TWI844342B - Optical structure and method for forming the same - Google Patents

Optical structure and method for forming the same Download PDF

Info

Publication number
TWI844342B
TWI844342B TW112115278A TW112115278A TWI844342B TW I844342 B TWI844342 B TW I844342B TW 112115278 A TW112115278 A TW 112115278A TW 112115278 A TW112115278 A TW 112115278A TW I844342 B TWI844342 B TW I844342B
Authority
TW
Taiwan
Prior art keywords
layer
optical
forming
optical channel
optical structure
Prior art date
Application number
TW112115278A
Other languages
Chinese (zh)
Inventor
羅明城
張睿鈞
劉士豪
呂武羲
蔡佑哲
何彥仕
Original Assignee
世界先進積體電路股份有限公司
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Application granted granted Critical
Publication of TWI844342B publication Critical patent/TWI844342B/en

Links

Images

Abstract

The present disclosure provides a method for forming an optical structure, including: providing a substrate, wherein the substrate includes a lower cladding layer and an optical channel material layer disposed on the lower cladding layer; performing a local oxidation process on the optical channel material layer to form multiple oxidized parts embedded in the optical channel material layer; and performing a patterning process to pattern the optical channel material layer into an optical channel layer, with a curved surface on a top portion of the optical channel layer, wherein a dielectric constant of the lower cladding layer is lower than a dielectric constant of the optical channel layer.

Description

光學結構及其形成方法Optical structure and method for forming the same

本發明是關於光學結構及其形成方法,特別是關於在光通道層的頂部具有弧面的光學結構。The present invention relates to an optical structure and a method for forming the same, and in particular to an optical structure having a curved surface on the top of a light channel layer.

在光子應用中,已成功地將例如波導、調變器、偵測器、解調變器、諧振器、分接頭、分離器、放大器、光柵、耦合器、或其他的光子元件整合於一積體電路基板上。通常光子裝置具有用於引導光的核心以及環繞核心以將光侷限於核心中的包覆結構。核心的材料可以包括例如矽,且包覆結構可以包括例如氧化矽。一般而言,典型的含矽半導體結構可以使用互補式金氧半導體(Complementary Metal Oxide Semiconductor,CMOS)技術的製程來進行。In photonic applications, photonic components such as waveguides, modulators, detectors, demodulators, resonators, taps, splitters, amplifiers, gratings, couplers, or other photonic components have been successfully integrated onto an integrated circuit substrate. Typically, a photonic device has a core for guiding light and a cladding structure surrounding the core to confine the light to the core. The material of the core may include, for example, silicon, and the cladding structure may include, for example, silicon oxide. In general, typical silicon-containing semiconductor structures can be fabricated using processes using complementary metal oxide semiconductor (CMOS) technology.

CMOS技術係一種用來製作積體電路之製程。通常在CMOS廠進行CMOS製程以在矽晶圓或基板中製作積體電路。在典型的CMOS製程期間,可以在單一基板中於基板上選擇性地沈積、蝕刻、及摻雜各種金屬、半導體以及介電材料層,甚至可以蝕刻、摻雜基板本身,藉此形成大量的場效電晶體及其他電子裝置。一旦處理完成,則將基板切割成個別的晶片,且這些晶片可以被封裝以供電子裝置使用。CMOS technology is a process used to make integrated circuits. CMOS processes are usually performed in CMOS factories to make integrated circuits in silicon wafers or substrates. During a typical CMOS process, various metal, semiconductor and dielectric material layers can be selectively deposited, etched, and doped on a single substrate, and even the substrate itself can be etched and doped to form a large number of field effect transistors and other electronic devices. Once the processing is completed, the substrate is cut into individual chips, and these chips can be packaged for use in electronic devices.

然而,光子元件(例如光柵、脊形波導等)的形成需要準確地控制用於形成核心的光通道材料層的厚度。舉例而言,需要調整蝕刻製程以使光通道材料層的厚度控制在例如2nm以內的精度。儘管習知的CMOS技術中的淺溝槽隔離(shallow trench isolation,STI)製程已被廣泛用於光子元件的形成,但是STI製程的蝕刻深度對於光子元件的光通道材料(例如矽)至少具有約30nm的誤差範圍,因此不適合用於光子元件的製造。此外,在CMOS技術的製程中由於是以電漿蝕刻光通道材料層,所形成的光子元件的核心具有較粗糙的表面。因此,以習知的蝕刻方式形成的光子元件會在核心與包覆層之間具有較差的全反射,影響所形成光子元件的性能。However, the formation of photonic components (such as gratings, ridge waveguides, etc.) requires accurate control of the thickness of the optical channel material layer used to form the core. For example, the etching process needs to be adjusted so that the thickness of the optical channel material layer is controlled within an accuracy of, for example, 2 nm. Although the shallow trench isolation (STI) process in the known CMOS technology has been widely used in the formation of photonic components, the etching depth of the STI process has an error range of at least about 30 nm for the optical channel material (such as silicon) of the photonic component, and is therefore not suitable for the manufacture of photonic components. In addition, in the CMOS technology process, since the optical channel material layer is etched by plasma, the core of the formed photonic component has a rougher surface. Therefore, a photonic device formed by a conventional etching method will have poor total reflection between the core and the cladding layer, which affects the performance of the formed photonic device.

一種光學結構的形成方法,包括:提供基板,其中基板包括下包覆層以及設置於下包覆層上的光通道材料層;對光通道材料層進行至少一局部氧化製程以形成嵌入光通道材料層的多個氧化部件;以及進行圖案化製程以將光通道材料層圖案化為光通道層,且在光通道層的頂部具有弧面,其中下包覆層的介電常數小於該光通道層的介電常數。A method for forming an optical structure includes: providing a substrate, wherein the substrate includes a lower cladding layer and an optical channel material layer disposed on the lower cladding layer; performing at least one local oxidation process on the optical channel material layer to form a plurality of oxidized components embedded in the optical channel material layer; and performing a patterning process to pattern the optical channel material layer into an optical channel layer having a curved surface at the top of the optical channel layer, wherein the dielectric constant of the lower cladding layer is less than the dielectric constant of the optical channel layer.

一種光學結構,包括:下包覆層;光通道層,設置於下包覆層上,且在光通道層的頂部具有弧面,其中下包覆層的介電常數小於光通道層的介電常數。An optical structure includes: a lower cladding layer; and an optical channel layer disposed on the lower cladding layer and having a curved surface at the top of the optical channel layer, wherein the dielectric constant of the lower cladding layer is smaller than the dielectric constant of the optical channel layer.

以下的揭示內容提供許多不同的實施例或範例,以展示本發明實施例的不同部件。以下將揭示本說明書各部件及其排列方式之特定範例,用以簡化本揭露敘述。當然,這些特定範例並非用於限定本揭露。例如,若是本說明書以下的發明內容敘述了將形成第一部件於第二部件之上或上方,即表示其包括了所形成之第一及第二部件是直接接觸的實施例,亦包括了尚可將附加的部件形成於上述第一及第二部件之間,則第一及第二部件為未直接接觸的實施例。此外,本揭露說明中的各式範例可能使用重複的參照符號及/或用字。這些重複符號或用字的目的在於簡化與清晰,並非用以限定各式實施例及/或所述配置之間的關係。The following disclosure provides many different embodiments or examples to show different components of the embodiments of the present invention. The following will disclose specific examples of the components of this specification and their arrangement to simplify the disclosure. Of course, these specific examples are not used to limit the disclosure. For example, if the following invention content of this specification describes forming a first component on or above a second component, it means that it includes an embodiment in which the first and second components formed are in direct contact, and also includes an embodiment in which an additional component can be formed between the above-mentioned first and second components, and the first and second components are not in direct contact. In addition, the various examples in the disclosure may use repeated reference symbols and/or words. The purpose of these repeated symbols or words is to simplify and clarify, and is not used to limit the relationship between the various embodiments and/or the configurations.

再者,為了方便描述圖式中一元件或部件與另一(些)元件或部件的關係,可使用空間相對用語,例如「在…之下」、「下方」、「下部」、「上方」、「上部」及諸如此類用語。除了圖式所繪示之方位外,空間相對用語亦涵蓋使用或操作中之裝置的不同方位。當裝置被轉向不同方位時(例如,旋轉90度或者其他方位),則其中所使用的空間相對形容詞亦將依轉向後的方位來解釋。Furthermore, to facilitate description of the relationship between one element or component and another element or component in the drawings, spatially relative terms may be used, such as "under," "below," "lower," "above," "upper," and the like. In addition to the orientation depicted in the drawings, spatially relative terms also cover different orientations of the device in use or operation. When the device is turned to a different orientation (for example, rotated 90 degrees or other orientations), the spatially relative adjectives used therein will also be interpreted based on the orientation after the rotation.

在此,「約」、「大約」、「大抵」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「大抵」的情況下,仍可隱含「約」、「大約」、「大抵」之含義。Here, the terms "about", "approximately", and "generally" generally mean within 20% of a given value or range, preferably within 10%, and more preferably within 5%, or within 3%, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantities provided in the specification are approximate quantities, that is, in the absence of specific description of "about", "approximately", and "generally", the meaning of "about", "approximately", and "generally" can still be implied.

以下敘述一些本發明實施例,在這些實施例中所述的多個階段之前、期間以及/或之後,可提供額外的步驟。一些所述階段在不同實施例中可被替換或刪去。半導體裝置結構可增加額外部件。一些所述部件在不同實施例中可被替換或刪去。儘管所討論的一些實施例以特定順序的步驟執行,這些步驟仍可以另一合乎邏輯的順序執行。Some embodiments of the present invention are described below, and additional steps may be provided before, during, and/or after the various stages described in these embodiments. Some of the stages may be replaced or deleted in different embodiments. Additional components may be added to the semiconductor device structure. Some of the components may be replaced or deleted in different embodiments. Although some of the embodiments discussed are performed in a specific order of steps, these steps may still be performed in another logical order.

此處所使用的用語「實質上(substantially)」,表示一給定量的數值可基於目標半導體裝置相關的特定技術節點而改變。在一些實施例中,基於特定的技術節點,用語「實質上地」可表示一給定量的數值在例如目標(或期望)值之±5%的範圍。As used herein, the term "substantially" means that a given amount of value may vary based on a particular technology node associated with the target semiconductor device. In some embodiments, based on a particular technology node, the term "substantially" may mean that a given amount of value is within a range of, for example, ±5% of a target (or desired) value.

本揭露提供一種光學結構及其形成方法,在利用局部氧化製程形成氧化部件之後對光通道材料進行圖案化製程,藉此形成光通道層在頂部具有弧面的光學結構。可以透過調整氧化步驟的持續時間及溫度以精確地控制氧化部件在光通道材料層中嵌入的深度。如此一來,相較於習知的淺溝槽隔離結構的蝕刻製程,本揭露的光學結構的形成方法可以對作為光學結構的核心之光通道層的厚度進行精確的控制。舉例而言,能夠將光通道層的局部厚度與其理想厚度的差異控制在較小的範圍以內(例如約≤2nm),使得光學結構更適合用於光子應用。再者,由於是藉由將光通道材料局部氧化以改變所形成的光通道層的結構特徵,相較於利用習知的蝕刻製程所形成的光通道層,在本揭露中的光通道層可以具有粗糙度較低的表面。因此,當光線在光通道層中傳遞時,能夠在光通道層與光通道層的周圍的材料之間具有較佳的全反射性質,藉此改善光學結構在光子應用上的性能。The present disclosure provides an optical structure and a method for forming the same. After forming an oxidation component by a local oxidation process, a patterning process is performed on an optical channel material to form an optical structure in which the optical channel layer has a curved surface at the top. The depth to which the oxidation component is embedded in the optical channel material layer can be precisely controlled by adjusting the duration and temperature of the oxidation step. In this way, compared to the etching process of the known shallow trench isolation structure, the method for forming the optical structure disclosed in the present disclosure can precisely control the thickness of the optical channel layer, which is the core of the optical structure. For example, the difference between the local thickness of the optical channel layer and its ideal thickness can be controlled within a smaller range (e.g., about ≤2nm), making the optical structure more suitable for photonic applications. Furthermore, since the structure characteristics of the optical channel layer are changed by partially oxidizing the optical channel material, the optical channel layer in the present disclosure can have a surface with lower roughness compared to the optical channel layer formed by the conventional etching process. Therefore, when light is transmitted in the optical channel layer, it can have better total reflection properties between the optical channel layer and the materials around the optical channel layer, thereby improving the performance of the optical structure in photonic applications.

第1A~1H圖是根據本揭露的一些實施例,繪示出在光學結構的製造過程中的各個階段的剖面圖。FIGS. 1A to 1H are cross-sectional views showing various stages in the manufacturing process of an optical structure according to some embodiments of the present disclosure.

參照第1A圖,提供基板10。基板10可以包括下包覆層100以及設置於下包覆層100上的光通道材料層102。在一些實施例中,基板10是絕緣體上半導體(semiconductor-on-insulator,SOI)基板。基板10可以更包括設置於下包覆層100下的基底104。Referring to FIG. 1A , a substrate 10 is provided. The substrate 10 may include a lower cladding layer 100 and an optical channel material layer 102 disposed on the lower cladding layer 100 . In some embodiments, the substrate 10 is a semiconductor-on-insulator (SOI) substrate. The substrate 10 may further include a base 104 disposed under the lower cladding layer 100 .

下包覆層100可以包括埋藏介電材料,例如埋藏氧化物(buried oxide,BOX)、埋藏氮化物、其他適合的材料、或前述之組合。藉由設置下包覆層100,可以使光通道層112之四周包覆低介電材料。光通道材料層102可以包括矽、鍺、矽鍺、氮化矽、砷化鎵、磷化銦、其他適合的材料、或前述之組合。在一個特定的實施例中,下包覆層100包括氧化矽,且光通道材料層102包括矽。此外,下包覆層100的介電常數小於光通道材料層102的介電常數。舉例而言,下包覆層100的介電常數可以在1.0~12.0的範圍內,且光通道材料層102的介電常數可以在3.0~20.0的範圍內。如此一來,光線可以在下包覆層100與後續形成的光通道層之間的界面進行全反射。基底104可以包括矽基底、鍺基底、矽鍺基底、碳化矽基底、氮化鋁基底、氮化鎵基底、其他適合的基底、或前述之組合。The lower cladding layer 100 may include a buried dielectric material, such as buried oxide (BOX), buried nitride, other suitable materials, or a combination thereof. By providing the lower cladding layer 100, the optical channel layer 112 can be surrounded by low dielectric materials. The optical channel material layer 102 may include silicon, germanium, silicon germanium, silicon nitride, gallium arsenide, indium phosphide, other suitable materials, or a combination thereof. In a specific embodiment, the lower cladding layer 100 includes silicon oxide, and the optical channel material layer 102 includes silicon. In addition, the dielectric constant of the lower cladding layer 100 is less than the dielectric constant of the optical channel material layer 102. For example, the dielectric constant of the lower cladding layer 100 may be in the range of 1.0 to 12.0, and the dielectric constant of the optical channel material layer 102 may be in the range of 3.0 to 20.0. In this way, light can be totally reflected at the interface between the lower cladding layer 100 and the optical channel layer formed subsequently. The substrate 104 may include a silicon substrate, a germanium substrate, a silicon germanium substrate, a silicon carbide substrate, an aluminum nitride substrate, a gallium nitride substrate, other suitable substrates, or a combination thereof.

在第1A~1H圖中顯示了將基板10以及後續形成的光學結構分隔為第一區域10A及第二區域10B的分隔符11。應理解的是,在分隔符11兩側的第一區域10A及第二區域10B可以是基板10以及後續形成的光學結構之相鄰的區域或分隔的區域。此外,儘管在第1A~1H圖中同時顯示了第一區域10A及第二區域10B,但這些圖式中所顯示的第一區域10A及第二區域10B的剖面圖可以是來自於不同方向的剖面,例如彼此垂直的方向。In FIGS. 1A to 1H, a separator 11 is shown that separates the substrate 10 and the optical structure to be formed subsequently into a first region 10A and a second region 10B. It should be understood that the first region 10A and the second region 10B on both sides of the separator 11 may be adjacent regions or separated regions of the substrate 10 and the optical structure to be formed subsequently. In addition, although the first region 10A and the second region 10B are shown simultaneously in FIGS. 1A to 1H, the cross-sectional views of the first region 10A and the second region 10B shown in these figures may be cross-sectional views from different directions, such as directions perpendicular to each other.

接著,參照第1B~1D圖,對光通道材料層102進行至少一局部氧化製程以形成嵌入光通道材料層102的多個氧化部件,例如第一氧化部件108A及第二氧化部件108B。分別參照第1B~1C圖及第1D圖,上述至少一局部氧化製程可以包括形成多個第一氧化部件108A的第一局部氧化製程以及形成多個第二氧化部件108B的第二局部氧化製程,且第一氧化部件108A的厚度大於第二氧化部件108B的厚度。應理解的是,本揭露並未限定第一局部氧化製程及第二局部氧化製程的形成順序,通常知識者可以根據製程的設計選擇第一氧化部件108A及第二氧化部件108B的形成順序。在以下的圖式所繪示的實施例中,將以第二局部氧化製程在第一局部氧化製程之後進行的情況進行說明。也就是,以下的圖式是以先形成較厚的第一氧化部件108A再形成較薄的第二氧化部件108B的情況來說明。Next, referring to FIGS. 1B to 1D, at least one local oxidation process is performed on the optical channel material layer 102 to form a plurality of oxidation components embedded in the optical channel material layer 102, such as a first oxidation component 108A and a second oxidation component 108B. Referring to FIGS. 1B to 1C and 1D, respectively, the at least one local oxidation process may include a first local oxidation process for forming a plurality of first oxidation components 108A and a second local oxidation process for forming a plurality of second oxidation components 108B, and the thickness of the first oxidation component 108A is greater than the thickness of the second oxidation component 108B. It should be understood that the present disclosure does not limit the formation order of the first local oxidation process and the second local oxidation process, and a person skilled in the art may select the formation order of the first oxidation component 108A and the second oxidation component 108B according to the design of the process. In the embodiments shown in the following figures, the second partial oxidation process is performed after the first partial oxidation process. That is, the following figures are described by first forming a thicker first oxidation component 108A and then forming a thinner second oxidation component 108B.

以下說明用於形成第一氧化部件108A的第一局部氧化製程。為了形成第一氧化部件108A,如第1B圖所示,可以在光通道材料層102上形成遮罩層106,且遮罩層106可以具有在第一區域10A露出光通道材料層102的多個開口O1。在一些實施例中,這些開口O1是多個條紋狀(striped)開口。遮罩層106可以包括光阻,例如正型光阻或負型光阻。在一些實施例中,遮罩層106可以包括硬遮罩,且可由氧化矽、氮化矽、氮氧化矽、碳化矽、氮碳化矽、類似的材料或前述之組合形成。遮罩層106可以是單層或多層結構。形成遮罩層106的方法可以包括沉積製程、微影製程等。沉積製程可以包括例如物理氣相沉積製程、化學氣相沉積製程、原子層沉積製程、或任何適合的沉積製程。微影製程可以包括例如光阻塗佈、軟烤、曝光、曝光後烘烤、顯影、硬烤等步驟。The following describes a first local oxidation process for forming a first oxidation component 108A. In order to form the first oxidation component 108A, as shown in FIG. 1B , a mask layer 106 may be formed on the optical channel material layer 102, and the mask layer 106 may have a plurality of openings O1 exposing the optical channel material layer 102 in the first region 10A. In some embodiments, these openings O1 are a plurality of striped openings. The mask layer 106 may include a photoresist, such as a positive photoresist or a negative photoresist. In some embodiments, the mask layer 106 may include a hard mask and may be formed of silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon nitride carbide, similar materials, or a combination thereof. The mask layer 106 may be a single-layer or multi-layer structure. The method of forming the mask layer 106 may include a deposition process, a lithography process, etc. The deposition process may include, for example, a physical vapor deposition process, a chemical vapor deposition process, an atomic layer deposition process, or any suitable deposition process. The lithography process may include, for example, steps such as photoresist coating, soft baking, exposure, post-exposure baking, development, and hard baking.

接著,參照第1C圖,氧化多個部分的光通道材料層102以形成氧化部件108A。在一些實施例中,氧化部件108A是透過加熱從開口O1露出的部分的光通道材料層102所形成。更具體而言,藉由進行熱處理,可以將光通道材料層102的表面的材料氧化以形成包括氧化物的氧化部件108A。Next, referring to FIG. 1C , multiple portions of the optical channel material layer 102 are oxidized to form oxidized components 108A. In some embodiments, the oxidized components 108A are formed by heating the portion of the optical channel material layer 102 exposed from the opening O1. More specifically, by performing a heat treatment, the material on the surface of the optical channel material layer 102 can be oxidized to form the oxidized components 108A including oxides.

以下說明用於形成第二氧化部件108B的第二局部氧化製程。參照第1D圖,進行與上述用於形成氧化部件108A的製程類似的製程以形成氧化部件108B。更具體而言,氧化部件108B的形成可以包括在光通道材料層102上形成遮罩層106,且遮罩層106具有露出光通道材料層102的多個開口O2。接著,氧化部件108B的形成可以更包括氧化多個部分的光通道材料層102以形成氧化部件108B。在一些實施例中,氧化部件108A穿過光通道材料層102且與下包覆層100接觸。另一方面,光通道材料層102可以在氧化部件108B下方橫向延伸。在一些其他的實施例中,光通道材料層102也在氧化部件108A下方橫向延伸,且光通道材料層102在氧化部件108A下方橫向延伸的部分實質上比在氧化部件108B下方橫向延伸的部分更薄。通常知識者可以透過調整上述氧化步驟的持續時間及溫度以精確地控制氧化部件108A、108B在光通道材料層102中嵌入的深度。除此之外,在第二局部氧化製程中的氧化步驟與有關第一局部氧化製程中所述的類似,在此為了簡化起見而省略其詳細描述。The following describes a second local oxidation process for forming a second oxidation component 108B. Referring to FIG. 1D , a process similar to the process described above for forming the oxidation component 108A is performed to form the oxidation component 108B. More specifically, the formation of the oxidation component 108B may include forming a mask layer 106 on the optical channel material layer 102, and the mask layer 106 has a plurality of openings O2 exposing the optical channel material layer 102. Next, the formation of the oxidation component 108B may further include oxidizing a plurality of portions of the optical channel material layer 102 to form the oxidation component 108B. In some embodiments, the oxidation component 108A passes through the optical channel material layer 102 and contacts the lower cladding layer 100. On the other hand, the optical channel material layer 102 may extend laterally below the oxidation component 108B. In some other embodiments, the light channel material layer 102 also extends laterally below the oxidized component 108A, and the portion of the light channel material layer 102 extending laterally below the oxidized component 108A is substantially thinner than the portion extending laterally below the oxidized component 108B. A person skilled in the art can precisely control the depth of the oxidized components 108A and 108B embedded in the light channel material layer 102 by adjusting the duration and temperature of the above-mentioned oxidation step. In addition, the oxidation step in the second partial oxidation process is similar to that described in the first partial oxidation process, and its detailed description is omitted here for simplicity.

此外,在第一及第二局部氧化製程中所使用的遮罩層106可以是同一個遮罩層或在個別的製程中形成的不同遮罩層。舉例而言,在使用同一個遮罩層的實施例中,在第二局部氧化製程期間使用在第一區域10A設置於遮罩層106上的遮罩部件(未顯示)遮蔽已形成的第一氧化部件108A,避免第一氧化部件108A在第二局部氧化製程期間進一步擴展。In addition, the mask layer 106 used in the first and second partial oxidation processes can be the same mask layer or different mask layers formed in separate processes. For example, in an embodiment using the same mask layer, a mask member (not shown) disposed on the mask layer 106 in the first region 10A is used to mask the first oxidized member 108A formed during the second partial oxidation process to prevent the first oxidized member 108A from further expanding during the second partial oxidation process.

在這樣的實施例中,也能夠先進行第二局部氧化製程以形成厚度較小的第二氧化部件108B,再進行第一局部氧化製程以形成厚度較大的第一氧化部件108A。也就是,在第一局部氧化製程期間使用在第二區域10B設置於遮罩層106上的遮罩部件(未顯示)遮蔽已形成的第二氧化部件108B,避免第二氧化部件108B在第一局部氧化製程期間進一步擴展。因此,藉由在第一及第二局部氧化製程中使用遮罩部件(未顯示)以及同一個遮罩層106,第一氧化部件108A及第二氧化部件108B的形成順序並不受到限制。In such an embodiment, the second partial oxidation process can be performed first to form the second oxidized component 108B with a smaller thickness, and then the first partial oxidation process can be performed to form the first oxidized component 108A with a larger thickness. That is, during the first partial oxidation process, a mask component (not shown) disposed on the mask layer 106 in the second region 10B is used to mask the formed second oxidized component 108B to prevent the second oxidized component 108B from further expanding during the first partial oxidation process. Therefore, by using a mask component (not shown) and the same mask layer 106 in the first and second partial oxidation processes, the order of forming the first oxidized component 108A and the second oxidized component 108B is not limited.

在一些其他的實施例中,在第二局部氧化製程之前移除在第一局部氧化製程中形成的遮罩層106。遮罩層106的移除是利用蝕刻製程來進行,例如乾式或濕式蝕刻製程或前述之組合。在一些實施例中,上述移除是利用濕式蝕刻製程來進行,所使用的蝕刻劑包括氫氟酸(HF)、硝酸(HNO 3)、硫酸(H 2SO 4)、磷酸(H 3PO 4)、鹽酸(HCl)、氨(NH 3)、其他適合的蝕刻劑、或前述之組合。接著,可以在光通道材料層102上形成另一個遮罩層106,且遮罩層106具有在第二區域10B露出光通道材料層102的多個開口O2。在一些實施例中,這些開口O2是多個條紋狀開口。由於上述另一個遮罩層106覆蓋已形成的第一氧化部件108A,能夠避免第一氧化部件108A在第二局部氧化製程期間進一步擴展。有關上述另一個遮罩層106的材料及形成方法與第一局部氧化製程中使用的遮罩層106相同,在此為了簡化起見而省略其詳細描述。 In some other embodiments, the mask layer 106 formed in the first local oxidation process is removed before the second local oxidation process. The removal of the mask layer 106 is performed using an etching process, such as a dry or wet etching process or a combination thereof. In some embodiments, the removal is performed using a wet etching process, and the etchant used includes hydrofluoric acid (HF), nitric acid (HNO 3 ), sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 ), hydrochloric acid (HCl), ammonia (NH 3 ), other suitable etchants, or a combination thereof. Then, another mask layer 106 can be formed on the optical channel material layer 102, and the mask layer 106 has a plurality of openings O2 that expose the optical channel material layer 102 in the second region 10B. In some embodiments, the openings O2 are a plurality of stripe-shaped openings. Since the another mask layer 106 covers the formed first oxidized component 108A, the first oxidized component 108A can be prevented from further expanding during the second partial oxidation process. The material and formation method of the another mask layer 106 are the same as those of the mask layer 106 used in the first partial oxidation process, and the detailed description thereof is omitted for simplicity.

在這樣的實施例中,也能夠先進行第二局部氧化製程以形成厚度較小的第二氧化部件108B,再進行第一局部氧化製程以形成厚度較大的第一氧化部件108A。也就是,在第一局部氧化製程期間形成的遮罩層106可以覆蓋已形成的第二氧化部件108B,能夠避免第二氧化部件108B在第一局部氧化製程期間進一步擴展。因此,藉由在第一及第二局部氧化製程中使用在個別的製程中形成的不同遮罩層106,第一氧化部件108A及第二氧化部件108B的形成順序也不會受到限制。In such an embodiment, the second partial oxidation process can be performed first to form the second oxidation component 108B with a smaller thickness, and then the first partial oxidation process can be performed to form the first oxidation component 108A with a larger thickness. That is, the mask layer 106 formed during the first partial oxidation process can cover the second oxidation component 108B that has been formed, and the second oxidation component 108B can be prevented from further expanding during the first partial oxidation process. Therefore, by using different mask layers 106 formed in the first and second partial oxidation processes in the respective processes, the formation order of the first oxidation component 108A and the second oxidation component 108B is not limited.

如以上所討論,各個局部氧化製程可以包括在光通道材料層102上形成具有露出光通道材料層102的多個開口的遮罩層106,且可以包括氧化多個部分的光通道材料層102以形成氧化部件。As discussed above, each local oxidation process may include forming a mask layer 106 having a plurality of openings exposing the light channel material layer 102 on the light channel material layer 102, and may include oxidizing a plurality of portions of the light channel material layer 102 to form an oxidized feature.

如第1C、1D圖所示,在一些實施例中,由於上述部分的光通道材料層102在被氧化為氧化部件108A、108B之後體積膨脹,氧化部件108A、108B的多個頂表面高於光通道材料層102的頂表面。在進行上述局部氧化製程之後,在所形成的光通道材料層102(以及後續形成的光通道層112)的頂部具有弧面。此外,如第1D圖所示,各個氧化部件108A、108B可以包括突出(protrusion)108P,且在各個氧化部件108A、108B的側壁與突出108P之間具有弧形的凹面。上述弧形的凹面對應光通道材料層102的頂部所具有的弧面,也對應後續形成的光通道層112的頂部所具有的弧面。此外,如第1D圖所示,上述突出108P可以在光通道材料層102的頂表面上橫向延伸。As shown in FIGS. 1C and 1D, in some embodiments, since the volume of the above-mentioned portion of the optical channel material layer 102 expands after being oxidized into the oxidized parts 108A and 108B, the top surfaces of the oxidized parts 108A and 108B are higher than the top surface of the optical channel material layer 102. After the above-mentioned local oxidation process, the top of the formed optical channel material layer 102 (and the optical channel layer 112 formed subsequently) has a curved surface. In addition, as shown in FIG. 1D, each oxidized part 108A and 108B may include a protrusion 108P, and there is a curved concave surface between the side wall of each oxidized part 108A and 108B and the protrusion 108P. The arc-shaped concave surface corresponds to the arc surface of the top of the optical channel material layer 102, and also corresponds to the arc surface of the top of the subsequently formed optical channel layer 112. In addition, as shown in FIG. 1D, the protrusion 108P can extend laterally on the top surface of the optical channel material layer 102.

氧化部件108A、108B可以包括與光通道材料層102共同的元素。舉例而言,氧化部件108A、108B可以包括氧化矽、氧化鍺、氧化鎵、氧化銦、其他適合的材料、或前述之組合。此外,在一些實施例中,氧化部件108A、108B的介電常數小於光通道材料層102的介電常數。The oxidized components 108A and 108B may include an element common to the light channel material layer 102. For example, the oxidized components 108A and 108B may include silicon oxide, germanium oxide, gallium oxide, indium oxide, other suitable materials, or a combination thereof. In addition, in some embodiments, the dielectric constant of the oxidized components 108A and 108B is less than the dielectric constant of the light channel material layer 102.

在形成氧化部件108A、108B之後,參照第1E圖,可以移除遮罩層106以露出光通道材料層102。接著參照第1F、1G圖,可以進行圖案化製程以將光通道材料層102圖案化為光通道層112,且在光通道層112的頂部具有弧面。具體而言,上述圖案化製程可以包括在光通道材料層102上形成覆蓋氧化部件108A、108B的圖案化遮罩110,且可以更包括蝕刻被圖案化遮罩110露出的部分的光通道材料層102。在一些實施例中,上述圖案化製程包括蝕刻光通道材料層102直到露出下包覆層100,如第1G圖所示。圖案化遮罩110的材料可以包括氮化矽、氮氧化矽、碳化矽、氮碳化矽、光阻、類似的材料、或前述之組合。上述蝕刻製程可以是以乾蝕刻製程來進行,例如反應性離子蝕刻製程。After forming the oxidized components 108A and 108B, referring to FIG. 1E , the mask layer 106 may be removed to expose the optical channel material layer 102. Then, referring to FIGS. 1F and 1G , a patterning process may be performed to pattern the optical channel material layer 102 into an optical channel layer 112, and the top of the optical channel layer 112 has a curved surface. Specifically, the patterning process may include forming a patterned mask 110 on the optical channel material layer 102 to cover the oxidized components 108A and 108B, and may further include etching the portion of the optical channel material layer 102 exposed by the patterned mask 110. In some embodiments, the patterning process includes etching the optical channel material layer 102 until the lower cladding layer 100 is exposed, as shown in FIG. 1G . The material of the patterned mask 110 may include silicon nitride, silicon oxynitride, silicon carbide, silicon carbide nitride, photoresist, similar materials, or a combination thereof. The etching process may be performed by a dry etching process, such as a reactive ion etching process.

在進行圖案化製程之後,可以移除圖案化遮罩110。圖案化遮罩110的移除是利用蝕刻製程來進行,例如乾式或濕式蝕刻製程或前述之組合。在一些實施例中,上述移除是利用濕式蝕刻製程來進行,所使用的蝕刻劑包括氫氟酸(HF)、硝酸(HNO 3)、硫酸(H 2SO 4)、磷酸(H 3PO 4)、鹽酸(HCl)、氨(NH 3)、其他適合的蝕刻劑、或前述之組合。 After the patterning process, the patterned mask 110 may be removed. The removal of the patterned mask 110 is performed using an etching process, such as a dry or wet etching process, or a combination thereof. In some embodiments, the removal is performed using a wet etching process, and the etchant used includes hydrofluoric acid (HF), nitric acid (HNO 3 ), sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 ), hydrochloric acid (HCl), ammonia (NH 3 ), other suitable etchants, or a combination thereof.

光通道層112可以分別在所形成的光學結構的不同區域中具有不同的剖面形狀。舉例而言,如第1G圖所示,光通道層112可以在第一區域10A被形成為條紋狀,且具有與弧面鄰近的垂直側壁。另一方面,如第1G圖所示,光通道層112可以在第二區域10B被形成為脊形,且具有從光通道層112的與弧面鄰近的垂直側壁往外延伸的橫向延伸部112H。橫向延伸部112H可以延伸到與第1F圖所示的氧化部件108B的邊緣對齊,在一些實施例中,橫向延伸部112H與氧化部件108B的突出108P對齊。The optical channel layer 112 may have different cross-sectional shapes in different regions of the formed optical structure. For example, as shown in FIG. 1G, the optical channel layer 112 may be formed into a stripe shape in the first region 10A and have a vertical side wall adjacent to the curved surface. On the other hand, as shown in FIG. 1G, the optical channel layer 112 may be formed into a ridge shape in the second region 10B and have a lateral extension portion 112H extending outward from the vertical side wall of the optical channel layer 112 adjacent to the curved surface. The lateral extension portion 112H may extend to align with the edge of the oxidized component 108B shown in FIG. 1F. In some embodiments, the lateral extension portion 112H is aligned with the protrusion 108P of the oxidized component 108B.

應理解的是,由於在本揭露中是藉由將光通道材料層102局部氧化以改變所形成的光通道層112的結構特徵,相較於利用習知的蝕刻製程所形成的光通道層,在本揭露中的光通道層112可以具有粗糙度較低的表面,例如側壁、橫向延伸部112H的頂表面等。因此,當光線在光通道層112中傳遞時,能夠在光通道層112與光通道層112的周圍的材料之間具有較佳的全反射性質,藉此改善光學結構在光子應用上的性能。It should be understood that, since the light channel material layer 102 is partially oxidized to change the structural features of the formed light channel layer 112 in the present disclosure, compared with the light channel layer formed by the known etching process, the light channel layer 112 in the present disclosure can have a surface with lower roughness, such as the sidewall, the top surface of the lateral extension portion 112H, etc. Therefore, when light is transmitted in the light channel layer 112, it can have better total reflection properties between the light channel layer 112 and the materials around the light channel layer 112, thereby improving the performance of the optical structure in photonic applications.

在一些實施例中,在進行圖案化製程以形成光通道層112之後,移除氧化部件108A、108B。舉例而言,可以藉由乾式或濕式蝕刻製程或前述之組合移除氧化部件108A、108B。然而,氧化部件108A、108B也可以被保留在光通道層112上,且各個氧化部件108A、108B可以具有對應光通道層112的弧面的凹面。在保留氧化部件108A、108B的情況下,氧化部件108A、108B的多個頂表面高於該光通道層112的頂表面。In some embodiments, after the patterning process is performed to form the optical channel layer 112, the oxidized components 108A, 108B are removed. For example, the oxidized components 108A, 108B can be removed by a dry or wet etching process or a combination thereof. However, the oxidized components 108A, 108B can also be retained on the optical channel layer 112, and each oxidized component 108A, 108B can have a concave surface corresponding to the curved surface of the optical channel layer 112. In the case where the oxidized components 108A, 108B are retained, multiple top surfaces of the oxidized components 108A, 108B are higher than the top surface of the optical channel layer 112.

在一些實施例中,如第1H圖所示,在光通道層112上形成上包覆層114,且上包覆層114的介電常數小於光通道層112的介電常數。此外,由於下包覆層100的介電常數也小於光通道層112的介電常數,光線可以在包覆結構(例如下包覆層100或上包覆層114)與光通道層112之間的界面進行全反射。上包覆層114的材料可以與下包覆層100相同或類似,在此為了簡化起見而省略其詳細描述。上包覆層114的形成方法可以包括物理氣相沉積、化學氣相沉積、原子層沉積、或其他適合的方法、或前述之組合。在氧化部件108A、108B被保留在光通道層112上的實施例中,上包覆層114可以被設置於光通道層112的頂部以及氧化部件108A、108B上。在一些實施例中,上包覆層114包括與氧化部件108A、108B相同或類似的材料。In some embodiments, as shown in FIG. 1H , an upper cladding layer 114 is formed on the optical channel layer 112, and the dielectric constant of the upper cladding layer 114 is smaller than that of the optical channel layer 112. In addition, since the dielectric constant of the lower cladding layer 100 is also smaller than that of the optical channel layer 112, light can be totally reflected at the interface between the cladding structure (e.g., the lower cladding layer 100 or the upper cladding layer 114) and the optical channel layer 112. The material of the upper cladding layer 114 can be the same as or similar to that of the lower cladding layer 100, and its detailed description is omitted here for simplicity. The method of forming the upper cladding layer 114 can include physical vapor deposition, chemical vapor deposition, atomic layer deposition, or other suitable methods, or a combination of the foregoing. In embodiments where the oxidized components 108A, 108B are retained on the light channel layer 112, an upper cladding layer 114 may be disposed on top of the light channel layer 112 and the oxidized components 108A, 108B. In some embodiments, the upper cladding layer 114 comprises the same or similar material as the oxidized components 108A, 108B.

第2A圖是根據本揭露的一些實施例,繪示出光學結構1的三維示意圖。第2B圖是根據本揭露的一些實施例,繪示出對應第2A圖的剖線X-X’的剖面圖。第2C圖是根據本揭露的一些實施例,繪示出對應第2A圖的剖線Y-Y’的剖面圖。光學結構1包括設置於下包覆層100上的光通道層112,且在光通道層112的頂部具有如第2B、2C圖所示的弧面(未顯示於第2A圖)。FIG. 2A is a three-dimensional schematic diagram of an optical structure 1 according to some embodiments of the present disclosure. FIG. 2B is a cross-sectional view corresponding to the section line X-X' of FIG. 2A according to some embodiments of the present disclosure. FIG. 2C is a cross-sectional view corresponding to the section line Y-Y' of FIG. 2A according to some embodiments of the present disclosure. The optical structure 1 includes an optical channel layer 112 disposed on the lower cladding layer 100, and the top of the optical channel layer 112 has a curved surface as shown in FIGS. 2B and 2C (not shown in FIG. 2A).

在一些實施例中,光學結構1的形成可以包括形成光通道層112的波導112A及/或光柵112B。具體而言,在一些實施例中,上述第一局部氧化製程及第二局部氧化製程分別用於形成光通道層112的波導112A及光柵112B。可以在第一局部氧化製程中使用較厚的氧化部件以形成具有弧面的波導112A,且可以在第二局部氧化製程中使用較薄的氧化部件以形成具有弧面的光柵112B。In some embodiments, the formation of the optical structure 1 may include forming a waveguide 112A and/or a grating 112B of the optical channel layer 112. Specifically, in some embodiments, the first local oxidation process and the second local oxidation process are respectively used to form the waveguide 112A and the grating 112B of the optical channel layer 112. A thicker oxidation component may be used in the first local oxidation process to form the waveguide 112A with a curved surface, and a thinner oxidation component may be used in the second local oxidation process to form the grating 112B with a curved surface.

參照第2A圖,波導112A在與下包覆層100的頂表面平行的第一方向(以下將以y方向為第一方向來說明)上延伸。在一些實施例中,如第2圖所示,波導112A具有在與第一方向垂直的第二方向(以下將以x方向為第二方向來說明)上變化的寬度以匯聚光通道層112中的光線。在第2A圖中所示的波導112A為條紋狀的波導,且如第2B圖所示,在對應剖線X-X’的剖面中不具有橫向延伸部。然而,通常知識者也可以根據設計需求以使光通道層112包括類似第1H圖所示的橫向延伸部112H的橫向延伸部,且上述橫向延伸部可以從波導112A的多個側壁延伸於與第一方向垂直的第二方向。在一些實施例中,藉由控制橫向延伸部的厚度,能夠確保在光通道層112中傳遞的光線不會進入橫向延伸部,減少光線的洩漏。本揭露並未限定從波導112A的側壁延伸的橫向延伸部的厚度。舉例而言,在一個特定的實施例中,波導112A的厚度在100nm~1000nm的範圍內,例如220nm,且上述橫向延伸部的厚度在20nm~700nm的範圍內,例如90nm。Referring to FIG. 2A , the waveguide 112A extends in a first direction (hereinafter, the y direction will be described as the first direction) parallel to the top surface of the lower cladding layer 100. In some embodiments, as shown in FIG. 2 , the waveguide 112A has a width that varies in a second direction (hereinafter, the x direction will be described as the second direction) perpendicular to the first direction to converge the light in the optical channel layer 112. The waveguide 112A shown in FIG. 2A is a striped waveguide, and as shown in FIG. 2B , it does not have a transverse extension portion in the cross section corresponding to the section line X-X’. However, a person skilled in the art may also, according to design requirements, make the optical channel layer 112 include a transverse extension portion similar to the transverse extension portion 112H shown in FIG. 1H , and the transverse extension portion may extend from multiple side walls of the waveguide 112A in a second direction perpendicular to the first direction. In some embodiments, by controlling the thickness of the transverse extension portion, it is possible to ensure that the light transmitted in the optical channel layer 112 does not enter the transverse extension portion, thereby reducing light leakage. The present disclosure does not limit the thickness of the transverse extension portion extending from the side wall of the waveguide 112A. For example, in a specific embodiment, the thickness of the waveguide 112A is in the range of 100nm to 1000nm, such as 220nm, and the thickness of the transverse extension portion is in the range of 20nm to 700nm, such as 90nm.

參照第2A、2C圖,光通道層112的光柵112B可以包括各具有弧面(未顯示於第2A圖)且在與下包覆層100的頂表面平行的第二方向(x方向)上延伸的複數個條紋部112S。光柵112B可以更包括在條紋部112S與下包覆層100之間延伸於與第二方向垂直的第一方向(y方向)的橫向連通部112C。光柵112B可以藉由在局部氧化製程中形成大量的在第二方向延伸的氧化部件來形成。本揭露並未限定從光柵112B的條紋部112S及橫向連通部112C的厚度。舉例而言,在一個特定的實施例中,條紋部112S的厚度在100nm~1000nm的範圍內,例如220nm,且橫向連通部112C的厚度在0nm~700nm的範圍內,例如150nm。在一些實施例中,光柵112B的橫向連通部112C的厚度大於波導112A的橫向延伸部的厚度。2A and 2C, the grating 112B of the optical channel layer 112 may include a plurality of stripe portions 112S each having a curved surface (not shown in FIG. 2A) and extending in a second direction (x direction) parallel to the top surface of the lower cladding layer 100. The grating 112B may further include a transverse connecting portion 112C extending between the stripe portion 112S and the lower cladding layer 100 in a first direction (y direction) perpendicular to the second direction. The grating 112B may be formed by forming a large number of oxidized components extending in the second direction in a local oxidation process. The present disclosure does not limit the thickness of the stripe portion 112S and the transverse connecting portion 112C of the grating 112B. For example, in a specific embodiment, the thickness of the stripe portion 112S is in the range of 100 nm to 1000 nm, such as 220 nm, and the thickness of the transverse connection portion 112C is in the range of 0 nm to 700 nm, such as 150 nm. In some embodiments, the thickness of the transverse connection portion 112C of the grating 112B is greater than the thickness of the transverse extension portion of the waveguide 112A.

相較於習知的淺溝槽隔離結構的蝕刻製程,本揭露的光學結構的形成方法可以對作為光學結構1的核心之光通道層112的厚度進行精確的控制。舉例而言,能夠將波導112A及光柵112B的局部厚度與其理想厚度的差異控制在較小的範圍以內(例如約≤2nm),使得光學結構1更適合用於光子應用。Compared to the conventional etching process of the shallow trench isolation structure, the method for forming the optical structure disclosed herein can accurately control the thickness of the optical channel layer 112 as the core of the optical structure 1. For example, the difference between the local thickness of the waveguide 112A and the grating 112B and their ideal thickness can be controlled within a relatively small range (e.g., about ≤2 nm), making the optical structure 1 more suitable for photonic applications.

以下參照第2A圖以說明光學結構1的運作原理。舉例而言,來自光源2之具有特定波長分布λ 0的光線可以以入射角θ照射到具有週期Λ的光柵112B,接著光線可以在光通道層112內傳遞到波導112A。光柵112B的週期Λ可以根據光學結構1所對應的使用光波長來決定。舉例而言,在光線的波長分布λ 0在100nm~2000nm的範圍內情況下,週期Λ可以在20nm~1000nm的範圍內。應理解的是,為了簡化起見,在第2A圖中並未繪示在光通道層112上覆蓋光通道層112的上包覆層或尚未移除的氧化部件。光線可以在光通道層112與周圍的材料之間的界面進行全反射。 The operation principle of the optical structure 1 is explained below with reference to FIG. 2A. For example, light with a specific wavelength distribution λ 0 from the light source 2 can be irradiated to the grating 112B with a period Λ at an incident angle θ, and then the light can be transmitted to the waveguide 112A in the optical channel layer 112. The period Λ of the grating 112B can be determined according to the wavelength of the light used corresponding to the optical structure 1. For example, when the wavelength distribution λ 0 of the light is in the range of 100nm~2000nm, the period Λ can be in the range of 20nm~1000nm. It should be understood that, for the sake of simplicity, the upper cladding layer covering the optical channel layer 112 or the oxidized components that have not been removed on the optical channel layer 112 are not shown in FIG. 2A. Light can be totally reflected at the interface between the light channel layer 112 and the surrounding material.

綜上所述,本揭露提供一種光學結構及其形成方法,在利用局部氧化製程形成氧化部件之後對光通道材料進行圖案化製程,藉此形成光通道層在頂部具有弧面的光學結構。可以透過調整氧化步驟的持續時間及溫度以精確地控制氧化部件在光通道材料層中嵌入的深度。如此一來,相較於習知的淺溝槽隔離結構的蝕刻製程,本揭露的光學結構的形成方法可以對作為光學結構的核心之光通道層的厚度進行精確的控制。舉例而言,能夠將光通道層的局部厚度與其理想厚度的差異控制在較小的範圍以內(例如約≤2nm),使得光學結構更適合用於光子應用。再者,由於是藉由將光通道材料局部氧化以改變所形成的光通道層的結構特徵,相較於利用習知的蝕刻製程所形成的光通道層,在本揭露中的光通道層可以具有粗糙度較低的表面。因此,當光線在光通道層中傳遞時,能夠在光通道層與光通道層的周圍的材料之間具有較佳的全反射性質,藉此改善光學結構在光子應用上的性能。In summary, the present disclosure provides an optical structure and a method for forming the same. After forming an oxidation component by a local oxidation process, a patterning process is performed on the optical channel material to form an optical structure in which the optical channel layer has a curved surface at the top. The depth to which the oxidation component is embedded in the optical channel material layer can be precisely controlled by adjusting the duration and temperature of the oxidation step. In this way, compared to the known etching process of the shallow trench isolation structure, the method for forming the optical structure disclosed in the present disclosure can precisely control the thickness of the optical channel layer, which is the core of the optical structure. For example, the difference between the local thickness of the optical channel layer and its ideal thickness can be controlled within a smaller range (e.g., about ≤2nm), making the optical structure more suitable for photonic applications. Furthermore, since the structure characteristics of the optical channel layer are changed by partially oxidizing the optical channel material, the optical channel layer in the present disclosure can have a surface with lower roughness compared to the optical channel layer formed by the conventional etching process. Therefore, when light is transmitted in the optical channel layer, it can have better total reflection properties between the optical channel layer and the materials around the optical channel layer, thereby improving the performance of the optical structure in photonic applications.

以上概述數個實施例之特徵,以使本發明所屬技術領域中具有通常知識者可更易理解本發明實施例的觀點。本發明所屬技術領域中具有通常知識者應理解,可輕易地以本發明實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及/或優勢。在本發明所屬技術領域中具有通常知識者也應理解到,此類等效的製程和結構並無悖離本發明的精神與範圍,且可在不違背本發明之精神和範圍之下,做各式各樣的改變、取代和替換。The features of several embodiments are summarized above so that those with ordinary knowledge in the art to which the present invention belongs can more easily understand the viewpoints of the embodiments of the present invention. Those with ordinary knowledge in the art to which the present invention belongs should understand that other processes and structures can be easily designed or modified based on the embodiments of the present invention to achieve the same purpose and/or advantages as the embodiments introduced herein. Those with ordinary knowledge in the art to which the present invention belongs should also understand that such equivalent processes and structures do not violate the spirit and scope of the present invention, and various changes, substitutions and replacements can be made without violating the spirit and scope of the present invention.

1:光學結構1: Optical structure

2:光源2: Light source

10:基板10: Substrate

10A:第一區域10A: Area 1

10B:第二區域10B: Second Area

11:分隔符11: Separator

100:下包覆層100: Lower coating layer

102:光通道材料層102: Optical channel material layer

104:基底104: Base

106:遮罩層106: Mask layer

108A,108B:氧化部件108A, 108B: Oxidized parts

108P:突出108P: Prominent

110:圖案化遮罩110: Patterned Mask

112:光通道層112: Optical channel layer

112A:波導112A: Waveguide

112B:光柵112B: Grating

112C:橫向連通部112C: Horizontal connection

112H:橫向延伸部112H: Horizontal extension

112S:條紋部112S: Stripe

114:上包覆層114: Upper coating

X-X’,Y-Y’:剖線X-X’, Y-Y’: Section Line

x,y,z:方向x,y,z: direction

O1,O2:開口O1,O2: Open

λ:波長分布λ: wavelength distribution

θ:入射角θ: angle of incidence

Λ:週期Λ: Cycle

以下將配合所附圖式詳述本發明實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可任意地放大或縮小元件的尺寸,以清楚地表現出本發明實施例的特徵。 第1A~1H圖是根據本揭露的一些實施例,繪示出在光學結構的製造過程中的各個階段的剖面圖。 第2A圖是根據本揭露的一些實施例,繪示出光學結構的三維示意圖。 第2B圖是根據本揭露的一些實施例,繪示出對應第2A圖的剖線X-X’的剖面圖。 第2C圖是根據本揭露的一些實施例,繪示出對應第2A圖的剖線Y-Y’的剖面圖。 The following will be described in detail with the accompanying drawings. It should be noted that, according to standard practices in the industry, various features are not drawn to scale and are only used for illustration. In fact, the size of the components can be arbitrarily enlarged or reduced to clearly show the features of the embodiments of the present invention. Figures 1A to 1H are cross-sectional views of various stages in the manufacturing process of the optical structure according to some embodiments of the present disclosure. Figure 2A is a three-dimensional schematic diagram of the optical structure according to some embodiments of the present disclosure. Figure 2B is a cross-sectional view corresponding to the section line X-X' of Figure 2A according to some embodiments of the present disclosure. Figure 2C is a cross-sectional view corresponding to the section line Y-Y' of Figure 2A according to some embodiments of the present disclosure.

10A:第一區域 10A: First Area

10B:第二區域 10B: Second area

11:分隔符 11: Separator

100:下包覆層 100: Lower coating layer

104:基底 104: Base

112:光通道層 112: Optical channel layer

112H:橫向延伸部 112H: Horizontal extension

114:上包覆層 114: Upper covering layer

Claims (23)

一種光學結構的形成方法,包括: 提供一基板,其中該基板包括一下包覆層以及設置於該下包覆層上的一光通道材料層; 對該光通道材料層進行至少一局部氧化製程以形成嵌入該光通道材料層的多個氧化部件;以及 進行一圖案化製程以將該光通道材料層圖案化為一光通道層,且在該光通道層的頂部具有一弧面; 其中該下包覆層的一介電常數小於該光通道層的一介電常數。 A method for forming an optical structure, comprising: Providing a substrate, wherein the substrate comprises a lower cladding layer and an optical channel material layer disposed on the lower cladding layer; Performing at least one local oxidation process on the optical channel material layer to form a plurality of oxidized components embedded in the optical channel material layer; and Performing a patterning process to pattern the optical channel material layer into an optical channel layer, and having a curved surface at the top of the optical channel layer; Wherein a dielectric constant of the lower cladding layer is less than a dielectric constant of the optical channel layer. 如請求項1之光學結構的形成方法,其中該些氧化部件的多個頂表面高於該光通道材料層的一頂表面。A method for forming an optical structure as claimed in claim 1, wherein multiple top surfaces of the oxidized components are higher than a top surface of the optical channel material layer. 如請求項1之光學結構的形成方法,其中各個該些氧化部件包括一突出(protrusion),且在各個該些氧化部件的一側壁與該突出之間具有對應該弧面之弧形的凹面。A method for forming an optical structure as claimed in claim 1, wherein each of the oxidized components includes a protrusion, and an arc-shaped concave surface corresponding to the arc surface is provided between a side wall of each of the oxidized components and the protrusion. 如請求項3之光學結構的形成方法,其中該突出在該光通道材料層的頂表面上橫向延伸。A method for forming an optical structure as claimed in claim 3, wherein the protrusion extends laterally on the top surface of the light channel material layer. 如請求項1之光學結構的形成方法,其中該些氧化部件的介電常數小於該光通道材料層的該介電常數。A method for forming an optical structure as claimed in claim 1, wherein the dielectric constant of the oxidized components is smaller than the dielectric constant of the optical channel material layer. 如請求項1之光學結構的形成方法,其中一部分的該些氧化部件穿過該光通道材料層且與該下包覆層接觸。A method for forming an optical structure as claimed in claim 1, wherein a portion of the oxidized components pass through the light channel material layer and contact the lower cladding layer. 如請求項1之光學結構的形成方法,其中該光通道材料層在一部分的該些氧化部件下方橫向延伸。A method for forming an optical structure as claimed in claim 1, wherein the light channel material layer extends laterally below a portion of the oxidized components. 如請求項1之光學結構的形成方法,其中該至少一局部氧化製程包括: 一第一局部氧化製程,形成多個第一氧化部件;以及 一第二局部氧化製程,形成多個第二氧化部件; 其中該些第一氧化部件的厚度大於該些第二氧化部件的厚度。 A method for forming an optical structure as claimed in claim 1, wherein the at least one local oxidation process comprises: a first local oxidation process to form a plurality of first oxidation components; and a second local oxidation process to form a plurality of second oxidation components; wherein the thickness of the first oxidation components is greater than the thickness of the second oxidation components. 如請求項8之光學結構的形成方法,其中該第二局部氧化製程是在該第一局部在一些氧化製程之後進行。A method for forming an optical structure as claimed in claim 8, wherein the second local oxidation process is performed after some oxidation processes in the first local area. 如請求項8之光學結構的形成方法,其中該第一局部氧化製程及該第二局部氧化製程分別用於形成該光通道層的一波導及一光柵。A method for forming an optical structure as claimed in claim 8, wherein the first local oxidation process and the second local oxidation process are used to form a waveguide and a grating of the optical channel layer, respectively. 如請求項1之光學結構的形成方法,其中該各個該局部氧化製程包括: 在該光通道材料層上形成一遮罩層,且該遮罩層具有露出該光通道材料層的多個開口;以及 氧化多個部分的該光通道材料層以形成該些氧化部件。 A method for forming an optical structure as claimed in claim 1, wherein each of the local oxidation processes comprises: forming a mask layer on the light channel material layer, and the mask layer has a plurality of openings exposing the light channel material layer; and oxidizing a plurality of portions of the light channel material layer to form the oxidation components. 如請求項11之光學結構的形成方法,其中該至少一局部氧化製程包括依序形成的一第一局部氧化製程及一第二局部氧化製程,且在該第二局部氧化製程之前移除在該第一局部氧化製程中形成的該遮罩層。A method for forming an optical structure as claimed in claim 11, wherein the at least one local oxidation process includes a first local oxidation process and a second local oxidation process formed in sequence, and the mask layer formed in the first local oxidation process is removed before the second local oxidation process. 如請求項11之光學結構的形成方法,其中該些開口是多個條紋狀(striped)開口。 A method for forming an optical structure as claimed in claim 11, wherein the openings are multiple striped openings. 如請求項1之光學結構的形成方法,其中該圖案化製程包括:在該光通道材料層上形成覆蓋該些氧化部件的一圖案化遮罩;以及蝕刻被該圖案化遮罩露出的部分的該光通道材料層。 A method for forming an optical structure as claimed in claim 1, wherein the patterning process comprises: forming a patterned mask covering the oxidized components on the light channel material layer; and etching the portion of the light channel material layer exposed by the patterned mask. 如請求項1之光學結構的形成方法,其中該圖案化製程包括蝕刻該光通道材料層直到露出該下包覆層。 A method for forming an optical structure as claimed in claim 1, wherein the patterning process includes etching the optical channel material layer until the lower cladding layer is exposed. 如請求項1之光學結構的形成方法,更包括移除該些氧化部件。 The method for forming an optical structure as claimed in claim 1 further includes removing the oxidized components. 如請求項1之光學結構的形成方法,更包括在該光通道層上形成一上包覆層,且該上包覆層的一介電常數小於該光通道層的該介電常數。 The method for forming an optical structure as claimed in claim 1 further includes forming an upper cladding layer on the optical channel layer, and a dielectric constant of the upper cladding layer is smaller than the dielectric constant of the optical channel layer. 一種光學結構,包括:一下包覆層;一光通道層,由一單一材料所形成,且設置於該下包覆層上,且在該光通道層的頂部具有一弧面;其中該下包覆層的一介電常數小於該光通道層的一介電常數。 An optical structure includes: a lower cladding layer; an optical channel layer formed of a single material and disposed on the lower cladding layer, and having a curved surface at the top of the optical channel layer; wherein a dielectric constant of the lower cladding layer is smaller than a dielectric constant of the optical channel layer. 如請求項18之光學結構,其中該光通道層包括具有該弧面的一波導,且該波導在與該下包覆層的頂表面平行的一第一方向上延伸。An optical structure as claimed in claim 18, wherein the light channel layer includes a waveguide having the curved surface, and the waveguide extends in a first direction parallel to the top surface of the lower cladding layer. 如請求項19之光學結構,其中該光通道層更包括一橫向延伸部,其中該橫向延伸部從該波導的多個側壁延伸於與該第一方向垂直的一第二方向。An optical structure as claimed in claim 19, wherein the light channel layer further includes a lateral extension portion, wherein the lateral extension portion extends from multiple side walls of the waveguide in a second direction perpendicular to the first direction. 如請求項18之光學結構,其中該光通道層包括一光柵,其中該光柵包括: 複數個條紋部,各具有該弧面且在與該下包覆層的頂表面平行的一第二方向上延伸;以及 一橫向連通部,在該些條紋部與該下包覆層之間延伸於與該第二方向垂直的一第一方向。 The optical structure of claim 18, wherein the light channel layer includes a grating, wherein the grating includes: a plurality of stripe portions, each having the arc surface and extending in a second direction parallel to the top surface of the lower cladding layer; and a transverse connecting portion extending between the stripe portions and the lower cladding layer in a first direction perpendicular to the second direction. 如請求項18之光學結構,更包括覆蓋該光通道層的一上包覆層,且該上包覆層的一介電常數小於該光通道層的該介電常數。The optical structure of claim 18 further includes an upper cladding layer covering the optical channel layer, and a dielectric constant of the upper cladding layer is smaller than the dielectric constant of the optical channel layer. 如請求項22之光學結構,其中該上包覆層及該下包覆層包括相同的材料。An optical structure as in claim 22, wherein the upper cladding layer and the lower cladding layer comprise the same material.
TW112115278A 2023-04-25 Optical structure and method for forming the same TWI844342B (en)

Publications (1)

Publication Number Publication Date
TWI844342B true TWI844342B (en) 2024-06-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190107672A1 (en) 2017-10-05 2019-04-11 Globalfoundries Inc. Non-planar waveguide structures

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190107672A1 (en) 2017-10-05 2019-04-11 Globalfoundries Inc. Non-planar waveguide structures

Similar Documents

Publication Publication Date Title
US7169682B2 (en) Method for manufacturing semiconductor device
KR20110055912A (en) Method for forming fine pattern in semiconductor device
US20080064216A1 (en) Method of manufacturing flash memory device
US7611961B2 (en) Method for fabricating semiconductor wafer with enhanced alignment performance
KR100726148B1 (en) Manufacturing method for semiconductor device
TWI844342B (en) Optical structure and method for forming the same
CN115185038B (en) Semiconductor device and manufacturing method thereof
US8084832B2 (en) Semiconductor device
TWI567785B (en) Method for fabricating patterned structure of semiconductor device
US6184116B1 (en) Method to fabricate the MOS gate
CN108257910B (en) The production method of shallow trench isolation groove
WO2023092291A1 (en) Method for etching optical waveguide structure in chip, and chip and optical communication device
CN103367119B (en) Mask process for double patterning design
KR100442852B1 (en) Method for forming trench isolation region to embody isolation region proper for high integrated semiconductor device
JP6130284B2 (en) Optical waveguide fabrication method
JP3585039B2 (en) Hole forming method
KR100816210B1 (en) Method of fabricating semiconductor devices
JP2008124399A (en) Manufacturing method of semiconductor device
KR20020027503A (en) Method of dry etching an antireflection coating in semiconductor devices
KR100359787B1 (en) Method for fabricating of pattern
JP2005033192A (en) Method for manufacturing semiconductor device
JP2002324787A (en) Method of manufacturing semiconductor device
JPH11311865A (en) Highly accurate resist patterning method on substrate having difference in level
KR100481557B1 (en) Method for making narrow sti by using double nitride etch
TW202131090A (en) Method of manufacturing phase-shifting photomask