TWM309091U - Heat sink - Google Patents

Heat sink Download PDF

Info

Publication number
TWM309091U
TWM309091U TW095216226U TW95216226U TWM309091U TW M309091 U TWM309091 U TW M309091U TW 095216226 U TW095216226 U TW 095216226U TW 95216226 U TW95216226 U TW 95216226U TW M309091 U TWM309091 U TW M309091U
Authority
TW
Taiwan
Prior art keywords
heat sink
porous
group
base
heat
Prior art date
Application number
TW095216226U
Other languages
Chinese (zh)
Inventor
Yi-Sheng Lee
Original Assignee
Delta Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics Inc filed Critical Delta Electronics Inc
Publication of TWM309091U publication Critical patent/TWM309091U/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/06Hollow fins; fins with internal circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

M309091 八、新型說明: 【新型所屬之技術領域】 本發明係關於一種散熱器(heat sink),特別是關於一種可以迅 速政熱且具兩散熱效能的散熱器。 【先前技術】 隨著電子元件越來越精密,電子元件所產生之熱也越來越 多,致使僅以自然或強制對流方式將熱散逸至環境中係為相當不足 的。為加強電子元件之散熱效果,現行的做法大多為在熱源處以散 熱器將熱導出,經由散熱器之鰭片(fin)以自然或強制對流方式將熱 散逸至環境中。 然而現行具有風扇之散熱器仍有部分問題無法克服,諸如鰭 片表面與流經散熱器之氣流溫度差僅攝氏5_1〇度而造成溫度梯度 不足的問題、散熱ϋ本身之材料及結構所造成的熱阻問題、傳统散 只有70%以下之^效料問題,前述問題造成現行散 提供更高之散熱量,使之不足以解決發熱量較高的電子元 件的散熱問題。 因,’美國專利第6490160號專利案中提出—種内含基氣室 (:―二chamber)的散熱器。此技術係在散熱器内一 1氣 =至之頂部係由深入散熱器之,鰭片内 的片 :":"ίΤΓ6ά1ιο11〇λνριη)^^5 二=:!連結的單—腔室。此技術係藉由液體在腔f内吸μ 么至大頭工心官内,再與外界熱交換凝結而沿著空心其辟ϋ 毛田、=自1外圍邊壁回流至腔室内的方式,達到散_效果/ 載大的情形下,會產生整個蒸氣室内均為㈣j長’故在受熱負 ”的乾化(dry〇ut)現象,此時因熱傳機制:變=::支: 回流路徑過長,而造成除靠近最外圍韓片 =早相▲體,且 果。在此情形下,有效散熱面積會大幅:進:片均失效的結 啤低,進而大幅降低散熱器 M309091 之散熱效果。 另外,美國專利第2002/0118511號申請案則提出另一種内含 蒸氣室的散熱器。此技術也在散熱器内形成單一蒸氣室,僅將蒗氣 室頂部改為矩陣排列的柱狀空心管所構成,蒸氣室底部仍為與:部 空心官底部相連結的單—腔室。此技術係利用液體在腔室内吸執基 發至空心Μ ’再與外界熱交換凝結,藉由液體本身之重力 ς 室:方式達到散熱效果。然而由於此種方式之回液機制: 二=有方向性的問題’當散熱器之安裝方向改變時,此 回水機制立即失效。 於申^監之於也有結合上述二技術的方式在US 2002/0118511 月案之柱狀空心管内部形成多孔性結構,以使液體可 品^ #自卜圍邊壁猎由毛細力回流至腔室内。麸 =種技術同樣存在Us 649_號專利案之問題内^ 熱負載的情形下,合蘇头弘/μ 目备β 1;问又 空心管均失‘L;t 除靠近最外圍空心管外的其他 ,巧矢效的狀況,而大幅降低散熱效率。 【新型内容】 因此’為解決上述問題,本發明係提出哭 意受熱負載之情形下,均大幅提高散熱絲 一以在任 本發明另提出-種散熱器,在高受熱負载下仍具有高散熱效 散熱效本I。月再七出―種散熱器’在任意安裝方向上,均可獲得高 生。本毛明再k出一種散熱器,以防止乾化現象及局部熱點之發 構所構為成此’二發明係提供一種散熱器,係由殼體及多個多孔性任 構所構成。喊體具有多個 緒 夕札性、、、口 間,且鰭片係、平行排列二 &座’片與底«成密閉空 ’夕孔性結構係分別位於不同的鰭片的 果 M309091 内壁面本'^^底縣賴,每―多隸結構心有-蒸氣室。 成。殼體且有夕::種散熱器’係由殼體及多個多孔性結構所構 一;、:個中空突出部及底座,突出部與底座構成密閉空 /十生結構係分別位於不同的突出部的内壁面上,且盘底 座相連接,每-多孔性結構❹有—蒸氣室。 、- 纖維狀=多Γ性^構係毛細組織(wick),形狀可以為網狀(_h)、 之灶人方1二、^結(slnter)及/或溝狀(gr°°ve)。多孔性結構與殼體 ==::Γ、黏著、填充及/或沈積。多孔性結構之材 多刪構内填充有液體,此液體可以為無機化合物:水=: 4如水的«金屬、_類、諸如HFC_134af的冷媒、或其他 化合物。 前述殼體可以是-體成型,也可以是由多個組件相互結合而 成1述組件之結合方式可以為焊接、卡固、嵌合、—體成型及/ 或黏著。相鄰之蒸氣室可經由多孔性結構相互連通,也可以直接相 互連通。 前述蒸氣室係於前述密閉空間内陣列排列、縱向排列、平 排列及/或橫向排列。 綜上所述,由於本發明之散熱器藉由毛細組織(多孔性結構) 分隔成多個小蒸氣室及/或小區域,致使每—突出部之毛細組σ織可 以各自形成獨立的循環,因此’即使在高受熱負載下,也不會發生 回液不及而產生乾化現象,而可維持高散熱效果。 再者,由於本發明散熱器内之小蒸氣室及/或小區域底部係由 相互連通的毛細組織(吸熱部)所組成,因而各小蒸氣室及/或小 區域内之液體可以藉由底部之毛細組織相互流通,因此可以大幅降 低局部熱點出現的機會,且可以將熱均勻分散至各小蒸氣室及/或 M309091 小區域中。 再者’由於本發明散熱器内之液體回流機制係_毛 用,而非單純倚靠重力,因此散熱器之安裝方 雜 速度。 + s衫響液體回流 再者,由於本發明散熱器内之蒸氣室是由多 :、區域所,各小蒸氣室及/或小區域之液體回流路:室及因: 可以大幅提兩液體回流速度,進而大幅提高散熱效果。 為讓本發明之上述和其他目的、特徵、和 下文特舉一較佳實施例,並配合所附圖式,作詳細說明如=易搶’ 【實施方式】 μ,1圖係㈣本發明-較佳實施例之散熱器_ 散熱器100係由殼體102及位於殼體1〇2 、心87 4、 4+丄 1的夕孔性結構110所;fi: 成,其中殼體102内部係形成密閉空間丨24。 殼體1〇2具有多個中空突出冑120及用 觸底座122。底座122係隨著突出部⑽之設置區域;二 3㈣變形狀及/或尺寸。突㈣12G之形式係為㈣、、中^且: 。底座122之一端開口、相對端封閉的形 例如是錯片狀、柱狀、片狀、錐狀、塊 T :,,形狀 斜狀、錯直狀或其他任意形狀。殼體1〇2可二=::線狀、傾 由多個組件相互結合而成,其中結合 要—&也可以 即可,例如是焊接、卡固、後合、_ 要I以相互緊密接合 間124可受到多孔性結構11〇的區分而 黏者。騎,密閉空 夕π W: έϋ M rw 刀隔成多個蒸氣室112。 多孔性結構110位於殼體1〇2之 内,多孔性結構m係於殼體10 土『被密封於殼體102 結構no係區分為傳導部^ 吸成夕/固療氣室⑴。多孔性 及吸熱部108,用以吸納液體, M309091 且冷凝後之液體係經傳導部104μ :夜體例如是無機化合物、水、醇類、諸如汞的液態= 面 l進仃控制。吸熱部108係位於底座122之内 表面上,且吸納前述液體。傳導部1〇4係位於突出部12〇之内表面 ^用以將冷凝後之液體朝讀部方向料。傳導部iq6係位於吸 連:⑽及傳導部104之間,且同時與吸熱部⑽及傳導部 傳導部104、106、吸熱部108之材質例如是m或 其他金屬及/或合金、塑膠或多孔性非金屬材料。傳導部1G4、106、 吸熱部⑽之形式只要具有孔隙即可,例如是毛細組織(wlck),具 體而“列如是網狀(mesh)、纖維狀⑽er)、燒結(sin㈣、溝狀 (㈣叫、或其他結構。另外,多孔性結構110與殼體102之結合 方法例如是燒結、黏著、填充、沈積。 再者,傳導部106位於相鄰之突出部12〇之間,以使傳導部 1〇4内之液體可料速沿著傳導部1G6回流至吸熱部⑽内。傳導 部1〇6係將密閉空間124分隔成多個小蒸氣室112,每一蒸氣室ιΐ2 對應至少一個突出部12〇。傳導部1〇6也可以將密閉空間以*分隔 成多個相互連通的小區域,每一小區域對應至少一個突出部。 再者,蒸氣室112或小區域可為陣列排列,也可以為縱向排列,也 可以為橫向排列,也可以為平行排列,也可以為斜向排列,也可以 為不規則排列。 另外,密閉空間124雖然被傳導部106分隔成多個小蒸氣室 112及/或小區域,每一蒸氣室Π2及/或小區域底部之吸熱部1〇8 所含的液體依然可以在相互連通之吸熱部1〇8内互相流通,而大幅 減 >'使得散熱為1 00底部局部熱點(h〇t sp〇t)出現機會,也可均勻的 M309091 將熱分散至散熱器100底部的每一處。 —接著,以上述散熱器丨00為例說明本發明之散熱機制。在此 實例中,散熱器100底座122係安裝於發熱結構118上,發熱結構 118例如是由發熱元件116及連接於發熱元件116上的導熱^構 所構成具體而5,導熱結構η 4例如是散熱膏、相變化金屬片, 發熱元件Η6例如是中央處理單元(cpu)、半導體晶片。另外,在 此實例中,突出部120係以鰭片為例進行說明。 當瘵氣室112底部受熱溫度上升至液體沸點時,含於吸熱部 ⑽内的液體大量的蒸發與浠騰,使得蒸氣室112内的壓力二 蒸氣迅速往,鰭片處㈣。接著,藉由自然對流或強制對流方式對籍 片加以散熱’而蒸氣在錯片内表面凝結成液體後渗透進入縛片内部 的傳導部104 (毛細組織)β。由於吸熱部⑽(毛細組織)是乾 =而傳導104疋濕的’因此藉由毛細力的作用,使得液體由鰭 片回流至蒸氣室112底部,完成一循環。 由於縛片底部邊緣與底座122均以傳導部1〇6(毛細組織)加 以連結/因此可有效提升回流速度,並避免乾化現象的情況產生。 上所述由於本發明之散熱器藉由毛細組織(多孔性结構) 分:成多個小蒸氣室及/或小區域,致使每—突出部/毛細組 以各自形成獨立的循環,因此,即使在高受熱負載下,也不會發生 回液不及而產生乾化現象,而可維持高散熱效果。 =者,由於本發明散熱器内之小蒸氣室及/或小區域底部係由 =通的毛細組織(吸熱部)所組成,因而各小蒸氣室及/或小 =内之液體可以藉由底部之毛細組織相互流通,因此可以大幅降 點出現的機會’且可以將熱均勾分散至各小蒸氣室及/或 再者’由於本發明散熱器内之液體回流機制係採用毛細力作 M309091 用,而非單純倚靠重力,因此散熱器之安裝方向不會影響液體回流 速度。 再者,由於本發明散熱器内之蒸氣室是由多個小蒸氣室及/戋 小區域所組成,各小蒸氣室及/或小區域之液體回流路徑明顯地短 於刖述習知技術,因此可以大幅提高液體回流速度,進而大幅提高 散熱效果。 η 雖;、、;本發明已以一較佳實施例揭露如上,然其並非用以限定 本奄明,任何熟習此技藝者,在不脫離本發明之精神和範圍内,當 可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專 利範圍所界定者為準。 【圖式簡單說明】 第1圖係繪示本發明一較佳實施例之散熱器的示意圖。 【主要元件符號說明】 102 :殼體 108 ··吸熱部 112 :蒸氣室 116 :發熱元件 120 :突出部 124 :密閉空間 100:散熱器 _ 1〇4、106 :傳導部 110 ··多孔性結構 114 :導熱結構 U8 :發熱結構 H·底座 11M309091 VIII. New Description: [New Technical Field] The present invention relates to a heat sink, and more particularly to a heat sink which can be quickly heated and has two heat dissipation performances. [Prior Art] As electronic components become more and more sophisticated, the heat generated by electronic components is also increasing, so that it is quite insufficient to dissipate heat to the environment only by natural or forced convection. In order to enhance the heat dissipation effect of electronic components, the current practice is mostly to heat the heat source at a heat source, and to dissipate heat into the environment through fins of the heat sink in a natural or forced convection manner. However, there are still some problems that cannot be overcome in the current radiator with a fan. For example, the temperature difference between the surface of the fin and the airflow flowing through the radiator is only 5_1 degrees Celsius, which causes the problem of insufficient temperature gradient, and the material and structure of the heat sink itself. The thermal resistance problem, the traditional dispersion is only 70% of the problem of the effect of the material, the above problems cause the current dispersion to provide a higher heat dissipation, making it insufficient to solve the heat dissipation problem of electronic components with higher heat generation. A heat sink containing a base chamber (: - two chamber) is proposed in the 'U.S. Patent No. 6,490,160. This technology is in the heat sink. The top of the radiator is deep into the heat sink. The film inside the fin is: ":" ΤΓ6ά1ιο11〇λνριη)^^5 Two =:! This technique is achieved by sucking the liquid in the cavity f to the inside of the big-headed work, and then heat-condensing with the outside to condense along the hollow, and then return to the cavity from the outer peripheral wall. In the case of scatter_effect/loading, there will be a dry 〇ut phenomenon in the entire steam chamber, which is caused by heat transfer. At this time, due to the heat transfer mechanism: change =:: branch: return path It is too long, and it is close to the outermost Korean film = early phase ▲ body, and fruit. In this case, the effective heat dissipation area will be large: the inlet: the piece of the film is low, and the heat dissipation effect of the heat sink M309091 is greatly reduced. In addition, U.S. Patent No. 2002/0118511 proposes another heat sink containing a vapor chamber. This technique also forms a single vapor chamber in the heat sink, and only changes the top of the helium chamber into a columnar columnar hollow. The tube is composed of a single chamber connected to the bottom of the hollow portion of the hollow chamber. This technique uses a liquid to suck the base hair into the hollow chamber in the chamber, and then exchanges heat with the outside, by the liquid itself. Gravity chamber: way to achieve heat dissipation However, due to the liquid return mechanism of this method: 2 = directional problem 'When the installation direction of the radiator changes, this backwater mechanism immediately fails. Yu Shenzhi also has a combination of the above two technologies in the US In 2002/0118511, the columnar hollow tube forms a porous structure inside, so that the liquid can be returned to the chamber by capillary force. The bran=species technology also has the patent of Us 649_ In the case of heat load, He Sutou Hong/μ is prepared for β 1; and the hollow tube is missing 'L; t except for the other than the outer peripheral hollow tube, the situation is sharp and the heat is greatly reduced. [New content] Therefore, in order to solve the above problems, the present invention proposes to greatly increase the heat-dissipating wire in the case of crying heat-loading, and to provide a heat sink in any of the present inventions, which is still high under high heat load. Heat dissipation effect of heat dissipation I. Months and seven outs of the "heatsink" can be obtained in any installation direction. Ben Maoming then released a radiator to prevent drying and local hotspots. For this 'two inventions The utility model provides a heat sink, which is composed of a shell and a plurality of porous structures. The shouting body has a plurality of layers, and the mouth and the fins are arranged in parallel, and the two & The «dense-closed'------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- The heat sink is composed of a casing and a plurality of porous structures; a hollow protrusion and a base, and the protrusion and the base form a closed air/ten structure, respectively located on the inner wall surface of the different protrusions, and The base of the disc is connected, and the per-porous structure has a vapor chamber. - - Fibrous = multi-twisted structure - wick, the shape can be mesh (_h), the stove is one or two, ^ Slitter and/or groove (gr°°ve). Porous structure and shell ==::Γ, adhesion, filling and/or deposition. The material of the porous structure is filled with a liquid, and the liquid may be an inorganic compound: water =: 4 such as water «metal, _, a refrigerant such as HFC_134af, or other compound. The foregoing housing may be formed by body molding, or may be combined by a plurality of components to form a combination of the components, which may be welded, clamped, fitted, formed and/or adhered. Adjacent vapor chambers may be interconnected via a porous structure or may be directly interconnected. The vapor chambers are arranged in an array, longitudinally arranged, aligned, and/or laterally arranged in the sealed space. In summary, since the heat sink of the present invention is divided into a plurality of small vapor chambers and/or small regions by capillary structure (porous structure), the capillary groups of each of the protrusions can form independent cycles. Therefore, even under a high heat load, the liquid return does not occur and the drying phenomenon does not occur, and the high heat dissipation effect can be maintained. Furthermore, since the small vapor chamber and/or the bottom portion of the small area in the heat sink of the present invention is composed of interconnected capillary structures (endotherms), the liquid in each small vapor chamber and/or small area can be passed through the bottom. The capillary structure is circulated, so that the chance of local hot spots can be greatly reduced, and the heat can be evenly dispersed into each small steam chamber and/or a small area of M309091. Furthermore, since the liquid recirculation mechanism in the heat sink of the present invention is used instead of simply relying on gravity, the installation speed of the heat sink is complicated. + s shirt ring liquid reflux, because the steam chamber in the radiator of the invention is composed of: more, the area, the small steam chamber and / or the small area of the liquid return path: chamber and cause: can greatly increase the two liquid reflux Speed, which in turn greatly increases the heat dissipation effect. The above and other objects, features, and advantages of the present invention will be described in detail with reference to the accompanying drawings in the accompanying drawings. FIG. The heat sink of the preferred embodiment _ the heat sink 100 is composed of a housing 102 and a matte structure 110 located at the housing 1〇2, the core 87 4, 4+丄1; A closed space 丨24 is formed. The housing 1〇2 has a plurality of hollow projections 120 and a contact base 122. The base 122 is a region in which the projections (10) are disposed; two (3) shapes and/or dimensions. The form of the (4) 12G is (4), middle, and: One end of the base 122 is open and the opposite ends are closed, for example, in the form of a stagger, a column, a sheet, a cone, a block T:, a shape which is oblique, staggered or any other shape. The housing 1〇2 can be two::: linear, tilted by a plurality of components combined with each other, wherein the combination can be -& can also be, for example, welding, clamping, lamination, _ I want to be close to each other The joint 124 can be adhered to and differentiated by the porous structure 11〇. Riding, airtight π W W: έϋ M rw The knife is divided into a plurality of vapor chambers 112. The porous structure 110 is located inside the casing 1〇2, and the porous structure m is attached to the casing 10. The structure is sealed in the structure of the casing 102, and is divided into a conductive portion to be absorbed into the solar chamber (1). The porous and heat absorbing portion 108 is for absorbing liquid, M309091 and the condensed liquid system is controlled by the conductive portion 104μ: the night body such as inorganic compound, water, alcohol, liquid such as mercury. The heat absorbing portion 108 is located on the inner surface of the base 122 and absorbs the aforementioned liquid. The conducting portion 1〇4 is located on the inner surface of the protruding portion 12〇 for guiding the condensed liquid toward the reading portion. The conductive portion iq6 is located between the suction: (10) and the conductive portion 104, and at the same time, the material of the heat absorbing portion (10) and the conductive portion conductive portions 104, 106 and the heat absorbing portion 108 is, for example, m or other metal and/or alloy, plastic or porous. Non-metallic materials. The forms of the conductive portions 1G4, 106 and the heat absorbing portion (10) may be any pores, for example, a capillary structure (wlck), specifically "columns such as mesh, fibrous (10) er), sintered (sin (four), and grooved ((four)) In addition, the bonding method of the porous structure 110 and the casing 102 is, for example, sintering, adhesion, filling, and deposition. Further, the conducting portion 106 is located between the adjacent protruding portions 12〇 so that the conducting portion 1 The liquid in the crucible 4 can be returned to the heat absorption portion (10) along the conduction portion 1G6. The conduction portion 1〇6 divides the confined space 124 into a plurality of small vapor chambers 112, and each vapor chamber ι2 corresponds to at least one protrusion portion 12 The conductive portion 1〇6 may also divide the sealed space into a plurality of small areas that communicate with each other by a *, each small area corresponding to at least one protrusion. Further, the vapor chamber 112 or the small area may be arranged in an array, or The vertical arrangement may be a horizontal arrangement, a parallel arrangement, an oblique arrangement, or an irregular arrangement. Further, the sealed space 124 is partitioned into a plurality of small vapor chambers 112 by the conductive portion 106 and/or Or small area The liquid contained in each of the vapor chambers 及2 and/or the heat absorbing portions 1〇8 at the bottom of the small area can still circulate in the mutually communicating heat absorbing portions 1〇8, and greatly reduce the heat dissipation to 100% of the bottom local hot spots. (h〇t sp〇t) Opportunity, evenly distributed M309091 to disperse heat to each of the bottom of the heat sink 100. - Next, the heat sink mechanism of the present invention will be described by taking the above-described heat sink 丨00 as an example. The base portion 122 of the heat sink 100 is mounted on the heat generating structure 118. The heat generating structure 118 is composed of, for example, a heat generating component 116 and a heat conducting structure connected to the heat generating component 116. The heat conducting structure η 4 is, for example, a thermal grease. The phase change metal piece, the heat generating element Η6 is, for example, a central processing unit (cpu), a semiconductor wafer. In addition, in this example, the protruding portion 120 is described by taking a fin as an example. When the bottom portion of the xenon chamber 112 is heated to a liquid temperature At the boiling point, a large amount of evaporation and enthalpy of the liquid contained in the heat absorbing portion (10) causes the pressure in the vapor chamber 112 to rapidly flow toward the fins (4). Then, the natural convection or forced convection is applied to the film. The heat is dissipated while the vapor condenses into a liquid on the inner surface of the stagger and then penetrates into the conductive portion 104 (capillary structure) β inside the tab. Since the heat absorbing portion (10) (capillary structure) is dry = the conductive 104 is wetted, so by capillary The force acts to cause the liquid to flow back from the fin to the bottom of the vapor chamber 112 to complete a cycle. Since the bottom edge of the tab and the base 122 are connected by the conductive portion 1〇6 (capillary structure), the reflux speed can be effectively increased, and A situation in which the drying phenomenon is avoided. As described above, the heat sink of the present invention is divided into a plurality of small vapor chambers and/or small regions by capillary structure (porous structure), so that each of the protrusions/capillary groups is An independent cycle is formed, so that even under a high heat load, the liquid return does not occur and the drying phenomenon does not occur, and the high heat dissipation effect can be maintained. =, since the small vapor chamber and/or the bottom of the small area in the heat sink of the present invention is composed of the capillary structure (heat absorption portion) of the pass, the liquid in each small steam chamber and/or small = can be passed through the bottom. The capillary structure is circulated to each other, so that the opportunity of occurrence of the drop can be greatly reduced, and the heat can be dispersed to each small steam chamber and/or again. Because the liquid return mechanism in the heat sink of the present invention uses capillary force for M309091, Rather than relying solely on gravity, the direction of installation of the heat sink does not affect the rate of liquid return. Furthermore, since the vapor chamber in the heat sink of the present invention is composed of a plurality of small vapor chambers and/or small regions, the liquid return paths of the small vapor chambers and/or small regions are significantly shorter than the conventional techniques. Therefore, the liquid reflow speed can be greatly increased, thereby greatly improving the heat dissipation effect. The present invention has been described above in terms of a preferred embodiment, and is not intended to limit the scope of the invention, and various modifications may be made without departing from the spirit and scope of the invention. The scope of protection of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a heat sink according to a preferred embodiment of the present invention. [Description of main component symbols] 102: Housing 108 · Heat absorbing portion 112: Steam chamber 116: Heating element 120: Projection portion 124: Airtight space 100: Radiator _ 1〇4, 106: Conducting portion 110 · Porous structure 114: heat conducting structure U8: heating structure H·base 11

Claims (1)

M309091 九、申請專利範圍: 1 · 一種散熱器,包括: 一殼體具有複數個中空錄κ β ^ ^ _ 月攸*丨u Τ二·、、、曰片及一底座,该些鰭片與該底座 構成-密閉空間’且該些鰭片係平行排列;以及 複數個多孔性結構,每一該些多孔性結構分別位於不同的 該些鰭片的内壁面上,且與該底座相連接,每—該些多孔性結構 内具有一蒸氣室。 ’ 2·如申請專利範圍帛&quot;員所述之散熱器,其中該些鰭片係 内。卩中空且朝向該底座之一端開口、相對端封閉的形式。 3.如申請專利範圍第1項所述之散熱器,其中該些多孔性 結構係毛細組織(wick)。 4·如申請專利範圍第1項所述之散熱器,其中該些多孔性 結構之形狀係選自網狀(mesh)、纖維狀(fiber)、燒結(sinter)、溝 狀(groove)所組成之族群其中之一。 • 5·如申請專利範圍第1項所述之散熱器,其中該些多孔性 結構與该殼體之結合方法係選自燒結、黏著、填充、沈積所組成 之族群其中之一。 6.如申請專利範圍第1項所述之散熱器,其中該些多孔性 結構内填充有一液體。 7·如申請專利範圍第6項所述之散熱器,其中該液體係選 自無機化合物、水、醇類、液態金屬、酮類、冷媒、有機化合物 所組成之族群其中之一。 12 M309091 8·如申請專利範圍第1項所述之散熱器,其中該些多孔性 、、、口構之材質包括選自塑膠、金屬、合金、多孔性非金屬材料所組 成之族群其中之一。 9·如申請專利範圍第1項所述之散熱器,其中該些多孔性 冓之材貝包括選自銅、紹、鐵所組成之族群其中之一。 ι〇·如申請專利範圍第丨項所述之散熱器,其中該殼體係 一體成型。 U·如申請專利範圍第1項所述之散熱器,其中該殼體係 由複數個組件相互結合而成。 如申明專利範圍第π項所述之散熱器,其中該些組件 之結合方式係選自焊接、卡固、嵌合、—體成型、黏著所組成之 族群其中之一。 13.如申請專利範圍第&quot;員所述之散熱器,其中相鄰之蒸 氣室係經由該多孔性結構相互連通。 &quot;14.如中請專利範圍第i項所述之散熱器,其中相鄰之蒸 氣室係相互連通。 15 · —種散熱器,包括: 成體具有複數個中空突出部及—底座,該些突出部與該 底座構成一密閉空間;以及 複數個多孔性結構,每-該些多孔性結構分別位於不同的 該些突出部壁面上,且與該底座相連接,每—該些多孔性結構内 具有一蒸氣室。 13 M309091 16.如申請專利範圍第15頊所述之散熱器,其中該些突出 部係内部中空且朝向該底座之一端開口、相對端封閉的形式。 17·如申請專利範圍第15項所述之散熱器,其中該些突出 部之形狀係選自鰭片狀、柱狀、片狀、錐狀、塊狀所組成之族群 其中之一。 18·如申請專利範圍第15項所述之散熱器,其中該些多孔 性結構係毛細組織(wick)。 19.如申請專利範圍第Μ項所述之散熱器,其中該些多孔 性結構之形狀係選自網狀(mesh)、纖維狀(fiber)、燒結(sinter)、 溝狀(groove)所組成之族群其中之一。 20·如申請專利範圍第μ項所述之散熱器,其中該些多孔 性結構與該殼體之結合方法係選自燒結、黏著、填充、沈積所組 成之族群其中之一。 21·如申請專利範圍第15項所述之散熱器,其中該些多孔 性結構内填充有一液體。 22.如申請專利範圍第21項所述之散熱器,其中該液體係 璲自無機化合物、水、醇類、液態金屬、酮類、冷媒、有機化合 物所組成之族群其中之一。 23 ·如申凊專利範圍第15項所述之散熱器,其中該些多孔 十峰矣士 士美 、、、°霉之材質包括選自塑膠、金屬、合金、多孔性非金屬材料所 組成之族群其中之一。 Λ •如申請專利範圍第15項所述之散熱器,其中該些多孔 14 M309091 性結構之材質包括選自銅、鋁、鐵所組成之族群其中之一。 25·如申請專利範圍第15項所述之散熱器,其中該殼體係 一體成型。 26·如申請專利範圍第15項所述之散熱器,其中該殼體係 由複數個組件相互結合而成。 ^ 27·如申請專利範圍第26項所述之散熱器,其中該些組件 • 之結合方式係選自焊接、卡固、嵌合、一體成型、黏著所組成之 φ 族群其中之一。 、 28·如申請專利範圍第15項所述之散熱器,其中相鄰之蒸 氣室係經由該多孔性結構相互連通。 η 29·如申請專利範圍第15項所述之散熱器,其中相鄰之蒸 氣至係相互連通。 30_如申請專利範圍第15項所述之散熱器,其中該些多孔 '性結構之該蒸氣室係於該密閉空間内陣列排列、、縱向排列、平行 _排列、檢向排列、斜向排列、不規則排列。 15M309091 IX. Scope of application: 1 · A radiator, comprising: a casing having a plurality of hollow records κ β ^ ^ _ 攸 攸 丨 Τ · 、 、 、 、 、 、 、 、 、 、 、 、 、 及The base constitutes a confined space and the fins are arranged in parallel; and a plurality of porous structures, each of the porous structures being respectively located on an inner wall surface of the different fins and connected to the base Each of the porous structures has a vapor chamber therein. </ RTI> 2, as claimed in the scope of the patent 帛 &quot; said radiator, wherein the fins are inside. The hollow is hollow and faces the one end of the base and is closed at the opposite end. 3. The heat sink of claim 1, wherein the porous structures are wicks. 4. The heat sink of claim 1, wherein the porous structures are selected from the group consisting of mesh, fiber, sinter, and groove. One of the ethnic groups. The heat sink of claim 1, wherein the method of bonding the porous structure to the shell is selected from the group consisting of sintering, adhesion, filling, and deposition. 6. The heat sink of claim 1, wherein the porous structures are filled with a liquid. 7. The heat sink according to claim 6, wherein the liquid system is selected from the group consisting of inorganic compounds, water, alcohols, liquid metals, ketones, refrigerants, and organic compounds. The heat sink of claim 1, wherein the porous material, the material of the mouth structure comprises one of a group consisting of plastic, metal, alloy, and porous non-metal materials. . 9. The heat sink according to claim 1, wherein the porous material comprises one of a group selected from the group consisting of copper, sulphur and iron. The heat sink of the above-mentioned patent application, wherein the housing is integrally formed. U. The heat sink of claim 1, wherein the housing is formed by combining a plurality of components. The heat sink of claim π, wherein the combination of the components is selected from the group consisting of welding, clamping, fitting, body forming, and adhesion. 13. The heat sink of claim 2, wherein adjacent vapor chambers are in communication with one another via the porous structure. &lt;14. The heat sink of claim i, wherein the adjacent vapor chambers are in communication with each other. The heat sink comprises: a plurality of hollow protrusions and a base formed by the body, the protrusions forming a closed space with the base; and a plurality of porous structures, each of the porous structures being different The protrusion walls are connected to the base, and each of the porous structures has a vapor chamber therein. The heat sink of claim 15 wherein the projections are hollow inside and open toward one end of the base and closed at opposite ends. The heat sink of claim 15, wherein the protrusions are in a shape selected from the group consisting of fins, columns, sheets, cones, and blocks. The heat sink of claim 15, wherein the porous structure is a wick. 19. The heat sink of claim 2, wherein the porous structures are selected from the group consisting of mesh, fiber, sinter, and groove. One of the ethnic groups. The heat sink of claim 5, wherein the method of bonding the porous structure to the shell is selected from the group consisting of sintering, adhesion, filling, and deposition. The heat sink of claim 15, wherein the porous structure is filled with a liquid. 22. The heat sink of claim 21, wherein the liquid system is one of a group consisting of inorganic compounds, water, alcohols, liquid metals, ketones, refrigerants, and organic compounds. The heat sink according to Item 15 of the patent application, wherein the materials of the porous ten peaks, the quartz, and the mildew are selected from the group consisting of plastic, metal, alloy, and porous non-metal materials. One of the ethnic groups. The heat sink of claim 15, wherein the porous 14 M309091 material comprises one of a group selected from the group consisting of copper, aluminum, and iron. The heat sink of claim 15, wherein the housing is integrally formed. The heat sink of claim 15, wherein the housing is formed by combining a plurality of components. The heat sink of claim 26, wherein the combination of the components is selected from the group consisting of welding, clamping, fitting, integral molding, and adhesion. The heat sink of claim 15, wherein the adjacent vapor chambers are in communication with each other via the porous structure. η 29. The heat sink of claim 15 wherein the adjacent vapor to each other are in communication with each other. The heat sink of claim 15, wherein the vapor chambers of the porous structures are arranged in an array, longitudinally arranged, parallel-arranged, inspected, and diagonally arranged in the sealed space. Arranged irregularly. 15
TW095216226U 2004-03-15 2004-03-15 Heat sink TWM309091U (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW093106818A TW200530552A (en) 2004-03-15 2004-03-15 Heat sink

Publications (1)

Publication Number Publication Date
TWM309091U true TWM309091U (en) 2007-04-01

Family

ID=34919207

Family Applications (2)

Application Number Title Priority Date Filing Date
TW093106818A TW200530552A (en) 2004-03-15 2004-03-15 Heat sink
TW095216226U TWM309091U (en) 2004-03-15 2004-03-15 Heat sink

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW093106818A TW200530552A (en) 2004-03-15 2004-03-15 Heat sink

Country Status (2)

Country Link
US (2) US20050199376A1 (en)
TW (2) TW200530552A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI382146B (en) * 2008-09-22 2013-01-11 Zalman Tech Co Ltd Method for manufacturing evaporator for looped heat pipe system
TWI703302B (en) * 2019-07-19 2020-09-01 大陸商深圳興奇宏科技有限公司 Heat sink
US11435144B2 (en) 2019-08-05 2022-09-06 Asia Vital Components (China) Co., Ltd. Heat dissipation device

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070246193A1 (en) * 2006-04-20 2007-10-25 Bhatti Mohinder S Orientation insensitive thermosiphon of v-configuration
US7369410B2 (en) * 2006-05-03 2008-05-06 International Business Machines Corporation Apparatuses for dissipating heat from semiconductor devices
US7420810B2 (en) * 2006-09-12 2008-09-02 Graftech International Holdings, Inc. Base heat spreader with fins
US8462508B2 (en) 2007-04-30 2013-06-11 Hewlett-Packard Development Company, L.P. Heat sink with surface-formed vapor chamber base
EP2271725B1 (en) 2008-05-07 2018-02-21 The Chemours Company FC, LLC Compositions comprising 2,3,3,3-tetrafluoropropene and 1,1,1-trifluoropropene
US8800643B2 (en) * 2010-12-27 2014-08-12 Hs Marston Aerospace Ltd. Surface cooler having channeled fins
CN102638905B (en) * 2012-03-28 2014-09-17 华为技术有限公司 Remote radio unit and manufacturing method thereof
EP2713132A1 (en) * 2012-09-26 2014-04-02 Alcatel Lucent A vapor-based heat transfer apparatus
US9059130B2 (en) 2012-12-31 2015-06-16 International Business Machines Corporation Phase changing on-chip thermal heat sink
US10660236B2 (en) * 2014-04-08 2020-05-19 General Electric Company Systems and methods for using additive manufacturing for thermal management
CN203934263U (en) * 2014-07-04 2014-11-05 讯凯国际股份有限公司 There is the heat abstractor of capillary member
GB2528161B (en) * 2014-07-09 2020-04-29 Hamilton Sundstrand Corp Integrated blower diffuser-fin single phase heat exchanger
US10433461B2 (en) * 2017-10-30 2019-10-01 Google Llc High-performance electronics cooling system
US20210307202A1 (en) * 2018-12-12 2021-09-30 Magna International Inc. Additive manufactured heat sink
US10641556B1 (en) 2019-04-26 2020-05-05 United Arab Emirates University Heat sink with condensing fins and phase change material
US11454462B2 (en) * 2019-08-05 2022-09-27 Aavid Thermalloy, Llc Heat dissipating fin with thermosiphon
CN112635418A (en) 2019-10-08 2021-04-09 全亿大科技(佛山)有限公司 Liquid cooling radiator
US11886258B2 (en) * 2020-02-06 2024-01-30 Baidu Usa Llc Hybrid heat sink for electronics cooling
US20210372709A1 (en) * 2020-05-26 2021-12-02 Purdue Research Foundation Vapor chamber devices and methods of dissipating heat therewith
CN214950816U (en) * 2020-07-01 2021-11-30 讯凯国际股份有限公司 Heat exchanger fin
US20210136956A1 (en) * 2020-12-18 2021-05-06 Intel Corporation Heat pipe for improved thermal performance at cold plate interface
EP4050295A1 (en) * 2021-02-26 2022-08-31 Ovh Water block having hollow fins
WO2024061070A1 (en) * 2022-09-19 2024-03-28 Yue Zhang Plate vapor chamber array assembly
WO2024061470A1 (en) * 2022-09-23 2024-03-28 Huawei Technologies Co., Ltd. Two-phase heat sink for cooling heat sources

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7206063A (en) * 1972-05-04 1973-11-06 N.V. Philips Gloeilampenfabrieken HEATING DEVICE
US4632179A (en) * 1982-09-20 1986-12-30 Stirling Thermal Motors, Inc. Heat pipe
US4785875A (en) * 1987-11-12 1988-11-22 Stirling Thermal Motors, Inc. Heat pipe working liquid distribution system
US5253702A (en) * 1992-01-14 1993-10-19 Sun Microsystems, Inc. Integral heat pipe, heat exchanger, and clamping plate
US6062302A (en) * 1997-09-30 2000-05-16 Lucent Technologies Inc. Composite heat sink
US6237223B1 (en) * 1999-05-06 2001-05-29 Chip Coolers, Inc. Method of forming a phase change heat sink
US6490160B2 (en) * 1999-07-15 2002-12-03 Incep Technologies, Inc. Vapor chamber with integrated pin array
US6410982B1 (en) * 1999-11-12 2002-06-25 Intel Corporation Heatpipesink having integrated heat pipe and heat sink
US20020118511A1 (en) * 2001-02-28 2002-08-29 Dujari Prateek J. Heat dissipation device
TW553371U (en) * 2002-12-02 2003-09-11 Tai Sol Electronics Co Ltd Liquid/vapor phase heat dissipation apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI382146B (en) * 2008-09-22 2013-01-11 Zalman Tech Co Ltd Method for manufacturing evaporator for looped heat pipe system
TWI703302B (en) * 2019-07-19 2020-09-01 大陸商深圳興奇宏科技有限公司 Heat sink
US11435144B2 (en) 2019-08-05 2022-09-06 Asia Vital Components (China) Co., Ltd. Heat dissipation device

Also Published As

Publication number Publication date
US20060237167A1 (en) 2006-10-26
TW200530552A (en) 2005-09-16
US20050199376A1 (en) 2005-09-15

Similar Documents

Publication Publication Date Title
TWM309091U (en) Heat sink
TWI312858B (en) A method of manufacturing a heat transfer device
US7369410B2 (en) Apparatuses for dissipating heat from semiconductor devices
CN100535574C (en) Method for manufacturing cylindrical heat pipe
JP2007519877A (en) Plate heat transfer device and manufacturing method thereof
CN104676545B (en) Heat sink, heat abstractor and LED bay light cooling system
TWM249410U (en) Heat dissipating device using heat pipe
JP2006503436A (en) Plate heat transfer device and manufacturing method thereof
TWM517314U (en) Heat dissipation apparatus
TWI235817B (en) Heat-dissipating module
CN101894812A (en) Evaporator for cooling chip and manufacture method thereof
CN106949764A (en) A kind of loop soaking plate
CN1849049A (en) Flat column shape thermal tube
TWI542850B (en) Flat plate heat pipe structure and manufacturing method thereof
TWI407070B (en) Method of manufacturing flat plate heat pipe
CN2829090Y (en) Slotted cylindrical heat pipe
KR100584304B1 (en) Heat transfer enhancing device of controlled matter
TW201719101A (en) Heat dissipation device
CN117276215A (en) 3D phase-change radiator and manufacturing method thereof
CN100360888C (en) Cylindrical heat pipe
TWM524451U (en) Integrated heat dissipating device
TWI339331B (en)
TWI305132B (en)
CN214177905U (en) Ultrathin soaking plate based on self-wetting fluid as working solution
TWI600367B (en) Integrated heat sink

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model