第一開關K9導通 來對所述第一電荷記憶元件C1的電壓極性進行反轉。 . 根據上述實施方式,當開關裝置1關斷時,可以通過開關 控制模組100控制第一開關K9導通,由此,第一電荷記憶 元件C1與第一單向半導體元件D3、第二電流記憶元件L2 以及第一開關K9形成LC振盪回路,第一電荷記憶元件C1 通過第二電流記憶元件L2放電,振盪回路上的電流流經 正半週期後,流經第二電流記憶元件L2的電流為零時達 到第一電荷記憶元件C1電壓極性反轉的目的。 作為極性反轉單元102的又一種實施方式,如第8圖所示 臓皿,單编號A0101 第10頁/共41頁 1013176578-0 M438033 _ ’ 1101年.05月10日修正替&頁 ,所述極性反轉單元102包括第一DC-DC模組2和第二電 荷記憶元件C2,該第一DC-DC模組2與所述第一電荷記憶 元件C1和第二電荷記憶元件C2分別連接,所述開關控制 模組100還與所述第一DC-DC模組2連接,用於通過控制 第一DC-DC模組2工作來將所述第一電荷記憶元件C1中的 能量轉移至所述第二電荷記憶元件C2,再將所述第二電 荷記憶元件C2中的能量反向轉移回所述第一電荷記憶元 件ci ’以實現對所述第一電荷記憶元件C1的電壓極性的 - 反轉。 所述第一DC-DC模組2是本領域中常用的用於實現電壓極 性反轉的直流變直流轉換電路,本創作不對第一DC_DC模 組2的具體電路結構作任何限制,只要能夠實現對第一電 何记憶το件C1的電壓極性反轉即可,本領域技術人員可 以根據實關作的冑㈣其電財的元件進行增加替 換或刪減。 第9圖為本創作提供的第—DC-DC模組2的-種實施方式, 如第9圖所示’所述第一DC_DC模組2包括:雙向開關以 、雙向開關Q2、雙向開關Q3、雙向開關Q4 '第一變壓器 T1、單向半導體元倾、單向半導體元件的、電流記憶 二變壓器T2 '單 以及單向半導體 元件L3 '雙向開關Q5、雙向開關Q6、第 向半導體元件D6、單向半導體元件D7、 元件D8。 在'亥實施方式卜雙向開陳、雙向開關Q2、雙向開關 卯和雙向開關q4均為M〇sm,雙向開_和雙向開_ 為IGRT。 其中,所述第一 10022218#單編號 A〇1〇1 變壓器T1的1腳、4腳、 第11頁/共41頁 5腳為同名端,第 1013176578-0 M438033 101年05月10日按正替换頁 二變壓器T2的2腳與3腳為同名端❶ 其中’單向半導體元件D7的陽極與電容C1的a端連接,單 向半導體元件D7的陰極與雙向開關Q1和雙向開 關Q2的漏 極連接’雙向開關Q1的源極與雙向開關q3的漏極連接, 雙向開關Q2的源極與雙向開關q4的漏極連接,雙向開關 Q3、雙向開關Q4的源極與電容(:1的1)端連接,由此構成全 橋電路’此時電容C1的電壓極性為3端為正,b端為負。 在該全橋電路中’雙向開關Q1、雙向開關Q2為上橋臂, 雙向開關Q3、雙向開關Q4為下橋臂,該全橋電路通過第 一變壓器T1與所述第二電荷記憶元件C2相連;第一變壓 器T1的1腳與第一節點Ni連接、2腳與第二節點N2連接, 3腳和5腳分別連接至單向半導體元件D4和單向半導體元 件D5的陽極;單向半導體元件!)4和單向半導體元件的的 陰極與電流記憶元件L3的一端連接,電流記憶元件L3的 另一端與第二電荷記憶元件C2的d端連接;變壓器T1的4 腳與第二電荷記憶元件C2的c端連接,單向半導體元件D8 的陽極與第二電荷記憶元件C2的d端連接,單向半導體元 件D8的陰極與第一電荷記憶元件(^的!^端連接,此時第二 電荷記憶元件C2的電壓極性為c端為負,d端為正》 其中’第二電荷記憶元件C2的c端連接雙向開關Q5的發射 極’雙向開關Q5的集電極與變壓器T2的2腳連接,變壓器 T2的1腳與第一電荷記憶元件ci的a端連接,變壓器T2的 4腳與第一電荷記憶元件C1的a端連接,變壓器T2的3腳連 接單向半導體元件D6的陽極,單向半導體元件D6的陰極 與雙向開關Q6的集電極連接,雙向開關Q6的發射極與第 二電荷記憶元件C2的b端連接。 10〇2221#料號删1 第12頁/共41頁 1013176578-0 M438033 r----- * 101年.05月10日修正替換頁 其中,雙向開關Q1、雙向開關Q2、雙向開關Q3、雙向開 關Q4、雙向開關Q5和雙向開關Q6分別通過所述開關控制 模組100的控制來實現導通和關斷。 下面射所述第一DC-DC模組2的工作過程進行描述: 1、 在開關裝置1關斷後,所述開關控制模組100控制雙向 開關Q5、雙向開關Q6關斷,控制雙向開關qi和雙向開關 Q4同時導通以構成A相,控制雙向開關Q2、雙向開關Q3同 ' 時導通以構成B相,通過控制所述A相、B相交替導通以構 成全橋電路進行工作; 2、 當所述全橋電路工作時,第一電荷記憶元件C1上的能 量通過第一變壓器T1、單向半導體元件D4、單向半導體 元件D5、以及電流記憶元件L3轉移到第二電荷記憶元件 C2上,此時第二電荷記憶元件C2的電壓極性為c端為負, d端為正。 3、 所述開關控制模組100控制雙向開關Q5導通,第—電 荷記憶元件C1通過第二變壓器T2和單向半導體元件D8與 第二電荷記憶元件C2構成通路,由此,第二電荷記憶元 件C2上的能量向第一電荷記憶元件C1反向轉移,其中, 部分能量將儲存在第二變壓器T2上;此時,所述開關控 制模組100控制雙向開關Q5關斷、雙向開關Q6閉合,通過 第二變壓器T2和單向半導體元件D6將儲存在第二變壓器 T2上的能量轉移至第一電荷記憶元件C1,以實現對第一 電荷記憶元件C1進行反向充電,此時第一電荷記憶元件 C1的電壓極性反轉為a端為負,b端為正,由此達到了將 第一第一電荷記憶元件C1的電壓極性反向的目的。 為了對儲能電路中的能量進行回收利用,根據本創作的 1013176578-0 10022218#單舰 AG1G1 S 13 頁 / 共 41 頁 M438033 101年05月10日梭正替換頁 ’本創作提供的加熱Semiconductor Field Effect Transistor (MOSFET) or IGBT (Insulated Gate Bipolar Transistor with reversed-current diode); when referred to below, the term "bidirectional switch" refers to A bidirectional conduction switch that implements on-off control or on-off control according to the characteristics of the component itself, such as a MOSFET or an IGBT with an anti-freewheeling diode; etc.; when mentioned hereinafter, a unidirectional semiconductor component Refers to a semiconductor element having a unidirectional conduction function, such as a diode or the like; as mentioned hereinafter, the term "charge memory element" refers to any device that can implement charge storage, such as a capacitor, etc.; when referred to hereinafter, the term "current "Memory element" means any device that can store current, such as an inductor, etc.; as mentioned below, the term "forward" refers to the direction in which energy flows from the battery to the tank circuit, and the term "reverse" refers to energy from the tank circuit. The direction in which the battery flows; when referred to hereinafter, the term "battery" includes a primary battery (eg, a dry battery) An alkaline battery or the like) and a secondary battery (for example, a lithium ion battery, a nickel cadmium battery, a nickel hydride battery, a lead acid battery, etc.); when referred to hereinafter, the term "damping element" means arbitrarily blocking the flow of current to A device that achieves energy consumption, such as a resistor or the like; when referred to hereinafter, the term "main circuit" refers to a circuit in which a battery is connected in series with a damper element, a switching device, and a tank circuit. It should also be noted here that, considering the different characteristics of different types of batteries, in the present creation, "battery" may refer to an inductance value that does not include internal parasitic resistance and parasitic inductance, or internal parasitic resistance and parasitic inductance. A smaller ideal battery can also be a battery pack that contains internal parasitic resistance and parasitic inductance. Therefore, those skilled in the art should be 10022218# single ship deletion 1 page 5 / total 41 page 1013176578-0 M438033 101 May 10th shuttle replacement page is solved when "battery" does not contain internal parasitic resistance and When the parasitic inductance, or the resistance of the internal parasitic resistance and the inductance of the parasitic inductance are small, the first damping element R1 refers to a damping element outside the battery, and the first current memory element L1 refers to the current outside the battery. Memory element; when the "battery" is a battery pack including internal parasitic resistance and parasitic inductance, the first damping element R1 may refer to both a damping element outside the battery and a parasitic resistance inside the battery pack, and likewise, first The current memory element L1 can be either a current memory element outside the battery or a parasitic inductance inside the battery pack. In the embodiment of the present invention, in order to ensure the service life of the battery, it is necessary to heat the battery at a low temperature. When the heating condition is reached, the control heating circuit starts to work, and the battery is heated, and when the heating condition is stopped, the control is performed. The heating circuit stops working. In the practical application of the battery, as the environment changes, the heating condition of the battery and the stop heating condition can be set according to the actual environmental conditions to more accurately control the temperature of the battery, thereby ensuring the charge and discharge performance of the battery. In order to heat the battery E in a low temperature environment, the present invention provides a heating circuit for the battery E. As shown in FIG. 1, the heating circuit includes a switching device 1, a switch control module 100, a first damping element R1, and An energy storage circuit for connecting to the battery, the energy storage circuit comprising a first current memory element L1 and a first charge memory element C1, the first damping element R1, a switching device 1, A current memory element L1 is connected in series with the first charge memory element C1. The switch control module 100 is connected to the switching device 1 for controlling the switching device 1 to be turned on and off to control energy flow only from the battery to the energy storage circuit. 10〇2221#Item# Delete 1 Page 6/Total 41 Page 1013176578-0 M438033 101. On May 10th, the shuttle is replacing 100. In order to avoid charging the battery E, according to the technical solution of this creation, when the heating condition is reached The switch control module 100 controls the switch device 1 to be turned on, and the battery E forms a loop in series with the first damper element R1, the switch device 1, the first current memory element L1 and the first charge memory element C1, and the battery E discharges through the circuit. The switch control module 100 is configured to control the switch device 1 to be turned off when the current flowing through the switch device 1 is zero when the switch device 1 is turned on during the discharge of the battery E, or as long as the current is only from the battery. E may flow to the first charge memory element C1. During the discharge of the battery E, the current in the circuit flows forward through the first damper element R1, and the heat of the first damper element R1 can be used to heat the battery E. The above discharge process is performed in a loop until the stop heating condition is reached, the switch control module 100 controls the switch device 1 to be turned off, and the heating circuit stops operating. According to an embodiment of the present invention, as shown in FIG. 2, the switching device 1 includes a third switch K1 and a second unidirectional semiconductor component £1, the third switch K1 and the second unidirectional semiconductor component D1 Connected in series with each other in the tank circuit, the switch control module 100 is connected to the third switch K1 for controlling the switching device 1 to be turned on and off by controlling the turning on and off of the third switch K1. By connecting the second unidirectional semiconductor element D1 in series, in the event that the third switch K1 fails, the energy in the first charge memory element C1 can be prevented from flowing back, avoiding charging of the battery E. Since the current falling rate caused by the third switch K1 is turned off, a high overvoltage is induced on the first current memory element L1, which easily causes the third switch K1 to be turned off because its current and voltage exceed the safe working area. Damage is therefore caused. Therefore, the switch control module 100 is preferably configured to control the third switch K1 to be turned off when the current flowing through the switching device 1 is zero. In order to improve the heating efficiency, it is preferable to modify the replacement page embodiment according to another creation of the present invention, as shown in Fig. 3, according to another creation of the present invention, 10022218^^^^ A0101, page 7 of 41, page 1013176578-0, M438033 The switch control module 1 is configured to control the switch device 1 to be turned off before the current flowing through the switch device 1 is zero after the switch device 1 V is turned on, the switch device 1 includes a third unidirectional semiconductor component D9, a fourth unidirectional semiconductor element!) 10, a fourth switch 1 (2), a third damper element R4, and a second charge memory element C3, the third unidirectional semiconductor element D9 and the fourth switch K2 being sequentially connected in series in the bank In the energy circuit, the third damper element R4 and the second charge memory element C3 are connected in series and then connected in parallel at both ends of the fourth switch K2, and the fourth unidirectional semiconductor element D1 〇 is connected in parallel to the third damper element R4. End, for renewing the first current memory element L1 when the fourth switch K2 is turned off, the switch control module 丨〇〇 is connected to the fourth switch K2, for controlling the fourth switch K2 Turning on and off to control the switching device 1 to be turned on and off The fourth unidirectional semiconductor component D10, the third damper component R4, and the third charge memory component C3 constitute an absorption loop for reducing the rate of current drop in the tank circuit when the fourth switch K2 is turned off. When the fourth switch K2 is turned off, the induced voltage generated on the first current memory element L1 forces the fourth unidirectional semiconductor element D10 to be turned on and the freewheeling is realized by the third charge memory element C3, so that the first current memory element The medium current rate of change is reduced, limiting the induced voltage across the first current memory element L1, and the voltage across the fourth switch K2 can be ensured to be in the safe working area. When the fourth switch K2 is closed again, it is stored in the third charge memory element. The energy on C3 can be consumed by the third damping element R4. In order to improve the working efficiency of the heating circuit, according to a preferred embodiment of the present creation, as shown in Fig. 4, the heating circuit provided by the present invention may include an energy superimposing unit. The energy superimposing unit is connected to the energy storage circuit 1013176578-0 'for storing the energy storage circuit after the switching device 1 is turned on and off again Energy 10022218#单单A〇101 Page 8 of 41 M438033 • < 101 years. May 10th The revised replacement page is superimposed with the energy in the battery E. The energy superimposing unit makes the switching device 1 again When conducting, the discharge current in the heating circuit can be increased, thereby improving the operating efficiency of the heating circuit. According to an embodiment of the present creation, as shown in FIG. 5, the energy superimposing unit includes a polarity inversion unit 102, the polarity The inverting unit 102 is connected to the energy storage circuit, and is configured to invert the voltage polarity of the first charge memory element C1 after the switching device 1 is turned on and off again, and the first charge memory element C1 after the polarity is inverted. The voltage can be added in series with the voltage of the battery E as an embodiment of the polarity inversion unit 102. As shown in FIG. 6, the polarity inversion unit 102 includes a first single pole double throw switch J1 and a second single pole double a switch J2, the first single-pole double-throw switch J1 and the second single-pole double-throw switch J2 are respectively located at two ends of the first charge memory element C1, and the incoming line of the first single-pole double-throw switch J1 is connected to the In the power circuit, the first outgoing line of the first single-pole double-throw switch J1 is connected to the first electrode of the first charge memory element C1, and the second outgoing line of the first single-pole double-throw switch J1 is connected to the a second plate of the first charge memory element C1, an incoming line of the second single-pole double-throw switch J2 is connected to the energy storage circuit, and a first outgoing line of the second single-pole double-throw switch J2 is connected to the first a second plate of the charge storage device C1, a second outlet of the second single-pole double-throw switch J2 is connected to the first plate of the first charge storage element C1, and the switch control module 100 is further The first single-pole double-throw switch J1 and the second single-pole double-throw switch J2 are respectively connected for changing the connection relationship between the incoming and outgoing lines of the first single-pole double-throw switch J1 and the second single-pole double-throw switch J2. To reverse the voltage polarity of the first charge memory element C1 〇10022218 production order number A〇101 page 9 / total 41 page 1013176578-0 M438033 101 May 10th shuttle is replacing 100 according to this embodiment, The first single pole double throw switch J1 and the second single pole double throw can be pre-processed The connection relationship between the respective incoming and outgoing lines of the switch J2 is set such that when the switching device K1 is turned on, the incoming line of the first single-pole double-throw switch J1 is connected to its first outgoing line, and the second single-pole double-throwing switch J2 is connected. The incoming line is connected to the first outgoing line. When the switching device K1 is turned off, the first single-pole is controlled by the switch control module 100. The incoming line of the double-throw switch J1 is switched to be connected to its second outgoing line, and the second single-knife is connected. The incoming line of the double throw switch J2 is switched to be connected to its second outgoing line, whereby the first charge storage element C1 achieves the purpose of reversing the voltage polarity. As another embodiment of the polarity inversion unit 102, as shown in FIG. 7, the polarity inversion unit 102 includes a first unidirectional semiconductor element D3, a second current memory element L2, and a first switch K9, the A charge storage element C1, a second current memory element L2 and a first switch K9 are sequentially connected in series to form a loop, the first unidirectional semiconductor element D3 and the first charge storage element C1 and the second current memory element L2 being connected in series Or between the second current memory element L2 and the first switch K9, the switch control module 100 is further connected to the first switch K9 for controlling the first charge by controlling the first switch K9 to be turned on. The voltage polarity of the memory element C1 is inverted. According to the above embodiment, when the switching device 1 is turned off, the first switch K9 can be controlled to be turned on by the switch control module 100, whereby the first charge storage element C1 and the first unidirectional semiconductor device D3, the second current memory The element L2 and the first switch K9 form an LC tank circuit, and the first charge memory element C1 is discharged through the second current memory element L2. After the current on the oscillation circuit flows through the positive half cycle, the current flowing through the second current memory element L2 is The purpose of inverting the polarity of the voltage of the first charge memory element C1 is reached at zero time. As another embodiment of the polarity inversion unit 102, as shown in Fig. 8, the single dish A0101 page 10/total 41 page 1013176578-0 M438033 _ '1101. May 10th revised page & The polarity inversion unit 102 includes a first DC-DC module 2 and a second charge storage element C2, the first DC-DC module 2 and the first charge storage element C1 and the second charge storage element C2 Connected separately, the switch control module 100 is further connected to the first DC-DC module 2 for controlling the energy of the first charge storage element C1 by controlling the operation of the first DC-DC module 2 Transferring to the second charge storage element C2, and then transferring the energy in the second charge storage element C2 back to the first charge storage element ci' to achieve a voltage to the first charge storage element C1 Polar - reversed. The first DC-DC module 2 is a DC-DC converter circuit commonly used in the art for realizing voltage polarity inversion. This creation does not impose any limitation on the specific circuit structure of the first DC_DC module 2, as long as it can be realized. It is sufficient to reverse the polarity of the voltage of the first electric device C1, and those skilled in the art can add or replace the components of the electric energy according to the actual (4). FIG. 9 is an embodiment of the first DC-DC module 2 provided by the present invention. As shown in FIG. 9 , the first DC_DC module 2 includes: a bidirectional switch, a bidirectional switch Q2, and a bidirectional switch Q3. Bidirectional switch Q4 'First transformer T1, unidirectional semiconductor element tilt, unidirectional semiconductor component, current memory two transformer T2 'single and unidirectional semiconductor component L3 'bidirectional switch Q5, bidirectional switch Q6, first semiconductor component D6, The unidirectional semiconductor element D7 and the element D8. In the 'Hui implementation mode, the bidirectional opening, the bidirectional switch Q2, the bidirectional switch 卯 and the bidirectional switch q4 are M〇sm, the bidirectional opening _ and the bidirectional opening _ are IGRT. Wherein, the first 10022218# single number A〇1〇1 transformer T1 1 pin, 4 pin, 11th page / 41 pages, 5 feet are the same name end, 1013176578-0 M438033 101 May 10, according to the positive Replace the second pin and the third pin of the second transformer T2 with the same name. The anode of the unidirectional semiconductor device D7 is connected to the a terminal of the capacitor C1, the cathode of the unidirectional semiconductor device D7 and the drain of the bidirectional switch Q1 and the bidirectional switch Q2. The source of the bidirectional switch Q1 is connected to the drain of the bidirectional switch q3, the source of the bidirectional switch Q2 is connected to the drain of the bidirectional switch q4, and the source and capacitance of the bidirectional switch Q3 and the bidirectional switch Q4 (1 of 1) The terminals are connected to form a full bridge circuit. At this time, the voltage polarity of the capacitor C1 is positive at the 3 terminals and negative at the b terminal. In the full bridge circuit, the bidirectional switch Q1, the bidirectional switch Q2 is the upper bridge arm, the bidirectional switch Q3, and the bidirectional switch Q4 are the lower bridge arms, and the full bridge circuit is connected to the second charge storage element C2 through the first transformer T1. 1 leg of the first transformer T1 is connected to the first node Ni, 2 legs are connected to the second node N2, and pins 3 and 5 are respectively connected to the anode of the unidirectional semiconductor element D4 and the unidirectional semiconductor element D5; the unidirectional semiconductor element 4) and the cathode of the unidirectional semiconductor element is connected to one end of the current memory element L3, the other end of the current memory element L3 is connected to the d terminal of the second charge memory element C2; the 4th pin and the second charge memory element of the transformer T1 The c-terminal connection of C2, the anode of the unidirectional semiconductor element D8 is connected to the d-end of the second charge memory element C2, and the cathode of the unidirectional semiconductor element D8 is connected to the first charge memory element (^ The voltage polarity of the charge memory element C2 is negative at the c terminal and positive at the d terminal. The 'c terminal of the second charge memory element C2 is connected to the emitter of the bidirectional switch Q5'. The collector of the bidirectional switch Q5 is connected to the 2 pin of the transformer T2. , transformer T2 1 Connected to the a terminal of the first charge memory element ci, the 4 pin of the transformer T2 is connected to the a terminal of the first charge memory element C1, the 3 pin of the transformer T2 is connected to the anode of the unidirectional semiconductor component D6, and the cathode of the unidirectional semiconductor component D6. Connected to the collector of the bidirectional switch Q6, the emitter of the bidirectional switch Q6 is connected to the b terminal of the second charge memory element C2. 10〇2221#Item No.1 Page 12 of 411013176578-0 M438033 r--- -- * 101 years. May 10th revised replacement page, wherein the bidirectional switch Q1, the bidirectional switch Q2, the bidirectional switch Q3, the bidirectional switch Q4, the bidirectional switch Q5 and the bidirectional switch Q6 are respectively controlled by the switch control module 100 Turning on and off. The following describes the working process of the first DC-DC module 2: 1. After the switching device 1 is turned off, the switch control module 100 controls the bidirectional switch Q5 and the bidirectional switch Q6. The bidirectional switch qi and the bidirectional switch Q4 are simultaneously turned on to form the A phase, the bidirectional switch Q2 is controlled, and the bidirectional switch Q3 is turned on to form the B phase, and the A phase and the B phase are alternately turned on to form a full bridge circuit. Work; When the full bridge circuit is in operation, the energy on the first charge memory element C1 is transferred to the second charge memory element C2 through the first transformer T1, the unidirectional semiconductor element D4, the unidirectional semiconductor element D5, and the current memory element L3. The voltage polarity of the second charge memory element C2 is negative at the c terminal and positive at the d terminal. 3. The switch control module 100 controls the bidirectional switch Q5 to be turned on, and the first charge storage device C1 passes through the second transformer T2 and the unidirectional semiconductor. The component D8 and the second charge memory component C2 form a path, whereby the energy on the second charge memory component C2 is reversely transferred to the first charge memory component C1, wherein part of the energy is stored on the second transformer T2; The switch control module 100 controls the bidirectional switch Q5 to be turned off, the bidirectional switch Q6 to be closed, and the energy stored on the second transformer T2 is transferred to the first charge storage element C1 through the second transformer T2 and the unidirectional semiconductor component D6. In order to achieve reverse charging of the first charge storage element C1, the polarity of the voltage of the first charge storage element C1 is reversed to be negative at the a end and positive at the b end, thereby achieving The purpose of the polarity of the voltage of the first first charge storage element C1 is reversed. In order to recycle the energy in the energy storage circuit, according to the creation of 1013176578-0 10022218# single ship AG1G1 S 13 pages / total 41 pages M438033 101 May 101 shuttle replacement page ‘ heating provided by this creation

一種優選實施方式,如第10圈所$ 電路可以包括能量轉移單元,所4 儲能電路連接,用於在開關费契,、, 優選情況下,所述儲能元件是本創作提供的電池£,所述 月b量轉移單元包括電量回灌單元103,該電量回灌單元 103與所述儲能電路連接,用於在開關裝置丨導通再關斷 後’將儲能電路中的能量轉移至所述電池E中,如第η圖 所示。 根據本創作的技術方案,在開關裝置1導通再關斷後,通 過能量轉移單元將儲能電路中的能量轉移到電池E中,能 夠在開關裝置1再次導通後對被轉移的能量進行迴圈利用 ,提高了加熱電路的工作效率。 作為電量回灌單元103的一種實施方式,如第12圖所示, 所述電量回灌單元103包括第二DC-DC模組3,該第二 DC-DC模組3與所述第一電荷記憶元件ci和所述電池E分 別連接’所述開關控制模組10〇還與所述第二DC-DC模組 3連接’用於通過控制第二DC_DC模組3工作來將第一電荷 記憶元件C1中的能量轉移到所述電池中。 所述第二DC-DC模組3是本領域中常用的用於實現能量轉 移的直流變直流轉換電路,本創作不對第二DC-DC模組3 的具體電路結構作任何限制,只要能夠實現對第一電荷 s己憶το件C1的能量進行轉移即可,本領域技術人員可以 1013Ϊ76578-0 10〇22218产單编號 A0101 M438033 101年.05月ία日梭正替換頁 根據實際操作的需要對其電路中的元件進行增加、替換 或刪減。 第13圖為本創作提供的第二DC-DC模組3的一種實施方式 ,如第13圖所示,所述第二DC-DC模組3包括:雙向開關 S1、雙向開關S2、雙向開關S3、雙向開關S4、第三變壓 器T3、電流記憶元件L4、以及四個單向半導體元件。在 該實施方式中,所述雙向開關S1、雙向開關S2、雙向開 關S3、雙向開關S4均為M0SFET。 其中,所述第三變壓器T3的1腳和3腳為同名端,所述四 個單向半導體元件中的兩個單向半導體元件負極相接成 組,接點通過電流記憶元件L4與電池E的正端連接,另兩 個單向半導體元件正極相接成組,接點與電池E的負端連 接,且組與組之間的對接點分別與第三變壓器T3的3腳和 4腳連接,由此構成橋式整流電路。 其中,雙向開關S1的源極與雙向開關S3的漏極連接,雙 向開關S2的源極與雙向開關S4的漏極連接,雙向開關S1 、雙向開關S2的漏極與第一電荷記憶元件C1的正端連接 ,雙向開關S3、雙向開關S4的源極與第一電荷記憶元件 C1的負端連接,由此構成全橋電路。 在該全橋電路中,雙向開關S1、雙向開關S2為上橋臂, 雙向開關S3、雙向開關S4為下橋臂,第三變壓器13的1腳 與雙向開關S1和雙向開關S3之間的節點連接、2腳與雙向 開關S2和雙向開關S4之間的節點連接。 其中,雙向開關S1、雙向開關S2、雙向開關S3和雙向開 關S4分別通過所述開關控制模組100的控制來實現導通和 關斷 10022218^^^^ A〇101 第15頁/共41頁 1013176578-0 101年.05月10日梭正替换頁 1面對所述第模組3的卫作過程進行描述 開關農置1關斷後,所述開關控制模組剛控制雙向 1和又向開㈣同時導通以構成八相,控制雙向開關 X向開關S3同時導通以構成叫,通過控制所述八相 、B相交替導通簡成全橋電路進行工作; 2田所述全橋電路工作時,第—電荷記憶元件^上的能 节dt壓器"13和整流電路轉移到電池e上,所述整 將輪入的交流電轉化為直流電輪出至電池E,達到 電量回灌的目的。 '吏本創作提供的加熱電路在提高工作效率的同時能 ί储月b電路中的能量進行回收利用,根據本創作的一 種優選實〜方式,如第14®所示,本創作提供的加熱電 路可以包括能量疊加和轉移單元,該能量疊加和轉移單 疋與所述儲能電路連接,用於在開關裝置1導通再關斷後 ,將儲能電路中的能量轉移至儲能元件中 ,之後將儲能 電路中的剩餘能量與電池中的能量進行疊加。所述能量 叠加和轉移單元既能夠提高加熱電路的工作效率,又能 夠對储能電路中的能量進行回收利用。 將儲能電路中的剩餘能量與電池中的能量進行疊加可以 通過將第一電荷記憶元件C1的電壓極性進行反轉來實現A preferred embodiment, such as the 10th lap circuit, can include an energy transfer unit, 4 storage circuit connections, for switching charges, and, preferably, the energy storage component is a battery provided by the present invention. The monthly b amount transfer unit includes a power recharging unit 103, and the electric energy recharging unit 103 is connected to the energy storage circuit for transferring energy in the energy storage circuit to after the switching device is turned on and off again. In the battery E, as shown in the figure η. According to the technical solution of the present invention, after the switching device 1 is turned on and off again, the energy in the energy storage circuit is transferred to the battery E through the energy transfer unit, and the transferred energy can be looped after the switching device 1 is turned on again. Utilize, improve the working efficiency of the heating circuit. As an embodiment of the power recharging unit 103, as shown in FIG. 12, the power recharging unit 103 includes a second DC-DC module 3, the second DC-DC module 3 and the first electric charge. The memory element ci and the battery E are respectively connected to the 'the switch control module 10' is also connected to the second DC-DC module 3' for the first charge memory by controlling the operation of the second DC_DC module 3 The energy in element C1 is transferred to the battery. The second DC-DC module 3 is a DC-DC converter circuit commonly used in the art for energy transfer. The present invention does not impose any limitation on the specific circuit structure of the second DC-DC module 3, as long as it can be realized. The energy of the first electric charge can be transferred, and those skilled in the art can 1013Ϊ76578-0 10〇22218 production order number A0101 M438033 101.05 month ίαRissuo replacement page according to actual operation needs Add, replace, or delete components in its circuit. FIG. 13 is an embodiment of the second DC-DC module 3 provided by the present invention. As shown in FIG. 13, the second DC-DC module 3 includes: a bidirectional switch S1, a bidirectional switch S2, and a bidirectional switch. S3, a bidirectional switch S4, a third transformer T3, a current memory element L4, and four unidirectional semiconductor elements. In this embodiment, the bidirectional switch S1, the bidirectional switch S2, the bidirectional switch S3, and the bidirectional switch S4 are all MOSFETs. Wherein the 1st pin and the 3rd leg of the third transformer T3 are the same name end, and the negative electrodes of the two unidirectional semiconductor elements of the four unidirectional semiconductor elements are connected in groups, and the contacts pass through the current memory element L4 and the battery E The positive terminal is connected, the other two unidirectional semiconductor components are connected in a positive group, the contacts are connected to the negative terminal of the battery E, and the docking points between the groups are respectively connected to the 3rd and 4th pins of the third transformer T3. Thus, a bridge rectifier circuit is constructed. The source of the bidirectional switch S1 is connected to the drain of the bidirectional switch S3, the source of the bidirectional switch S2 is connected to the drain of the bidirectional switch S4, the drain of the bidirectional switch S1, the bidirectional switch S2 and the first charge storage element C1. The positive terminal is connected, and the source of the bidirectional switch S3 and the bidirectional switch S4 is connected to the negative terminal of the first charge storage element C1, thereby constituting a full bridge circuit. In the full bridge circuit, the bidirectional switch S1, the bidirectional switch S2 is the upper arm, the bidirectional switch S3, the bidirectional switch S4 is the lower arm, the node of the third transformer 13 and the node between the bidirectional switch S1 and the bidirectional switch S3 Connection, 2 pin and node connection between bidirectional switch S2 and bidirectional switch S4. The bidirectional switch S1, the bidirectional switch S2, the bidirectional switch S3, and the bidirectional switch S4 are respectively turned on and off by the control of the switch control module 100. 10022218^^^^ A〇101 Page 15 / 41 pages 1013176578 -0 101.05月10日 Shuttle replacement page 1 describes the maintenance process of the first module 3. After the switch 1 is turned off, the switch control module just controls the two-way 1 and turns on again. (4) simultaneously conducting to form eight phases, controlling the bidirectional switch X to switch S3 to be simultaneously turned on to constitute a call, and controlling the eight-phase and B-phase alternate conduction to form a full-bridge circuit; 2 when the full-bridge circuit works, - The energy-saving element on the charge memory element ^13 and the rectifier circuit are transferred to the battery e, which converts the incoming alternating current into a direct current to the battery E for the purpose of recharging the battery. 'The heating circuit provided by Sakamoto creation can improve the work efficiency while recovering the energy in the circuit of the moon b. According to a preferred embodiment of the creation, as shown in the 14th, the heating circuit provided by the present invention An energy superposition and transfer unit may be included, the energy superposition and transfer unit being connected to the energy storage circuit for transferring energy in the energy storage circuit to the energy storage element after the switching device 1 is turned on and off again, after which The remaining energy in the tank circuit is superimposed with the energy in the battery. The energy superimposing and transferring unit can both increase the working efficiency of the heating circuit and recycle the energy in the energy storage circuit. Superposing the remaining energy in the tank circuit with the energy in the battery can be achieved by inverting the voltage polarity of the first charge memory element C1.

’反轉後的第一電荷記憶元件C1的電壓能夠與電池E的電 壓串聯相加。 因此’根據一種實施方式,如第15圖所示,所述能量疊 加和轉移單元包括DC-DC模組4 ’該DC-DC模組4與所述第 —電荷記憶元件C1和所述電池分別連接,所述開關控制 模組100還與所述DC-DC模組4連接,用於通過控制DC-DC ^022218^單編號 Αοιοι 第16頁/共41頁 1013176578-0 M438033The voltage of the inverted first charge storage element C1 can be added in series with the voltage of the battery E. Therefore, according to an embodiment, as shown in FIG. 15, the energy superimposing and transferring unit includes a DC-DC module 4', the DC-DC module 4 and the first-charge memory element C1 and the battery respectively The switch control module 100 is further connected to the DC-DC module 4 for controlling DC-DC ^022218^ single number Αοιοι page 16 / 41 pages 1013176578-0 M438033

用的用於實現能量轉移和 電壓極性反轉的直流變直流轅 y 轉換電路,本創作不對DC~DfDC to DC y conversion circuit for energy transfer and voltage polarity reversal, this creation is not DC~Df

楔組4的具體電路結構作任彳 L 17限制,只要能夠實現對第— 電荷記憶元件Π的能量轉移和電壓鋪反轉即可, 域技術人貢可以根據實《作的需要對其電路中的元件 進行增加、替換或刪減。 作為DC-職組4的-種實施方式峨$圖所示,該 DC~DC模組4包括:雙向開關S1、雙向開關S2、雙向開關 S3、雙向開關S4、雙向開關以、雙向開關%、第 器T4、第二單向半導體元件Du、第二單向半導體元件 D14、電流記憶元件u、以及四個單向半導體元件。在該The specific circuit structure of the wedge group 4 is limited to L 17 , as long as the energy transfer and voltage reversal of the first charge memory device can be realized, the domain technician can perform the circuit according to the actual needs of the circuit. The components are added, replaced or deleted. As shown in the figure of DC-title 4, the DC~DC module 4 includes: a bidirectional switch S1, a bidirectional switch S2, a bidirectional switch S3, a bidirectional switch S4, a bidirectional switch, a bidirectional switch %, The first device T4, the second unidirectional semiconductor element Du, the second unidirectional semiconductor element D14, the current memory element u, and the four unidirectional semiconductor elements. In the

實施方式中,所述雙向開_、雙㈣脱、雙向開關X S3、.雙向開關S4均為MOSFET ’雙向開·5和雙向開關s6 為 IGBT。 其中,第四變壓器T4的1腳和3腳為同名端,所述四個單 向半導體元件中的兩個單向半導體元件負極相接成組, 接點通過電流記憶元件L4與電池E的正端連接,另兩個單 向半導體元件正極相接成組,接點與電池E的負端連接, 且組與組之間的對接點分別通過雙向開關S5和雙向開關 S6與第三變壓器T3的3腳和4腳連接,由此構成橋式整流 電路。 . 其中,雙向開關S1的源極與雙向開關S3的漏極連接,雙 向開關S2的源極與雙向開關S4的漏極連接,雙向開關S1 10022218#單編號A0101 第17頁/共41頁 1013176578-0 M438033 101年.05月10日修正替換頁 、雙向開關S2的漏極通過第二單向半導體元件D13與第一 電荷記憶元件C1的正端連接,雙向開關S3、雙向開關S4 的源極通過第二單向半導體元件D14與第一電荷記憶元件 C1的負端連接,由此構成全橋電路。 在該全橋電路中,雙向開關S1、雙向開關S2為上橋臂, 雙向開關S3、雙向開關S4為下橋臂,第四變壓器T4的1腳 與雙向開關S1和雙向開關S3之間的節點連接、2腳與雙向 開關S 2和雙向開關S 4之間的節點連接。 其中,雙向開關S1、雙向開關S2、雙向開關S3和雙向開 關S4、雙向開關S5和雙向開關S6分別通過所述開關控制 模組100的控制來實現導通和關斷。 下面對所述DC-DC模組4的工作過程進行描述: 1、 在開關裝置1關斷後,當需要對第一電荷記憶元件C1 執行電量回灌以實現能量轉移時,所述開關控制模組100 控制雙向開關S5和S6導通,控制雙向開關S1和雙向開關 S4同時導通以構成A相,控制雙向開關S2、雙向開關S3同 時導通以構成B相,通過控制所述A相、B相交替導通以構 成全橋電路進行工作; 2、 當所述全橋電路工作時,第一電荷記憶元件C1上的能 量通過第四變壓器T4和整流電路轉移到電池E上,所述整 流電路將輸入的交流電轉化為直流電輸出至電池E,達到 電量回灌的目的; 3、 當需要對第一電荷記憶元件C1進行極性反轉以實現能 量疊加時,所述開關控制模組100控制雙向開關S5和雙向 開關S6關斷,控制雙向開關S1和雙向開關S4或者雙向開 關S2和雙向開關S3兩組中的任意一組導通;此時,第一 10022218^^^^ A〇101 第18頁/共41頁 1013176578-0 M438033 * 101年.05月10日修正替換頁 電荷記憶元件C1中的能量通過其正端、雙向開關S1、第 四變壓器T4的原邊、雙向開關S4反向回到其負端,或者 通過其正端、雙向開關S2、第四變壓器T4的原邊、雙向 開關S3反向回到其負端,利用T4的原邊勵磁電感,達到 對第一電荷記憶元件C1進行電壓極性反轉的目的。 根據另一種實施方式,所述能量疊加和轉移單元可以包 括能量疊加單元和能量轉移單元,所述能量轉移單元與 所述儲能電路連接,用於在開關裝置1導通再關斷後,將 儲能電路中的能量轉移至儲能元件中,所述能量疊加單 元與所述儲能電路連接,用於在所述能量轉移單元進行 能量轉移之後,將儲能電路中的剩餘能量與電池E中的能 量進行疊加。 其中,所述能量疊加單元和能量轉移單元均可以採用本 創作在前述實施方式中提供的能量疊加單元和能量轉移 單元,其目的在於實現對第一電荷記憶元件C1的能量轉 移和疊加,其具體結構和功能在此不再贅述。 作為本創作的一種實施方式,為了提高加熱電路的工作 效率,還可以通過對第一電荷記憶元件C1中的能量進行 消耗來實現。因此,如第16圖所示,所述加熱電路還包 括與所述第一電荷記憶元件C1連接的能量消耗單元,該 能量消耗單元用於在開關裝置1導通再關斷後,對第一電 荷記憶元件C1中的能量進行消耗。 該能量消耗單元可以在加熱電路f單獨使用,在開關裝 置1導通再關斷後,直接對第一電荷記憶元件C1中的能量 進行消耗,也可以與以上多種實施方式相結合,例如, 該能量消耗單元可以與包括能量疊加單元的加熱電路結 10022218产單編號 A〇101 第19頁/共41頁 1013176578-0 M438033 101年05月10日修正替換頁 合,在開關裝置1導通再關斷後、能量疊加單元進行能量 疊加操作之前對第一電荷記憶元件C1中的能量進行消耗 ,也可以與包括能量轉移單元的加熱電路結合,在開關 裝置1導通再關斷後、能量轉移單元進行能量轉移之前或 者在能量轉移單元進行能量轉移之後對第一電荷記憶元 件C1中的能量進行消耗,同樣可以與包括能量疊加和轉 移單元的加熱電路結合,在開關裝置1導通再關斷後、能 量疊加和轉移單元進行能量轉移之前對第一電荷記憶元 件C1中的能量進行消耗,或者在能量疊加和轉移單元進 行能量轉移之後、進行能量疊加之前對第一電荷記憶元 件C1中的能量進行消耗,本創作不對此進行限定,並且 ,通過以下實施方式可以更清楚地瞭解該能量消耗單元 的工作過程。 根據一種實施方式,如第17圖所示,所述能量消耗單元 包括電壓控制單元101,該電壓控制單元101用於在開關 裝置1導通再關斷時,將第一電荷記憶元件C1兩端的電壓 值轉換成電壓設定值。該電壓設定值可以根據實際操作 的需要進行設定。 如第17圖所示,所述電壓控制單元101包括第二阻尼元件 R5和第二開關K8,所述第二阻尼元件R5和第二開關K8彼 此串聯之後並聯在所述第一電荷記憶元件C1的兩端,所 述開關控制模組100還與第二開關K8連接,所述開關控制 模組100還用於在控制開關裝置1導通再關斷後控制第二 開關K8導通。由此,第一電荷記憶元件C1中的能量可以 通過第二阻尼元件R5進行消耗。 所述開關控制模組100可以為一個單獨的控制器,通過對 10022218产單編號 A0101 第20頁/共41頁 1013176578-0 其内部程式的設置’可以實現對不同的外接雙 控制’所述開關控制模組100也可以為多個控制器,斷 針對每一個外接開關設置對應的開關控制模組1(^例如 多個開關控制模組100也可以集成A 脚 所述 亍取馮一體,本創作不 關控制模組100的實現形式作出任何限定。 '汗 下面結合第18圖和第19圖對電池£的加熱電路的實施^ 的工作方式進行簡單介绍。需要注意的是,雖然本創作式 的特徵和元素參考第18圖和第19圖以特定的結合進行 描述,但每個特徵或元素可以在沒有其他特徵和元素 情況下單獨使用,或在與或不與其他特徵和元素結合的 各種情/兄下使用。本創作^供的電池Ε的加熱電路的實施 方式並不限於第18圖和第19圖所示的實現方式。 在如第18圖所示的電池Ε的加熱電路中,使用第三開關^ 和第二單向半導體元件D1構成開關裝置丨,儲能電路包括 第一電流記憶元件L1和第一電荷記憶元件C1,第一阻尼 元件R1和開關裝置1與所述儲能電路串聯,DC-DC模組4 構成能量疊加和反轉單元,開關控制模組100可以控制第 三開關Κ1的導通和關斷和DC-DC模組4的工作與否。第19 圖為與第18圖的加熱電路對應的i形時序圖,其中,VC1 指的是第一電荷記憶元件C1的電壓值,I主指的是流經第 三開關K1的電流的電流值。第18圖中的加熱電路的工作 過程如下: a)當需要對電池E進行加熱時,開關控制模組100控制第 三開關K1導通,電池E通過第三開關K1、第二單向半導體 元件D1和第一電荷記憶元件C1組成的回路放電,如第19 圖中所示的tl時間段;開關控制模組100在流經第三開關 10022218^^^ A0101 第21頁/共41頁 1013176578-0 M438033 101年05月10日核正#^頁 K1的電流為零時控制第三開關K1關斷,如第19圖中所示 的t2時間段; b) 當第二開關K1關斷後,開關控制模組100控制DC-DC 模組4工作’第一電荷記憶元件C1通過DC-DC模組4將一 部分交流電轉化為直流電輸出到電池E中,實現電量回灌 ’如第19圖申所示的t2時間段; c) 開關控制模纽10〇控制dc-DC模組4工作,對第一電荷 記憶元件C1進行電壓極性反轉,之後控制DC_DC模組4停 止工作,如第19圖中所示的t3時間段; d) 重複步驟a)至c),電池E不斷通過放電實現加熱, 直至電池E達到停止加熱條件為止。 本創作提供的加熱電路能夠提高電池的充放電性能,並 且在該加熱電路中,儲能電路與電池串聯,當給電池加 熱時,由於串聯的電荷記憶元件的存在,能夠避免開關 裝置失效短路引起的安全性問題,能夠有效地保護電池 。同時,由於本創作的加熱電路中,能量僅從電池流向 儲能電路,避免了電荷記憶元件給處於低溫情況下的電 池充電,能夠更好地保證電池的充放電性能。 以上結合附圖詳“描述了本創作的優選實施方式,但是 ,本創作並不限於上述實施方式中的具體細節,在本創 作的技術構思範圍内,可以對本創作的技術方案進行多 種簡單變型,這些簡單變型均屬於本創作的保護範圍。 另外需要說明的是,在上述具體實施方式中所描述的各 個具體技術特徵,在不矛盾的情況下,可以通過任何合 適的方式進行組合,為了避免不必要的重複,本創作對 各種可能的組合方式不再另行說明。此外,本創作的各 则22218产單編號A0101 第22頁/共41頁 1013176578-0 M438033 1» [0005] 101年.05.启10日接正_頁 種不同的實施方式之間也可以進行任意組合,只要其不 違背本創作的思想,其同樣應當視為本創作所公開的内 容。 【圖式簡單說明】 附圖是用來提供對本創作的進一步理解,並且構成說明 書的一部分’與下面的具體實施方式—起用於解釋本創 作’但並不構成對本創作的限制。在附圖中: 第1圖為本創作提供的電池的加熱電路的示意圖; 第2圖為第1圖中的開關裝置的一種實施方式的示意圖; 第3圖為第1圖中的開關裝置的一種實施方式的示意圖; 第4圖為本創作提供的電池的加熱電路的一種優選實施方 式的不意圖, 第5圖為第4圖中的能量疊加單元的一種實施方式的示意 ΤΞΙ · 圆, 第6圖為第5圖中的極性反轉單元的一種實施方式的示意 圖; 第7圖為第5圖中的極性反轉單元的一種實施方式的示意 國, 第8圖為第5圖中的極性反轉單元的一種實施方式的示意 圖; 第9圖為第8圖中的第一 DC-DC模組的一種實施方式的示意 國, 第10圖為本創作提供的電池的加熱電路的一種優選實施 方式的示意圖; 第11圖為本創作提供的電池的加熱電路的一種優選實施 第23頁/共41頁 1013176578-0 方式的示意圖; 10022218夢單編號 A0101 M438033 101年.05月10日俊正替換頁 第12圖為第11圖中的電量回灌單元的一種實施方式的示 意圖; 第13圖為第12圖中的第二DC-DC模組的一種實施方式的 示意圖; 第14圖為本創作提供的電池的加熱電路的一種優選實施 方式的示意圖; 第15圖為第14圖中的能量疊加和轉移單元的一種實施方 式的示意圖; 第16圖為本創作提供的電池的加熱電路的一種優選實施 方式的示意圖; 第17圖為第16圖中的能量消耗單元的一種實施方式的示 意圖; 第18圖為本創作提供的電池的加熱電路的一種實施方式 的不意圖,以及 第19圖為第18圖的加熱電路所對應的波形時序圖。 【主要元件符號說明】 [〇〇〇6] 1開關裝置 L1第一電流記憶元件 R1第一阻尼元件 C1第一電荷記憶元件 E電池 K1第三開關 D1、D13、D14第二單向半導體元件 D9第三單向半導體元件 D10第四單向半導體元件 C3第三電荷記憶元件 1013176578-0 10022218#單編號A01<n 第24頁/共41頁 M438033 •t. 101:年.05月10日修正替換頁 K2第四開關 R4第三阻尼元件 J1第一單刀雙擲開關 J2第二單刀雙擲開關 102極性反轉單元 D3第一單向半導體元件 Κ9第一開關 C2第二電荷記憶元件 、S5、S6雙向In the embodiment, the bidirectional open_, double (four) off, bidirectional switch X S3, and bidirectional switch S4 are both MOSFET 'bidirectional open · 5 and bidirectional switch s6 is IGBT. Wherein the 1st pin and the 3rd leg of the fourth transformer T4 are the same name end, and the negative electrodes of the two unidirectional semiconductor elements of the four unidirectional semiconductor elements are connected in groups, and the contacts pass through the current memory element L4 and the battery E The terminals are connected, the other two unidirectional semiconductor components are connected in a positive group, the contacts are connected to the negative terminal of the battery E, and the connection points between the groups are respectively passed through the bidirectional switch S5 and the bidirectional switch S6 and the third transformer T3. The 3 pin and the 4 pin are connected, thereby constituting a bridge rectifier circuit. Wherein, the source of the bidirectional switch S1 is connected to the drain of the bidirectional switch S3, the source of the bidirectional switch S2 is connected to the drain of the bidirectional switch S4, and the bidirectional switch S1 10022218# single number A0101 page 17 / 41 pages 1013176578- 0 M438033 101. On May 10th, the replacement page is corrected. The drain of the bidirectional switch S2 is connected to the positive terminal of the first charge storage element C1 through the second unidirectional semiconductor element D13, and the source of the bidirectional switch S3 and the bidirectional switch S4 is passed. The second unidirectional semiconductor element D14 is connected to the negative terminal of the first charge memory element C1, thereby constituting a full bridge circuit. In the full bridge circuit, the bidirectional switch S1, the bidirectional switch S2 is the upper arm, the bidirectional switch S3, the bidirectional switch S4 is the lower arm, the node of the fourth transformer T4 and the node between the bidirectional switch S1 and the bidirectional switch S3 The connection between the 2 pin and the bidirectional switch S 2 and the bidirectional switch S 4 is connected. The bidirectional switch S1, the bidirectional switch S2, the bidirectional switch S3 and the bidirectional switch S4, the bidirectional switch S5 and the bidirectional switch S6 are respectively turned on and off by the control of the switch control module 100. The following describes the working process of the DC-DC module 4: 1. After the switching device 1 is turned off, when the power charging is performed on the first charge storage element C1 to achieve energy transfer, the switch control The module 100 controls the bidirectional switches S5 and S6 to be turned on, and controls the bidirectional switch S1 and the bidirectional switch S4 to be simultaneously turned on to form the A phase, the control bidirectional switch S2, and the bidirectional switch S3 are simultaneously turned on to form the B phase, and the A phase and the B phase are controlled by Alternating conduction to form a full bridge circuit for operation; 2. When the full bridge circuit operates, energy on the first charge storage element C1 is transferred to the battery E through the fourth transformer T4 and the rectifier circuit, and the rectifier circuit inputs The AC power is converted into a DC output to the battery E for the purpose of recharging the power; 3. When the polarity reversal of the first charge storage element C1 is required to achieve energy superposition, the switch control module 100 controls the bidirectional switch S5 and The bidirectional switch S6 is turned off, and the bidirectional switch S1 and the bidirectional switch S4 or the bidirectional switch S2 and the bidirectional switch S3 are controlled to be turned on; at this time, the first 10022218^^^^ A〇10 1 Page 18 of 41 1013176578-0 M438033 * 101 years. May 10th Correction of the energy in the replacement page charge memory element C1 through its positive terminal, bidirectional switch S1, primary side of fourth transformer T4, bidirectional switch S4 Reverse back to its negative end, or through its positive terminal, bidirectional switch S2, the primary side of the fourth transformer T4, the bidirectional switch S3 back to its negative end, using the primary excitation inductance of T4, to reach the first The charge memory element C1 performs the purpose of voltage polarity inversion. According to another embodiment, the energy superposition and transfer unit may include an energy superimposing unit and an energy transfer unit, and the energy transfer unit is connected to the energy storage circuit for storing after the switching device 1 is turned on and then turned off. The energy in the energy circuit is transferred to the energy storage element, and the energy superimposing unit is connected to the energy storage circuit for using the remaining energy in the energy storage circuit and the battery E after the energy transfer unit performs energy transfer The energy is superimposed. The energy superimposing unit and the energy transfer unit may both adopt the energy superimposing unit and the energy transfer unit provided in the foregoing embodiments, and the purpose thereof is to realize energy transfer and superposition of the first electric charge memory element C1, and the specific Structure and function will not be described here. As an embodiment of the present creation, in order to improve the working efficiency of the heating circuit, it is also possible to consume energy in the first charge storage element C1. Therefore, as shown in FIG. 16, the heating circuit further includes an energy consuming unit connected to the first charge storage element C1, the energy consuming unit is configured to apply a first charge after the switching device 1 is turned on and then turned off. The energy in the memory element C1 is consumed. The energy consuming unit can be used alone in the heating circuit f. After the switching device 1 is turned on and off again, the energy in the first charge storage element C1 is directly consumed, and can also be combined with the above various embodiments, for example, the energy. The consuming unit can be combined with the heating circuit node 10022218 including the energy superimposing unit, the number of the order number A 〇 101, the 19th page, the total number of pages 1013176578-0, M438033, the correction of the replacement page, after the switch device 1 is turned on and then turned off. The energy superimposing unit consumes the energy in the first charge storage element C1 before performing the energy superposition operation, and may also be combined with the heating circuit including the energy transfer unit, and the energy transfer unit performs energy transfer after the switching device 1 is turned on and off again. The energy in the first charge storage element C1 is consumed before or after the energy transfer unit performs the energy transfer, and can also be combined with the heating circuit including the energy superimposing and transferring unit, after the switching device 1 is turned on and off, the energy is superimposed and The energy in the first charge storage element C1 is performed before the transfer unit performs energy transfer The energy in the first charge storage element C1 is consumed, or the energy in the first charge storage element C1 is consumed after the energy superposition and transfer unit performs energy transfer, which is not limited by the present creation, and can be more clearly understood by the following embodiments. The working process of the energy consuming unit. According to an embodiment, as shown in FIG. 17, the energy consumption unit includes a voltage control unit 101 for voltages across the first charge memory element C1 when the switching device 1 is turned on and off again. The value is converted to a voltage set point. This voltage setting can be set according to the actual operation. As shown in FIG. 17, the voltage control unit 101 includes a second damper element R5 and a second switch K8, and the second damper element R5 and the second switch K8 are connected in series to each other and then connected in parallel to the first charge memory element C1. The switch control module 100 is further configured to control the second switch K8 to be turned on after the control switch device 1 is turned on and then turned off. Thereby, the energy in the first charge storage element C1 can be consumed by the second damper element R5. The switch control module 100 can be a single controller, and the switch can be implemented by using the internal program setting of '10022218' numbering A0101, page 20/41, and 1013176578-0. The control module 100 can also be a plurality of controllers, and the corresponding switch control module 1 is provided for each external switch. (For example, the plurality of switch control modules 100 can also integrate the A foot to extract the Feng integrated, this creation There is no limitation on the implementation form of the control module 100. 'Khan's a brief introduction to the operation of the heating circuit of the battery £ in conjunction with Figs. 18 and 19. It should be noted that although this creation is Features and Elements Referring to Figures 18 and 19, a particular combination is described, but each feature or element can be used alone without other features and elements, or with or without other features and elements. / Brother used. The embodiment of the heating circuit of the battery pack of the present invention is not limited to the implementation shown in Fig. 18 and Fig. 19. In the battery shown in Fig. 18 In the heating circuit, the switching device 构成 is formed using the third switch ^ and the second unidirectional semiconductor element D1, the tank circuit including the first current memory element L1 and the first charge memory element C1, the first damping element R1 and the switching device 1 In series with the energy storage circuit, the DC-DC module 4 constitutes an energy superposition and inversion unit, and the switch control module 100 can control the conduction and deactivation of the third switch Κ1 and the operation of the DC-DC module 4. Figure 19 is an i-shaped timing chart corresponding to the heating circuit of Figure 18, wherein VC1 refers to the voltage value of the first charge storage element C1, and I main refers to the current value of the current flowing through the third switch K1. The operation of the heating circuit in Fig. 18 is as follows: a) When it is necessary to heat the battery E, the switch control module 100 controls the third switch K1 to be turned on, and the battery E passes through the third switch K1 and the second unidirectional semiconductor element. The circuit composed of D1 and the first charge memory element C1 is discharged, as shown in the tl time period shown in FIG. 19; the switch control module 100 is flowing through the third switch 10022218^^^ A0101 page 21/total 41 page 1013176578- 0 M438033 May 10, 101, nuclear positive #^ page K1 When the current is zero, the third switch K1 is turned off, as shown in the t2 time period shown in FIG. 19; b) when the second switch K1 is turned off, the switch control module 100 controls the DC-DC module 4 to operate ' A charge memory component C1 converts a part of the alternating current into a direct current output into the battery E through the DC-DC module 4, thereby realizing the power recharge 't2 time period as shown in FIG. 19; c) the switch control module 10〇 control The dc-DC module 4 operates to invert the voltage polarity of the first charge storage element C1, and then controls the DC_DC module 4 to stop operating, as shown in the t3 time period shown in FIG. 19; d) repeat steps a) to c ), the battery E is continuously heated by the discharge until the battery E reaches the stop heating condition. The heating circuit provided by the present invention can improve the charge and discharge performance of the battery, and in the heating circuit, the energy storage circuit is connected in series with the battery. When the battery is heated, due to the existence of the series of charge memory elements, the failure of the switching device can be avoided. The safety issue can effectively protect the battery. At the same time, due to the energy flowing from the battery to the energy storage circuit in the heating circuit of the present invention, the charge memory element is prevented from charging the battery under low temperature conditions, and the charge and discharge performance of the battery can be better ensured. The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings. However, the present invention is not limited to the specific details in the above embodiments, and various simple modifications can be made to the technical solutions of the present invention within the scope of the technical idea of the present invention. These simple variations are all within the scope of protection of the present invention. It should be further noted that the specific technical features described in the above specific embodiments may be combined in any suitable manner without contradiction, in order to avoid The necessary repetitions, the creation of the various possible combinations will not be further explained. In addition, the creation of each of the 22218 production order number A0101 page 22 / a total of 41 pages 1013176578-0 M438033 1» [0005] 101 years. 05. Any combination of different implementations can also be made as long as it does not violate the idea of this creation, and it should also be regarded as the content disclosed in this creation. [Simplified illustration] Used to provide a further understanding of the creation and to form part of the specification 'with the specific embodiments below Explain the present work' but does not constitute a limitation on the present creation. In the drawings: Fig. 1 is a schematic view of a heating circuit of a battery provided by the present invention; Fig. 2 is a schematic view showing an embodiment of the switching device in Fig. 1 FIG. 3 is a schematic diagram of an embodiment of the switching device of FIG. 1; FIG. 4 is a schematic diagram of a preferred embodiment of the heating circuit of the battery provided by the present invention, and FIG. 5 is the energy of FIG. A schematic diagram of an embodiment of a superposition unit, a sixth diagram, and a schematic diagram of an embodiment of the polarity inversion unit in FIG. 5; and FIG. 7 is an embodiment of the polarity inversion unit in FIG. State diagram, FIG. 8 is a schematic diagram of an embodiment of the polarity inversion unit in FIG. 5; FIG. 9 is a schematic diagram of an embodiment of the first DC-DC module in FIG. A schematic diagram of a preferred embodiment of a heating circuit for a battery provided for the present invention; FIG. 11 is a schematic view of a preferred embodiment of the heating circuit of the battery provided by the present invention, page 23 of 41, page 1013176578-0; 10022218 Dream list number A0101 M438033 101. May 10th, the page of the replacement page is shown in Fig. 12 is a schematic diagram of an embodiment of the power refill unit in Fig. 11; Fig. 13 is the second DC-DC in Fig. 12. A schematic diagram of an embodiment of a module; FIG. 14 is a schematic view of a preferred embodiment of a heating circuit for a battery provided by the present invention; and FIG. 15 is a schematic diagram of an embodiment of the energy superposition and transfer unit of FIG. 14; Figure 16 is a schematic view of a preferred embodiment of a heating circuit for a battery provided by the present invention; Figure 17 is a schematic view showing an embodiment of the energy consuming unit of Figure 16; and Figure 18 is a heating of the battery provided by the present invention. A schematic diagram of one embodiment of the circuit, and FIG. 19 is a waveform timing diagram corresponding to the heating circuit of FIG. [Main component symbol description] [〇〇〇6] 1 Switching device L1 First current memory element R1 First damping element C1 First charge memory element E Battery K1 Third switch D1, D13, D14 Second unidirectional semiconductor element D9 Third unidirectional semiconductor element D10 fourth unidirectional semiconductor element C3 third charge memory element 1013176578-0 10022218# single number A01<n page 24/total 41 page M438033 • t. 101: year. Page K2 Fourth switch R4 Third damping element J1 First single pole double throw switch J2 Second single pole double throw switch 102 Polarity reversal unit D3 First unidirectional semiconductor element Κ9 First switch C2 Second charge memory element, S5, S6 Two way

Ql、Q2、Q3、Q4、Q5、SI、S2、S3、S4 開關 D4、D5、D6、D7、D8單向半導體元件 Τ1第一變壓器 Τ2第二變壓器 Ν1第一節點 Ν2第二節點 L3、L4電流記憶元件 Τ3第三變壓器 3第二DC-DC模組 4 DC-DC模組 101電壓控制單元 R5第二阻尼元件 Κ8第二開關 10022218^^ Α0101 第25頁/共41頁 1013176578-0Ql, Q2, Q3, Q4, Q5, SI, S2, S3, S4 switch D4, D5, D6, D7, D8 unidirectional semiconductor component 第一 1 first transformer Τ 2 second transformer Ν 1 first node Ν 2 second node L3, L4 Current Memory Element 第三3 Third Transformer 3 Second DC-DC Module 4 DC-DC Module 101 Voltage Control Unit R5 Second Damping Element Κ8 Second Switch 10022218^^ Α0101 Page 25 of 41 Page 1013176578-0

Claims (1)

M438033 101年05月10日修正替換頁 六、申請專利範圍: 1 . 一種電池的加熱電路,其特徵在於,所述加熱電路包括: 開關裝置; 儲能電路,所述儲能電路與所述電池連接,包括第一電流 記憶元件和第一電荷記憶元件,所述開關裝置、所述第一 電流記憶元件和所述第一電荷記憶元件串聯; 開關控制模組,所述開關控制模組與所述開關裝置連接, 用於控制所述開關裝置導通和關斷,以控制能量僅從所述 電池流向所述儲能電路。 2.如申請專利範圍第1項所述的加熱電路,其特徵在於,還 包括第一阻尼元件,所述第一阻尼元件與所述開關裝置、 所述第一電流記憶元件和所述第一電荷記憶元件串聯。 3 .如申請專利範圍第2項所述的加熱電路,其特徵在於,所 述第一阻尼元件為所述電池内部的寄生電阻,所述第一電 流記憶元件為所述.電池内部的寄生電感;或者,所述第一 阻尼元件為外接電阻,所述第一電流記憶元件為外接電感 ,所述第一電荷記憶元件為電容。 4.如申請專利範圍第3項所述的加熱電路,其特徵在於,所 述加熱電路還包括能量疊加單元,所述能量疊加單元與所 述儲能電路連接,用於在所述開關裝置導通再關斷後,將 所述儲能電路中的能量與所述電池中的能量進行疊加。 5 .如申請專利範圍第4項所述的加熱電路,其特徵在於,所 述能量疊加單元包括極性反轉單元,所述極性反轉單元與 所述儲能電路連接,用於在所述開關裝置導通再關斷後, 對所述第一電荷記憶元件的電壓極性進行反轉。 6 .如申請專利範圍第3項所述的加熱電路,其特徵在於,所 10022218^^^^ A〇101 ^ 26 I / ^· 41 1 1013176578-0 M438033 101年.05月10日梭正替換頁 述加熱電路還包括能量轉移單元,所述能量轉移單元與所 述儲能電路連接,用於在所述開關裝置導通再關斷後,將 所述儲能電路中的能量轉移至儲能元件中。 7 .如申請專利範圍第6項所述的加熱電路,其特徵在於,所 述儲能元件為所述電池,所述能量轉移單元包括電量回灌 單元,所述電量回灌單元與所述儲能電路連接,用於在所 述開關裝置導通再關斷後,將所述儲能電路中的能量轉移 至所述電池中。 8 .如申請專利範圍第3項所述的加熱電路,其特徵在於,所 述加熱電路還包括能量疊加和轉移單元,所述能量疊加和 轉移單元與所述儲能電路連接,用於在所述開關裝置導通 再關斷後,將所述儲能電路中的能量轉移至儲能元件中, 之後將所述儲能電路中的剩餘能量與所述電池中的能量進 行疊加。 9 .如申請專利範圍第8項所述的加熱電路,其特徵在於,所 述能量疊加和轉移單元包括DC-DC模組,所述DC-DC模組 與所述第一電荷記憶元件和所述電池分別連接,所述開關 控制模組還與所述DC-DC模組連接,用於通過控制所述 DC-DC模組工作來將所述第一電荷記憶元件中的能量轉移 至儲能元件中,之後將所述第一電荷記憶元件中的剩餘能 量與所述電池中的能量進行疊加。 10 .如申請專利範圍第8項所述的加熱電路,其特徵在於,所 述能量疊加和轉移單元包括能量疊加單元和能量轉移單元 ,所述能量轉移單元與所述儲能電路連接,用於在所述開 關裝置導通再關斷後,將所述儲能電路中的能量轉移至儲 能元件中,所述能量疊加單元與所述儲能電路連接,用於 10022218#單編號 A〇101 第27頁/共41頁 1013176578-0 M438033 101年.05月10日核正替换頁 在所述能量轉移單元進行能量轉移之後,將儲能電路中的 剩餘能量與所述電池中的能量進行疊加。 11 .如申請專利範圍第10項所述的加熱電路,其特徵在於,所 述儲能元件為所述電池,所述能量轉移單元包括電量回灌 單元,所述電量回灌單元與所述儲能電路連接,用於在所 述開關裝置導通再關斷後,將所述儲能電路中的能量轉移 至所述儲能元件中,所述能量疊加單元包括極性反轉單元 ,所述極性反轉單元與所述儲能電路連接,用於在所述電 量回灌單元進行能量轉移之後,對所述第一電荷記憶元件 的電壓極性進行反轉。 12 .如申請專利範圍第5項或第11項所述的加熱電路,其特徵 在於,所述極性反轉單元包括第一單刀雙擲開關和第二單 刀雙擲開關,所述第一單刀雙擲開關和所述第二單刀雙擲 開關分別位於所述第一電荷記憶元件兩端,所述第一單刀 雙擲開關的入線連接在所述儲能電路中,所述第一單刀雙 擲開關的第一出線連接所述第一電荷記憶元件的第一極板 ,所述第一單刀雙擲開關的第二出線連接所述第一電荷記 憶元件的第二極板,所述第二單刀雙擲開關的入線連接在 所述儲能電路中,所述第二單刀雙擲開關的第一出線連接 所述第一電荷記憶元件的第二極板,所述第二單刀雙擲開 關的第二出線連接在所述第一電荷記憶元件的第一極板, 所述開關控制模組還與所述第一單刀雙擲開關和所述第二 單刀雙擲開關分別連接,用於通過改變所述第一單刀雙擲 開關和所述第二單刀雙擲開關各自的入線和出線的連接關 係來對所述第一電荷記憶元件的電壓極性進行反轉。 13 .如申請專利範圍第5項或第11項所述的加熱電路,其特徵 ‘單编號A0101 第28頁/共41頁 1013176578-0 M438033 t· 101年.05月10日修正替換頁 在於,所述極性反轉單元包括第一單向半導體元件、第二 電流記憶元件以及第一開關,所述第一電荷記憶元件、所 述第二電流記憶元件和所述第一開關順次串聯形成回路, 所述第一單向半導體元件串聯在所述第一電荷記憶元件與 所述第二電流記憶元件或所述第二電流記憶元件與第一開 關之間,所述開關控制模組還與所述第一開關連接,用於 通過控制所述第一開關導通來對所述第一電荷記憶元件的 電壓極性進行反轉。 14 .如申請專利範圍第5項或第11項所述的加熱電路,其特徵 在於,所述極性反轉單元包括第一DC-DC模組和第二電荷 記憶元件,所述第一DC-DC模組與所述第一電荷記憶元件 和所述第二電荷記憶元件分別連接,所述開關控制模組還 與所述第一DC-DC模組連接,用於通過控制所述第一 DC-DC模組工作來將所述第一電荷記憶元件中的能量轉移 至所述第二電荷記憶元件,再將所述第二電荷記憶元件中 的能量反向轉移回所述第一電荷記憶元件,以實現對所述 第一電荷記憶元件的電壓極性的反轉。 15.如申請專利範圍第7項或第11項所述的加熱電路,其特徵 在於,所述電量回灌單元包括第二DC-DC模組,所述第二 ' DC-DC模組與所述第一電荷記憶元件和所述電池分別連接 ,所述開關控制模組還與所述第二DC-DC模組連接,用於 通過控制所述第二DC-DC模組工作來將所述第一電荷記憶 元件C1令的能量轉移到所述電池中。 16 .如申請專利範圍第3項所述的加熱電路,其特徵在於,所 述加熱電路還包括與所述第一電荷記憶元件連接的能量消 耗單元,所述能量消耗單元用於在所述開關裝置導通再關 10022218夢單編號 A0101 第29頁/共41頁 1013176578-0 M438033 101年05月10日按正替換頁 斷後,對所述第一電荷記憶元件中的能量進行消耗。 17 .如申請專利範圍第16項所述的加熱電路,其特徵在於,所 述能量消耗單元包括電壓控制單元,所述電壓控制單元與 所述第一電荷記憶元件連接,用於在所述開關裝置導通再 關斷後,將所述第一電荷記憶元件兩端的電壓值轉換成電 壓設定值。 18 .如申請專利範圍第4項所述的加熱電路,其特徵在於,所 述加熱電路還包括與所述第一電荷記憶元件連接的能量消 耗單元,所述能量消耗單元用於在所述開關裝置導通再關 斷後、所述能量疊加單元進行能量疊加之前,對所述第一 電荷記憶元件中的能量進行消耗。 19 .如申請專利範圍第18項所述的加熱電路,其特徵在於,所 述能量消耗單元包括電壓控制單元,所述電壓控制單元與 所述第一電荷記憶元件連接,用於在所述開關裝置導通再 關斷後、所述能量疊加單元進行能量疊加之前,將所述第 一電荷記憶元件兩端的電壓值轉換成電壓設定值。 20 .如申請專利範圍第6項所述的加熱電路,其特徵在於,所 述加熱電路還包括與所述第一電荷記憶元件連接的能量消 . 耗單元,所述能量消耗單元用於在所述開關裝置導通再關 斷後、所述能量轉移單元進行能量轉移之前,對所述第一 電荷記憶元件中的能量進行消耗,或者在所述能量轉移單 元進行能量轉移之後,對所述第一電荷記憶元件中的能量 進行消耗。 21 .如申請專利範圍第20項所述的加熱電路,其特徵在於,所 述能量消耗單元包括電壓控制單元,所述電壓控制單元( 與所述第一電荷記憶元件連接,用於在所述開關裝置導通 10022218^编號 A〇101 第30頁/共41頁 1013176578-0 M438033 * -· 101·年05月10日按正替¥頁 再關斷後、所述能量轉移單元進行能量轉移之前,將所述 第一電荷記憶元件兩端的電壓值轉換成電壓設定值,或者 在所述能量轉移單元進行能量轉移之後,將所述第一電荷 記憶元件兩端的電壓值轉換成電壓設定值。 22 .如申請專利範圍第8項所述的加熱電路,其特徵在於,所 述加熱電路還包括與所述第一電荷記憶元件連接的能量消 耗單元,所述能量消耗單元用於在所述開關裝置導通再關 斷後、所述能量疊加和轉移單元進行能量轉移之前,對所 述第一電荷記憶元件中的能量進行消耗,或者在所述能量 疊加和轉移單元進行能量轉移之後進行能量疊加之前,對 所述第一電荷記憶元件中的能量進行消耗。 23 .如申請專利範圍第22項所述的加熱電路,其特徵在於,所 述能量消耗單元包括電壓控制單元,所述電壓控制單元與 所述第一電荷記憶元件連接,用於在所述開關裝置導通再 關斷後、所述能量疊加和轉移單元進行能量轉移之前,將 所述第一電荷記憶元件兩端的電壓值轉換成電壓設定值, 或者在所述能量疊加和轉移單元進行能量轉移之後進行能 量疊加之前,將所述第一電荷記憶元件兩端的電壓值轉換 成電壓設定值。 24 .如申請專利範圍第17項、第19項、第21項或第23項中任 一項申請專利範圍所述的加熱電路,其特徵在於,所述電 壓控制單元包括第二阻尼元件和第二開關,所述第二阻尼 元件和所述第二開關彼此串聯之後並聯在所述第一電荷記 憶元件的兩端,所述開關控制模組還與所述第二開關連接 ,所述開關控制模組還用於在控制所述開關裝置導通再關 斷後,控制所述第二開關導通。 10022218^^^ A0101 第31頁/共41頁 1013176578-0 M438033 101年05月10日修正替换頁 25 .如申請專利範圍第3項所述的加熱電路,其特徵在於,所 述開關裝置包括第三開關和第二單向半導體元件,所述第 三開關和所述第二單向半導體元件彼此串聯之後串聯在所 述儲能電路中,所述開關控制模組與所述第三開關連接, 用於通過控制所述第三開關的導通和關斷來控制所述開關 裝置導通和關斷。 26 .如申請專利範圍第3項所述的加熱電路,其特徵在於,所 述開關裝置包括第三單向半導體元件、第四單向半導體元 件、第四開關、第三阻尼元件以及第三電荷記憶元件,所 述第三單向半導體元件與所述第四開關順次串聯在所述儲 能電路中,所述第三阻尼元件與所述第三電荷記憶元件串 聯之後並聯在所述第四開關的兩端,所述第四單向半導體 元件並聯在所述第三阻尼元件的兩端,用於在所述第四開 關關斷時對所述第一電流記憶元件進行續流,所述開關控 制模組與所述第四開關連接,用於通過控制所述第四開關 的導通和關斷來控制所述開關裝置導通和關斷。 10022218#單編號 A〇101 第32頁/共41頁 1013176578-0M438033 Revision No. 5, May 10, 2011, Patent Application Range: 1. A heating circuit for a battery, characterized in that the heating circuit comprises: a switching device; a storage circuit, the energy storage circuit and the battery Connecting, comprising a first current memory element and a first charge memory element, the switching device, the first current memory element and the first charge memory element being connected in series; a switch control module, the switch control module and the The switching device is connected to control the switching device to be turned on and off to control energy flow only from the battery to the energy storage circuit. 2. The heating circuit of claim 1, further comprising a first damping element, the first damping element and the switching device, the first current memory element, and the first The charge memory elements are connected in series. 3. The heating circuit of claim 2, wherein the first damping element is a parasitic resistance inside the battery, and the first current memory element is a parasitic inductance inside the battery. Or the first damper element is an external resistor, the first current memory element is an external inductor, and the first charge memory element is a capacitor. 4. The heating circuit of claim 3, wherein the heating circuit further comprises an energy superimposing unit, the energy superimposing unit being connected to the energy storage circuit for conducting in the switching device After turning off again, the energy in the energy storage circuit is superimposed with the energy in the battery. 5. The heating circuit of claim 4, wherein the energy superimposing unit comprises a polarity inversion unit, the polarity inversion unit being coupled to the tank circuit for use in the switch After the device is turned on and then turned off, the voltage polarity of the first charge storage element is inverted. 6. The heating circuit according to item 3 of the patent application, characterized in that: 10022218^^^^ A〇101 ^ 26 I / ^· 41 1 1013176578-0 M438033 101. The heating circuit further includes an energy transfer unit coupled to the energy storage circuit for transferring energy in the energy storage circuit to the energy storage component after the switching device is turned on and off again in. 7. The heating circuit of claim 6, wherein the energy storage component is the battery, the energy transfer unit comprises a power refill unit, the power recharge unit and the storage The circuit is connectable for transferring energy in the energy storage circuit to the battery after the switching device is turned on and off. 8. The heating circuit of claim 3, wherein the heating circuit further comprises an energy superposition and transfer unit, the energy superposition and transfer unit being coupled to the energy storage circuit for use in After the switching device is turned on and then turned off, the energy in the energy storage circuit is transferred to the energy storage element, and then the remaining energy in the energy storage circuit is superimposed with the energy in the battery. 9. The heating circuit of claim 8, wherein the energy superimposing and transferring unit comprises a DC-DC module, the DC-DC module and the first charge storage element and The batteries are respectively connected, and the switch control module is further connected to the DC-DC module for transferring energy in the first charge storage element to energy storage by controlling the operation of the DC-DC module. In the component, the remaining energy in the first charge storage element is then superimposed with the energy in the battery. 10. The heating circuit of claim 8, wherein the energy superimposing and transferring unit comprises an energy superimposing unit and an energy transfer unit, the energy transfer unit being coupled to the energy storage circuit for After the switching device is turned on and off again, the energy in the energy storage circuit is transferred to the energy storage device, and the energy superimposing unit is connected to the energy storage circuit for 10022218# single number A〇101 27 pages/total 41 pages 1013176578-0 M438033 101. May 10th Nuclear replacement page After the energy transfer unit performs energy transfer, the remaining energy in the energy storage circuit is superimposed with the energy in the battery. 11. The heating circuit of claim 10, wherein the energy storage component is the battery, the energy transfer unit comprises a power refill unit, the power recharge unit and the storage An electrical circuit connection for transferring energy in the energy storage circuit to the energy storage element after the switching device is turned on and off, the energy superimposing unit including a polarity inversion unit, the polarity is reversed The rotating unit is connected to the energy storage circuit for inverting a voltage polarity of the first charge storage element after the power recirculation unit performs energy transfer. 12. The heating circuit of claim 5, wherein the polarity inversion unit comprises a first single pole double throw switch and a second single pole double throw switch, the first single pole double throw a throw switch and a second single pole double throw switch are respectively located at two ends of the first charge memory element, and an incoming line of the first single pole double throw switch is connected in the energy storage circuit, the first single pole double throw switch a first outlet connected to the first plate of the first charge storage element, a second outlet of the first single-pole double-throw switch connected to the second plate of the first charge storage element, the second An input line of the single-pole double-throw switch is connected to the energy storage circuit, and a first output line of the second single-pole double-throw switch is connected to a second plate of the first charge memory element, and the second single-pole double-throw switch The second outlet is connected to the first plate of the first charge storage element, and the switch control module is further connected to the first single-pole double-throw switch and the second single-pole double-throw switch respectively By changing the first single pole double throw switch and The respective in-line and out-of-line connections of the second single-pole double-throw switch reverse the voltage polarity of the first charge storage element. 13. The heating circuit according to item 5 or item 11 of the patent application, characterized by 'single number A0101, page 28/total 41 pages, 1013176578-0 M438033 t. 101 years. The polarity inversion unit includes a first unidirectional semiconductor element, a second current memory element, and a first switch, the first charge storage element, the second current memory element, and the first switch sequentially forming a loop in series The first unidirectional semiconductor component is connected in series between the first charge memory component and the second current memory component or the second current memory component and the first switch, and the switch control module is further The first switch connection is configured to invert a voltage polarity of the first charge storage element by controlling the first switch to be turned on. The heating circuit of claim 5 or 11, wherein the polarity inversion unit comprises a first DC-DC module and a second charge memory element, the first DC- The DC module is respectively connected to the first charge storage element and the second charge storage element, and the switch control module is further connected to the first DC-DC module for controlling the first DC The DC module operates to transfer energy in the first charge storage element to the second charge storage element, and then reversely transfer energy in the second charge storage element back to the first charge storage element To achieve an inversion of the voltage polarity of the first charge storage element. The heating circuit of claim 7 or 11, wherein the power recharging unit comprises a second DC-DC module, and the second 'DC-DC module and the The first charge storage element and the battery are respectively connected, and the switch control module is further connected to the second DC-DC module, and is configured to control the second DC-DC module by operating The energy of the first charge storage element C1 is transferred to the battery. The heating circuit of claim 3, wherein the heating circuit further comprises an energy consuming unit coupled to the first charge storage element, the energy consuming unit being used in the switch The device is turned on and off again. 10022218 The dream list number A0101 page 29/41 pages 1013176578-0 M438033 On May 10, 101, the energy in the first charge memory element is consumed after the positive replacement page is broken. 17. The heating circuit of claim 16, wherein the energy consuming unit comprises a voltage control unit, the voltage control unit being coupled to the first charge storage element for use in the switch After the device is turned on and then turned off, the voltage value across the first charge storage element is converted into a voltage set value. 18. The heating circuit of claim 4, wherein the heating circuit further comprises an energy consuming unit coupled to the first charge storage element, the energy consuming unit being used in the switch After the device is turned on and then turned off, the energy in the first charge storage element is consumed before the energy superimposing unit performs energy superposition. 19. The heating circuit of claim 18, wherein the energy consuming unit comprises a voltage control unit, the voltage control unit being coupled to the first charge storage element for use in the switch After the device is turned on and then turned off, the voltage superimposing unit converts the voltage value across the first charge storage element into a voltage set value. The heating circuit of claim 6, wherein the heating circuit further comprises an energy consumption unit connected to the first charge storage element, wherein the energy consumption unit is used in After the switching device is turned on and then turned off, the energy in the first charge storage element is consumed before the energy transfer unit performs energy transfer, or after the energy transfer unit performs energy transfer, the first The energy in the charge memory element is consumed. 21. The heating circuit of claim 20, wherein the energy consuming unit comprises a voltage control unit, the voltage control unit being coupled to the first charge storage element for Switching device conduction 10022218^No.A〇101 Page 30/Total 41 page 1013176578-0 M438033 * -· 101. May 10th, according to the replacement of the ¥ page and then the energy transfer unit before the energy transfer And converting a voltage value across the first charge storage element into a voltage set value, or converting the voltage value across the first charge storage element into a voltage set value after the energy transfer unit performs energy transfer. The heating circuit of claim 8, wherein the heating circuit further comprises an energy consuming unit connected to the first charge storage element, the energy consuming unit being used in the switching device After the conduction is turned off again, the energy in the first charge storage element is consumed before the energy superposition and transfer unit performs energy transfer, or The energy in the first charge storage element is consumed before the energy superposition and transfer unit performs energy transfer, and the heating circuit in the first charge storage element is characterized in that: The energy consuming unit includes a voltage control unit, and the voltage control unit is coupled to the first charge storage element for, after the switching device is turned on and off again, before the energy superimposing and transferring unit performs energy transfer, Converting a voltage value across the first charge storage element to a voltage set value, or converting a voltage value across the first charge storage element to a voltage setting before performing energy superposition after the energy superposition and transfer unit performs energy transfer A heating circuit according to any one of claims 17 to 19, wherein the voltage control unit comprises a second damping element. And a second switch, the second damping element and the second switch being connected in series with each other and then connected in parallel to the first The switch control module is further connected to the second switch, and the switch control module is further configured to control the second switch to be turned on after controlling the switch device to be turned on and off again. The heating circuit according to claim 3, wherein the switching device comprises the heating device according to claim 3, wherein the heating device of claim 3, wherein the switching device comprises: a third switch and a second unidirectional semiconductor component, wherein the third switch and the second unidirectional semiconductor component are connected in series with each other in series in the energy storage circuit, and the switch control module is connected to the third switch And for controlling the switching device to be turned on and off by controlling the turning on and off of the third switch. The heating circuit of claim 3, wherein the switching device comprises a third unidirectional semiconductor element, a fourth unidirectional semiconductor element, a fourth switch, a third damper element, and a third charge a memory element, the third unidirectional semiconductor element and the fourth switch are sequentially connected in series in the tank circuit, and the third damper element is connected in series with the third charge memory element and then connected in parallel to the fourth switch The fourth unidirectional semiconductor component is connected in parallel at both ends of the third damper component for freewheeling the first current memory component when the fourth switch is turned off, the switch The control module is coupled to the fourth switch for controlling the switching device to be turned on and off by controlling the turning on and off of the fourth switch. 10022218#单单 A〇101 Page 32 of 41 1013176578-0
TW100222186U 2010-12-23 2011-11-24 Battery heating circuit TWM438033U (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010605772XA CN102088116B (en) 2010-07-30 2010-12-23 Heating circuit of battery

Publications (1)

Publication Number Publication Date
TWM438033U true TWM438033U (en) 2012-09-21

Family

ID=47226550

Family Applications (2)

Application Number Title Priority Date Filing Date
TW100222186U TWM438033U (en) 2010-12-23 2011-11-24 Battery heating circuit
TW100143128A TWI464999B (en) 2010-12-23 2011-11-24 Battery heating circuit

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW100143128A TWI464999B (en) 2010-12-23 2011-11-24 Battery heating circuit

Country Status (1)

Country Link
TW (2) TWM438033U (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362942A (en) * 1993-08-24 1994-11-08 Interdigital Technology Corporation Battery heating system using internal battery resistance
TW269727B (en) * 1995-04-03 1996-02-01 Electrosource Inc Battery management system
US6340879B1 (en) * 1999-02-03 2002-01-22 Nokia Mobile Phones Ltd. Device for reactivating an electric battery
CN201397868Y (en) * 2009-04-15 2010-02-03 天津力神电池股份有限公司 Self-heating device used for lithium ion battery pack
CN201435426Y (en) * 2009-04-20 2010-03-31 赛恩斯能源科技有限公司 Battery group with thermal management unit
CN201667552U (en) * 2010-03-30 2010-12-08 比亚迪股份有限公司 Battery heating apparatus

Also Published As

Publication number Publication date
TWI464999B (en) 2014-12-11
TW201232995A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
EP2413463B1 (en) Battery heating circuit
TWI556995B (en) An electric vehicle running control system
US8941358B2 (en) Heating circuits and methods based on battery discharging and charging using resonance components in series and freewheeling circuit components
TWI551486B (en) A electric vehicle running control system
TWM438033U (en) Battery heating circuit
TWI465001B (en) Battery heating circuit
TWI433428B (en) Battery heating circuit
TWI455443B (en) Battery heating circuit
TWI465000B (en) Battery heating circuit
TWI430537B (en) Battery heating circuit
TWI430536B (en) Battery heating circuit
TWM438034U (en) Battery heating circuit
TWM437537U (en) Battery heating circuit
TW201322586A (en) Battery heating circuit
TWM436948U (en) Battery heating circuit
TWM438031U (en) Battery heating circuit

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model