M422159 五、新型說明: 【新型所屬之技術領域】 本創作係有關一種高頻基板結構,尤指一種介電層兩 側形成有黏著層之具有雙面金屬層之高頻基板結構。 【先前技術】M422159 V. New description: [New technical field] This creation is about a high-frequency substrate structure, especially a high-frequency substrate structure with a double-sided metal layer with an adhesive layer formed on both sides of the dielectric layer. [Prior Art]
印刷電路板是電子產品中不可或缺之材料,而隨著消 費性電子產品需求成長,對於印刷電路板之需求亦是與曰 俱增。由於軟性印刷電路板具有可撓曲性及可三度空間配 線等特性,在科技化電子產品強調輕薄短小、可撓曲性的 發展驅勢下,目前被廣泛應用電腦及其週邊設備、通訊產 品以及消費性電子產品等等。 近來,由於電子產品已走向高速及高頻的應用趨勢, 使付現今電子產品都需要使用高頻電路用印刷電路基板來 支板’以達到⑧頻及⑥速的運作功效。在眾多被用作為高 頻電路用印刷電路基板的材料中,除了陶曼和發泡材料 外’以氟系樹脂居多,其原因在於其具有低介電常數和低 介電損耗料㈣魏㈣。“,利用高溫鍾合氟系 ^時,加:困難’使生產良率不佳,且與金屬層熱膨脹 糸數:同:::使用自動化設備進行量產 ,且成本較高, 此外氣系樹月曰其表面性質且右k 的特性,造錢層縣,表面能’不“著金屬 有二能夠改:製程加工性,同時仍具 有低介電以與低介電 【新型内容】 為達成上揭及其他目的, 結構,包括: 本創作係提供一種高頻基板 具有相對之第〜矣溆馇_ 介電層之第-表每上:第面之介電層;形成於該 二表面上之第二點著者層;形成於該介電層之第 屬層,以藉由該第;著声 =第一黏著層上之第-金 第二黏著層上之Μ 介電層上;形成於該 ㈣Μ 〜聚醯亞胺層;以及形成於該第一聚蕴 曰 一金屬層,使該第一聚醯亞胺層夾置於該第 二黏著層與第二Μ層之間。 …弟 ; ‘ 中’該南頻基板結構復包括形成於該第一 黏著層與第一金屬思日 吵 ’層之間之第二聚醯亞胺層。 由於本創作<高頻基板結構之介電層以氟系聚合物 為基材’例如使用聚三氟氯乙烯(Polychlorotrifhiorethylene (CTFE)) I 四氣乙歸 pTFE(p〇iytetrafju〇rethyiene)、聚四 氣乙稀氣内歸共聚物FEP(Fluorinated ethylene propylene)或四氟乙烯與乙烯之共聚物(etfe》並以具有低 ”電$數(例如D “ 2.1 (1GHz))、低介電損耗(例如D f = 0.0005(lGHz))的電氣特性,與表面經粗化處理而具有粗縫 結構者為佳’因此’該高頻基板結構具有低介電常數的特 性。 此外’本創作之黏著層係具有適當黏著力,易於無縫 隙地與介電層表面貼合,因此,本創作藉由黏著層使介電 層與聚醯亞胺層夾置於金屬層之間,透過黏著層之形成, 可提升介電層於壓合製程之加工性,更具有製作簡便、低 M422159 成本及生產良率佳的優點。 【實施方式】 以下係藉由特定的具體實例說明本創作之實施方 式,熟悉此技藝之人士可由本說明書所揭示之内容輕易地 瞭解本創作之優點及功效。本創作亦可以其它不同的方式 予以實施,即,在不悖離本創作所揭示之範疇下,能予不 同之修飾與改變。 須知,本說明書所附圖式所繪示之結構、比例、大小 ® 等,均僅用以配合說明書所揭示之内容,以供熟悉此技藝 之人士之暸解與閱讀,並非用以限定本發明可實施之限定 條件,故不具技術上之實質意義,任何結構之修飾、比例 關係之改變或大小之調整,在不影響本創作所能產生之功 效及所能達成之目的下,均應仍落在本創作所揭示之技術 内容得能涵蓋之範圍内。同時,本說明書中所引用之如 ‘‘上,、“第一,’及‘‘第二,,等之用語,亦僅為便於敘述之明 φ 暸,而非用以限定本創作可實施之範圍,其相對關係之改 變或調整,在無實質變更技術内容下,當亦視為本創作可 實施之範疇。 第一具體實施例 第1圖係顯示本創作之高頻基板結構100,包括:介 電層110,具有相對之第一表面110a與第二表面110b,且 該二表面表面具有粗糙結構1101 ;第一黏著層111,係形 成於該介電層110之第一表面ll〇a上;第二黏著層112, 係形成於該介電層110之第二表面ll〇b上;第一金屬層 M422159 I5黏:t該第一黏著層111上,以藉由該第-黏著層 於,第一黏二’層電層U〇上;第-聚醯亞胺層113,係形成 於这第一黏者層112 ·丨V»哲—a 1=» 气嚷& ,及第二金屬層116,係形成於 醯亞胺層町’使該第一聚 置 於該第二黏著層112與第二金屬層116之間。 丸置 本創作之高頻基板結構100之介電層110可伟用且古 低介電常數材質之含氣'、 取S , 物’其實例包括但非限於: ==六氣丙婦共聚物、聚四氣乙稀或四氣乙烯與 於"具趙實關中,該⑽、聚合物層之材 質係水四乙婦或四氟乙軸乙叙共聚物。於另一 聚四氣乙料有低介電常數和低介電損耗 專優〆錢特性’故聚四氟乙_較佳之介電層基材。一 般而言’該介電層110係具有25至50微米之厚度。 本創作之高頻基板結構100之第一金屬層115及第二 金屬層116係銅層’且該第一金屬層115及第二金屬層^ 層之厚度係各自介於12至36微米之間,較㈣二12 至18微米之間。 本創作之第-黏著層m與第二黏著層112可為相同 或不同之樹脂接著劑,該第一黏著層U1及第二黏著層ιΐ2 ^才質之實例包括但非限於:環氧樹脂、⑽酸系樹θ脂、 胺基甲酸酯系樹脂、石夕橡膠系樹脂、聚對環二甲苯系樹月匕 雙馬來醯亞胺系樹脂及聚醯亞胺樹脂所組成群組的一種0或 多種樹脂。一般而言,該第一黏著層U1及第二黏著層 之厚度係各自介於6至15微米之範圍,較佳係約6至 M422159 12微米之間。 於具體實施例中,介電層110係藉由第一黏著層111 黏合至第一金屬層115 ;以及藉由第二黏著層112黏合至 第一聚醯亞胺層113後再貼合至第二金屬層116。此外, 第一聚醯亞胺層113與第二金屬層116可為透過將聚醯胺 酸塗覆至銅金屬層後,經脫水環化形成之無膠系銅箔基 板。本創作之高頻基板結構100係透過黏著層使介電層與 聚醯亞胺層夾置於金屬層之間,即使利用壓合製程製作高 ® 頻基板,亦可提升介電層之加工性,更具有製作簡便、低 成本及生產良率佳的優點。 第二具體實施例 第2圖係顯示本創作之高頻基板結構200之第二具體 實例。於該具體實施例中,該高頻基板結構200,包括: 介電層220,具有相對之第一表面220a與第二表面220b, 且該二表面表面具有粗糙結構2201 ;第一黏著層221,係 肇 形成於該介電層220之第一表面220a上;第二黏著層 222,係形成於該介電層220之第二表面220b上;第二聚 醯亞胺層224,係形成於該第一黏著層221上,以藉由該 第一黏著層221黏合於該介電層220上;第一金屬層225, 係形成於該第二聚醯亞胺層224上,使該第二聚醯亞胺層 224夾置於該第一黏著層221與第一金屬層225之間;第 一聚醯亞胺層223,係形成於該第二黏著層222上;以及 第二金屬層226,係形成於該第一聚醯亞胺層223上,使 該第一聚醯亞胺層223夾置於該第二黏著層222與第二金 M422159 屬層226之間。 上述高頻基板結構200之介電層220可為氟系聚合物 層,且該氟系聚合物層之材質可選自聚四氟乙烯聚六氣丙 烯共聚物、聚四氟乙烯或四氣乙烯與乙烯之共聚物,其中, 較佳為使用聚四氟乙烯或四氟乙烯與乙烯之共聚物作為介 電層。於此實例中,該介電層係聚四氟乙烯層,且其厚度 可為25至50微米。 上述高頻基板結構200之第一黏著層221及第二黏著 層222之材質可選自環氧樹脂、丙烯酸系樹脂、胺基甲酸 酯系樹脂、矽橡膠系樹脂、聚對環二甲苯系樹脂、雙馬來 醯亞胺系樹脂及聚醯亞胺樹脂所組成群組的一種或多種樹 脂。於此實例,該第一黏著層221及第二黏著層222之厚 度係各自介於6至15微米之範圍。 上述高頻基板結構200之第一金屬層225及第二金屬 層226之材質係銅,且其厚度各自為12至36微米。另 外,本創作之高頻基板結構200之第一聚醯亞胺層之厚度 係介於6至25微米之間,且該第二聚醯亞胺層之厚度係 介於6至25微米之間。 製備例:本創作高頻基板之製備 第一具體實施例之高頻基板 於本具體實例中,係使用一厚度為25或50微米之雙 面表面改質聚四氟乙烯迪渥工業型號SD-222作為介電 層。首先,於聚四氟乙烯層的第一及第二表面上各自塗佈 環氧樹脂黏著劑,接著,在第一及第二表面之黏著劑上分 M422159 ., * … —— ---.. , · : - - 別貼合一銅箔及單面鋼箔基板,得到一層疊結構,再經烘 乾固化該黏著劑及壓合該層疊結構,形成如第丨圖之高頻 基板結構。 第二具體實施例之高頻基板 係以前述製法製作本製備例之高頻基板,其差異在於 第一及弟二表面之黏著劑上皆係貼合單面銅箔基板。 測試例:高頻基板之電氣特性測試 根據製備例及表一所示資料製備高頻基板樣品,並對 該樣品進行機械特性與電氣特性測試,測試項目包括接著 強度(peel strength)測試,萬能拉力機(型號:C13027);介 電常數和介電損耗量測依據ASTM 2520波導諧振腔 (Waveguide Resonators)測試方式,並將結果記錄於表一。 表一 第一具體實施例 第二具體實施例 比較例1 比較例2 厚度(微米) 厚度(微米) 厚度 (微米) 厚度 (微米) 第一金屬層 18 18 18 18 18 18 18 18 第二聚醯亞胺層 0 0 0 13 13 13 0 13 第一黏著層 10 7 6 8 9 6 3 25 介電層 25 50 50 25 50 50 50 25 第二^占者層 10 7 6 8 9 6 3 25 第一聚醯亞胺層 13 13 13 13 13 13 13 13 第二金屬層 18 18 18 18 18 18 18 18 介電常數 Dk(3GHZ) 3.22 2.89 2.67 3.10 2.90 2.74 2.60 3.4 介電損耗因素 Df(3GHZ) 0.0130 0.0089 0.0064 0.0128 0.0097 0.0093 0.0061 0.0412 PEEL Strength Kgf/cm2 0.92 0.96 0.87 0.90 1.03 1.10 0.31 0.91 9 M422159 比較例第一及第二黏著層厚度產生問題為影響介電 損耗之表現,因厚度影響介電損耗降低訊號品質,影響訊 號真實性,導致失真。 如表一所示,本創作之高頻基板結構確實具有低介電 常數與低介電損失。因此,本創作藉由黏著層使介電層與 聚醯亞胺層夾置於金屬層之間,故不需進行高溫壓合製 程,不會影響基板加工性,可使製作簡便,具有低成本、 生產率佳及優異電性特性之優點。 綜上所述,本創作之高頻基板結構透過黏著層使介電 層與聚醯亞胺層夾置於金屬層之間,透過黏著層之形成, 可提升介電層於高溫壓合製程之加工性,更具有製作簡 便、低成本及生產良率佳的優點。 上述實施例僅為例示性說明本創作之原理及其功 效,而非用於限制本創作。本創作之權利保護範圍,應如 後述之申請專利範圍所列。 【圖式簡單說明】 第1圖係顯示本創作第一具體實施例之高頻基板結構 示意圖;以及 第2圖係顯示本創作第二具體實施例之高頻基板結構 示意圖。 【主要元件符號說明】 100、200 高頻基板結構 110、220 介電層 110a ' 220a 第一表面 M422159 110b 、 220b 第二表面 1101 > 2201 粗糙結構 111 、 221 第一黏著層 112 ' 222 第二黏著層 113 、 223 第一聚醯亞胺層 224 第二聚醯亞胺層 115 ' 225 第一金屬層 116 、 226 • 第二金屬層 11Printed circuit boards are an indispensable material in electronic products, and as demand for consumer electronics grows, so does the demand for printed circuit boards. Due to the flexible nature of flexible printed circuit boards and the ability to make three-dimensional wiring, the use of computer and its peripheral equipment and communication products is widely used in the development of technology-based electronic products that emphasize lightness, shortness, and flexibility. And consumer electronics and more. Recently, as electronic products have moved toward high-speed and high-frequency applications, it is necessary to use today's electronic products to use high-frequency circuit printed circuit boards to support the board to achieve 8 frequency and 6 speed operation. Among the materials used as printed circuit boards for high-frequency circuits, most of the fluorine-based resins are used in addition to Tauman and foamed materials because of their low dielectric constant and low dielectric loss (IV) Wei (4). "When using high-temperature clock and fluorine system, adding: difficulty', the production yield is not good, and the number of thermal expansions with the metal layer: the same::: using automated equipment for mass production, and the cost is higher, in addition to the gas tree The characteristics of the surface of the moon and the characteristics of the right k, the surface of the money-making county, the surface energy 'does not have the metal can change: processability, while still having low dielectric and low dielectric [new content] to achieve And other purposes, the structure includes: the present invention provides a high-frequency substrate having a first-to-first dielectric layer of the first-to-first dielectric layer; a dielectric layer on the first surface; formed on the two surfaces a second layer of the first layer formed on the first dielectric layer of the dielectric layer by the first sound; the first dielectric layer on the first-gold second adhesive layer on the first adhesive layer; (4) a layer of yttrium-polyimine; and a metal layer formed on the first layer of the polyimide, such that the first layer of the polyimide layer is sandwiched between the second layer of adhesion and the layer of the second layer. The middle portion of the south frequency substrate structure includes a second polyimine layer formed between the first adhesive layer and the first metal layer. Since the dielectric layer of the high-frequency substrate structure is based on a fluorine-based polymer, for example, polychlorotrifhiorethylene (CTFE) I, pTFE (p〇iytetrafju〇rethyiene), poly FEP (Fluorinated ethylene propylene) or copolymer of tetrafluoroethylene and ethylene (etfe) with a low "electricity" (eg D "2.1 (1GHz)), low dielectric loss ( For example, the electrical characteristics of D f = 0.0005 (lGHz), and those having a roughened structure with a roughened surface are preferred. Therefore, the high-frequency substrate structure has a low dielectric constant. In addition, the adhesive layer of the present invention It has a suitable adhesive force and is easy to seamlessly adhere to the surface of the dielectric layer. Therefore, the present invention sandwiches the dielectric layer and the polyimide layer between the metal layers by the adhesive layer, and is formed by the adhesive layer. It can improve the processability of the dielectric layer in the pressing process, and has the advantages of simple production, low M422159 cost and good production yield. [Embodiment] The following describes the implementation of the creation by a specific specific example, and is familiar with this. Skilled person The advantages and functions of the present invention can be easily understood by the contents disclosed in the present specification. The present invention can also be implemented in various other ways, that is, it can be modified and changed without departing from the scope of the present invention. It is to be understood that the structure, the proportions, the size, and the like, which are illustrated in the specification of the present specification, are only used in conjunction with the disclosure of the specification for the understanding and reading of those skilled in the art, and are not intended to limit the invention. The qualifications of the implementation are not technically meaningful, and any modification of the structure, change of the proportional relationship or adjustment of the size shall remain in the interests of the creation and the purpose of the creation. The technical content disclosed in this work can be covered. At the same time, the terms such as '', ''first', '' and ''second', etc. quoted in this manual are only for convenience. Ming φ, rather than to limit the scope of the implementation of this creation, the change or adjustment of its relative relationship, in the absence of substantial changes in the technical content, The first embodiment shows a high-frequency substrate structure 100 of the present invention, comprising: a dielectric layer 110 having opposite first and second surfaces 110a, 110b, and having rough surfaces The first adhesive layer 111 is formed on the first surface 11a of the dielectric layer 110; the second adhesive layer 112 is formed on the second surface 11b of the dielectric layer 110; a metal layer M422159 I5 is adhered to: the first adhesive layer 111, by the first adhesive layer, on the first adhesive layer, and the first polyimine layer 113 is formed on the first adhesive layer 111. The first adhesive layer 112·丨V»哲—a 1=» gas 嚷 & and the second metal layer 116 are formed in the yttrium layer to make the first concentrating layer on the second adhesive layer 112 is between the second metal layer 116. The dielectric layer 110 of the high-frequency substrate structure 100 of the present invention can be used as well as the gas-containing material of the pale low dielectric constant material, and the examples of the material include, but are not limited to: == six gas-propylene copolymer , polytetraethylene or tetraethylene ethylene and in " with Zhao Shiguan, the (10), the polymer layer is made of water tetraethylene or tetrafluoroethylene. In another polytetrafluoroethylene material, there is a low dielectric constant and a low dielectric loss, and the polysilicon content is better. Generally, the dielectric layer 110 has a thickness of 25 to 50 microns. The first metal layer 115 and the second metal layer 116 of the high-frequency substrate structure 100 of the present invention are copper layers ′ and the thicknesses of the first metal layer 115 and the second metal layer are respectively between 12 and 36 micrometers. , compared with (four) two between 12 and 18 microns. The first adhesive layer m and the second adhesive layer 112 of the present invention may be the same or different resin adhesives, and examples of the first adhesive layer U1 and the second adhesive layer ιΐ2 include, but are not limited to, epoxy resin, (10) A group consisting of acid tree θ lipid, urethane resin, shixi rubber resin, polyparaxylene xanthene bismuth quinone imine resin, and polyimine resin 0 or more resins. Generally, the thickness of the first adhesive layer U1 and the second adhesive layer are each in the range of 6 to 15 μm, preferably about 6 to M422159 and 12 μm. In a specific embodiment, the dielectric layer 110 is bonded to the first metal layer 115 by the first adhesive layer 111; and bonded to the first polyimide layer 113 by the second adhesive layer 112, and then bonded to the first layer Two metal layers 116. Further, the first polyimine layer 113 and the second metal layer 116 may be a non-adhesive copper foil substrate formed by applying a polyamic acid to a copper metal layer and then dehydrating and cyclizing. The high-frequency substrate structure 100 of the present invention is such that the dielectric layer and the polyimide layer are sandwiched between the metal layers through the adhesive layer, and the processing property of the dielectric layer can be improved even if a high-frequency substrate is fabricated by a pressing process. It has the advantages of simple production, low cost and good production yield. Second Embodiment FIG. 2 is a view showing a second specific example of the high-frequency substrate structure 200 of the present invention. In the embodiment, the high-frequency substrate structure 200 includes: a dielectric layer 220 having a first surface 220a and a second surface 220b opposite to each other, and the two surface surfaces have a rough structure 2201; a first adhesive layer 221, The second adhesive layer 222 is formed on the second surface 220b of the dielectric layer 220; the second polyimide layer 224 is formed on the first surface 220a of the dielectric layer 220. The first adhesive layer 221 is adhered to the dielectric layer 220 by the first adhesive layer 221; a first metal layer 225 is formed on the second polyimide layer 224 to make the second polymer The bismuth imide layer 224 is interposed between the first adhesive layer 221 and the first metal layer 225; the first polyimine layer 223 is formed on the second adhesive layer 222; and the second metal layer 226, The first polyimide layer 223 is formed on the first polyimide layer 223, and the first polyimide layer 223 is sandwiched between the second adhesive layer 222 and the second gold M422159 layer 226. The dielectric layer 220 of the high-frequency substrate structure 200 may be a fluorine-based polymer layer, and the material of the fluorine-based polymer layer may be selected from the group consisting of polytetrafluoroethylene polyhexapropylene copolymer, polytetrafluoroethylene or tetraethylene ethylene. A copolymer with ethylene, wherein a polytetrafluoroethylene or a copolymer of tetrafluoroethylene and ethylene is preferably used as the dielectric layer. In this example, the dielectric layer is a polytetrafluoroethylene layer and may have a thickness of 25 to 50 microns. The material of the first adhesive layer 221 and the second adhesive layer 222 of the high-frequency substrate structure 200 may be selected from the group consisting of an epoxy resin, an acrylic resin, a urethane resin, a ruthenium rubber resin, and a polyparaxylene system. One or more resins of the group consisting of a resin, a bismaleimide resin, and a polyimide resin. In this example, the thickness of the first adhesive layer 221 and the second adhesive layer 222 are each in the range of 6 to 15 microns. The first metal layer 225 and the second metal layer 226 of the high-frequency substrate structure 200 are made of copper and each have a thickness of 12 to 36 μm. In addition, the thickness of the first polyimide layer of the high-frequency substrate structure 200 of the present invention is between 6 and 25 microns, and the thickness of the second polyimide layer is between 6 and 25 microns. . Preparation Example: Preparation of the Present High-Frequency Substrate The high-frequency substrate of the first embodiment is a double-sided surface-modified polytetrafluoroethylene dim industrial model SD- having a thickness of 25 or 50 μm in this embodiment. 222 is used as a dielectric layer. First, an epoxy resin adhesive is applied to each of the first and second surfaces of the polytetrafluoroethylene layer, and then the adhesive on the first and second surfaces is divided into M422159., * ... —— ---. . : - - - Do not attach a copper foil and a single-sided steel foil substrate to obtain a laminated structure, and then dry and cure the adhesive and press-fit the laminated structure to form a high-frequency substrate structure as shown in the figure. High-frequency substrate of the second embodiment The high-frequency substrate of the present preparation example was produced by the above-described production method, and the difference was that the adhesive of the first and second surfaces was bonded to the single-sided copper foil substrate. Test example: Electrical characteristics test of high-frequency substrate According to the preparation example and the data shown in Table 1, the high-frequency substrate sample was prepared, and the sample was tested for mechanical properties and electrical characteristics. The test items included the peel strength test and the universal tensile force. Machine (Model: C13027); dielectric constant and dielectric loss measurements according to ASTM 2520 Waveguide Resonators test method, and the results are reported in Table 1. Table 1 First embodiment Second embodiment Comparative example 1 Comparative example 2 Thickness (micrometer) Thickness (micrometer) Thickness (micrometer) Thickness (micrometer) First metal layer 18 18 18 18 18 18 18 18 Second polyfluorene Imine layer 0 0 0 13 13 13 0 13 First adhesive layer 10 7 6 8 9 6 3 25 Dielectric layer 25 50 50 25 50 50 50 25 Second ^ occupant layer 10 7 6 8 9 6 3 25 First Polyimine layer 13 13 13 13 13 13 13 13 Second metal layer 18 18 18 18 18 18 18 18 Dielectric constant Dk (3GHZ) 3.22 2.89 2.67 3.10 2.90 2.74 2.60 3.4 Dielectric loss factor Df(3GHZ) 0.0130 0.0089 0.0064 0.0128 0.0097 0.0093 0.0061 0.0412 PEEL Strength Kgf/cm2 0.92 0.96 0.87 0.90 1.03 1.10 0.31 0.91 9 M422159 Comparative Example The first and second adhesive layer thickness problems affect the performance of dielectric loss, and the dielectric loss is reduced due to the thickness. , affecting the authenticity of the signal, resulting in distortion. As shown in Table 1, the high frequency substrate structure of the present invention does have a low dielectric constant and a low dielectric loss. Therefore, the present invention sandwiches the dielectric layer and the polyimide layer between the metal layers by the adhesive layer, so that the high temperature pressing process is not required, the substrate processability is not affected, and the fabrication is simple and low-cost. Advantages of good productivity and excellent electrical properties. In summary, the high-frequency substrate structure of the present invention is formed by sandwiching the dielectric layer and the polyimide layer between the metal layers through the adhesive layer, and forming the adhesive layer to enhance the dielectric layer in the high temperature pressing process. The processability has the advantages of simple production, low cost and good production yield. The above embodiments are merely illustrative of the principles of the present invention and its effects, and are not intended to limit the present invention. The scope of protection of this creation shall be as set forth in the scope of the patent application described later. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure of a high-frequency substrate of a first embodiment of the present invention; and Fig. 2 is a view showing the structure of a high-frequency substrate of a second embodiment of the present invention. [Main component symbol description] 100, 200 high-frequency substrate structure 110, 220 dielectric layer 110a ' 220a first surface M422159 110b, 220b second surface 1101 > 2201 rough structure 111, 221 first adhesive layer 112 ' 222 second Adhesive layer 113, 223 first polyimine layer 224 second polyimide layer 115' 225 first metal layer 116, 226 • second metal layer 11