TWM392356U - Projection wide-angle lens and projection type display device - Google Patents

Projection wide-angle lens and projection type display device Download PDF

Info

Publication number
TWM392356U
TWM392356U TW99206272U TW99206272U TWM392356U TW M392356 U TWM392356 U TW M392356U TW 99206272 U TW99206272 U TW 99206272U TW 99206272 U TW99206272 U TW 99206272U TW M392356 U TWM392356 U TW M392356U
Authority
TW
Taiwan
Prior art keywords
lens
projection
wide
angle
negative
Prior art date
Application number
TW99206272U
Other languages
Chinese (zh)
Inventor
Kenzo Sado
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Publication of TWM392356U publication Critical patent/TWM392356U/en

Links

Description

M392356 五、新型說明: 【新型所屬之技術領域】 本創作係關於一種做為投影機裝置等的投射透鏡使 用的投射用廣角透鏡,尤指一種適用於透過微小反射鏡裝 置進行過光調製光束而形成原圖像放大投射到顯示幕上投 射用廣角透鏡及搭載此透鏡之投射型顯示裝置。M392356 V. New description: [New technical field] This is a wide-angle lens for projection used as a projection lens for projectors, etc., especially for a light-modulated beam that is applied through a micro-mirror device. A wide-angle lens for projecting on the display screen and a projection display device equipped with the lens are formed to enlarge and project the original image.

【先前技術】 將圖像投射到裝置前方的顯示幕的所謂前置投射型的 才又景>機褒置,近年來係為學校教育用或企業研修用及發表 用等所廣泛應用》 在搭載於這種投影機裝置的投射透鏡,為了避免光入 射到站在離顯示幕較近的說明者或發表者的眼睛内、或由 這些人所引起的投射像被遮擋,或者為了實現狭窄的室内 空間的大晝面化,要求小型構成的同時廣視場角。[Prior Art] The so-called pre-projection type of scenes that project images onto the display screen in front of the device is widely used in recent years for school education or corporate training and publication. A projection lens mounted on such a projector device is configured to prevent light from being incident on a viewer or a viewer's eyes that are closer to the display screen, or a projection image caused by these people is blocked, or to achieve narrowness. The large-scale interior space requires a small form factor and a wide viewing angle.

另外,做為搭載於投影機裝置的光調製元件(光閥), 習知技術中有透射型或反射型的液晶顯示元件,但近年 來’由於對小型化或高亮度化較為有利的原因,以Texas Instruments公司製的數位微小反射鏡裝置(DMD )為代表 的微小反射鏡裝置做為光閥來使用的情況較多。 在使用微小反射鏡裝置的投影儀裝置中,一般為使用 TIR稜鏡的遠心方式的裝置,但由於TIR稜鏡為高價或由 TIR稜鏡引起照明光的光量减少,圖像的亮度降低等原因, 近年來非遠心方式(y 七V卜v V夕)的投影 3 M392356 置係引人注目。 該非遠心方式中,為了效率良好地將來自微小反射鏡 裝置的必要光引導到投射透鏡並且使非必要光不入射到投 射透鏡,採用微小反射鏡裝置側(縮小侧)為非遠心的投射 透鏡,同時採用相對於投射透鏡的光軸將微小反射鏡裝置 的中心位置錯位的偏移配置。 透過採用這種偏移配置,在用於非遠心方式的投射透 鏡中,與微小反射鏡裝置的尺寸相比需要將像圈〆一 V寸一夕小)加大很多。因此,可以縮小成為非遠心的縮 小側的透鏡尺寸大小,相對於此,顯示幕側的透鏡尺寸容 易變大,難以確保85度以上的視場角,較佳地如超過1〇〇 度的視場角的同時實現小型化。 以往,做為以非遠心方式使用的投射透鏡,例如,提 出有下述專利文獻1所記載的實現視場角94度的投射透 鏡。 專利文獻1:曰本專利公開2006- 215476號公報 在以非遠心方式使用的投射透鏡中謀求廣角化時,與 遠心方式的投射透鏡相比難以抑制像場彎曲(像面彎曲)。 要想抑制像場彎曲使用具有較大的曲率的凹面的黏合(接 合)透鏡’抑制给予其它的各像差的影響的同時減小佩兹伐 和(弋7 V八一小)較為有效。另一方面,若將黏合面的 曲率加大’則透鏡直徑也變大,因此謀求小型化時,有必 要充分考慮這種黏合透鏡的配置位置。 M392356 上述專利文獻1所記載的投射透鏡,透過在透鏡系統 内將光束直徑會聚的光闌位置的附近配置黏合透鏡而謀 求小型化的同時減小佩茲伐和,從而抑制像場彎曲,以校 正色像差等其他各像差。 然而’光闌位置是照明光的光源像成像的位置,光的 月b量在度兩而成為尚溫,所以在光闌位置的附近配置黏合 透鏡,若考慮有可能損害對黏合面的黏合劑的耐久性的二 賴,甚至有可能損害對投射透鏡的性能維持的信賴,則絕 對不是較佳的方法。 【新型内容】 本創作是基於上述情況而完成的,其目的在於,提供 -種可以兼顧廣角化和小型化,並且在光闌位置的附近的 溫度變得非常高的使用環境τ也可以維持良好的光學性能 的投射用廣角透鏡及搭載這種投射用廣肖透鏡的投射型^ 示裝置3 …為達上述目的,本創作的投射用廣角透鏡,其特徵為, 從放大側依次由具有負的折射力的第_透鏡組具有正的 折射力的第二透鏡組、具有正的折射力的第三透鏡組構 成’透過將配置在縮小側的微小反射鏡裝置進行過光調製 的光束向放大側投射,並且縮小側成為非遠心, 該第-透鏡組由三片具有負的折射力的透鏡構成, 該第三透鏡組從放大側依次由分別具有正、負、正、 負、正的折射力的五片單透鏡構成。 M392356 在本創作中’較佳地該第二透鏡組從放大側依次包括 具有正的折射力的透鏡及具有負的折射力的透鏡相互黏合 的黏合透鏡而構成,在該第三透鏡組中設定光闌位置。 另外,較佳地該第一透鏡組的三片具有負的折射力的 透鏡中至少一片由樹脂製的非球面透鏡構成。 另外,較佳地該第一透鏡組的三片具有負的折射力的 透鏡從放大側依次由如下透鏡構成:即由樹脂製的非球面 透鏡構成的第一透鏡、由將凸面朝向放大側的負的彎月形 透鏡構成的第二透鏡及第三透鏡,使該第一透鏡的折射力 的絕對值小於該第二透鏡和該第三透鏡的折射力的絕對 值。 另外’較佳地設為該第二透鏡組從放大側依次由包括 具有正的折射力的透鏡及具有負的折射力的透鏡相互黏合 的二片黏合透鏡和具有正的折射力的透鏡而構成的第一方 式;或從放大側依次包括具有正的折射力的透鏡、具有負 的折射力的透鏡及具有正的折射力的透鏡相互黏合的三片 黏合透鏡而構成的第二方式;或從放大側依次包括具有正 的折射力的透鏡和具有負的折射力的透鏡相互黏合的第一 黏合透鏡以及具有負的折射力的透鏡和具有正的折射力的 透鏡相互黏合的第二黏合透鏡而構成的第三方式中的任意 一種方式構成。 另外,在位於該第一透鏡組的最靠放大側的黏合面中 相互黏合的放大側透鏡及縮小側透鏡的各阿貝數分別設為 vL及vs時,較佳地滿足下述條件式(1 )。 M392356 |vs- vl|<23.0 ……(1) 另外’本創作所涉及的投射型顯示裝置,其特徵為, 具備光源、微小反射鏡裝置、將來自該光源的光束向該微 小反射鏡裝置引導的照明光學部、本創作戶斤涉及的投射用 廣角透鏡,用該微小反射鏡裝置對來自該光源的光束進行 光調製’並透過該投射用廣角透鏡投射到顯示幕上。 另外,該“放大側”是指被投射側(顯示幕側),縮小投 • 射時方便上也將顯示幕側稱為放大側。另一方面’該“縮,= 側”是指原圖像顯示區域側(光閥(微小反射鏡裝置)側),縮 小投射時方便上也將光閥側稱為縮小側。 、 另外,該“光闌位置,,是指各主光線相互交差的位置 (光源的成像位置)。 , 另外,該“微小反射鏡裝置”是指並列配置多個可以 改變傾斜度的微小反射鏡的光調製元件,例如,TexasIn addition, as a light modulation element (light valve) mounted on a projector device, a transmissive or reflective liquid crystal display element is known in the prior art, but in recent years, it is advantageous for miniaturization or high brightness. A micro mirror device typified by a digital micro mirror device (DMD) manufactured by Texas Instruments Co., Ltd. is often used as a light valve. In a projector device using a micro mirror device, a telecentric device using TIR稜鏡 is generally used, but since the TIR稜鏡 is expensive or the amount of illumination light is reduced by TIR稜鏡, the brightness of the image is lowered. In recent years, the projection of the non-telecentric mode (y 7 V V v V eve) 3 M392356 is eye-catching. In the non-telecentric mode, in order to efficiently guide the necessary light from the micro mirror device to the projection lens and to prevent unnecessary light from entering the projection lens, the microlens device side (reduction side) is a non-telecentric projection lens. At the same time, an offset arrangement in which the center position of the micro mirror device is displaced with respect to the optical axis of the projection lens is employed. By adopting such an offset configuration, in the projection lens for the non-telecentric mode, it is necessary to increase the image circle by a factor of a small size compared to the size of the micro mirror device. Therefore, it is possible to reduce the size of the lens which is a non-telecentric reduction side. On the other hand, the lens size on the display screen side tends to be large, and it is difficult to secure an angle of view of 85 degrees or more, preferably more than 1 degree. At the same time, the field angle is miniaturized. Conventionally, as a projection lens that is used in a non-telecentric manner, for example, a projection lens that realizes an angle of view of 94 degrees as described in Patent Document 1 below has been proposed. When the projection lens used in a non-telecentric manner is wide-angled, it is difficult to suppress field curvature (field curvature) compared with a telecentric projection lens. It is effective to suppress the effect of giving the other aberrations while suppressing the influence of the other aberrations to suppress the curvature of the field using the concave (joining) lens having a large curvature. On the other hand, if the curvature of the bonding surface is increased, the lens diameter is also increased. Therefore, when miniaturization is required, it is necessary to sufficiently consider the arrangement position of the bonding lens. In the projection lens described in the above-mentioned Patent Document 1, the adhesive lens is disposed in the vicinity of the pupil position where the beam diameter is concentrated in the lens system, and the Petzval sum is reduced while suppressing the curvature of field. Other aberrations such as chromatic aberration. However, the position of the pupil is the position where the light source of the illumination light is imaged, and the amount of the moon b of the light is at a temperature of two degrees, so that the bonding lens is disposed in the vicinity of the pupil position, and the adhesive that may damage the bonding surface is considered. The durability of the secondary, and even the possibility of damaging the reliability of the performance of the projection lens, is definitely not the preferred method. [New content] The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a wide range of use environments that can achieve both wide-angle and miniaturization, and that have a very high temperature in the vicinity of the pupil position. For the above purpose, the wide-angle lens for projection of optical performance and the projection type display device 3 equipped with such a wide-angle lens for projection are used for the above purpose, and the wide-angle lens for projection of the present invention is characterized in that it has a negative The second lens group having a positive refractive power and the third lens group having a positive refractive power constitute a 'light beam modulated by a micro mirror device arranged on the reduction side to the amplification side Projecting, and the reduction side becomes non-telecentric, the first lens group is composed of three lenses having a negative refractive power, and the third lens group has positive, negative, positive, negative, positive refractive powers from the amplification side in order. The five-piece single lens is constructed. M392356 In the present invention, it is preferable that the second lens group includes, in order from the magnification side, a lens having a positive refractive power and a lens having a negative refractive power bonded to each other, and is set in the third lens group. Optical position. Further, preferably, at least one of the three lenses having a negative refractive power of the first lens group is composed of a resin-made aspherical lens. Further, preferably, the three lenses having the negative refractive power of the first lens group are sequentially constituted by the lens from the magnification side, that is, the first lens composed of a resin-made aspherical lens, and the convex surface facing the magnification side. The second lens and the third lens formed by the negative meniscus lens have an absolute value of the refractive power of the first lens smaller than an absolute value of the refractive power of the second lens and the third lens. Further, it is preferable that the second lens group is formed of, in order from the magnification side, a two-piece adhesive lens including a lens having a positive refractive power and a lens having a negative refractive power, and a lens having a positive refractive power. a first mode; or a second mode comprising a lens having a positive refractive power, a lens having a negative refractive power, and a three-piece adhesive lens having a positive refractive force bonded to each other in order from the magnification side; or The amplifying side sequentially includes a first bonding lens in which a lens having a positive refractive power and a lens having a negative refractive power are bonded to each other, and a second bonding lens in which a lens having a negative refractive power and a lens having a positive refractive force are bonded to each other. Any of the third aspects of the configuration is configured. Further, when the Abbe numbers of the magnification side lens and the reduction side lens which are bonded to each other on the most enlarged side of the first lens group are vL and vs, respectively, the following conditional expression is preferably satisfied ( 1 ). M392356 |vs- vl|<23.0 (1) Further, the projection display device according to the present invention is characterized in that it includes a light source and a micro mirror device, and a light beam from the light source is applied to the micro mirror device. The guided illumination optical unit and the projection wide-angle lens according to the present invention use the micro-mirror device to optically modulate the light beam from the light source and project it onto the display screen through the wide-angle lens for projection. In addition, the "magnification side" refers to the projection side (display screen side), and when the projection is reduced, it is convenient to also refer to the display side as the magnification side. On the other hand, the "contracted, = side" refers to the original image display area side (light valve (micro mirror device) side), and the light valve side is also referred to as the reduction side when it is reduced in projection. In addition, the "aperture position" refers to a position at which the principal rays intersect each other (an imaging position of the light source). In addition, the "micro-mirror device" refers to a plurality of micro-mirrors that can change the inclination in parallel. Light modulation components, for example, Texas

InStrUmentS公司製的數位微小反射鏡裝置(DMD)相當於 此0 • 》了達到上述目的,本創作的投射用廣角透鏡構成為 一個透鏡、·且從放大側依次具有負、正、正的折射力並且縮 小側設為非遠心,第一透鏡組由三片具有負的折射力的透 鏡構成,第二透鏡組從放大側依次由分別具有正、負、正、 負 '正的折射力的五片單透鏡構成。 透過這樣構成,可以達到視場角85度以上的廣角化的 同守謀求小型化’並且可以得到在光闌位置的附近溫度變 7 M392356 得非常高的使用環境下也可以維待良好的光學性能的投射 用廣角透鏡及搭載該透鏡的投射型顯示裝置。 尤其透過將第三透鏡組從放大側依次由分別具有 正'負、正、負、正的折射力的五片單透鏡構成,可以良 好地校正球面像差、色像差、像場彎曲,並且在光鬧位置 的附近的溫度變得非常高的使用環境下也可以維持良好的 光學性能。 【實施方式】 以下,利用圖式對本創作的實施方式進行說明。圖ι 為後述實施例丨的透鏡結構圖,以此透鏡為本實施方式的 代表進行說明。圖中z表示光軸。 本貫施方式的投射用廣角透鏡從放大側(顯示幕側)依 次由具有負的折射力的第一透鏡組G|、具有正的折射力的 第一透鏡組G2、具有正的折射力的第三透鏡組h構成, 第一透鏡組Gl由三片具有負透鏡(第一透鏡^〜第三透鏡 L3)構成,第三透鏡組eh從放大側依次由分別具有正、負、 正 '負、正的折射力的五片單透鏡(第九透鏡u〜第十三 透鏡L|3)構成。 本實施方式的投射用廣角透鏡成為如下:在配置於縮 小側的微小反射鏡裝置的圖像顯示面】中,給予圖像資訊 的光束,透過蓋玻璃2從縮小側(圖中右惻)入射’透過該 投射用廣角透鏡放大投射到配置在放大側(圖中左側)的顯 不幕上。另外,本實施方式的投射用廣角透鏡的縮小惻成 M392356 為非遠心,以便可以以非遠心方式使用。而且,在圖i中, 微小反射鏡裝置的圖像顯示面1的中央位置描繪成與投射 用廣角透鏡的光軸Z —致’但實際使用時,相對於投射用 廣角透鏡的光軸Z’微小反射鏡裝置的圖像顯示面1的中 央位置配置為向預定的方向(例如,圖中下方)偏移(參照 圖 13 )。 另外,在本實施方式的投射用廣角透鏡中,構成為該 第二透鏡組G2從放大側依次包括正透鏡(第四透鏡及 負透鏡(第五透鏡Ls)相互黏合的黏合透鏡,在該第三透鏡 組G3中設定有光闌位置。 透過這樣構成第二透鏡組G2,減小對受(孔經)光闌位 置影響的像差的影響,並且透過適當地利用由黏合面引起 的對軸上與畫面周邊的影響力的差,可以良好地校正像場 彎曲。另外’透過將光闌位置(各主光線相互交差的位置) δ又疋在僅由單透鏡構成的第三透鏡組中,因不產生在使 用時溫度變高的光闌位置附近配置黏合透鏡時所擔心的黏 合面中的黏著劑的耐久性的問題,所以可以維持良好的光 學性能。 另外’在本實施方式的投射用廣角透鏡中,該第一透 鏡組G,的三片負的折射力的透鏡從放大側依次構成為由 樹脂製的非球面透鏡構成的第一透鏡^、由將凸面朝向放 大側的負的彎月形透鏡構成的第二透鏡L2、和第三透鏡 L3構成’設為第一透鏡Li的折射力的絕對值小於第二透鏡 M392356 面透鏡的情況設為近軸區The digital micro-mirror device (DMD) manufactured by InStrUmentS Co., Ltd. is equivalent to this. The above-mentioned purpose is achieved by the wide-angle lens of the projection, and has a negative, positive, and positive refractive power from the magnification side. And the reduction side is set to be non-telecentric, the first lens group is composed of three lenses having a negative refractive power, and the second lens group is sequentially from the magnification side by five pieces each having positive, negative, positive, negative and positive refractive powers. Single lens configuration. With this configuration, it is possible to achieve a wide-angle of the angle of view of 85 degrees or more, and to achieve miniaturization, and it is possible to obtain a high optical environment in the vicinity of the pupil position. A wide-angle lens for projection and a projection display device on which the lens is mounted. In particular, by arranging the third lens group in order from the magnification side by five single lenses each having a positive 'negative, positive, negative, positive refractive power, spherical aberration, chromatic aberration, curvature of field can be well corrected, and Good optical performance can also be maintained in a use environment where the temperature in the vicinity of the noisy position becomes very high. [Embodiment] Hereinafter, an embodiment of the present creation will be described using a drawing. Fig. 1 is a lens configuration diagram of an embodiment 后 to be described later, and a lens will be described as a representative of the embodiment. In the figure, z represents the optical axis. The projection wide-angle lens of the present embodiment is sequentially provided from the magnification side (display screen side) by the first lens group G| having a negative refractive power, the first lens group G2 having a positive refractive power, and having a positive refractive power. The third lens group h is configured. The first lens group G1 is composed of three sheets having negative lenses (first lens ^ to third lens L3), and the third lens group eh is positively, negatively, positively and negatively respectively from the magnification side. It is composed of five single lenses (ninth lens u to thirteenth lens L|3) of positive refractive power. The wide-angle lens for projection of the present embodiment is such that, in the image display surface of the micro mirror device disposed on the reduction side, the light beam given the image information is incident through the cover glass 2 from the reduction side (right side in the figure) 'This projection is magnified by a wide-angle lens and projected onto the display side on the magnification side (left side in the figure). Further, the widening lens for projection of the present embodiment is not telecentric, so that it can be used in a non-telecentric manner. Further, in Fig. i, the central position of the image display surface 1 of the micro mirror device is depicted as being coincident with the optical axis Z of the wide-angle lens for projection, but in actual use, with respect to the optical axis Z' of the wide-angle lens for projection The central position of the image display surface 1 of the micro mirror device is arranged to be shifted in a predetermined direction (for example, the lower side in the drawing) (refer to FIG. 13). Further, in the wide-angle lens for projection according to the present embodiment, the second lens group G2 includes, in order from the magnification side, a positive lens (a fourth lens and a negative lens (fifth lens Ls) are bonded to each other, and The pupil position is set in the three lens group G3. By configuring the second lens group G2 in this manner, the influence on the aberration affected by the pupil position is reduced, and the alignment is caused by the appropriate use of the alignment surface caused by the bonding surface. The curvature difference between the upper and the periphery of the screen can be well corrected, and the 'transmission of the pupil position (the position at which the principal rays intersect each other) δ is entangled in the third lens group composed of only a single lens. Since there is no problem of durability of the adhesive in the adhesive surface which is worried when the adhesive lens is placed in the vicinity of the pupil position where the temperature is high during use, it is possible to maintain good optical performance. In the wide-angle lens, the three lenses of the negative refractive power of the first lens group G are sequentially formed from the magnification side as a first lens composed of a resin-made aspherical lens, and the convex surface is oriented The second lens L2 and the third lens L3 which are formed by the negative meniscus lens on the enlarged side constitute 'the absolute value of the refractive power of the first lens Li is smaller than the second lens M392356. The lens is set as the paraxial region.

La及第三透鏡L3的折射力(非球 域的折射力)的絕對值。 、=,透過構成第一透鏡組Gi,儘管是寬視場角,也 是變像差、像場,曲、像散(非點收差) 4尤其疋文視場角影響的像差。 另外’在本實施方式的投射用廣角透鏡中,該第二透 鏡組〇2成為從放大側依次包括正透鏡(第四透鏡^及負 透兄(第五透鏡l5)相互黏合的二片黏合透鏡和正透鏡(在 本實施方式中為二片正透鏡〈第六透鏡l6及第八透鏡l8 &gt;’但也可以設為一片或三片以上的正透鏡)而構成的第一 方式’但也可以代替這種第一方4 ’㈣5所示,設為從 放大側依-人包括正透鏡(第四透鏡Lj、負透鏡(第五透鏡 k)及正透鏡(第六透鏡[ο相互黏合的三片黏合透鏡而構 成的第一方式,或如圖7所示,從放大側依次包括正透鏡 (第四透鏡乙4)及負透鏡(第五透鏡Ls)相互黏合的第一黏合 透在兄 '和負透鏡(第六透鏡[Ο及正透鏡(第七透鏡匕7)相互 黏合的第二黏合透鏡而構成的第三方式。 這樣’透過由上述的第一方式至第三方式構成第二透 鏡組Gy在上述的效果的基礎上,還使用三片黏合、2組 黏合透鏡增加黏合面的數,從而減少對受(孔徑)光闌位置 影響的像差的影響,並且透過適當地利用由黏合面引起的 對軸上與晝面周邊的影響力的差,可以進一步良好地校正 像場靑曲。 M392356 另外,在本實施方式的投射用廣角读# 項月适鏡中,將在位於 該第二透鏡組Gz的最靠放大側的黏合面中相互黏合的放 大側透鏡(第四透鏡L4)及縮小側透鏡(第五透鏡[ο的各阿 貝數分別設為VL及Vs時,構成為滿足下述條件^⑴。: 且,構成為更較佳地滿足下述條件式(1A)或下述條件式 (1B)。 |vs-vl|&lt;23.0 ……(1) 10&lt;|vs- vl|&lt;23.0 ……(1A) 10&lt;vs- vl&lt;23.0 ...... (IB) 透過這樣構成’可以避免由黏合面引起的對色像差的 過多的影響,並且可以良好地校正各像差。 其次,參照圖13說明本創作所涉及的投射型顯示裝 置的實施方式。圖13所示的投射型顯示裝置具備照明系統 20、做為對來自該照明系統20的光束進行光調製的光閥的 微小反射鏡裝置11,做為投射用廣角透鏡1〇使用上述實 施方式所涉及的投射用廣角透鏡。 該照明系統20構成為如下:具備具有白色光源21a 及橢圓面鏡21b而構成的照明燈21、色輪22、柱積分儀 23、照明透鏡24、反射鏡25而構成,透過色輪22按時間 序列將來自照明燈21的光束選擇轉換為三原色(R、g、B) 的各色光的同時,透過柱積分儀23將與光束的光軸垂直的 剖面的光量分佈進行均勻化後’透過照明透鏡24及反射鏡 25照射到微小反射鏡裝置11。 M392356 照射在微小反射鏡裝置1 1的光束,在該微小反射鏡 裝置11中根據圖像資訊進行光調製後入射到投射用廣角 透鏡10’並透過該投射用廣角透鏡10投射到顯示幕31。 另外’本實施方式的投射型顯示裝置採用非遠心方 式’並配置成微小反射鏡裝置11的中心位置相對於投射用 廣角透鏡10的光軸位移到圖中下方。為了這種配置,投射 用廣角透鏡10需要比微小反射鏡裝置U的尺寸大很多的 像圏12 »另外,透過微小反射鏡裝置u進行光調製的光 束透過投射用廣角透鏡10出射到圖中左斜上方,在高於光 軸Z的位置(圖中上方的位置)形成投射畫面(投射畫面中心 位置P〇、投射畫面上端位置Ρι、投射畫面下端位置P2分 別示於顯示幕31上)。另外,在圖13中用虛線表示的光線 Q是與投射晝面的角(隅)相對應的出射角度的光線,為 了表示與光轴z的相對的關係,便於方便圖示的光線。 本實施方式的投射型顯示裝置透過使用上述實施方 式所涉及的投射用廣角透鏡,實現小型構成且視場角85 度以上(較佳的方式為丨〇〇度以上),並且可以維持穩定的 光學性能’所以可以提高裝置的便攜性或使用性。 ^以下,對本創作所涉及的投射用廣角透鏡的具體的實 ^例進行說明。另外,在表示實施例2〜4的結構的圖3〜 中,對與實施例1具有相同的作用效果的部件附加與圖 1圖2中所使用的相同的符號。 &lt;實施例1&gt; 圖1及圖2所示,實施例1所涉及的投射用廣角透 12 鏡处放大側依次由具有負的折射力的第—透鏡組G,、具有 正的折射力的第二透鏡組G2、具有正的折射力的第三透鏡 •且構成,第一透鏡組G|由三片負透鏡(第一透鏡川〜第 二透鏡L3)構成,第三透鏡組G3從放大側依次由分別具有 正、負、正 '負、正的折射力的五片單透鏡(第九透鏡Lg 〜第十二透鏡Ln )構成。另外,縮小側成為非遠心,以 便可以以非遠心方式使用,並且在第三透鏡組的縮小側 攸縮小側依次配置微小反射鏡裝置的圖像顯示面1及蓋玻 璃2。 該第一透鏡組G,從放大側依次包括由在近軸區域具 有較弱的負的折射力的兩面非球面的樹脂製透鏡構成的第 一透鏡L,、由將凸面朝向放大側的負的彎月形透鏡構成的 第一透鏡L2、由將凹面朝向放大側的負的彎月形透鏡構成 的第二透鏡L3,使第一透鏡L|的折射力小於第二透鏡L2 及第三透鏡L3折射力。 s亥第二透鏡組〇2,從放大側依次包括由雙凸透鏡構成 的第四透鏡L4及由雙凹透鏡構成的第五透鏡^相互黏合 的二片黏合透鏡、由雙凸透鏡構成的第六透鏡[6、由將凹 面朝向放大側的負的彎月形透鏡構成的第七透鏡l7、由雙 凸透鏡構成的第八透鏡L8。 该第二透鏡組ο]從放大側依次包括由雙凸透鏡構成 的第九透鏡“、由雙凹透鏡構成的第十透鏡l|〇、由雙凸 透鏡構成的第十一透鏡L|由將凸面朝向放大側的負彎 月形透鏡構成的第十二透鏡L,2、為雙^透鏡的第十三透 13 M392356 鏡!^3,並在該第三透鏡組〇3中設定光闌位置。 該第一透鏡川的各非球面的形狀由下述的非球面式 規定。在該第一透鏡1^中’即使是其中一面為非球面的透 鏡也可以得到像差校正效果,但更較佳兩面為非球面的透 鏡(對於以下的實施例2〜4的第一透鏡L,中的各非球面的 形狀也相同)。 【數1】The absolute value of the refractive power (the refractive power of the non-spherical domain) of La and the third lens L3. And =, through the formation of the first lens group Gi, although it is a wide angle of view, it is also an aberration of the aberration, the image field, the curvature, the astigmatism (non-point difference) 4, in particular, the influence of the angle of view of the text. Further, in the wide-angle projection lens of the present embodiment, the second lens group 〇2 is a two-piece adhesive lens including a positive lens (the fourth lens and the negative lens (the fifth lens 15) are bonded to each other in order from the magnification side. The positive lens (in the present embodiment, the first mode in which two positive lenses <the sixth lens 16 and the eighth lens 18> are used, but may be one or three or more positive lenses) may be used. Instead of the first square 4'(4)5, it is assumed that the positive lens from the side of the magnification includes a positive lens (a fourth lens Lj, a negative lens (fifth lens k), and a positive lens (a sixth lens [o" A first method of forming a sheet of bonded lenses, or as shown in FIG. 7, including a positive lens (fourth lens B 4) and a negative lens (fifth lens Ls), which are bonded to each other in order from the magnification side a third mode formed by a second adhesive lens that is bonded to the negative lens (the sixth lens [the 透镜 and the positive lens (the seventh lens 匕 7).] The second lens is configured to pass through the first to third modes described above. Group Gy uses three pieces on the basis of the above effects. The two sets of bonded lenses increase the number of adhesive faces, thereby reducing the influence on the aberrations affected by the (aperture) stop position, and by appropriately utilizing the influence on the on-axis and the periphery of the face caused by the adhesive faces. In addition, in the wide-angle reading of the projection for the projection of the present embodiment, in the bonding surface located on the most enlarged side of the second lens group Gz, M392356 is inferior to each other. When the polarization side lens (fourth lens L4) and the reduction side lens (the fifth lens [the fifth lens] are set to VL and Vs, respectively, the following conditions are satisfied: (1): Preferably, the following conditional expression (1A) or the following conditional expression (1B) is satisfied. |vs-vl|&lt;23.0 (1) 10&lt;|vs-vl|&lt;23.0 ......(1A) 10&lt;vs - vl &lt; 23.0 (IB) By configuring in this way, it is possible to avoid excessive influence on chromatic aberration caused by the bonding surface, and it is possible to satisfactorily correct various aberrations. Next, the creation will be described with reference to FIG. Embodiment of the projection display device according to the present invention. The projection display device shown in FIG. 13 is provided with illumination The micro-mirror device 11 as a light valve that modulates the light beam from the illumination system 20 is used as a wide-angle lens for projection. The projection wide-angle lens according to the above embodiment is used. The illumination lamp 21 having the white light source 21a and the elliptical mirror 21b, the color wheel 22, the column integrator 23, the illumination lens 24, and the mirror 25 are configured, and the transmission color wheel 22 is illuminated from time to time. The light beam of the lamp 21 is selectively converted into light of each of the three primary colors (R, g, B), and the light amount distribution of the cross section perpendicular to the optical axis of the light beam is homogenized by the column integrator 23, and then transmitted through the illumination lens 24 and the mirror. 25 is irradiated to the micro mirror device 11. The light beam irradiated to the micromirror device 1 is filtered by the micromirror device 11 based on the image information, and then incident on the projection wide-angle lens 10' and projected onto the display screen 31 through the projection wide-angle lens 10. Further, the projection display apparatus of the present embodiment adopts a non-telecentric mode and is arranged such that the center position of the micro mirror device 11 is displaced to the lower side in the figure with respect to the optical axis of the projection wide-angle lens 10. For this arrangement, the wide-angle lens 10 for projection needs to be much larger than the size of the micro-mirror device U. In addition, the light beam modulated by the micro-mirror device u is transmitted through the wide-angle lens 10 for projection to the left. Inclinedly above, a projection screen is formed at a position higher than the optical axis Z (the upper position in the drawing) (the projection screen center position P〇, the projection screen upper end position Ρι, and the projection screen lower end position P2 are respectively displayed on the display screen 31). Further, the light ray Q indicated by a broken line in Fig. 13 is a light ray having an exit angle corresponding to the angle (隅) of the projected pupil plane, and is a light indicating a relative relationship with the optical axis z, which is convenient for illustration. The projection display apparatus of the present embodiment realizes a small-sized configuration by using the wide-angle projection lens according to the above-described embodiment, and has a viewing angle of 85 degrees or more (preferably, a degree or more), and can maintain stable optics. Performance 'so can improve the portability or usability of the device. ^ Hereinafter, a specific example of the wide-angle lens for projection involved in the present creation will be described. In the drawings 3 to 3 which show the configurations of the second to fourth embodiments, the same components as those of the first embodiment are denoted by the same reference numerals as those used in Fig. 1 and Fig. 2 . &lt;Embodiment 1&gt; As shown in Figs. 1 and 2, the magnification side of the wide-angle transmission lens for projection according to the first embodiment is sequentially composed of a first lens group G having a negative refractive power, and has a positive refractive power. a second lens group G2, a third lens having a positive refractive power, and configured, the first lens group G| is composed of three negative lenses (first lens to second lens L3), and the third lens group G3 is enlarged The side is sequentially composed of five single lenses (ninth lens Lg to twelfth lens Ln) each having a positive, negative, positive 'negative, positive refractive power. Further, the reduction side is not telecentric, so that it can be used in a non-telecentric manner, and the image display surface 1 and the cover glass 2 of the micro mirror device are disposed in this order on the reduction side and the reduction side of the third lens group. The first lens group G includes, in order from the magnification side, a first lens L composed of a resin lens having a double aspherical surface having a weak negative refractive power in the paraxial region, and a negative lens having a convex surface toward the magnification side. a first lens L2 composed of a meniscus lens, and a second lens L3 composed of a negative meniscus lens having a concave surface toward the magnification side, so that the refractive power of the first lens L| is smaller than that of the second lens L2 and the third lens L3 Refraction. The second lens group 〇2 includes a second lens L4 composed of a lenticular lens and a fifth lens formed by a biconcave lens, and a sixth lens formed by a lenticular lens. 6. A seventh lens 17 composed of a negative meniscus lens having a concave surface toward the magnification side, and an eighth lens L8 composed of a lenticular lens. The second lens group ο] includes, in order from the magnification side, a ninth lens composed of a lenticular lens, a tenth lens 1 〇 composed of a biconcave lens, and an eleventh lens L y composed of a lenticular lens. The twelfth lens L, 2 of the negative meniscus lens on the side is the thirteenth lens 13 M392356 mirror of the double lens, and the pupil position is set in the third lens group 〇3. The shape of each aspherical surface of a lens is defined by the following aspherical type. In the first lens 1', even if one of the lenses is aspherical, the aberration correction effect can be obtained, but it is more preferable that both sides are The aspherical lens (the shape of each aspherical surface in the first lens L of the following Examples 2 to 4 is also the same). [Number 1]

Z _丫 2/r 1 + λ/1 - Κ X Y 2/R 2 12 Σ Α*γί 其中, Ζ.疋從距光軸距離為γ的非球面上的點向非球面頂 點的切平面(垂直於光軸的平面)所引晝的垂線的長度, Υ:距光軸的距離, R.非球面的光轴附近的曲率半經, Κ :離心率, A;:非球面係數(i=3〜12)。 將實施例1所涉及的投射用廣角透鏡的各透鏡面的曲 率半徑R(mm)、各透鏡的中心厚度及各透鏡間的空氣間隔 (以下稱為“軸上面間隔,,)D(mm)、各透鏡的有效直徑 (mm)、各透鏡對d線的折射率Nd及各透鏡的d線的阿貝 數乂(1的值示於表1的上段。另外,在表1及以下的表2〜4 中面號碼的數字表示從放大側的順序,面號碼的右側附加* 號的面為非球面。在實施例1及以下的實施例2〜4中,這 14 M392356 些非球面的曲率半徑R表示在各表中光軸Z上的曲率半徑 的值,但為了在所對應的透鏡結構圖中容易看懂圖面,引 出線未必從與光軸Z的交點引出。 另外,在表1的下段示出對應於各非球面的各常數 K、八3〜A|2的值。Z _丫2/r 1 + λ/1 - Κ XY 2/R 2 12 Σ γ*γί where Ζ.疋 is a tangent plane from the aspherical surface of the distance γ from the optical axis to the aspherical vertex (vertical The length of the perpendicular line drawn by the plane of the optical axis, Υ: the distance from the optical axis, R. the curvature near the optical axis of the aspherical surface, Κ: eccentricity, A;: aspherical coefficient (i=3) ~12). The radius of curvature R (mm) of each lens surface of the projection wide-angle lens according to the first embodiment, the center thickness of each lens, and the air gap between the lenses (hereinafter referred to as "axial spacing", D (mm) The effective diameter (mm) of each lens, the refractive index Nd of each lens to the d-line, and the Abbe number of the d-line of each lens (the value of 1 is shown in the upper part of Table 1. Moreover, Table 1 and the following table The numbers of the middle numbers in 2 to 4 indicate the order from the magnification side, and the surface to which the * is added to the right side of the face number is an aspherical surface. In the first and second embodiments 2 to 4, the curvature of these aspheric surfaces is 14 M392356 The radius R indicates the value of the radius of curvature on the optical axis Z in each table, but in order to easily understand the drawing surface in the corresponding lens structure diagram, the lead line does not necessarily lead out from the intersection with the optical axis Z. In addition, in Table 1 The lower stage shows the values of the constants K and 八3 to A|2 corresponding to the respective aspherical surfaces.

15 M392356 【表1】 焦距:8.40 、視場角: 101.7度、亮度: F2.5、 光瞳位置: -12·2 (誰小側最賴鏡面) 面號碼 R D 有效直徑 Nd -71.4290 4.500 63.99 1.49100 57.6 2* 143.6420 9.999 54.97 3 82.1360 2.400 45.03 1.80300 37.6 4 19.5450 13.812 31.98 5 -36.1460 2.400 29.36 1.68597 57.1 6 -313.8970 14.506 28.61 7 47.0200 10.000 23.50 1.57819 41.0 8 -15.5030 3.500 21.98 1.68565 57.2 9 20.5400 1.576 19.81 10 49.8520 9.806 19.82 1.71360 30.8 11 -38.3930 1.608 20.38 12 -23.0020 1.800 20.21 1,78800 28.9 13 -42.7360 0.199 21.00 14 31.1100 6.061 21.35 1.48500 58.3 15 -28.0630 7.885 21.00 16 28.6360 3.730 15.45 1.51742 52.4 17 -23.6590 0.100 14.70 18 -22.1580 2.000 14.67 1.78800 47.4 19 16.7620 1.000 13.69 20 16.8060 8.999 14.32 1.51742 52.4 21 -31.9780 0.200 14.62 22 42.5680 1.000 14.45 1.80518 25.4 23 14.7430 0.100 13.99 24 15.3800 4.200 14.01 1.49700 81.6 25 -33.0150 30.500 13.98 26 〇〇 1.050 20.61 1.50691 63.4 27 〇〇 0.006 20.77 *非球面15 M392356 [Table 1] Focal length: 8.40, angle of view: 101.7 degrees, brightness: F2.5, aperture position: -12·2 (Who is the smallest side of the mirror) Face number RD Effective diameter Nd -71.4290 4.500 63.99 1.49100 57.6 2* 143.6420 9.999 54.97 3 82.1360 2.400 45.03 1.80300 37.6 4 19.5450 13.812 31.98 5 -36.1460 2.400 29.36 1.68597 57.1 6 -313.8970 14.506 28.61 7 47.0200 10.000 23.50 1.57819 41.0 8 -15.5030 3.500 21.98 1.68565 57.2 9 20.5400 1.576 19.81 10 49.8520 9.806 19.82 1.71360 30.8 11 -38.3930 1.608 20.38 12 -23.0020 1.800 20.21 1,78800 28.9 13 -42.7360 0.199 21.00 14 31.1100 6.061 21.35 1.48500 58.3 15 -28.0630 7.885 21.00 16 28.6360 3.730 15.45 1.51742 52.4 17 -23.6590 0.100 14.70 18 -22.1580 2.000 14.67 1.78800 47.4 19 16.7620 1.000 13.69 20 16.8060 8.999 14.32 1.51742 52.4 21 -31.9780 0.200 14.62 22 42.5680 1.000 14.45 1.80518 25.4 23 14.7430 0.100 13.99 24 15.3800 4.200 14.01 1.49700 81.6 25 -33.0150 30.500 13.98 26 〇〇1.050 20.61 1.50691 63.4 27 〇〇 0.006 20.77 *Aspherical

*非球面係、數 面 K 1 -106.206139 2 -26722.0456 面 A3 a4 八5 Αβ 八7 1 1.6955460E-04 3.8372738E-05 -1.9378628E-06 2.0327326Ε-08 1.0033726E-09 2 1.0329854E-03 -1.8560997E-05 2.7651535E-07 2.2733205Ε-09 -6.0108261E-11 面 八8 A9 Ai〇 An A12 1 -7.8520511E-12 -2.5401514E-13 -6.1937033E-14 2.9059404E-15 -3.4769718E-17 2 -9.6443291E-12 -9.1303475E-13 -1.6760282E-14 2.7021262E-15 -4.0811537E-17 16 M392356 如表1所示’實施例1所涉及的投射用廣角透鏡的第 四透鏡L4的阿貝數V4和第五透鏡L5的阿貝數V5的差V5 —V4是1 6.2。1/ 4及V5相當於上述丸和Vs,實施例1所涉 及的投射用廣角透鏡均滿足上述條件式(丨)、(1A)、(丨B)。 另外’位於最靠放大側的透鏡面的有效直徑(63 99mm) 與位於最靠縮小側的透鏡面的有效直徑(13 98rnm)的比成 為五倍以下到4,577〇63.99/13.98),實現廣角化(視場角 1 〇 1 ·7度)的同時也實現了小型化。 &lt;實施例2&gt; 如圖3及圖4所示,實施例2所涉及的投射用廣角透 鏡成為與實施例1所涉及的投射用廣角透鏡相同的結構。 將實施例2所涉及的投射用廣角透鏡的各透鏡面的曲 率半徑R(mm)'軸上面間隔D(mm)、各透鏡的有效直徑 (mm)、各透鏡對d線的折射率队及各透鏡的d線的阿貝 數vd的值示於表2的上段。 另外,在表2的下段示出對應於各非球面的各 K、A3〜Al2的值。 M392356 【表2】 焦距:8.46、視場角:101.2度、亮度:F2.5、光瞳位置:-8.2 (從縮小側最終透鏡面) 面號碼 R D 有效直徑 Nd 1* -71.4300 4.500 66.04 1.49100 57.6 2* 141.5290 9.999 56.85 3 73.7670 2.400 46.78 1.80300 40.3 4 20.5270 15.668 33.56 5 -36.5030 2.400 28.64 1.80295 47.6 6 -203.9920 14.584 28.01 7 55.9710 10.000 22.33 1.58413 40.1 8 -15,2950 3.400 20.50 1.75134 52.9 9 20.6960 1.196 19.19 10 39.0480 9.812 19.21 1.75804 27.8 11 -44.6730 1.870 20.00 12 -24.6150 1.800 19.85 1,78798 30.3 13 -48.6600 0.200 20.67 14 30.0440 6.165 21.26 1.48500 58.3 15 -27.1630 7.883 21.00 16 30.2000 3.772 15.72 1.51742 52.4 17 -23.4480 0.098 15.02 18 -22.0190 2.000 15.00 1.78800 47.4 19 17.1030 1.000 14.45 20 17.3810 9.000 15.13 1.51823 59.0 21 -44.5190 0.200 15.27 22 37.7930 1.000 15.02 1.80518 25.4 23 16.0480 0.100 14.61 24 16.7680 4.200 14.62 1.49700 81.6 25 -30.7350 34.500 14.64 26 〇〇 1.050 20.65 1.50691 63.4 27 〇〇 0.009 20.78 *非球面*Aspherical surface, number surface K 1 -106.206139 2 -26722.0456 Surface A3 a4 Eight 5 Αβ Eight 7 1 1.6955460E-04 3.8372738E-05 -1.9378628E-06 2.0327326Ε-08 1.0033726E-09 2 1.0329854E-03 - 1.8560997E-05 2.7651535E-07 2.2733205Ε-09 -6.0108261E-11 Face 8 8 A9 Ai〇An A12 1 -7.8520511E-12 -2.5401514E-13 -6.1937033E-14 2.9059404E-15 -3.4769718E-17 2 -9.6443291E-12 -9.1303475E-13 -1.6760282E-14 2.7021262E-15 -4.0811537E-17 16 M392356 As shown in Table 1, 'the fourth lens L4 of the projection wide-angle lens according to the first embodiment The difference V5 - V4 between the Bayesian number V4 and the Abbe number V5 of the fifth lens L5 is 16.2. 1/4 and V5 correspond to the above-mentioned pellets and Vs, and the wide-angle lens for projection according to the first embodiment satisfies the above conditional expression (丨), (1A), (丨B). In addition, the ratio of the effective diameter (63 99mm) of the lens surface on the most enlarged side to the effective diameter (13 98rnm) of the lens surface on the most reduced side is five times or less to 4,577〇63.99/13.98), achieving wide-angle (The field of view is 1 〇1 · 7 degrees), and miniaturization is also achieved. &lt;Embodiment 2&gt; As shown in Figs. 3 and 4, the wide-angle lens for projection according to the second embodiment has the same configuration as the wide-angle lens for projection according to the first embodiment. The curvature radius R (mm) of each lens surface of the projection wide-angle lens according to the second embodiment, the axial distance D (mm), the effective diameter (mm) of each lens, and the refractive index of each lens pair d line The value of the Abbe number vd of the d line of each lens is shown in the upper part of Table 2. Further, in the lower part of Table 2, values of K, A3 to Al2 corresponding to each aspherical surface are shown. M392356 [Table 2] Focal length: 8.46, angle of view: 101.2 degrees, brightness: F2.5, aperture position: -8.2 (final lens surface from the reduction side) Surface number RD Effective diameter Nd 1* -71.4300 4.500 66.04 1.49100 57.6 2* 141.5290 9.999 56.85 3 73.7670 2.400 46.78 1.80300 40.3 4 20.5270 15.668 33.56 5 -36.5030 2.400 28.64 1.80295 47.6 6 -203.9920 14.584 28.01 7 55.9710 10.000 22.33 1.58413 40.1 8 -15,2950 3.400 20.50 1.75134 52.9 9 20.6960 1.196 19.19 10 39.0480 9.812 19.21 1.75804 27.8 11 -44.6730 1.870 20.00 12 -24.6150 1.800 19.85 1,78798 30.3 13 -48.6600 0.200 20.67 14 30.0440 6.165 21.26 1.48500 58.3 15 -27.1630 7.883 21.00 16 30.2000 3.772 15.72 1.51742 52.4 17 -23.4480 0.098 15.02 18 -22.0190 2.000 15.00 1.78800 47.4 19 17.1030 1.000 14.45 20 17.3810 9.000 15.13 1.51823 59.0 21 -44.5190 0.200 15.27 22 37.7930 1.000 15.02 1.80518 25.4 23 16.0480 0.100 14.61 24 16.7680 4.200 14.62 1.49700 81.6 25 -30.7350 34.500 14.64 26 〇〇1.050 20.65 1.50691 63.4 27 〇〇 0.009 20.78 *Aspherical

*非球面係數 面 K 1 -98.590870 2 -30531.5231 面 A3 A, A5 Ae 八7 1 1.3334526E-04 3.9683582E-05 -1.9816468E-06 2.0061314E-08 1.0232719E-09 2 9.9569778E-04 -1.9121806E-05 2.8431735E-07 3Ό277498Ε-09 -6.6975800E-12 面 A8 A9 A,0 A„ Ai2 1 -6.3854033E-12 -2.1821633E-13 -6.5308128E-14 2.8790756E-15 -3.3082029E-17 2 -6.5337185E-12 -8.0798074E-13 -1.9077804E-14 2.2192911E -15 -3.0341970E-17 18 M392356 如表2所示’實施例2所涉及的投射用廣角透鏡的第 四透鏡L4的阿貝數V4和第五透鏡“的阿貝數V5的差V5 —v4是1 2.8。^ 4及v5相當於該和Vs,實施例2所涉及 的投射用廣角透鏡均滿足上述條件式(1)、( 1 A)、( 1B)。 另外,位於最靠放大側的透鏡面的有效直徑(66 〇4mm) 與位於最靠縮小側的透鏡面的有效直徑(14.64mm)的比成 為五倍以下到4.511〇66.04/14.64),實現廣角化(視場角 101.2度)的同時也實現了小型化。 &lt;實施例3 &gt; 如圖5及圖6所示’實施例3所涉及的投射用廣角透 鏡成為與實施例1所涉及的投射用廣角透鏡相同的結構。 但不同之處在於,在第二透鏡組g2從放大側依次由如下透 鏡構成:由雙凸透鏡構成的第四透鏡L4、由雙凹透鏡構成 的第五透鏡L5和由雙凸透鏡構成的第六透鏡L6相互黏合 的二片黏合透鏡’由將凹面朝向放大側的負的彎月形透鏡 構成的第七透鏡L?,以及由雙凸透鏡構成的第八透鏡 將實施例3所涉及的投射用廣角透鏡的各透鏡面的曲 率半徑R(mm)、軸上面間隔D(mm)、各透鏡的有效直徑 (mm)、各透鏡對d線的折射率Nd及各透鏡的d線的阿貝 數vd的值示於表3的上段。 卜在表3的下段示出有對應於各非球面的各常數 κ、A3〜A12的值。 M392356 【表3】 焦距:8.36 、視場角: 102.0 度、•‘ 亮度:F2.5、 光瞳位置: -11·5 (從縮小側最鏡面) 面號碼 R D 有效直徑 Nd y λ 1* -71.4290 4.500 60.03 1.49100 57.6 2* 157.8170 10.000 52.29 3 68.1240 2.400 40.29 1.80300 35.1 4 15.6520 10.830 27.27 5 -35.2920 2.400 27.13 1.69603 56.7 6 -244.5920 14.500 26.64 7 118.3370 10.000 22.68 1.60575 37.8 8 -15.3690 3.500 21.51 1.70866 56.0 9 17.7410 10.010 20.51 1.63000 35.8 10 - 31.7910 1.849 20.37 11 «18.1770 1.600 20.12 1.78800 28.2 12 -32.7780 0.200 21.06 13 37.1410 4.972 21.22 1.48500 58.3 14 -28.5270 7.900 2 [00 15 26.2820 3.900 15.45 1.51742 52.4 16 -22.1920 0.099 14.71 17 -20.8990 2.000 14.68 1.78800 47.4 18 16.8060 1.000 13.73 19 16.5450 9.000 14.42 1.51742 52.4 20 -30.9780 0.200 14.72 21 38.0620 1.000 14.51 1.80518 25.4 22 13.9500 0.100 14.00 23 14.5080 4.200 14.01 1.49700 81.6 24 -36.4630 30.500 13.96 25 〇〇 1.050 20.62 [50691 63.4 26 〇〇 0.005 20.80 *非球面 *非球面係數 面 κ 1 -149.366399 2 -32238.6978 面 Α3 Α, 八5 α7 1 2.5448211Ε-04 3.8308743Ε-05 -1.9612174Ε-06 1.6475301Ε-08 1.0552537Ε-09 2 1.1656549Ε-03 -1.8269622Ε-05 1.7839833Ε-07 -4.3259715Ε-09 -3.0707505Ε-10 面 八8 Α9 Αη Α12 1 2.5505071 Ε-12 -2.3898653Ε-13 -9.7853119Ε-14 4.3701316Ε-15 -5.2749003Ε-17 2 -9.3754040Ε-12 -1.9916867Ε-13 1.1523239Ε-14 5.5553783Ε-16 -1.0275207Ε-17 20 M392356 如表3所示,實施例3所涉及的投射用廣角透鏡的第 四透鏡U的阿貝數V4和第五透鏡L5的阿貝數”的差心 —V4是1 8.2。i/ 4及vs相當於上述Vl及Vs,實施例3所涉 及的投射用廣角透鏡均滿足上述條件式(1)、( 1 A)、( 1 B)。 另外,位於最靠放大側的透鏡面的有效直徑(6〇.〇3mm) 與位於最靠縮小側的透鏡面的有效直徑(13.96mm)的比是 五倍以下而為4.300〇60·03/13.96),實現廣角化(視場角 102.0度)的同時實現小型化。 &lt;實施例4&gt; 如圖7及圖8所示,實施例4所涉及的投射用廣角透 鏡成為與實施例1所涉及的投射用廣角透鏡相同的結構。 但不同之處在於’第二透鏡組&amp;從放大側依次由如下透鏡 構成.即由雙凸透鏡構成的第四透鏡L4及由雙凹透鏡構成 的第五透鏡Ls相互黏合的第一透鏡;由將凸面朝向放大側 的負的彎月形透鏡構成的第六透鏡u及由雙凸透鏡構成 的第七透鏡L7相互黏合的第二黏合透鏡;由雙凹透鏡構成 的第八透鏡L“以及由雙凸透鏡構成第九透鏡[9。 另外第二透鏡組G 3成為與實施例1所涉及的投射用 廣角透鏡相同的結構,但通過由六牧透鏡構成第二透鏡組 2 ’構成第三透鏡組G3的透鏡的號碼各相差一個(1 〇 f' 丁、、δ )。即’實施例4所涉及的投射用廣角透鏡的 — 鏡組G3從放大側依次包括由雙凸透鏡構成的第十 透鐘ί 丄 10、由雙凹透鏡構成的第十一透鏡LM、由雙凸透鏡 21 M392356 構成的第十二透鏡l12、由將凸面朝向放大側的負彎月形 透鏡構成的第十三透鏡L13、由雙凸透鏡構成的第一 4透 鏡 L|4。 將實施例4所涉及的投射用廣角透鏡的各透鏡面的曲 率半徑R(mm)、軸上面間隔D(mm)、各透鏡的有效直徑 (mm)、各透鏡對d線的折射率Nd及各透鏡的d線的阿貝 數vd的值示於表4的上段。 另外,表4的下段示出有對應於各非球面的各常數 K、八3〜A12的值。 22 M392356 【表4】*Aspherical coefficient surface K 1 -98.590870 2 -30531.5231 Surface A3 A, A5 Ae Eight 7 1 1.3334526E-04 3.9683582E-05 -1.9816468E-06 2.0061314E-08 1.0232719E-09 2 9.9569778E-04 -1.9121806E -05 2.8431735E-07 3Ό277498Ε-09 -6.6975800E-12 Face A8 A9 A,0 A„ Ai2 1 -6.3854033E-12 -2.1821633E-13 -6.5308128E-14 2.8790756E-15 -3.3082029E-17 2 - 6.5337185E-12 -8.0798074E-13 -1.9077804E-14 2.2192911E -15 -3.0341970E-17 18 M392356 As shown in Table 2, the Abbe number of the fourth lens L4 of the projection wide-angle lens according to the second embodiment The difference V5 - v4 of the Abbe number V5 of V4 and the fifth lens is 1 2.8. ^4 and v5 correspond to the sum Vs, and the wide-angle lens for projection according to the second embodiment satisfies the above conditional expressions (1), (1 A), and (1B). In addition, the ratio of the effective diameter (66 〇 4 mm) of the lens surface located on the most enlarged side to the effective diameter (14.64 mm) of the lens surface located on the most reduced side is five times or less to 4.511 〇 66.04/14.64), achieving wide angle The miniaturization has also been achieved at the same time (the field of view is 101.2 degrees). &lt;Example 3 &gt; As shown in Fig. 5 and Fig. 6, the wide-angle lens for projection according to the third embodiment has the same configuration as that of the wide-angle lens for projection according to the first embodiment. However, the second lens group g2 is composed of, in order from the magnification side, a fourth lens L4 composed of a lenticular lens, a fifth lens L5 composed of a biconcave lens, and a sixth lens L6 composed of a lenticular lens. a two-piece bonded lens that is bonded to each other, a seventh lens L that is formed of a negative meniscus lens that has a concave surface toward the magnification side, and an eighth lens that is formed of a lenticular lens. The wide-angle lens for projection according to the third embodiment The radius of curvature R (mm) of each lens surface, the axial spacing D (mm), the effective diameter (mm) of each lens, the refractive index Nd of each lens to the d-line, and the Abbe number vd of the d-line of each lens Shown in the upper part of Table 3. In the lower part of Table 3, values corresponding to the constants κ and A3 to A12 of the respective aspherical surfaces are shown. M392356 [Table 3] Focal length: 8.36, angle of view: 102.0 degrees, •' Brightness: F2.5, aperture position: -11·5 (most mirrored from the reduction side) Face number RD Effective diameter Nd y λ 1* - 71.4290 4.500 60.03 1.49100 57.6 2* 157.8170 10.000 52.29 3 68.1240 2.400 40.29 1.80300 35.1 4 15.6520 10.830 27.27 5 -35.2920 2.400 27.13 1.69603 56.7 6 -244.5920 14.500 26.64 7 118.3370 10.000 22.68 1.60575 37.8 8 -15.3690 3.500 21.51 1.70866 56.0 9 17.7410 10.010 20.51 1.63000 35.8 10 - 31.7910 1.849 20.37 11 «18.1770 1.600 20.12 1.78800 28.2 12 -32.7780 0.200 21.06 13 37.1410 4.972 21.22 1.48500 58.3 14 -28.5270 7.900 2 [00 15 26.2820 3.900 15.45 1.51742 52.4 16 -22.1920 0.099 14.71 17 -20.8990 2.000 14.68 1.78800 47.4 18 16.8060 1.000 13.73 19 16.5450 9.000 14.42 1.51742 52.4 20 -30.9780 0.200 14.72 21 38.0620 1.000 14.51 1.80518 25.4 22 13.9500 0.100 14.00 23 14.5080 4.200 14.01 1.49700 81.6 24 -36.4630 30.500 13.96 25 〇〇1.050 20.62 [50691 63.4 26 〇〇0.0 05 20.80 *Aspherical surface* Aspherical coefficient surface κ 1 -149.366399 2 -32238.6978 Area Α3 Α, 八5 α7 1 2.5448211Ε-04 3.8308743Ε-05 -1.9612174Ε-06 1.6475301Ε-08 1.0552537Ε-09 2 1.1656549Ε- 03 -1.8269622Ε-05 1.7839833Ε-07 -4.3259715Ε-09 -3.0707505Ε-10 face eight 8 Α9 Αη Α12 1 2.5505071 Ε-12 -2.3898653Ε-13 -9.7853119Ε-14 4.3701316Ε-15 -5.2749003Ε-17 2 -9.3754040Ε-12 -1.9916867Ε-13 1.1523239Ε-14 5.5553783Ε-16 -1.0275207Ε-17 20 M392356 As shown in Table 3, the Abe of the fourth lens U of the projection wide-angle lens according to Example 3 The difference in the Abbe number of the number V4 and the fifth lens L5 - V4 is 18.2. i/4 and vs correspond to Vl and Vs described above, and the wide-angle lens for projection according to the third embodiment satisfies the above conditional expressions (1), (1A), and (1B). Further, the ratio of the effective diameter (6 〇.〇3 mm) of the lens surface located on the most enlarged side to the effective diameter (13.96 mm) of the lens surface located on the most reduced side is five times or less and is 4.300 〇 60·03/ 13.96), miniaturization is achieved while achieving wide angle (viewing angle of 102.0 degrees). &lt;Example 4&gt; As shown in Fig. 7 and Fig. 8, the wide-angle lens for projection according to the fourth embodiment has the same configuration as that of the wide-angle lens for projection according to the first embodiment. However, the difference is that the 'second lens group &amp; is composed of the following lenses in order from the magnification side. That is, the fourth lens L4 composed of the lenticular lens and the first lens Ls composed of the biconcave lens are bonded to each other; a second lens u composed of a negative meniscus lens having a convex surface toward the magnification side and a second lens L7 composed of a lenticular lens, and an eighth lens L composed of a biconcave lens and a lenticular lens Ninth lens [9. Further, the second lens group G3 has the same configuration as the wide-angle lens for projection according to the first embodiment, but the lens of the third lens group 2' is constituted by the second lens group 2'. Each of the numbers differs by one (1 〇f', δ). That is, the mirror group G3 of the wide-angle lens for projection according to the fourth embodiment includes, in order from the magnification side, a tenth transparent lens 由10 composed of a lenticular lens. An eleventh lens LM composed of a biconcave lens, a twelfth lens l12 composed of a lenticular lens 21 M392356, a thirteenth lens L13 composed of a negative meniscus lens having a convex surface toward the magnification side, and a lenticular lens The first four lenses L|4 are formed. The radius of curvature R (mm) of each lens surface of the projection wide-angle lens according to the fourth embodiment, the axial distance D (mm), and the effective diameter (mm) of each lens, The values of the refractive index Nd of each lens to the d-line and the Abbe number vd of the d-line of each lens are shown in the upper part of Table 4. In addition, the lower stage of Table 4 shows the constants K and 八3 corresponding to the respective aspherical surfaces. Value of ~A12. 22 M392356 [Table 4]

距:8·38 、視場角: 101.8 度、 亮度:F2.5、 光瞳位置: -11.5 丨 面號碼 R D 有效直徑 Nd V 6 1* -71.4290 4.500 7_ 1.49100 57.6 2* 360.5550 9.997 61.19 3 78.7530 2.400 46.42 1.78800 47,4 4 20.6900 11.229 33.72 5 -89.9860 2.400 32.64 1.49700 81.6 6 26.0170 19.982 28.62 7 31.0180 11.991 26.51 1.51823 59.0 8 -34.7260 6.600 23.83 1.49700 81.6 9 15.2700 1.384 18.95 10 23.5100 3.000 18.96 1.83481 42.7 11 12.2460 8.271 17.48 1.63980 34.5 12 -38.0110 1.074 17.00 13 -23.8520 1.600 16.72 1.80610 33.3 14 73.2880 0.200 17.01 15 23.1190 5.779 17.58 1.51742 52.4 16 -22.5000 2.491 17.50 17 19.2760 5.308 15.70 1.51742 52.4 18 -25.4550 0.097 14.49 19 -23.6720 2.001 14.47 1.78800 47.4 20 14.0960 1.000 13.46 21 15.5210 8.183 14.10 1.51742 52.4 22 -31.2330 0.200 14.48 23 46.4490 1.000 14.36 1.80518 25.4 24 16.2710 0.175 13.99 25 18.0460 4.200 13.99 1.49700 81.6 26 -28.0350 30.500 14.01 27 〇〇 1.050 20.59 1.50691 63.4 28 〇〇 0.002 20.79 *非球面 *非球面係數Distance: 8·38, field of view: 101.8 degrees, brightness: F2.5, aperture position: -11.5 face number RD effective diameter Nd V 6 1* -71.4290 4.500 7_ 1.49100 57.6 2* 360.5550 9.997 61.19 3 78.7530 2.400 46.42 1.78800 47,4 4 20.6900 11.229 33.72 5 -89.9860 2.400 32.64 1.49700 81.6 6 26.0170 19.982 28.62 7 31.0180 11.991 26.51 1.51823 59.0 8 -34.7260 6.600 23.83 1.49700 81.6 9 15.2700 1.384 18.95 10 23.5100 3.000 18.96 1.83481 42.7 11 12.2460 8.271 17.48 1.63980 34.5 12 -38.0110 1.074 17.00 13 -23.8520 1.600 16.72 1.80610 33.3 14 73.2880 0.200 17.01 15 23.1190 5.779 17.58 1.51742 52.4 16 -22.5000 2.491 17.50 17 19.2760 5.308 15.70 1.51742 52.4 18 -25.4550 0.097 14.49 19 -23.6720 2.001 14.47 1.78800 47.4 20 14.0960 1.000 13.46 21 15.5210 8.183 14.10 1.51742 52.4 22 -31.2330 0.200 14.48 23 46.4490 1.000 14.36 1.80518 25.4 24 16.2710 0.175 13.99 25 18.0460 4.200 13.99 1.49700 81.6 26 -28.0350 30.500 14.01 27 〇〇1.050 20.59 1.50691 63.4 28 〇〇 0 .002 20.79 *Aspherical *Aspherical coefficient

面 K 1 -1.765702 2 -23878,4959 面 a3 A, A5 Ae A7 1 5.8352451 E-04 1.2473819E-05 -1.5023339E-06 4.2283052E-08 6.5649909E-10 2 8.9676948E-04 -2.1800641E-05 2.8598272E - 07 3.1621156E-10 -1.3088555E-10 面 Ab Αιο An A|2 1 -6.5713545E-11 -1Ό496324Ε-13 1.1139850E-13 -3.4449615E-15 3.3921333E-17 2 -5.8783334E-12 -4.5368620E-13 -4.1779535E-15 1.5653592E-15 -2.7135300E-17 23 M392356 如表4所不,實施例4所涉及的投射用廣角透鏡的第 四透鏡L4的阿貝數W和第五透鏡Ls的阿貝數v5的差心 —h是22.6。^4及A相當於上述〜和,實施例4所涉 及的投射用廣角透鏡均滿足上述條件式(1)、(1A)、(1B)。 另外,位於最靠放大側的透鏡面的有效直徑(7〇 〇〇mm) 與位於最靠縮小側的透鏡面的有效直徑(14 〇lmm)的是五 倍以下而成為4.996(与70.00Π4.01),實現廣角化(視場角 1 〇 1.8度)的同時也實現了小型化。 另外,圖9〜12是表示實施例丨〜4所涉及的投射用廣 角透鏡的各像差(球面像差、畸變、像散及倍率色像差)的 像差圖。在這些像差圖中ω表示半視場角,在球面像差的 像差圖表示對G(綠)、Β(藍)及R(紅)的各波長的像差曲線, 在L率色像差的像差圖表示對G的B及R的像差曲線。如 圖9〜12所示’實施例i〜4所涉及的投射用廣角透鏡良好 地校正以畸變或倍率色像差為主的各像差,並成為視場角 1〇1·2〜102.0度' F號碼(F十 &gt; 八)2 5,廣角且明亮的 投射透鏡。 另外,本創作的投射用廣角透鏡不限於上述實施例, 可X進行各種方式的變形。例如,可以適當地變形各透鏡 的曲率半把R及軸上面間隔D。 另外’做為本創作的投射型顯示裝置也不限於上Face K 1 -1.765702 2 -23878, 4959 face a3 A, A5 Ae A7 1 5.8352451 E-04 1.2473819E-05 -1.5023339E-06 4.2283052E-08 6.5649909E-10 2 8.9676948E-04 -2.1800641E-05 2.8598272 E - 07 3.1621156E-10 -1.3088555E-10 Face Ab Αιο An A|2 1 -6.5713545E-11 -1Ό496324Ε-13 1.1139850E-13 -3.4449615E-15 3.3921333E-17 2 -5.8783334E-12 -4.5368620 E-13 -4.1779535E-15 1.5653592E-15 -2.7135300E-17 23 M392356 As shown in Table 4, the Abbe number W and the fifth lens Ls of the fourth lens L4 of the projection wide-angle lens according to Embodiment 4 The difference in the Abbe number v5 - h is 22.6. ^4 and A correspond to the above-mentioned and the projection wide-angle lens according to the fourth embodiment satisfy the above conditional expressions (1), (1A), and (1B). In addition, the effective diameter (7〇〇〇mm) of the lens surface located on the most enlarged side and the effective diameter (14 〇lmm) of the lens surface located on the most reduced side are five times or less and become 4.996 (with 70.00Π4. 01), the realization of wide angle (viewing angle of 1 〇 1.8 degrees) and miniaturization. In addition, FIGS. 9 to 12 are aberration diagrams showing aberrations (spherical aberration, distortion, astigmatism, and lateral chromatic aberration) of the projection wide-angle lens according to the first to fourth embodiments. In these aberration diagrams, ω represents the half angle of view, and the aberration diagram of the spherical aberration represents the aberration curves for the wavelengths of G (green), Β (blue), and R (red), at the L rate chromatic image. The difference aberration diagram shows the aberration curves for B and R of G. As shown in FIGS. 9 to 12, the wide-angle projection lens according to the embodiments i to 4 satisfactorily corrects aberrations mainly including distortion or chromatic aberration of magnification, and becomes a viewing angle of 1 〇1·2 to 102.0 degrees. 'F number (F ten &gt; eight) 2 5, wide-angle and bright projection lens. Further, the wide-angle lens for projection of the present invention is not limited to the above embodiment, and various modifications can be made to X. For example, it is possible to appropriately deform the curvature half of each lens and the interval D between the axes. In addition, the projection display device as the creation is not limited to the above.

名士 摄,、 J 以疋具備本創作的投射用廣角透鏡的各種裝置社 構。 ’、口 24 M392356 【圖式簡單說明】 圖1係實施例1之投射用廣角透鏡的詳細結構圖。 圖2係表示實施例1之投射用廣角透鏡的光線轨跡結構圖。 圖3係實施例2之投射用廣角透鏡的詳細結構圖。 圖4係表示實施例2之投射用廣角透鏡的光線轨跡結構圖。 圖5係實施例3之投射用廣角透鏡的詳細結構圖。 圖6係表示實施例3之投射用廣角透鏡的光線轨跡結構圖。 圖7係實施例4之投射用廣角透鏡的詳細結構圖。 圖8係表示實施例4之投射用廣角透鏡的光線軌跡結構圖。 圖9係實施例1之投射用廣角透鏡的各像差圖。 圖10係實施例2之投射用廣角透鏡的各像差圖。 圖1 1係實施例3之投射用廣角透鏡的各像差圖。 圖1 2係實施例4之投射用廣角透鏡的各像差圖。 圖13係一實施方式之投射型顯示裝置的簡要結構圖。 【主要元件符號說明】 1 圖像顯不面 10投射用廣角透鏡 12像圈 20照明系统 2 1 a白色光源 22色輪 24照明透鏡 Z光軸 2 蓋玻璃 11微小反射鏡裝置 21照明燈 21b橢圓面鏡 2 3柱積分儀 25反射鏡 31顯示幕 M392356 G 1第一透鏡組 G 2第二透鏡組 G3第三透鏡組 L, 第一透鏡 l2 第二透鏡 l3 第三透鏡 l4 第四透鏡 l5 第五透鏡 l6 第六透鏡 l7 第七透鏡 l8 第八透鏡 l9 第九透鏡 L 10 第十透鏡 L 1 1 t第十一透鏡 L 1 2 第十二透鏡 L i : s第十三透鏡 L 14 第十四透鏡 D, 〜D28 軸上面間隔 Ri 〜r28 曲率半徑 P〇 投射畫面中心位置 p. 投射畫面上端位置 P2 投射晝面下端位置 Q 光線 26Celebrity Photographs, J. I have various device organizations that have wide-angle lenses for projection. ' mouth 24 M392356 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a detailed structural view of a wide-angle lens for projection of the first embodiment. Fig. 2 is a view showing the structure of a ray trajectory of the wide-angle lens for projection of the first embodiment. Fig. 3 is a detailed structural view of a wide-angle lens for projection of the second embodiment. Fig. 4 is a view showing the structure of a ray trajectory of the wide-angle lens for projection of the second embodiment. Fig. 5 is a detailed structural view of a wide-angle lens for projection of the third embodiment. Fig. 6 is a view showing the structure of a ray trajectory of the wide-angle lens for projection of the third embodiment. Fig. 7 is a detailed structural view of a wide-angle lens for projection of the fourth embodiment. Fig. 8 is a view showing the structure of a ray trajectory of the wide-angle lens for projection of the fourth embodiment. Fig. 9 is a view showing aberrations of the wide-angle lens for projection of the first embodiment. Fig. 10 is a view showing aberrations of the wide-angle lens for projection of the second embodiment. Fig. 1 is a diagram showing aberrations of the wide-angle lens for projection of the third embodiment. Fig. 1 is a diagram showing aberrations of the wide-angle lens for projection of the fourth embodiment. Fig. 13 is a schematic configuration diagram of a projection display apparatus according to an embodiment. [Main component symbol description] 1 Image display surface 10 Projection wide-angle lens 12 image circle 20 illumination system 2 1 a white light source 22 color wheel 24 illumination lens Z optical axis 2 cover glass 11 micro mirror device 21 illumination lamp 21b ellipse Mask 2 3 column integrator 25 mirror 31 display screen M392356 G 1 first lens group G 2 second lens group G3 third lens group L, first lens l2 second lens l3 third lens l4 fourth lens l5 Five lens l6 sixth lens l7 seventh lens l8 eighth lens l9 ninth lens L 10 tenth lens L 1 1 t eleventh lens L 1 2 twelfth lens L i : s thirteenth lens L 14 tenth Four lenses D, ~D28 Axis above the interval Ri ~ r28 Curvature radius P 〇 Projection screen center position p. Projection screen upper end position P2 Projection plane lower end position Q Ray 26

Claims (1)

M392356M392356 從放大側依次由具有負的折射力的第—透鏡級 具有正的折射力的第二透鏡組;以及 具有正的折射力的第三透鏡組, 的微小反射鏡裝置而進行了光調製 側,並且縮小側成為非遠心;a second lens group having a positive refractive power from a first lens stage having a negative refractive power; and a third lens group having a positive refractive power are sequentially modulated from the side of the magnification to the light modulation side, And narrowing the side becomes non-telecentric; 其中,該第-透鏡組係由三片負透鏡構成, 該第三透鏡組從放大側依次由分別具有正、負、正、 負、正的折射力的五片單透鏡構成。 2·如申請專利範圍第丨項所述之投射用廣角透鏡,豆 中,該第二透鏡組從放大側依次包括正透鏡及負透鏡相互 黏合的黏合透鏡所構成,在該第三透鏡組中設定有光闇位 3. 如申請專利範圍第丨項或第2項所述之投射用廣角Here, the first lens group is composed of three negative lenses, and the third lens group is composed of five single lenses each having positive, negative, positive, negative, and positive refractive powers in order from the magnification side. 2. The wide-angle lens for projection according to the invention of claim 2, wherein the second lens group comprises, in order from the magnification side, an adhesive lens in which a positive lens and a negative lens are bonded to each other, and in the third lens group. Set the light and dark position 3. For the wide angle of projection as described in the second or second item of the patent application 將利用配置在縮小側 的光束’投射到放大 透鏡,其中,該第一透鏡組的該三片負透鏡中至少一片由 樹脂製的非球面透鏡構成。 4. 如申請專利範圍第〗項或第2項所述之投射用廣角 透鏡,其中’該第一透鏡組的該三片負透鏡從放大側依次 由如下透鏡構成:即由樹脂製非球面透鏡構成的第一透 鏡、由將凸面朝向放大側之負的彎月形透鏡構成的第二透 鏡、及第二透鏡’該第一透鏡的折射力的絕對值小於該第 一透鏡及該第三透鏡的折射力的絕對值。 5. 如申請專利範圍第1項或第2項所述之投射用廣角 27 第99206272號,99年8月修正頁The light beam disposed on the reduction side is projected onto the magnifying lens, wherein at least one of the three negative lenses of the first lens group is composed of a resin-made aspherical lens. 4. The wide-angle lens for projection according to the invention of claim 2, wherein the three negative lenses of the first lens group are sequentially composed of a lens from the magnification side: a resin-made aspheric lens a first lens configured, a second lens composed of a negative meniscus lens having a convex surface toward the magnification side, and a second lens having an absolute value of a refractive power smaller than the first lens and the third lens The absolute value of the refractive power. 5. For the wide angle of projection 27, No. 99206272, as amended in the first or second paragraph of the patent application, the revised page of August, 1999 透鏡’其中’該第二透鏡組由如下三種方式之其中一種方 式構成’即從放大側依次包括正透鏡及負透鏡相互黏合的 二片黏合透鏡和正透鏡所構成的第一方式;從放大側依次 包括正透鏡、負透鏡及正透鏡相互黏合的三片黏合透鏡所 構成的第二方式·,或從放大側依次包括正透鏡和負透鏡相 互黏合的第一黏合透鏡、以及負透鏡和正透鏡相互黏合的 苐二黏合透鏡所構成的第三方式。 6.如申請專利範圍第5項所述之投射用廣角透鏡,其 中,將位於該第二透鏡組的最靠放大側的黏合面中相互黏 合的放大側透鏡及縮小側透鏡的各阿貝數分別設為、及 vs時’滿足下述條件式(1) ·· lvs — VL|&lt;23.0 ...... (1)。 7. —種投射型顯示裝置’其包括:光源、微小反射鏡 裝置、將來自該光源的光束向該微小反射鏡裝置引導的照 明光學部、以及申請專利範圍第1項至第6項中任一項所 述的投射用廣角透鏡,用該微小反射鏡裝置對來自該光源 的光束進行光調製,並透過該投射用廣角透鏡投射到顯示 幕上。 28 M392356 φThe lens 'where the second lens group is formed by one of the following three modes', that is, the first mode consisting of two sheets of adhesive lenses and positive lenses in which the positive lens and the negative lens are bonded to each other in order from the magnification side; a second method comprising a three-piece adhesive lens in which a positive lens, a negative lens and a positive lens are bonded to each other, or a first bonding lens including a positive lens and a negative lens bonded to each other in order from the magnification side, and a negative lens and a positive lens are bonded to each other The third way of constructing the second adhesive lens. 6. The projection wide-angle lens according to claim 5, wherein the Abbe number of the magnification side lens and the reduction side lens which are bonded to each other on the most enlarged side of the second lens group When respectively set to and vs, 'the following conditional expression (1) is satisfied. · lvs - VL| &lt; 23.0 (1). 7. A projection type display device comprising: a light source, a micro mirror device, an illumination optical portion that guides a light beam from the light source to the micro mirror device, and any one of claims 1 to 6 of the patent application In the above-described projection wide-angle lens, the light beam from the light source is light-modulated by the micro-mirror device, and is projected onto the display screen through the wide-angle lens for projection. 28 M392356 φ 放大側 縮小側 GiMagnification side reduction side Gi D26 'D27 A 2 R27 R2v£j|J 圖1 M392356D26 'D27 A 2 R27 R2v£j|J Figure 1 M392356 放大側 縮小側 G1Magnification side Reduction side G1 R26 »527R26 »527 D26 D27D26 D27 M392356 G, 放大側 ίM392356 G, magnification side ί 放大側 M392356Magnification side M392356 放大側 縮小側Magnification side M392356M392356 —放大側 縮小惻 G,- enlarge the side to reduce 恻 G, F/2. 5 ω = 50.. 9° ω = 50- 9。F/2. 5 ω = 50.. 9° ω = 50- 9. \ G \---Β ---R -0.2 0-0 0-2 球面傈差(mm) ω = 50. 9。\ G \---Β ---R -0.2 0-0 0-2 Spherical coma (mm) ω = 50. 9. 畸變(%)distortion(%) t 0 •’ ----0 — — R -- 」 -20 0 20 倍率色像差Mm) M392356 F/2. 5t 0 •’ ----0 — — R -- -20 0 20 chromatic aberration chromatic aberration Mm) M392356 F/2. 5 ω=50. 6ω=50. 6 ω=50. 6°ω=50. 6° ω = 50 6 ι; ———日 --R 球面像差(mm) 崎變(%) 像散(mm) -20 0 20 倍率色像差(Am) 圖10 F/2. 5 ω=51. 0。 ω=51.0° ω=51- 0。 Iω = 50 6 ι; ———日--R Spherical aberration (mm) Saturation (%) Astigmatism (mm) -20 0 20 Magnification chromatic aberration (Am) Fig. 10 F/2. 5 ω=51 . 0. ω = 51.0 ° ω = 51 - 0. I 0.2 -3 0 -弧矢 -切向 ·· « — — B 一一 .R -0.2 0.0 3 -02 0.2 一 20 0 20 球面像差(mm) 畸變(%) 像散(mm) 倍率色像差(βπι) M392356 ω = 50. 9° ω=50. 9° ω = 50 9。 F/2. 50.2 -3 0 - sagittal-tangential ·· « — — B 一一.R -0.2 0.0 3 -02 0.2 A 20 0 20 Spherical aberration (mm) Distortion (%) Astigmatism (mm) Magnification chromatic aberration (βπι) M392356 ω = 50. 9° ω=50. 9° ω = 50 9. F/2. 5 -0 2 00 02 球面像差(mm)-0 2 00 02 Spherical aberration (mm) 畸變(%) 像散(mm) 倍率色像差(β m) M392356Distortion (%) astigmatism (mm) magnification chromatic aberration (β m) M392356 圖13Figure 13
TW99206272U 2009-05-25 2010-04-09 Projection wide-angle lens and projection type display device TWM392356U (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009125744A JP5275902B2 (en) 2009-05-25 2009-05-25 Wide angle lens for projection and projection display device

Publications (1)

Publication Number Publication Date
TWM392356U true TWM392356U (en) 2010-11-11

Family

ID=43330713

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99206272U TWM392356U (en) 2009-05-25 2010-04-09 Projection wide-angle lens and projection type display device

Country Status (3)

Country Link
JP (1) JP5275902B2 (en)
CN (1) CN201673301U (en)
TW (1) TWM392356U (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147519B (en) * 2011-04-20 2013-01-09 中国科学院光电技术研究所 Panchromatic objective lens of aerial camera for realizing wide angle as well as long and rear operating distance
CN102590985B (en) * 2011-11-15 2013-11-06 深圳市亿思达显示科技有限公司 High-resolution wide-angle projection lens and projector
JP2014206613A (en) 2013-04-12 2014-10-30 富士フイルム株式会社 Projection lens and projection display device
JP6361115B2 (en) * 2013-11-15 2018-07-25 株式会社リコー Projection lens and image display device
JP2015143861A (en) * 2015-02-12 2015-08-06 株式会社リコー Projection optical system and image display device
CN104730693B (en) * 2015-04-17 2017-01-25 张家港中贺自动化科技有限公司 Wide-spectrum and large-visual-field projection objective lens

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4683944B2 (en) * 2005-02-07 2011-05-18 日東光学株式会社 Projection lens system and projector apparatus
JP2008026594A (en) * 2006-07-21 2008-02-07 Fujinon Corp Near infrared imaging lens

Also Published As

Publication number Publication date
CN201673301U (en) 2010-12-15
JP2010271664A (en) 2010-12-02
JP5275902B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
US8508853B2 (en) Projection lens and projection-type display apparatus
JP4874692B2 (en) Projection lens and projection display device using the same
JP5042708B2 (en) Projection lens and projection display device using the same
JP5468966B2 (en) Projection lens and projection display device using the same
JP5670602B2 (en) Projection lens and projection display device
US8213091B2 (en) Wide-angle projection zoom lens and projection display device
JP2011033737A (en) Projection optical system and projection type display using the same
US8508855B2 (en) Projection lens and projection-type display apparatus using the lens
JP5229962B2 (en) Wide angle zoom lens for projection and projection display device
JP5259353B2 (en) Projection lens and projection display device using the same
TWM392356U (en) Projection wide-angle lens and projection type display device
JP2012150452A (en) Zoom projection lens
CN113419333B (en) Projection lens group and projection device
JP5026929B2 (en) Projection lens and projection-type image display device
JP5118583B2 (en) Projection lens and projection display device using the same
JP5081049B2 (en) Projection zoom lens and projection display device
JP2009186790A (en) Projection lens and projection display device with the same
JP2012118243A (en) Projection lens and projection type image display device
JP6072720B2 (en) Projection lens and projection display device
JP2009025754A (en) Projection wide-angle zoom lens and projection type display apparatus
JP2010054692A (en) Projection lens and projection display device using the same
JP2008309991A (en) Projection lens and projection display apparatus using the same
JP2008039877A (en) Wide angle lens for projection and projector equipped therewith
TWI407150B (en) Projection lens system
TW201437672A (en) Projection lens

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model