M436948M436948
ιοϊ年:05¾ io日修正^頁I 五、新型說明: 【新型所屬之技術領威】 _]本創作屬於電子設備技術領域,尤其涉及一種電池的加 熱電路。 【先前技術】 [_考慮到汽車S要在複雜的錢和環境條件下行驶,或者 有些電子設備需要在較差的環境條件中使用的情況,所 以,作為電動車或電子設備電源的電池就需要適應這些 複雜的狀況。而且除了需要考慮這些狀況,還需考慮電 池的使用壽命及電池的充放•圈性能,尤其是當電動 車或電子設備處於低溫環境中時,更需要電池具有優異 的低溫充放電性能和較高的輸入輪出功率性能。 一般而言,如果在低溫條件下對電池充電的話,將會導 致電池的阻抗增大,極化增強,從而導致電池的容量下 降,最終導致電池壽命的降低。 【新型内容】 [_糊作的目的是針對電池在低溫條件下會導致電池的⑯ 抗、a大,極化增強,由此導致電池的容量下降的問題, , 提=一種電池的加熱電路。為了保持電池在低溫條件下 的令量’提尚電池的充放電性能,本創作提供了 一種電 池的加熱電路。 本創作提供的電池的加熱電路包括開關裝置、開關控制 模組、儲能電路、續流電路以及能量疊加單元,所述儲 月b電路用於與所述電池連接以構成回路,所述儲能電路 包括電流記憶元件和電荷記憶元件,所述阻尼元件和開 10022162#單编號A0101 第4頁/共45頁 ' 1013176587-0 10Ϊ年05月10日修正替換頁 關裝置與所_能電路φ聯’所述關控繼組與開關 褒置連接’用於控制開關裝置導通和關斷,以控制能量 在所述電池與所述儲能電路之間的流動,所述能量疊加 單元與所述儲能電路連接’用於在開關裝置導通再關斷 後,將儲能電路中的能量與電池中的能量進行疊加;所 述續流電路用於在所述開關裝置導通後再關斷時,與所 述電池和電流記憶元件構成串聯回路,以保持所述電池 内電流的流動。 為了保持電池在低溫條件下的容量,提高電池的充放電 ! 生月b,本創作提供了 一種電池的加熱電路。本創作提供 的加熱電路能夠提高電池的充放電性能,並且在該加熱 電路中,儲能電路與電池串聯,當給電池加熱時,由於 串聯的電荷記憶元件的存在,能夠避免關裝置失效短 路引起的安全性問題,能夠有效地保護電池。 另外,由於回路中電流記憶元件的存在,在回路中存在 電流時關斷開關裝置而導致的電流突變為零可能會使得 回路中的電流記憶元件產生較大的感應電壓,由此可能 損壞回路中的其他電路元件(如開關裝置)^本創作提 供的加熱電路中,電池内電流的流動可通過續流電路而 知·以保持,避免電流記憶元件内的電流因開關裝置關斷 而突變,從而感應出很大的電壓,繼而可以避免因回路 中的電流記憶元件產生的感應電壓過大而損壞開關裝置 ,使得加熱電路的安全性更高,對整個電路影響較小。 同時,本創作的加熱電路中還提供了能量疊加單元,當 開關裝置導通再關斷後,該能量疊加單元能夠將儲能電 路中的能量與電池中的能量進行疊加,當下一次控制開 第5頁/共45頁 10022162#單編號 A0101 1013176587-0 M436948 關裝置導通時,提高加朗路巾的放電電流 加熱電路的工作效率。 ,由此提高 L〇i年—05¾ 1〇日修正_^| 本創作的其他職和優點將在隨後的具體實施方式部分 予以詳細說明。 【實施方式】 闕W下結合關對本創作的具體實施方式進行詳細說明。 應當理解的是,此處所描述的具體實施方式僅用於說明 和解釋本創作,並不用於限制本創作。 需要4曰出的疋,除非特別說明,當下文中提及時,術語 ‘‘開關控制模組”為任意能夠根據設定的條件或者設定 的時刻輸出相應的控制指令(例如具有相應占空比的脈 衝波形)從而控制與其連接的開關裝置相應地導通或關 斷的控制器,例如可以為PLC (可編程控制器)等;當不 文中提及時,術語“開關”指的是可以通過電信號實現 通斷控制或者根據元器件自身的特性實現通斷控制的開 關,既可以是單向開關,例如由雙向開關與二極體串聯 構成的可單嚮導通的開關等’也可以是雙向開關,例如 金屬氧化物半導體型場效應管(Metal Oxide Semiconductor Field Effect Transistor* MOSFET)或帶有反並續流二極體的IGBT (Insulated Gate Bipolar Transistor’絕緣柵雙極型電晶體)等 :當下文中提及時’術語“雙向開關”指的是可以通過 電信號實現通斷控制或者根據元器件自身的特性實現通 斷控制的可雙嚮導通的開關’例如M〇SFET或帶有反並續 流二極體的IGBT等;當下文中提及時’單向半導體元件 指的是具有單嚮導通功能的半導體元件’例如二極體等 10022162#單編號 AQ1(H ^ 6 K / ^ 45 * 1013176587-0 ;當下文中提及時,術語“電荷記憶元件,,指任 實現電荷存儲的裝置,例如電容等;當下文中提及時, 術語“電流記憶轉,,指任意可以對電流進行存儲的裝 置’例如電感等;tT文中提及時,術語“正向”指妒 量從電池向觀電路流_方向,術語“反向,,指能量b 從儲能電路㈣池流_方向;當下文中提及時,術語 電’也包括-次電池(例如乾電池、驗性電池等)和 二次電池(例如峰子電池、鎳_池、錄氫電池或錯 酸電池等h S下文中提及時’術語“阻尼;件”指任 意通過對電麵流細阻礙糊以實雜量消耗的裝置 例如電阻等,§下文中提及時,術語“主回路,’指的 疋電池與阻尼元件、開職置以及儲能電路串聯組成的 回路。 ^•裏還需要制卿的是’考翻獨麵的電池的不 同特性,在本創作t,“電池,,可以指不包含内部寄生 t阻和寄生電感、或者内部寄生電阻的阻值和寄生電感 - 的電感值較小_想電池,也可以指包含有内部寄生電 ' 阻和寄生魏的電池包。’本領齡人員應當理 解的疋’當也為不包含内部寄生電阻和寄生電感 、或者内部寄生電阻的阻值和寄生電感的電感值較小的 理想電池時,第一阻尼元件扪指的是電池外接的阻尼元 件,第一電流記憶元件L1指的是電池外接的電流記憶元 件;當“電池”為包含有内部寄生電阻和寄生電感的電 池包時,第一阻尼元件R1既可以指電池外部的阻尼元件 ,也可以指電池包内部的寄生電阻,同樣地,第一電流 記憶元件L1既可以指電池外接的電流記憶元件,也可以 10022162#單編號A0101 第7頁/共45頁 1013176587-0 M436948 ιοί年〇5| io日接正_頁 指電池包内部的寄生電感。 ......... 為了保證電池的使用壽命,可以在低溫情況下對電池進 订加熱’當翻加熱條件時,控制加熱電路開始工作, 對電池進行加熱,當達到停止加熱條件時,控制加熱電 路停止工作。 在電池的f際應时,隨絲境的改變,可峰據實際 的環境清况對電池的加熱條件和停止加熱條件進行設置 ,以對電池的溫度進行更猶的㈣,制保證電池的 充放電性能。 - 為了對處於低溫環境中的電池E進行加熱,本創作提供了 一種電池E的加熱電路,如第丨圖所示,該加熱電路包括 開關裝置1、開關控制模組100、第一阻尼元件R1、儲能 電路、續流電路2〇以及能量疊加單元,該儲能電路用於 與電池E連接以構成回路,該儲能電路包括第一電流記憶 元件L1和第一電荷記憶元件C1,所述第_阻尼元件ri、 開關裝置1、第-糕記憶元件L1和第-電荷記憶元件ci 串聯’開關控制模組1〇〇與開關裝置1連接,用於控制開 關裝置1導通和關斷,以控制能量在電池E與該儲能電路 之間的流動’該能量疊加單元與該儲能電路連接,用於 在開關裝置1導通再關斷後,將儲能電路中的能量與電池 E中的能量進行疊加;續流電路2〇用於在開關裝置丨導通 再關斷後,與電池E和第一電流記憶元件L1構成串聯回路 ’以保持臂池E内電流的流動。需要說明的是,上述儲能 電路僅為本創作的優選實施方式,該儲能電路只要能滿 足能量的存儲即可,從而與電池E之間進行能量流動。因 此本領域技術人員可基於此思想對上述儲能電路進行等 10022162#單编號 A0101 第8頁/共45頁 1013176587-0 M4369.48 101年.05月10日按正頁 同的修改或變化以達到儲能的效果,這些均應包含在本 創作的保護之内。 根據本創作的技術方案,當_加熱條件時,開關控制 模組100控制開關裝置!導通,電池E與儲能電路串聯構成 回路,電池E可以通過該回路放電,即對第一電荷記憶元 件C1進行充電’當回路中的電流經過電流峰值後正向為 零時,第一電荷記憶元件C1開始通過該回路放電,即是 對電池E充電;而在電池e的充放電過程中,該回路中的 電流正向、反向均能流過第一阻尼元件幻,通過第—阻 尼元件R1的發熱可以達到給電池E加熱的目的,當達到停 止加熱條件時,開關控制模組100可以控制開關裝置1關 斷,加熱電路停止工作。 為了實現能1:在電池E無能電路之間雜復流動,根據 本創作的一種實施方式,所述開關裝置丨為第一雙向開關 K3 ,如第2圖所示。由開關控制模組1〇〇控制第一雙向開 關K3的導通與關斷,當需要對電池E加熱時,導通第—雙 向開關脚可,如暫停加熱或者不需要加熱時關斷第一 雙向開關Κ3即可。 單獨使用一個第一雙向開關Κ3實現開關裝置1,電路簡單 ,佔用系統面積小,容易實現,但是為了實現對反向電 流的關斷,本難還提供了如下關裝置丨的優選實施方 式。 優選地’開難置1包括用於實現能量從電舰流向儲能 電路的第-單向支路和麟實現能量觀能電路流向電 池Ε的第二單向支路,開關控制模組1〇〇與第一單向支路 和第二單向支路分別連接,用於通過控制所連接的支路 10022162#單編號Α〇101 第9頁/共45頁 1〇131?6587、〇 ivhj〇948 101年05月10日按正脊few 的導通和關斷來控制開關裝置丨的導通和關斷。 當電池需要加熱時,導通第一單向支路和第二單向支路 兩者,如暫停加熱可以選擇關斷第一單向支路和第二單 向支路中的一者或兩者,當不需要加熱時,可以關斷第 一單向支路和第二單向支路兩者。優選地,第一單向支 路和第二單向支路兩者都能夠受開關控制模組100的控制 ’這樣,可以靈活實現能量正向流動和反向流動。 作為開關裝置1的另一種實施方式,如第3圖所示,所述 開關裝置1可以包括f二雙向關K4和第三雙向關K5, 第二雙向開關Κ4和第三雙向開關Κ5彼此反向串聯以構成 所述第一單向支路和第二單向支路,開關控制模組1〇〇與 第二雙向開關Κ4和第三雙向開關Κ5分別連接,用於通過 控制第二雙向開關Κ4和第三雙向開關Κ5的導通和關斷來 控制第一單向支路和第二單向支路的導通和關斷。 當需要對電池Ε加熱時,導通第二雙向開關Κ4和Κ5即可, 如暫停加熱可以選擇關斷第二雙向開關Κ4和第三雙向開 關Κ5中的一者或者兩者,在不需要加熱時關斷第二雙向 開關Κ4和第三雙向開關Κ5即可。這種開關裝置1的實現方 式能夠分別控制第一單向支路和第二單向支路的導通和 關斷,靈活實現電路的正向和反向能量流動。 作為開關裝置1的另一種實施方式,如第4圖所示,所述 開關裝置1包括第二開關Κ6、第二單向半導體元件dii、 1013176587-0 第三開關Κ7以及第三單向半導體元件di2,第二開關Κ6和 第二單向半導體元件D11彼此串聯以構成所述第一單向支 路’第三開關Κ7與第三單向半導體元件D12彼此串聯以構 成所述第二單向支路,所述開關控制模組100與第二開關 10〇22162产單编號Α0101 第10頁/共45頁 M436948 101年.05月10日修正替換頁 跡第三開順分別連接,用於通過控制第二開駆6和 第二開關K7的導通和關斷來控制第一單向支路和第一單 向支路的導通和關斷。在第4圖示出的開關裝置,由 於兩個單向支路上均存在開關(即第二開關K6和第三開 關Κ7) ’同時具備能量正向和反向流動時的關斷功能。 優選地,所述開關裝置1還可以包括與所述第一單向支路 和/或第二單向支路串聯的電阻,用於減小電池Ε加熱回 路的電流,避免回路中電流過大對電池£造成損害。例如 ,可以在第3圖中示出的開關裝置丨中添加與第二雙向開 關K4和第二雙向開關K5串聯的電阻R6 ,得到開關裝置1的 另種實現方式,如第5圖所示。第6圖中也示出了開關 裝置1的一種實施方式,其是在第4圖中示出的開關裝置丨 中的兩個單向支路上分別串聯電阻R2、電阻肋得到的。 如本領域技術人員所公知,電路器件均具有額定電壓, 該額定電壓為該電路器件能耐受的操作電壓的標準值。 電路器件上的電壓值超過其額定電壓時會導致該電路器 件的損壞,影響整個電路的安全工作。優選地,所述開 關控制模組1 〇 〇還用於在開關裝置丨導通後流經開關裝置i 的電流的第一正半週期之後控制開關裝置丨關斷,且開關 裝置1關斷時施加到該開關裝置i上的電壓小於該開關裝 置1的額定電壓。藉此,通過續流電路20的續流作用以及 對開關裝置1的關斷時機的選擇,可以進一步避免因回路 中的第一電流記憶元件L1產生的感應電壓過大而損壞開 關裝置1,使得加熱電路的安全性更高,對整個電路影響 較小。此外’通過對開關裝置丨的關斷時機的選擇,可在 一定程度上減少第一電流記憶元件L1產生的感應電壓, 1013176587-0 10022162#單编號A〇101 第11頁/共45頁 M436948 [l〇l年05;|i〇g 修正gfe頁 從而可降低對所述續流電路20的續流能力的要求,使得 續"IL電路20内採用功率或容量等特性參數較小的元器件 即可。 其中,所述關斷時機例如可為流經開關裝置丨的電流的負 半週期峰值後過零前30度到下一正半週期峰值前過零後 30度的時間區間,開關裝置1的關斷時刻可以是該時間區 間内的任意時刻。當然本創作並不限於此,具體的關斷 時機應根據開關裝置1的額定電壓來瑞定,例如對於不同 的額定電壓而言,亦可為流經開關裝置1的電流的負半週 期峰值後過零前60度到下一正半週期峰值前過零後6〇度 的時間區間》 由於在對電池E迴圈充放電過程中,當對電池5;反向充電 時,能量不會全部充回到電池E中’由此會導致電池e的 下一次正向放電中能量的減少,降低了加熱電路的加熱 效率。因此’優選地,開關控制模組1〇〇用於在開關裝置 1導通後流經開關裝置1的電流經負半週期峰值後為零時 控制開關裝置1關斷’以提高加熱電路的加熱效率,且此 時控制開關裝置1關斷’可使得第一電流記憶元件Li感應 產生的電壓最小’從而使得施加到該開關裝置1上的電壓 最小,藉此避免高電壓損壞開關裝置1 ^ 根據本創作的一種實施方式,所述開關控制模組1〇〇用於 在開關裝置1導通後流經開關裝置1的電流的負半週期峰 值後過零前控制開關裝置1關斷,如第7圖所示,續流電 路20可以包括相互串聨的第四開關K20和第五單向半導體 元件D20,開關控制模組100與第四開關K20連接,用於 在開關裝置1導通再關斷後,控制第四開關K20導通,而 10022162#單编號 A0101 第12頁/共45頁 1013176587-0 M436948 101年.05月i〇日按正替 在流向電池E的電流為電流預定值(例如為零)後,控制 第四開關K20關斷。續流電路20可以並聯在電池e兩端, 也可以一端連接到如第4圖所示的開關裝置1的第二單向 支路上的第三開關K7和第三單向半導體元件2之間,另 一端連接到電池所述電流預定值為不會導致開關裝置 1關斷時施加到開關裝置1上的電壓大於或等於開關裝置1 的額定電壓的電流值,該電流值可以根據開關裝置丨的額 定電壓的大小進行設定。 根據本創作的另一種實施方式,開關控制模組1〇〇用於在 開關裝置1導通後流經開關裝置1的電流的正半週期峰值 前過零後控制開關裝置1關斷,如第8圖所示,續流電路 20可以包括第四單向半導體元件D21、第二阻尼元件R21 和第二電荷記憶元件C21 ’第四單向半導體元件])21與第 二阻尼元件R21並聯之後再與第二電荷記憶元件C2i串聯 ,在開關裝置1導通再關斷後,第一電流記憶元件Li可以 通過第四單向半導體元件D21和第二電荷記憶元件C21續 流,第二阻尼元件R21用於釋放存儲在第二電荷記憶元件 C21上的能量。續流電路20可以並聯在所述電池e兩端, 也可以一端連接到如第4圖所示的開關裝置1的第一單向 支路上的第二開關K6和第二單向半導體元件D11之間,另 一端連接到電池Ε» 1013176587-0 由於在流經開關裝置1的電流的負半週期峰值後過零點附 近控制開關裝置1關斷時,回路中的電流很小(即近似為 零),開關裝置1關斷時施加到開關裝置1上的電壓小於 開關裝置1的額定電壓,因此可將對上述續流電路2〇的續 流能力的需求降低至最低、或甚至不需要上述續流電路 10022162^單編號A0101 第13頁/共45頁 M436948 ιοί年ίο日修正§^頁 20。本領域技術人員可以通過有限次試驗獲取使得開關 裝置1關斷時施加到開關裝置1上的電壓小於開關裝置1的 額定電壓的開關裝置1的關斷時間區間的範圍。 所述能量疊加單元與所述儲能電路連接,用於在開關裝 置1導通再關斷後,將儲能電路中的能量與電池E中的能 量進行疊加,以使得在開關裝置1再次導通時,提高加熱 回路中的放電電流,從而提高加熱電路的工作效率。 根據本創作的一種實施方式,如第9圖所示,所述能量疊 加單元包括極性反轉單元102,該極性反轉單元102與所 述儲能電路連接,用於在開關裝置1導通再關斷後,對第 一電荷記憶元件C1的電壓極性進行反轉,由於極性反轉 後的第一電荷記憶元件C1的電壓能夠與電池E的電壓串聯 相加,當開關裝置1再次導通時,能夠提高加熱回路中的 放電電流。 作為極性反轉單元102的一種實施方式,如第10圖所示, 所述極性反轉單元102包括第一單刀雙擲開關J1和第二單 刀雙擲開關J2,第一單刀雙擲開關J1和第二單刀雙擲開 關J2分別位於所述第一電荷記憶元件C1兩端,第一單刀 雙擲開關J1的入線連接在所述儲能電路中,第一單刀雙 擲開關J1的第一出線連接所述第一電荷記憶元件C1的第 一極板,第一單刀雙擲開關J1的第二出線連接第一電荷 記憶元件C1的第二極板,第二單刀雙擲開關J2的入線連 接在所述儲能電路中,第二單刀雙擲開關J2的第一出線 連接所述第一電荷記憶元件C1的第二極板,第二單刀雙 擲開關J2的第二出線連接在所述第一電荷記憶元件C1的 第一極板,開關控制模組100還與所述第一單刀雙擲開關 10022162#單編號A0101 第14頁/共45頁 1〇13176587~〇 M4369.48Ιοϊ年:053⁄4 io日修正^page I V. New description: [New technology belongs to the leader] _] This creation belongs to the field of electronic equipment technology, especially related to a heating circuit for batteries. [Prior Art] [_ Considering that the car S is to be driven under complicated money and environmental conditions, or that some electronic devices need to be used in poor environmental conditions, the battery that is the power source for the electric vehicle or electronic device needs to be adapted. These complicated situations. In addition to the need to consider these conditions, you also need to consider the battery life and battery charge and discharge performance, especially when the electric vehicle or electronic equipment is in a low temperature environment, the battery needs to have excellent low temperature charge and discharge performance and higher The input rounds out the power performance. In general, if the battery is charged under low temperature conditions, the impedance of the battery will increase and the polarization will increase, resulting in a decrease in the capacity of the battery, which ultimately leads to a decrease in battery life. [New content] [_ The purpose of paste is to solve the problem that the battery will cause 16 resistance, a large, and polarization enhancement under low temperature conditions, which leads to a decrease in the capacity of the battery. In order to maintain the battery's charge at low temperatures, the present invention provides a battery heating circuit. The heating circuit of the battery provided by the present invention comprises a switching device, a switch control module, a storage circuit, a freewheeling circuit and an energy superimposing unit, wherein the moon b circuit is used for connecting with the battery to form a circuit, and the energy storage The circuit includes a current memory element and a charge memory element, and the damper element and the open circuit block φ A 22 22 22 22 22 22 22 22 22 22 22 22 22 22 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 Connecting the control group to the switch device for controlling the switching device to be turned on and off to control the flow of energy between the battery and the energy storage circuit, the energy superimposing unit and the The energy storage circuit connection 'for superimposing the energy in the energy storage circuit and the energy in the battery after the switching device is turned on and off; the freewheeling circuit is used when the switching device is turned on and then turned off, A series circuit is formed with the battery and the current memory element to maintain a flow of current within the battery. In order to maintain the capacity of the battery under low temperature conditions, and improve the charge and discharge of the battery! This creation provides a heating circuit for the battery. The heating circuit provided by the present invention can improve the charge and discharge performance of the battery, and in the heating circuit, the energy storage circuit is connected in series with the battery. When the battery is heated, due to the existence of the series of charge memory elements, the failure of the shutdown device can be avoided. The safety issue can effectively protect the battery. In addition, due to the presence of the current memory element in the loop, a sudden change in current caused by turning off the switching device when there is current in the loop may cause a large induced voltage to be generated in the current memory element in the loop, thereby possibly damaging the loop. Other circuit components (such as switching devices) ^ In the heating circuit provided by the present invention, the flow of current in the battery can be known by the freewheeling circuit to prevent the current in the current memory component from being abrupt due to the switching device being turned off, thereby A large voltage is induced, and then the switching device is prevented from being damaged due to an excessive induced voltage generated by the current memory element in the loop, so that the safety of the heating circuit is higher and the impact on the entire circuit is less. At the same time, the heating circuit of the present invention also provides an energy superimposing unit. When the switching device is turned on and then turned off, the energy superimposing unit can superimpose the energy in the energy storage circuit and the energy in the battery, and the next control is opened. Page / Total 45 pages 10022162# Single No. A0101 1013176587-0 M436948 When the closing device is turned on, the working efficiency of the discharge current heating circuit of the Garang road towel is improved. , thereby improving the L〇i year - 053⁄4 1〇 Revision _^| The other roles and advantages of this creation will be explained in detail in the following specific implementation sections. [Embodiment] The specific implementation manner of the present creation will be described in detail below. It should be understood that the specific embodiments described herein are merely illustrative and illustrative of the invention and are not intended to limit the invention. The 曰 需要 需要 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' The controller that controls the switching device connected thereto to be turned on or off accordingly, for example, may be a PLC (Programmable Controller) or the like; when not mentioned, the term "switch" means that the switching can be performed by an electrical signal. The switch that controls or controls the on/off according to the characteristics of the component itself can be a one-way switch, such as a one-way switch composed of a bidirectional switch and a diode in series, or a bidirectional switch, such as metal oxide. Metal Oxide Semiconductor Field Effect Transistor* MOSFET or IGBT with inverted parallel current diode (Insulated Gate Bipolar Transistor 'Insulated Gate Bipolar Transistor), etc.: when referred to below “Bidirectional switch” means that the on/off control can be achieved by electrical signals or according to the components themselves. A bidirectionally conductive switch that implements on-off control, such as an M〇SFET or an IGBT with an anti-freewheeling diode; etc.; when referred to hereinafter, a unidirectional semiconductor component refers to a semiconductor having a unidirectional conduction function. Element 'eg diode or the like 10022162# single number AQ1 (H ^ 6 K / ^ 45 * 1013176587-0; when referred to hereinafter, the term "charge memory element" refers to a device that implements charge storage, such as a capacitor, etc.; As mentioned in the text, the term "current memory transfer, refers to any device that can store current" such as inductance; when referred to in tT, the term "forward" refers to the amount of enthalpy from the battery to the circuit, the term "reverse" To, means energy b from the tank circuit (four) pool flow _ direction; when mentioned hereinafter, the term electricity 'also includes - secondary battery (such as dry battery, calibrated battery, etc.) and secondary battery (such as peak battery, nickel_pool , hydrogen recording battery or acid-corrected battery, etc. h S hereinafter referred to as 'the term 'damping; member' means any device that consumes any amount of impurities, such as electrical resistance, by obscuring the electric flow surface, § "Main circuit," refers to the circuit of the battery and the damping element, the open position and the energy storage circuit in series. ^• Also need to be the master of the 'double-sided battery' different characteristics, in this creation t, "Battery, can refer to the value of the internal parasitic t resistance and parasitic inductance, or the internal parasitic resistance and parasitic inductance - the inductance value is small _ think battery, can also be referred to as containing internal parasitic electrical resistance and parasitic Wei The battery pack. 'The first damper element' should be understood as the ideal battery that does not contain internal parasitic resistance and parasitic inductance, or the internal resistance of the parasitic resistance and the inductance of the parasitic inductance. The external damping element of the battery, the first current memory element L1 refers to the current storage element external to the battery; when the "battery" is a battery pack containing internal parasitic resistance and parasitic inductance, the first damping element R1 can refer to The damping element outside the battery may also refer to the parasitic resistance inside the battery pack. Similarly, the first current memory element L1 may refer to the current storage element external to the battery. , can also be 10022162# single number A0101 page 7 / total 45 pages 1013176587-0 M436948 ιοί years 〇 5 | io day connected positive _ page refers to the parasitic inductance inside the battery pack. ......... In order to ensure the service life of the battery, the battery can be ordered to heat at a low temperature. When the heating condition is turned over, the heating circuit is controlled to start working, and the battery is heated when the heating condition is stopped. , control the heating circuit to stop working. When the battery is in the same period of time, as the thread changes, the battery can be set according to the actual environmental conditions to set the heating conditions and stop heating conditions to make the battery temperature more (4), to ensure the battery charge. Discharge performance. - In order to heat the battery E in a low temperature environment, the present invention provides a heating circuit for the battery E, as shown in the figure, the heating circuit includes a switching device 1, a switch control module 100, and a first damping element R1 a tank circuit, a freewheeling circuit 2〇, and an energy stacking unit for connecting to the battery E to form a loop, the tank circuit comprising a first current memory element L1 and a first charge memory element C1, The first damper element ri, the switch device 1, the first cake memory element L1 and the first charge memory element ci are connected in series with the switch device 1 for controlling the switch device 1 to be turned on and off, Controlling the flow of energy between the battery E and the energy storage circuit. The energy superimposing unit is connected to the energy storage circuit for using the energy in the energy storage circuit and the battery E after the switching device 1 is turned on and off again. The energy is superimposed; the freewheeling circuit 2 is configured to form a series circuit ' with the battery E and the first current memory element L1 after the switching device is turned on and off again to maintain the flow of current in the arm bank E. It should be noted that the above-mentioned energy storage circuit is only a preferred embodiment of the present invention, and the energy storage circuit can perform energy flow with the battery E as long as it can satisfy the storage of energy. Therefore, those skilled in the art can perform the above-mentioned energy storage circuit based on this idea, etc. 10022162# Single number A0101 Page 8 / Total 45 pages 1013176587-0 M4369.48 101. May 10th The same page is modified or changed by the same page. In order to achieve the effect of energy storage, these should be included in the protection of this creation. According to the technical solution of the present creation, when the heating condition is ok, the switch control module 100 controls the switching device! Turning on, the battery E and the energy storage circuit are connected in series to form a loop, and the battery E can be discharged through the loop, that is, the first charge storage element C1 is charged. 'When the current in the loop passes through the current peak, the forward charge is zero, the first charge memory The component C1 starts to discharge through the loop, that is, the battery E is charged; and during the charging and discharging process of the battery e, the current in the loop can flow through the first damping element in the forward and reverse directions, and the first damping element passes through the first damping element. The heating of R1 can achieve the purpose of heating the battery E. When the heating condition is reached, the switch control module 100 can control the switching device 1 to be turned off, and the heating circuit stops working. In order to achieve energy 1: a complex flow between the battery E incapable circuits, according to one embodiment of the present creation, the switching device is a first bidirectional switch K3, as shown in FIG. The switch control module 1〇〇 controls the turn-on and turn-off of the first bidirectional switch K3. When the battery E needs to be heated, the first bidirectional switch pin can be turned on, such as stopping the heating or turning off the first bidirectional switch without heating. Κ3 can be. The switching device 1 is realized by using a first bidirectional switch Κ3 alone. The circuit is simple, occupies a small system area, and is easy to implement. However, in order to achieve the shutdown of the reverse current, the present invention also provides a preferred embodiment of the following device. Preferably, the opening and closing device 1 comprises a first one-way branch for realizing energy flow from the electric ship to the energy storage circuit and a second one-way branch for the energy realization circuit flowing to the battery port, and the switch control module 1〇 〇 is respectively connected with the first one-way branch and the second one-way branch, and is used for controlling the connected branch 10022162# single number Α〇101 page 9/total 45 pages 1〇131?6587, 〇ivhj〇 948 On May 10, 101, the turn-on and turn-off of the switch 丨 was controlled according to the turn-on and turn-off of the positive ridge few. When the battery needs to be heated, turning on both the first one-way branch and the second one-way branch, such as suspending heating, may choose to turn off one or both of the first one-way branch and the second one-way branch When the heating is not required, both the first one-way branch and the second one-way branch can be turned off. Preferably, both the first one-way branch and the second one-way branch are capable of being controlled by the switch control module 100 such that energy forward flow and reverse flow can be flexibly achieved. As another embodiment of the switching device 1, as shown in FIG. 3, the switching device 1 may include a f bidirectional switch K4 and a third bidirectional switch K5, and the second bidirectional switch Κ4 and the third bidirectional switch Κ5 are opposite to each other. Connecting in series to form the first one-way branch and the second one-way branch, the switch control module 1 is connected to the second bidirectional switch 4 and the third bidirectional switch 5, respectively, for controlling the second bidirectional switch Κ4 And turning on and off of the third bidirectional switch Κ5 to control the turning on and off of the first unidirectional branch and the second unidirectional branch. When the battery pack needs to be heated, the second bidirectional switches Κ4 and Κ5 may be turned on, and if the heating is suspended, one or both of the second bidirectional switch Κ4 and the third bidirectional switch Κ5 may be turned off, when heating is not required. The second bidirectional switch Κ4 and the third bidirectional switch Κ5 can be turned off. The switching device 1 is implemented to control the conduction and deactivation of the first one-way branch and the second one-way branch, respectively, to flexibly realize the forward and reverse energy flow of the circuit. As another embodiment of the switching device 1, as shown in FIG. 4, the switching device 1 includes a second switch Κ6, a second unidirectional semiconductor component dii, 1013176587-0, a third switch Κ7, and a third unidirectional semiconductor component. Di2, the second switch Κ6 and the second unidirectional semiconductor element D11 are connected in series to each other to constitute the first unidirectional branch, and the third switch Κ7 and the third unidirectional semiconductor element D12 are connected in series to each other to constitute the second one-way branch The switch control module 100 and the second switch 10〇22162 are numbered Α0101, page 10/total 45 pages, M436948, 101. May 10, the revised replacement page, the third open connection, respectively, for passing The turning on and off of the second opening 6 and the second switch K7 are controlled to control the turning on and off of the first one-way branch and the first one-way branch. In the switching device shown in Fig. 4, since the switches (i.e., the second switch K6 and the third switch Κ7) are present on both of the one-way branches, the shut-off function is performed at the same time as the energy flows in the forward and reverse directions. Preferably, the switching device 1 may further comprise a resistor in series with the first one-way branch and/or the second one-way branch for reducing the current of the battery heating circuit to avoid excessive current in the circuit. The battery is causing damage. For example, a resistor R6 connected in series with the second bidirectional switch K4 and the second bidirectional switch K5 may be added to the switching device 第 shown in Fig. 3 to obtain another implementation of the switching device 1, as shown in Fig. 5. Also shown in Fig. 6 is an embodiment of the switching device 1, which is obtained by series-connecting resistors R2 and resistance ribs on two one-way branches of the switching device 丨 shown in Fig. 4. As is known to those skilled in the art, circuit devices each have a nominal voltage that is a standard value of the operating voltage that the circuit device can withstand. When the voltage value on the circuit device exceeds its rated voltage, it will cause damage to the circuit device and affect the safe operation of the entire circuit. Preferably, the switch control module 1 〇〇 is further configured to control the switch device 丨 to be turned off after the first positive half cycle of the current flowing through the switch device i after the switch device 丨 is turned on, and the switch device 1 is applied when the switch device 1 is turned off. The voltage to the switching device i is less than the rated voltage of the switching device 1. Thereby, the freewheeling action of the freewheeling circuit 20 and the selection of the turn-off timing of the switching device 1 can further prevent the switching device 1 from being damaged due to excessive induced voltage generated by the first current memory element L1 in the circuit, so that heating The circuit is more secure and has less impact on the entire circuit. In addition, by selecting the turn-off timing of the switching device ,, the induced voltage generated by the first current memory element L1 can be reduced to some extent, 1013176587-0 10022162#单号A〇101 Page 11 of 45 M436948 [l〇l年05;|i〇g corrects the gfe page so that the requirement for the freewheeling capability of the freewheeling circuit 20 can be reduced, so that the element having a smaller characteristic parameter such as power or capacity is used in the "IL circuit 20. The device is fine. Wherein, the turn-off timing may be, for example, a time interval from 30 degrees before the zero-crossing of the current flowing through the switching device 到 to 30 degrees before the zero-crossing of the peak of the next positive half-cycle, and the switching device 1 is turned off. The break time can be any time within the time interval. Of course, the creation is not limited to this. The specific turn-off timing should be determined according to the rated voltage of the switching device 1. For example, for different rated voltages, it may be the negative half-cycle peak of the current flowing through the switching device 1. The time interval from 60 degrees before the zero crossing to 6 degrees after the zero crossing of the peak of the next positive half cycle" Because during the charging and discharging of the battery E, when the battery 5 is reversely charged, the energy will not be fully charged. Returning to the battery E' thus causes a decrease in energy in the next forward discharge of the battery e, reducing the heating efficiency of the heating circuit. Therefore, preferably, the switch control module 1 is used to control the switching device 1 to turn off when the current flowing through the switching device 1 after the switching device 1 is turned on is zero after the peak of the negative half cycle is zero to improve the heating efficiency of the heating circuit. And at this time, controlling the switching device 1 to turn off 'can minimize the voltage induced by the first current memory element Li' to minimize the voltage applied to the switching device 1, thereby avoiding high voltage damage to the switching device 1 ^ according to the present In an embodiment of the creation, the switch control module 1 is configured to control the switch device 1 to turn off before the zero-crossing of the current flowing through the switch device 1 after the switch device 1 is turned on, as shown in FIG. As shown, the freewheeling circuit 20 can include a fourth switch K20 and a fifth unidirectional semiconductor component D20 that are connected to each other. The switch control module 100 is connected to the fourth switch K20 for after the switching device 1 is turned on and off. Controlling the fourth switch K20 to be turned on, and 10022162#single number A0101 page 12/total 45 pages 1013176587-0 M436948 101. The current of the current flow to the battery E is a predetermined value (for example, zero) ) , K20 controls the fourth switch is turned off. The freewheeling circuit 20 may be connected in parallel across the battery e, or may be connected at one end to the third switch K7 and the third unidirectional semiconductor component 2 of the second unidirectional branch of the switching device 1 as shown in FIG. The current value connected to the battery at the other end is a current value that does not cause the voltage applied to the switching device 1 when the switching device 1 is turned off to be greater than or equal to the rated voltage of the switching device 1, and the current value may be according to the switching device Set the rated voltage. According to another embodiment of the present invention, the switch control module 1 is configured to control the switch device 1 to turn off after the zero-crossing of the positive half-cycle of the current flowing through the switch device 1 after the switch device 1 is turned on, such as the eighth As shown, the freewheeling circuit 20 may include a fourth unidirectional semiconductor element D21, a second damper element R21, and a second charge MEM element C21 'fourth unidirectional semiconductor element]) 21 and a second damper element R21 in parallel and then The second charge memory element C2i is connected in series. After the switching device 1 is turned on and off again, the first current memory element Li can be freewheeled through the fourth unidirectional semiconductor element D21 and the second charge memory element C21, and the second damping element R21 is used for The energy stored on the second charge storage element C21 is released. The freewheeling circuit 20 may be connected in parallel across the battery e, or may be connected at one end to the second switch K6 and the second unidirectional semiconductor component D11 of the first unidirectional branch of the switching device 1 as shown in FIG. Between the other end and the battery Ε» 1013176587-0 The current in the circuit is small (ie, approximately zero) due to the control switch device 1 being turned off near the zero crossing after the negative half cycle of the current flowing through the switching device 1. When the switching device 1 is turned off, the voltage applied to the switching device 1 is lower than the rated voltage of the switching device 1, so that the requirement for the freewheeling capability of the freewheeling circuit 2〇 can be minimized, or even the above freewheeling is not required. Circuit 10022162^Single number A0101 Page 13 of 45 M436948 ιοί年ίο日修正§ § ^ Page 20. A person skilled in the art can obtain, by a limited number of tests, a range of the off time interval of the switching device 1 which causes the voltage applied to the switching device 1 when the switching device 1 is turned off to be smaller than the rated voltage of the switching device 1. The energy superimposing unit is connected to the energy storage circuit for superimposing the energy in the energy storage circuit and the energy in the battery E after the switching device 1 is turned on and off again, so that when the switching device 1 is turned on again , improve the discharge current in the heating circuit, thereby improving the working efficiency of the heating circuit. According to an embodiment of the present invention, as shown in FIG. 9, the energy superimposing unit includes a polarity inversion unit 102 connected to the energy storage circuit for turning on and off the switching device 1 After the disconnection, the voltage polarity of the first charge storage element C1 is reversed, and the voltage of the first charge storage element C1 after the polarity inversion can be added in series with the voltage of the battery E, and when the switching device 1 is turned on again, Increase the discharge current in the heating circuit. As an embodiment of the polarity inversion unit 102, as shown in FIG. 10, the polarity inversion unit 102 includes a first single pole double throw switch J1 and a second single pole double throw switch J2, a first single pole double throw switch J1 and The second single-pole double-throw switch J2 is respectively located at two ends of the first charge storage element C1, and the incoming line of the first single-pole double-throw switch J1 is connected in the energy storage circuit, and the first outgoing line of the first single-pole double-throw switch J1 Connecting the first plate of the first charge memory element C1, the second output line of the first single-pole double-throw switch J1 is connected to the second plate of the first charge memory element C1, and the second line of the second single-pole double-throw switch J2 is connected. In the energy storage circuit, a first outlet of the second single-pole double-throw switch J2 is connected to the second electrode of the first charge-memory device C1, and a second outlet of the second single-pole double-throw switch J2 is connected The first plate of the first charge memory element C1, the switch control module 100 and the first single pole double throw switch 10022162# single number A0101 page 14 / total 45 pages 1 〇 13176587 ~ 〇 M4369.48
101年.05月1&日梭正替&頁I J1和第二單刀雙擲開關J2分別連接,用於通過改變所述 第一早刀雙掷開關J1和第一早刀雙掷開關J2各自的入線 和出線的連接關係來對所述第一電荷記憶元件C1的電壓 極性進行反轉。 根據該實施方式,可以預先對第一單刀雙擲開關和第 二單刀雙擲開關J2各自的入線和出線的連接關係進行設 置,使得當開關裝置K1導通時,第一單刀雙擲開關J1的 入線與其第一出線連接,而第二單刀雙擲開關J2的入線 與其第一出線連接,當開關裝置K1關斷時,通過開關控 制模組10 0控制第一單刀雙擲開關J1的入線切換到與其第 二出線連接,而第二單刀雙擲開關J2的入線切換到與其 第二出線連接,由此第一電荷記憶元件ci實現電壓極性 反轉的目的。 1013176587-0 作為極性反轉單元102的另一種實施方式,如第11圖所示 ,極性反轉單元102包括第一單向半導體元件D3、第二電 流記憶元件L2以及第一開關K9,所述第一電荷記憶元件 C1、第二電流記憶元件L2和第一開關K9順次串聯形成回 路,所述第一單向半導體元件ΐ)3和串聯在所述第一電荷 記憶元件C1與第二電流記憶元件L2或所述第二電流記憶 元件L2與第一開關K9之間,所述開關控制模組1〇〇還與所 述第一開關K9連接’用於通過控制第一開關K9導通來對 所述第一電荷記憶元件C1的電壓極性進行反轉β 根據上述實施方式,當開關裝置1關斷時,可以通過開關 控制模組100控制第一開關Κ9導通,由此,第一電荷記憶 元件C1與第一單向半導體元件D3、第二電流記憶元件L2 以及第一開關Κ9形成LC振盪回路,第一電荷記憶元件ci 10022162#單編號Α〇101 第15頁/共45頁 M436948 10Ϊ年.05月10日按正替备頁 -— . ___ - —- 通過第二電流記憶元件L2放電,振盪回路上的電流流經 正半週期後,流經第二電流記憶元件L2的電流為零時達 到第一電荷記憶元件C1電壓極性反轉的目的。 作為極性反轉單元102的又一種實施方式,如第12圖所示 ,極性反轉單元102包括第一 DC-DC模組2和第二電荷記 憶元件C2 ’該第一DC-DC模組2與第一電荷記憶元件ci和 第二電荷記憶元件C2分別連接,開關控制模組1〇〇還與第 一DC-DC模組2連接’用於通過控制第一DC-DC模組2工作 來將所述第一電荷記憶元件C1中的能量轉移至所述第二 電荷記憶元件C2,再將第二電荷記憶元件C2中的能量反 向轉移回第一電荷記憶元件C1 ’以實現對第一電荷記憶 元件C1的電壓極性的反轉。 第一 DC-DC模組2是本領域中常用的用於實現電壓極性反 轉的直流變直流轉換電路,本創作不對第一DC-DC模組2 的具體電路結構作任何限制,只要能夠實現對第一電荷 記憶元件C1的電壓極性反轉即可,本領域技術人員可以 根據實際操作的需要對其電路中的元件進行增加、替換 或刪減。 第13圖為本創作提供的第一 DC-DC模組2的一種實施方式 ,如第13圖所示,第一DC-DC模組2包括:雙向開關Q1、 雙向開關Q2、雙向開關Q3、雙向開關Q4、第一變壓器T1 、單向半導體元件D4、單向半導體元件D5、電流記憶元 件L3、雙向開關Q5、雙向開關Q6、第二變壓器T2、單向 半導體元件D6、單向半導體元件D7、以及單向半導體元 件D8。 1013176587-0 在該實施方式中’雙向開關Q1、雙向開關Q2、雙向開關 10022162^單編號A01〇l 第16頁/共45頁 101年.05月10日接正智七頁 Q3和雙向開_0SFET,雙向開_和雙向開^ IGBT〇 ' 第-變壓器T1的1腳' 4腳' 5聊為同名端,第二變壓器T2 的2腳與3腳為同名端。 其中,單向半導體元件_陽極與第—電荷記憶元件以 的a端連接’單向半導體元偷的陰極與雙向開酶和雙 向開_的漏極連接,雙向開_的源極與雙向開關⑽ 的漏極連接,雙向__馳與雙向關_漏極連 接’雙向開關Q3、雙向開關Q4的源極與第—電荷記憶元 件C1的b端連接,由此構成全橋電路,此時第一電荷記憶 元件C1的電壓極性為a端為正,b端為負。 在該全橋電路中,雙向開關Q1、雙向開關敗為上橋臂, 雙向開關Q3、雙向開關Q4為下橋臂,該全橋電路通過第 一變壓3§T1與第二電荷記憶元件C2相連;第一變壓器τι 的1腳與第一節點Ν1連接、2腳與第二節黠Ν2連接,3腳和 5腳分別連接至單向半導體元件D4和單向半導體元件恥的 陽極;單向半導體元件!)4和單向半導體元件邯的陰極與 電流記憶元件L3的一端連接,電流記憶元件13的另一端 與第二電荷記憶元件C2的d端連接;變壓器τι的4腳與第 二電荷記憶元件C2的c端連接,單向半導體元件])8的陽極 與第二電荷記憶元件C2的d端連接,單向半導體元件j)8的 陰極與第一電荷記憶元件C1的b端連接,此時第二電荷記 憶元件C2的電壓極性為c端為負,d端為正。 其中’第二電荷記憶元件C2的c端連接雙向開關Q5的發射 極,雙向開關Q5的集電極與變壓器T2的2腳連接,變壓器 T2的1腳與第一電荷記憶元件C1的a端連接,變愿器T2的 10_#單威厕】 1013176587-0 第17頁/共45頁 M436948101.05.1&Day Shuttle is replaced by & page I J1 and second single-pole double-throw switch J2, respectively, for changing the first early double-throw switch J1 and the first early double-throw switch J2 The respective in-line and outgoing connections are used to invert the voltage polarity of the first charge storage element C1. According to this embodiment, the connection relationship between the incoming and outgoing lines of the first single-pole double-throw switch and the second single-pole double-throw switch J2 can be set in advance, so that when the switching device K1 is turned on, the first single-pole double-throw switch J1 The incoming line is connected to the first outgoing line, and the incoming line of the second single-pole double-throw switch J2 is connected to the first outgoing line. When the switching device K1 is turned off, the incoming switch of the first single-pole double-throw switch J1 is controlled by the switch control module 100. Switching to the connection with the second outlet thereof, and the incoming line of the second single-pole double-throw switch J2 is switched to be connected to the second outlet thereof, whereby the first charge storage element ci achieves the purpose of voltage polarity inversion. 1013176587-0 As another embodiment of the polarity inversion unit 102, as shown in FIG. 11, the polarity inversion unit 102 includes a first unidirectional semiconductor element D3, a second current memory element L2, and a first switch K9, The first charge storage element C1, the second current storage element L2 and the first switch K9 are sequentially connected in series to form a loop, the first unidirectional semiconductor element ΐ)3 and the first charge storage element C1 and the second current memory are connected in series Between the element L2 or the second current memory element L2 and the first switch K9, the switch control module 1 is also connected to the first switch K9 for communicating by controlling the first switch K9 According to the above embodiment, when the switching device 1 is turned off, the first switch Κ9 can be controlled to be turned on by the switch control module 100, whereby the first charge storage element C1 is turned on. Forming an LC tank circuit with the first unidirectional semiconductor element D3, the second current memory element L2, and the first switch Κ9, the first charge memory element ci 10022162# single number Α〇101 page 15 / total 45 pages M436948 10 years. On May 10th, according to the replacement page--. ___ - -- is discharged through the second current memory element L2, after the current on the oscillation circuit flows through the positive half cycle, the current flowing through the second current memory element L2 is zero. The purpose of reversing the polarity of the voltage of the first charge memory element C1 is achieved. As another embodiment of the polarity inversion unit 102, as shown in FIG. 12, the polarity inversion unit 102 includes a first DC-DC module 2 and a second charge memory element C2'. The first DC-DC module 2 Connected to the first charge memory element ci and the second charge memory element C2 respectively, the switch control module 1 is also connected to the first DC-DC module 2 for operating by controlling the first DC-DC module 2 Transferring the energy in the first charge storage element C1 to the second charge storage element C2, and then transferring the energy in the second charge storage element C2 back to the first charge storage element C1' to achieve the first Inversion of the voltage polarity of the charge storage element C1. The first DC-DC module 2 is a DC-DC converter circuit commonly used in the art for realizing voltage polarity inversion. This creation does not impose any limitation on the specific circuit structure of the first DC-DC module 2, as long as it can be realized. It is sufficient to reverse the polarity of the voltage of the first charge storage element C1, and those skilled in the art can add, replace or delete the components in the circuit according to the needs of the actual operation. FIG. 13 is an embodiment of the first DC-DC module 2 provided by the present invention. As shown in FIG. 13, the first DC-DC module 2 includes: a bidirectional switch Q1, a bidirectional switch Q2, a bidirectional switch Q3, Bidirectional switch Q4, first transformer T1, unidirectional semiconductor component D4, unidirectional semiconductor component D5, current memory component L3, bidirectional switch Q5, bidirectional switch Q6, second transformer T2, unidirectional semiconductor component D6, unidirectional semiconductor component D7 And a unidirectional semiconductor element D8. 1013176587-0 In this embodiment, 'bidirectional switch Q1, bidirectional switch Q2, bidirectional switch 10022162^ single number A01〇l page 16 / total 45 pages 101 years. May 10th, plus Zhengzhi seven pages Q3 and bidirectional open_0SFET , two-way open _ and two-way open ^ IGBT 〇 ' first-transformer T1 1 foot '4 feet' 5 chat for the same name end, the second transformer T2 2 feet and 3 feet are the same name end. Wherein, the unidirectional semiconductor element_anode and the first-charge memory element are connected at the a-end of the 'one-way semiconductor element's cathode and the bidirectional open enzyme and the bidirectional open_drain connection, the bidirectional open_source and the bidirectional switch (10) The drain connection, the bidirectional __chi and the bidirectional off_drain connection 'bidirectional switch Q3, the source of the bidirectional switch Q4 is connected to the b terminal of the first charge storage element C1, thereby forming a full bridge circuit, at this time first The voltage polarity of the charge memory element C1 is positive at the a terminal and negative at the b terminal. In the full bridge circuit, the bidirectional switch Q1, the bidirectional switch is defeated as the upper arm, the bidirectional switch Q3, and the bidirectional switch Q4 are the lower arm, and the full bridge circuit passes the first transformer 3§T1 and the second charge memory element C2 Connected; the first transformer τι 1 pin is connected to the first node Ν1, the 2 pin is connected to the second node 黠Ν2, the 3 pin and the 5 pin are respectively connected to the unidirectional semiconductor element D4 and the unidirectional semiconductor element shame anode; Semiconductor components! 4 and the cathode of the unidirectional semiconductor device 连接 is connected to one end of the current memory element L3, the other end of the current memory element 13 is connected to the d terminal of the second charge memory element C2; the 4 pin of the transformer τι and the second charge memory element C2 The c-terminal connection, the unidirectional semiconductor element]) 8 is connected to the d terminal of the second charge memory element C2, and the cathode of the unidirectional semiconductor element j) 8 is connected to the b terminal of the first charge memory element C1. The voltage polarity of the two charge storage element C2 is negative at the c-terminus and positive at the d-end. Wherein the c-terminal of the second charge storage element C2 is connected to the emitter of the bidirectional switch Q5, the collector of the bidirectional switch Q5 is connected to the 2 pin of the transformer T2, and the 1 leg of the transformer T2 is connected to the a terminal of the first charge storage element C1, 10_#单威厕 of the changer T2 1013176587-0 Page 17 of 45 M436948
1:掀年.0¾ 日接正轉頁I 4腳與第一電荷記憶元件〇1的3端連接,變壓器12的3腳連 接單向半導體元件D6的陽極,單向半導體元件D6的陰極 與雙向開關Q6的集電極連接,雙向開關q6的發射極與第 二電荷記憶元件C2的b端連接。 其中,雙向開關Q1、雙向開關Q2、雙向開關Q3、雙向開 關Q4 '雙向開關Q5和雙向開關卯分別通過所述開關控制 模組100的控制來實現導通和關斷。 下面對第一DC-DC模組2的工作過程進行描述: 1、在開關裝置1關斷後,開關控制模組100控制雙向開關 Q5、雙向開關Q6關斷’控制雙向開關qi和雙向開關q4同 時導通以構成A相’控制雙向開關Q2、雙向開關Q3同時導 • · 通以構成B相’通過控制所述a相、B相交替導通以構成全 橋電路進行工作; 2、當該全橋電路工作時,第一電荷記憶元件(^上的能量 通過第一變壓器T1、單向半導體元件μ、單向半導體元 件D5、以及電流記憶元件L3轉移到第二電荷記憶元件C2 上’此時第二電荷記憶元件C2的電壓極性為c端為負,d 端為正。 3、所述開關控制模組1〇〇控制雙向開關q5導通,第一電 荷記憶元件C1通過第二變壓器T2和單向半導體元件D8與 第二電荷記憶元件C2構成通路,由此,第二電荷記憶元 件C2上的能量向第一電荷記憶元件(^反向轉移,其中, 部分能量將儲存在第二變壓器T2上;此時,所述開關控 制模組100控制雙向開關Q5關斷、雙向開關Q6閉合,通過 第二變壓器T2和單向半導體元件D6將儲存在第二變壓器 T2上的能量轉移至第一電荷記憶元件C1 ,此時第一電荷 10022162#單編號A0101 第18頁/共45頁 1013176587-0 M4369.48 1101年.05月10日修正_頁 記憶元件α的«極性反轉為a端為負,b端為正由此 達到了將第_電荷記憶元件C1的電龜性反向的目的。 作為本創作的-種實施方式,可以通過將第—電荷記憶 元件ci令的能量直接與電池E中的能量進行疊加來提高加 熱電路的工佩率,也可以將第—電荷記憶元件ci令的 -部分能量>肖轉之後,再將第—電荷記憶元件ci中的 剩餘能量進行疊加。 因此,如第14圖所示,所述加熱電路還包括與所述第— 電荷記憶元件C1連接的能量消耗單元,該能量消耗單元 用於在Μ裝置1導通再騎後、所舰量疊加單元進行 能量疊加之前對第一電荷記憶元件C1中的能量進行消耗 〇 根據一種實施方式,如第15圖所示,所述能量消耗單元 包括電壓控制單元101,該電壓控制單元101用於在開關 裝置1導通再關斷後、所述能量疊加單元進行能量疊加之 前將第一電荷記憶元件C1兩端的電壓值轉換成電壓設定 值。該電壓設定值可以根據實際操作的需要進行設定。 如第15圖所示,電壓控制單元101包括第三阻尼元件舫和 第五開關K8,第三阻尼元件R5和第五開關K8彼此串聯之 後並聯在所述第一電荷記憶元件C1的兩端,開關控制模 組100還與第五開關K8連接,開關控制模組1〇〇還用於在 控制開關裝置1導通再關斷後控制第五開關K8導通。由此 ,第一電荷記憶元件C1中的能量可以通過第三阻尼元件 R5進行消耗》 1013176587-0 開關控制模組100可以為一個單獨的控制器,通過對其内 部程式的設置,可以實現對不同的外接開關的通斷控制 10022162#·單編號A01(n 第19頁/共45頁 M436948 __ ioi年.05¾ 10 6接正營运頁 ’開關控制模組100也可以為多個控制器,例如針對每一 個外接開關設置對應的開關控制模組100,所述多個開關 控制模組100也可以集成為一體,本創作不對開關控制模 組1〇〇的實現形式做出任何限定。 下面結合第16圖-第21圖對電池E的加熱電路的實施方式 的工作方式進行簡單介紹。需要注意的是,雖然本創作 的特徵和元素參考第16圖-第21圖以特定的結合進行了描 述’但每個特徵或元素可以在沒有其他特徵和元素的情 況下早獨使用,或在與或不與其他特徵和元素結合的各 種情況下使用。本創作提供的電池E的加熱電路的實施方 式並不限於第16圖-第21圖所示的實現方式。另外,所示 的波形圖中的各個時間段之間的間隔時間可以根據實際 操作的需要進行調節。 在如第16圖所示的電池E的加熱電路中,第二開關K6和第 二單向半導體元件D11串聯構成開關裝置1的第一單向支 路,第三單向半導體元件D12和第三開關K7串聯構成開關 裝置1的第二單向支路,該開關裝置1與第一阻尼元件仍 、第一電荷記憶元件C1以及第一電流記憶元件L1串聯, 第一單向半導體元件D3、第二電流記憶元件L2和第一開 關K9構成極性反轉單元1〇2,第五單向半導體元件D2〇和 第四開關K20構成續流電路20,開關控制模組1〇〇可以控 制第二開關K6、第三開關K7、第一開關K9和第四開關 K20的導通和關斷。第π圖為與第16圖的加熱電路對應的 波形時序®,其中’ v 指的是第-電荷記憶元件C1的電 壓值,I主指的是流經開關裝置1的電流的電流值,! L2 $曰 的是極性反轉回路的電流值,丨ci指的是第一電荷記憶元 10022162卢單编號A0101 第20頁/共45頁 1013176587-0 M4369.48 -ιοί年〇5| 10日接正替換頁 件C1上的電流值’ I D2()指的是第五單向半導體元件D20上 的電流值。第16圖所示的加熱電路的工作過程如下: a) 開關控制模組1〇〇控制第二開關K6導通,電池E通過與 第二開關K6、第二單向半導體元件dii、第一電荷記憶元 件ci纪成的回路進行正向放電(如第17圖中的tl時間段 所示); b) 開關控制模組1〇〇控制第二開關K6在電流經過第一個 正半週期峰值後為零時關斷; c) 開關控制模組1〇〇控制第三開關Κ7導通,電池Ε通過與 第一電荷記憶元件C1、第三開關Κ7、半導體器件D12組成 的回路進行反向充電;開關控制模組1〇〇控制第三開關Κ7 在電流經過第一個負半週期峰值後過零前24度時關斷( 如第17圖中的t2時間段所示); d) 開關控制模組1〇〇在控制第三開關口關斷的同時,控 制第四開關K20導通,第一電流記憶元件li通過第四開關 K20、第五單向半導體元件D2〇續流,開關控制模組1〇〇 在流向電池E的電流為零時控制第四開關K2〇關斷(如第 Π圖中的t3時間段所示); e) 開關控制模組1〇〇控制第一開關K9導通,第一電荷記 憶元件C1通過第一單向半導體元件D3、第二電流記憶元 件L2和第一開關K9組成的回路放電,並達到電壓極性反 轉的目的,之後,開關控制模組100控制第一開關K9關斷 (如第17圖中的t4時間段所示); f) 重複步驟a)至e),電池E不斷通過充放電實現加熱 ,直至電池達到停止加熱條件為止。 在如第18圖所示的電池E的加熱電路中,第二開關K6和第 1013176587-01: The following year is connected to the 3rd end of the first charge memory element 〇1, the 3rd leg of the transformer 12 is connected to the anode of the unidirectional semiconductor element D6, and the cathode of the unidirectional semiconductor element D6 is bidirectional. The collector of switch Q6 is connected, and the emitter of bidirectional switch q6 is coupled to the b terminal of second charge memory element C2. The bidirectional switch Q1, the bidirectional switch Q2, the bidirectional switch Q3, the bidirectional switch Q4 'the bidirectional switch Q5 and the bidirectional switch 卯 are respectively turned on and off by the control of the switch control module 100. The following describes the working process of the first DC-DC module 2: 1. After the switching device 1 is turned off, the switch control module 100 controls the bidirectional switch Q5, and the bidirectional switch Q6 turns off 'control bidirectional switch qi and bidirectional switch Q4 is simultaneously turned on to form A phase 'control bidirectional switch Q2, bidirectional switch Q3 simultaneous conduction · · pass to form B phase ' by controlling the a phase and B phase alternately conducting to form a full bridge circuit to work; 2, when the whole When the bridge circuit is in operation, the energy of the first charge memory element is transferred to the second charge memory element C2 through the first transformer T1, the unidirectional semiconductor element μ, the unidirectional semiconductor element D5, and the current memory element L3. The voltage polarity of the second charge storage element C2 is negative at the c-terminus and positive at the d-end. 3. The switch control module 1 〇〇 controls the bidirectional switch q5 to be turned on, and the first charge storage element C1 passes through the second transformer T2 and the single Forming a path to the semiconductor element D8 and the second charge memory element C2, whereby the energy on the second charge memory element C2 is reversely transferred to the first charge memory element, wherein part of the energy is stored in the second transformer At this time, the switch control module 100 controls the bidirectional switch Q5 to be turned off, the bidirectional switch Q6 to be closed, and the energy stored in the second transformer T2 is transferred to the first through the second transformer T2 and the unidirectional semiconductor component D6. Charge memory element C1, at this time the first charge 10022162# single number A0101 page 18 / total 45 page 1013176587-0 M4369.48 1101. May 10 correction _ page memory element α « polarity reversal to a end Negative, the b-end is positive for the purpose of reversing the electro-tortability of the first-charge memory element C1. As an embodiment of the present invention, the energy of the first-charge memory element ci can be directly connected to the battery. The energy in E is superimposed to increase the work-penetration rate of the heating circuit, and the residual energy in the first-charge memory element ci can be superimposed after the -partial energy of the first-charge memory element ci is shifted. Therefore, as shown in FIG. 14, the heating circuit further includes an energy consuming unit connected to the first charge storage element C1, and the energy consuming unit is used after the Μ device 1 is turned on and after riding, the ship superposition unit Energy stack Previously, the energy in the first charge storage element C1 is consumed. According to an embodiment, as shown in FIG. 15, the energy consumption unit includes a voltage control unit 101 for turning on the switching device 1 After the shutdown, the energy superimposing unit converts the voltage value across the first charge storage element C1 into a voltage set value before performing energy superposition. The voltage set value can be set according to actual operation requirements. As shown in FIG. The voltage control unit 101 includes a third damping element 舫 and a fifth switch K8. The third damper element R5 and the fifth switch K8 are connected in series with each other and then connected in parallel at both ends of the first charge storage element C1. The switch control module 100 also The fifth switch K8 is connected, and the switch control module 1 is further configured to control the fifth switch K8 to be turned on after the control switch device 1 is turned on and then turned off. Thereby, the energy in the first charge memory element C1 can be consumed by the third damper element R5. 1013176587-0 The switch control module 100 can be a separate controller, and can be realized differently by setting its internal program. On/off control of external switch 10022162#·single number A01 (n page 19/total 45 pages M436948 __ ioi year. 053⁄4 10 6 connected to the operating page' The switch control module 100 can also be a plurality of controllers, for example A corresponding switch control module 100 is provided for each external switch, and the plurality of switch control modules 100 can also be integrated into one body. This creation does not impose any limitation on the implementation form of the switch control module 1〇〇. Figure 16 - Figure 21 provides a brief description of the mode of operation of the embodiment of the heating circuit of battery E. It should be noted that although the features and elements of the present invention are described with reference to Figures 16 - 21 in a specific combination ' However, each feature or element may be used independently of other features and elements, or in various situations with or without other features and elements. The embodiment of the heating circuit of the provided battery E is not limited to the implementation shown in Figures 16 to 21. In addition, the interval between the various time periods in the waveform diagram shown may be performed according to actual operation needs. In the heating circuit of the battery E as shown in Fig. 16, the second switch K6 and the second unidirectional semiconductor element D11 are connected in series to constitute a first one-way branch of the switching device 1, the third unidirectional semiconductor element D12 and The third switch K7 is connected in series to form a second one-way branch of the switching device 1, the switching device 1 being in series with the first damping element, the first charge storage element C1 and the first current memory element L1, the first unidirectional semiconductor element D3 The second current memory element L2 and the first switch K9 constitute a polarity inversion unit 1〇2, and the fifth unidirectional semiconductor element D2〇 and the fourth switch K20 constitute a freewheeling circuit 20, and the switch control module 1〇〇 can control the first The second switch K6, the third switch K7, the first switch K9, and the fourth switch K20 are turned on and off. The πth diagram is the waveform timing corresponding to the heating circuit of Fig. 16, where 'v refers to the first charge Memory element C1 The value of the voltage, I main refers to the current value of the current flowing through the switching device 1, ! L2 $ 是 is the current value of the polarity reversal circuit, 丨 ci refers to the first charge memory element 10022162 Lu single number A0101 20 pages/total 45 pages 1013176587-0 M4369.48 - ιοί年〇5| The current value on the page C1 is replaced by the current value 'I D2() refers to the current value on the fifth unidirectional semiconductor element D20. The working process of the heating circuit shown in Fig. 16 is as follows: a) The switch control module 1 〇〇 controls the second switch K6 to be turned on, the battery E passes through the second switch K6, the second unidirectional semiconductor component dii, the first charge memory The circuit of component ci is forward discharge (as shown in the time period of tl in Figure 17); b) the switch control module 1〇〇 controls the second switch K6 after the current passes the peak of the first positive half cycle The switch control module 1〇〇 controls the third switch Κ7 to be turned on, and the battery 反向 is reversely charged through a circuit composed of the first charge storage element C1, the third switch Κ7, and the semiconductor device D12; Module 1〇〇 controls the third switch Κ7 after the current passes through the first negative half cycle The peak is turned off 24 degrees before the zero crossing (as shown in the t2 time period in Fig. 17); d) The switch control module 1〇〇 controls the fourth switch K20 to be turned on while controlling the third switch port to be turned off. The first current memory element li is continuously flowed through the fourth switch K20 and the fifth unidirectional semiconductor element D2, and the switch control module 1 控制 controls the fourth switch K2 〇 to be turned off when the current flowing to the battery E is zero (eg, The t3 time period in the figure is shown); e) the switch control module 1 〇〇 controls the first switch K9 to be turned on, the first charge memory element C1 passes through the first unidirectional semiconductor element D3, the second current memory element L2, and The circuit formed by the first switch K9 discharges and achieves the purpose of voltage polarity reversal. Thereafter, the switch control module 100 controls the first switch K9 to be turned off (as shown in the t4 time period in FIG. 17); f) repeating steps a) to e), the battery E is continuously heated by charging and discharging until the battery reaches the stop heating condition. In the heating circuit of the battery E as shown in Fig. 18, the second switch K6 and the 1013176587-0
10022162#單編號 AG1Q1 ^ 21 I / a 45 I M4J6948 :ί〇ϊ年:0¾ ίο日孩正_莨 二單向半導體元件Dll串聯構成開關裝置1的第一單向支 路’第三單向半導體元件D12和第三開關K7串聯構成開關 裝置1的第二單向支路,該開關裝置丨與第一阻尼元件則 、第一電荷記憶元件C1以及第一電流記憶元件L1串聯, 第一單向半導體元件D3、第二電流記憶元件L2和第一開 關K9構成極性反轉單元1〇2,第四單向半導體元件D21、 第二阻尼元件R21和第二電荷記憶元件C21構成續流電路 2〇 ’開關控制模組1〇〇可以控制第二開關K6、第三開關 K7和第一開關K9的導通和關斷。第19圖為與第18圖的加 熱電路對應的波形時序圖,其中,V 指的是第一電荷記 憶元件C1的電壓值,I主指的是流經開關裝置1的電流的 電流值’ 1 L2指的是極性反轉回路的電流值,I 指的是第 一電荷記憶元件C1上的電流值,I C21指的是第二電荷記 憶-元件C21上的電流值。第18圖所示的加熱電路的工作過 程如下: a)開關控制模組1〇〇控制第二開關K6、K7導通,電池E 通過與第二開關K6、第二單向半導體元件D11、第一電荷 記憶元件C1組成的回路進行正向放電(如第19圖中的tl 時間段所示)以及與第三開關K7、第三單向半導體元件 D12、第一電荷記憶元件ci組成的回路進行反向充電(如 第19圖中的t2時間段所示); b)開關控制模組1〇〇控制第二開關Κ6、K7在電流的第二 個正半週期峰值前過零後25度時關斷(如第19圖中的t3 時間段所示),第一電流記憶元件Li通過第四單向半導 體元件D21和第二電荷記憶元件C21續流(如第19圖中的 t4時間段所示); 1013176587-0 10022162#早编號第22頁/共45頁 M4369.48 ΙΟΙ:年.05月10日梭正_^頁 C)開關控制模組100控制第一開關K9導通,第一電荷記 憶元件C1通過第一單向半導體元件D3、第二電流記憶元 件L2和第一開關K9組成的回路放電,並達到電壓極性反 轉的目的,之後,開關控制模組1〇〇控制第一開關K9關斷 (如第I9圖中的t5時間段妨示); d)重複步驟a)至c) ’電池E不斷通過充放電實現加熱 ,直至電池達到停止加熱條件為止。 需要說明的是,第18圖中的續流電路20於tl和t2時間段 亦有電流流過,出於清楚繪示續流電路2〇於本加熱電路 内的作用的目的’第19圖中僅示出了續流電路2〇於體現 其具體作用的時間段的電流情況,而未示出續流電路2〇 於tl和t2時間段的電流情況,以避免混淆本創作。 在如第20圖所示的電池E的加熱電路中,使用一個第一雙 向開關K3構成開關裝置1,儲能電路包括第一電流記憶元 件L1和第一電荷記憶元件ci ’第一阻尼元件ri和開關裝 置1與所述儲能電路串聯,第一單向半導體元件抝、第二 電流記憶元件L2和第一開關K9構成極性反轉單元102,開 關控制模組100可以控制第一開關K9和第一雙向開關K3的 導通和關斷。第21圖為與第20圖的加熱電路對應的波形 時序圖,其中,v Ci指的是第一電荷記憶元件C1的電壓值 ’ I主指的是流經第一雙向開關K3的電流的電流值,I 指 的是極性反轉回路的電流值《第2〇圖所示的加熱電路的 工作過程如下: 1013176587-0 a)開關控制模組1〇〇控制第一雙向開關K3導通,儲能電 路開始工作,如第21圖所示的ti時間段,電池ε通過第一 雙向開關K3、第一電荷記憶元件C1組成的回路進行正向 10022162#單編號A0101 第23頁/共45頁 M436948 广 _: ㈣年0Μ 10日粧變頁 放電和反向充電(如第21圖中的tl時間段所示); b) 開關控制模組100在流經第一雙向開關K3的電流經過 負半週期峰值後為零時(即反向電流為零時)控制第一 雙向開關K3關斷; c) 開關控制模組100控制第一開關K9導通,極性反轉單 元102工作,第一電荷記憶元件C1通過第一單向半導體元 件D3、第二電流記憶元件L2和第一開關K9組成的回路放 電’達到電壓極性反轉的目的,之後,開關控制模組丨⑽ 控制第一開關K9關斷(如第21圖中的t2時間段所示); d) 重複步驟a)至c),電池E不斷通過充放電實現加熱 ,直至電池E達到停止加熱條件為止。 在該第20圖所示的加熱電路中,由於第一雙向開關以於 流經該第一雙向開關K3的電流經過負半週期峰值後為零 時(即反向電流為零時)關斷,續流電路2〇未起到續流 作用,故位於該第21圖中繪示續流電路2〇0 本創作提供的加熱電珞能夠提高電池的充放電性能,並 且在該加熱電路中,雛電路與電池串聯,當給電池加 熱時,由於串聯的電荷記憶元件的存在,能夠避免關 裝置失效短路引起的安全性問題,能夠有效地保護電池 〇 另外,在本創作的加熱電路中,電池内電流的流動可通 過續抓電路而得以保持,避免電流記憶元件内的電流因 開關裝置瞒而突變,從而感應出很大的電壓 ,繼而可 以避免因回路t的電流記憶元件產生的感應電壓過大而 純開關裝置’使得加熱電路的安全性更高,對整個電 路影響較小。 1〇〇22162产單編號 A0101 第24頁/共45頁 1013176587-0 M4369.48 101年.05月10日修正替換頁 同時’本創作的加熱電路中還提供了能量疊加單元,當 開關裝置關斷後’該能量疊加單元能夠將雛電路中的 能ΐ與電池中的能量進行疊加,當下一次控綱關裝置 導通時’提高加熱回路中的放電電流,由此提高加熱電 路的工作效率。 以上結合酬詳細描述了本創作的優選實施方式,但是 ’本創作並不’上述實施方式巾的具體細節,在本創 作的技術構思範圍内,可以對本創作的技術方案進行多 種簡單變型’這些簡單變型均屬於本創作的保護範圍。 另外需要說_是,在上述具體實齡式巾所描述的各 個具體技術概,在不矛盾的情況下,可以通過任何合 適的方式進行組合,為了避免移要的重複,本創作二 各種可能的組合方式不再另行說明。此外,本創作的各 種不同的實施方式之間也可以進行任意組合,只要其不 違背本創作的思想,其同樣應當視為本創作所公開的内 容。 【圖式簡單說明】 [0005]附圖是用來提供對本創作的進一步理解, 令认. 亚且構成說明 曰的-#,與下面的具體實施方式_起用於解釋 作,但並不構成對本創作的限制。在附圖中: 第1圖為本創作提供的電池的加熱電路的示专、圖. 第2圖為第1圖中的開關裝置的一種實施方式的示 第3圖為第1圖中的開關裝置的—種實施方式的_、〜圖, 第4圖為第1圖中的開關裝置的一種實施方式的2圖’ 第5圖為第1圖中的開關裝置的一種實施方式的示〜, 第6圖為第1圖中的開關裝置的一種實 〜'圖, 10022162产單編號A〇m 第25頁/共45頁 工的不意圖; ^13176587-0 第7圖為第Iffl中的續流電路的—種實施方式的示意圖; 第8圖為第1圖中的續流電_另_種實施方式的示意圖 第9圖為第旧中的能量疊加單元的一種實施方式的示意 EI · 圓, 第10圖為第9圖中的極性反轉單元的一種實施方式的示意 [SI · 圖, 第11圖為第9圖中的極性反轉單元的一種實施方式的示意 圖, 第12圖為第9圖中·性反轉單㈣—種實施方式的示意 圓, 第13圖為第12圖中的第-ιχΗχ^組的一種實施方式的 示意圖; 第14圖為本創作&供的電池的加熱電路的—種優選實施 方式的示意圖; 第15圖為第14圖中魏#消耗單元的—種實施方式的示 意圖; 第16圖為本創條細電池的加缝路的—種實施方式 的示意圖; 第17圖為第16圖的加熱電路所對應的波形時序圖; 第18圖為本創作提供的電池的加熱電路的_種實施方式 的示意圖; 第19圖為第18圖的加熱電路所對應的波形時序圖; 第20圖為本創作提供的電池的加熱電路的一種實施方式 的示意圖;以及 第21圖為第20圖的加熱電路所對應的波形時序圖。 M436948 101年.05月10日修正替換頁 【主要元件符號說明】 [0006] 1開關裝置 2第一DC-DC模組 20續流電路 100開關控制模組 101電壓控制單元 102極性反轉單元 C1第一電荷記憶元件 C2第二電荷記憶元件 D3第一單向半導體元件 D11第二單向半導體元件 D12第三單向半導體元件 D20第五單向半導體元件 D21第四單向半導體元件 E電池 K3第一雙向開關 K4第二雙向開關 K5第三雙向開關 K6第二開關 K7第三開關 K8第五開關 K9第一開關 K20第四開關 L1電流記憶元件 L2第二電流記憶元件 R1第一阻尼元件 10〇22162产單編號 A0101 第27頁/共45頁 1013176587-0 M436948 Κ3Ϊ年.05¾ 10曰梭正_頁 R5第三阻尼元件 R21第二阻尼元件 J1第一單刀雙擲開關 J2第二單刀雙擲開關 10022162^4^^ Α〇101 第28頁/共45頁 1013176587-010022162#单号AG1Q1 ^ 21 I / a 45 I M4J6948 : 〇ϊ :: 03⁄4 ίο 日 正 莨 单向 单向 单向 单向 单向 单向 单向 构成 构成 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第三 第三 第三 第三 第三 第三 第三 第三 第三 第三 第三 第三 第三 第三 第三 第三The element D12 and the third switch K7 are connected in series to form a second one-way branch of the switching device 1, and the switching device is connected in series with the first damping element, the first charge storage element C1 and the first current memory element L1, the first one-way The semiconductor element D3, the second current memory element L2, and the first switch K9 constitute a polarity inversion unit 1〇2, and the fourth unidirectional semiconductor element D21, the second damper element R21, and the second charge memory element C21 constitute a freewheeling circuit 2〇 The switch control module 1〇〇 can control the on and off of the second switch K6, the third switch K7, and the first switch K9. Figure 19 is a waveform timing chart corresponding to the heating circuit of Figure 18, wherein V refers to the voltage value of the first charge storage element C1, and I refers to the current value of the current flowing through the switching device 1 '1 L2 refers to the current value of the polarity inversion loop, I refers to the current value on the first charge memory element C1, and I C21 refers to the current value on the second charge memory element C21. The working process of the heating circuit shown in Fig. 18 is as follows: a) The switch control module 1 〇〇 controls the second switches K6, K7 to be turned on, the battery E passes through the second switch K6, the second unidirectional semiconductor component D11, the first The circuit composed of the charge memory element C1 performs forward discharge (as shown in the time period of tl in FIG. 19) and reverses the circuit composed of the third switch K7, the third unidirectional semiconductor element D12, and the first charge memory element ci. Charging (as shown in time t2 in Figure 19); b) Switching control module 1〇〇 controlling the second switch Κ6, K7 off 25 degrees after zero crossing before the second positive half cycle of the current The first current memory element Li is freewheeled through the fourth unidirectional semiconductor element D21 and the second charge memory element C21 as shown in the t3 time period in Fig. 19 (as shown in the t4 period in Fig. 19). 1013176587-0 10022162#早编号第22页/共45页 M4369.48 ΙΟΙ:年.05月10日梭正_^Page C) Switch control module 100 controls the first switch K9 to conduct, the first charge The memory element C1 passes through the first unidirectional semiconductor element D3, the second current memory element L2, and the first Turn off the circuit composed of K9 and achieve the purpose of voltage polarity reversal. After that, the switch control module 1〇〇 controls the first switch K9 to be turned off (such as the t5 time period in Figure I9); d) Repeat steps a) to c) 'Battery E is continuously heated by charge and discharge until the battery reaches the stop heating condition. It should be noted that the freewheeling circuit 20 in FIG. 18 also has a current flowing during the period of t1 and t2, for the purpose of clearly illustrating the role of the freewheeling circuit 2 in the heating circuit, FIG. Only the current condition of the freewheeling circuit 2 for the time period in which its specific action is shown is shown, and the current condition of the freewheeling circuit 2 for the time periods t1 and t2 is not shown to avoid confusion. In the heating circuit of the battery E as shown in Fig. 20, a switching device 1 is constructed using a first bidirectional switch K3, the tank circuit including a first current memory element L1 and a first charge memory element ci 'first damping element ri And the switching device 1 is connected in series with the energy storage circuit, the first unidirectional semiconductor component 拗, the second current memory component L2 and the first switch K9 constitute a polarity reversal unit 102, and the switch control module 100 can control the first switch K9 and The first bidirectional switch K3 is turned on and off. Figure 21 is a waveform timing diagram corresponding to the heating circuit of Figure 20, wherein v Ci refers to the voltage value of the first charge storage element C1 'I main refers to the current flowing through the current of the first bidirectional switch K3 Value, I refers to the current value of the polarity reversal circuit. The operation of the heating circuit shown in Figure 2 is as follows: 1013176587-0 a) The switch control module 1〇〇 controls the first bidirectional switch K3 to conduct, energy storage The circuit starts to work. As shown in the ti time period shown in Fig. 21, the battery ε passes through the loop composed of the first bidirectional switch K3 and the first charge memory element C1. The forward direction is 10022162# single number A0101 page 23 / total 45 pages M436948 wide _: (4) Year 0Μ 10th makeup page discharge and reverse charging (as shown in the time period of tl in Figure 21); b) The switch control module 100 passes the current flowing through the first bidirectional switch K3 through the negative half cycle The first bidirectional switch K3 is turned off when the peak value is zero (ie, when the reverse current is zero); c) the switch control module 100 controls the first switch K9 to be turned on, the polarity inversion unit 102 operates, and the first charge memory element C1 Passing the first unidirectional semiconductor element D3, the second current The loop discharge composed of the memory element L2 and the first switch K9 is for the purpose of reversing the voltage polarity. Thereafter, the switch control module 丨(10) controls the first switch K9 to be turned off (as shown in the time t2 in FIG. 21); d) Repeat steps a) to c), and battery E is continuously heated by charge and discharge until battery E reaches the stop heating condition. In the heating circuit shown in FIG. 20, since the first bidirectional switch is turned off when the current flowing through the first bidirectional switch K3 passes through the negative half cycle peak value and becomes zero (that is, when the reverse current is zero), The freewheeling circuit 2〇 does not function as a freewheeling current, so the freewheeling circuit 2〇0 is shown in the 21st drawing. The heating device provided by the present invention can improve the charging and discharging performance of the battery, and in the heating circuit, the chick The circuit is connected in series with the battery. When the battery is heated, due to the existence of the series of charge memory elements, the safety problem caused by the failure of the device can be avoided, and the battery can be effectively protected. In addition, in the heating circuit of the present invention, the battery is The flow of current can be maintained by continuously grasping the circuit, avoiding the current in the current memory element being abruptly changed by the switching device, thereby inducing a large voltage, and thereby avoiding an excessive induced voltage generated by the current memory element of the circuit t. The pure switching device makes the heating circuit more secure and has less impact on the entire circuit. 1〇〇22162Bill No. A0101 Page 24/45 pages 1013176587-0 M4369.48 101.05.10 Revision of the replacement page at the same time 'The heating circuit of this creation also provides an energy superimposing unit when the switch is off After the break, the energy superimposing unit can superimpose the energy in the circuit and the energy in the battery, and increase the discharge current in the heating circuit when the next control device is turned on, thereby improving the working efficiency of the heating circuit. The above detailed description describes the preferred embodiment of the present invention in detail, but the present invention does not have the specific details of the above-described embodiment, and within the scope of the technical idea of the present creation, various simple variants of the technical solution of the present creation can be made. Variants are covered by this creation. In addition, it should be said that _ is, in the specific technical description described in the above specific age-type towel, in the case of no contradiction, can be combined by any suitable means, in order to avoid the duplication of the move, this creation two possible The combination method will not be described separately. In addition, any combination of different implementations of the present invention may be made in any combination, and as long as it does not violate the idea of the creation, it should also be regarded as the content disclosed in the creation. BRIEF DESCRIPTION OF THE DRAWINGS [0005] The accompanying drawings are provided to provide a further understanding of the present invention, and the present invention is used to explain the present invention, but does not constitute a The limits of creation. In the drawings: Fig. 1 is a view showing a heating circuit of a battery provided by the present invention. Fig. 2 is a view showing an embodiment of the switching device in Fig. 1 and Fig. 3 is a switch in Fig. 1. FIG. 5 is a view showing an embodiment of the switch device in FIG. 1 and FIG. 4 is a view showing an embodiment of the switch device in FIG. Fig. 6 is a view of the switch device of Fig. 1 in the form of a real ~' figure, 10022162, single number A 〇 m page 25 / a total of 45 pages; ^13176587-0 Fig. 7 is the continuation of the Iffl Schematic diagram of an embodiment of a flow circuit; FIG. 8 is a schematic diagram of a freewheeling current in FIG. 1 and FIG. 9 is a schematic diagram of an embodiment of an energy superimposing unit in the first embodiment. 10 is a schematic diagram of an embodiment of a polarity inversion unit in FIG. 9 [SI · diagram, FIG. 11 is a schematic diagram of an embodiment of a polarity inversion unit in FIG. 9 , and FIG. 12 is a diagram 9 in the figure · Sexual reversal single (four) - a schematic circle of the embodiment, and Fig. 13 is a type of the first - χΗχ χΗχ group in the 12th figure BRIEF DESCRIPTION OF THE DRAWINGS FIG. 14 is a schematic view showing a preferred embodiment of a heating circuit for a battery for creating and supplying; FIG. 15 is a schematic view showing an embodiment of a Wei #consuming unit in FIG. 14; FIG. 17 is a schematic diagram of a waveform corresponding to the heating circuit of FIG. 16; FIG. 18 is a waveform diagram of the heating circuit of the battery provided by the present invention. FIG. 19 is a waveform timing diagram corresponding to the heating circuit of FIG. 18; FIG. 20 is a schematic diagram of an embodiment of a heating circuit of the battery provided by the present invention; and FIG. 21 is a 20th diagram The waveform timing diagram corresponding to the heating circuit. M436948 101.05.10.10 Revision replacement page [Main component symbol description] [0006] 1 switching device 2 first DC-DC module 20 freewheeling circuit 100 switching control module 101 voltage control unit 102 polarity inversion unit C1 First charge memory element C2 second charge memory element D3 first unidirectional semiconductor element D11 second unidirectional semiconductor element D12 third unidirectional semiconductor element D20 fifth unidirectional semiconductor element D21 fourth unidirectional semiconductor element E battery K3 A bidirectional switch K4 a second bidirectional switch K5 a third bidirectional switch K6 a second switch K7 a third switch K8 a fifth switch K9 a first switch K20 a fourth switch L1 current memory element L2 a second current memory element R1 a first damping element 10 〇 22162 Production Order No. A0101 Page 27 / Total 45 Page 1013176587-0 M436948 Κ3Ϊ年.053⁄4 10曰 Shuttle 正_Page R5 Third Damping Element R21 Second Damping Element J1 First Single-Pole Double-Throw Switch J2 Second Single-Pole Double-Throw Switch 10022162^4^^ Α〇101 Page 28 of 45 Page 1013176587-0