TW201232995A - Battery heating circuit - Google Patents

Battery heating circuit Download PDF

Info

Publication number
TW201232995A
TW201232995A TW100143128A TW100143128A TW201232995A TW 201232995 A TW201232995 A TW 201232995A TW 100143128 A TW100143128 A TW 100143128A TW 100143128 A TW100143128 A TW 100143128A TW 201232995 A TW201232995 A TW 201232995A
Authority
TW
Taiwan
Prior art keywords
energy
switch
circuit
charge storage
storage element
Prior art date
Application number
TW100143128A
Other languages
Chinese (zh)
Other versions
TWI464999B (en
Inventor
Wen-Jin Xia
wen-hui Xu
Yao-Chuan Han
Wei Feng
Qin-Yao Yang
shi-bin Ma
Original Assignee
Byd Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201010605772XA external-priority patent/CN102088116B/en
Application filed by Byd Co Ltd filed Critical Byd Co Ltd
Publication of TW201232995A publication Critical patent/TW201232995A/en
Application granted granted Critical
Publication of TWI464999B publication Critical patent/TWI464999B/en

Links

Classifications

    • Y02T10/7005
    • Y02T90/127

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A battery heating circuit provided in the invention comprises: a switchgear, a switch control module, a first damping element and an energy storage circuit. The energy storage circuit for connecting with the battery comprises a first current storage element and a first charge storage element. The first damping element, the switchgear, the first current storage element and the first charge storage element are connected in series. The switch control module is connected with the switchgear for controlling the switchgear to switch on and off so as to control energy to only flow from the battery to the energy storage circuit. The heating circuit provided in the disclosure can improve charge-discharge performance of the battery and improve security when heating the battery.

Description

201232995 六、發明說明: 【發明所屬之技術領域】 [0001]本發明屬於電子設備技術領域’尤其涉及一種電池的加 熱電路。 【先前技術】 [_考制汽車需要在複雜的路·環境條件下行驶,或者 〇 ◎ _ 有些電子設備需要在較差的環境條件中使用的情況,所 以’作為電動車或電子設備電_電域需要適應這些 複雜的狀[而且除了需要考慮這些狀況,還需考慮電 池的使用壽命及電池的充放電迴圈性能,尤其是當電動 車或電子設備處於低溫環境巾時,更㈣具有優異 的低溫充放電性能和較高的輸入輪出功率性能。 一般而言’如果在低溫條件下對電池充電,將會導致電 池的阻抗增大’極化增強,從而導致電池的容量下降, 最終導致電池壽命的降低。 【發明内容】 本發明的目的是針對電池純溫條件下會導致電池的阻 ,增大’極化增強’由此導致電池的容量下降的問題, 提供-種電池的加熱電路。為了保持電池在低溫條件下 的容量,提高電池的充放電性能,本發明提供了—種電 池的加熱電路。 本發明提供的電池的加熱電路包括開關裝置、開關控制 模組、阻尼元件以及儲能電路,所述儲能電路用於與所 述電池連接,所述雜電路包括電流記憶元件和電荷記 憶元件’所述阻尼元件、開關裝置、電流記憶元件和電 第3頁/共41頁 10014312# 單峨 A0101 1013105332-0 201232995 荷記憶元件串聯,所述開關控制模組與開關裝置連接, 用於控制開關裝置導通和關斷,以控制能量僅從電池流 向儲能電路。 本發明提供的加熱電路能夠提高電池的充放電性能,並 且在該加熱電路中,儲能電路與電池串聯,當給電池加 熱時,由於串聯的電荷記憶元件的存在,能夠避免開關 裝置失效短路引起的安全性問題,能夠有效地保護電池 。同時,由於本發明的加熱電路中,能量僅從電i也流向 儲能電路,避免了電荷記憶元件給處於低溫情況下的電 池充電,能夠更好地保證電池的充放電性能。 本發明的其他特徵和優點將在隨後的具體實施方式部分 予以詳細說明。 【實施方式】 [0004] 以下結合附圖對本發明的具體實施方式進行詳細說明。 應當理解的是,此處所描述的具體實施方式僅用於說明 和解釋本發明,並不用於限制本發明。 需要指出的是,除非特別說明,當下文中提及時,術語 “開關控制模組”為任意能夠根據設定的條件或者設定 的時刻輸出相應的控制指令(例如具有相應占空比的脈 衝波形)從而控制與其連接的開關裝置相應地導通或關 斷的控制器,例如可以為PLC (可編程控制器)等;當下 文中提及時,術語“開關”指的是可以通過電信號實現 通斷控制或者根據元器件自身的特性實現通斷控制的開 關,既可以是單向開關,例如由雙向開關與二極體串聯 構成的可單嚮導通的開關等,也可以是雙向開關,例如 金屬氧化物半導體型場效應管(Metal Oxide H)01431#單編號 A_ 第4頁/共41頁 1013105332-0 201232995201232995 VI. Description of the Invention: [Technical Field] The present invention relates to the field of electronic device technology, and particularly relates to a heating circuit for a battery. [Prior Art] [_The test car needs to be driven under complicated roads and environmental conditions, or 〇 ◎ _ Some electronic devices need to be used in poor environmental conditions, so 'as electric vehicles or electronic devices Need to adapt to these complex shapes [and in addition to the need to consider these conditions, you also need to consider the battery life and battery charge and discharge loop performance, especially when the electric vehicle or electronic equipment is in the low temperature environment towel, and (4) has excellent low temperature Charge and discharge performance and high input wheel power performance. In general, if the battery is charged under low temperature conditions, the impedance of the battery will increase, and the polarization will increase, resulting in a decrease in the capacity of the battery, eventually resulting in a decrease in battery life. SUMMARY OF THE INVENTION An object of the present invention is to provide a heating circuit for a battery in which the battery is caused to have a resistance to a battery and an increase in 'polarization enhancement', thereby causing a decrease in the capacity of the battery. In order to maintain the capacity of the battery under low temperature conditions and to improve the charge and discharge performance of the battery, the present invention provides a heating circuit for a battery. The heating circuit of the battery provided by the present invention comprises a switching device, a switch control module, a damping element and an energy storage circuit, wherein the energy storage circuit is connected to the battery, and the circuit includes a current memory element and a charge memory element. The damping element, the switching device, the current memory element and the electricity page 3/41 pages 10014312# single A0101 1013105332-0 201232995 the load memory element is connected in series, and the switch control module is connected with the switching device for controlling the switching device Turns on and off to control energy flow from the battery only to the tank circuit. The heating circuit provided by the invention can improve the charge and discharge performance of the battery, and in the heating circuit, the energy storage circuit is connected in series with the battery, and when the battery is heated, due to the existence of the series of charge memory elements, the failure of the switching device can be avoided. The safety issue can effectively protect the battery. At the same time, in the heating circuit of the present invention, energy flows from the electricity i to the energy storage circuit only, and the charge memory element is prevented from charging the battery in a low temperature condition, so that the charge and discharge performance of the battery can be better ensured. Other features and advantages of the invention will be described in detail in the detailed description which follows. [Embodiment] Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings. It is to be understood that the specific embodiments described herein are intended to be illustrative and not restrictive. It should be noted that, unless otherwise specified, the term "switch control module" is used to control the output of a corresponding control command (for example, a pulse waveform having a corresponding duty ratio) according to a set condition or a set time. A controller that is turned on or off correspondingly to a switching device connected thereto, for example, may be a PLC (Programmable Controller) or the like; when referred to hereinafter, the term "switch" refers to an on-off control that can be realized by an electrical signal or according to a The switch of the device itself can realize the on-off control, which can be a one-way switch, such as a one-way switch composed of a bidirectional switch and a diode in series, or a bidirectional switch, such as a metal oxide semiconductor field. Effect tube (Metal Oxide H) 01431#单号A_ Page 4/Total 41 Page 1013105332-0 201232995

Serai conductor Field Effect Transistor, MOSFET)或帶有反並續流二極體的IGBT (Insulated Gate Bipolar Transistor,絕緣栅雙極型電晶體)等 :當下文中提及時,術語“雙向開關”指的是可以通過 電信號實現通斷控制或者根據元器件自身的特性實現通 斷控制的可雙嚮導通的開關,例如MOSFET或帶有反並續 流二極體的IGBT等;當下文中提及時,單向半導體元件 指的是具有單嚮導通功能的半導體元件,例如二極體等 ;當下文中提及時,術語“電荷記憶元件”指任意可以 實現電荷存儲的裝置,例如電容等;當下文中提及時, 術語“電流記憶元件”指任意可以對電流進行存儲的裝 置,例如電感等;當下文中提及時,術語“正向”指能 量從電池向儲能電路流動的方向,術語“反向”指能量 從儲能電路向電池流動的方向;當下文中提及時,術語 “電池”包括一次電池(例如乾電池、鹼性電池等)和 二次電池(例如鋰離子電池、鎳鎘電池、鎳氫電池或鉛 酸電池等);當下文中提及時,術語“阻尼元件”指任 意通過對電流的流動起阻礙作用以實現能量消耗的裝置 ,例如電阻等;當下文中提及時,術語“主回路”指的 是電池與阻尼元件、開關裝置以及儲能電路串聯組成的 回路。 這裏還需要特別說明的是,考慮到不同類型的電池的不 同特性,在本發明中,“電池”可以指不包含内部寄生 電阻和寄生電感、或者内部寄生電阻的阻值和寄生電感 的電感值較小的理想電池,也可以指包含有内部寄生電 阻和寄生電感的電池包。因此,本領域技術人員應當理 1()()14312#單編號A0101 第5頁/共41頁 1013105332-0 201232995 解的是,當“電池”為不包含内部寄生電阻和寄生電感 、或者内部寄生電阻的阻值和寄生電感電感值較小的理 想電池時,第一阻尼元件R1指的是電池外接的阻尼元件 ,第一電流記憶元件L1指的是電池外接的電流記憶元件 ;當“電池”為包含有内部寄生電阻和寄生電感的電池 包時,第一阻尼元件R1既可以指電池外部的阻尼元件, 也可以指電池包内部的寄生電阻,同樣地,第一電流記 憶元件L1既可以指電池外部的電流記憶元件,也可以指 電池包内部的寄生電感。 在本發明的實施例中,為了保證電池的使用壽命,需要 在低溫情況下對電池進行加熱,當達到加熱條件時,控 制加熱電路開始工作,對電池進行加熱,當達到停止加 熱條件時,控制加熱電路停止工作。 在電池的實際應用中,隨著環境的改變,可以根據實際 的環境情況對電池的加熱條件和停止加熱條件進行設置 ,以對電池的溫度進行更精確的控制,從而保證電池的 充放電性能。 為了對處於低溫環境中的電池E進行加熱,本發明提供了 一種電池E的加熱電路,如第1圖所示,該加熱電路包括 開關裝置1、開關控制模組100、第一阻尼元件R1以及儲 能電路,所述儲能電路用於與所述電池E連接,所述儲能 電路包括第一電流記億元件L1和第一電荷記憶元件C1, 所述第一阻尼元件R1、開關裝置1、第一電流記憶元件L1 和第一電荷記憶元件C1串聯,所述開關控制模組100與開 關裝置1連接,用於控制開關裝置1導通後再關斷時,以 控制能量僅從電池E流向儲能電路。需要說明的是,上述 10014312#單編號 A_ 第6頁/共41頁 1013105332-0 201232995 儲能電路僅為本發明的優選實施方式,該儲能電路只要 能滿足能量的存儲即可,從而與電池E之間進行能量流動 。因此本領域技術人員可基於此思想對上述儲能電路進 行等同的修改或變化以達到儲能的效果,這些均應包含 在本發明的保護之内。Serai conductor Field Effect Transistor (MOSFET) or IGBT (Insulated Gate Bipolar Transistor) with reversed-current diodes: when referred to below, the term "bidirectional switch" refers to A bidirectionally conductive switch that achieves on-off control by means of an electrical signal or an on-off control according to the characteristics of the component itself, such as a MOSFET or an IGBT with an anti-freewheeling diode; etc.; when mentioned below, a unidirectional semiconductor The component refers to a semiconductor component having a unidirectional conduction function, such as a diode or the like; when referred to hereinafter, the term "charge memory component" refers to any device that can implement charge storage, such as a capacitor or the like; when referred to hereinafter, the term " "Current memory element" means any device that can store current, such as an inductor, etc.; as mentioned hereinafter, the term "forward" refers to the direction in which energy flows from the battery to the tank circuit, and the term "reverse" refers to energy from energy storage. The direction in which the circuit flows toward the battery; as mentioned below, the term "battery" includes a primary battery (eg dry electricity) , alkaline batteries, etc.) and secondary batteries (such as lithium-ion batteries, nickel-cadmium batteries, nickel-hydrogen batteries or lead-acid batteries, etc.); when referred to below, the term "damping element" means any hindrance to the flow of current A device for achieving energy consumption, such as a resistor or the like; when referred to hereinafter, the term "main circuit" refers to a circuit in which a battery is connected in series with a damper element, a switching device, and an energy storage circuit. It should also be noted here that, in consideration of the different characteristics of different types of batteries, in the present invention, "battery" may refer to an inductance value that does not include internal parasitic resistance and parasitic inductance, or internal parasitic resistance and parasitic inductance. A smaller ideal battery can also be a battery pack that contains internal parasitic resistance and parasitic inductance. Therefore, those skilled in the art should understand that 1()()14312#single number A0101 page 5/total 41 page 1013105332-0 201232995 is solved when "battery" does not contain internal parasitic resistance and parasitic inductance, or internal parasitic When the resistance of the resistor and the parasitic inductance are small, the first damping element R1 refers to the externally connected damping element, and the first current memory element L1 refers to the current-connected current memory element; when the "battery" In the case of a battery pack including internal parasitic resistance and parasitic inductance, the first damper element R1 may refer to both a damper element outside the battery and a parasitic resistance inside the battery pack. Similarly, the first current memory element L1 may refer to The current memory component outside the battery can also refer to the parasitic inductance inside the battery pack. In the embodiment of the present invention, in order to ensure the service life of the battery, the battery needs to be heated at a low temperature. When the heating condition is reached, the heating circuit is controlled to start working, and the battery is heated, and when the heating condition is stopped, the control is performed. The heating circuit stops working. In the practical application of the battery, as the environment changes, the heating condition of the battery and the stop heating condition can be set according to the actual environmental conditions to more accurately control the temperature of the battery, thereby ensuring the charge and discharge performance of the battery. In order to heat the battery E in a low temperature environment, the present invention provides a heating circuit for the battery E. As shown in FIG. 1, the heating circuit includes a switching device 1, a switch control module 100, a first damping element R1, and a storage circuit for connecting to the battery E, the energy storage circuit comprising a first current component L1 and a first charge memory component C1, the first damping component R1, the switching device 1 The first current memory element L1 and the first charge memory element C1 are connected in series, and the switch control module 100 is connected to the switch device 1 for controlling the switch device 1 to be turned on and then turned off to control the energy flow only from the battery E. Energy storage circuit. It should be noted that the above-mentioned 10014312#single number A_6th page/total 41 page 1013105332-0 201232995 is only a preferred embodiment of the present invention, and the energy storage circuit can satisfy the storage of energy, thereby Energy flow between E. Therefore, those skilled in the art can make equivalent modifications or changes to the above-mentioned energy storage circuit based on this idea to achieve the effect of energy storage, and these should be included in the protection of the present invention.

為了避免對電池E進行充電,根據本發明的技術方案,當 達到加熱條件時,開關控制模組100控制開關裝置1導通 ,電池E與所述第一阻尼元件R1、開關裝置1 '第一電流 記憶元件L1和第一電荷記憶元件C1串聯構成回路,電池E 〇 通過該回路放電,所述開關控制模組1 〇〇用於在電池e的 放電過程中當開關裝置1導通後流經開關裝置1的電流為 零時或為零前控制開關裝置1關斷,只要保證電流僅從電 池E流向第一電荷記憶元件C1即可。在電池E的放電過程 中,回路中的電流正向流過第一阻尼元件R1 ’通過第一 阻尼元件R1的發熱可以達到給電池E加熱的目的。上述放 電過程迴圈進行,直到達到停止加熱條件,開關控制模 組1〇〇控制開關裝置1關斷,加熱電路停止工作。 〇 根據本發明的一種實施方式,如第2圖所示,所述開關裝 置1包括第三開關K1和第二單向半導體元件D1,所述第三 開關K1和第二單向半導體元件D1彼此串聯之後串聯在所 述儲能電路中,所述開關控制模組100與第三開關Π連接 ,用於通過控制第三開關K1的導通和關斷來控制開關裝 置1導通和關斷。通過串聯第二單向半導體元件1)1,在第 三開關κι失效的情況下,可以阻止第一電荷記憶元件C1 中的能量回流,避免對電池E充電。 由於第三開關K1關斷時導致的電流下降速率較高會在第 1013105332-0 翠编號删1 第7頁/共41頁 201232995 一電流記憶元件L1上感應出較高的過電壓,容易導致第 三開關K1關斷時由於其電流 '電壓超出安全工作區而損 壞,因此,優選情況下,所述開關控制模組1〇〇用於在流 經開關裝置1的電流為零時控制第三開關κ丨關斷。 為了提高加熱效率,優選情況下,根據本發明的另一種 實施方式,如第3圖所示,所述開關控制模組1〇〇用於在 開關裝置1導通後流經開關裝置丨的電流為零前控制開關 裝置1關斷,所述開關裝置1包括第三單向半導體元件D9 '第四單向半導體元件D1〇、第四開關Κ2、第三阻尼元件 R4以及第三電荷記憶元件C3,所述第三單向半導體元件 D9與第四開關Κ2順次串聯在所述健能電路中,所述第三 阻尼元件R4與第三電荷記憶元件C3串聯之後並聯在所述 第四開關K2的兩端,所述第四單向半導體元件D1〇並聯在 第三阻尼元件R4兩端,用於在第四開關Κ2關斷時對第一 電流s己憶元件L1進行續流,所述開關控制模組1 〇 〇與所述 第四開關Κ2連接,用於通過控制第四開關Κ2的導通和關 斷來控制開關裝置1導通和關斷。 所述第四單向半導體元件Dl〇、第三阻尼元件^以及第三 電荷δ己憶元件C3組成了吸收回路,用於在第四開關Κ2關 斷時降低儲能電路中電流的下降速率。由此,當第四開 關Κ2關斷時,第一電流記憶元件L1上產生的感應電壓會 迫使第四單向半導體元件D10導通並通過第三電荷記憶元 件C 3實現續流,使得第一電流記憶元件^ 1中電流變化速 率降低,限制了第一電流記憶元件L1兩端的感應電壓, 可以保證第四開關K2兩端的電壓在安全工作區内。當第 四開關K2再次閉合時,存儲在第三電荷記憶元件C3上的 1013105332-0 1001431#單減删1 第8頁/共41頁 蕙可以通過第二阻尼元件以進行消耗。 =了提高加熱電路的I作效率,根據本發明的一種優選 ^式,如第4圖所示’本發明提供的加熱電路可以包 也ΐ疊加單元,該能量疊加單元與所述儲能電路連接 與用於在開關裝置i導通再_後,將儲能電路中的能量 與電池E中的能量進行疊加。所述能量叠加單元使得在開 裝置1再次導通時,能夠提高加熱回路中的放電電流, 由此提高加熱電路的工作效率。 艮據本發明的一種實施方式,如第5圖所示,所述能量疊 如單元包括極性反轉單元1〇2,該極性反轉單元1〇2與所 逑儲能電路連接,用於在開關裝置1導通再關斷後,對第 電荷記憶元件C1的電壓極性進行反轉,極性反轉後的 第〜電荷記憶元件C1的電壓能夠與電池E的電壓串聯相加 作為極性反轉單元102的一種實施方式,如第6圖所示, 所述極性反轉單元102包括第一單刀雙擲開關J1和第二單 刀雙擲開關J2,所述第一單刀雙擲開關J1和第二單刀雙 擲開關J2分別位於所述第一電荷記憶元件C1兩端’所述 第一單刀雙擲開關J1的入線連接在所述儲能電路中’所 述第一單刀雙擲開關J1的第一出線連接所述第一電椅§己 憶元件C1的第一極板,所述第一單刀雙擲開關J1的第二 出線連接所述第一電荷記憶元件C1的第二極板,所述第 二單刀雙擲開關J2的入線連接在所述儲能電路中,所述 第二單刀雙擲開關J2的第-出線連接所述第-電椅記憶 元件C1的第二極板,所述第二單刀雙擲_12的第二出 線連接在所述第一電荷記憶元件⑽第一極板,所述開 第 9 買 / 共 41 頁 1013105332-0 201232995 關控制模组100還與所述第一單刀雙擲開關Η和第二單刀 雙擲開關J2分別連接,用於通過改變所述第一單刀雙擲 開關和第二單刀雙擲開關J2各自的入線和出線的連接 關係來對所述第-電荷記憶元件〇1的電壓純進行反轉 〇 根據該實施方式,可以預先對第一單刀雙擲開關η和第 二單刀雙擲開關J2各自的入線和出線的連接關係進行設 置,使得當間闕裝置Κ1導通時,所述第一單刀雙擲開關 J1的入線與其第一出線連接,而所述第二單刀雙擲開關 J2的入線與其第一出線連接,當開關裝置^關斷時通 過開關控制模組1 〇 〇控制第一單刀雙擲開關;〗的入線切換 到與其第二出線連接,而所述第二單刀雙擲開關J2的入 線切換到與其第二出線連接,由此第一電荷記憶元件Cl 達到電壓極性反轉的目的。 作為極性反轉單元1〇2的另一種實施方式,如第7圖所示 ,所述極性反轉單元102包括第一單向半導體元件D3、第 二電流記憶元件L2以及第一開關K9,所述第一電荷記憶 元件ci、第二電流記憶元件L2和第—開關K9順次串聯形 成回路,所述第一單向半導體元件D3和串聯在所述第一 電荷記憶元件C1與第二電流記憶元件L2或所述第二電流 s己憶兀件L2與第一開關Κ9之間,所述開關控制模組1〇〇還 與所述第一開關Κ 9連接,用於通過控制第一開關κ 9導通 來對所述第一電荷記憶元件C1的電壓極性進行反轉。 根據上述實施方式’當開關裝置1關斷時,可以通過開關 控制模組100控制第一開關Κ9導通,由此,第—電荷記憶 元件C1與第一單向半導體元件]>3 '第二電流記憶元件L2 10014312产單編號A0101 第10頁/共4!頁 1013105332-0 201232995 以及第一開關Κ9形成LC振盪回路,第一電荷記憶元件Cl 通過第二電流記憶元件L2放電,振盪回路上的電流流經 正半週期後,流經第二電流記憶元件L2的電流為零時達 到第—電荷記憶元件C1電壓極性反轉的目的。 作為極性反轉單元102的又一種實施方式,如第8圖所示 ’所述極性反轉單元1〇2包括第一DC-DC模組2和第二電 荷記憶元件C2,該第一DC-DC模組2與所述第一電荷記憶 凡件C1和第二電荷記憶元件(;2分別連接,所述開關控制 模級1〇〇還與所述第一DC_DC模組2連接,用於通過控制 第—DC-DC模組2工作來將所述第一電荷記憶元件C1中的 能量轉移至所述第二電荷記愫元件C2,再將所述第二電 荷記憶元件C2中的能量反向轉移回所述第一電荷記憶元 件C1,以實現對所述第一電荷記憶元件c 1的電壓極性的 反轉。 Ο 10014312^ 編號 所述第一 DC-DC模組2是本領域中常用的用於實現電壓極 性反轉的直流變直流轉換電路,本發明不對第一DC-DC模 組2的具體電路結構作任何限制,只要能夠實現對第一電 荷記憶元件C1的電壓極性反轉即可,本領域技術人員可 以根據實際操作的需要對其電路中的元件進行增加、替 換或刪減。 第9圖為本發明提供的第一DC-DC模組2的一種實施方式, 如第9圖所示,所述第一DC-DC模組2包括:雙向開關Q1 、雙向開關Q2、雙向開關q3、雙向開關Q4、第一變壓器 T1、單向半導體元件D4、單向半導體元件D5、電流記憶 元件L3、雙向開關Q5、雙向開關Q6、第二變壓器T2、單 向半導體元件D6、單向半導體元件d7、以及單向半導體 A〇101 第 11 頁 / 共 41 頁 1013105332-0 201232995 元件D8。 實施方式中’雙向開關Q1、雙向開關Q2、雙向開關 Q矛雙向開關Q4%為m〇sFET,雙向開關Q5和雙向開關Q6 為 IGBT。 、所述第變壓器T1的1腳、4腳、5腳為同名端,第 -變壓器T2的2腳與3腳為同名端。 其中’單向半導體元件D7的陽極與電容C1的a端連接,單 向半導體兀件D7的陰極與雙向開關Q1和雙向開關Q2的漏 極連接’雙向開_丨的源極與雙向關Q3的漏極連接, 雙向開哪的馳與雙向開㈣賴極連接,雙向開關 Q3、雙向開_4的源極與電容Π的b端連接,由此構成全 橋電路’此時電容C1的電壓極性為a端為正,b端為負》 在該全橋電路中,雙向開關Q1、雙向開關Q2為上橋臂, 雙向開關Q3、雙向開關以為下橋臂,該全橋電路通過第 -變壓器τι與所述第二電荷記憶元件C2相連;第一變壓 器丁1的1腳與第—節點N1連接、2腳與第二節點N2連接, 3腳和5腳分別連接至單向半導體元件D4和單向半導體元 件D5的陽極;單向半導體元件Μ和單向半導體元件卯的 陰極與電流記憶元件L3的一端連接,電流記憶元件L3的 另一端與第二電荷記憶元件C2的d端連接;變壓器”的斗 腳與第二電荷記憶元件C2的c端連接,單向半導體元件D8 的陽極與第二電荷記憶元件C2的d端連接,單向半導體元 件D8的陰極與第一電荷記憶元件C1的b端連接,此時第二 電何記憶元件C2的電壓極性為c端為負,d端為正。 其中’第二電荷記憶元件C2的c端連接雙向開關Q5的發射 1013105332-0 極’雙向開關Q5的集電極與變壓器T2的2腳連接,變壓器 1〇_1#單编號腿G1 ^ 12 I / * 41 1 201232995 Τ2的1腳與第一電荷記憶元件(:1的3端連接,變壓器72的 4腳與第一電荷記憶元件(^的&端連接,變壓器Τ2&3腳連 接單向半導體元件D6的陽極,單向半導體元件D6的陰極 與雙向開關Q6的集電極連接,雙向開關q6的發射極與第 一電荷記憶元件C2的b端連接。 其中,雙向開關Q1、雙向開關Q2、雙向開關Q3、雙向開 關Q4、雙向開關Q5和雙向開關Q6分別通過所述開關控制 模組10 0的控制來實現導通和關斷。 下面對所述第一DC-DC模組2的工作過程進行描述: 1、 在開關裝置1關斷後,所述開關控制模組1 〇〇控制雙向 開關Q5、雙向開關Q6關斷,控制雙向開關Q1和雙向開關 Q4同時導通以構成a相’控制雙向開關Q2、雙向開關Q3同 時導通以構成B相’通過控制所述A相、B相交替導通以構 成全橋電路進行工作; 2、 當所述全橋電路工作時,第一電荷記憶元件ci上的能 量通過第一變壓器T1、單向半導體元件D4、單向半導體 q 元件D5、以及電流記憶元件L3轉移到第二電荷記憶元件 C2上’此時第二電荷記憶元件C2的電壓極性為c端為負, d端為正。 3、所述開關控制模組1〇〇控制雙向開關Q5導通,第一電 荷記憶元件C1通過第二變壓器T2和單向半導體元件D8與 第二電荷記憶元件C2構成通路’由此,第二電荷記憶元 件C2上的能量向第一電荷記憶元件C1反向轉移,其中, 部分能量將儲存在第二變壓器T2上;此時,所述開關控 制模組100控制雙向開關Q5關斷、雙向開關Q6閉合,通過 第二變壓器T2和單向半導體元件D6將儲存在第二變壓器 1013105332-0 10014312#單編號A0101 第13頁/共41頁 201232995 T2上的能量轉移至第一電荷記憶元件Cl,以實現對第一 電荷記憶元件C1進行反向充電,此時第一電荷記憶元件 C1的電壓極性反轉為a端為負,b端為正,由此達到了將 第一電荷記憶元件C1的電壓極性反向的目的。 為了對儲能電路中的能量進行回收利用,根據本發明的 一種優選實施方式,如第10圖所示,本發明提供的加熱 電路可以包括能量轉移單元,所述能量轉移單元與所述 儲能電路連接,用於在開關裝置1導通再關斷後,將儲能 電路中的能量轉移至儲能元件中。所述能量轉移單元目 的在於對存儲電路中的能量進行回收利用。所述儲能元 件可以是外接電容、低溫電池或者電網以及其他用電設 備。 優選情況下,所述儲能元件是本發明提供的電池E,所述 能量轉移單元包括電量回灌單元103,該電量回灌單元 103與所述儲能電路連接,用於在開關裝置1導通再關斷 後,將儲能電路中的能量轉移至所述電池E中,如第11圖 所示。 根據本發明的技術方案,在開關裝置1導通再關斷後,通 過能量轉移單元將儲能電路中的能量轉移到電池E中,能 夠在開關裝置1再次導通後對被轉移的能量進行迴圈利用 ,提高了加熱電路的工作效率。 作為電量回灌單元103的一種實施方式,如第12圖所示, 所述電量回灌單元103包括第二DC-DC模組3,該第二 DC-DC模組3與所述第一電荷記憶元件C1和所述電池E分 別連接,所述開關控制模組100還與所述第二DC-DC模組 3連接,用於通過控制第二DC-DC模組3工作來將第一電荷 10014312^^^ A0101 第14頁/共41頁 1013105332-0 201232995 記憶元件ci中的能量轉移到所述電池中。 所述第二DC-DC模組3是本領域中常用的用於實現能量轉 移的直流變直流轉換電路,本發明不對第二DC-DC模組3 的具體電路結構作任何限制,只要能夠實現對第一電荷 記憶元件C1的能量進行轉移即可,本領域技術人員可以 根據實際操作的需要對其電路中的元件進行增加、替換 或刪減。 第13圖為本發明提供的第二DC-DC模組3的一種實施方式 ,如第13圖所示,所述第二DC-DC模組3包括:雙向開關 S1、雙向開關S2、雙向開關S3、雙向開關S4、第三變壓 器T3、電流記憶元件L4、以及四個單向半導體元件。在 該實施方式中,所述雙向開關S1、雙向開關S2、雙向開 關S3、雙向開關S4均為M0SFET。 其中,所述第三變壓器T3的1腳和3腳為同名端,所述四 個單向半導體元件中的兩個單向半導體元件負極相接成 組,接點通過電流記憶元件L4與電池E的正端連接,另兩 個單向半導體元件正極相接成組,接點與電池E的負端連 接,且組與組之間的對接點分別與第三變壓器T3的3腳和 4腳連接,由此構成橋式整流電路。 其中,雙向開關S1的源極與雙向開關S3的漏極連接,雙 向開關S2的源極與雙向開關S4的漏極連接,雙向開關S1 、雙向開關S2的漏極與第一電荷記憶元件C1的正端連接 ,雙向開關S3、雙向開關S4的源極與第一電荷記憶元件 C1的負端連接,由此構成全橋電路。 在該全橋電路中,雙向開關S1、雙向開關S2為上橋臂, 雙向開關S3、雙向開關S4為下橋臂,第三變壓器13的1腳 1()()14312#單編號A0101 第15頁/共41頁 1013105332-0 201232995 與雙向開關S1和雙向開關S3之間的節點連接、2腳與雙向 開關S2和雙向開關S4之間的節點連接。 其中,雙向開關S1、雙向開關S2、雙向開關S3和雙向開 關S4分別通過所述開關控制模組100的控制來實現導通和 關斷。 下面對所述第二DC-DC模組3的工作過程進行描述: 1、 在開關裝置1關斷後,所述開關控制模組100控制雙向 開關S1和雙向開關S4同時導通以構成A相,控制雙向開關 S2、雙向開關S3同時導通以構成B相,通過控制所述A相 、B相交替導通以構成全橋電路進行工作; 2、 當所述全橋電路工作時,第一電荷記憶元件C1上的能 量通過第三變壓器T3和整流電路轉移到電池E上,所述整 流電路將輸入的交流電轉化為直流電輸出至電池E,達到 電量回灌的目的。 為了使本發明提供的加熱電路在提高工作效率的同時能 夠對儲能電路中的能量進行回收利用,根據本發明的一 種優選實施方式,如第14圖所示,本發明提供的加熱電 路可以包括能量疊加和轉移單元,該能量疊加和轉移單 元與所述儲能電路連接,用於在開關裝置1導通再關斷後 ,將儲能電路中的能量轉移至儲能元件中,之後將儲能 電路中的剩餘能量與電池中的能量進行疊加。所述能量 疊加和轉移單元既能夠提高加熱電路的工作效率,又能 夠對儲能電路中的能量進行回收利用。 將儲能電路中的剩餘能量與電池中的能量進行疊加可以 通過將第一電荷記憶元件C1的電壓極性進行反轉來實現 ,反轉後的第一電荷記憶元件C1的電壓能夠與電池E的電 10014312# 單編號 A〇101 第16頁/共41頁 1013105332-0 201232995 壓串聯相加。 因此’根據一種實施方式,如第15圖所示,所述能量疊 加和轉移單元包括DC-DC模組4,該DC-DC模組4與所述第 一電荷記憶元件C1和所述電池分別連接,所述開關控制 模組100還與所述DC-DC模組4連接’用於通過控制DC-DC 模組4工作來將所述第一電荷記憶元件C1中的能量轉移至 儲能元件中,之後將所述第一電荷記憶元件clt的剩餘 能量與電池中的能量進行疊加。 Ο 所述DC-DC模組4是本領城中常用的用於實現能量轉移和 電壓極性反轉的直流變直流轉換電路,本發明不對DC_DC 模組4的具體電路結構作任何限制,只要能夠實現對第一 電荷記憶元件C1的能量轉移和電壓極性反轉即可,本領 域技術人員可以根據實際操作的需要對其電路中的元件 進行增加、替換或刪減。 作為DC-DC模組4的一種實施方式,如第15圖所示,該In order to avoid charging the battery E, according to the technical solution of the present invention, when the heating condition is reached, the switch control module 100 controls the switching device 1 to be turned on, the battery E and the first damping element R1, the switching device 1 'the first current The memory element L1 and the first charge memory element C1 are connected in series to form a loop through which the battery E 放电 is discharged. The switch control module 1 〇〇 is used to flow through the switch device after the switch device 1 is turned on during the discharge of the battery e The switching device 1 is turned off when the current of 1 is zero or before zero, as long as the current is only flown from the battery E to the first charge storage element C1. During the discharge of the battery E, the current in the circuit flows forward through the first damper element R1' through the heat of the first damper element R1 to achieve the purpose of heating the battery E. The above discharge process is performed in a loop until the stop heating condition is reached, the switch control module 1 〇〇 controls the switch device 1 to be turned off, and the heating circuit stops operating. According to an embodiment of the present invention, as shown in FIG. 2, the switching device 1 includes a third switch K1 and a second unidirectional semiconductor element D1, and the third switch K1 and the second unidirectional semiconductor element D1 are mutually connected After being connected in series, the energy storage circuit is connected in series, and the switch control module 100 is connected to the third switch , for controlling the switching device 1 to be turned on and off by controlling the turning on and off of the third switch K1. By connecting the second unidirectional semiconductor element 1)1 in series, in the event that the third switch κι fails, the energy in the first charge memory element C1 can be prevented from flowing back, avoiding charging of the battery E. Since the rate of current drop caused by the third switch K1 being turned off is high, a higher overvoltage is induced in a current memory element L1 in the 1013105332-0 翠 删 1 page 7/41 page 201232995, which easily leads to When the third switch K1 is turned off, it is damaged because its current 'voltage exceeds the safe working area. Therefore, preferably, the switch control module 1 is used to control the third when the current flowing through the switching device 1 is zero. The switch κ 丨 is turned off. In order to improve the heating efficiency, preferably, according to another embodiment of the present invention, as shown in FIG. 3, the switch control module 1 is used to flow the current flowing through the switching device after the switching device 1 is turned on. The zero-precision control switching device 1 is turned off, and the switching device 1 includes a third unidirectional semiconductor element D9 'fourth unidirectional semiconductor element D1 〇, a fourth switch Κ2, a third damper element R4, and a third charge memory element C3, The third unidirectional semiconductor element D9 and the fourth switch Κ2 are sequentially connected in series in the fitness circuit, and the third damper element R4 is connected in series with the third charge memory element C3 and then connected in parallel to the second switch K2. The fourth unidirectional semiconductor component D1 〇 is connected in parallel across the third damper component R4 for freewheeling the first current s memory component L1 when the fourth switch 关2 is turned off, the switch control mode The group 1 is connected to the fourth switch Κ2 for controlling the switching device 1 to be turned on and off by controlling the turning on and off of the fourth switch Κ2. The fourth unidirectional semiconductor element D10, the third damper element, and the third charge δ memory element C3 constitute an absorption loop for reducing the rate of current drop in the tank circuit when the fourth switch Κ2 is turned off. Thus, when the fourth switch Κ2 is turned off, the induced voltage generated on the first current memory element L1 forces the fourth unidirectional semiconductor element D10 to be turned on and the freewheeling is realized by the third charge memory element C3, so that the first current The rate of change of the current in the memory element ^1 is reduced, and the induced voltage across the first current memory element L1 is limited, so that the voltage across the fourth switch K2 can be ensured in the safe working area. When the fourth switch K2 is closed again, the 1013105332-0 1001431# single subtraction 1 stored on the third charge storage element C3 can be consumed by the second damper element. In order to improve the efficiency of the heating circuit, according to a preferred embodiment of the present invention, as shown in FIG. 4, the heating circuit provided by the present invention may comprise a stacking unit, and the energy stacking unit is connected to the tank circuit. After being used to turn on the switching device i, the energy in the energy storage circuit is superimposed with the energy in the battery E. The energy superimposing unit makes it possible to increase the discharge current in the heating circuit when the opening device 1 is turned on again, thereby improving the operating efficiency of the heating circuit. According to an embodiment of the present invention, as shown in FIG. 5, the energy stacking unit includes a polarity inversion unit 1〇2, and the polarity inversion unit 1〇2 is connected to the stored energy storage circuit for After the switching device 1 is turned on and then turned off, the voltage polarity of the first charge storage element C1 is inverted, and the voltage of the first charge storage element C1 after polarity inversion can be added in series with the voltage of the battery E as the polarity inversion unit 102. In one embodiment, as shown in FIG. 6, the polarity inversion unit 102 includes a first single pole double throw switch J1 and a second single pole double throw switch J2, the first single pole double throw switch J1 and the second single pole double The throw switch J2 is respectively located at both ends of the first charge memory element C1. The incoming line of the first single pole double throw switch J1 is connected to the first outlet of the first single pole double throw switch J1 in the energy storage circuit. Connecting the first electric board of the first electric chair § the element C1, the second outgoing line of the first single-pole double-throw switch J1 is connected to the second plate of the first charge memory element C1, the second The incoming line of the single pole double throw switch J2 is connected in the energy storage circuit The first outlet of the second single-pole double-throw switch J2 is connected to the second plate of the first-electrical chair memory element C1, and the second outgoing line of the second single-pole double-throwing_12 is connected to the first The first memory board of the charge memory element (10) is connected to the first single pole double throw switch Η and the second single pole double throw switch J2, respectively. For reversing the voltage of the first charge storage element 〇1 by changing the connection relationship between the incoming and outgoing lines of the first single-pole double-throw switch and the second single-pole double-throw switch J2, according to the implementation In a manner, the connection relationship between the incoming line and the outgoing line of the first single-pole double-throw switch η and the second single-pole double-throw switch J2 may be set in advance, so that when the intermediate device Κ1 is turned on, the first single-pole double-throw switch J1 The incoming line is connected to the first outgoing line, and the incoming line of the second single-pole double-throw switch J2 is connected to the first outgoing line, and the first single-pole double-throw switch is controlled by the switch control module 1 when the switching device is turned off; 〗 The line is switched to its second Line, and the second SPDT switch is switched to the line J2 of the second line is connected thereto, whereby the first memory element Cl achieve charge voltage polarity reversal. As another embodiment of the polarity inversion unit 1〇2, as shown in FIG. 7, the polarity inversion unit 102 includes a first unidirectional semiconductor element D3, a second current memory element L2, and a first switch K9. The first charge storage element ci, the second current memory element L2 and the first switch K9 are sequentially connected in series to form a loop, the first unidirectional semiconductor element D3 and the first charge storage element C1 and the second current memory element being connected in series L2 or the second current s is between the first switch L9 and the first switch Κ9, and the switch control module 1 is further connected to the first switch Κ9 for controlling the first switch κ 9 Turning on to invert the voltage polarity of the first charge storage element C1. According to the above embodiment, when the switching device 1 is turned off, the first switch Κ9 can be controlled to be turned on by the switch control module 100, whereby the first charge storage element C1 and the first unidirectional semiconductor element]>3' second Current memory element L2 10014312 production order number A0101 page 10 / total 4! page 1013105332-0 201232995 and the first switch Κ9 form an LC oscillating circuit, the first charge memory element C1 is discharged through the second current memory element L2, on the oscillating circuit After the current flows through the positive half cycle, the current flowing through the second current memory element L2 is zero, and the polarity polarity of the first charge memory element C1 is reversed. As still another embodiment of the polarity inversion unit 102, as shown in FIG. 8, the polarity inversion unit 1〇2 includes a first DC-DC module 2 and a second charge memory element C2, the first DC- The DC module 2 is connected to the first charge memory device C1 and the second charge memory device (2, respectively, and the switch control module 1 is also connected to the first DC_DC module 2 for passing Controlling the first DC-DC module 2 to operate to transfer energy in the first charge storage element C1 to the second charge recording element C2, and then reverse the energy in the second charge storage element C2 Transferring back to the first charge storage element C1 to achieve an inversion of the polarity of the voltage of the first charge storage element c 1. Ο 10014312^ No. The first DC-DC module 2 is commonly used in the art. The present invention does not impose any limitation on the specific circuit structure of the first DC-DC module 2, as long as the voltage polarity of the first charge memory element C1 can be reversed. Those skilled in the art can circuit their circuits according to actual operation needs. The components in the present invention are added, replaced or deleted. FIG. 9 is an embodiment of the first DC-DC module 2 provided by the present invention. As shown in FIG. 9, the first DC-DC module 2 includes : bidirectional switch Q1, bidirectional switch Q2, bidirectional switch q3, bidirectional switch Q4, first transformer T1, unidirectional semiconductor component D4, unidirectional semiconductor component D5, current memory component L3, bidirectional switch Q5, bidirectional switch Q6, second transformer T2, unidirectional semiconductor component D6, unidirectional semiconductor component d7, and unidirectional semiconductor A 〇 101 page 11 / 41 page 1013105332-0 201232995 component D8. In the embodiment, 'bidirectional switch Q1, bidirectional switch Q2, bidirectional switch Q The spear bidirectional switch Q4% is m〇sFET, the bidirectional switch Q5 and the bidirectional switch Q6 are IGBTs. The first, fourth, and fifth legs of the first transformer T1 are the same name end, and the second and third legs of the first transformer T2 are The same name end. Wherein the anode of the unidirectional semiconductor component D7 is connected to the a terminal of the capacitor C1, and the cathode of the unidirectional semiconductor component D7 is connected to the drain of the bidirectional switch Q1 and the bidirectional switch Q2. The source and the bidirectional of the bidirectional open_丨Turn off the drain connection of Q3, which is bidirectional The connection between the chirp and the bidirectional open (four) Lai pole, the bidirectional switch Q3, the source of the bidirectional open_4 is connected with the b end of the capacitor ,, thereby forming a full bridge circuit. At this time, the voltage polarity of the capacitor C1 is positive at the end a, b In the full bridge circuit, the bidirectional switch Q1, the bidirectional switch Q2 is the upper arm, the bidirectional switch Q3, the bidirectional switch is the lower arm, and the full bridge circuit passes the first transformer τι and the second charge memory The component C2 is connected; the first transformer 1 has a pin connected to the node N1, the second leg is connected to the second node N2, and the 3 pin and the 5 pin are respectively connected to the anode of the unidirectional semiconductor component D4 and the unidirectional semiconductor component D5; The unidirectional semiconductor element Μ and the cathode of the unidirectional semiconductor element 卯 are connected to one end of the current memory element L3, and the other end of the current memory element L3 is connected to the d terminal of the second charge memory element C2; the foot and the second charge of the transformer The c-terminal of the memory element C2 is connected, the anode of the unidirectional semiconductor element D8 is connected to the d terminal of the second charge memory element C2, and the cathode of the unidirectional semiconductor element D8 is connected to the b terminal of the first charge memory element C1. Electric memory component C2 The polarity is negative pressure side is c, d is a positive terminal. Wherein the 'c terminal of the second charge memory element C2 is connected to the emission of the bidirectional switch Q5 1013105332-0 pole' the collector of the bidirectional switch Q5 is connected to the 2 pin of the transformer T2, the transformer 1〇_1# single number leg G1 ^ 12 I / * 41 1 201232995 The 1 pin of Τ2 is connected to the first charge memory element (: 3 terminal of 1), the 4 pin of transformer 72 is connected to the first charge memory element (the & terminal of the ^, the connection of the transformer Τ 2 & 3 pin is unidirectional The anode of the semiconductor element D6, the cathode of the unidirectional semiconductor element D6 is connected to the collector of the bidirectional switch Q6, and the emitter of the bidirectional switch q6 is connected to the b terminal of the first charge memory element C2. Among them, the bidirectional switch Q1, the bidirectional switch Q2 The bidirectional switch Q3, the bidirectional switch Q4, the bidirectional switch Q5 and the bidirectional switch Q6 are respectively turned on and off by the control of the switch control module 100. The working process of the first DC-DC module 2 is as follows. Description: 1. After the switching device 1 is turned off, the switch control module 1 〇〇 controls the bidirectional switch Q5, the bidirectional switch Q6 is turned off, and the bidirectional switch Q1 and the bidirectional switch Q4 are controlled to be simultaneously turned on to form a phase 'control two-way. Switch Q2, two-way open Q3 is simultaneously turned on to form the B phase 'by controlling the A phase and the B phase to alternately conduct to form a full bridge circuit; 2. When the full bridge circuit operates, the energy on the first charge memory element ci passes through the first The transformer T1, the unidirectional semiconductor element D4, the unidirectional semiconductor q element D5, and the current memory element L3 are transferred to the second charge memory element C2. At this time, the voltage polarity of the second charge memory element C2 is negative at the c terminal, d terminal 3. The switch control module 1 〇〇 controls the bidirectional switch Q5 to be turned on, and the first charge storage element C1 forms a path through the second transformer T2 and the unidirectional semiconductor element D8 and the second charge memory element C2. The energy on the second charge storage element C2 is reversely transferred to the first charge storage element C1, wherein part of the energy is stored on the second transformer T2; at this time, the switch control module 100 controls the bidirectional switch Q5 to be turned off, The bidirectional switch Q6 is closed, and the energy stored in the second transformer 1013105332-0 10014312#single number A0101 page 13/total 41 page 201232995 T2 is transferred by the second transformer T2 and the unidirectional semiconductor component D6. Up to the first charge memory element C1, to achieve reverse charging of the first charge memory element C1, at which time the polarity of the voltage of the first charge memory element C1 is reversed to be negative at the a terminal and positive at the b terminal, thereby achieving The purpose of reversing the polarity of the voltage of the first charge storage element C1. In order to recycle the energy in the energy storage circuit, according to a preferred embodiment of the present invention, as shown in FIG. 10, the heating circuit provided by the present invention may An energy transfer unit is included, and the energy transfer unit is connected to the energy storage circuit for transferring energy in the energy storage circuit to the energy storage element after the switching device 1 is turned on and off. The energy transfer unit aims to recycle energy in the storage circuit. The energy storage component can be an external capacitor, a low temperature battery or a power grid, and other electrical equipment. Preferably, the energy storage component is a battery E provided by the present invention, and the energy transfer unit includes a power recharge unit 103, and the power recharge unit 103 is connected to the energy storage circuit for being turned on at the switch device 1. After turning off again, the energy in the tank circuit is transferred to the battery E as shown in FIG. According to the technical solution of the present invention, after the switching device 1 is turned on and off again, the energy in the energy storage circuit is transferred to the battery E through the energy transfer unit, and the transferred energy can be looped after the switching device 1 is turned on again. Utilize, improve the working efficiency of the heating circuit. As an embodiment of the power recharging unit 103, as shown in FIG. 12, the power recharging unit 103 includes a second DC-DC module 3, the second DC-DC module 3 and the first electric charge. The memory component C1 and the battery E are respectively connected, and the switch control module 100 is further connected to the second DC-DC module 3 for controlling the second DC-DC module 3 to operate the first charge. 10014312^^^ A0101 Page 14 of 41 1013105332-0 201232995 The energy in the memory element ci is transferred to the battery. The second DC-DC module 3 is a DC-DC converter circuit commonly used in the art for implementing energy transfer. The present invention does not impose any limitation on the specific circuit structure of the second DC-DC module 3, as long as it can be implemented. The energy of the first charge storage element C1 can be transferred, and those skilled in the art can add, replace or delete the components in the circuit according to the actual operation. FIG. 13 is an embodiment of the second DC-DC module 3 provided by the present invention. As shown in FIG. 13, the second DC-DC module 3 includes: a bidirectional switch S1, a bidirectional switch S2, and a bidirectional switch. S3, a bidirectional switch S4, a third transformer T3, a current memory element L4, and four unidirectional semiconductor elements. In this embodiment, the bidirectional switch S1, the bidirectional switch S2, the bidirectional switch S3, and the bidirectional switch S4 are all MOSFETs. Wherein the 1st pin and the 3rd leg of the third transformer T3 are the same name end, and the negative electrodes of the two unidirectional semiconductor elements of the four unidirectional semiconductor elements are connected in groups, and the contacts pass through the current memory element L4 and the battery E The positive terminal is connected, the other two unidirectional semiconductor components are connected in a positive group, the contacts are connected to the negative terminal of the battery E, and the docking points between the groups are respectively connected to the 3rd and 4th pins of the third transformer T3. Thus, a bridge rectifier circuit is constructed. The source of the bidirectional switch S1 is connected to the drain of the bidirectional switch S3, the source of the bidirectional switch S2 is connected to the drain of the bidirectional switch S4, the drain of the bidirectional switch S1, the bidirectional switch S2 and the first charge storage element C1. The positive terminal is connected, and the source of the bidirectional switch S3 and the bidirectional switch S4 is connected to the negative terminal of the first charge storage element C1, thereby constituting a full bridge circuit. In the full bridge circuit, the bidirectional switch S1, the bidirectional switch S2 is the upper arm, the bidirectional switch S3, the bidirectional switch S4 is the lower arm, and the third transformer 13 is 1 pin 1 () () 14312# single number A0101 15 Page / Total 41 pages 1013105332-0 201232995 Node connection between bidirectional switch S1 and bidirectional switch S3, node 2 and bidirectional switch S2 and bidirectional switch S4. The bidirectional switch S1, the bidirectional switch S2, the bidirectional switch S3, and the bidirectional switch S4 are respectively turned on and off by the control of the switch control module 100. The following describes the working process of the second DC-DC module 3: 1. After the switching device 1 is turned off, the switch control module 100 controls the bidirectional switch S1 and the bidirectional switch S4 to be simultaneously turned on to form the A phase. Controlling the bidirectional switch S2, the bidirectional switch S3 is simultaneously turned on to form the B phase, and the A phase and the B phase are alternately turned on to form a full bridge circuit to operate; 2. When the full bridge circuit operates, the first charge memory The energy on the component C1 is transferred to the battery E through the third transformer T3 and the rectifying circuit, and the rectifying circuit converts the input alternating current into a direct current output to the battery E for the purpose of recharging the electric quantity. In order to enable the heating circuit provided by the present invention to recover energy in the energy storage circuit while improving work efficiency, according to a preferred embodiment of the present invention, as shown in FIG. 14, the heating circuit provided by the present invention may include An energy superposition and transfer unit connected to the energy storage circuit for transferring energy in the energy storage circuit to the energy storage element after the switching device 1 is turned on and off, and then storing energy The remaining energy in the circuit is superimposed with the energy in the battery. The energy superimposing and transferring unit can both increase the working efficiency of the heating circuit and recycle the energy in the energy storage circuit. The superposition of the remaining energy in the tank circuit with the energy in the battery can be achieved by inverting the voltage polarity of the first charge memory element C1, and the voltage of the inverted first charge memory element C1 can be compared with the battery E. Electric 10014312# Single No. A〇101 Page 16/Total 41 Page 1013105332-0 201232995 Pressure series addition. Therefore, according to an embodiment, as shown in FIG. 15, the energy superimposing and transferring unit comprises a DC-DC module 4, which is respectively separated from the first charge storage element C1 and the battery Connected, the switch control module 100 is also coupled to the DC-DC module 4 for transferring energy in the first charge storage element C1 to the energy storage element by controlling the operation of the DC-DC module 4. The remaining energy of the first charge storage element clt is then superimposed with the energy in the battery. Ο The DC-DC module 4 is a DC-DC converter circuit commonly used in the industry for energy transfer and voltage polarity inversion. The present invention does not impose any limitation on the specific circuit structure of the DC_DC module 4, as long as it can be implemented. The energy transfer of the first charge storage element C1 and the polarity reversal of the voltage may be performed, and those skilled in the art may add, replace or delete the components in the circuit according to the needs of the actual operation. As an embodiment of the DC-DC module 4, as shown in FIG. 15, the

Dc K模組4包括:雙向開關S1、雙向開關S2、雙向開關 Ο S3、雙向開關S4、雙向開關S5、雙向開關S6、第四變壓 器T4、第二單向半導體元件d 13、第二單向半導體元件The Dc K module 4 includes: a bidirectional switch S1, a bidirectional switch S2, a bidirectional switch Ο S3, a bidirectional switch S4, a bidirectional switch S5, a bidirectional switch S6, a fourth transformer T4, a second unidirectional semiconductor component d13, and a second unidirectional Semiconductor component

Dl4、電流記憶元件L4、以及四個單向半導體元件。在該 實施方式中,所述雙向開關s 1、雙向開關S2、雙向開關 S3、雙向開關S4均為MOSFET,雙向開關仍和雙向開關S6 為IGBT。 其中,第四變壓器T4的1腳和3腳為同名端,所述四個單 向半導趙元件中的兩個單向半導體元件負極相接成組, 接點通過電流記憶元件L4與電池£的正端連接,另兩個單 10014312#單塢號 向半導體元件正極相接成組,接點與電池E的負端連接, A〇101 帛17頁/共41頁 1013105332-0 201232995 且組與組之間的對接點分別通過雙向開關S 5和雙向開關 S6與第三變壓器T3的3腳和4腳連接,由此構成橋式整流 電路。 其中,雙向開關S1的源極與雙向開關S3的漏極連接,雙 向開關S2的源極與雙向開關S4的漏極連接,雙向開關S1 、雙向開關S2的漏極通過第二單向半導體元件D13與第一 電荷記憶元件C1的正端連接,雙向開關S3、雙向開關S4 的源極通過第二單向半導體元件D14與第一電荷記憶元件 C1的負端連接,由此構成全橋電路。 在該全橋電路中,雙向開關S1、雙向開關S2為上橋臂, 雙向開關S3、雙向開關S4為下橋臂,第四變壓器了4的1腳 與雙向開關S1和雙向開關S3之間的節點連接、2腳與雙向 開關S2和雙向開關S4之間的節點連接。 其中,雙向開關S1、雙向開關S2、雙向開關S3和雙向開 關S4、雙向開關S5和雙向開關S6分別通過所述開關控制 模組100的控制來實現導通和關斷。 下面對所述DC-DC模組4的工作過程進行描述: 1、 在開關裝置1關斷後,當需要對第一電荷記憶元件C1 執行電量回灌以實現能量轉移時,所述開關控制模組100 控制雙向開關S5和S6導通,控制雙向開關S1和雙向開關 S4同時導通以構成A相,控制雙向開關S2、雙向開關S3同 時導通以構成B相,通過控制所述A相、B相交替導通以構 成全橋電路進行工作; 2、 當所述全橋電路工作時,第一電荷記憶元件C1上的能 量通過第四變壓器T4和整流電路轉移到電池E上,所述整 流電路將輸入的交流電轉化為直流電輸出至電池E,達到 10014312^^'^ A0101 第18頁/共41頁 1013105332-0 201232995 電量回灌的目的; 3、當需要對第一電荷記憶元件C1進行極性反轉以實現能 量疊加時,所述開關控制模組100控制雙向開關S5和雙向 開關S6關斷,控制雙向開關S1和雙向開關S4或者雙向開 關S2和雙向開關S3兩組中的任意一組導通;此時,第一 電荷記憶元件C1中的能量通過其正端、雙向開關S1、第 四變壓器T4的原邊、雙向開關S4反向回到其負端,或者 通過其正端、雙向開關S2、第四變壓器T4的原邊、雙向 開關S3反向回到其負端,利用T4的原邊勵磁電感,達到 〇 對第一電荷記憶元件C1進行電壓極性反轉的目的。 根據另一種實施方式,所述能量疊加和轉移單元可以包 括能量疊加單元和能量轉移單元,所述能量轉移單元與 所述儲能電路連接,用於在開關裝置1導通再關斷後,將 儲能電路中的能量轉移至儲能元件中,所述能量疊加單 元與所述儲能電路連接,用於在所述能量轉移單元進行 能量轉移之後,將儲能電路中的剩餘能量與電池E中的能 量進行疊加。 〇 ^ 其中,所述能量疊加單元和能量轉移單元均可以採用本 發明在前述實施方式中提供的能量疊加單元和能量轉移 單元,其目的在於實現對第一電荷記憶元件C1的能量轉 移和疊加,其具體結構和功能在此不再贅述。 作為本發明的一種實施方式,為了提高加熱電路的工作 效率,還可以通過對第一電荷記憶元件C1中的能量進行 消耗來實現。因此,如第16圖所示,所述加熱電路還包 括與所述第一電荷記憶元件C1連接的能量消耗單元,該 能量消耗單元用於在開關裝置1導通再關斷後,對第一電 1()()14312#單編號A0101 第19頁/共41頁 1013105332-0 201232995 荷記憶元件c 1中的能量進行消耗。 該能量消耗單元可以在加熱電路中單獨使用,在開關裝 置1導通再關斷後,直接對第一電荷記憶元件C1中的能量 進行消耗,也可以與以上多種實施方式相結合,例如, 該能量消耗單元可以與包括能量疊加單元的加熱電路結 合,在開關裝置1導通再關斷後、能量疊加單元進行能量 疊加操作之前對第一電荷記憶元件C1中的能量進行消耗 ,也可以與包括能量轉移單元的加熱電路結合,在開關 裝置1導通再關斷後、能量轉移單元進行能量轉移之前或 者在能量轉移單元進行能量轉移之後對第一電荷記憶元 件C1中的能量進行消耗,同樣可以與包括能量疊加和轉 移單元的加熱電路結合,在開關裝置1導通再關斷後、能 量疊加和轉移單元進行能量轉移之前對第一電荷記憶元 件C1中的能量進行消耗,或者在能量疊加和轉移單元進 行能量轉移之後、進行能量疊加之前對第一電荷記憶元 件C1中的能量進行消耗,本發明不對此進行限定,並且 ,通過以下實施方式可以更清楚地瞭解該能量消耗單元 的工作過程。 根據一種實施方式,如第17圖所示,所述能量消耗單元 包括電壓控制單元101,該電壓控制單元101用於在開關 裝置1導通再關斷時,將第一電荷記憶元件C1兩端的電壓 值轉換成電壓設定值。該電壓設定值可以根據實際操作 的需要進行設定。 如第17圖所示,所述電壓控制單元101包括第二阻尼元件 R5和第二開關K8,所述第二阻尼元件R5和第二開關K8彼 此串聯之後並聯在所述第一電荷記憶元件C1的兩端,所 薩4312,單編號_1 1013105332-0 第20頁/共41頁 201232995 述開關控制模組100還與第二開關K8連接,所述開關控制 模組10 0還用於在控制開關裝置丨導通再關斷後控制第二 開關Κ8導通。由此,第一電荷記憶元件C1中的能量可以 通過第二阻尼元件R5進行消耗。 所述開關控制模組1 〇 〇可以為一個單獨的控制器,通過對 其内部程式的設置,可以實現對不同的外接開關的通斷 控制’所述開關控制模組10 0也可以為多個控制器,例如 針對每一個外接開關設置對應的開關控制模組1〇〇,所述 多個開關控制模組1 0 0也可以集成為一體,本發明不對開 ^ 關控制模組100的實現形式作出任何限定。 下面結合第18圖和第19圖對電池e的加熱電路的實施方式 的工作方式進行簡單介紹。需要注意的是,雖然本發明 的特徵和元素參考第18圖和第19圖以特定的結合進行了 描述,但每個特徵或元素可以在沒有其他特徵和元素的 情況下單獨使用,或在與或不與其他特徵和元素結合的 各種情況下使用。本發明提供的電池E的加熱電路的實施 ^ 方式並不限於第18圖和第19圖所示的實現方式。 在如第18圖所示的電池E的加熱電路中,使用第三開關以 和第二單向半導體元件D1構成開關裝置},儲能電路包括 第一電流記憶、元件L1和第一電荷記憶元件C1,第一阻尼 元件R1和開關裝置1與所述儲能電路串聯,DC-DC模組4 構成能量疊加和反轉單元,開關控制模組1〇〇可以控制第 二開關K1的導通和關斷和DC-DC模組4的工作與否。第19 圖為與第18圖的加熱電路對應的波形時序圖,其中,VC1 指的是第一電荷記憶元件Cl的電壓值,I主指的是流經第 三開關K1的電流的電流值❶第18圖中的加熱電路的工作 10014312#·單編號A0101 第21頁/共41頁 1013105332-0 201232995 過程如下: a) 當需要對電池E進行加熱時’開關控制模組1〇0控制第 三開關κι導通’電池E通過第三開關π、第二單向半導體 元件1)1和第冑荷記憶元件C1組成的回路放電,如第19 圖中所示的七1時間段:開關控制模組10 0在流經第三開關 Π的電流為零時控制第三開關K1關斷,如第19圖中所示 的t2時間段; b) 當第三開關K1關斷後,開關控制模組100控制DC-DC 模組4工作’第—電荷記憶元件C1通過DC-DC模組4將- P刀父流電轉化為直流電輸出到電池E中,實現電量回灌 ,如第19圖中所示的t2時間段; Ο開關控制模組1〇〇控制DC_DC模組4工作對第一電荷 記憶元件Π進行電壓極性反轉,之後控制DC-DC模組4停 止工作,如第19圖中所示的u時間段; d)重複步驟a)至c),電池E不斷通過放電實現加熱, 直至電池E達到停止加熱條件為止。 本發明提供的加熱電路能夠提高電池的充放電性能並 且在該加熱電財’難電路與電池㈣,當給電池加 ’、、、時自於串聯的電荷記憶元件的存在,能夠避免開關 裝置失效短路引起的安全性問題,能夠有效地保護電池 。同時’由於本發明的加熱電路中’能量僅從電池流向 儲月匕電路’避免了電荷記憶元件給處於低溫情況下的電 池充電’能夠更好地保證電池的充放電性能。 以上結合附圖詳細描述了本發明的優選實施方式,但是 ’本發明並不限於上述實施方式中的具體細節,在本發 明的技術似範圍内,可以對本發明的技術方案進行多 10014312#單編號A〇1()1 第22頁/共41頁 1013105332-0 201232995 種簡單變型,這些簡單變型均屬於本發明的保護範圍。 另外需要說明的是,在上述具體實施方式中所描述的各 個具體技術特徵,在不矛盾的情況下,可以通過任何合 適的方式進行組合,為了避免不必要的重複,本發明對 各種可能的組合方式不再另行說明。此外,本發明的各 種不同的實施方式之間也可以進行任意組合,只要其不 違背本發明的思想,其同樣應當視為本發明所公開的内 容。 【圖式簡單說明】 [0005] 附圖是用來提供對本發明的進一步理解,並且構成說明 書的一部分,與下面的具體實施方式一起用於解釋本發 明,但並不構成對本發明的限制。在附圖中: 第1圖為本發明提供的電池的加熱電路的示意圖; 第2圖為第1圖中的開關裝置的一種實施方式的示意圖; 第3圖為第1圖中的開關裝置的一種實施方式的示意圖; 第4圖為本發明提供的電池的加熱電路的一種優選實施方 式的示意圖; 第5圖為第4圖中的能量疊加單元的一種實施方式的示意 圖; 第6圖為第5圖中的極性反轉單元的一種實施方式的示意 圖, 第7圖為第5圖中的極性反轉單元的一種實施方式的示意 圖; 第8圖為第5圖中的極性反轉單元的一種實施方式的示意 圖, 第9圖為第8圖中的第一 DC-DC模組的一種實施方式的示意 1()()14312#單編號A0101 第23頁/共41頁 1013105332-0 201232995 rgi · 圍, 第10圖為本發明提供的電池的加熱電路的一種優選實施 方式的示意圖; 第11圖為本發明提供的電池的加熱電路的一種優選實施 方式的示意圖; 第12圖為第11圖中的電量回灌單元的一種實施方式的示 意圖; 第13圖為第12圖中的第二DC-DC模組的一種實施方式的 不意圖; 第14圖為本發明提供的電池的加熱電路的一種優選實施 方式的示意圖; 第15圖為第14圖中的能量疊加和轉移單元的一種實施方 式的示意圖; 第16圖為本發明提供的電池的加熱電路的一種優選實施 方式的示意圖; 第17圖為第16圖中的能量消耗單元的一種實施方式的示 意圖; 第18圖為本發明提供的電池的加熱電路的一種實施方气 的不意圖,以及 第19圖為第18圖的加熱電路所對應的波形時序圖。 【主要元件符號說明】 [0006] 2、3、4 : DC-DC模組 100 :開關控制模組 101 :電壓控制單元 102 :極性反轉單元 103 :電量回灌單元 1013105332-0 10014312#單編號Α01(Π 第24頁/共41頁 201232995 R1、R4、R5 :阻尼元件 LI 、L2 、L3 、L4 ··電济Ll己i意元件 E :電池Dl4, current memory element L4, and four unidirectional semiconductor elements. In this embodiment, the bidirectional switch s 1, the bidirectional switch S2, the bidirectional switch S3, and the bidirectional switch S4 are MOSFETs, and the bidirectional switch and the bidirectional switch S6 are IGBTs. Wherein the 1st pin and the 3rd pin of the fourth transformer T4 are the same name end, and the negative electrodes of the two unidirectional semiconductor elements of the four unidirectional semiconductor semiconductor components are connected in groups, and the contacts pass through the current memory element L4 and the battery. The positive terminal connection, the other two single 10014312# single dock number are connected to the positive pole of the semiconductor component, and the contact is connected with the negative terminal of the battery E, A 〇 101 帛 17 pages / 41 pages 1013105332-0 201232995 and the group The mating points between the groups are connected to the 3rd and 4th pins of the third transformer T3 through the bidirectional switch S5 and the bidirectional switch S6, respectively, thereby constituting a bridge rectifier circuit. The source of the bidirectional switch S1 is connected to the drain of the bidirectional switch S3, the source of the bidirectional switch S2 is connected to the drain of the bidirectional switch S4, and the drains of the bidirectional switch S1 and the bidirectional switch S2 pass through the second unidirectional semiconductor component D13. Connected to the positive terminal of the first charge storage element C1, the source of the bidirectional switch S3 and the bidirectional switch S4 is connected to the negative terminal of the first charge storage element C1 through the second unidirectional semiconductor element D14, thereby constituting a full bridge circuit. In the full bridge circuit, the bidirectional switch S1, the bidirectional switch S2 is the upper arm, the bidirectional switch S3, the bidirectional switch S4 is the lower arm, and the fourth transformer has the 1 pin of 4 and the bidirectional switch S1 and the bidirectional switch S3. Node connection, node 2 connection with bidirectional switch S2 and bidirectional switch S4. The bidirectional switch S1, the bidirectional switch S2, the bidirectional switch S3 and the bidirectional switch S4, the bidirectional switch S5 and the bidirectional switch S6 are respectively turned on and off by the control of the switch control module 100. The following describes the working process of the DC-DC module 4: 1. After the switching device 1 is turned off, when the power charging is performed on the first charge storage element C1 to achieve energy transfer, the switch control The module 100 controls the bidirectional switches S5 and S6 to be turned on, and controls the bidirectional switch S1 and the bidirectional switch S4 to be simultaneously turned on to form the A phase, the control bidirectional switch S2, and the bidirectional switch S3 are simultaneously turned on to form the B phase, and the A phase and the B phase are controlled by Alternating conduction to form a full bridge circuit for operation; 2. When the full bridge circuit operates, energy on the first charge storage element C1 is transferred to the battery E through the fourth transformer T4 and the rectifier circuit, and the rectifier circuit inputs The alternating current is converted into a direct current output to the battery E, reaching 10014312^^'^ A0101 page 18/total 41 page 1013105332-0 201232995 for the purpose of power recharge; 3. when the polarity of the first charge storage element C1 needs to be reversed When the energy superposition is realized, the switch control module 100 controls the bidirectional switch S5 and the bidirectional switch S6 to be turned off, and controls the bidirectional switch S1 and the bidirectional switch S4 or the bidirectional switch S2 and the bidirectional switch S3. Any one of the groups is turned on; at this time, the energy in the first charge memory element C1 is reversed back to its negative terminal through its positive terminal, the bidirectional switch S1, the primary side of the fourth transformer T4, the bidirectional switch S4, or through its positive The primary side of the terminal, the bidirectional switch S2, the fourth transformer T4, and the bidirectional switch S3 are reversed back to the negative end thereof, and the primary polarity excitation inductance of T4 is used to achieve the purpose of inverting the polarity of the first charge storage element C1. . According to another embodiment, the energy superposition and transfer unit may include an energy superimposing unit and an energy transfer unit, and the energy transfer unit is connected to the energy storage circuit for storing after the switching device 1 is turned on and then turned off. The energy in the energy circuit is transferred to the energy storage element, and the energy superimposing unit is connected to the energy storage circuit for using the remaining energy in the energy storage circuit and the battery E after the energy transfer unit performs energy transfer The energy is superimposed. The energy superimposing unit and the energy transfer unit of the present invention may be used in the foregoing embodiments, and the purpose is to realize energy transfer and superposition of the first charge storage element C1. The specific structure and function will not be described here. As an embodiment of the present invention, in order to improve the operating efficiency of the heating circuit, it is also possible to consume energy in the first charge storage element C1. Therefore, as shown in FIG. 16, the heating circuit further includes an energy consuming unit connected to the first charge storage element C1, and the energy consuming unit is configured to: after the switching device 1 is turned on and off again, the first power is 1()()14312#单号A0101 Page 19 of 41 1013105332-0 201232995 The energy in the memory element c 1 is consumed. The energy consuming unit can be used alone in the heating circuit. After the switching device 1 is turned on and off, the energy in the first charge storage element C1 is directly consumed, and can also be combined with the above various embodiments, for example, the energy. The consuming unit may be combined with a heating circuit including an energy superimposing unit to consume energy in the first charge storage element C1 after the switching device 1 is turned on and off, and before the energy superimposing unit performs an energy superimposing operation, and may also include energy transfer. The heating circuit of the unit is combined to consume energy in the first charge memory element C1 after the switching device 1 is turned on and off, before the energy transfer unit performs energy transfer, or after the energy transfer unit performs energy transfer. The heating circuit of the superimposing and transferring unit combines to consume energy in the first charge storage element C1 after the switching device 1 is turned on and off, before the energy superposition and transfer unit performs energy transfer, or in the energy superposition and transfer unit. After the transfer, before the energy superposition The energy in the first charge memory element C1 is consumed, which is not limited by the present invention, and the operation of the energy consuming unit can be more clearly understood by the following embodiments. According to an embodiment, as shown in FIG. 17, the energy consumption unit includes a voltage control unit 101 for voltages across the first charge memory element C1 when the switching device 1 is turned on and off again. The value is converted to a voltage set point. This voltage setting can be set according to the actual operation. As shown in FIG. 17, the voltage control unit 101 includes a second damper element R5 and a second switch K8, and the second damper element R5 and the second switch K8 are connected in series to each other and then connected in parallel to the first charge memory element C1. Both ends, Sasa 4312, single number _1 1013105332-0 page 20 / total 41 pages 201232995 The switch control module 100 is also connected with a second switch K8, which is also used for control After the switch device is turned on and then turned off, the second switch Κ8 is controlled to be turned on. Thereby, the energy in the first charge storage element C1 can be consumed by the second damper element R5. The switch control module 1 〇〇 can be a single controller, and the on/off control of different external switches can be realized by setting the internal program. The switch control module 10 can also be multiple The controller, for example, sets a corresponding switch control module 1 for each external switch, and the plurality of switch control modules 100 can also be integrated into one body, and the implementation form of the control module 100 is not implemented by the present invention. Make any restrictions. The operation of the embodiment of the heating circuit of the battery e will be briefly described below with reference to Figs. 18 and 19. It is to be noted that although the features and elements of the present invention are described in a specific combination with reference to FIGS. 18 and 19, each feature or element may be used alone or without other features and elements. Or not in combination with other features and elements in various situations. The implementation of the heating circuit of the battery E provided by the present invention is not limited to the implementations shown in Figs. 18 and 19. In the heating circuit of the battery E as shown in Fig. 18, a third switch is used to constitute a switching device with the second unidirectional semiconductor element D1, and the tank circuit includes a first current memory, an element L1, and a first charge storage element. C1, the first damping element R1 and the switching device 1 are connected in series with the energy storage circuit, the DC-DC module 4 constitutes an energy superposition and inversion unit, and the switch control module 1〇〇 can control the conduction and the closing of the second switch K1. Break and DC-DC module 4 work or not. Fig. 19 is a waveform timing chart corresponding to the heating circuit of Fig. 18, wherein VC1 refers to the voltage value of the first charge storage element C1, and I main refers to the current value of the current flowing through the third switch K1. The operation of the heating circuit in Fig. 18 10014312#·Single number A0101 Page 21/Total 41 page 1013105332-0 201232995 The process is as follows: a) When the battery E needs to be heated, the switch control module 1〇0 controls the third The switch κι conducts the battery E through the circuit composed of the third switch π, the second unidirectional semiconductor element 1)1 and the first load memory element C1, as shown in Fig. 19, the seven-time period: the switch control module 10 0 controls the third switch K1 to turn off when the current flowing through the third switch 为零 is zero, as in the t2 time period shown in FIG. 19; b) when the third switch K1 is turned off, the switch control module 100 Controlling the operation of the DC-DC module 4's - the charge memory element C1 converts the -P knife parent current into a DC output through the DC-DC module 4, thereby realizing the power recharging, as shown in Fig. 19. The t2 time period; the switch control module 1〇〇 controls the DC_DC module 4 to work on the first charge memory After the voltage polarity is reversed, the DC-DC module 4 is controlled to stop working, such as the u period shown in Fig. 19; d) repeating steps a) to c), the battery E is continuously heated by the discharge until Battery E reaches the stop heating condition. The heating circuit provided by the invention can improve the charging and discharging performance of the battery and can avoid the failure of the switching device when the heating battery is difficult to circuit and the battery (4), when the battery is added with ',,,,, from the existence of the series of charge memory elements. The safety problem caused by the short circuit can effectively protect the battery. At the same time, the charge and discharge performance of the battery can be better ensured by the fact that the energy in the heating circuit of the present invention flows from the battery only to the reservoir circuit, which prevents the charge storage element from charging the battery at a low temperature. The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to the specific details in the above embodiments. In the technical scope of the present invention, the technical solution of the present invention may be numbered 10014312#. A 〇 1 () 1 page 22 / a total of 41 pages 1013105332-0 201232995 Simple variants, all of which are within the scope of the present invention. It should be further noted that the specific technical features described in the above specific embodiments may be combined in any suitable manner without contradiction. In order to avoid unnecessary repetition, the present invention has various possible combinations. The method will not be explained otherwise. In addition, any combination of various embodiments of the invention may be made without departing from the spirit of the invention, and should be considered as the disclosure of the invention. BRIEF DESCRIPTION OF THE DRAWINGS [0005] The accompanying drawings are intended to be a In the drawings: Fig. 1 is a schematic view showing a heating circuit of a battery provided by the present invention; Fig. 2 is a schematic view showing an embodiment of a switching device in Fig. 1; and Fig. 3 is a view showing a switching device in Fig. 1. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 4 is a schematic view showing a preferred embodiment of a heating circuit for a battery provided by the present invention; FIG. 5 is a schematic view showing an embodiment of an energy superimposing unit in FIG. 4; 5 is a schematic diagram of an embodiment of a polarity inversion unit in the figure, FIG. 7 is a schematic diagram of an embodiment of a polarity inversion unit in FIG. 5; and FIG. 8 is a diagram of a polarity inversion unit in FIG. Schematic diagram of an embodiment, FIG. 9 is a schematic diagram of an embodiment of the first DC-DC module in FIG. 8()()14312#单号A0101 Page 23/Total 41 Page 1013105332-0 201232995 rgi 10 is a schematic view of a preferred embodiment of a heating circuit for a battery provided by the present invention; FIG. 11 is a schematic view showing a preferred embodiment of a heating circuit for a battery provided by the present invention; and FIG. 12 is a view of FIG. of 1 is a schematic diagram of an embodiment of a second DC-DC module in FIG. 12; FIG. 14 is a preferred embodiment of a heating circuit for a battery provided by the present invention; BRIEF DESCRIPTION OF THE DRAWINGS Fig. 15 is a schematic view showing an embodiment of an energy superposition and transfer unit in Fig. 14; Fig. 16 is a schematic view showing a preferred embodiment of a heating circuit for a battery provided by the present invention; Fig. 18 is a schematic view showing an embodiment of the energy consuming unit of the battery of Fig. 16; Fig. 18 is a schematic view showing an embodiment of the heating circuit of the battery provided by the present invention, and Fig. 19 is a view corresponding to the heating circuit of Fig. 18. Waveform timing diagram. [Main component symbol description] [0006] 2, 3, 4: DC-DC module 100: switch control module 101: voltage control unit 102: polarity reversal unit 103: power recharge unit 1013105332-0 10014312# single number Α01(Π Page 24 of 41201232995 R1, R4, R5: Damping elements LI, L2, L3, L4 ··Electricity Ll I mean component E: Battery

Cl、C2、C3 :電荷記憶元件 ΚΙ、K2、K8 :開關Cl, C2, C3: Charge Memory Element ΚΙ, K2, K8: Switch

Dl、D3、D4、D5、D6、D7、D8、D9、DIO、D13、D14 :單向半導體元件 Jl、J2 :單刀雙擲開關 Q1〜Q6、S1〜S6 :雙向開關 ΤΙ、T2、T3、T4 :變壓器 Nl、N2 :節點 tl〜t3 :時間段 I + :流經第三開關K1的電流的電流值 主 vei :第一電荷記憶元件C1的電壓值 1〇〇14312#單編號崩01 第25頁/共41頁 1013105332-0Dl, D3, D4, D5, D6, D7, D8, D9, DIO, D13, D14: unidirectional semiconductor components Jl, J2: single-pole double-throw switches Q1~Q6, S1~S6: bidirectional switches T, T2, T3, T4: transformer Nl, N2: node t1 to t3: time period I + : current value of current flowing through the third switch K1 main vei: voltage value of the first charge memory element C1 1〇〇14312# single number collapse 01 25 pages / total 41 pages 1013105332-0

Claims (1)

201232995 七、申請專利範圍: 1 . 一種電池的加熱電路,包括: 開關裝置; 第一阻尼元件; 儲能電路,所述儲能電路用於與所述電池連接,所述儲能 電路包括第一電流記憶元件和第一電荷記憶元件,所述第 一阻尼元件、所述開關裝置、所述第一電流記憶元件和所 述第一電荷記憶元件串聯;以及 開關控制模組,所述開關控制模組與所述開關裝置連接, 用於控制所述開關裝置導通和關斷,以控制能量僅從所述 電池流向所述儲能電路。 2.如申請專利範圍第1項所述的加熱電路,其中,所述第一 阻尼元件為所述電池内部的寄生電阻,所述第一電流記憶 元件為所述電池内部的寄生電感;或者,所述第一阻尼元 件為外接電阻,所述第一電流記憶元件為外接電感,所述 第一電荷記憶元件為電容。 3 .如申請專利範圍第2項所述的加熱電路,其中,所述加熱 電路還包括能量疊加單元,所述能量疊加單元與所述儲能 電路連接,用於在所述開關裝置導通再關斷後,將所述儲 能電路中的能量與所述電池中的能量進行疊加。 4 .如申請專利範圍第3項所述的加熱電路,其中,所述能量 疊加單元包括極性反轉單元,所述極性反轉單元與所述儲 能電路連接,用於在所述開關裝置導通再關斷後,對所述 第一電荷記憶元件的電壓極性進行反轉。 5.如申請專利範圍第2項所述的加熱電路,其中,所述加熱 10014312产單編號 A〇101 第26頁/共41頁 1013105332-0 201232995 電; 能 如 路二括==元’所述能*轉移單元與所述健能 專利範圍第5項所述的加熱電路 元件為所述雷池^ + 其中,所述儲能 所述電量能量轉移單元包括電量回灌單元, 裝置導通:ΓΓ儲能電路連接,用於在所述開關 電池中。_,將収雜電財料量轉移至所述 Ο 所述的加熱電路,心,所述加熱 _ 1罝疊加和轉移單元,所述能景基A 與能電路連接’用於在所述_裝=: 後二=Γ能一—之 整加。《能電路中的剩餘能量與所述電池中的能量進行 ==圍:Γ述一,其中,所述能量 Ο 第一费4 1括此-1)(:模組,所述dc-dc模組與所 組還與==元件和所述電池分別連接,所述開關控制模 組工作來Γ 連接,用於通過控制所述dc-_ 能元件^將所述第一電荷記憶元件中的能量轉移至所述儲 所述雷、/之後將所述第—電荷記憶元件中的剩餘能量與 疋電池中的能量進行疊加。 .如申請專利範圍第7項所述的加熱電路,其中 =轉移單元包括能量疊加單元和能量轉移單 移早讀所述儲能電路連接,用於在所述開關裝置 元=關斷後,將所述儲能電路中的能量轉移至所述儲能 醜31#單編號A_ ,所述能量叠加單元與所述儲能電路連接,用於在 第27頁/共41頁 1013105332- 201232995 所述能量轉移單元進行能量轉移之後,將所述儲能電路中 的剩餘能量與所述電池中的能量進行疊加。 10 .如申請專利範圍第9項所述的加熱電路,其中,所述儲能 元件為所述電池,所述能量轉移單元包括電量回灌單元, 所述電量回灌單元與所述儲能電路連接,用於在所述開關 裝置導通再關斷後,將所述儲能電路中的能量轉移至所述 儲能元件中,所述能量疊加單元包括極性反轉單元,所述 極性反轉單元與所述儲能電路連接,用於在所述電量回灌 單元進行能量轉移之後,對所述第一電荷記憶元件的電壓 極性進行反轉。 11 .如申請專利範圍第4或10項所述的加熱電路,其中,所述 極性反轉單元包括第一單刀雙擲開關和第二單刀雙擲開關 ,所述第一單刀雙擲開關和第二單刀雙擲開關分別位於所 述第一電荷記憶元件兩端,所述第一單刀雙擲開關的入線 連接在所述儲能電路中,所述第一單刀雙擲開關的第一出 線連接所述第一電荷記憶元件的第一極板,所述第一單刀 雙擲開關的第二出線連接所述第一電荷記憶元件的第二極 板,所述第二單刀雙擲開關的入線連接在所述儲能電路中 ,所述第二單刀雙擲開關的第一出線連接所述第一電荷記 憶元件的第二極板,所述第二單刀雙擲開關的第二出線連 接在所述第一電荷記憶元件的第一極板,所述開關控制模 組還與所述第一單刀雙擲開關和第二單刀雙擲開關分別連 接,用於通過改變所述第一單刀雙擲開關和第二單刀雙擲 開關各自的入線和出線的連接關係來對所述第一電荷記憶 元件的電壓極性進行反轉。 12.如申請專利範圍第4或10項所述的加熱電路,其中,所述 100·#單編號通01 第28頁/共41頁 1013105332-0 201232995 極性反轉單元包括第一單向半導體元件、第二電流記憶元 件以及第一開關,所述第一電荷記憶元件、所述第二電流 記憶元件和所述第一開關順次串聯形成回路,所述第一單 向半導體元件和串聯在所述第一電荷記憶元件與所述第二 電流記憶元件或所述第二電流記憶元件與所述第一開關之 間,所述開關控制模組還與所述第一開關連接,用於通過 控制所述第一開關導通來對所述第一電荷記憶元件的電壓 極性進行反轉。 13 .如申請專利範圍第4或10項所述的加熱電路,其中,所述 極性反轉單元包括第一 D C - D C模組和第二電荷記憶元件, 所述第一 DC-DC模組與所述第一電荷記憶元件和所述第二 電荷記憶元件分別連接,所述開關控制模組還與所述第一 DC-DC模組連接,用於通過控制所述第一DC-DC模組工作 來將所述第一電荷記憶元件中的能量轉移至所述第二電荷 記憶元件,再將所述第二電荷記憶元件中的能量反向轉移 回所述第一電荷記憶元件,以實現對所述第一電荷記憶元 件的電Μ極性的反轉。 14 .如申請專利範圍第6或10項所述的加熱電路,其中,所述 電量回灌單元包括第二DC-DC模組,所述第二DC-DC模組 與所述第一電荷記憶元件和所述電池分別連接,所述開關 控制模組還與所述第二DC-DC模組連接,用於通過控制所 述第二D C - D C模組工作來將所述第一電荷記憶元件中的能 量轉移到所述電池中。 15 .如申請專利範圍第2項所述的加熱電路,其中,所述加熱 電路還包括與所述第一電荷記憶元件連接的能量消耗單元 ,所述能量消耗單元用於在所述開關裝置導通再關斷後, 1(){)14312#單編號Α0101 第29頁/共41頁 1013105332-0 201232995 對所述第一電荷記憶元件中的能量進行消耗。 16.如申請專利範圍第15項所述的加熱電路,其中,所述能量 消耗單元包括電壓控制單元,所述電壓控制單元與所述第 一電荷記憶元件連接,用於在所述開關裝置導通再關斷後 ,將所述第一電荷記憶元件兩端的電壓值轉換成電壓設定 值。 17 .如申請專利範圍第3項所述的加熱電路,其中,所述加熱 電路還包括與所述第一電荷記憶元件連接的能量消耗單元 ,所述能量消耗單元用於在所述開關裝置導通再關斷後、 所述能量疊加單元進行能量疊加之前,對所述第一電荷記 憶元件中的能量進行消耗。 18 .如申請專利範圍第1 7項所述的加熱電路,其中,所述能量 消耗單元包括電壓控制單元,所述電壓控制單元與所述第 一電荷記憶元件連接,用於在所述開關裝置導通再關斷後 、所述能量疊加單元進行能量疊加之前,將所述第一電荷 記憶元件兩端的電壓值轉換成電壓設定值。 19 .如申請專利範圍第5項所述的加熱電路,其中,所述加熱 電路還包括與所述第一電荷記憶元件連接的能量消耗單元 ,所述能量消耗單元用於在所述開關裝置導通再關斷後、 所述能量轉移單元進行能量轉移之前,對所述第一電荷記 憶元件中的能量進行消耗,或者在所述能量轉移單元進行 能量轉移之後,對所述第一電荷記憶元件中的能量進行消 耗。 20.如申請專利範圍第19項所述的加熱電路,其中,所述能量 消耗單元包括電壓控制單元,所述電壓控制單元與所述第 一電荷記憶元件連接,用於在所述開關裝置導通再關斷後 10014312^^ A〇101 第30頁/共41頁 1013105332-0 201232995 、所述能量轉移單元進行能量轉移之前,將所述第一電荷 記憶元件兩端的電壓值轉換成電壓設定值,或者在所述能 量轉移單元進行能量轉移之後,將所述第一電荷記憶元件 兩端的電壓值轉換成電壓設定值。 21 .如申請專利範圍第7項所述的加熱電路,其中,所述加熱 電路還包括與所述第一電荷記憶元件連接的能量消耗單元 ,所述能量消耗單元用於在所述開關裝置導通再關斷後、 所述能量疊加和轉移單元進行能量轉移之前,對所述第一 電荷記憶元件中的能量進行消耗,或者在所述能量疊加和 轉移單元進行能量轉移之後進行能量疊加之前,對所述第 一電荷記憶元件中的能量進行消耗。 22.如申請專利範圍第21項所述的加熱電路,其中,所述能量 消耗單元包括電壓控制單元,所述電壓控制單元與所述第 一電荷記憶元件連接,用於在所述開關裝置導通再關斷後 、所述能量疊加和轉移單元進行能量轉移之前,將所述第 一電荷記憶元件兩端的電壓值轉換成電壓設定值,或者在 所述能量疊加和轉移單元進行能量轉移之後進行能量疊加 之前,將所述第一電荷記憶元件兩端的電壓值轉換成電壓 設定值。 23 .如申請專利範圍第16、18、20或21項中任一項申請專利 範圍所述的加熱電路,其中,所述電壓控制單元包括第二 阻尼元件和第二開關,所述第二阻尼元件和所述第二開關 彼此串聯之後並聯在所述第一電荷記憶元件的兩端,所述 開關控制模組還與所述第二開關連接,所述開關控制模組 還用於在控制所述開關裝置導通再關斷後,控制所述第二 開關導通。 10014312#單編號 A〇101 第31頁/共41頁 1013105332-0 201232995 24 .如申請專利範圍第2項所述的加熱電路,其中,所述開關 裝置包括第三開關和第二單向半導體元件,所述第三開關 和所述第二單向半導體元件彼此串聯之後串聯在所述儲能 電路中,所述開關控制模組與所述第三開關連接,用於通 過控制所述第三開關的導通和關斷來控制所述開關裝置導 通和關斷。 25 .如申請專利範圍第3項所述的加熱電路,其中,所述開關 控制模組用於在開關裝置導通後流經開關裝置的電流為零 時或為零前控制開關裝置關斷。 26 .如申請專利範圍第25項所述的加熱電路,其中,所述開關 控制模組用於在開關裝置導通後流經開關裝置的電流為零 如控制開關裝置關斷,所述開關裝置包括第三單向半導體 元件、第四單向半導體元件、第四開關、第三阻尼元件以 及第三電荷記憶元件,所述第三單向半導體元件與第四開 關順次串聯在所述儲能電路中,所述第三阻尼元件與第三 電荷記憶元件串聯之後並聯在所述第四開關的兩端,所述 第四單向半導體元件並聯在第三阻尼元件的兩端,用於在 第四開關關斷時對第一電流記憶元件進行續流,所述開關 控制模組與所述第四開關連接,用於通過控制第四開關的 導通和關斷來控制開關裝置導通和關斷。 1001431# 單編號 A〇101 第32頁/共41頁 1013105332-0201232995 VII. Patent application scope: 1. A heating circuit for a battery, comprising: a switching device; a first damping element; a storage circuit, the energy storage circuit is configured to be connected to the battery, and the energy storage circuit includes a first a current storage element and a first charge storage element, the first damping element, the switching device, the first current storage element and the first charge storage element being connected in series; and a switch control module, the switch control mode A set is coupled to the switching device for controlling the switching device to be turned "on" and "off" to control energy flow only from the battery to the energy storage circuit. 2. The heating circuit of claim 1, wherein the first damping element is a parasitic resistance inside the battery, and the first current memory element is a parasitic inductance inside the battery; or The first damper element is an external resistor, the first current memory element is an external inductor, and the first charge memory element is a capacitor. 3. The heating circuit of claim 2, wherein the heating circuit further comprises an energy superimposing unit, the energy superimposing unit being connected to the energy storage circuit for turning on and off the switching device After the break, the energy in the tank circuit is superimposed with the energy in the battery. 4. The heating circuit of claim 3, wherein the energy superimposing unit comprises a polarity inversion unit, the polarity inversion unit being coupled to the tank circuit for conducting in the switching device After turning off again, the voltage polarity of the first charge storage element is inverted. 5. The heating circuit according to claim 2, wherein the heating 10014312 is a single number A〇101 page 26/41 pages 1013105332-0 201232995 electricity; The heating energy transfer device described in item 5 of the health patent range is the lightning pool ^ + wherein the energy storage energy transfer unit comprises a power regenerative unit, and the device is turned on: A circuit can be connected for use in the switching battery. _, transferring the amount of collected electricity to the heating circuit of the ,, the heart, the heating _ 1 罝 superposition and transfer unit, the energy base A and the energy circuit connection 'for the _ Loading =: After two = Γ can one - the whole addition. "The residual energy in the energy circuit and the energy in the battery are performed == circumference: a description, wherein the energy Ο first fee 41 includes this -1) (: module, the dc-dc mode The group and the group are also respectively connected to the == component and the battery, and the switch control module operates to connect, for controlling the energy in the first charge memory element by controlling the dc-_ energy component Transferring to the stored thunder, /, then superimposing the remaining energy in the first charge storage element with the energy in the xenon battery. The heating circuit according to claim 7, wherein the = transfer unit The energy superimposing unit and the energy transfer single shift read the storage circuit connection for transferring energy in the energy storage circuit to the energy storage ugly 31# after the switching device element=off No. A_, the energy superimposing unit is connected to the energy storage circuit, and used to transfer the remaining energy in the energy storage circuit after energy transfer by the energy transfer unit on page 27 of 41, 1013105332 to 201232995 The energy in the battery is superimposed. The heating circuit of claim 9, wherein the energy storage component is the battery, the energy transfer unit comprises a power refill unit, and the power recharge unit is connected to the energy storage circuit. For transferring energy in the energy storage circuit to the energy storage element after the switching device is turned on and off again, the energy superposition unit includes a polarity inversion unit, and the polarity inversion unit The energy storage circuit is connected to invert the voltage polarity of the first charge storage element after the power recirculation unit performs energy transfer. 11. Heating according to claim 4 or 10 The circuit, wherein the polarity inversion unit comprises a first single pole double throw switch and a second single pole double throw switch, wherein the first single pole double throw switch and the second single pole double throw switch are respectively located in the first charge memory element And an input line of the first single-pole double-throw switch is connected to the energy storage circuit, and a first output line of the first single-pole double-throw switch is connected to a first plate of the first charge memory element, a second output line of the single-pole double-throw switch is connected to the second plate of the first charge memory element, and an input line of the second single-pole double-throw switch is connected in the energy storage circuit, and the second single-pole double-throw a first output of the switch is coupled to the second plate of the first charge storage element, and a second output of the second single-pole double-throw switch is coupled to the first plate of the first charge storage element, The switch control module is further connected to the first single pole double throw switch and the second single pole double throw switch respectively for changing the incoming and outgoing lines of the first single pole double throw switch and the second single pole double throw switch A connection relationship to reverse the voltage polarity of the first charge storage element. 12. The heating circuit of claim 4 or 10, wherein the 100##单号通01第28页/ A total of 41 pages 1013105332-0 201232995 The polarity inversion unit includes a first unidirectional semiconductor element, a second current memory element, and a first switch, the first charge memory element, the second current memory element, and the first switch Sequential series Looping, the first unidirectional semiconductor component and being connected in series between the first charge storage component and the second current memory component or the second current memory component and the first switch, the switch control The module is further coupled to the first switch for inverting a voltage polarity of the first charge storage element by controlling the first switch to be turned on. The heating circuit of claim 4 or 10, wherein the polarity inversion unit comprises a first DC-DC module and a second charge memory element, the first DC-DC module and The first charge storage element and the second charge storage element are respectively connected, and the switch control module is further connected to the first DC-DC module for controlling the first DC-DC module Working to transfer energy in the first charge storage element to the second charge storage element, and then transferring energy in the second charge storage element back to the first charge storage element to achieve Inversion of the polarity of the first charge memory device. The heating circuit of claim 6 or 10, wherein the power refill unit comprises a second DC-DC module, the second DC-DC module and the first charge memory The component and the battery are respectively connected, the switch control module is further connected to the second DC-DC module, and is configured to control the first DC-DC module to operate the first charge storage component The energy in is transferred to the battery. The heating circuit of claim 2, wherein the heating circuit further comprises an energy consuming unit connected to the first charge storage element, the energy consuming unit being configured to be turned on at the switching device After turning off again, 1(){)14312#single number Α0101 page 29/total 41 page 1013105332-0 201232995 consumes energy in the first charge storage element. 16. The heating circuit of claim 15, wherein the energy consuming unit comprises a voltage control unit, the voltage control unit being coupled to the first charge storage element for conducting in the switching device After turning off again, the voltage value across the first charge storage element is converted into a voltage set value. The heating circuit of claim 3, wherein the heating circuit further comprises an energy consuming unit connected to the first charge storage element, the energy consuming unit being configured to be turned on at the switching device After the power is turned off, the energy in the first charge storage element is consumed before the energy superimposing unit performs energy superposition. 18. The heating circuit of claim 17, wherein the energy consuming unit comprises a voltage control unit, the voltage control unit being coupled to the first charge storage element for use in the switching device After the power is turned off again, before the energy superimposing unit performs energy superposition, the voltage value across the first charge memory element is converted into a voltage set value. The heating circuit of claim 5, wherein the heating circuit further comprises an energy consuming unit connected to the first charge storage element, the energy consuming unit being configured to be turned on at the switching device After the power is turned off, the energy in the first charge storage element is consumed, or after the energy transfer unit performs energy transfer, in the first charge storage element. The energy is consumed. 20. The heating circuit of claim 19, wherein the energy consuming unit comprises a voltage control unit, the voltage control unit being coupled to the first charge storage element for conducting in the switching device After turning off again, 10014312^^ A〇101, page 30/41, 1013105332-0 201232995, before the energy transfer unit performs energy transfer, converting the voltage value across the first charge memory element into a voltage set value, Or converting the voltage value across the first charge storage element to a voltage set value after the energy transfer unit performs energy transfer. The heating circuit of claim 7, wherein the heating circuit further comprises an energy consuming unit connected to the first charge storage element, the energy consuming unit being configured to be turned on at the switching device After the shutdown, the energy in the first charge storage element is consumed before the energy superposition and transfer unit performs energy transfer, or before the energy superposition and energy transfer after the energy superposition and transfer unit performs energy transfer, The energy in the first charge storage element is consumed. 22. The heating circuit of claim 21, wherein the energy consuming unit comprises a voltage control unit, the voltage control unit being coupled to the first charge storage element for conducting in the switching device After the shutdown, the energy superposition and transfer unit converts the voltage value across the first charge storage element into a voltage set value, or performs energy transfer after the energy superposition and transfer unit performs energy transfer. The voltage values across the first charge storage element are converted to voltage set values prior to stacking. The heating circuit of claim 16, wherein the voltage control unit comprises a second damping element and a second switch, the second damping The element and the second switch are connected in series with each other and then connected in parallel at both ends of the first charge storage element, the switch control module is further connected to the second switch, and the switch control module is further used in the control station After the switching device is turned on and then turned off, the second switch is controlled to be turned on. The heating circuit of claim 2, wherein the switching device comprises a third switch and a second unidirectional semiconductor component, wherein the heating device of claim 2, wherein the switching device comprises the third switch and the second unidirectional semiconductor component The third switch and the second unidirectional semiconductor component are connected in series to each other in series in the energy storage circuit, and the switch control module is connected to the third switch for controlling the third switch Turning on and off to control the switching device to be turned on and off. The heating circuit of claim 3, wherein the switch control module is configured to control the switch device to turn off when the current flowing through the switch device after the switch device is turned on is zero or before zero. The heating circuit of claim 25, wherein the switch control module is configured to zero the current flowing through the switch device after the switch device is turned on, such as controlling the switch device to be turned off, the switch device including a third unidirectional semiconductor element, a fourth unidirectional semiconductor element, a fourth switch, a third damper element, and a third charge memory element, wherein the third unidirectional semiconductor element and the fourth switch are sequentially connected in series in the tank circuit The third damper element is connected in series with the third charge memory element in parallel with the fourth switch, and the fourth unidirectional semiconductor element is connected in parallel at both ends of the third damper element for the fourth switch The first current memory element is freewheeled when turned off, and the switch control module is connected to the fourth switch for controlling the switching device to be turned on and off by controlling the turning on and off of the fourth switch. 1001431# Single number A〇101 Page 32 of 41 1013105332-0
TW100143128A 2010-12-23 2011-11-24 Battery heating circuit TWI464999B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010605772XA CN102088116B (en) 2010-07-30 2010-12-23 Heating circuit of battery

Publications (2)

Publication Number Publication Date
TW201232995A true TW201232995A (en) 2012-08-01
TWI464999B TWI464999B (en) 2014-12-11

Family

ID=47226550

Family Applications (2)

Application Number Title Priority Date Filing Date
TW100222186U TWM438033U (en) 2010-12-23 2011-11-24 Battery heating circuit
TW100143128A TWI464999B (en) 2010-12-23 2011-11-24 Battery heating circuit

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW100222186U TWM438033U (en) 2010-12-23 2011-11-24 Battery heating circuit

Country Status (1)

Country Link
TW (2) TWM438033U (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362942A (en) * 1993-08-24 1994-11-08 Interdigital Technology Corporation Battery heating system using internal battery resistance
TW269727B (en) * 1995-04-03 1996-02-01 Electrosource Inc Battery management system
US6340879B1 (en) * 1999-02-03 2002-01-22 Nokia Mobile Phones Ltd. Device for reactivating an electric battery
CN201397868Y (en) * 2009-04-15 2010-02-03 天津力神电池股份有限公司 Self-heating device used for lithium ion battery pack
CN201435426Y (en) * 2009-04-20 2010-03-31 赛恩斯能源科技有限公司 Battery group with thermal management unit
CN201667552U (en) * 2010-03-30 2010-12-08 比亚迪股份有限公司 Battery heating apparatus

Also Published As

Publication number Publication date
TWI464999B (en) 2014-12-11
TWM438033U (en) 2012-09-21

Similar Documents

Publication Publication Date Title
CA2807002C (en) Battery heating circuit
TWI556995B (en) An electric vehicle running control system
US8941358B2 (en) Heating circuits and methods based on battery discharging and charging using resonance components in series and freewheeling circuit components
TWM456933U (en) A electric vehicle running control system
TW201232995A (en) Battery heating circuit
TWI465001B (en) Battery heating circuit
TWI455443B (en) Battery heating circuit
TWI433428B (en) Battery heating circuit
TWI427894B (en) Battery heating circuit
TWI430537B (en) Battery heating circuit
TWI465000B (en) Battery heating circuit
TW201230607A (en) Battery heating circuit
TWM437537U (en) Battery heating circuit