TWI605749B - Electromagnetic interference shielding film - Google Patents

Electromagnetic interference shielding film Download PDF

Info

Publication number
TWI605749B
TWI605749B TW105141513A TW105141513A TWI605749B TW I605749 B TWI605749 B TW I605749B TW 105141513 A TW105141513 A TW 105141513A TW 105141513 A TW105141513 A TW 105141513A TW I605749 B TWI605749 B TW I605749B
Authority
TW
Taiwan
Prior art keywords
resin
electromagnetic interference
shielding film
interference shielding
layer
Prior art date
Application number
TW105141513A
Other languages
Chinese (zh)
Other versions
TW201822623A (en
Inventor
吳修竹
余景文
賴忠孝
蔡孟成
Original Assignee
台虹科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台虹科技股份有限公司 filed Critical 台虹科技股份有限公司
Priority to TW105141513A priority Critical patent/TWI605749B/en
Priority to CN201710067683.6A priority patent/CN108235670A/en
Application granted granted Critical
Publication of TWI605749B publication Critical patent/TWI605749B/en
Publication of TW201822623A publication Critical patent/TW201822623A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Description

電磁干擾屏蔽膜Electromagnetic interference shielding film

本發明是有關於一種電磁干擾屏蔽膜,且特別是有關於一種可薄化型的電磁干擾屏蔽膜,其具有較好的電磁波遮蔽效果外,更具有高導熱性以及高延展性。The invention relates to an electromagnetic interference shielding film, and particularly relates to a thinning type electromagnetic interference shielding film, which has better electromagnetic wave shielding effect, more high thermal conductivity and high ductility.

印刷電路板(printed circuit board,PCB)是電子產品中不可或缺的材料,目前被廣泛應用於計算機及其外圍設備、通訊產品以及消費性電子產品中。隨著各種電子產品之需求持續增長,對於印刷電路板的需求量也是與日俱增。在軟性電路板而言,隨著筆記型個人電腦或行動電話等攜帶裝置的更新換代,其對電磁波(electromagnetic wave)的屏蔽要求也越來越高。Printed circuit board (PCB) is an indispensable material in electronic products and is widely used in computers and peripherals, communication products and consumer electronics. As the demand for various electronic products continues to grow, so does the demand for printed circuit boards. In the case of flexible circuit boards, with the replacement of portable devices such as notebook personal computers or mobile phones, the shielding requirements for electromagnetic waves are becoming higher and higher.

一般來說,為了屏蔽電磁波,現有技術大多以樹脂做為主體並添加金屬粒子的方式來製造電磁波屏蔽層(electromagnetic interference (EMI) shielding layer)。然而,在上述製程中,若使用大粒徑之金屬粒子以確保電磁波遮蔽效果,將使得所形成之電磁波屏蔽層具有過大的厚度。又或者,若使用小粒徑之金屬粒子以取得較薄的電磁波屏蔽層的厚度,將使得所形成之電磁波屏蔽層具有較差的電磁波遮蔽效果。因此,如何改善上述問題以達到目前業界的要求,實為目前此領域技術人員亟欲解決的問題。In general, in order to shield electromagnetic waves, in the prior art, an electromagnetic interference (EMI) shielding layer is mostly manufactured by using a resin as a main body and adding metal particles. However, in the above process, if a metal particle having a large particle diameter is used to secure an electromagnetic wave shielding effect, the formed electromagnetic wave shielding layer is made to have an excessive thickness. Alternatively, if a metal particle having a small particle diameter is used to obtain a thickness of a thin electromagnetic wave shielding layer, the formed electromagnetic wave shielding layer has a poor electromagnetic wave shielding effect. Therefore, how to improve the above problems to meet the requirements of the current industry is a problem that technicians in the field are currently trying to solve.

本發明是有關於一種電磁干擾屏蔽膜,且特別是有關於一種可薄化型的電磁干擾屏蔽膜,其具有較好的電磁波遮蔽效果外,更具有高導熱性以及高延展性。The invention relates to an electromagnetic interference shielding film, and particularly relates to a thinning type electromagnetic interference shielding film, which has better electromagnetic wave shielding effect, more high thermal conductivity and high ductility.

本發明提供一種電磁干擾屏蔽膜包括絕緣層以及導電層。絕緣層具有彼此相對的第一表面與第二表面,其中絕緣層由第一樹脂以及分佈於第一樹脂中的石墨烯所組成。導電層設置於絕緣層的第一表面上。The invention provides an electromagnetic interference shielding film comprising an insulating layer and a conductive layer. The insulating layer has a first surface and a second surface opposite to each other, wherein the insulating layer is composed of a first resin and graphene distributed in the first resin. The conductive layer is disposed on the first surface of the insulating layer.

在本發明的一個實施方式中,絕緣層的厚度約介於5微米至100微米。In one embodiment of the invention, the insulating layer has a thickness of between about 5 microns and 100 microns.

在本發明的一個實施方式中,絕緣層具有50重量百分比至90重量百分比的第一樹脂以及10重量百分比至50重量百分比的石墨烯。In one embodiment of the invention, the insulating layer has 50% by weight to 90% by weight of the first resin and 10% by weight to 50% by weight of graphene.

在本發明的一個實施方式中,第一樹脂包括聚尿酯樹脂、環氧樹脂、壓克力樹脂、聚醯亞胺樹脂、聚對苯二甲酸乙二酯樹脂或其組合。In one embodiment of the invention, the first resin comprises a polyurethane resin, an epoxy resin, an acrylic resin, a polyimide resin, a polyethylene terephthalate resin, or a combination thereof.

在本發明的一個實施方式中,導電層的厚度約介於10微米至100微米。In one embodiment of the invention, the conductive layer has a thickness of between about 10 microns and 100 microns.

在本發明的一個實施方式中,導電層由第二樹脂以及多個導電粒子所組成,且多個導電粒子分佈於第二樹脂中並彼此連接。In one embodiment of the invention, the conductive layer is composed of the second resin and the plurality of conductive particles, and the plurality of conductive particles are distributed in the second resin and connected to each other.

在本發明的一個實施方式中,導電粒子包括金、銀、銅、鋁、鎳、鐵或錫金屬顆粒、表面塗覆有銀的銅或鋁金屬顆粒、表面塗覆有金、銀、銅、鋁、鎳、鐵或錫的樹脂顆粒或玻璃顆粒,且第二樹脂包括聚尿酯樹脂、環氧樹脂、壓克力樹脂、聚醯亞胺樹脂、聚對苯二甲酸乙二酯樹脂或其組合。In one embodiment of the invention, the conductive particles comprise gold, silver, copper, aluminum, nickel, iron or tin metal particles, copper or aluminum metal particles coated with silver, and the surface is coated with gold, silver, copper, a resin particle or glass particle of aluminum, nickel, iron or tin, and the second resin comprises a polyurethane resin, an epoxy resin, an acrylic resin, a polyimide resin, a polyethylene terephthalate resin or combination.

在本發明的一個實施方式中,導電層具有50重量百分比至90重量百分比的第二樹脂以及10重量百分比至50重量百分比的多個導電粒子。In one embodiment of the invention, the conductive layer has 50% by weight to 90% by weight of the second resin and 10% by weight to 50% by weight of the plurality of conductive particles.

在本發明的一個實施方式中,其中導電層更包括石墨烯,且多個導電粒子與石墨烯分佈於第二樹脂中並彼此連接,其中導電層具有50重量百分比至80重量百分比的第二樹脂、10重量百分比至20重量百分比的多個導電粒子以及10重量百分比至30重量百分比的石墨烯。In one embodiment of the present invention, wherein the conductive layer further comprises graphene, and the plurality of conductive particles and graphene are distributed in the second resin and connected to each other, wherein the conductive layer has 50% by weight to 80% by weight of the second resin 10% by weight to 20% by weight of the plurality of conductive particles and 10% by weight to 30% by weight of graphene.

在本發明的一個實施方式中,電磁干擾屏蔽膜更包括第一離形層以及第二離形層,第一離形層位於絕緣層的第二表面上,其中第一離形層的厚度約介於25微米至125微米,且第二離形層位於絕緣層的第一表面上,其中導電層位於絕緣層與第二離形層之間,第二離形層的厚度約介於25微米至125微米。In an embodiment of the invention, the electromagnetic interference shielding film further includes a first release layer and a second release layer, the first release layer being located on the second surface of the insulation layer, wherein the thickness of the first release layer is about Between 25 microns and 125 microns, and the second release layer is on the first surface of the insulating layer, wherein the conductive layer is between the insulating layer and the second release layer, and the thickness of the second release layer is about 25 microns Up to 125 microns.

基於上述,由於本發明的電磁干擾屏蔽膜中的絕緣層由第一樹脂與石墨烯所組成,使得電磁干擾屏蔽膜除了具有較佳的導熱性以及延展性外,其更可改善電磁波遮蔽效果。且,即使對本發明的電磁干擾屏蔽膜之整體厚度進行薄化,本發明的電磁干擾屏蔽膜仍可表現出較好的電磁波遮蔽效果、導熱性以及延展性。此外,於本發明的電磁干擾屏蔽膜之導電層中加入石墨烯,將更進一步地改善電磁波遮蔽效果。Based on the above, since the insulating layer in the electromagnetic interference shielding film of the present invention is composed of the first resin and graphene, the electromagnetic interference shielding film can improve the electromagnetic wave shielding effect in addition to the better thermal conductivity and ductility. Further, even if the overall thickness of the electromagnetic interference shielding film of the present invention is thinned, the electromagnetic interference shielding film of the present invention can exhibit a good electromagnetic wave shielding effect, thermal conductivity, and ductility. Further, by adding graphene to the conductive layer of the electromagnetic interference shielding film of the present invention, the electromagnetic wave shielding effect is further improved.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施方式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

在本文中,由「一數值至另一數值」表示的範圍,是一種避免在說明書中一一列舉該範圍中的所有數值的概要性表示方式。因此,某一特定數值範圍的記載,涵蓋該數值範圍內的任意數值以及由該數值範圍內的任意數值界定出的較小數值範圍,如同在說明書中明文寫出該任意數值和該較小數值範圍一樣。In the present specification, the range represented by "a value to another value" is a schematic representation that avoids enumerating all the values in the range in the specification. Therefore, the recitation of a particular range of values is intended to include any value in the range of values and the range of values defined by any value in the range of values, as in the specification. The scope is the same.

圖1是本發明一個實施方式的電磁干擾屏蔽膜的剖面示意圖。請參照圖1,本發明的電磁干擾屏蔽膜10A包括絕緣層110以及導電層120。如圖1所示,絕緣層110具有彼此相對的第一表面S1與第二表面S2,且絕緣層110是由第一樹脂以及分佈於第一樹脂中的石墨烯所組成。在一實施方式中,第一樹脂佔絕緣層110的重量百分比約為50%至90%,且石墨烯佔絕緣層110的重量百分比約為10%至50%。在一實施方式中,第一樹脂的材料包括聚尿酯(polyurethane,PU)樹脂、環氧(epoxy)樹脂、壓克力(acrylic)樹脂、聚醯亞胺(polyimide,PI)樹脂、聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)樹脂或其組合。在一實施方式中,石墨烯例如呈顆粒狀、片狀、粉末狀或其組合。在一實施方式中,絕緣層110的厚度例如是5微米(μm)至100微米。1 is a schematic cross-sectional view showing an electromagnetic interference shielding film according to an embodiment of the present invention. Referring to FIG. 1, the electromagnetic interference shielding film 10A of the present invention includes an insulating layer 110 and a conductive layer 120. As shown in FIG. 1, the insulating layer 110 has a first surface S1 and a second surface S2 opposed to each other, and the insulating layer 110 is composed of a first resin and graphene distributed in the first resin. In one embodiment, the first resin comprises from about 50% to about 90% by weight of the insulating layer 110, and the graphene comprises from about 10% to about 50% by weight of the insulating layer 110. In one embodiment, the material of the first resin includes a polyurethane (PU) resin, an epoxy resin, an acrylic resin, a polyimide (PI) resin, and a poly pair. Polyethylene terephthalate (PET) resin or a combination thereof. In one embodiment, the graphene is, for example, in the form of a granule, a sheet, a powder, or a combination thereof. In an embodiment, the thickness of the insulating layer 110 is, for example, 5 micrometers (μm) to 100 micrometers.

請繼續參照圖1,導電層120設置於絕緣層110的第一表面S1上,其中導電層120由第二樹脂以及多個導電粒子所組成,且多個導電粒子分佈於第二樹脂中並彼此連接。在一實施方式中,第二樹脂佔導電層120的重量百分比約為50%至90%,且多個導電粒子佔導電層120的重量百分比約為10%至50%。在一實施方式中,第二樹脂包括聚尿酯樹脂、環氧樹脂、壓克力樹脂、聚醯亞胺樹脂、聚對苯二甲酸乙二酯樹脂或其組合。在一實施方式中,第二樹脂的材質例如是與第一樹脂的材質相同,然本發明不以此為限。在另一實施方式中,第二樹脂的材質不同於第一樹脂的材質。在一實施方式中,導電粒子包括金、銀、銅、鋁、鎳、鐵或錫金屬顆粒、表面塗覆有銀的銅或鋁金屬顆粒、表面塗覆有金、銀、銅、鋁、鎳、鐵或錫的樹脂顆粒或玻璃顆粒。在一實施方式中,導電層120的厚度例如是10微米至100微米。Referring to FIG. 1 , the conductive layer 120 is disposed on the first surface S1 of the insulating layer 110 , wherein the conductive layer 120 is composed of a second resin and a plurality of conductive particles, and the plurality of conductive particles are distributed in the second resin and mutually connection. In one embodiment, the second resin comprises about 50% to 90% by weight of the conductive layer 120, and the plurality of conductive particles comprise about 10% to 50% by weight of the conductive layer 120. In one embodiment, the second resin comprises a polyurethane resin, an epoxy resin, an acrylic resin, a polyimide resin, a polyethylene terephthalate resin, or a combination thereof. In one embodiment, the material of the second resin is, for example, the same as that of the first resin, but the invention is not limited thereto. In another embodiment, the material of the second resin is different from the material of the first resin. In one embodiment, the conductive particles comprise gold, silver, copper, aluminum, nickel, iron or tin metal particles, copper or aluminum metal particles coated with silver, and the surface is coated with gold, silver, copper, aluminum, nickel. Resin particles or glass particles of iron or tin. In an embodiment, the thickness of the conductive layer 120 is, for example, 10 micrometers to 100 micrometers.

基於上述,由於本發明的電磁干擾屏蔽膜中的絕緣層由第一樹脂與石墨烯所組成,使得電磁干擾屏蔽膜除了具有較佳的導熱性以及延展性外,其更可改善電磁波遮蔽效果。Based on the above, since the insulating layer in the electromagnetic interference shielding film of the present invention is composed of the first resin and graphene, the electromagnetic interference shielding film can improve the electromagnetic wave shielding effect in addition to the better thermal conductivity and ductility.

圖2是本發明另一個實施方式的電磁干擾屏蔽膜的剖面示意圖。本實施方式的電磁干擾屏蔽膜10B與上述圖1的電磁干擾屏蔽膜10A相似,因此相同或相似的元件以相同的或相似的符號表示,且不再重複說明。具體來說,電磁干擾屏蔽膜10B與電磁干擾屏蔽膜10A的主要差異處在於,電磁干擾屏蔽膜10B更包括第一離形層130以及第二離形層140。2 is a schematic cross-sectional view showing an electromagnetic interference shielding film according to another embodiment of the present invention. The electromagnetic interference shielding film 10B of the present embodiment is similar to the above-described electromagnetic interference shielding film 10A of FIG. 1, and therefore the same or similar elements are denoted by the same or similar symbols, and the description thereof will not be repeated. Specifically, the main difference between the electromagnetic interference shielding film 10B and the electromagnetic interference shielding film 10A is that the electromagnetic interference shielding film 10B further includes a first release layer 130 and a second release layer 140.

如圖2所示,第一離形層130位於絕緣層110的第二表面S2上,且第二離形層140位於絕緣層110的第一表面S1上,其中導電層120位於絕緣層110與第二離形層140之間。換言之,絕緣層110位於導電層120與第一離形層130之間。在一實施方式中,第一離形層130的材質與第二離形層140的材質包括聚對苯二甲酸乙二酯(PET)、聚乙烯(polyethylene,PE)、聚丙烯(polypropylene,PP)。在一實施方式中,第一離形層130的材質與第二離形層140的材質可以是相同或不同,本發明不以此為限。在一實施方式中,第一離形層130的厚度約介於25微米至125微米,以及第二離形層140的厚度約介於25微米至125微米。在一實施方式中,第一離形層130 可作為電磁干擾屏蔽膜10B的載體,且第二離形層140可作為電磁干擾屏蔽膜10B的保護層,然本發明不限於此。第一離形層130以及第二離形層140可輕易地由絕緣層110以及導電層120上撕離,據此,透過第一離形層130以及第二離形層140,電磁干擾屏蔽膜10B可更容易地保存且不易受外力而損壞。As shown in FIG. 2, the first release layer 130 is located on the second surface S2 of the insulation layer 110, and the second release layer 140 is located on the first surface S1 of the insulation layer 110, wherein the conductive layer 120 is located on the insulation layer 110. Between the second release layers 140. In other words, the insulating layer 110 is located between the conductive layer 120 and the first release layer 130. In one embodiment, the material of the first release layer 130 and the material of the second release layer 140 include polyethylene terephthalate (PET), polyethylene (PE), polypropylene (polypropylene, PP). ). In an embodiment, the material of the first release layer 130 and the material of the second release layer 140 may be the same or different, and the invention is not limited thereto. In one embodiment, the first release layer 130 has a thickness between about 25 microns and 125 microns, and the second release layer 140 has a thickness between about 25 microns and 125 microns. In an embodiment, the first release layer 130 may serve as a carrier of the electromagnetic interference shielding film 10B, and the second release layer 140 may serve as a protective layer of the electromagnetic interference shielding film 10B, but the invention is not limited thereto. The first release layer 130 and the second release layer 140 can be easily peeled off from the insulating layer 110 and the conductive layer 120, thereby transmitting the electromagnetic interference shielding film through the first release layer 130 and the second release layer 140. 10B can be stored more easily and is less susceptible to damage by external forces.

圖3是本發明另一個實施方式的電磁干擾屏蔽膜的剖面示意圖。本實施方式的電磁干擾屏蔽膜20A與上述圖1的電磁干擾屏蔽膜10A相似,因此相同或相似的元件以相同的或相似的符號表示,且不再重複說明。請參照圖3,電磁干擾屏蔽膜20A與電磁干擾屏蔽膜10A的主要差異處在於,電磁干擾屏蔽膜20A是以導電層120’取代電磁干擾屏蔽膜10A的導電層120。3 is a schematic cross-sectional view showing an electromagnetic interference shielding film according to another embodiment of the present invention. The electromagnetic interference shielding film 20A of the present embodiment is similar to the electromagnetic interference shielding film 10A of the above-described FIG. 1, and therefore the same or similar elements are denoted by the same or similar symbols, and the description thereof will not be repeated. Referring to Fig. 3, the main difference between the electromagnetic interference shielding film 20A and the electromagnetic interference shielding film 10A is that the electromagnetic interference shielding film 20A replaces the conductive layer 120 of the electromagnetic interference shielding film 10A with the conductive layer 120'.

具體來說,如圖3所示,電磁干擾屏蔽膜20A的導電層120’更包括石墨烯,其中多個導電粒子與石墨烯分佈於第二樹脂中並彼此連接。在一實施方式中,第二樹脂佔導電層120’的重量百分比約為50%至80%,多個導電粒子佔導電層120’的重量百分比約為10%至20%,以及石墨烯佔導電層120’的重量百分比約為10%至30%。在一實施方式中,石墨烯例如呈顆粒狀、片狀、粉末狀或其組合。如上述,由於本發明的電磁干擾屏蔽膜中的絕緣層由第一樹脂與石墨烯所組成,使得電磁干擾屏蔽膜除了具有較佳的導熱性以及延展性外,其更可改善電磁波遮蔽效果。此外,於本發明的電磁干擾屏蔽膜之導電層中加入石墨烯,將更進一步地改善電磁波遮蔽效果。Specifically, as shown in FIG. 3, the conductive layer 120' of the electromagnetic interference shielding film 20A further includes graphene in which a plurality of conductive particles and graphene are distributed in the second resin and connected to each other. In one embodiment, the second resin accounts for about 50% to 80% by weight of the conductive layer 120', the plurality of conductive particles accounts for about 10% to 20% by weight of the conductive layer 120', and the graphene accounts for conductive The weight percentage of layer 120' is about 10% to 30%. In one embodiment, the graphene is, for example, in the form of a granule, a sheet, a powder, or a combination thereof. As described above, since the insulating layer in the electromagnetic interference shielding film of the present invention is composed of the first resin and graphene, the electromagnetic interference shielding film can improve the electromagnetic wave shielding effect in addition to the better thermal conductivity and ductility. Further, by adding graphene to the conductive layer of the electromagnetic interference shielding film of the present invention, the electromagnetic wave shielding effect is further improved.

圖4是本發明另一個實施方式的電磁干擾屏蔽膜的剖面示意圖。本實施方式的電磁干擾屏蔽膜20B與上述圖3的電磁干擾屏蔽膜20A相似,因此相同或相似的元件以相同的或相似的符號表示,且不再重複說明。請參照圖4,電磁干擾屏蔽膜20B與電磁干擾屏蔽膜20A的主要差異處在於,電磁干擾屏蔽膜20B更包括第一離形層130以及第二離形層140。4 is a schematic cross-sectional view showing an electromagnetic interference shielding film according to another embodiment of the present invention. The electromagnetic interference shielding film 20B of the present embodiment is similar to the above-described electromagnetic interference shielding film 20A of FIG. 3, and therefore the same or similar elements are denoted by the same or similar symbols, and the description thereof will not be repeated. Referring to FIG. 4 , the main difference between the electromagnetic interference shielding film 20B and the electromagnetic interference shielding film 20A is that the electromagnetic interference shielding film 20B further includes a first release layer 130 and a second release layer 140 .

如圖4所示,第一離形層130位於絕緣層110的第二表面S2上,且第二離形層140位於絕緣層110的第一表面S1上。其中,導電層120’位於絕緣層110與第二離形層140之間,且絕緣層110位於導電層120’與第一離形層130之間。在一實施方式中,第一離形層130的厚度約介於25微米至125微米,以及第二離形層140的厚度約介於25微米至125微米。在一實施方式中,第一離形層130 可作為電磁干擾屏蔽膜20B的載體,且第二離形層140可作為電磁干擾屏蔽膜20B的保護層,然本發明不限於此。第一離形層130以及第二離形層140可輕易地由絕緣層110以及導電層120’上撕離,因此透過第一離形層130以及第二離形層140,電磁干擾屏蔽膜20B可更容易地保存且不易受外力而損壞。As shown in FIG. 4, the first release layer 130 is on the second surface S2 of the insulating layer 110, and the second release layer 140 is on the first surface S1 of the insulating layer 110. The conductive layer 120' is located between the insulating layer 110 and the second release layer 140, and the insulating layer 110 is located between the conductive layer 120' and the first release layer 130. In one embodiment, the first release layer 130 has a thickness between about 25 microns and 125 microns, and the second release layer 140 has a thickness between about 25 microns and 125 microns. In an embodiment, the first release layer 130 may serve as a carrier of the electromagnetic interference shielding film 20B, and the second release layer 140 may serve as a protective layer of the electromagnetic interference shielding film 20B, but the invention is not limited thereto. The first release layer 130 and the second release layer 140 can be easily peeled off from the insulating layer 110 and the conductive layer 120 ′, thus passing through the first release layer 130 and the second release layer 140 , and the electromagnetic interference shielding film 20B It can be stored more easily and is not easily damaged by external forces.

以下,將對本發明的電磁干擾屏蔽膜之製作方法進行詳細說明。圖5A至圖5C是本發明一個實施方式的電磁干擾屏蔽膜之製作方法流程的剖面示意圖。Hereinafter, a method of producing the electromagnetic interference shielding film of the present invention will be described in detail. 5A to 5C are schematic cross-sectional views showing a flow of a method of fabricating an electromagnetic interference shielding film according to an embodiment of the present invention.

首先,請參照圖5A,提供第一離形層130,並塗佈絕緣層110於第一離形層130上方。如圖5A所示,絕緣層110具有彼此相對的第一表面S1與第二表面S2,其中絕緣層110透過第二表面S2與第一離形層130貼合。具體來說,在一實施方式中,先將第一樹脂與石墨烯經混鍊而形成絕緣材料;再藉由一道塗佈製程,於第一離形層130的上方塗佈絕緣材料,形成絕緣層110。在一實施方式中,絕緣層110的厚度例如是5微米至100微米。在一實施方式中,第一離形層130的厚度約介於25微米至125微米。First, referring to FIG. 5A, a first release layer 130 is provided, and an insulating layer 110 is coated over the first release layer 130. As shown in FIG. 5A, the insulating layer 110 has a first surface S1 and a second surface S2 opposite to each other, wherein the insulating layer 110 is adhered to the first release layer 130 through the second surface S2. Specifically, in one embodiment, the first resin and the graphene are first mixed to form an insulating material; and an insulating material is coated on the first release layer 130 to form an insulation by a coating process. Layer 110. In an embodiment, the thickness of the insulating layer 110 is, for example, 5 micrometers to 100 micrometers. In one embodiment, the first release layer 130 has a thickness of between about 25 microns and 125 microns.

在一實施方式中,第一樹脂佔絕緣層110的重量百分比約為50%至90%,且石墨烯佔絕緣層110的重量百分比約為10%至50%。在一實施方式中,第一樹脂的材料包括聚尿酯樹脂、環氧樹脂、壓克力樹脂、聚醯亞胺樹脂、聚對苯二甲酸乙二酯樹脂或其組合。在一實施方式中,石墨烯具有例如呈顆粒狀、片狀、粉末狀或其組合。所述的塗佈製程包括滾筒式塗佈(roll coating)、刮刀式塗佈(blade coating)、斜板式塗佈(slide coating)、擠壓式塗佈法(slot-die)或線棒式塗佈。In one embodiment, the first resin comprises from about 50% to about 90% by weight of the insulating layer 110, and the graphene comprises from about 10% to about 50% by weight of the insulating layer 110. In one embodiment, the material of the first resin includes a polyurethane resin, an epoxy resin, an acrylic resin, a polyimide resin, a polyethylene terephthalate resin, or a combination thereof. In one embodiment, the graphene has, for example, in the form of particles, flakes, powders, or a combination thereof. The coating process includes roll coating, blade coating, slide coating, slot-die or bar coating. cloth.

請參照圖5B,在絕緣層110上形成導電層120。如圖5B所示,絕緣層110透過第一表面S1與第一離形層130貼合。具體來說,在一實施方式中,先混合第二樹脂與多個導電粒子,形成導電材料;再藉由一道塗佈製程,將導電材料塗佈於絕緣層110的第一表面S1上而形成導電層120(即:繪示於圖1與圖2中的導電層120),其中絕緣層110中的多個導電粒子均勻地分佈於第二樹脂中並彼此連接,但本發明不以此為限。另外,在其他實施方式中,亦可混合第二樹脂、多個導電粒子以及石墨烯,使多個導電粒子以及石墨烯均勻地混合而形成導電材料;再藉由一道塗佈製程,將導電材料塗佈於絕緣層110的第一表面S1上而形成導電層120’,其中導電層120’(即:繪示於圖3與圖4中的導電層120’)中的多個導電粒子以及石墨烯是均勻地分佈於第二樹脂中並彼此連接。在一實施方式中,石墨烯具有例如呈顆粒狀、片狀、粉末狀或其組合。在一實施方式中,導電層120的厚度例如是10微米至100微米。Referring to FIG. 5B, a conductive layer 120 is formed on the insulating layer 110. As shown in FIG. 5B, the insulating layer 110 is bonded to the first release layer 130 through the first surface S1. Specifically, in one embodiment, the second resin and the plurality of conductive particles are first mixed to form a conductive material; and the conductive material is coated on the first surface S1 of the insulating layer 110 by a coating process. The conductive layer 120 (ie, the conductive layer 120 shown in FIGS. 1 and 2), wherein the plurality of conductive particles in the insulating layer 110 are uniformly distributed in the second resin and connected to each other, but the present invention does not limit. In addition, in other embodiments, the second resin, the plurality of conductive particles, and the graphene may be mixed, and the plurality of conductive particles and the graphene are uniformly mixed to form a conductive material; and the conductive material is further coated by a coating process. Coated on the first surface S1 of the insulating layer 110 to form a conductive layer 120', wherein the conductive layer 120' (ie, the conductive layer 120' shown in FIG. 3 and FIG. 4) and a plurality of conductive particles and graphite The olefins are uniformly distributed in the second resin and connected to each other. In one embodiment, the graphene has, for example, in the form of particles, flakes, powders, or a combination thereof. In an embodiment, the thickness of the conductive layer 120 is, for example, 10 micrometers to 100 micrometers.

在一實施方式中,第二樹脂佔導電層120的重量百分比約為50%至90%,且多個導電粒子佔導電層120的重量百分比約為10%至50%。在一實施方式中,第二樹脂包括聚尿酯樹脂、環氧樹脂、壓克力樹脂、聚醯亞胺樹脂、聚對苯二甲酸乙二酯樹脂或其組合。在一實施方式中,導電粒子包括金、銀、銅、鋁、鎳、鐵或錫金屬顆粒、表面塗覆有銀的銅或鋁金屬顆粒、表面塗覆有金、銀、銅、鋁、鎳、鐵或錫的樹脂顆粒或玻璃顆粒。在一實施方式中,所述塗佈製程包括滾筒式塗佈、刮刀式塗佈、斜板式塗佈、擠壓式塗佈法或線棒式塗佈。In one embodiment, the second resin comprises about 50% to 90% by weight of the conductive layer 120, and the plurality of conductive particles comprise about 10% to 50% by weight of the conductive layer 120. In one embodiment, the second resin comprises a polyurethane resin, an epoxy resin, an acrylic resin, a polyimide resin, a polyethylene terephthalate resin, or a combination thereof. In one embodiment, the conductive particles comprise gold, silver, copper, aluminum, nickel, iron or tin metal particles, copper or aluminum metal particles coated with silver, and the surface is coated with gold, silver, copper, aluminum, nickel. Resin particles or glass particles of iron or tin. In one embodiment, the coating process includes roll coating, doctor blade coating, slant coating, extrusion coating or wire bar coating.

請參照圖5C,最後,提供第二離形層140,並將上述第一離形層130、絕緣層110以及導電層120所構成的疊層(如圖5B所示)翻轉後壓合於第二離形層140之上,而形成具有第一離形層130、絕緣層110、導電層120及第二離形層140之堆疊順序的電磁干擾屏蔽膜。至此步驟,本發明的電磁干擾屏蔽膜已完成。Referring to FIG. 5C, finally, a second release layer 140 is provided, and the stack of the first release layer 130, the insulating layer 110, and the conductive layer 120 (shown in FIG. 5B) is flipped over and then pressed. Above the two release layer 140, an electromagnetic interference shielding film having a stacking order of the first release layer 130, the insulation layer 110, the conductive layer 120, and the second release layer 140 is formed. Up to this step, the electromagnetic interference shielding film of the present invention has been completed.

然,在其他實施方式中,本發明的電磁干擾屏蔽膜也可以是先在第二離形層140上依序塗佈形成導電層120以及絕緣層110之後,再壓合於第一離形層130之上,而形成具有第二離形層140、導電層120、絕緣層110及第一離形層130之堆疊順序的電磁干擾屏蔽膜,本發明不以此為限。However, in other embodiments, the electromagnetic interference shielding film of the present invention may be formed by sequentially coating the conductive layer 120 and the insulating layer 110 on the second release layer 140, and then pressing the first release layer. Above the 130, an electromagnetic interference shielding film having a stacking order of the second release layer 140, the conductive layer 120, the insulating layer 110, and the first release layer 130 is formed, and the invention is not limited thereto.

以下說明包含本發明之電磁干擾屏蔽膜的實施例1至實施例4以及比較例。Hereinafter, Examples 1 to 4 and Comparative Examples including the electromagnetic interference shielding film of the present invention will be described.

表1為電磁干擾屏蔽膜中的絕緣層與導電層脂成分與使用量。 1<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>成分</b></td><td><b>樣品</b><b>1</b></td><td><b>樣品</b><b>2</b></td><td><b>樣品</b><b>3</b></td><td><b>樣品</b><b>4</b></td><td><b>樣品</b><b>5</b></td></tr><tr><td> 絕緣 材料 </td><td> 第一樹脂 </td><td> 環氧樹脂 90 wt% </td><td> 環氧樹脂 50 wt% </td><td> 環氧樹脂 90 wt% </td><td> 環氧樹脂 90 wt% </td><td> 環氧樹脂 100 wt% </td></tr><tr><td> 石墨烯 </td><td> 10 wt% </td><td> 50 wt% </td><td> 10 wt% </td><td> 10 wt% </td><td> 0 wt% </td></tr><tr><td> 導電 材料 </td><td> 第二樹脂 </td><td> 環氧樹脂 85 wt% </td><td> 環氧樹脂 85 wt% </td><td> 環氧樹脂 70 wt% </td><td> 環氧樹脂 70 wt% </td><td> 環氧樹脂 80 wt% </td></tr><tr><td> 導電粒子<sup>1</sup></td><td> 15 wt% </td><td> 15 wt% </td><td> 15 wt% </td><td> 15 wt% </td><td> 20 wt% </td></tr><tr><td> 石墨烯 </td><td> 0 wt% </td><td> 0 wt% </td><td> 15 wt% </td><td> 15 wt% </td><td> 0 wt% </td></tr></TBODY></TABLE>1:銀金屬顆粒與銅金屬顆粒之混合物,銀金屬顆粒與銅金屬顆粒的重量比為2:1。 實施例 Table 1 shows the composition and amount of the insulating layer and the conductive layer in the electromagnetic interference shielding film. Table 1 <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><td><b>ingredient</b></td><td><b>sample</b><b>1</b></td><td><b>sample</b><b>2</b></td><td><b>sample</b><b>3</b></td><td><b>Sample</b><b>4</b></td><td><b>Sample</b><b>5</b></td></tr><tr><td> Insulation Material</td><td> First Resin</td><td> Epoxy Resin 90 wt% </td><td> Epoxy resin 50 wt% </td><td> epoxy resin 90 wt% </td><td> epoxy resin 90 wt% </td><td> epoxy resin 100 wt% </td></tr><tr><td>Graphene</td><td> 10 wt% </td><td> 50 wt% </td><td> 10 wt% </td><td> 10 wt % </td><td> 0 wt% </td></tr><tr><td> Conductive Material</td><td> Second Resin</td><td> Epoxy Resin 85 wt% </td><td> Epoxy resin 85 wt% </td><td> Epoxy resin 70 wt% </td><td> Epoxy resin 70 wt% </td><td> Epoxy resin 80 Wt% </td></tr><tr><td> Conductive particles <sup>1</sup></td><td> 15 wt% </td><td> 15 wt% </td><td> 15 wt% </td><td> 15 wt% </td><td> 20 wt% </td></tr><tr><td>Graphene</td><td> 0 Wt% </td><td> 0 wt% </td><td> 15 wt% </td><td> 15 wt% </td><td> 0 wt% </td></tr></TBODY></TABLE>1: a mixture of silver metal particles and copper metal particles, the weight ratio of silver metal particles to copper metal particles is 2:1. < Example >

請參照前文關於電磁干擾屏蔽膜的結構與製造方法。下文將參照實施例1-4,更具體地描述本發明的特徵。雖然描述了以下實施例1-4,但是在不逾越本發明範疇之情況下,可適當地改變所用材料、膜厚、處理細節以及處理流程等等。因此,不應由下文所述的實施例對本發明作出限制性地解釋。 實施例 1> Please refer to the structure and manufacturing method of the electromagnetic interference shielding film. Features of the present invention will be described more specifically below with reference to Examples 1-4. Although the following Examples 1-4 are described, the materials used, the film thickness, the processing details, the processing flow, and the like can be appropriately changed without exceeding the scope of the present invention. Therefore, the invention should not be construed restrictively by the examples described below. < Example 1>

在室溫下,使用滾筒式塗佈法將表1中的樣品1之絕緣材料塗佈至做為載體之具有膜厚約50微米的PET膜,而形成絕緣層。再將表1中的樣品1之導電材料塗佈至絕緣層以形成導電層。接著,將上述之具有PET膜、絕緣層及導電層所構成的疊層翻轉後透過將導電層壓合至做為保護層之具有膜厚約75微米的PET膜,而完成本發明的電磁干擾屏蔽膜。其中,絕緣層的厚度約為5微米,導電層厚度約為10微米。 實施例 2 實施例 4 The insulating material of the sample 1 in Table 1 was applied to a PET film having a film thickness of about 50 μm as a carrier at room temperature by a roll coating method to form an insulating layer. The conductive material of the sample 1 in Table 1 was applied to the insulating layer to form a conductive layer. Next, the laminate having the PET film, the insulating layer and the conductive layer described above is inverted, and then the conductive film is laminated to a PET film having a film thickness of about 75 μm as a protective layer to complete the electromagnetic interference of the present invention. Shielding film. The insulating layer has a thickness of about 5 microns and the conductive layer has a thickness of about 10 microns. < Example 2 to Example 4 >

實施例2至實施例4的電磁干擾屏蔽膜是以與實施例1相同的步驟來製備。惟,相異之處在於:實施例2、實施例3及實施例4是分別以表1中的樣品2、樣品3及樣品4之絕緣材料與導電材料來形成絕緣層以及導電層,其中相較於實施例1,實施例3及實施例4的絕緣層以及導電層的膜厚亦有所變動。 比較例 The electromagnetic interference shielding films of Examples 2 to 4 were prepared in the same manner as in Example 1. However, the difference is that the second embodiment, the third embodiment and the fourth embodiment are respectively formed of the insulating material and the conductive material of the sample 2, the sample 3 and the sample 4 in Table 1, and the conductive layer, wherein the phase The film thicknesses of the insulating layer and the conductive layer of Example 3 and Example 4 were also changed as compared with Example 1. < Comparative example >

比較例的電磁干擾屏蔽膜的結構類似於圖3或圖4所繪示之電磁干擾屏蔽膜的結構。惟,在比較例的電磁干擾屏蔽膜中,在絕緣層與導電層之間具有額外的黏著層,且比較例是以表1中的樣品5之絕緣材料與導電材料來形成絕緣層以及導電層。比較例的製備方式如下。The structure of the electromagnetic interference shielding film of the comparative example is similar to the structure of the electromagnetic interference shielding film illustrated in FIG. 3 or FIG. However, in the electromagnetic interference shielding film of the comparative example, there is an additional adhesive layer between the insulating layer and the conductive layer, and the comparative example is an insulating material and a conductive material of the sample 5 in Table 1 to form an insulating layer and a conductive layer. . The preparation of the comparative examples is as follows.

具體來說,在室溫下,使用滾筒式塗佈法將表1中的樣品5之絕緣材料塗佈至做為載體之具有膜厚約50微米的PET膜而形成絕緣層後,再於絕緣層的表面上塗佈一層黏著層。接著,將表1中的樣品1之導電材料塗佈至絕緣層以形成導電層,以透過黏著層貼合絕緣層及導電層。接著,將上述之具有PET膜、絕緣層、黏著層及導電層所構成的疊層翻轉後將導電層壓合至做為保護層之具有膜厚約75微米的PET膜,而完成比較例的電磁干擾屏蔽膜。其中,絕緣層的厚度約為7微米,黏著層的厚度約為5微米以及導電層厚度約為10微米。Specifically, the insulating material of the sample 5 in Table 1 is applied to the PET film having a film thickness of about 50 μm as a carrier to form an insulating layer at room temperature by using a roll coating method, and then insulated. An adhesive layer is applied to the surface of the layer. Next, the conductive material of the sample 1 in Table 1 was applied to the insulating layer to form a conductive layer to adhere the insulating layer and the conductive layer through the adhesive layer. Next, the above-mentioned laminate having a PET film, an insulating layer, an adhesive layer, and a conductive layer was inverted, and then electrically laminated to a PET film having a film thickness of about 75 μm as a protective layer, and the comparative example was completed. Electromagnetic interference shielding film. The insulating layer has a thickness of about 7 μm, the adhesive layer has a thickness of about 5 μm, and the conductive layer has a thickness of about 10 μm.

表2為實施例1-4以及比較例中的電磁干擾屏蔽膜的各膜層材質與膜厚。 2<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td></td><td><b>實施例</b><b>1</b></td><td><b>實施例</b><b>2</b></td><td><b>實施例</b><b>3</b></td><td><b>實施例</b><b>4</b></td><td><b>比較例</b></td></tr><tr><td><b>載體</b></td><td> 材質 </td><td> PET </td><td> PET </td><td> PET </td><td> PET </td><td> PET </td></tr><tr><td> 膜厚 </td><td> 50μm </td><td> 50μm </td><td> 50μm </td><td> 50μm </td><td> 50μm </td></tr><tr><td><b>絕緣層</b></td><td> 材質 </td><td> 樣品1<sup>A</sup></td><td> 樣品2<sup>A</sup></td><td> 樣品3<sup>A</sup></td><td> 樣品4<sup>A</sup></td><td> 樣品5<sup>A</sup></td></tr><tr><td> 膜厚 </td><td> 5μm </td><td> 5μm </td><td> 5μm </td><td> 100μm </td><td> 7μm </td></tr><tr><td><b>黏著層</b></td><td> 材質 </td><td> </td><td> </td><td> </td><td> </td><td> 環氧膠材 </td></tr><tr><td> 膜厚 </td><td> </td><td> </td><td> </td><td> </td><td> 5μm </td></tr><tr><td><b>導電層</b></td><td> 材質 </td><td> 樣品1<sup>B</sup></td><td> 樣品2<sup>B</sup></td><td> 樣品3<sup>B</sup></td><td> 樣品4<sup>B</sup></td><td> 樣品5<sup>B</sup></td></tr><tr><td> 膜厚 </td><td> 10μm </td><td> 10μm </td><td> 100μm </td><td> 10μm </td><td> 10μm </td></tr><tr><td><b>保護層</b></td><td> 材質 </td><td> PET </td><td> PET </td><td> PET </td><td> PET </td><td> PET </td></tr><tr><td> 膜厚 </td><td> 75μm </td><td> 75μm </td><td> 75μm </td><td> 75μm </td><td> 75μm </td></tr></TBODY></TABLE>A: 請參照表1中的絕緣材料。 B: 請參照表1中的導電材料。 Table 2 shows the material layers and film thicknesses of the respective layers of the electromagnetic interference shielding films in Examples 1-4 and Comparative Examples. Table 2 <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><td></td><td><b>Example</b><b>1</b></td><td><b>Examples</b><b>2</b></td><td><b>Examples</b><b>3</b></td><td><b>Examples</b><b>4</b></td><td><b>ComparativeExamples</b></td></tr><tr><td><b>Carrier</b></td><td> Material </td><td> PET </td><td> PET </td><td> PET </td ><td> PET </td><td> PET </td></tr><tr><td> film thickness</td><td> 50μm </td><td> 50μm </td><Td> 50μm </td><td> 50μm </td><td> 50μm </td></tr><tr><td><b>insulation layer</b></td><td> material </td><td> Sample 1<sup>A</sup></td><td> Sample 2<sup>A</sup></td><td> Sample 3<sup>A</sup ></td><td> Sample 4<sup>A</sup></td><td> Sample 5<sup>A</sup></td></tr><tr><td> Membrane Thickness </td><td> 5μm </td><td> 5μm </td><td> 5μm </td><td> 100μm </td><td> 7μm </td></tr><Tr><td><b>Adhesivelayer</b></td><td>Material</td><td></td><td></td><td></td><td></td><td> epoxy adhesive</td></tr><tr><td> film thickness</td><td></td><td></td><td></Td><td></td><td> 5μm </td></tr><tr><td><b>conductive layer</b></td><td> material </td><td > Sample 1<sup>B</sup></td><td> Sample 2<sup>B</sup></td><td> Sample 3<sup>B</sup></td><td > Sample 4<sup>B</sup></td><td> Sample 5<sup>B</sup></td></tr><tr><td> Film thickness</td><td > 10μm </td><td> 10μm </td><td> 100μm </td><td> 10μm </td><td> 10μm </td></tr><tr><td><b >Protective layer</b></td><td> Material </td><td> PET </td><td> PET </td><td> PET </td><td> PET </td ><td> PET </td></tr><tr><td> film thickness</td><td> 75μm </td><td> 75μm </td><td> 75μm </td><Td> 75 μm </td><td> 75 μm </td></tr></TBODY></TABLE> A: Please refer to the insulating material in Table 1. B: Please refer to the conductive materials in Table 1.

表3為實施例1-4以及比較例的電磁干擾屏蔽膜的評價結果。具體來說,先將實施例1-4與比較例的電磁干擾屏蔽膜裁中的載體與保護層分別由絕緣層與導電層的表面撕離後再切成具有一致長度及寬度的測試樣品;接著,對各測試樣品以相同的測試條件參數進行導熱係數、延展性(使用延展試驗機,設備名為IPC TM 650 2.4.18)以及電磁波干擾遮蔽效果(使用試驗機,設備名為ASTM D4935-89)等測試,測試結果請參考下方表3。 3<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td></td><td><b>實施例</b></td><td><b>比較例</b></td></tr><tr><td><b>1</b></td><td><b>2</b></td><td><b>3</b></td><td><b>4</b></td></tr><tr><td><b>導熱係數</b><b>(W(m*k))</b></td><td> 1.5 </td><td> 2.1 </td><td> 5.0 </td><td> 3.0 </td><td> 0.86 </td></tr><tr><td><b>延展性</b><b>(%)</b></td><td> 70 </td><td> 75 </td><td> 80 </td><td> 85 </td><td> 51 </td></tr><tr><td><b>電磁波干擾遮蔽效果</b><b><sup>2</sup></b><b>(dB)</b></td><td> 61 </td><td> 63 </td><td> 70 </td><td> 65 </td><td> 50 </td></tr></TBODY></TABLE>Table 3 shows the evaluation results of the electromagnetic interference shielding films of Examples 1-4 and Comparative Examples. Specifically, the carrier and the protective layer in the electromagnetic interference shielding film of the embodiment 1-4 and the comparative example are respectively peeled off from the surface of the insulating layer and the conductive layer, and then cut into test samples having a uniform length and width; Next, thermal conductivity and ductility were performed on the respective test samples with the same test condition parameters (using an extension tester, the device name was IPC TM 650 2.4.18) and electromagnetic interference shielding effect (using a test machine, the device name was ASTM D4935- 89) For other tests, please refer to Table 3 below for test results. Table 3 <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><td></td><td><b>Example</b></td><td><b>Comparativeexample</b></td></tr><tr><td><b>1</b></td><td><b>2</b></td><td><b>3</b></td><td><b>4</b></td></tr><tr><td><b>thermalconductivity</b><b>(W(m*k))</b></td><td> 1.5 </td><td> 2.1 </td><td> 5.0 </td><td> 3.0 </td><td> 0.86 </td></tr><tr><td><b>Extensibility</b><b>(%)</b></td><td> 70 </td><td> 75 </td><td> 80 </td><td> 85 </td><td> 51 </td></tr><tr><td><b>electromagnetic interference Shading effect</b><b><sup>2</sup></b><b>(dB)</b></td><td> 61 </td><td> 63 </td ><td> 70 </td><td> 65 </td><td> 50 </td></tr></TBODY></TABLE>

由表3的結果可知,實施例1-4的電磁干擾屏蔽膜中的絕緣層使用石墨烯,不僅可以提升本發明之電磁干擾屏蔽膜的導熱性以及延展性外,同時,可以改善電磁波遮蔽效果。此外,即便薄化實施例1-2的電磁干擾屏蔽膜的整體厚度,其於導熱係數、延展性及電磁波遮蔽效果等方面依舊具有較好的表現。具體來說,經薄化之本發明的電磁干擾屏蔽膜(即絕緣層與導電層之厚度和約等於或小於15微米)的電磁波遮蔽效果至少大於60dB。As is clear from the results of Table 3, the insulating layer in the electromagnetic interference shielding film of Examples 1-4 uses graphene, which not only improves the thermal conductivity and ductility of the electromagnetic interference shielding film of the present invention, but also improves the electromagnetic wave shielding effect. . Further, even if the overall thickness of the electromagnetic interference shielding film of Example 1-2 is thinned, it still has a good performance in terms of thermal conductivity, ductility, and electromagnetic wave shielding effect. Specifically, the electromagnetic wave shielding effect of the thinned electromagnetic interference shielding film of the present invention (i.e., the thickness of the insulating layer and the conductive layer and about 15 μm or less) is at least 60 dB.

再者,實施例3-4於電磁干擾屏蔽膜中的導電層使用石墨烯,可進一步強化本發明之電磁干擾屏蔽膜的導熱性、延展性外及電磁波遮蔽效果。更具體來說,如表3所示,本發明之電磁干擾屏蔽膜的電磁波遮蔽效果約介於60dB至70dB。換言之,相較於比較例,實施例1-4的電磁干擾屏蔽膜確實於導熱係數、延展性及電磁波遮蔽效果等方面具有較好的表現。Further, in the embodiment 3-4, the conductive layer in the electromagnetic interference shielding film is made of graphene, and the thermal conductivity, the ductility and the electromagnetic wave shielding effect of the electromagnetic interference shielding film of the present invention can be further enhanced. More specifically, as shown in Table 3, the electromagnetic wave shielding effect of the electromagnetic interference shielding film of the present invention is about 60 dB to 70 dB. In other words, compared with the comparative example, the electromagnetic interference shielding film of Examples 1-4 has a good performance in terms of thermal conductivity, ductility, and electromagnetic wave shielding effect.

綜上所述,由於本發明的電磁干擾屏蔽膜中的絕緣層由第一樹脂與石墨烯所組成,使得電磁干擾屏蔽膜除了具有較佳的導熱性以及延展性外,更可改善電磁波遮蔽效果。而且,對本發明的電磁干擾屏蔽膜之整體厚度進行薄化,本發明的電磁干擾屏蔽膜仍表現出較好的電磁波遮蔽效果、導熱性以及延展性。另外,於本發明的電磁干擾屏蔽膜之導電層中加入石墨烯,可更進一步地改善電磁波遮蔽效果。In summary, since the insulating layer in the electromagnetic interference shielding film of the present invention is composed of the first resin and the graphene, the electromagnetic interference shielding film can improve the electromagnetic wave shielding effect in addition to the better thermal conductivity and ductility. . Further, the overall thickness of the electromagnetic interference shielding film of the present invention is thinned, and the electromagnetic interference shielding film of the present invention still exhibits a good electromagnetic wave shielding effect, thermal conductivity, and ductility. Further, by adding graphene to the conductive layer of the electromagnetic interference shielding film of the present invention, the electromagnetic wave shielding effect can be further improved.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。The present invention has been disclosed in the above embodiments, but it is not intended to limit the invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

10A、10B、20A、20B‧‧‧電磁干擾屏蔽膜10A, 10B, 20A, 20B‧‧‧ electromagnetic interference shielding film

110‧‧‧絕緣層110‧‧‧Insulation

120、120’‧‧‧導電層120, 120'‧‧‧ conductive layer

130‧‧‧第一離形層130‧‧‧First release layer

140‧‧‧第二離形層140‧‧‧Second release layer

S1‧‧‧第一表面S1‧‧‧ first surface

S2‧‧‧第二表面S2‧‧‧ second surface

圖1是本發明一個實施方式的電磁干擾屏蔽膜的剖面示意圖。 圖2是本發明另一個實施方式的電磁干擾屏蔽膜的剖面示意圖。 圖3是本發明另一個實施方式的電磁干擾屏蔽膜的剖面示意圖。 圖4是本發明另一個實施方式的電磁干擾屏蔽膜的剖面示意圖。 圖5A至圖5C是本發明一個實施方式的電磁干擾屏蔽膜的製作方法流程的示意圖。1 is a schematic cross-sectional view showing an electromagnetic interference shielding film according to an embodiment of the present invention. 2 is a schematic cross-sectional view showing an electromagnetic interference shielding film according to another embodiment of the present invention. 3 is a schematic cross-sectional view showing an electromagnetic interference shielding film according to another embodiment of the present invention. 4 is a schematic cross-sectional view showing an electromagnetic interference shielding film according to another embodiment of the present invention. 5A to 5C are schematic views showing a flow of a method of fabricating an electromagnetic interference shielding film according to an embodiment of the present invention.

10A‧‧‧電磁干擾屏蔽膜 10A‧‧‧Electromagnetic interference shielding film

110‧‧‧絕緣層 110‧‧‧Insulation

120‧‧‧導電層 120‧‧‧ Conductive layer

S1‧‧‧第一表面 S1‧‧‧ first surface

S2‧‧‧第二表面 S2‧‧‧ second surface

Claims (10)

一種電磁干擾屏蔽膜,包括:絕緣層,具有彼此相對的第一表面與第二表面,其中所述絕緣層由第一樹脂以及分佈於所述第一樹脂中的石墨烯所組成;以及導電層,設置於所述絕緣層的所述第一表面上,其中所述導電層由第二樹脂、多個導電粒子以及石墨烯所組成,且所述多個導電粒子與所述石墨烯分佈於所述第二樹脂中並彼此連接,其中所述導電層具有50重量百分比至80重量百分比的所述第二樹脂、10重量百分比至20重量百分比的所述多個導電粒子以及10重量百分比至30重量百分比的所述石墨烯。 An electromagnetic interference shielding film comprising: an insulating layer having first and second surfaces opposite to each other, wherein the insulating layer is composed of a first resin and graphene distributed in the first resin; and a conductive layer Provided on the first surface of the insulating layer, wherein the conductive layer is composed of a second resin, a plurality of conductive particles, and graphene, and the plurality of conductive particles and the graphene are distributed in the In the second resin and connected to each other, wherein the conductive layer has 50% by weight to 80% by weight of the second resin, 10% by weight to 20% by weight of the plurality of conductive particles, and 10% by weight to 30% by weight Percent of the graphene. 如申請專利範圍第1項所述的電磁干擾屏蔽膜,其中所述絕緣層的厚度約介於5微米至100微米。 The electromagnetic interference shielding film according to claim 1, wherein the insulating layer has a thickness of about 5 to 100 μm. 如申請專利範圍第1項所述的電磁干擾屏蔽膜,其中所述絕緣層具有50重量百分比至90重量百分比的所述第一樹脂以及10重量百分比至50重量百分比的所述石墨烯。 The electromagnetic interference shielding film according to claim 1, wherein the insulating layer has 50% by weight to 90% by weight of the first resin and 10% by weight to 50% by weight of the graphene. 如申請專利範圍第1項所述的電磁干擾屏蔽膜,其中所述第一樹脂包括聚尿酯樹脂、環氧樹脂、壓克力樹脂、聚醯亞胺樹脂、聚對苯二甲酸乙二酯樹脂或其組合。 The electromagnetic interference shielding film according to claim 1, wherein the first resin comprises a polyurethane resin, an epoxy resin, an acrylic resin, a polyimide resin, and polyethylene terephthalate. Resin or a combination thereof. 如申請專利範圍第1項所述的電磁干擾屏蔽膜,其中所述導電層的厚度約介於10微米至100微米。 The electromagnetic interference shielding film according to claim 1, wherein the conductive layer has a thickness of about 10 μm to 100 μm. 如申請專利範圍第1項所述的電磁干擾屏蔽膜,其中所述多個導電粒子分佈於所述第二樹脂中並彼此連接。 The electromagnetic interference shielding film according to claim 1, wherein the plurality of conductive particles are distributed in the second resin and connected to each other. 如申請專利範圍第6項所述的電磁干擾屏蔽膜,其中所述導電粒子包括金、銀、銅、鋁、鎳、鐵或錫金屬顆粒、表面塗覆有銀的銅或鋁金屬顆粒、表面塗覆有金、銀、銅、鋁、鎳、鐵或錫的樹脂顆粒或玻璃顆粒,且所述第二樹脂包括聚尿酯樹脂、環氧樹脂、壓克力樹脂、聚醯亞胺樹脂、聚對苯二甲酸乙二酯樹脂或其組合。 The electromagnetic interference shielding film according to claim 6, wherein the conductive particles comprise gold, silver, copper, aluminum, nickel, iron or tin metal particles, copper or aluminum metal particles coated with silver, surface a resin particle or glass particle coated with gold, silver, copper, aluminum, nickel, iron or tin, and the second resin comprises a polyurethane resin, an epoxy resin, an acrylic resin, a polyimide resin, Polyethylene terephthalate resin or a combination thereof. 如申請專利範圍第1項所述的電磁干擾屏蔽膜,其中所述電磁干擾屏蔽膜的電磁波遮蔽效果約介於60dB至70dB。 The electromagnetic interference shielding film according to claim 1, wherein the electromagnetic interference shielding film has an electromagnetic wave shielding effect of about 60 dB to 70 dB. 如申請專利範圍第1項所述的電磁干擾屏蔽膜,其中所述絕緣層的厚度與所述導電層的厚度之總和等於或小於15微米。 The electromagnetic interference shielding film according to claim 1, wherein a sum of a thickness of the insulating layer and a thickness of the conductive layer is equal to or smaller than 15 μm. 如申請專利範圍第1項所述的電磁干擾屏蔽膜,還包括:第一離形層,位於所述絕緣層的所述第二表面上,其中所述第一離形層的厚度約介於25微米至125微米;以及第二離形層,位於所述絕緣層的所述第一表面上,其中所述導電層位於所述絕緣層與所述第二離形層之間,所述第二離形層的厚度約介於25微米至125微米。 The electromagnetic interference shielding film according to claim 1, further comprising: a first release layer on the second surface of the insulating layer, wherein a thickness of the first release layer is approximately 25 microns to 125 microns; and a second release layer on the first surface of the insulating layer, wherein the conductive layer is between the insulating layer and the second release layer, the The thickness of the two release layers is between about 25 microns and 125 microns.
TW105141513A 2016-12-15 2016-12-15 Electromagnetic interference shielding film TWI605749B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105141513A TWI605749B (en) 2016-12-15 2016-12-15 Electromagnetic interference shielding film
CN201710067683.6A CN108235670A (en) 2016-12-15 2017-02-07 Electromagnetic interference shielding film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105141513A TWI605749B (en) 2016-12-15 2016-12-15 Electromagnetic interference shielding film

Publications (2)

Publication Number Publication Date
TWI605749B true TWI605749B (en) 2017-11-11
TW201822623A TW201822623A (en) 2018-06-16

Family

ID=61023153

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105141513A TWI605749B (en) 2016-12-15 2016-12-15 Electromagnetic interference shielding film

Country Status (2)

Country Link
CN (1) CN108235670A (en)
TW (1) TWI605749B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111163623A (en) 2019-07-05 2020-05-15 海宁卓泰电子材料有限公司 Shielding film with multilayer metal structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103144377B (en) * 2013-03-15 2015-12-02 松扬电子材料(昆山)有限公司 There is combined type electromagnetic shielding copper clad laminate and the manufacture method thereof of high conduction effect
JP5490957B1 (en) * 2013-10-25 2014-05-14 清二 加川 Heat dissipation film, and method and apparatus for manufacturing the same
TWI491683B (en) * 2014-02-24 2015-07-11 Graphene composite coating layer
CN104883866A (en) * 2015-05-12 2015-09-02 苏州城邦达力材料科技有限公司 Electromagnetic shielding film with excellent thermal conductivity and manufacturing process of electromagnetic shielding film
CN105578715A (en) * 2015-12-30 2016-05-11 深圳科诺桥科技股份有限公司 Electromagnetic shielding film and preparation method thereof and circuit board comprising electromagnetic shielding film
CN105602433B (en) * 2016-03-30 2018-07-10 晋江市众信超纤科技有限公司 A kind of ultraviolet shielded antistatic preparation method of composite coating

Also Published As

Publication number Publication date
CN108235670A (en) 2018-06-29
TW201822623A (en) 2018-06-16

Similar Documents

Publication Publication Date Title
KR102298791B1 (en) Electromagnetic shielding film, circuit board and manufacturing method of electromagnetic shielding film
CN108848609B (en) Electromagnetic wave shielding film, flexible printed wiring board, and method for producing same
KR101607552B1 (en) Electromagnetic-wave shielding material, and printed-wiring board
JP2019533901A (en) Electromagnetic wave shielding film and manufacturing method thereof
KR102293407B1 (en) Electromagnetic shielding film, circuit board and manufacturing method of electromagnetic shielding film
JP2016523734A (en) Heat dissipation sheet
JP5899031B2 (en) Conductive adhesive sheet, method for producing the same, and printed wiring board
JP6255816B2 (en) Electromagnetic shielding sheet and printed wiring board
US20150287495A1 (en) Composite substrate
JP6857288B1 (en) Electromagnetic wave shield film and shield printed wiring board
JP5798980B2 (en) Conductive adhesive sheet, method for producing the same, and printed wiring board
TW201121405A (en) Electro-magnetic wave shielding film and wiring board
KR20160013126A (en) Shape-retaining film, and shape-retaining-type flexible circuit board provided with same shape-retaining film
TWI605749B (en) Electromagnetic interference shielding film
TW202011086A (en) Composite stacked liquid crystal polymer substrate and preparation method thereof
JP3243919U (en) Electrically and thermally conductive gasket
CN207852904U (en) Flexible near-field communication aerial
JP6566008B2 (en) Electromagnetic shielding sheet and printed wiring board
TW201811958A (en) Conductive adhesive tape and manufacturing method thereof capable of achieving the effect of stably increasing the conductivity
TW201930076A (en) High-frequency high-transmission double-sided copper foil substrate, composite material for flexible printed circuit board and production method thereof
KR101765176B1 (en) Electrically conductive waterproof tape
JP6706655B2 (en) Electromagnetic wave shield film, flexible printed wiring board with electromagnetic wave shield film, and methods for manufacturing the same
JP6706654B2 (en) Electromagnetic wave shield film, flexible printed wiring board with electromagnetic wave shield film, and methods for manufacturing the same
JP2012227404A (en) Flexible printed wiring board
TWI695202B (en) High adhesive strength liquid crystal polymer laminate and the preparation method thereof