TWI850618B - 電漿處理裝置 - Google Patents

電漿處理裝置 Download PDF

Info

Publication number
TWI850618B
TWI850618B TW111102326A TW111102326A TWI850618B TW I850618 B TWI850618 B TW I850618B TW 111102326 A TW111102326 A TW 111102326A TW 111102326 A TW111102326 A TW 111102326A TW I850618 B TWI850618 B TW I850618B
Authority
TW
Taiwan
Prior art keywords
power source
waveform
voltage
plasma
sample
Prior art date
Application number
TW111102326A
Other languages
English (en)
Other versions
TW202220501A (zh
Inventor
森功
伊澤勝
安井尚輝
池田紀彦
山田一也
Original Assignee
日商日立全球先端科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2019/030660 external-priority patent/WO2020100357A1/ja
Application filed by 日商日立全球先端科技股份有限公司 filed Critical 日商日立全球先端科技股份有限公司
Publication of TW202220501A publication Critical patent/TW202220501A/zh
Application granted granted Critical
Publication of TWI850618B publication Critical patent/TWI850618B/zh

Links

Images

Abstract

一種電漿處理裝置,其為具備樣品被電漿處理的處理室、供應為了生成電漿用的高頻電力之第1高頻電源、載置前述樣品的樣品台、和對前述樣品台供應高頻電力的第2高頻電源者,進一步具備將依週期性重複的波形予以變化的直流電壓對前述樣品台施加的直流電源,一週期的前述波形具有在既定時間變化既定量以上的振幅的期間。據此,可將晶圓表面的帶電粒子進行除去,獲得垂直度高的溝槽形狀,此外可減低溝槽內部的非蝕刻對象之膜的損傷。

Description

電漿處理裝置
本發明涉及電漿處理裝置。
於半導體裝置的製程,需要應對於半導體裝置所含的組件的微細化、積體化。例如,於積體電路、奈機電系統方面,構造物的奈米尺度化進一步推進。
一般而言,於半導體裝置的製程,為了形成微細圖案而使用光刻技術。此技術為將裝置構造的圖案應用於抗蝕層之上,並選擇性將因抗蝕層的圖案而曝露的基板進行蝕刻除去者。於之後的處理程序,使其他材料堆積於蝕刻區域內,即可形成積體電路。
因此,於半導體裝置的製造,電漿蝕刻處理裝置不可或缺。在電漿蝕刻處理,將對減壓至既定的真空度的處理室內部供應的氣體透過形成於真空容器內部的電場等進行電漿化。此時,產生於電漿內的反應性高的離子、自由基與作為處理標的物之晶圓的表面物理性、化學性產生反應從而進行蝕刻。
於電漿蝕刻處理,廣為進行對晶圓的載台施加高頻電壓。對經由電容器而連接高頻電源的載台施加高頻電壓時,對產生於電漿與載台之間的鞘層具有整流作用,故因自偏壓使得載台以時間平均而言成為負電壓。為此正離子被加速,蝕刻迅速進行,同時垂直度增加,故可實現異向性蝕刻。並且調整對載台施加的高頻電壓的振幅,從而可控制蝕刻速度、垂直度。
一般而言,雖在對晶圓的載台施加的前述高頻電壓方面使用正弦波,惟如揭露於專利文獻1,有時代替正弦波而使用矩形波。從電漿流入至載台的離子的能量依施加於電漿與載台之間的電場而定。施加正弦波的高頻電壓時,前述電場逐漸變化故各種的能量的離子流入至載台。然而,施加矩弦波的高頻電壓時,離子的能量明確分為高與低者,故蝕刻的控制變容易。 [先前技術文獻] [專利文獻]
[專利文獻1] 日本特開2012-216608號公報
[發明所欲解決之問題]
在電漿蝕刻處理,帶電粒子衝撞使得形成於晶圓上的介電體材料帶電。在電漿蝕刻處理,如示於圖1般在晶圓上形成溝槽形狀的情形亦多,該情況下,一般而言優選上溝槽(Trench)之側壁相對於晶圓表面為垂直。然而,溝槽構造下施加高頻電壓時,如示於圖1般溝槽之側壁有時會帶電。原因在於,相對於高頻電壓所致的負的自偏壓使得正離子垂直入射於溝槽內,電子、負離子的方向為隨機,故較多的負的帶電粒子衝撞於側壁。該結果,如示於圖1,飛至溝槽內的離子(Ion)是軌道彎曲而衝撞於側壁,側壁被蝕刻,故招致溝槽側壁的垂直度的不良化。
此外程序的方便上,有時在溝槽內的一部分存在不應被蝕刻的金屬層。例如在存在如此的金屬層的情況下離子的軌道彎曲時,離子相對於金屬層斜向入射。如此一來,比起離子垂直入射的情況,金屬層容易被濺鍍,故金屬層的損傷增加,有時無法進行期望的蝕刻。根據以上,除去帶電於晶圓表面的帶電粒子是為了進行高精度的蝕刻處理時的課題。
要將晶圓表面的帶電粒子進行除去,對策之一在於將與帶電粒子反極性的電壓對晶圓施加,在形成於晶圓上的介電體材料內部形成電場,從而予以產生帶電粒子所致的持續的電流。然而,帶電粒子在介電體材料內部的移動速度小,故已知要將帶電粒子從介電體材料除去耗費毫秒等級的時間。另一方面,如揭露於專利文獻1的高頻電壓是為了可通過在載台與高頻電源之間的電容器,一般而言使用數百kHz~數MHz的頻率。為此專利文獻1的技術不適於帶電粒子的除去。
本發明目的在於提供一種電漿處理裝置,將晶圓表面的帶電粒子進行除去,從而可獲得垂直度高的溝槽形狀,此外可減低溝槽內部的非蝕刻對象之膜的損傷。 [解決問題之技術手段]
為了解決上述課題,代表性的涉及本發明的電漿處理裝置之一,透過一種電漿處理裝置達成,其為具備樣品被電漿處理的處理室、供應為了生成電漿用的高頻電力之第1高頻電源、載置前述樣品的樣品台、和對前述樣品台供應高頻電力的第2高頻電源者,進一步具備將依週期性重複的波形予以變化的直流電壓對前述樣品台施加的直流電源,一週期的前述波形具有在既定時間變化既定量以上的振幅的期間。 [對照先前技術之功效]
依本發明時,可提供一種電漿處理裝置,可將晶圓表面的帶電粒子進行除去,從而獲得垂直度高的溝槽形狀,此外可減低溝槽內部的非蝕刻對象之膜的損傷。上述的以外的課題、構成及功效將由以下的實施方式的說明而明朗化。
以下,使用圖式就涉及本案所請發明的電漿處理裝置的實施方式進行說明。另外,本說明書中,電壓波形的「直線三角波」指週期性重複最小電壓至最大電壓直線上升且到達最大電壓後直接直線降低至最小電壓,電壓波形的「曲線三角波」指週期性重複以下情況的波形:最小電壓至最大電壓,沿著正的導數單調減少的曲線上升,到達最大電壓直接往最小電壓沿著負的導數單調增加的曲線而降低。
[實施方式1] 使用圖2~圖10,說明本實施方式。圖2為就涉及本實施方式的電漿處理裝置的示意性的構成的一例進行繪示的示意圖。
示於圖2的涉及本實施方式的電漿處理裝置100為屬其一例的微波ECR電漿蝕刻裝置。此處,示意性示出配置於真空處理室104的內部的電極、配置於真空處理室104的外部的電場及磁場的產生裝置、以及電源等。
電漿處理裝置100具備真空處理室104。於真空處理室104的內部配置作為樣品台的電極125,於電極125之上部載置作為樣品的晶圓126。在真空處理室104內部,對從氣體供應機構105供應至真空處理室104的氣體,透過配置於真空處理室104的外部的電場產生手段及磁場產生手段而形成的電場及磁場產生作用,從而產生電漿136。於電漿136含有離子及自由基,此等與晶圓126的表面相互作用從而進行電漿蝕刻處理。
於真空處理室104,在容器101之上部配置噴灑板102,在更上部配置介電體窗103,包圍真空處理室104的容器101透過介電體窗103被氣密密封。
設於真空處理室104的外部的氣體供應機構105通過氣體配管106,與設於介電體窗103與噴灑板102之間的空間107連接。空間107通過設於噴灑板102的複數個細孔108而與真空處理室104連通。
於真空處理室104的下部配置變導閥112,透過通過此可變導閥112而連接的渦輪分子泵浦113,使得真空處理室104內的氣體被排氣。渦輪分子泵浦113進一步與粗抽泵浦114連接。可變導閥112與渦輪分子泵浦113及粗抽泵浦114分別與控制部150連接,透過控制部150控制動作。
更具體而言,設置就真空處理室104的內部壓力進行測定的壓力計115,依此壓力計115的值,控制部150就可變導閥112的開度進行回授控制,控制為使真空處理室104的壓力成為期望的值。
於電漿處理裝置100之上部,設置作為第1高頻電源的微波電源116,此微波電源116的頻率為例如2.45GHz。從微波電源116產生的微波通過自動整合器117、方形導波管118、方形圓形導波管變換器119、圓形導波管120,往空腔諧振器121傳播。自動整合器117具有自動抑制反射波的作用,此外空腔諧振器121具有將微波電磁場分布調整為適用電漿處理的分布的作用。微波電源116被透過控制部150控制。
於空腔諧振器121的下部,夾著作為微波導入窗的介電體窗103及噴灑板102而設置真空處理室104。分布在空腔諧振器121被調整的微波經由介電體窗103及噴灑板102往真空處理室104傳播。
於真空處理室104及空腔諧振器121的周圍,配置構成電磁鐵的螺線管線圈122、123、124。透過被以控制部150控制的線圈電源140,使電流流於各圓筒形線圈122、123、124,從而在真空處理室104內部形成磁場。
如以上般在真空處理室104的內部形成高頻電場及磁場時,在電場及磁場的強度成為特定的關係之區域(例如2.45GHz的電場時磁場的強度為0.0875T之區域),形成基於後述的電子迴旋諧振(Electron Cyclotron Resonance;ECR)之電漿。
在以下,就ECR詳細進行說明。存在於真空處理室104內部的電子因勞倫茲力而一面沿著透過螺線管線圈122、123、124產生的磁場的磁力線進行旋轉一面進行移動。此時從微波電源116傳播的微波的頻率與前述旋轉的頻率一致時,電子被共振地加速,有效地產生電漿。將此稱為ECR。
產生ECR的區域(ECR面)可透過磁場分布進行控制。具體而言,可透過控制部150控制經由線圈電源140流於螺線管線圈122、123、124中的各者的電流從而控制真空處理室104內部的磁場分布,控制在真空處理室104的內部之電漿產生區域。此外電漿中的帶電粒子的擴散被抑制往相對於磁力線為垂直的方向,故可透過磁場分布控制而控制電漿的擴散,亦可減低電漿的損耗。由於此等功效,使得可控制在晶圓126之上方之電漿的分布,提升電漿處理的均勻性。
電極125位於ECR面的下側,透過未圖示的梁而固定於真空處理室104。電極125及真空處理室104為大致圓筒形,各個的圓筒之中心軸為相同。於電漿處理裝置100具備機械臂等的搬送裝置(未圖示),作為處理標的物的晶圓126被透過前述搬送裝置搬送至電極125上部。晶圓126是透過形成於電極125內部的靜電吸附電極135的靜電吸附而保持於電極125上。
於電極125連接偏壓產生部127,通過偏壓產生部127對晶圓126施加偏壓。電漿136內的離子被引入至晶圓126之側的量依存於偏壓。於是,以控制部150控制偏壓產生部127而調整予以產生於晶圓126的偏壓,從而可控制電漿處理形狀(蝕刻形狀的分布)。
此外於電極125搭載溫度控制機構128,亦可通過電極125控制晶圓126的溫度從而進行電漿處理形狀的控制。
以上的構成全部連接於作為控制部150之控制用電腦,以依適切的序列進行動作的方式,控制其時點及動作量。動作序列的詳細的參數稱為配方,控制是根據預先設定的配方而進行。
配方一般而言由複數個步驟構成。按每個步驟設定從氣體供應機構105供應至真空處理室104的氣體種類、氣流量、微波電源116的輸出電力、流於螺線管線圈122、123、124的電流量、透過偏壓產生部127產生的偏壓的態樣等的處理條件,各步驟被以預先設定的順序及時間而執行。
圖3為就示於圖2的涉及實施方式的電極125的剖面及偏壓產生部127的細節進行繪示的示意圖。
電極125具有導體的基材129、介電體膜130,偏壓產生部127與基材129連接。此外電極125在晶圓126及基材129之間分別具有靜電吸附電極135a、135b,此靜電吸附電極135a、135b被透過介電體膜130而與周圍絕緣。
靜電吸附電極135a環狀地配置於電極的外周部,靜電吸附電極135b配置於靜電吸附電極135a的內側,亦即配置於電極之中央部。靜電吸附電源139具有電源單元139a、139b,分別電源單元139a連接於靜電吸附電極135a,電源單元139b連接於靜電吸附電極135b。從電源單元139a、139b各個獨立而輸出電壓,從而產生將晶圓126吸附於電極125之力。
偏壓產生部127具有高頻電源(第2高頻電源)131、自動整合器132、輸出予以依週期性地重複的波形而變化的直流電壓的直流電源133、低通濾波器134,分別高頻電源131經由自動整合器132連接於基材129,直流電源133經由低通濾波器134連接於基材129。高頻電源131及直流電源133分別與控制部(控制機構)150連接,依來自控制部150的信號而控制動作。
高頻電源131的輸出頻率比微波電源116低,且高達可經由介電體膜130將偏壓傳達於晶圓126的程度。具體而言,高頻電源131的輸出頻率方面使用數百kHz~數MHz。自動整合器132依電漿136的阻抗使內部元件的電路常數變化從而進行阻抗匹配,高頻電源131可有效地將電力傳達至晶圓126。
圖4表示電漿處理裝置100的電性等效電路。從偏壓產生部127的輸出通過相當於基材129之點129’、相當於介電體膜130之電容器130’、相當於晶圓126之點126’、相當於晶圓126與電漿136之間的鞘層的並聯電路138a、相當於電漿136之電阻136’、相當於電漿136與相當於圖2的接地端137的接地端137’之間的鞘層的並聯電路138b而往接地端137’傳達。在此等效電路,於在偏壓產生部127產生的電壓V和從晶圓126流過的電流I之間,使用比例常數A時大致上成立I=A×dV/dt的關係。
圖5為就直流電源133輸出的電壓波形進行繪示的圖。直流電源133依來自控制部150的指令,輸出依頻率f t、振幅V t的直線三角波151而變化的電壓。亦即,直流電源133輸出的電壓波形是一週期的波形具有在既定時間變化既定量以上的振幅的期間。此處從晶圓流過的電流I與偏壓產生部127的電壓的微分呈比例,故為直線三角波的微分之矩形波狀的電流從晶圓流過。
如先前技術般,在電壓的直升、直降急劇的矩形波,與電壓的微分值呈比例的從晶圓流過的電流I的持續會瞬時結束。另一方面,為直線三角波時,電壓上升或下降的期間,電流I持續流動。為了晶圓的電荷除去,電流I的持續時間最低1ms以上,其越長越優選。因此,比起電流I的持續時間短的矩形波,使用直線三角波時,晶圓表面的電荷除去效果提高。後述的曲線三角波方面,亦具有同樣的功效。
尤其在直降方面,以直降急劇的矩形波和後述的曲線三角波將蝕刻結果進行比較的結果,曲線三角波方面非蝕刻的對象的金屬層的損傷較為減低,直降時的電流I的持續時間為重要。
將此電流I基於圖4的等效電路以電路模擬器進行計算的結果為示於圖6的波形152。在模擬中以f t=50Hz進行計算。依模擬的結果時,可得知一面電流I矩形波狀地變化,極性正負交替更換,一面在各個極性方面1/(2×f t)=10ms之期間持續流動。
要使累積於晶圓上的介電體內部的帶電粒子移動至介電體外部,需要毫秒等級時間,假設從晶圓流過的正或負的電流各僅持續不足1ms的情況下,僅會重複帶電粒子在介電體內部被拉近並返回。為此f t需要為大致上500Hz以下。符合此條件時正及負的電流分別持續1ms以上,故有效地作用於帶電粒子除去。
此外正電荷與負電荷在晶圓內的移動度應會不同。另外,移動度μ在使施加電場E時的帶電粒子的平均移動速度為v時為以μ=v/E表示之值。
於是,亦可為了一面將兩種電荷不依存於移動度而確實地除去一面由晶圓流過盡可能多的電流,而將依如示於圖7的變形的直線三角波153而變化的電壓從直流電源133輸出。此波形是電壓從最小值上升至最大值的時間和從最大值下降至最小值的時間的比為D t:(1-D t)。
於此,D t在使在晶圓上的介電體內部之電子與離子分別的移動度分別為μ e、μ i時,表示為D ti/(μ ei)。換言之,D t為將離子的移動度除以在晶圓上的介電體內之電子的移動度與在介電體內之離子的移動度的和之值。此時在直線三角波153,電壓上升之時間與下降之時間的比為(1/μ e):(1/μ i),此為負電荷的移動所需的時間與正電荷的移動所需的時間的比。另一方面,要將各極性的時間分別確保1ms以上,頻率f p需要定為同時符合f p≦1000D t及f p≦1000(1-D t)。其中,f p的單位為Hz。另外,三角波形的頻率f p是以Hz為單位時,優選上為使從1減去D t之值或D t中的任一個較小的值為1000倍的值。
依本實施方式時,除了施加於載台的高頻偏壓電壓以外,予以重疊從直流電源輸出的直線三角波,使得產生對於晶圓表面的帶電粒子的除去而言充分的時間持續的電流。透過此電流使得樣品表面的帶電粒子被除去,可獲得垂直度高的溝槽形狀,此外可減低溝槽內部的非蝕刻對象之膜的損傷。
再者,代替直線三角波151,施加如示於圖8的曲線三角波154的電壓亦可獲得同樣的功效。曲線三角波154可謂之時間常數大的矩形波,具有類似於直線三角波的特性。由時間常數大的矩形波形成曲線三角波154的情況下,使工作比為50%的情況下,使直升時間常數τ r及直降時間常數τ f各為0.43ms以上一般而言數ms程度為優選。此外,各電流需要持續1ms以上,故曲線三角波154的頻率f p需要為500Hz以下。
予以符合此等條件時,如示於圖9,從晶圓流過的電流155一面維持最大值的10%以上,一面從電壓直升及直降開始時起算持續1ms以上,故可有助於帶電粒子的除去。換言之,從直流電源輸出的電壓波形的振幅的變化時間及變化量優選上為將依電壓波形而產生於晶圓的電流的最大值的10%以上予以維持1ms以上的振幅的變化時間及變化量。
此外亦可考量晶圓上介電體內部的電子及離子的移動度μ e及μ i的差而使曲線三角波154的工作比D p為50%以外。此情況下,D p設為符合D p:(1-D p)=(1/μ e):(1/μ i)即可,故成為D pi/(μ ei)。換言之,D p為將離子的移動度除以在晶圓上的介電體內之電子的移動度與在介電體內之離子的移動度的和之值。另一方面,要將各極性的時間分別確保1ms以上,頻率f p需要定為同時符合f p≦1000D t及f p≦1000(1-D t)。其中,f p的單位為Hz。另外,三角波形的頻率fp在以Hz為單位時,優選上為使從1減去D p之值或D p中的任一個較小的值為1000倍的值。
代替直線三角波而使用曲線三角波時,如同使用矩形波的情況,直流電源133的控制變容易。使用曲線三角波的情況下,從控制部150輸出的控制信號可交替輸出ON及OFF的2種類的狀態,時間常數τ r及τ f可透過對控制信號或直流電源133的輸出應用低通濾波器或對直流電源133設置輸出回授等的手段而實現。
另外,於圖5、圖7及圖8,波形151、153及154雖示出為電壓總是正,惟實際上亦可為電壓總是負、或跨正與負的波形。原因在於,從晶圓流過的電流為電壓的微分,故電壓的正負不造成影響。
圖10為就(a)高頻電源131、(b)微波電源116及(c)直流電源133的輸出開始及結束時刻的關係進行繪示的圖,縱軸取輸出、橫軸取時間而示出。微波電源116的輸出開始在高頻電源131的輸出開始之前為優選。原因在於,因電漿的有無在從高頻電源131視看時的腔室的阻抗大為不同,故在因微波電源116的輸出而產生電漿後開始高頻電源131的輸出的情況高頻電源131的輸出較穩定。此外由於同樣的理由,高頻電源131的輸出結束在微波電源116的輸出結束之前為優選。
直流電源133的輸出開始在高頻電源131的輸出開始之前為優選。此原因在於以下的理由。從高頻電源131輸出高頻電力時,電漿136與晶圓126之間的電壓變高,故引入至晶圓126的帶電粒子的垂直度變高,晶圓126上的溝槽側壁容易帶電。另一方面,無由於直流電源133被輸出所致的對於裝置及蝕刻結果的不良影響。為此,使直流電源133的輸出為高頻電源131的輸出之前,使得可更有效地抑制往溝槽側壁的帶電。此外由於同樣的理由,直流電源133的輸出結束在高頻電源131的輸出結束之後為優選。
另外,由於微波電源116而產生電漿時,在電漿136與晶圓126之間產生電位差,故比起高頻電源131開始輸出的情況雖程度較弱,惟帶電粒子具有垂直度。另一方面,無由於直流電源133在微波電源116之前被輸出所致的不良影響。為此,直流電源133與微波電源116的輸出時點的關係優選上作成與前述的直流電源133及高頻電源131的輸出時點的關係相同。亦即,微波電源116的輸出開始在直流電源133的輸出開始之後為優選,此外微波電源116的輸出結束在直流電源133的輸出結束之前為優選。
另一方面,直流電源133與靜電吸附電源139的輸出時點的關係方面,無論何者先開始或結束輸出,皆對裝置及蝕刻無不良影響,故無特別問題。
[變形例1] 使用圖11,說明本發明的實施方式方面的第1變形例。另外,標注與已說明的示於圖2~圖4者相同的符號的構成為具有相同的功能之部分,故其構成方面省略重複說明。
圖11為就涉及本變形例之電極125的剖面及偏壓產生部127、靜電吸附電源139的細節進行繪示的示意圖。在本變形例,偏壓產生部127經由電容器138a’、138b’與靜電吸附電極135a、135b分別並聯連接。經由電容器138a’、138b’連接,使得偏壓產生部127不會受到靜電吸附電源139所致的直流電壓的影響。此外可透過調整電容器138a’、138b’的電容,從而模擬前述的實施方式中的基材129與靜電吸附電極135a、135b之間的電容,在該實施方式與本變形例方面可對晶圓具有同等的功效。與涉及上述的實施方式之圖3的構成重複的構成方面,省略說明。
[變形例2] 使用圖12,說明本發明的實施方式方面的第2變形例。圖12為就涉及本變形例之電極125的剖面及偏壓產生部127、靜電吸附電源139、三角波產生部142的細節進行繪示的示意圖。在本變形例,在靜電吸附電極135a及135b與基材129之間,配置三角波施加電極141。前述電極透過介電體膜130與周圍絕緣,此外經由低通濾波器134而與直流電源133連接。此外對基材129經由自動整合器132而與高頻電源131連接。與涉及上述的實施方式之圖3的構成重複的構成方面,省略說明。
三角波施加電極141與靜電吸附電極135a及135b之間的介電體膜130的厚度優選上和上述的實施方式中的基材129與靜電吸附電極135a及135b之間的介電體膜130的厚度相等。作成如此使得三角波的施加處與靜電吸附電極135a及135b之間的電容在本變形例與該實施方式方面相等,於本變形例,可對晶圓具有與該實施方式同樣的功效。
[變形例3] 使用圖13及圖14,說明本發明的實施方式方面的第3變形例。圖13為就涉及本變形例之電極125的剖面及偏壓產生部127、靜電吸附電源139的細節進行繪示的示意圖。在本變形例,分別偏壓產生部127連接於基材129,靜電吸附電源139連接於靜電吸附電極135a及135b,偏壓產生部127及靜電吸附電源139被透過控制部150控制。
此處偏壓產生部127亦可代替連接於基材129,經由電容器而連接於靜電吸附電極135a及135b。
圖14示出從靜電吸附電源139輸出的電壓的波形,分別波形143a為示出靜電吸附電源139a的輸出的圖,波形143b為示出靜電吸附電源139b的輸出的圖。於上述的實施方式,靜電吸附電源139a及139b雖分別輸出不同的直流電壓,惟於本變形例,各電源被以輸出使三角波重疊於個別的直流電壓的波形的方式透過控制部150進行控制。
重疊於波形143a及143b的三角波可為直線三角波,亦可為曲線三角波,此外頻率及工作比以與前述的實施方式相同的觀點進行決定。另一方面,從晶圓126流過的電流與該實施方式相等的振幅比該實施方式小。原因在於,靜電吸附電極135a及135b與晶圓126之間的介電體膜130比基材129與晶圓126之間的介電體膜130小,故前者的電容比後者大。
此外予以重疊於波形143a及143b的三角波的相位一致為優選。使相位一致,使得靜電吸附電極135a及135b之間的電位差總是一定,可不會對晶圓126的吸附造成影響。
[變形例4] 使用圖15及圖16,說明本發明的實施方式方面的第4變形例。圖15為就涉及本變形例之電極125的剖面及偏壓產生部127、靜電吸附電源139的細節進行繪示的示意圖。在本變形例,分別偏壓產生部127連接於基材129,靜電吸附電源139連接於靜電吸附電極135a及135b,偏壓產生部127及靜電吸附電源139被透過控制部150控制。偏壓產生部127具有自動整合器132、放大器144及任意波形生成部145,放大器144經由自動整合器132而與基材129連接。此外放大器144將從任意波形生成部145輸入的電壓以一定增益進行放大而輸出。
圖16為就放大器144輸出的電壓波形146進行繪示的圖。波形146為將在上述的實施方式中高頻電源131輸出的高頻、和同樣地在該實施方式中直流電源133輸出的三角波進行重疊者。任意波形生成部145以放大器144輸出波形146的方式,就波形146的各時刻的電壓,將除以放大器144的增益的電壓對放大器144輸入。另外,任意波形生成部145在放大器144具有頻率特性的情況下,亦能以放大器144的輸出成為波形146的方式,將從頻率特性進行倒算而增強或減弱特定的頻率成分的波形對放大器144輸入。
[變形例5] 使用圖17及圖18,說明本發明的實施方式方面的第5變形例。圖17為就涉及本變形例之電極125的剖面及靜電吸附電源160的細節進行繪示的示意圖。在本變形例,靜電吸附電源160具有任意波形生成部147a及147b、放大器148a及148b、以及自動整合器149a及149b,分別放大器148a經由自動整合器149a連接於靜電吸附電極135a,放大器148b經由自動整合器149b連接於靜電吸附電極135b。放大器148a及148b將從任意波形生成部147a及147b分別輸入的電壓,以一定增益進行放大而分別輸出。
圖18為就為放大器148a及148b的輸出電壓之波形161a及161b進行繪示的圖。波形161a及波形161b為對在變形例3之靜電吸附電源139a及139b的輸出波形進一步予以重疊高頻者。重疊的高頻的頻率與於上述的實施方式中高頻電源131輸出的高頻相等。另一方面,電壓的振幅作成為對在該實施方式中的高頻電源131的輸出電壓振幅乘以在該實施方式中對基材129施加的高頻傳至靜電吸附電極135a及135b時的衰減率者,使得可在晶圓126上獲得與該實施方式同等的功效。
任意波形生成部147a及147b分別對放大器148a及148b輸入將波形161a及161b的各時刻的電壓分別除以放大器148a或148b的增益後的電壓。另外,任意波形生成部147a及147b在放大器148a及148b具有頻率特性的情況下,亦能以放大器148a及148b的輸出成為波形161a及161b的方式,將從頻率特性進行倒算而增強或減弱特定的頻率成分的波形對放大器148a及148b輸入。
以上,雖基於實施方式具體說明由本發明人創作的發明,惟本發明非限定於上述的實施方式者,包含各種的變形例。例如,上述的實施方式是為了以易於理解的方式說明本發明而詳細說明者,並非限定於必定具備所說明之全部的構成者。
此外,可將某一實施方式的構成的一部分置換為其他實施方式的構成;此外,亦可於某一實施方式的構成追加其他實施方式的構成。此外,可就各實施方式的構成的一部分,進行其他構成的追加、刪除、置換。另外,記載於圖式的各構材、相對的尺寸是為了以容易理解的方式說明本發明而精簡化、理想化,安裝上有時成為更複雜的形狀。
另外,關於在上述實施方式說明的構造、方法,不限於上述實施方式,包含各種的應用例。
100:電漿處理裝置 104:真空處理室 125:電極 126:晶圓 127:偏壓產生部 129:基材 130:介電體膜 131:高頻電源 132,149a,149b:自動整合器 133:直流電源 134:低通濾波器 135a,135b:靜電吸附電極 136:電漿 138a,138b:並聯電路 139,139a,139b,160:靜電吸附電源 139a,139b:電源單元 145,147a,147b:任意波形生成部 150:控制部
[圖1]圖1為就在電漿蝕刻處理之溝槽形狀及其側壁帶電的情況下的離子軌道進行繪示的示意圖。 [圖2]圖2為就涉及本實施方式的電漿處理裝置的示意性的構成的一例進行繪示的示意圖。 [圖3]圖3為示於圖2的涉及實施方式之電漿處理裝置的一部分的剖面圖、及示意性就連接於載台的偏壓產生部的概略進行繪示的圖。 [圖4]圖4為就電漿處理裝置的電性等效電路進行繪示的圖。 [圖5]圖5為就在示於圖4的涉及實施方式的直流電源所輸出的電壓波形進行繪示的圖。 [圖6]圖6為就基於圖4的等效電路以電路模擬器進行計算的電流的波形進行繪示的圖,為示意性就因圖5的電壓在晶圓上產生的電流進行繪示的圖。 [圖7]圖7為就變形的直線三角波的電壓波形進行繪示的圖。 [圖8]圖8為就涉及曲線三角波之電壓波形進行繪示的圖。 [圖9]圖9為就從晶圓流過的電流的波形進行繪示的圖。 [圖10]圖10為就微波電源、高頻電源及直流電源的輸出開始及結束時刻的關係進行繪示的圖。 [圖11]圖11為涉及在圖2示出的實施方式的變形例1之電漿處理裝置的一部分的剖面圖、及示意性就連接於載台的偏壓產生部的概略進行繪示的圖。 [圖12]圖12為涉及在圖2示出的實施方式的變形例2之電漿處理裝置的一部分的剖面圖、及示意性就連接於載台的偏壓產生部的概略進行繪示的圖。 [圖13]圖13為涉及在圖2示出的實施方式的變形例3之電漿處理裝置的一部分的剖面圖、及示意性就連接於載台的偏壓產生部的概略進行繪示的圖。 [圖14]圖14為就在圖2示出的實施方式的變形例3中靜電吸附電源輸出的電壓波形進行繪示的圖。 [圖15]圖15為涉及在圖2示出的實施方式的變形例4之電漿處理裝置的一部分的剖面圖、及示意性就連接於載台的偏壓產生部的概略進行繪示的圖。 [圖16]圖16為就在圖2示出的實施方式的變形例4中偏壓產生部輸出的電壓波形進行繪示的圖。 [圖17]圖17為涉及在圖2示出的實施方式的變形例5之電漿處理裝置的一部分的剖面圖、及示意性就連接於載台的偏壓產生部的概略進行繪示的圖。 [圖18]圖18為在圖2示出的實施方式的變形例5中靜電吸附電源輸出的電壓波形進行繪示的圖。
125:電極
126:晶圓
127:偏壓用高頻電源
129:基材
130:介電體膜
131:高頻電源
132:自動整合器
133:直流電源
134:低通濾波器
135a,135b:靜電吸附電極
136:電漿
139:靜電吸附電源
139a,139b:電源單元
150:控制部

Claims (6)

  1. 一種電漿處理裝置,其具備:樣品被電漿處理的處理室;第1高頻電源,其供應用於生成電漿的高頻電力;樣品台,其具備靜電吸附電極,並載置前述樣品,前述靜電吸附電極被施加用於將前述樣品予以靜電吸附的第一直流電壓;以及第2高頻電源,其供應高頻電力至前述樣品台的導體的基材;進一步具備直流電源,前述直流電源將依週期性重複的波形予以變化的第二直流電壓施加於與前述靜電吸附電極不同的前述基材,一週期的前述波形具有在既定時間變化既定量以上的振幅的期間,前述波形為三角波,相對於前述第二直流電壓下降的時間之前述第二直流電壓上升的時間的比,為以從1減去值Dt的值除前述值Dt之值,前述值Dt,為以前述樣品上的介電體內的電子的移動度與前述介電體內的離子的移動度和而除前述離子的移動度之值。
  2. 一種電漿處理裝置,其具備:樣品被電漿處理的處理室;第1高頻電源,其供應用於生成電漿的高頻電力;樣品台,其具備靜電吸附電極,並載置前述樣品,前述靜電吸附電極被施加用於將前述樣品予以靜電吸附的第一直流電壓;以及第2高頻電源,其供應高頻電力 至前述樣品台的導體的基材;進一步具備直流電源,前述直流電源將依週期性重複的波形予以變化的第二直流電壓施加於與前述靜電吸附電極不同的前述基材,一週期的前述波形具有在既定時間變化既定量以上的振幅的期間,前述波形為矩形波,前述矩形波,直升及直降的時間常數分別為0.43ms以上,相對於前述第二直流電壓下降的時間之前述第二直流電壓上升的時間的比,為以從1減去值Dt的值除前述值Dt之值,前述值Dt,為以前述樣品上的介電體內的電子的移動度與前述介電體內的離子的移動度和而除前述離子的移動度之值。
  3. 如請求項1或2的電漿處理裝置,其中,前述振幅的變化時間及變化量,為使依前述波形從而產生於前述樣品的電流的最大值的10%以上維持1ms以上的振幅的變化時間及變化量。
  4. 如請求項1或2的電漿處理裝置,其中,供應至前述基材的高頻電力,在前述第二直流電壓施加於前述基材時,被供應至前述基材。
  5. 如請求項1或2的電漿處理裝置,其中,前述波形的頻率為500Hz以下。
  6. 如請求項1或2的電漿處理裝置,其中,前述波形的頻率,在以Hz為單位時,為使從1減去前述值Dt之值或前述值Dt中的任一較小者之值為1000倍之值。
TW111102326A 2019-08-05 2020-04-28 電漿處理裝置 TWI850618B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/030660 WO2020100357A1 (ja) 2019-08-05 2019-08-05 プラズマ処理装置
WOPCT/JP2019/030660 2019-08-05

Publications (2)

Publication Number Publication Date
TW202220501A TW202220501A (zh) 2022-05-16
TWI850618B true TWI850618B (zh) 2024-08-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169542A (ja) 2011-02-16 2012-09-06 Ulvac Japan Ltd プラズマ処理方法、及びプラズマ処理装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169542A (ja) 2011-02-16 2012-09-06 Ulvac Japan Ltd プラズマ処理方法、及びプラズマ処理装置

Similar Documents

Publication Publication Date Title
TWI756669B (zh) 電漿處理裝置
US9053908B2 (en) Method and apparatus for controlling substrate DC-bias and ion energy and angular distribution during substrate etching
KR890004882B1 (ko) 드라이에칭 방법 및 장치
KR101750002B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
CN109891548B (zh) 离子过滤方法和相关的离子过滤系统
KR20210065045A (ko) 플라즈마 처리 방법 및 플라즈마 처리 장치
JPH08255782A (ja) プラズマ表面処理装置
TWI850618B (zh) 電漿處理裝置
TW202431903A (zh) 電漿處理裝置
WO2023026317A1 (ja) プラズマ処理装置及びプラズマ処理方法
JP7075540B1 (ja) プラズマ処理装置及びプラズマ処理方法
JP7061140B2 (ja) プラズマ処理方法及びプラズマ処理装置
JP2023158802A (ja) プラズマ処理装置及びプラズマ処理方法
JP7022978B2 (ja) プラズマ処理方法およびプラズマ処理装置