TWI842206B - Imaging systems with image sensors for side radiation incidence during imaging and method of using the same - Google Patents

Imaging systems with image sensors for side radiation incidence during imaging and method of using the same Download PDF

Info

Publication number
TWI842206B
TWI842206B TW111143820A TW111143820A TWI842206B TW I842206 B TWI842206 B TW I842206B TW 111143820 A TW111143820 A TW 111143820A TW 111143820 A TW111143820 A TW 111143820A TW I842206 B TWI842206 B TW I842206B
Authority
TW
Taiwan
Prior art keywords
radiation
image sensor
imaging system
layer
imaging
Prior art date
Application number
TW111143820A
Other languages
Chinese (zh)
Other versions
TW202326176A (en
Inventor
曹培炎
劉雨潤
Original Assignee
大陸商深圳幀觀德芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2021/142884 external-priority patent/WO2023123161A1/en
Application filed by 大陸商深圳幀觀德芯科技有限公司 filed Critical 大陸商深圳幀觀德芯科技有限公司
Publication of TW202326176A publication Critical patent/TW202326176A/en
Application granted granted Critical
Publication of TWI842206B publication Critical patent/TWI842206B/en

Links

Abstract

Disclosed herein is a system comprising an image sensor which comprises: M metal layers (metal layers (i), i=1, ..., M) and M radiation detectors (radiation detectors (i), i=1, ..., M). For each value of i, the radiation detector (i) comprises (A) a radiation absorption layer (i) which comprises multiple sensing elements, and (B) Ni integrated circuit chips configured to process electrical signals generated in the radiation absorption layer (i). M is an integer greater than 1. Ni, i=1, ..., M are positive integers. The M metal layers and the radiation absorption layers (i), i=1, ..., M together form a stack of layers.

Description

具有成像期間進行側面輻射入射的圖像感測器 的成像系統及使用其的方法 Imaging system having an image sensor for side radiation incidence during imaging and method of using the same

本發明是有關於一種成像系統,且特別是有關於一種具有成像期間進行側面輻射入射的圖像感測器的成像系統。 The present invention relates to an imaging system, and in particular to an imaging system having an image sensor for side radiation incidence during imaging.

輻射檢測器是測量輻射特性的裝置。該特性的示例可以包括輻射的強度、相位和偏振的空間分佈。由輻射檢測器測量的輻射可以是已經透過物體的輻射。輻射檢測器測量的輻射可以是電磁輻射,例如紅外光、可見光、紫外光、X射線或γ射線。輻射可以是其他類型的,例如α射線和β射線。成像系統可以包括一個或多個圖像感測器,每個圖像感測器可以具有一個或多個輻射檢測器。 A radiation detector is a device that measures a property of radiation. Examples of the property may include the spatial distribution of intensity, phase, and polarization of the radiation. The radiation measured by the radiation detector may be radiation that has passed through an object. The radiation measured by the radiation detector may be electromagnetic radiation, such as infrared light, visible light, ultraviolet light, X-rays, or gamma rays. The radiation may be of other types, such as alpha rays and beta rays. An imaging system may include one or more image sensors, each of which may have one or more radiation detectors.

本文公開了一種系統,所述系統包括圖像感測器,所述圖像感測器包括M個金屬層(金屬層(i),i=1、......、M)和M 個輻射檢測器(輻射檢測器(i),i=1、......、M)。對於i的每個值,所述輻射檢測器(i)包括(A)包括多個感測元件的輻射吸收層(i),以及(B)被配置為處理在所述輻射吸收層(i)中生成的電信號的Ni個積體電路晶片。M是大於1的整數。Ni,i=1、......、M是正整數。所述M個金屬層和所述輻射吸收層(i),i=1、......、M一起形成層的堆疊。 This article discloses a system, which includes an image sensor, which includes M metal layers (metal layer (i), i=1, ..., M) and M radiation detectors (radiation detector (i), i=1, ..., M). For each value of i, the radiation detector (i) includes (A) a radiation absorption layer (i) including multiple sensing elements, and (B) Ni integrated circuit chips configured to process electrical signals generated in the radiation absorption layer (i). M is an integer greater than 1. Ni, i=1, ..., M are positive integers. The M metal layers and the radiation absorption layer (i), i=1, ..., M together form a stack of layers.

在一方面,所述堆疊包括2×M個層。 In one aspect, the stack comprises 2×M layers.

在一方面,所述M個金屬層包含原子序數至少為26的金屬。 In one aspect, the M metal layers comprise a metal having an atomic number of at least 26.

在一方面,所述金屬是鎢、鉑或金。 In one aspect, the metal is tungsten, platinum or gold.

在一方面,所述M個金屬層和所述輻射吸收層(i),i=1、......、M以交替方式佈置在所述堆疊中。 In one aspect, the M metal layers and the radiation absorbing layers (i), i=1, ..., M are arranged in the stack in an alternating manner.

在一方面,最佳擬合平面穿過所述輻射吸收層(i),i=1、......、M中的一輻射吸收層的所有感測元件,並且垂直於所述最佳擬合平面的一平面與所有的所述M個金屬層相交且不與所述輻射吸收層(i),i=1、......、M中的任何輻射吸收層相交。 On the one hand, the best fitting plane passes through all sensing elements of a radiation absorbing layer in the radiation absorbing layer (i), i=1, ..., M, and a plane perpendicular to the best fitting plane intersects all of the M metal layers and does not intersect any radiation absorbing layer in the radiation absorbing layer (i), i=1, ..., M.

在一方面,最佳擬合平面穿過所述輻射吸收層(i),i=1、......、M中的一輻射吸收層的所有感測元件,並且所述M個金屬層中的每個金屬層在垂直於所述最佳擬合平面的方向上測量的厚度在50微米至100微米的範圍內。 In one aspect, the best fitting plane passes through all sensing elements of a radiation absorbing layer in the radiation absorbing layer (i), i=1, ..., M, and the thickness of each of the M metal layers measured in a direction perpendicular to the best fitting plane is in the range of 50 microns to 100 microns.

在一方面,對於i的每個值,所述輻射檢測器(i)的所述Ni個積體電路晶片中的每個積體電路晶片包括專用積體電路 (ASIC)。 In one aspect, for each value of i, each of the Ni integrated circuit chips of the radiation detector (i) comprises an application specific integrated circuit (ASIC).

在一方面,所述M個金屬層被配置為阻擋和吸收X射線。 In one aspect, the M metal layers are configured to block and absorb X-rays.

在一方面,對於i的每個值,所述輻射檢測器(i)的所述Ni個積體電路晶片中的每個積體電路晶片夾在所述金屬層(i)和所述輻射吸收層(i)之間。 In one aspect, for each value of i, each of the Ni integrated circuit chips of the radiation detector (i) is sandwiched between the metal layer (i) and the radiation absorbing layer (i).

在一方面,對於i的每個值,所述金屬層(i)包括Pi個空隙,Pi是不大於Ni的正整數,並且對於i的每個值,所述輻射檢測器(i)的所述Ni個積體電路晶片處於所述金屬層(i)的所述Pi個空隙內。 In one aspect, for each value of i, the metal layer (i) includes Pi gaps, Pi is a positive integer not greater than Ni, and for each value of i, the Ni integrated circuit chips of the radiation detector (i) are located within the Pi gaps of the metal layer (i).

在一方面,對於i的每個值,Ni>Pi。 On the one hand, for every value of i, Ni>Pi.

在一方面,對於i的每個值,Ni=Pi,並且對於i的每個值,所述輻射檢測器(i)的所述Ni個積體電路晶片分別處於所述金屬層(i)的所述Pi個空隙內。 In one aspect, for each value of i, Ni=Pi, and for each value of i, the Ni integrated circuit chips of the radiation detector (i) are respectively located in the Pi gaps of the metal layer (i).

在一方面,最佳擬合平面穿過所述輻射吸收層(i),i=1、......、M中的一輻射吸收層的所有感測元件,並且對於i的每個值,對於所述金屬層(i)的所述Pi個空隙中的每個空隙,與所述每個空隙相交並垂直於所述最佳擬合平面的每條直線與所述輻射吸收層(i)相交。 In one aspect, the best fitting plane passes through all sensing elements of the radiation absorbing layer (i), i=1, ..., M, and for each value of i, for each of the Pi gaps in the metal layer (i), each straight line intersecting each gap and perpendicular to the best fitting plane intersects the radiation absorbing layer (i).

在一方面,最佳擬合平面穿過所述輻射吸收層(i),i=1、......、M中的一輻射吸收層的所有感測元件,並且對於i的每個值,所述輻射檢測器(i)的所述Ni個積體電路晶片中的每個積體電路晶片在垂直於所述最佳擬合平面的方向上測量的厚度小 於所述金屬層(i)在垂直於所述最佳擬合平面的方向上測量的厚度。 In one aspect, the best fitting plane passes through all sensing elements of a radiation absorbing layer in the radiation absorbing layer (i), i=1, ..., M, and for each value of i, the thickness of each of the Ni integrated circuit chips of the radiation detector (i) measured in a direction perpendicular to the best fitting plane is less than the thickness of the metal layer (i) measured in a direction perpendicular to the best fitting plane.

在一方面,對於i的每個值,所述輻射檢測器(i)的所述Ni個積體電路晶片中的每個積體電路晶片不與所述M個輻射檢測器中的另一個輻射檢測器的所述輻射吸收層直接物理接觸。 In one aspect, for each value of i, each of the Ni integrated circuit chips of the radiation detector (i) is not in direct physical contact with the radiation absorbing layer of another radiation detector of the M radiation detectors.

在一方面,2個端點分別在所述輻射吸收層(i),i=1、......、M中的2個相鄰輻射吸收層上的每條直線段與(A)所述M個金屬層中的至少一個金屬層或(B)所述M個金屬層中的一金屬層的至少一個空隙相交。 On the one hand, each straight line segment having two end points on two adjacent radiation absorbing layers in the radiation absorbing layer (i), i=1, ..., M intersects with (A) at least one metal layer in the M metal layers or (B) at least one gap in one metal layer in the M metal layers.

在一方面,2個端點分別在所述輻射吸收層(i),i=1、......、M中的2個相鄰輻射吸收層上的每條直線段與所述M個金屬層中的一金屬層相交。 On the one hand, each straight line segment on two adjacent radiation absorbing layers in the radiation absorbing layer (i), i=1, ..., M, respectively, intersects with a metal layer in the M metal layers.

在一方面,所述系統還包括輻射源;最佳擬合平面穿過所述輻射吸收層(i),i=1、......、M中的一輻射吸收層的所有感測元件;並且平行於所述最佳擬合平面的直線與所述輻射源和所述圖像感測器都相交。本文還公開了一種使用所述系統的方法。所述方法包括從所述輻射源向所述圖像感測器和向位於所述輻射源和所述圖像感測器之間的物體發送輻射;以及利用所述圖像感測器通過使用來自所述輻射源的輻射中的已經透過所述物體的一部分來捕獲所述物體的圖像。 In one aspect, the system further includes a radiation source; a best fit plane passes through all sensing elements of a radiation absorbing layer in (i), i=1, ..., M; and a straight line parallel to the best fit plane intersects both the radiation source and the image sensor. A method for using the system is also disclosed herein. The method includes transmitting radiation from the radiation source to the image sensor and to an object between the radiation source and the image sensor; and using the image sensor to capture an image of the object by using a portion of the radiation from the radiation source that has passed through the object.

2-2、8-8:線 2-2, 8-8: Line

100:輻射檢測器 100: Radiation Detector

105、105.1、105.2、105.3:輻射檢測器 105, 105.1, 105.2, 105.3: Radiation detectors

110:輻射吸收層 110: Radiation absorption layer

111:第一摻雜區 111: First mixed area

112:本徵區 112: Intrinsic area

113:第二摻雜區 113: Second mixed area

114:離散區 114: Dispersed Area

115、115.1、115.2、115.3:輻射吸收層 115, 115.1, 115.2, 115.3: Radiation absorption layer

119A、119B:電觸點 119A, 119B: electrical contacts

120:電子器件層 120: Electronic device layer

121:電子系統 121: Electronic systems

125a、125a.1、125a.2、125b、125b.1、125b.2、125c、125c.1、125d、125d.1:積體電路晶片 125a, 125a.1, 125a.2, 125b, 125b.1, 125b.2, 125c, 125c.1, 125d, 125d.1: integrated circuit chips

127、640:厚度 127, 640: thickness

130:填充材料 130: Filling material

131:通孔 131:Through hole

150:圖元 150: Element

600:圖像感測器 600: Image sensor

610.1、610.2、610.3:金屬層 610.1, 610.2, 610.3: Metal layer

612a.1、612b.1、612c.1、612d.1:空隙 612a.1, 612b.1, 612c.1, 612d.1: gaps

620:最佳擬合平面 620: Best fitting plane

630:平面 630: Plane

650:視點 650: Viewpoint

900:成像系統 900: Imaging system

910:輻射源 910: Radiation source

912:輻射 912: Fallout

920:物體 920: Object

1000:流程圖 1000:Flowchart

1010、1020:步驟 1010, 1020: Steps

圖1示意性地示出了根據實施例的輻射檢測器。 FIG1 schematically shows a radiation detector according to an embodiment.

圖2示意性地示出了根據實施例的輻射檢測器的簡化剖視圖。 FIG2 schematically shows a simplified cross-sectional view of a radiation detector according to an embodiment.

圖3示意性地示出了根據實施例的輻射檢測器的詳細剖視圖。 FIG3 schematically shows a detailed cross-sectional view of a radiation detector according to an embodiment.

圖4示意性地示出了根據替代實施例的輻射檢測器的詳細剖視圖。 FIG4 schematically shows a detailed cross-sectional view of a radiation detector according to an alternative embodiment.

圖5示意性地示出了根據實施例的另一個輻射檢測器的透視圖。 FIG5 schematically shows a perspective view of another radiation detector according to an embodiment.

圖6示意性地示出了根據實施例的圖像感測器的側視圖。 FIG6 schematically shows a side view of an image sensor according to an embodiment.

圖7示意性地示出了根據替代實施例的圖像感測器的側視圖。 FIG7 schematically shows a side view of an image sensor according to an alternative embodiment.

圖8示意性地示出了根據實施例的圖7的圖像感測器的剖視圖。 FIG8 schematically shows a cross-sectional view of the image sensor of FIG7 according to an embodiment.

圖9示意性地示出了根據實施例的成像系統。 FIG9 schematically shows an imaging system according to an embodiment.

圖10示出了根據實施例的概括成像系統的操作的流程圖。 FIG10 shows a flow chart outlining the operation of the imaging system according to an embodiment.

輻射檢測器 Radiation detector

圖1示意性地示出了作為示例的輻射檢測器100。輻射檢測器100可以包括圖元150(也稱為感測元件150)陣列。該陣列可 以是矩形陣列(如圖1所示)、蜂窩陣列、六邊形陣列或任何其他合適的陣列。圖1的示例中的圖元150陣列具有4列和7行;然而,一般來說,圖元150陣列可以具有任意數量的行和任意數量的列。 FIG1 schematically shows a radiation detector 100 as an example. The radiation detector 100 may include an array of picture elements 150 (also referred to as sensing elements 150). The array may be a rectangular array (as shown in FIG1 ), a honeycomb array, a hexagonal array, or any other suitable array. The array of picture elements 150 in the example of FIG1 has 4 columns and 7 rows; however, in general, the array of picture elements 150 may have any number of rows and any number of columns.

每個圖元150可以被配置為檢測入射在其上的來自輻射源(未示出)的輻射,並且可以被配置為測量輻射的特性(例如,粒子的能量、波長和頻率)。輻射可以包括諸如光子和亞原子粒子之類的粒子。每個圖元150可以被配置為在一段時間內對入射在其上的能量落入多個能量區間中的輻射粒子的數量進行計數。所有圖元150可以被配置為在同一時間段內對多個能量區間內入射到其上的輻射粒子的數量進行計數。當入射的輻射粒子具有相似的能量時,圖元150可以僅僅被配置為在一段時間內對入射在其上的輻射粒子的數量進行計數,而不測量單個輻射粒子的能量。 Each pixel 150 may be configured to detect radiation incident thereon from a radiation source (not shown), and may be configured to measure characteristics of the radiation (e.g., energy, wavelength, and frequency of the particles). Radiation may include particles such as photons and subatomic particles. Each pixel 150 may be configured to count the number of radiation particles incident thereon whose energy falls into multiple energy intervals over a period of time. All pixels 150 may be configured to count the number of radiation particles incident thereon in multiple energy intervals over the same period of time. When the incident radiation particles have similar energies, the pixel 150 may be configured to count only the number of radiation particles incident thereon over a period of time without measuring the energy of a single radiation particle.

每個圖元150可以具有其自己的類比數位轉換器(ADC),其被配置為將表示入射輻射粒子的能量的類比信號數位化為數位信號,或者將表示多個入射輻射粒子的總能量的類比信號數位化為數位信號。圖元150可以被配置為平行作業。例如,當一個圖元150測量入射輻射粒子時,另一個圖元150可能正在等待輻射粒子的到達。圖元150可以不必是可單獨定址的。 Each pixel 150 may have its own analog-to-digital converter (ADC) configured to digitize an analog signal representing the energy of an incident radiation particle into a digital signal, or to digitize an analog signal representing the total energy of multiple incident radiation particles into a digital signal. The pixels 150 may be configured to operate in parallel. For example, while one pixel 150 is measuring an incident radiation particle, another pixel 150 may be waiting for the arrival of a radiation particle. The pixels 150 may not necessarily be individually addressable.

這裡描述的輻射檢測器100可以具有諸如X射線望遠鏡、X射線乳房X線照相術、工業X射線缺陷檢測、X射線顯微鏡或顯微射線照相術、X射線鑄件檢查、X射線無損檢測、X射線 焊接檢查、X射線數位減影血管造影等之類的應用。使用該輻射檢測器100代替照相板、照相膠片、PSP板、X射線圖像增強器、閃爍體或其他半導體X射線檢測器可能是合適的。 The radiation detector 100 described herein may have applications such as X-ray telescopes, X-ray mammography, industrial X-ray defect detection, X-ray microscopes or microradiography, X-ray casting inspection, X-ray nondestructive inspection, X-ray welding inspection, X-ray digital subtraction angiography, etc. It may be appropriate to use the radiation detector 100 in place of a photographic plate, photographic film, PSP plate, X-ray image intensifier, scintillator, or other semiconductor X-ray detector.

圖2示意性地示出了根據實施例的圖1的輻射檢測器100沿線2-2的簡化剖視圖。具體地,輻射檢測器100可以包括輻射吸收層110和用於處理或分析入射輻射在輻射吸收層110中產生的電信號的電子器件層120(其可以包括一個或多個ASIC或專用積體電路)。輻射檢測器100可以包括或不包括閃爍體(未示出)。輻射吸收層110可以包括諸如矽、鍺、GaAs、CdTe、CdZnTe或其組合之類的半導體材料。半導體材料對於感興趣的輻射可以具有高質量衰減係數。 FIG. 2 schematically illustrates a simplified cross-sectional view of the radiation detector 100 of FIG. 1 along line 2-2 according to an embodiment. Specifically, the radiation detector 100 may include a radiation absorbing layer 110 and an electronic device layer 120 (which may include one or more ASICs or application-specific integrated circuits) for processing or analyzing electrical signals generated in the radiation absorbing layer 110 by incident radiation. The radiation detector 100 may or may not include a scintillator (not shown). The radiation absorbing layer 110 may include a semiconductor material such as silicon, germanium, GaAs, CdTe, CdZnTe, or a combination thereof. The semiconductor material may have a high quality attenuation coefficient for the radiation of interest.

作為示例,圖3示意性地示出了圖1的輻射檢測器100沿線2-2的詳細剖視圖。具體地,輻射吸收層110可以包括由第一摻雜區111、第二摻雜區113的一個或多個離散區114形成的一個或多個二極體(例如p-i-n或p-n)。第二摻雜區113可以通過可選的本徵區112與第一摻雜區111分開。離散區114可以通過第一摻雜區111或本徵區112彼此分開。第一摻雜區111和第二摻雜區113可以具有相反類型的摻雜(例如,區域111是p型,區域113是n型,或者,區域111是n型,區域113是p型)。在圖3的示例中,第二摻雜區113的每個離散區域114形成具有第一摻雜區111和可選的本徵區112的二極體。即,在圖3的示例中,輻射吸收層110具有多個二極體(更具體地,7個二極體對應於圖1的陣 列中的一列的7個圖元150,為簡單起見,圖3中僅標記了其中的2個圖元150)。多個二極體可以具有電觸點119A作為共用(公共)電極。第一摻雜區111還可以具有離散部分。 As an example, Fig. 3 schematically shows a detailed cross-sectional view of the radiation detector 100 of Fig. 1 along line 2-2. Specifically, the radiation absorbing layer 110 may include one or more diodes (e.g., p-i-n or p-n) formed by one or more discrete regions 114 of the first doped region 111, the second doped region 113. The second doped region 113 may be separated from the first doped region 111 by an optional intrinsic region 112. The discrete regions 114 may be separated from each other by the first doped region 111 or the intrinsic region 112. The first doped region 111 and the second doped region 113 may have opposite types of doping (e.g., region 111 is p-type and region 113 is n-type, or region 111 is n-type and region 113 is p-type). In the example of FIG3 , each discrete region 114 of the second doped region 113 forms a diode having the first doped region 111 and the optional intrinsic region 112. That is, in the example of FIG3 , the radiation absorbing layer 110 has a plurality of diodes (more specifically, 7 diodes correspond to 7 picture elements 150 of one column in the array of FIG1 , and for simplicity, only 2 picture elements 150 are marked in FIG3 ). Multiple diodes may have an electrical contact 119A as a common electrode. The first doped region 111 may also have a discrete portion.

電子器件層120可以包括適合於處理或解釋由入射在輻射吸收層110上的輻射產生的信號的電子系統121。電子系統121可以包括諸如濾波器網路、放大器、積分器和比較器之類的類比電路,或者諸如微處理器和記憶體之類的數位電路。電子系統121可以包括一個或多個ADC(類比數位轉換器)。電子系統121可以包括由各圖元150共用的元件或專用於單個圖元150的元件。例如,電子系統121可以包括專用於每個圖元150的放大器和在所有圖元150之間共用的微處理器。電子系統121可以通過通孔131電連接到圖元150。通孔之間的空間可以使用填充材料130填充,這可以增加電子器件層120與輻射吸收層110的連接的機械穩定性。其它接合技術可以在不使用通孔131的情況下將電子系統121連接到圖元150。 The electronic device layer 120 may include an electronic system 121 suitable for processing or interpreting signals generated by radiation incident on the radiation absorbing layer 110. The electronic system 121 may include analog circuits such as filter networks, amplifiers, integrators, and comparators, or digital circuits such as microprocessors and memories. The electronic system 121 may include one or more ADCs (analog-to-digital converters). The electronic system 121 may include components shared by each pixel 150 or components dedicated to a single pixel 150. For example, the electronic system 121 may include an amplifier dedicated to each pixel 150 and a microprocessor shared between all pixels 150. The electronic system 121 may be electrically connected to the pixel 150 through the through hole 131. The spaces between the vias can be filled with a filling material 130, which can increase the mechanical stability of the connection between the electronic device layer 120 and the radiation absorbing layer 110. Other bonding techniques can connect the electronic system 121 to the element 150 without using the via 131.

當來自輻射源(未示出)的輻射撞擊包括二極體的輻射吸收層110時,輻射粒子可以被吸收並且通過多種機制產生一個或多個電荷載流子(例如,電子、電洞)。電荷載流子可以在電場下漂移到二極體之一的電極。該電場可以是外部電場。電觸點119B可以包括離散部分,每個離散部分與離散區114電接觸。術語“電觸點”可以與詞語“電極”互換使用。在實施例中,電荷載流子可以在各方向上漂移,使得由單個輻射粒子產生的電荷載流子基 本上不被兩個不同的離散區114共用(這裡“基本上不......共用”意指相比於其餘的電荷載流子,這些電荷載流子中的少於2%、少於0.5%、少於0.1%或少於0.01%的電荷載流子流向一個不同的離散區114)。由入射在這些離散區114之一的覆蓋區周圍的輻射粒子產生的電荷載流子基本上不與這些離散區114中的另一個共用。與離散區114相關聯的圖元150可以是離散區114周圍的區域,其中由入射到其中的輻射粒子產生的基本上全部的(多於98%、多於99.5%、多於99.9%或者多於99.99%的)電荷載流子流向離散區114。即,這些電荷載流子中的少於2%、少於1%、少於0.1%或少於0.01%的電荷載流子流過該圖元150。 When radiation from a radiation source (not shown) strikes the radiation absorbing layer 110 including the diode, the radiation particles can be absorbed and one or more electric carriers (e.g., electrons, holes) can be generated by a variety of mechanisms. The electric carriers can drift to the electrode of one of the diodes under an electric field. The electric field can be an external electric field. The electrical contact 119B can include discrete portions, each of which is in electrical contact with the discrete region 114. The term "electrical contact" can be used interchangeably with the term "electrode". In an embodiment, the charge carriers can drift in various directions so that the charge carriers generated by a single radiation particle are substantially not shared by two different discrete regions 114 (here “substantially not…shared” means that less than 2%, less than 0.5%, less than 0.1%, or less than 0.01% of these charge carriers flow to a different discrete region 114 compared to the rest of the charge carriers). The charge carriers generated by the radiation particles incident on the surrounding area of the coverage of one of these discrete regions 114 are substantially not shared with another of these discrete regions 114. The image element 150 associated with the discrete region 114 can be a region around the discrete region 114 in which substantially all (more than 98%, more than 99.5%, more than 99.9%, or more than 99.99%) of the charge carriers generated by radiation particles incident therein flow toward the discrete region 114. That is, less than 2%, less than 1%, less than 0.1%, or less than 0.01% of these charge carriers flow through the image element 150.

圖4示意性地示出了根據替代實施例的圖1的輻射檢測器100沿線2-2的詳細剖視圖。更具體地,輻射吸收層110可以包括諸如矽、鍺、GaAs、CdTe、CdZnTe或其組合之類的半導體材料的電阻器,但不包括二極體。半導體材料對於感興趣的輻射可以具有高質量衰減係數。在一個實施例中,圖4的電子器件層120在結構和功能方面類似於圖3的電子器件層120。 FIG. 4 schematically illustrates a detailed cross-sectional view of the radiation detector 100 of FIG. 1 along line 2-2 according to an alternative embodiment. More specifically, the radiation absorbing layer 110 may include resistors of semiconductor materials such as silicon, germanium, GaAs, CdTe, CdZnTe, or combinations thereof, but does not include diodes. The semiconductor material may have a high quality attenuation coefficient for the radiation of interest. In one embodiment, the electronic device layer 120 of FIG. 4 is similar in structure and function to the electronic device layer 120 of FIG. 3 .

當輻射撞擊包括電阻器但不包括二極體的輻射吸收層110時,它可以被吸收並通過多種機制產生一個或多個電荷載流子。輻射粒子可以產生10到100000個電荷載流子。電荷載流子可以在電場下漂移到電觸點119A和119B。該電場可以是外部電場。電觸點119B可以包括離散部分。在實施例中,電荷載流子可以在各方向上漂移,使得由單個輻射粒子產生的電荷載流子基本 上不被電觸點119B的兩個不同的離散部分共用(這裡“基本上不......共用”意指相比於其餘的電荷載流子,這些電荷載流子中的少於2%、少於0.5%、少於0.1%或少於0.01%的電荷載流子流向一個不同的離散部分)。由入射在電觸點119B的這些離散部分之一的覆蓋區周圍的輻射粒子產生的電荷載流子基本上不與電觸點119B的這些離散部分中的另一個共用。與電觸點119B的離散部分相關聯的圖元150可以是離散部分周圍的區域,其中由入射到其中的輻射粒子產生的基本上全部的(多於98%、多於99.5%、多於99.9%或者多於99.99%的)電荷載流子流向電觸點119B的離散部分。即,這些電荷載流子中的少於2%、少於0.5%、少於0.1%或少於0.01%的電荷載流子流過與電觸點119B的一個離散部分相關聯的圖元。 When radiation strikes the radiation absorbing layer 110, which includes a resistor but does not include a diode, it can be absorbed and generate one or more charge carriers through a variety of mechanisms. The radiation particles can generate 10 to 100,000 charge carriers. The charge carriers can drift to the electrical contacts 119A and 119B under an electric field. The electric field can be an external electric field. The electrical contact 119B can include a discrete portion. In an embodiment, the charge carriers can drift in various directions so that the charge carriers generated by a single radiation particle are substantially not shared by two different discrete portions of the electrical contact 119B (here "substantially not shared" means that less than 2%, less than 0.5%, less than 0.1%, or less than 0.01% of these charge carriers flow to a different discrete portion compared to the rest of the charge carriers). The charge carriers generated by the radiation particles incident on the surrounding area of the coverage of one of these discrete portions of the electrical contact 119B are substantially not shared with another of these discrete portions of the electrical contact 119B. The picture element 150 associated with the discrete portion of the electrical contact 119B can be a region around the discrete portion in which substantially all (more than 98%, more than 99.5%, more than 99.9%, or more than 99.99%) of the charge carriers generated by the radiation particles incident therein flow toward the discrete portion of the electrical contact 119B. That is, less than 2%, less than 0.5%, less than 0.1%, or less than 0.01% of these charge carriers flow through the picture element associated with a discrete portion of the electrical contact 119B.

具有積體電路晶片的輻射檢測器 Radiation detector with integrated circuit chip

圖5示意性地示出了根據實施例的輻射檢測器105的透視圖。在實施例中,輻射檢測器105可以包括輻射吸收層115和一個或多個積體電路晶片125(例如,如圖所示的4個積體電路晶片125a、125b、125c和125d)。 FIG5 schematically shows a perspective view of a radiation detector 105 according to an embodiment. In an embodiment, the radiation detector 105 may include a radiation absorbing layer 115 and one or more integrated circuit chips 125 (e.g., four integrated circuit chips 125a, 125b, 125c, and 125d as shown).

在實施例中,輻射檢測器105可以類似於圖1至圖4的輻射檢測器100,因為(A)輻射檢測器105的輻射吸收層115在結構和功能方面類似於輻射檢測器100的輻射吸收層110,並且(B)輻射檢測器105的積體電路晶片125在功能方面類似於輻射檢測器100的電子器件層120。 In an embodiment, the radiation detector 105 may be similar to the radiation detector 100 of FIGS. 1 to 4 because (A) the radiation absorption layer 115 of the radiation detector 105 is similar in structure and function to the radiation absorption layer 110 of the radiation detector 100, and (B) the integrated circuit chip 125 of the radiation detector 105 is similar in function to the electronic device layer 120 of the radiation detector 100.

具體地,在實施例中,積體電路晶片125可以被配置為處理在輻射吸收層115中生成的電信號。在實施例中,每個積體電路晶片125可以包括ASIC(專用積體電路)。 Specifically, in an embodiment, the integrated circuit chip 125 may be configured to process the electrical signal generated in the radiation absorption layer 115. In an embodiment, each integrated circuit chip 125 may include an ASIC (application specific integrated circuit).

圖像感測器 Image sensor

圖6示意性地示出了根據實施例的圖像感測器600的側視圖。在實施例中,圖像感測器600可以包括多個輻射檢測器105(例如,如圖所示的3個輻射檢測器105.1、105.2和105.3)。輻射檢測器105.1、105.2和105.3可以分別包括輻射吸收層115.1、115.2和115.3。 FIG6 schematically shows a side view of an image sensor 600 according to an embodiment. In an embodiment, the image sensor 600 may include a plurality of radiation detectors 105 (e.g., three radiation detectors 105.1, 105.2, and 105.3 as shown). The radiation detectors 105.1, 105.2, and 105.3 may include radiation absorbing layers 115.1, 115.2, and 115.3, respectively.

在實施例中,圖像感測器600還可以包括多個金屬層610(例如,如圖所示的3個金屬層610.1、610.2和610.3)。在實施例中,3個金屬層610.1、610.2和610.3以及3個輻射吸收層115.1、115.2和115.3一起形成如圖所示的6層堆疊。 In an embodiment, the image sensor 600 may also include a plurality of metal layers 610 (e.g., three metal layers 610.1, 610.2, and 610.3 as shown in the figure). In an embodiment, the three metal layers 610.1, 610.2, and 610.3 and the three radiation absorbing layers 115.1, 115.2, and 115.3 together form a six-layer stack as shown in the figure.

在實施例中,3個金屬層610.1、610.2和610.3以及3個輻射吸收層115.1、115.2和115.3可以如圖所示以交替方式佈置在堆疊中。“交替方式”是指堆疊中的各層按金屬層610、然後是輻射吸收層115、然後是金屬層610、然後是輻射吸收層115的順序佈置。 In an embodiment, three metal layers 610.1, 610.2 and 610.3 and three radiation absorbing layers 115.1, 115.2 and 115.3 can be arranged in an alternating manner in a stack as shown in the figure. "Alternating manner" means that the layers in the stack are arranged in the order of metal layer 610, then radiation absorbing layer 115, then metal layer 610, and then radiation absorbing layer 115.

在實施例中,圖像感測器600的金屬層610可以包括原子序數至少為26的金屬(例如鎢、鉑和金)。在實施例中,金屬層610可以阻擋和吸收X射線。 In an embodiment, the metal layer 610 of the image sensor 600 may include a metal having an atomic number of at least 26 (e.g., tungsten, platinum, and gold). In an embodiment, the metal layer 610 may block and absorb X-rays.

在實施例中,參考圖6,圖像感測器600的每個積體電路 晶片125可以夾在對應的金屬層610和對應的輻射吸收層115之間。例如,輻射檢測器105.1的積體電路晶片125a.1夾在對應的金屬層610.1和對應的輻射吸收層115.1之間。又例如,輻射檢測器105.1的積體電路晶片125b.1夾在對應的金屬層610.1和對應的輻射吸收層115.1之間。 In an embodiment, referring to FIG. 6 , each integrated circuit chip 125 of the image sensor 600 may be sandwiched between the corresponding metal layer 610 and the corresponding radiation absorption layer 115. For example, the integrated circuit chip 125a.1 of the radiation detector 105.1 is sandwiched between the corresponding metal layer 610.1 and the corresponding radiation absorption layer 115.1. For another example, the integrated circuit chip 125b.1 of the radiation detector 105.1 is sandwiched between the corresponding metal layer 610.1 and the corresponding radiation absorption layer 115.1.

在實施例中,參考圖6,最佳擬合平面620穿過三個輻射吸收層115.1、115.2和115.3之一(例如,如圖所示的輻射吸收層115.1)的所有感測元件150。請注意,最佳擬合平面620垂直於頁面;因此,最佳擬合平面620由直線表示。在實施例中,圖像感測器600的結構可以使得存在至少一個這樣的平面(例如,平面630),該平面(A)垂直於最佳擬合平面620,(B)與所有金屬層610相交且(C)不與任何輻射吸收層115相交。換言之,在結構上,所有金屬層610從圖像感測器600沿相同方向(例如,如圖所示向上)突出。請注意,平面630被選擇為垂直於頁面;因此,平面630由直線表示。 In an embodiment, referring to FIG. 6 , the best fit plane 620 passes through all sensing elements 150 of one of the three radiation absorbing layers 115.1, 115.2, and 115.3 (e.g., the radiation absorbing layer 115.1 as shown). Note that the best fit plane 620 is perpendicular to the page; therefore, the best fit plane 620 is represented by a straight line. In an embodiment, the structure of the image sensor 600 may be such that there is at least one plane (e.g., plane 630) that (A) is perpendicular to the best fit plane 620, (B) intersects all metal layers 610, and (C) does not intersect any radiation absorbing layer 115. In other words, structurally, all metal layers 610 protrude from the image sensor 600 in the same direction (e.g., upward as shown). Note that plane 630 is chosen to be perpendicular to the page; therefore, plane 630 is represented by a straight line.

在實施例中,參考圖6,每個金屬層610在垂直於最佳擬合平面620的方向上測量的厚度可以在50微米到100微米的範圍內。例如,金屬層610.1在垂直於最佳擬合平面620的方向上測量的厚度640在50微米到100微米的範圍內。 In an embodiment, referring to FIG. 6 , the thickness of each metal layer 610 measured in a direction perpendicular to the best fitting plane 620 may be in the range of 50 microns to 100 microns. For example, the thickness 640 of the metal layer 610.1 measured in a direction perpendicular to the best fitting plane 620 is in the range of 50 microns to 100 microns.

在實施例中,參考圖6,圖像感測器600的結構可以使得2個端點分別在2個相鄰的輻射吸收層115上的每條直線段與金屬層610相交。例如,2個端點分別在2個相鄰的輻射吸收層115.1 和115.2上的每條直線段與金屬層610.2相交。 In an embodiment, referring to FIG. 6 , the structure of the image sensor 600 can make each straight line segment of the two end points on the two adjacent radiation absorption layers 115 intersect with the metal layer 610. For example, each straight line segment of the two end points on the two adjacent radiation absorption layers 115.1 and 115.2 intersects with the metal layer 610.2.

在實施例中,不同輻射檢測器105的積體電路晶片125可以交錯排列。例如,垂直於堆疊且穿過一個積體電路晶片的線可能不穿過另一個積體電路晶片。 In an embodiment, the IC chips 125 of different radiation detectors 105 may be arranged in a staggered manner. For example, a line perpendicular to the stack and passing through one IC chip may not pass through another IC chip.

圖像感測器的替代實施例 Alternative embodiments of image sensors

圖7示意性地示出了根據替代實施例的從視點650觀察的圖6的圖像感測器600。圖8示意性地示出了根據實施例的圖7的圖像感測器600沿線8-8的剖視圖。 FIG. 7 schematically illustrates the image sensor 600 of FIG. 6 as viewed from viewpoint 650 according to an alternative embodiment. FIG. 8 schematically illustrates a cross-sectional view of the image sensor 600 of FIG. 7 along line 8-8 according to an embodiment.

在實施例中,參考圖7至圖8,每個金屬層610可以包括一個或多個空隙612(例如,如圖所示的金屬層610.1的4個空隙612a.1、612b.1、612c.1和612d.1)。在實施例中,對於每個輻射檢測器105,所述每個輻射檢測器105的積體電路晶片125可以分別處於對應的金屬層610的空隙612內。例如,對於輻射檢測器105.1,輻射檢測器105.1的4個積體電路晶片125a.1、125b.1、125c.1和125d.1分別處於對應的金屬層610.1的4個空隙612a.1、612b.1、612c.1和612d.1內。 In an embodiment, referring to FIGS. 7 and 8 , each metal layer 610 may include one or more gaps 612 (e.g., four gaps 612a.1, 612b.1, 612c.1, and 612d.1 of metal layer 610.1 as shown in the figure). In an embodiment, for each radiation detector 105, the integrated circuit chip 125 of each radiation detector 105 may be located in the gap 612 of the corresponding metal layer 610, respectively. For example, for the radiation detector 105.1, the four integrated circuit chips 125a.1, 125b.1, 125c.1 and 125d.1 of the radiation detector 105.1 are respectively located in the four gaps 612a.1, 612b.1, 612c.1 and 612d.1 of the corresponding metal layer 610.1.

一般來說,每個金屬層610的空隙612的數量可以等於或小於對應的輻射檢測器105的積體電路晶片125的數量。上面描述了金屬層610的空隙612的數量等於對應的輻射檢測器105的積體電路晶片125的數量的情況。 Generally speaking, the number of gaps 612 of each metal layer 610 may be equal to or less than the number of integrated circuit chips 125 of the corresponding radiation detector 105. The case where the number of gaps 612 of the metal layer 610 is equal to the number of integrated circuit chips 125 of the corresponding radiation detector 105 is described above.

在金屬層610的空隙612的數量小於對應的放射線檢測器105的積體電路晶片125的數量的情況下,空隙612中的至少 一個容納多個積體電路晶片125。例如,參考圖7至圖8,如果空隙612a.1和612b.1被較大的空隙(未示出)代替,則該較大的空隙可以容納2個積體電路晶片125a.1和125b.1。換言之,2個積體電路晶片125a.1和125b.1處於較大的空隙內。請注意,在這種情況下,金屬層610.1具有3個空隙:空隙612c.1、空隙612d.1和上述較大的空隙。 In the case where the number of voids 612 of the metal layer 610 is less than the number of integrated circuit chips 125 of the corresponding radiation detector 105, at least one of the voids 612 accommodates multiple integrated circuit chips 125. For example, referring to Figures 7 and 8, if the voids 612a.1 and 612b.1 are replaced by a larger void (not shown), the larger void can accommodate two integrated circuit chips 125a.1 and 125b.1. In other words, the two integrated circuit chips 125a.1 and 125b.1 are in the larger void. Note that in this case, the metal layer 610.1 has three voids: void 612c.1, void 612d.1, and the larger void described above.

在實施例中,參考圖8,圖像感測器600的結構可以使得對於每個金屬層610的每個空隙612,與所述每個空隙612相交且垂直於最佳擬合平面620的每條直線都與對應的輻射吸收層115相交。例如,對於金屬層610.1的空隙612a.1,與空隙612a.1相交且垂直於最佳擬合平面620的每條直線都與對應的輻射吸收層115.1相交。又例如,對於金屬層610.1的空隙612b.1,與空隙612b.1相交且垂直於最佳擬合平面620的每條直線都與對應的輻射吸收層115.1相交。 In an embodiment, referring to FIG. 8 , the structure of the image sensor 600 can be such that for each gap 612 of each metal layer 610, each straight line intersecting each gap 612 and perpendicular to the best fitting plane 620 intersects with the corresponding radiation absorption layer 115. For example, for the gap 612a.1 of the metal layer 610.1, each straight line intersecting the gap 612a.1 and perpendicular to the best fitting plane 620 intersects with the corresponding radiation absorption layer 115.1. For another example, for the gap 612b.1 of the metal layer 610.1, each straight line intersecting the gap 612b.1 and perpendicular to the best fitting plane 620 intersects with the corresponding radiation absorption layer 115.1.

在實施例中,參考圖8,每個積體電路晶片125在垂直於最佳擬合平面620的方向上測量的厚度可以小於對應的金屬層610在垂直於最佳擬合平面620的方向上測量的厚度。例如,積體電路晶片125a.1在垂直於最佳擬合平面620的方向上測量的厚度127小於對應的金屬層610.1在垂直於最佳擬合平面620的方向上測量的厚度640。 In an embodiment, referring to FIG. 8 , the thickness of each integrated circuit chip 125 measured in a direction perpendicular to the best fitting plane 620 may be less than the thickness of the corresponding metal layer 610 measured in a direction perpendicular to the best fitting plane 620. For example, the thickness 127 of the integrated circuit chip 125a.1 measured in a direction perpendicular to the best fitting plane 620 is less than the thickness 640 of the corresponding metal layer 610.1 measured in a direction perpendicular to the best fitting plane 620.

在實施例中,參考圖8,輻射檢測器105的每個積體電路晶片125不與另一個輻射檢測器105的輻射吸收層115直接物理 接觸。例如,輻射檢測器105.2的積體電路晶片125a.2不與其他輻射檢測器105.1和105.3的任何輻射吸收層115直接物理接觸。又例如,輻射檢測器105.2的積體電路晶片125b.2不與其他輻射檢測器105.1和105.3的任何輻射吸收層115直接物理接觸。 In an embodiment, referring to FIG. 8 , each integrated circuit chip 125 of the radiation detector 105 is not in direct physical contact with the radiation absorption layer 115 of another radiation detector 105. For example, the integrated circuit chip 125a.2 of the radiation detector 105.2 is not in direct physical contact with any radiation absorption layer 115 of other radiation detectors 105.1 and 105.3. For another example, the integrated circuit chip 125b.2 of the radiation detector 105.2 is not in direct physical contact with any radiation absorption layer 115 of other radiation detectors 105.1 and 105.3.

在實施例中,參考圖8,圖像感測器600的結構可以使得2個端點分別在2個相鄰的輻射吸收層115上的每條直線段與(A)至少一個金屬層610或(B)至少一個空隙612相交。例如,2個端點分別在2個相鄰的輻射吸收層115.1和115.2上的每條直線段與(A)至少金屬層610.2或(B)金屬層610.2的至少一個空隙612相交。 In an embodiment, referring to FIG. 8 , the structure of the image sensor 600 can make each straight line segment with two end points on two adjacent radiation absorption layers 115 intersect with (A) at least one metal layer 610 or (B) at least one gap 612. For example, each straight line segment with two end points on two adjacent radiation absorption layers 115.1 and 115.2 intersects with (A) at least one metal layer 610.2 or (B) at least one gap 612 of the metal layer 610.2.

成像系統 Imaging system

圖9示意性地示出了根據實施例的成像系統900。在實施例中,成像系統900可以包括輻射源910和圖8的圖像感測器600(或圖6的圖像感測器600)。 FIG. 9 schematically illustrates an imaging system 900 according to an embodiment. In an embodiment, the imaging system 900 may include a radiation source 910 and the image sensor 600 of FIG. 8 (or the image sensor 600 of FIG. 6 ).

在實施例中,參考圖9,輻射源910和圖像感測器600可以佈置成使得平行於最佳擬合平面620的直線(未示出)與輻射源910和圖像感測器600都相交。這種佈置允許在使用圖像感測器600進行成像期間進行側面輻射入射。 In an embodiment, referring to FIG. 9 , the radiation source 910 and the image sensor 600 may be arranged so that a straight line (not shown) parallel to the best fitting plane 620 intersects both the radiation source 910 and the image sensor 600. This arrangement allows side radiation incidence during imaging using the image sensor 600.

在實施例中,輻射源910可以向圖像感測器600和向位於輻射源910和圖像感測器600之間的物體920發送輻射912。在實施例中,圖像感測器600可以通過使用來自輻射源910的輻射912中的已經透過物體920的一部分來捕獲物體920的圖像。本申 請中的術語“圖像”不限於輻射的屬性(例如強度)的空間分佈。例如,術語“圖像”還可以包括物質或元素的密度的空間分佈。 In an embodiment, a radiation source 910 may transmit radiation 912 to an image sensor 600 and to an object 920 located between the radiation source 910 and the image sensor 600. In an embodiment, the image sensor 600 may capture an image of the object 920 by using a portion of the radiation 912 from the radiation source 910 that has passed through the object 920. The term "image" in this application is not limited to the spatial distribution of properties of radiation (e.g., intensity). For example, the term "image" may also include the spatial distribution of the density of a substance or element.

概括成像系統的操作的流程圖 Flowchart outlining the operation of the imaging system

圖10示出概括圖9的成像系統900的操作的流程圖1000。在步驟1010中,從輻射源向圖像感測器和向位於輻射源和圖像感測器之間的物體發送輻射。例如,在上述實施例中,參考圖9,從輻射源910向圖像感測器600和向位於輻射源910和圖像感測器600之間的物體920發送輻射912。 FIG. 10 shows a flow chart 1000 summarizing the operation of the imaging system 900 of FIG. 9. In step 1010, radiation is transmitted from a radiation source to an image sensor and to an object located between the radiation source and the image sensor. For example, in the above-described embodiment, referring to FIG. 9, radiation 912 is transmitted from a radiation source 910 to an image sensor 600 and to an object 920 located between the radiation source 910 and the image sensor 600.

在步驟1020中,圖像感測器通過使用來自輻射源的輻射中的已經透過物體的一部分來捕獲物體的圖像。例如,在上述實施例中,參考圖9,圖像感測器600通過使用來自輻射源910的輻射912中的已經透過物體920的一部分來捕獲物體920的圖像。 In step 1020, the image sensor captures an image of the object by using a portion of the radiation from the radiation source that has passed through the object. For example, in the above embodiment, referring to FIG. 9 , the image sensor 600 captures an image of the object 920 by using a portion of the radiation 912 from the radiation source 910 that has passed through the object 920.

儘管本文已經公開了各個方面和實施例,但其他方面和實施例對於本領域技術人員來說將是顯而易見的。本文所公開的各個方面和實施例是出於說明的目的而不旨在限制,真實範圍和精神由所附申請專利範圍指示。 Although various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for illustrative purposes and are not intended to be limiting, and the true scope and spirit are indicated by the attached patent application scope.

105.1、105.2、105.3:輻射檢測器 105.1, 105.2, 105.3: Radiation detectors

115.1、115.2、115.3:輻射吸收層 115.1, 115.2, 115.3: Radiation absorption layer

125a.1、125b.1:積體電路晶片 125a.1, 125b.1: Integrated circuit chip

600:圖像感測器 600: Image sensor

610.1、610.2、610.3:金屬層 610.1, 610.2, 610.3: Metal layer

620:最佳擬合平面 620: Best fitting plane

630:平面 630: Plane

640:厚度 640:Thickness

650:視點 650: Viewpoint

Claims (20)

一種具有成像期間進行側面輻射入射的圖像感測器的成像系統,所述成像系統包括圖像感測器,所述圖像感測器包括: M個金屬層(金屬層(i),i=1、......、M);以及 M個輻射檢測器(輻射檢測器(i),i=1、......、M), 其中,對於i的每個值,所述輻射檢測器(i)包括(A)包括多個感測元件的輻射吸收層(i),以及(B)被配置為處理在所述輻射吸收層(i)中生成的電信號的Ni個積體電路晶片, 其中,M是大於1的整數, 其中,Ni,i=1、......、M是正整數,並且 其中,所述M個金屬層和所述輻射吸收層(i), i=1、......、M一起形成層的堆疊。 An imaging system having an image sensor for side radiation incidence during imaging, the imaging system comprising an image sensor, the image sensor comprising: M metal layers (metal layer (i), i=1, ..., M); and M radiation detectors (radiation detector (i), i=1, ..., M), wherein, for each value of i, the radiation detector (i) comprises (A) a radiation absorption layer (i) comprising a plurality of sensing elements, and (B) Ni integrated circuit chips configured to process electrical signals generated in the radiation absorption layer (i), wherein M is an integer greater than 1, wherein Ni, i=1, ..., M are positive integers, and wherein the M metal layers and the radiation absorption layer (i), i=1, ..., M together form a stack of layers. 如請求項1所述的具有成像期間進行側面輻射入射的圖像感測器的成像系統,其中,所述堆疊包括2×M個層。An imaging system as described in claim 1 having an image sensor for side radiation incidence during imaging, wherein the stack comprises 2×M layers. 如請求項1所述的具有成像期間進行側面輻射入射的圖像感測器的成像系統,其中,所述M個金屬層包含原子序數至少為26的金屬。An imaging system as described in claim 1 having an image sensor for side radiation incidence during imaging, wherein the M metal layers comprise a metal having an atomic number of at least 26. 如請求項3所述的具有成像期間進行側面輻射入射的圖像感測器的成像系統,其中,所述金屬是鎢、鉑或金。An imaging system as described in claim 3 having an image sensor for side radiation incidence during imaging, wherein the metal is tungsten, platinum or gold. 如請求項1所述的具有成像期間進行側面輻射入射的圖像感測器的成像系統,其中,所述M個金屬層和所述輻射吸收層(i),i=1、......、M以交替方式佈置在所述堆疊中。An imaging system having an image sensor with side radiation incident during imaging as described in claim 1, wherein the M metal layers and the radiation absorbing layers (i), i=1, ..., M are arranged in the stack in an alternating manner. 如請求項1所述的具有成像期間進行側面輻射入射的圖像感測器的成像系統, 其中,最佳擬合平面穿過所述輻射吸收層(i),i=1、......、M中的一輻射吸收層的所有感測元件,並且 其中,垂直於所述最佳擬合平面的一平面與所有的所述M個金屬層相交且不與所述輻射吸收層(i),i=1、......、M中的任何輻射吸收層相交。 An imaging system having an image sensor with side radiation incident during imaging as described in claim 1, wherein the best fitting plane passes through all sensing elements of a radiation absorbing layer in the radiation absorbing layer (i), i=1, ..., M, and wherein a plane perpendicular to the best fitting plane intersects all of the M metal layers and does not intersect any radiation absorbing layer in the radiation absorbing layer (i), i=1, ..., M. 如請求項1所述的具有成像期間進行側面輻射入射的圖像感測器的成像系統, 其中,最佳擬合平面穿過所述輻射吸收層(i),i=1、......、M中的一輻射吸收層的所有感測元件,並且 其中,所述M個金屬層中的每個金屬層在垂直於所述最佳擬合平面的方向上測量的厚度在50微米至100微米的範圍內。 An imaging system having an image sensor with side radiation incident during imaging as described in claim 1, wherein the best fitting plane passes through all sensing elements of a radiation absorbing layer in the radiation absorbing layer (i), i=1, ..., M, and wherein the thickness of each of the M metal layers measured in a direction perpendicular to the best fitting plane is in the range of 50 microns to 100 microns. 如請求項1所述的具有成像期間進行側面輻射入射的圖像感測器的成像系統,其中,對於i的每個值,所述輻射檢測器(i)的所述Ni個積體電路晶片中的每個積體電路晶片包括專用積體電路。An imaging system as described in claim 1 having an image sensor for side radiation incidence during imaging, wherein, for each value of i, each of the Ni integrated circuit chips of the radiation detector (i) includes a dedicated integrated circuit. 如請求項1所述的具有成像期間進行側面輻射入射的圖像感測器的成像系統,其中,所述M個金屬層被配置為阻擋和吸收X射線。An imaging system as described in claim 1 having an image sensor for side radiation incidence during imaging, wherein the M metal layers are configured to block and absorb X-rays. 如請求項1所述的具有成像期間進行側面輻射入射的圖像感測器的成像系統,其中,對於i的每個值,所述輻射檢測器(i)的所述Ni個積體電路晶片中的每個積體電路晶片夾在所述金屬層(i)和所述輻射吸收層(i)之間。An imaging system as described in claim 1 having an image sensor for side radiation incidence during imaging, wherein, for each value of i, each of the Ni integrated circuit chips of the radiation detector (i) is sandwiched between the metal layer (i) and the radiation absorbing layer (i). 如請求項1所述的具有成像期間進行側面輻射入射的圖像感測器的成像系統, 其中,對於i的每個值,所述金屬層(i)包括Pi個空隙,Pi是不大於Ni的正整數,並且 其中,對於i的每個值,所述輻射檢測器(i)的所述Ni個積體電路晶片處於所述金屬層(i)的所述Pi個空隙內。 An imaging system as claimed in claim 1 having an image sensor for side radiation incidence during imaging, wherein, for each value of i, the metal layer (i) includes Pi gaps, Pi is a positive integer not greater than Ni, and wherein, for each value of i, the Ni integrated circuit chips of the radiation detector (i) are within the Pi gaps of the metal layer (i). 如請求項11所述的具有成像期間進行側面輻射入射的圖像感測器的成像系統,其中,對於i的每個值,Ni>Pi。An imaging system as described in claim 11 having an image sensor with side radiation incident during imaging, wherein, for each value of i, Ni>Pi. 如請求項11所述的具有成像期間進行側面輻射入射的圖像感測器的成像系統, 其中,對於i的每個值,Ni=Pi,並且 其中,對於i的每個值,所述輻射檢測器(i)的所述Ni個積體電路晶片分別處於所述金屬層(i)的所述Pi個空隙內。 An imaging system having an image sensor with side radiation incident during imaging as described in claim 11, wherein, for each value of i, Ni=Pi, and wherein, for each value of i, the Ni integrated circuit chips of the radiation detector (i) are respectively located in the Pi gaps of the metal layer (i). 如請求項13所述的具有成像期間進行側面輻射入射的圖像感測器的成像系統, 其中,最佳擬合平面穿過所述輻射吸收層(i),i=1、......、M中的一輻射吸收層的所有感測元件,並且 其中,對於i的每個值,對於所述金屬層(i)的所述Pi個空隙中的每個空隙,與所述每個空隙相交並垂直於所述最佳擬合平面的每條直線與所述輻射吸收層(i)相交。 An imaging system having an image sensor with side radiation incident during imaging as described in claim 13, wherein the best fitting plane passes through all sensing elements of the radiation absorbing layer (i), i=1, ..., M, and wherein, for each value of i, for each of the Pi gaps in the metal layer (i), each straight line intersecting each gap and perpendicular to the best fitting plane intersects the radiation absorbing layer (i). 如請求項13所述的具有成像期間進行側面輻射入射的圖像感測器的成像系統, 其中,最佳擬合平面穿過所述輻射吸收層(i),i=1、......、M中的一輻射吸收層的所有感測元件,並且 其中,對於i的每個值,所述輻射檢測器(i)的所述Ni個積體電路晶片中的每個積體電路晶片在垂直於所述最佳擬合平面的方向上測量的厚度小於所述金屬層(i)在垂直於所述最佳擬合平面的方向上測量的厚度。 An imaging system having an image sensor with side radiation incident during imaging as described in claim 13, wherein the best fitting plane passes through all sensing elements of a radiation absorbing layer in the radiation absorbing layer (i), i=1, ..., M, and wherein, for each value of i, the thickness of each of the Ni integrated circuit chips of the radiation detector (i) measured in a direction perpendicular to the best fitting plane is less than the thickness of the metal layer (i) measured in a direction perpendicular to the best fitting plane. 如請求項13所述的具有成像期間進行側面輻射入射的圖像感測器的成像系統,其中,對於i的每個值,所述輻射檢測器(i)的所述Ni個積體電路晶片中的每個積體電路晶片不與所述M個輻射檢測器中的另一個輻射檢測器的所述輻射吸收層直接物理接觸。An imaging system as described in claim 13 having an image sensor for side radiation incidence during imaging, wherein, for each value of i, each of the Ni integrated circuit chips of the radiation detector (i) is not in direct physical contact with the radiation absorbing layer of another radiation detector of the M radiation detectors. 如請求項13所述的具有成像期間進行側面輻射入射的圖像感測器的成像系統,其中,2個端點分別在所述輻射吸收層(i),i=1、......、M中的2個相鄰輻射吸收層上的每條直線段與(A)所述M個金屬層中的至少一個金屬層或(B)所述M個金屬層中的一金屬層的至少一個空隙相交。An imaging system having an image sensor for side radiation incident during imaging as described in claim 13, wherein two end points are respectively on the radiation absorbing layers (i), i=1, ..., M, and each straight line segment on two adjacent radiation absorbing layers intersects with (A) at least one metal layer among the M metal layers or (B) at least one gap in a metal layer among the M metal layers. 如請求項1所述的具有成像期間進行側面輻射入射的圖像感測器的成像系統,其中,2個端點分別在所述輻射吸收層(i),i=1、......、M中的2個相鄰輻射吸收層上的每條直線段與所述M個金屬層中的一金屬層相交。An imaging system having an image sensor with side radiation incident during imaging as described in claim 1, wherein two end points are respectively on the radiation absorbing layer (i), i=1, ..., M, and each straight line segment on two adjacent radiation absorbing layers intersects with a metal layer among the M metal layers. 如請求項1所述的具有成像期間進行側面輻射入射的圖像感測器的成像系統,還包括輻射源, 其中,最佳擬合平面穿過所述輻射吸收層(i),i=1、......、M中的一輻射吸收層的所有感測元件,並且 其中,平行於所述最佳擬合平面的直線與所述輻射源和所述圖像感測器都相交。 An imaging system as claimed in claim 1 having an image sensor with side radiation incident during imaging, further comprising a radiation source, wherein the best fitting plane passes through all sensing elements of a radiation absorbing layer in the radiation absorbing layer (i), i=1, ..., M, and wherein a straight line parallel to the best fitting plane intersects both the radiation source and the image sensor. 一種使用如請求項19所述的具有成像期間進行側面輻射入射的圖像感測器的成像系統的方法,包括: 從所述輻射源向所述圖像感測器和向位於所述輻射源和所述圖像感測器之間的物體發送輻射;以及 利用所述圖像感測器,通過使用來自所述輻射源的輻射中的已經透過所述物體的一部分來捕獲所述物體的圖像。 A method of using an imaging system as claimed in claim 19 having an image sensor with side radiation incident during imaging, comprising: transmitting radiation from the radiation source to the image sensor and to an object located between the radiation source and the image sensor; and using the image sensor to capture an image of the object by using a portion of the radiation from the radiation source that has passed through the object.
TW111143820A 2021-12-30 2022-11-16 Imaging systems with image sensors for side radiation incidence during imaging and method of using the same TWI842206B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/CN2021/142884 2021-12-30
PCT/CN2021/142884 WO2023123161A1 (en) 2021-12-30 2021-12-30 Imaging systems with image sensors for side radiation incidence during imaging

Publications (2)

Publication Number Publication Date
TW202326176A TW202326176A (en) 2023-07-01
TWI842206B true TWI842206B (en) 2024-05-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0655861A1 (en) 1993-11-26 1995-05-31 Koninklijke Philips Electronics N.V. Image composition method and imaging apparatus for performing said method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0655861A1 (en) 1993-11-26 1995-05-31 Koninklijke Philips Electronics N.V. Image composition method and imaging apparatus for performing said method

Similar Documents

Publication Publication Date Title
TWI842206B (en) Imaging systems with image sensors for side radiation incidence during imaging and method of using the same
US11904187B2 (en) Imaging methods using multiple radiation beams
WO2023123161A1 (en) Imaging systems with image sensors for side radiation incidence during imaging
WO2024044925A1 (en) Side incidence image sensors with protruding integrated circuit chips
WO2023122921A1 (en) Image sensors with small and thin integrated circuit chips
TWI842236B (en) Methods of operation of image sensors
TWI802283B (en) Imaging systems
WO2024031301A1 (en) Imaging systems and corresponding operation methods
TWI831514B (en) Imaging methods using bi-directional counters
TWI822069B (en) Battery roll testing method with imaging systems
WO2023123301A1 (en) Imaging systems with rotating image sensors
WO2023141911A1 (en) Method and system for performing diffractometry
WO2023173387A1 (en) Radiation detectors including perovskite
TWI811466B (en) A radiation detector system and using method thereof
WO2023115516A1 (en) Imaging systems and methods of operation
TWI814258B (en) Imaging methods using radiation detectors
WO2024138360A1 (en) Arrangements of radiation detectors in an image sensor
WO2023130199A1 (en) Image sensors and methods of operation
TW202321735A (en) Image sensors with shielded electronics layers
CN118318311A (en) Radiation detector comprising perovskite
TW202307463A (en) Method of determination of photon origination points using radiation detectors and radiation sensing system
TW202228278A (en) Imaging method and imaging system
TW202328661A (en) Flow speed measurements method using imaging systems
CN115335728A (en) Imaging method using radiation detector