TW202321735A - Image sensors with shielded electronics layers - Google Patents

Image sensors with shielded electronics layers Download PDF

Info

Publication number
TW202321735A
TW202321735A TW111137643A TW111137643A TW202321735A TW 202321735 A TW202321735 A TW 202321735A TW 111137643 A TW111137643 A TW 111137643A TW 111137643 A TW111137643 A TW 111137643A TW 202321735 A TW202321735 A TW 202321735A
Authority
TW
Taiwan
Prior art keywords
sensing element
radiation
straight line
collimator
imaging system
Prior art date
Application number
TW111137643A
Other languages
Chinese (zh)
Inventor
曹培炎
劉雨潤
Original Assignee
大陸商深圳幀觀德芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商深圳幀觀德芯科技有限公司 filed Critical 大陸商深圳幀觀德芯科技有限公司
Publication of TW202321735A publication Critical patent/TW202321735A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/242Stacked detectors, e.g. for depth information

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Disclosed herein is an imaging system, comprising an image sensor which comprises: a stack of M radiation detectors each of which comprises (A) a radiation absorption layer and (B) an electronics layer configured to process electrical signals generated in the radiation absorption layer, M being an integer greater than 1; and M collimator regions respectively for the M electronics layers of the M radiation detectors, wherein there is a reference straight line for the image sensor such that for each electronics layer of the M electronics layers, every straight line intersecting said each electronics layer and being parallel to the reference straight line intersects the corresponding collimator region, and wherein for each radiation absorption layer of the M radiation absorption layers, every straight line intersecting said each radiation absorption layer and being parallel to the reference straight line does not intersect any collimator region of the M collimator regions.

Description

具有遮罩電子器件層的圖像感測器Image sensor with masked electronics layer

本發明是有關於一種具有遮罩電子器件層的圖像感測器。The invention relates to an image sensor with a layer covering electronic devices.

輻射探測器是測量輻射特性的裝置。該特性的示例可以包括輻射的強度、相位和偏振的空間分佈。由輻射檢測器測量的輻射可以是已經透過物體的輻射。輻射檢測器測量的輻射可以是電磁輻射,例如紅外光、可見光、紫外光、X射線或γ射線。輻射可以是其他類型的,例如α射線和β射線。成像系統可以包括一個或多個圖像感測器,每個圖像感測器可以具有一個或多個輻射檢測器。Radiation detectors are devices that measure the properties of radiation. Examples of such properties may include the spatial distribution of the intensity, phase and polarization of the radiation. The radiation measured by the radiation detector may be radiation that has passed through the object. The radiation measured by the radiation detector may be electromagnetic radiation, such as infrared light, visible light, ultraviolet light, X-rays or gamma rays. Radiation can be of other types, such as alpha and beta rays. An imaging system may include one or more image sensors, each of which may have one or more radiation detectors.

本文公開了一種成像系統,所述成像系統包括圖像感測器,所述圖像感測器包括:M個輻射檢測器的堆疊,每個所述輻射檢測器包括(A)輻射吸收層和(B)被配置為處理在所述輻射吸收層中產生的電信號的電子器件層,M為大於1的整數;以及分別用於所述M個輻射檢測器的M個電子器件層的M個准直器區域,其中存在用於所述圖像感測器的參考直線,使得對於所述M個電子器件層中的每個電子器件層,與所述每個電子器件層相交且平行於所述參考直線的每條直線與對應的准直器區域相交,並且其中對於所述M個輻射吸收層中的每個輻射吸收層,與所述每個輻射吸收層相交且平行於所述參考直線的每條直線不與所述M個准直器區域的任何准直器區域相交。Disclosed herein is an imaging system comprising an image sensor comprising: a stack of M radiation detectors each comprising (A) a radiation absorbing layer and (B) an electronic device layer configured to process electrical signals generated in said radiation absorbing layer, M being an integer greater than 1; and M of the M electronic device layers respectively used for said M radiation detectors a collimator region, wherein there is a reference line for the image sensor such that, for each of the M electronic device layers, intersects the each electronic device layer and is parallel to the Each of the reference straight lines intersects the corresponding collimator region, and wherein for each radiation absorbing layer in the M radiation absorbing layers, each of the radiation absorbing layers intersects and is parallel to the reference straight line Each straight line of does not intersect any of the M collimator regions.

在一方面,所述M個准直器區域分別位於所述M個電子器件層上。In one aspect, the M collimator regions are respectively located on the M electronic device layers.

在一方面,所述成像系統還包括輻射源,其中所述M個准直器區域中的每個准直器區域相對於所述輻射源完全遮蔽對應的電子器件層。In an aspect, the imaging system further includes a radiation source, wherein each of the M collimator regions completely shields a corresponding electronics layer from the radiation source.

在一方面,所述M個准直器區域中的每個准直器區域具有板的形狀,所述板的厚度與所述對應的電子器件層的厚度相同。In an aspect, each of the M collimator regions has the shape of a plate having the same thickness as the corresponding electronics layer.

在一方面,所述M個輻射吸收層和所述M個電子器件層以交替方式佈置。In one aspect, the M radiation absorbing layers and the M electronics layers are arranged in an alternating manner.

在一方面,所述M個准直器區域包含鎢。In one aspect, the M collimator regions comprise tungsten.

在一方面,對於所述M個輻射檢測器中的每個輻射檢測器,所述每個輻射檢測器的所述輻射吸收層被配置為響應於入射X射線光子產生電信號,並且其中所述每個輻射檢測器的所述電子器件層被配置為處理產生的電信號。In an aspect, for each of said M radiation detectors, said radiation absorbing layer of said each radiation detector is configured to generate an electrical signal in response to incident X-ray photons, and wherein said The electronics layer of each radiation detector is configured to process the generated electrical signals.

在一方面,所述M個輻射吸收層中的每個輻射吸收層包括佈置在多個感測元件列中的多個感測元件,其中對於所述M個輻射吸收層中的每個輻射吸收層的每個感測元件列,所述成像系統被配置為將所述每個感測元件列中的電壓超過預定閾值電壓的感測元件的最終電壓相加,並且其中平行於所述參考直線的直線與所述每個感測元件列的所有感測元件都相交。In one aspect, each radiation absorbing layer of the M radiation absorbing layers comprises a plurality of sensing elements arranged in a plurality of sensing element columns, wherein for each radiation absorbing layer of the M radiation absorbing layers For each sensing element column of the layer, the imaging system is configured to sum the final voltages of the sensing elements in each sensing element column whose voltage exceeds a predetermined threshold voltage, and wherein parallel to the reference line The straight line of is intersected with all the sensing elements of each sensing element column.

在一方面,對所述每個感測元件列中的最終電壓超過所述每個感測元件列中的第二感測元件的最終電壓至少預定電壓容差值的第一感測元件不進行所述最終電壓的所述相加,其中所述第一感測元件與所述第二感測元件相鄰,並且其中所述第二感測元件位於所述第一感測元件與所述M個准直器區域之間。In an aspect, the first sense element whose final voltage in each sense element column exceeds the final voltage of the second sense element in each sense element column by at least a predetermined voltage tolerance value is not performed. The addition of the final voltage, wherein the first sensing element is adjacent to the second sensing element, and wherein the second sensing element is located between the first sensing element and the M between the collimator regions.

在一方面,對所述每個感測元件列中的最終電壓超過相鄰感測元件列的第二感測元件的最終電壓至少預定電壓容差值的第一感測元件不進行所述最終電壓的所述相加,其中垂直於所述參考直線的直線與所述第一感測元件和所述第二感測元件都相交。In an aspect, said finalizing is not performed on first sense elements in said each sense element column whose final voltage exceeds the final voltage of a second sense element of an adjacent sense element column by at least a predetermined voltage tolerance value. said addition of voltages, wherein a straight line perpendicular to said reference straight line intersects both said first sensing element and said second sensing element.

在一方面,所述M個輻射吸收層中的每個輻射吸收層包括佈置在多個感測元件列中的多個感測元件,其中所述圖像感測器的所述感測元件列佈置在相鄰感測元件列的多個感測元件列組中,其中對於所述圖像感測器的每個感測元件列組,所述成像系統被配置為將所述每個感測元件列組中的電壓超過預定閾值電壓的感測元件的最終電壓相加,其中所述每個感測元件列組包括N個感測元件列,N為大於1的整數,並且其中對於所述每個感測元件列組中的每個感測元件列,平行於所述參考直線的直線與所述每個感測元件列中的所有感測元件都相交。In one aspect, each radiation absorbing layer of the M radiation absorbing layers includes a plurality of sensing elements arranged in a plurality of sensing element columns, wherein the sensing element columns of the image sensor arranged in a plurality of sensing element column groups of adjacent sensing element columns, wherein for each sensing element column group of the image sensor, the imaging system is configured to Adding final voltages of sensing elements whose voltages exceed a predetermined threshold voltage in element column groups, wherein each sensing element column group includes N sensing element columns, N is an integer greater than 1, and wherein for the For each sensing element row in each sensing element row group, a straight line parallel to the reference straight line intersects all sensing elements in each sensing element row.

本文公開了一種方法,所述方法包括:利用成像系統的圖像感測器接收入射輻射,所述圖像感測器包括:M個輻射檢測器的堆疊,每個所述輻射檢測器包括(A)輻射吸收層和(B)被配置為處理在所述輻射吸收層中產生的電信號的電子器件層,M為大於1的整數;以及分別用於所述M個輻射檢測器的M個電子器件層的M個准直器區域,其中存在用於所述圖像感測器的參考直線,使得對於所述M個電子器件層中的每個電子器件層,與所述每個電子器件層相交且平行於所述參考直線的每條直線與對應的准直器區域相交,並且其中對於所述M個輻射吸收層中的每個輻射吸收層,與所述每個輻射吸收層相交且平行於所述參考直線的每條直線不與所述M個准直器區域的任何准直器區域相交。Disclosed herein is a method comprising: receiving incident radiation with an image sensor of an imaging system, the image sensor comprising: a stack of M radiation detectors, each comprising ( A) a radiation absorbing layer and (B) an electronics layer configured to process electrical signals generated in said radiation absorbing layer, M being an integer greater than 1; and M for said M radiation detectors, respectively M collimator regions of the electronic device layer, wherein there is a reference line for the image sensor, such that for each of the M electronic device layers, with each of the electronic device layers intersect and each line parallel to the reference line intersects the corresponding collimator region, and wherein for each radiation absorbing layer in the M radiation absorbing layers, intersects each of the radiation absorbing layers and Each straight line parallel to the reference straight line does not intersect any of the M collimator areas.

在一方面,所述M個准直器區域分別位於所述M個電子器件層上和其中。In one aspect, the M collimator regions are respectively located on and in the M electronic device layers.

在一方面,所述M個准直器區域中的每個准直器區域相對於同一輻射源完全遮蔽對應的電子器件層。In an aspect, each of the M collimator regions completely shields the corresponding electronics layer with respect to the same radiation source.

在一方面,所述M個准直器區域中的每個准直器區域具有板的形狀,所述板的厚度與所述對應的電子器件層的厚度相同。In an aspect, each of the M collimator regions has the shape of a plate having the same thickness as the corresponding electronics layer.

在一方面,所述M個輻射吸收層和所述M個電子器件層以交替方式佈置。In one aspect, the M radiation absorbing layers and the M electronics layers are arranged in an alternating manner.

在一方面,所述M個准直器區域包括鎢。In one aspect, the M collimator regions comprise tungsten.

在一方面,對於所述M個輻射檢測器中的每個輻射檢測器,所述每個輻射檢測器的所述輻射吸收層被配置為響應於入射X射線光子產生電信號,並且其中所述每個輻射檢測器的所述電子器件層被配置為處理產生的電信號。In an aspect, for each of said M radiation detectors, said radiation absorbing layer of said each radiation detector is configured to generate an electrical signal in response to incident X-ray photons, and wherein said The electronics layer of each radiation detector is configured to process the generated electrical signals.

在一個方面,所述M個輻射吸收層中的每個輻射吸收層包括佈置在多個感測元件列中的多個感測元件,其中所述方法還包括:對於所述M個輻射吸收層中的每個輻射吸收層的每個感測元件列,利用所述成像系統將所述每個感測元件列中的電壓超過預定閾值電壓的感測元件的最終電壓相加,並且其中平行於所述參考直線的直線與所述每個感測元件列的所有感測元件都相交。In one aspect, each radiation absorbing layer of the M radiation absorbing layers comprises a plurality of sensing elements arranged in a plurality of sensing element columns, wherein the method further comprises: for the M radiation absorbing layers For each sensing element column in each radiation absorbing layer, the imaging system is used to add the final voltages of the sensing elements in each sensing element column whose voltage exceeds a predetermined threshold voltage, and wherein parallel to The straight line of the reference straight line intersects all the sensing elements of each sensing element row.

在一方面,對所述每個感測元件列中的最終電壓超過所述每個感測元件列中的第二感測元件的最終電壓至少預定電壓容差值的第一感測元件不進行所述最終電壓的所述相加,其中所述第一感測元件與所述第二感測元件相鄰,並且其中所述第二感測元件位於所述第一感測元件與所述M個准直器區域之間。In an aspect, the first sense element whose final voltage in each sense element column exceeds the final voltage of the second sense element in each sense element column by at least a predetermined voltage tolerance value is not performed. The addition of the final voltage, wherein the first sensing element is adjacent to the second sensing element, and wherein the second sensing element is located between the first sensing element and the M between the collimator regions.

在一方面,對所述每個感測元件列中的最終電壓超過相鄰感測元件列的第二感測元件的最終電壓至少預定電壓容差值的第一感測元件不進行所述最終電壓的所述相加,其中垂直於所述參考直線的直線與所述第一感測元件和所述第二感測元件都相交。In an aspect, said finalizing is not performed on first sense elements in said each sense element column whose final voltage exceeds the final voltage of a second sense element of an adjacent sense element column by at least a predetermined voltage tolerance value. said addition of voltages, wherein a straight line perpendicular to said reference straight line intersects both said first sensing element and said second sensing element.

在一方面,所述M個輻射吸收層中的每個輻射吸收層包括佈置在多個感測元件列中的多個感測元件,其中所述圖像感測器的所述感測元件列佈置在相鄰感測元件列的多個感測元件列組中,其中所述方法還包括:對於所述圖像感測器的每個感測元件列組,利用所述成像系統將所述每個感測元件列組中的電壓超過預定閾值電壓的感測元件的最終電壓相加,其中所述每個感測元件列組包括N個感測元件列,N為大於1的整數,並且其中對於所述每個感測元件列組中的每個感測元件列,平行於所述參考直線的直線與所述每個感測元件列中的所有感測元件都相交。In one aspect, each radiation absorbing layer of the M radiation absorbing layers includes a plurality of sensing elements arranged in a plurality of sensing element columns, wherein the sensing element columns of the image sensor arranged in a plurality of sensing element column groups of adjacent sensing element columns, wherein the method further includes: for each sensing element column group of the image sensor, using the imaging system to image the The final voltages of the sensing elements whose voltage exceeds a predetermined threshold voltage in each sensing element column group are summed, wherein each sensing element column group includes N sensing element columns, N is an integer greater than 1, and Wherein, for each sensing element row in each sensing element row group, a straight line parallel to the reference straight line intersects all sensing elements in each sensing element row.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.

輻射檢測器radiation detector

圖1示意性地示出了作為示例的輻射檢測器100。輻射檢測器100可以包括像素150(也稱為感測元件150)陣列。該陣列可以是矩形陣列(如圖1所示)、蜂窩陣列、六邊形陣列或任何其他合適的陣列。圖1的示例中的像素150陣列具有4行和7列;然而,一般來說,像素150陣列可以具有任意數量的行和任意數量的列。Fig. 1 schematically shows a radiation detector 100 as an example. Radiation detector 100 may include an array of pixels 150 (also referred to as sensing elements 150 ). The array may be a rectangular array (as shown in Figure 1), a honeycomb array, a hexagonal array, or any other suitable array. The array of pixels 150 in the example of FIG. 1 has 4 rows and 7 columns; however, in general, the array of pixels 150 can have any number of rows and any number of columns.

每個像素150可以被配置為檢測入射在其上的來自輻射源(未示出)的輻射,並且可以被配置為測量輻射的特性(例如,粒子的能量、波長和頻率)。輻射可以包括諸如光子和亞原子粒子之類的粒子。每個像素150可以被配置為在一段時間內對入射在其上的能量落入多個能量區間中的輻射粒子的數量進行計數。所有像素150可以被配置為在同一時間段內對多個能量區間內入射在其上的輻射粒子的數量進行計數。當入射的輻射粒子具有相似的能量時,像素150可以僅僅被配置為在一段時間內對入射在其上的輻射粒子的數量進行計數,而不測量單個輻射粒子的能量。Each pixel 150 may be configured to detect radiation incident thereon from a radiation source (not shown), and may be configured to measure a characteristic of the radiation (eg, energy, wavelength, and frequency of the particles). Radiation can include particles such as photons and subatomic particles. Each pixel 150 may be configured to count the number of radiation particles having energies incident thereon that fall within a plurality of energy bins over a period of time. All pixels 150 may be configured to count the number of radiation particles incident thereon in multiple energy intervals during the same time period. When the incident radiation particles have similar energies, the pixels 150 may only be configured to count the number of radiation particles incident thereon over a period of time without measuring the energy of individual radiation particles.

每個像素150可以具有其自己的模數轉換器(ADC),其被配置為將表示入射輻射粒子的能量的類比信號數位化為數位信號,或者將表示多個入射輻射粒子的總能量的類比信號數位化為數位信號。像素150可以被配置為平行作業。例如,當一個像素150測量入射輻射粒子時,另一個像素150可能正在等待輻射粒子的到達。像素150可以不必是可單獨定址的。Each pixel 150 may have its own analog-to-digital converter (ADC) configured to digitize an analog signal representing the energy of an incident radiation particle into a digital signal, or an analog signal representing the total energy of multiple incident radiation particles. The signal is digitized into a digital signal. Pixels 150 may be configured to operate in parallel. For example, while one pixel 150 is measuring an incident radiation particle, another pixel 150 may be waiting for the radiation particle to arrive. Pixels 150 may not necessarily be individually addressable.

這裡描述的輻射檢測器100可以具有諸如X射線望遠鏡、X射線乳房X線照相術、工業X射線缺陷檢測、X射線顯微鏡或顯微射線照相術、X射線鑄件檢查、X射線無損檢測、X射線焊接檢查、X射線數位減影血管造影等之類的應用。使用該輻射檢測器100代替照相板、照相膠片、PSP板、X射線圖像增強器、閃爍體或其他半導體X射線檢測器可能是合適的。The radiation detector 100 described herein may have features such as X-ray telescopes, X-ray mammography, industrial X-ray defect detection, X-ray microscopy or microradiography, X-ray casting inspection, X-ray non-destructive testing, X-ray Applications such as welding inspection, X-ray digital subtraction angiography, etc. It may be appropriate to use the radiation detector 100 in place of a photographic plate, photographic film, PSP plate, X-ray image intensifier, scintillator, or other semiconductor X-ray detector.

圖2示意性地示出了根據實施例的圖1的輻射檢測器100沿線2-2的簡化剖視圖。具體地,輻射檢測器100可以包括輻射吸收層110和用於處理或分析入射輻射在輻射吸收層110中產生的電信號的電子器件層120(其可以包括一個或多個ASIC或專用積體電路)。輻射檢測器100可以包括或不包括閃爍體(未示出)。輻射吸收層110可以包括諸如矽、鍺、GaAs、CdTe、CdZnTe或其組合之類的半導體材料。半導體材料對於感興趣的輻射可以具有高品質衰減係數。Figure 2 schematically illustrates a simplified cross-sectional view of the radiation detector 100 of Figure 1 along line 2-2, according to an embodiment. Specifically, the radiation detector 100 may include a radiation absorbing layer 110 and an electronics layer 120 (which may include one or more ASICs or application specific integrated circuits) for processing or analyzing electrical signals generated in the radiation absorbing layer 110 by incident radiation. ). The radiation detector 100 may or may not include a scintillator (not shown). The radiation absorbing layer 110 may include a semiconductor material such as silicon, germanium, GaAs, CdTe, CdZnTe, or a combination thereof. Semiconductor materials can have high quality attenuation coefficients for the radiation of interest.

作為示例,圖3示意性地示出了圖1的輻射檢測器100沿線2-2的詳細剖視圖。具體地,輻射吸收層110可以包括由第一摻雜區111、第二摻雜區113的一個或多個離散區114形成的一個或多個二極體(例如p-i-n或p-n)。第二摻雜區113可以通過可選的本征區112與第一摻雜區111分開。離散區114可以通過第一摻雜區111或本征區112彼此分開。第一摻雜區111和第二摻雜區113可以具有相反類型的摻雜(例如,區域111是p型,區域113是n型,或者,區域111是n型,區域113是p型)。在圖3的示例中,第二摻雜區113的每個離散區域114形成具有第一摻雜區111和可選的本征區112的二極體。即,在圖3的示例中,輻射吸收層110具有多個二極體(更具體地,7個二極體對應於圖1的陣列中的一行的7個像素150,為簡單起見,圖3中僅標記了其中的2個像素150)。多個二極體可以具有電觸點119A作為共用(公共)電極。第一摻雜區111還可以具有離散部分。As an example, FIG. 3 schematically shows a detailed cross-sectional view of the radiation detector 100 of FIG. 1 along line 2-2. Specifically, the radiation absorbing layer 110 may include one or more diodes (eg p-i-n or p-n) formed by the first doped region 111 , one or more discrete regions 114 of the second doped region 113 . The second doped region 113 may be separated from the first doped region 111 by an optional intrinsic region 112 . The discrete regions 114 may be separated from each other by the first doped region 111 or the intrinsic region 112 . The first doped region 111 and the second doped region 113 may have opposite types of doping (eg, region 111 is p-type and region 113 is n-type, or region 111 is n-type and region 113 is p-type). In the example of FIG. 3 , each discrete region 114 of the second doped region 113 forms a diode with the first doped region 111 and an optional intrinsic region 112 . That is, in the example of FIG. 3, the radiation absorbing layer 110 has a plurality of diodes (more specifically, 7 diodes correspond to 7 pixels 150 in a row in the array of FIG. Only 2 of these pixels 150 are marked in 3). Multiple diodes may have electrical contact 119A as a common (common) electrode. The first doped region 111 may also have discrete portions.

電子器件層120可以包括適合於處理或解釋由入射在輻射吸收層110上的輻射產生的信號的電子系統121。電子系統121可以包括諸如濾波器網路、放大器、積分器和比較器之類的類比電路,或者諸如微處理器和記憶體之類的數位電路。電子系統121可以包括一個或多個ADC(模數轉換器)。電子系統121可以包括由各像素150共用的元件或專用於單個像素150的元件。例如,電子系統121可以包括專用於每個像素150的放大器和在所有像素150之間共用的微處理器。電子系統121可以通過通孔131電連接到像素150。通孔之間的空間可以使用填充材料130填充,這可以增加電子器件層120與輻射吸收層110的連接的機械穩定性。其它接合技術可以在不使用通孔131的情況下將電子系統121連接到像素150。The electronics layer 120 may include an electronic system 121 suitable for processing or interpreting signals generated by radiation incident on the radiation absorbing layer 110 . Electronic system 121 may include analog circuits such as filter networks, amplifiers, integrators, and comparators, or digital circuits such as microprocessors and memory. Electronic system 121 may include one or more ADCs (analog-to-digital converters). Electronics system 121 may include components that are shared by pixels 150 or components that are specific to a single pixel 150 . For example, electronic system 121 may include an amplifier dedicated to each pixel 150 and a microprocessor shared among all pixels 150 . Electronic system 121 may be electrically connected to pixel 150 through via 131 . The spaces between the via holes may be filled with a filling material 130 , which may increase the mechanical stability of the connection of the electronic device layer 120 to the radiation absorbing layer 110 . Other bonding techniques can connect electronics 121 to pixel 150 without using via 131 .

當來自輻射源(未示出)的輻射撞擊包括二極體的輻射吸收層110時,輻射粒子可以被吸收並且通過多種機制產生一個或多個電荷載流子(例如,電子、空穴)。電荷載流子可以在電場下漂移到二極體之一的電極。該電場可以是外部電場。電觸點119B可以包括離散部分,每個離散部分與離散區114電接觸。術語“電觸點”可以與詞語“電極”互換使用。在實施例中,電荷載流子可以在各方向上漂移,使得由單個輻射粒子產生的電荷載流子基本上不被兩個不同的離散區114共用(這裡“基本上不......共用”意指相比於其餘的電荷載流子,這些電荷載流子中的少於2%、少於0.5%、少於0.1%或少於0.01%的電荷載流子流向一個不同的離散區114)。由入射在這些離散區114之一的覆蓋區周圍的輻射粒子產生的電荷載流子基本上不與這些離散區114中的另一個共用。與離散區114相關聯的像素150可以是離散區114周圍的區域,其中由入射到其中的輻射粒子產生的基本上全部的(多於98%、多於99.5%、多於99.9%或者多於99.99%的)電荷載流子流向離散區114。即,這些電荷載流子中的少於2%、少於1%、少於0.1%或少於0.01%的電荷載流子流過該像素150。When radiation from a radiation source (not shown) strikes the radiation absorbing layer 110 comprising diodes, radiation particles may be absorbed and generate one or more charge carriers (eg, electrons, holes) through a variety of mechanisms. Charge carriers can drift to the electrodes of one of the diodes under the electric field. The electric field may be an external electric field. Electrical contacts 119B may include discrete portions each in electrical contact with a discrete region 114 . The term "electrical contact" may be used interchangeably with the word "electrode". In an embodiment, the charge carriers may drift in all directions such that the charge carriers generated by a single radiation particle are not substantially shared by two distinct discrete regions 114 (herein "substantially not. … .shared means that less than 2%, less than 0.5%, less than 0.1%, or less than 0.01% of these charge carriers flow to a different discrete area 114). Charge carriers generated by radiation particles incident around the footprint of one of the discrete regions 114 are substantially not shared with the other of the discrete regions 114 . Pixels 150 associated with discrete region 114 may be the area surrounding discrete region 114 in which substantially all (more than 98%, more than 99.5%, more than 99.9%, or more than 99.99%) of the charge carriers flow to discrete regions 114 . That is, less than 2%, less than 1%, less than 0.1%, or less than 0.01% of the charge carriers flow through the pixel 150 .

圖4示意性地示出了根據替代實施例的圖1的輻射檢測器100沿線2-2的詳細剖視圖。更具體地,輻射吸收層110可以包括諸如矽、鍺、GaAs、CdTe、CdZnTe或其組合之類的半導體材料的電阻器,但不包括二極體。半導體材料對於感興趣的輻射可以具有高品質衰減係數。在一個實施例中,圖4的電子器件層120在結構和功能方面類似於圖3的電子器件層120。FIG. 4 schematically illustrates a detailed cross-sectional view of the radiation detector 100 of FIG. 1 along line 2 - 2 according to an alternative embodiment. More specifically, the radiation absorbing layer 110 may include resistors of semiconductor materials such as silicon, germanium, GaAs, CdTe, CdZnTe, or combinations thereof, but not diodes. Semiconductor materials can have high quality attenuation coefficients for the radiation of interest. In one embodiment, the electronics layer 120 of FIG. 4 is similar in structure and function to the electronics layer 120 of FIG. 3 .

當輻射撞擊包括電阻器但不包括二極體的輻射吸收層110時,它可以被吸收並通過多種機制產生一個或多個電荷載流子。輻射粒子可以產生10到100000個電荷載流子。電荷載流子可以在電場下漂移到電觸點119A和119B。該電場可以是外部電場。電觸點119B可以包括離散部分。在實施例中,電荷載流子可以在各方向上漂移,使得由單個輻射粒子產生的電荷載流子基本上不被電觸點119B的兩個不同的離散部分共用(這裡“基本上不......共用”意指相比於其餘的電荷載流子,這些電荷載流子中的少於2%、少於0.5%、少於0.1%或少於0.01%的電荷載流子流向一個不同的離散部分)。由入射在電觸點119B的這些離散部分之一的覆蓋區周圍的輻射粒子產生的電荷載流子基本上不與電觸點119B的這些離散部分中的另一個共用。與電觸點119B的離散部分相關聯的像素150可以是離散部分周圍的區域,其中由入射到其中的輻射粒子產生的基本上全部的(多於98%、多於99.5%、多於99.9%或者多於99.99%的)電荷載流子流向電觸點119B的離散部分。即,這些電荷載流子中的少於2%、少於0.5%、少於0.1%或少於0.01%的電荷載流子流過與電觸點119B的一個離散部分相關聯的像素。When radiation strikes the radiation absorbing layer 110, which includes a resistor but does not include a diode, it can be absorbed and generate one or more charge carriers through a variety of mechanisms. Radiation particles can generate anywhere from 10 to 100,000 charge carriers. Charge carriers can drift to electrical contacts 119A and 119B under the electric field. The electric field may be an external electric field. Electrical contacts 119B may include discrete portions. In an embodiment, the charge carriers may drift in all directions such that the charge carriers generated by a single radiation particle are not substantially shared by two different discrete portions of the electrical contact 119B (herein "substantially not. .....shared means less than 2%, less than 0.5%, less than 0.1%, or less than 0.01% of these charge carriers compared to the rest of the charge carriers flow to a different discrete segment). Charge carriers generated by radiation particles incident around the footprint of one of the discrete portions of electrical contact 119B are substantially not shared with the other of the discrete portions of electrical contact 119B. A pixel 150 associated with a discrete portion of electrical contact 119B may be an area around the discrete portion in which substantially all (more than 98%, more than 99.5%, more than 99.9%) of the radiation produced by radiation particles incident therein or more than 99.99%) of the charge carriers flow to discrete portions of the electrical contacts 119B. That is, less than 2%, less than 0.5%, less than 0.1%, or less than 0.01% of the charge carriers flow through pixels associated with a discrete portion of electrical contact 119B.

成像系統和圖像感測器Imaging Systems and Image Sensors

圖5示意性地示出了根據實施例的成像系統500。在實施例中,成像系統500可以包括圖像感測器510、電腦520和輻射源530。Fig. 5 schematically shows an imaging system 500 according to an embodiment. In an embodiment, the imaging system 500 may include an image sensor 510 , a computer 520 and a radiation source 530 .

在實施例中,輻射源530可以向物體540發送輻射束532,然後發送到圖像感測器510。換句話說,物體540位於輻射源530和圖像感測器510之間。輻射束532可以包括X射線。In an embodiment, radiation source 530 may send radiation beam 532 to object 540 and then to image sensor 510 . In other words, the object 540 is located between the radiation source 530 and the image sensor 510 . Radiation beam 532 may include X-rays.

在實施例中,圖像感測器510可以包括5個輻射檢測器100的堆疊。在實施例中,5個輻射檢測器100的5個輻射吸收層110和5個電子器件層120可以如圖所示按交替方式佈置。換句話說,從右到左是輻射吸收層110,然後是電子器件層120,然後是輻射吸收層110,然後是電子器件層120,等等。In an embodiment, image sensor 510 may include a stack of five radiation detectors 100 . In an embodiment, five radiation absorbing layers 110 and five electronics layers 120 of five radiation detectors 100 may be arranged in an alternating manner as shown. In other words, from right to left is the radiation absorbing layer 110, then the electronics layer 120, then the radiation absorbing layer 110, then the electronics layer 120, and so on.

在實施例中,圖像感測器510還可以包括分別用於5個電子器件層120的5個准直器區域515。在實施例中,5個准直器區域515可以如圖所示分別位於5個電子器件層120上。在實施例中,5個准直器區域515可以如圖所示分別位於5個電子器件層120上且與5個電子器件層120直接物理接觸。在實施例中,准直器區域515可以包括阻擋和吸收X射線的材料,例如鎢。In an embodiment, the image sensor 510 may further include 5 collimator regions 515 for the 5 electronic device layers 120 respectively. In an embodiment, five collimator regions 515 may be respectively located on five electronic device layers 120 as shown. In an embodiment, five collimator regions 515 may be respectively located on and in direct physical contact with five electronic device layers 120 as shown. In an embodiment, the collimator region 515 may comprise a material that blocks and absorbs X-rays, such as tungsten.

在實施例中,存在用於圖像感測器510的參考直線519,使得對於5個電子器件層120中的每個電子器件層,與所述每個電子器件層相交且平行於參考直線519的任何(即,每條)直線都與對應的准直器區域515相交。In an embodiment, there is a reference straight line 519 for the image sensor 510 such that for each of the five electronic device layers 120, the reference straight line 519 intersects said each electronic device layer Any (ie, every) straight line of , intersects the corresponding collimator region 515 .

例如,對於輻射檢測器100.1的電子器件層120.1,與電子器件層120.1相交且平行於參考直線519的任何直線與對應的准直器區域515.1相交。結果,平行於參考直線519並瞄準電子器件層120.1的來自輻射源530的輻射束532的輻射被准直器區域515.1阻擋,因此被防止撞擊電子器件層120.1。For example, for the electronics layer 120.1 of the radiation detector 100.1, any line that intersects the electronics layer 120.1 and is parallel to the reference line 519 intersects the corresponding collimator region 515.1. As a result, radiation of the radiation beam 532 from the radiation source 530 parallel to the reference line 519 and aimed at the electronics layer 120.1 is blocked by the collimator region 515.1 and thus prevented from hitting the electronics layer 120.1.

在實施例中,對於5個輻射吸收層110中的每個輻射吸收層,與所述每個輻射吸收層相交且平行於參考直線519的任何(即,每條)直線不與5個准直器區域515的任何准直器區域相交。In an embodiment, for each of the five radiation absorbing layers 110, any (ie, each) line that intersects each of the radiation absorbing layers and is parallel to the reference line 519 is not collimated with the five Any collimator regions intersecting the collimator region 515.

例如,對於輻射檢測器100.1的輻射吸收層110.1,與輻射吸收層110.1相交且平行於參考直線519的任何直線不與5個准直器區域515的任何准直器區域相交。結果,平行於參考直線519並瞄準輻射吸收層110.1的來自輻射源530的輻射束532的輻射不被任何准直器區域515(包括准直器區域515.1)阻擋,因此可以撞擊輻射吸收層110.1。For example, for radiation absorbing layer 110.1 of radiation detector 100.1, any line that intersects radiation absorbing layer 110.1 and is parallel to reference line 519 does not intersect any of the five collimator areas 515. As a result, radiation of the radiation beam 532 from the radiation source 530 parallel to the reference line 519 and aimed at the radiation absorbing layer 110.1 is not blocked by any of the collimator regions 515 (including the collimator region 515.1) and can thus strike the radiation absorbing layer 110.1.

在實施例中,電腦520可以電連接到圖像感測器510的5個電子器件層120。在實施例中,電腦520可以接收和處理來自電子器件層120的資料以生成物體540的圖像。In an embodiment, the computer 520 may be electrically connected to the five electronics layers 120 of the image sensor 510 . In an embodiment, computer 520 may receive and process data from electronics layer 120 to generate an image of object 540 .

本說明書中的術語“圖像”不限於輻射特性(例如強度)的空間分佈。例如,術語“圖像”還可以包括物質或元素的密度的空間分佈。The term "image" in this specification is not limited to the spatial distribution of radiation properties such as intensity. For example, the term "image" may also include the spatial distribution of the density of a substance or element.

成像系統的操作Operation of the Imaging System

在實施例中,成像系統500可以按如下操作。在實施例中,輻射源530可以向物體540發送輻射束532,然後發送到圖像感測器510。在實施例中,輻射束532可以包括平行於參考直線519的X射線。In an embodiment, imaging system 500 may operate as follows. In an embodiment, radiation source 530 may send radiation beam 532 to object 540 and then to image sensor 510 . In an embodiment, radiation beam 532 may include X-rays parallel to reference line 519 .

結果,准直器區域515阻止輻射束532進入5個電子器件層120但不阻止輻射束532撞擊5個輻射吸收層110。撞擊5個輻射吸收層110的入射輻射在5個輻射吸收層110中產生電信號。作為回應,在實施例中,5個電子器件層120可以監控和處理這些電信號並相應地生成資料。作為回應,在實施例中,電腦520可以接收和處理由5個電子器件層120產生的資料並生成物體540的圖像。As a result, the collimator region 515 prevents the radiation beam 532 from entering the five electronics layers 120 but does not prevent the radiation beam 532 from impinging on the five radiation absorbing layers 110 . Incident radiation striking the five radiation absorbing layers 110 generates electrical signals in the five radiation absorbing layers 110 . In response, in an embodiment, the five electronics layers 120 may monitor and process these electrical signals and generate data accordingly. In response, in an embodiment, computer 520 may receive and process data generated by five electronics layers 120 and generate an image of object 540 .

概括操作的流程圖Flowchart outlining operations

圖6示出了概括根據實施例的上述圖5的成像系統500的操作的流程圖600。在步驟610中,成像系統的圖像感測器接收入射輻射。例如,在上述實施例中,參考圖5,成像系統500的圖像感測器510接收輻射束532的入射輻射。FIG. 6 shows a flowchart 600 outlining the operation of the imaging system 500 of FIG. 5 described above, according to an embodiment. In step 610, an image sensor of an imaging system receives incident radiation. For example, in the embodiments described above, with reference to FIG. 5 , image sensor 510 of imaging system 500 receives incident radiation of radiation beam 532 .

此外,在步驟610中,圖像感測器包括M個輻射檢測器的堆疊,每個輻射檢測器包括(A)輻射吸收層和(B)被配置為處理在輻射吸收層中產生的電信號的電子器件層,M是大於1的整數。例如,在上述實施例中,參考圖5,圖像感測器510包括5個輻射檢測器100的堆疊,每個輻射檢測器100包括(A)輻射吸收層110和(B)被配置為處理在輻射吸收層110中產生的電信號的電子器件層120(這裡,M=5>1)。Furthermore, in step 610, the image sensor comprises a stack of M radiation detectors, each radiation detector comprising (A) a radiation absorbing layer and (B) a radiation detector configured to process electrical signals generated in the radiation absorbing layer The electronic device layer, M is an integer greater than 1. For example, in the embodiment described above, referring to FIG. 5 , the image sensor 510 includes a stack of five radiation detectors 100, each radiation detector 100 including (A) a radiation absorbing layer 110 and (B) configured to process Electronics layer 120 for electrical signals generated in radiation absorbing layer 110 (here, M=5>1).

此外,在步驟610中,圖像感測器還包括分別用於M個輻射檢測器的M個電子器件層的M個准直器區域。例如,在上述實施例中,參考圖5,圖像感測器510還包括分別用於5個輻射檢測器100的5個電子器件層120的5個准直器區域515。In addition, in step 610, the image sensor further includes M collimator regions for the M electronic device layers of the M radiation detectors, respectively. For example, in the above embodiment, referring to FIG. 5 , the image sensor 510 further includes 5 collimator regions 515 for the 5 electronic device layers 120 of the 5 radiation detectors 100 respectively.

此外,在步驟610中,存在用於圖像感測器的參考直線,使得對於M個電子器件層中的每個電子器件層,與所述每個電子器件層相交且平行於參考直線的任何直線都與對應的准直器區域相交。例如,在上述實施例中,參考圖5,對於電子器件層120.1,與電子器件層120.1相交且平行於參考直線519的任何直線與對應的准直器區域515.1相交。Furthermore, in step 610, there is a reference straight line for the image sensor such that for each of the M electronic device layers, any The straight lines all intersect the corresponding collimator regions. For example, in the above embodiments, referring to FIG. 5 , for the electronics layer 120.1, any straight line that intersects the electronics layer 120.1 and is parallel to the reference straight line 519 intersects the corresponding collimator region 515.1.

此外,在步驟610中,對於M個輻射吸收層中的每個輻射吸收層,與所述每個輻射吸收層相交且平行於參考直線的任何直線不與M個准直器區域的任何准直器區域相交。例如,在上述實施例中,參考圖5,對於輻射吸收層110.1,與輻射吸收層110.1相交且平行於參考直線519的任何直線不與5個准直器區域515的任何准直器區域相交。Furthermore, in step 610, for each of the M radiation absorbing layers, any straight line that intersects said each radiation absorbing layer and is parallel to the reference straight line is not collimated with any of the M collimator regions area intersects. For example, in the above embodiments, referring to FIG. 5 , for the radiation absorbing layer 110.1, any straight line that intersects the radiation absorbing layer 110.1 and is parallel to the reference straight line 519 does not intersect any of the five collimator regions 515.

其它實施例other embodiments

准直器區域完全遮蔽電子器件層Collimator area fully shields electronics layers

在實施例中,參考圖5,圖像感測器510和輻射源530可以使得5個准直器區域515中的每個准直器區域相對於輻射源530完全遮蔽對應的電子器件層120。換句話說,5個准直器區域515中的每個准直器區域完全遮罩對應的電子器件層120免受輻射源530的輻射。例如,准直器區域515.1完全阻止來自輻射源530的輻射撞擊對應的電子器件層120.1。In an embodiment, referring to FIG. 5 , the image sensor 510 and radiation source 530 may be such that each of the five collimator regions 515 completely shields the corresponding electronics layer 120 from the radiation source 530 . In other words, each of the five collimator regions 515 completely shields the corresponding electronics layer 120 from radiation from the radiation source 530 . For example, the collimator region 515.1 completely prevents radiation from the radiation source 530 from striking the corresponding electronics layer 120.1.

准直器區域—形狀和厚度Collimator Area - Shape and Thickness

在實施例中,參考圖5,5個准直器區域515中的每個准直器區域具有板的形狀,所述板的厚度與對應的電子器件層120的厚度相同。例如,准直器區域515.5具有板的形狀,所述板的厚度515w與對應的電子器件層120.5的厚度120w相同。In an embodiment, referring to FIG. 5 , each of the five collimator regions 515 has the shape of a plate having the same thickness as the corresponding electronics layer 120 . For example, the collimator region 515.5 has the shape of a plate having the same thickness 515w as the thickness 120w of the corresponding electronics layer 120.5.

圖像生成—將最終電壓相加Image generation - summing the final voltages

在實施例中,參考圖5,成像系統500可以按如下生成物體540的圖像。具體地,輻射源530可以將輻射束532發送到物體540,然後發送到圖像感測器510。In an embodiment, referring to FIG. 5 , imaging system 500 may generate an image of object 540 as follows. Specifically, radiation source 530 may send radiation beam 532 to object 540 and then to image sensor 510 .

在實施例中,關於輻射檢測器100.1,電子器件層120.1可以監測對應的輻射吸收層110.1的每個感測元件150的電壓。感測元件150的電壓可以是感測元件150的電觸點119B(圖3和圖4)的電壓。In an embodiment, with respect to the radiation detector 100.1, the electronics layer 120.1 may monitor the voltage of each sensing element 150 of the corresponding radiation absorbing layer 110.1. The voltage of sensing element 150 may be the voltage of electrical contact 119B of sensing element 150 ( FIGS. 3 and 4 ).

在實施例中,如果電子器件層120.1發現輻射吸收層110.1的感測元件150的電壓在時間點T1處超過預定閾值電壓Vt,則電子器件層120.1可以在時間點T2處測量感測元件150的電壓,該時間點T2在T1之後預定的時間延遲。該測量電壓可以被稱為最終電壓。在感測元件150的最終電壓的測量之後,感測元件150中產生感測元件150的最終電壓的電荷載流子可以被放電。In an embodiment, if the electronics layer 120.1 finds that the voltage of the sensing element 150 of the radiation absorbing layer 110.1 exceeds a predetermined threshold voltage Vt at a time point T1, the electronics layer 120.1 may measure the voltage of the sensing element 150 at a time point T2. voltage, the time point T2 is delayed by a predetermined time after T1. This measured voltage may be referred to as the final voltage. After the measurement of the final voltage of the sensing element 150 , the charge carriers in the sensing element 150 that generated the final voltage of the sensing element 150 may be discharged.

在實施例中,電腦520可以將測量的同一感測元件列的感測元件150的最終電壓相加。請注意,這些感測元件150的電壓超過預定閾值電壓Vt。In an embodiment, the computer 520 may sum the measured final voltages of the sensing elements 150 of the same sensing element column. Note that the voltages of these sensing elements 150 exceed the predetermined threshold voltage Vt.

例如,參考圖5,假設Vt=2V,並且輻射束532的X射線光子(未示出)進入輻射吸收層110.1的最右邊的感測元件列。最右邊的感測元件列包括7個感測元件150(4,7)至150(4,1)。進一步假設由最右邊的感測元件列的感測元件150(4,7)、150(4,6)、150(4,5)和150(4,4)中的光子產生的電荷載流子足以使這4個感測元件的電壓超過Vt。結果,電子器件層120.1測量這4個感測元件150(4,7)、150(4,6)、150(4,5)和150(4,4)的4個最終電壓。假設測量的感測元件150(4,7)、150(4,6)、150(4,5)和150(4,4)的最終電壓分別為6V、5V、8V和3V。然後,電腦520將4個最終電壓相加在一起,得到光子電壓值。具體地,該光子和最右邊的感測元件列的光子電壓值為6V+5V+8V+3V=22V。For example, referring to Fig. 5, assume that Vt = 2V, and that X-ray photons (not shown) of radiation beam 532 enter the rightmost column of sensing elements of radiation absorbing layer 110.1. The rightmost sensing element column includes seven sensing elements 150(4,7)-150(4,1). Assume further that the charge carriers generated by photons in sense elements 150(4,7), 150(4,6), 150(4,5) and 150(4,4) of the rightmost sense element column It is enough to make the voltage of these 4 sense elements exceed Vt. As a result, the electronics layer 120.1 measures the 4 final voltages of the 4 sensing elements 150(4,7), 150(4,6), 150(4,5) and 150(4,4). Assume that the measured final voltages of sensing elements 150(4,7), 150(4,6), 150(4,5) and 150(4,4) are 6V, 5V, 8V and 3V, respectively. Then, the computer 520 adds together the four final voltages to obtain the photon voltage value. Specifically, the photon voltage value of the photon and the rightmost sensing element column is 6V+5V+8V+3V=22V.

假設另一個X射線光子稍後進入同一最右邊的感測元件列。在實施例中,成像系統500可以執行上述相同的操作,並為該光子和該最右邊的感測元件列確定另一個光子電壓值。Suppose another X-ray photon later enters the same rightmost column of sensing elements. In an embodiment, imaging system 500 may perform the same operations described above and determine another photon voltage value for the photon and the rightmost column of sensing elements.

在實施例中,對於曝光時間段,電腦520可以將最右邊的感測元件列和在曝光時間段期間進入最右邊的感測元件列的所有光子的所有光子電壓值相加。結果,所有這些光子電壓值的總和表示在曝光時間段期間撞擊最右邊的感測元件列的所有光子的總能量。In an embodiment, for an exposure time period, the computer 520 may sum the rightmost column of sensing elements and all photon voltage values of all photons that entered the rightmost column of sensing elements during the exposure time period. As a result, the sum of all these photon voltage values represents the total energy of all photons that hit the rightmost column of sensing elements during the exposure period.

例如,假設在曝光時間段期間,輻射束532的30個光子一個接一個地進入最右邊的感測元件列。結果,成像系統500確定這30個光子的30個光子電壓值。所有這30個光子電壓值的總和表示在曝光時間期間內進入最右邊的感測元件列的所有30個光子的總能量。For example, assume that during the exposure period, 30 photons of radiation beam 532 enter the rightmost column of sensing elements one after the other. As a result, imaging system 500 determines 30 photon voltage values for the 30 photons. The sum of all 30 photon voltage values represents the total energy of all 30 photons that entered the rightmost column of sensing elements during the exposure time.

在實施例中,成像系統500可以對圖像感測器510的其他19個感測元件列執行上述相同的操作。結果,因為圖像感測器510具有5×4=20個感測元件列,所以20個感測元件列的20個總和表示物體540圖像的20個圖像元素的值。請注意,圖像感測器510的每個感測元件列對應於物體540圖像的一個圖像元素。In an embodiment, the imaging system 500 can perform the same operations as above for the other 19 sensing element columns of the image sensor 510 . As a result, since the image sensor 510 has 5×4=20 sensing element columns, the 20 sums of the 20 sensing element columns represent the values of the 20 image elements of the object 540 image. Please note that each column of sensing elements of the image sensor 510 corresponds to an image element of the image of the object 540 .

忽略不良感測元件—與同一列中的正上方感測元件進行比較Ignore Bad Sensing Element—Compare with Immediately Above Sensing Element in Same Column

在實施例中,上述在同一感測元件列中的感測元件的最終電壓相加可能不適用於不良感測元件。在實施例中,如果感測元件150的最終電壓超過同一感測元件列中的正上方感測元件150的最終電壓至少預定電壓容差值,則可以將該感測元件150視為不良感測元件。In an embodiment, the above-described final voltage summation of sense elements in the same sense element column may not be applicable to bad sense elements. In an embodiment, a sensing element 150 may be considered a bad sensing element if its final voltage exceeds the final voltage of the immediately above sensing element 150 in the same sensing element column by at least a predetermined voltage tolerance value. element.

例如,假設預定電壓容差值為1V,並假設感測元件150(4,7)、150(4,6)、150(4,5)和150(4,4)的最終電壓分別為6V、5V、8V和3V。因為當感測元件的深度增加時感測元件150的最終電壓應該降低,所以感測元件150(4,5)會被視為不良感測元件,因為它的最終電壓(8V)超過了最右邊的感測元件列中的正上方感測元件150(4,6)的最終電壓(5V)至少1V。For example, assume that the predetermined voltage tolerance value is 1V, and assume that the final voltages of sensing elements 150(4,7), 150(4,6), 150(4,5), and 150(4,4) are 6V, 5V, 8V and 3V. Since the final voltage of sense element 150 should decrease as the depth of the sense element increases, sense element 150(4,5) would be considered a bad sense element because its final voltage (8V) exceeds the rightmost The final voltage (5V) of the sense elements 150 (4, 6) directly above in the sense element column is at least 1V.

在實施例中,在將感測元件列的最終電壓相加時可以忽略不良感測元件150的最終電壓。在上面的示例中,電腦520可以針對最右邊的感測元件列相加6V+5V+3V=14V(即,不良感測元件150(4,5)的最終電壓(8V)被忽略)。In an embodiment, the final voltage of a bad sense element 150 may be ignored when summing the final voltages of the columns of sense elements. In the above example, the computer 520 may add 6V+5V+3V=14V for the rightmost column of sense elements (ie, the final voltage (8V) of the bad sense element 150 (4,5) is ignored).

替代實施例alternative embodiment

不良感測元件—與相同深度的相鄰感測元件進行比較Bad sensing element—compare to adjacent sensing elements at the same depth

在上述實施例中,如果感測元件150的最終電壓超過同一感測元件列中的正上方感測元件的最終電壓至少預定電壓容差值,則將該感測元件150視為不良的。在替代實施例中,如果感測元件150的最終電壓超過相同深度的相鄰感測元件列中的感測元件的最終電壓至少預定電壓容差值,則可以將該感測元件150視為不良的。In the embodiments described above, a sensing element 150 is considered bad if its final voltage exceeds the final voltage of the immediately above sensing element in the same sensing element column by at least a predetermined voltage tolerance value. In an alternative embodiment, a sense element 150 may be considered defective if its final voltage exceeds the final voltage of sense elements in adjacent columns of sense elements at the same depth by at least a predetermined voltage tolerance value. of.

在上述示例中,假設預定電壓容差值為1V,並且感測元件150(3,5)的最終電壓為4V。然後,可以將感測元件150(4,5)視為不良感測元件,因為其最終電壓(8V)超過感測元件150(3,5)的最終電壓(4V)至少1V。請注意,感測元件150(3,5)屬於相鄰的感測元件列並且與感測元件150(4,5)處於相同深度。還要注意,因為感測元件150(3,5)和150(4,5)處於相同深度,所以存在垂直於參考直線519且與感測元件150(3,5)和150(4,5)都相交的直線。In the above example, it is assumed that the predetermined voltage tolerance value is 1V, and the final voltage of the sensing element 150(3,5) is 4V. Sensing element 150 ( 4 , 5 ) can then be considered a bad sensing element because its final voltage (8V) exceeds the final voltage (4V) of sensing element 150 ( 3 , 5 ) by at least 1V. Note that sensing element 150(3,5) belongs to an adjacent sensing element column and is at the same depth as sensing element 150(4,5). Note also that since sensing elements 150(3,5) and 150(4,5) are at the same depth, there is a lines that intersect.

列組與各個列相比Column groups compared to individual columns

在上述實施例中,電腦520將測量的同一感測元件列的感測元件150的最終電壓相加。在替代實施例中,在所有其他事情相同的情況下,電腦520可以將測量的同一感測元件列組的感測元件的最終電壓相加。感測元件列組可以包括輻射吸收層110的多個相鄰感測元件列。In the above-mentioned embodiment, the computer 520 sums the measured final voltages of the sensing elements 150 of the same sensing element row. In an alternative embodiment, all other things being equal, computer 520 may sum the resulting voltages measured for sense elements of the same sense element column group. A sensing element column group may include a plurality of adjacent sensing element columns of the radiation absorbing layer 110 .

例如,輻射吸收層110.1的4個感測元件列可以被劃分為2個感測元件列組,每個感測元件列組具有2個相鄰的感測元件列。具體地,第一感測元件列組可以包括左側2個感測元件列,第二感測元件列組可以包括右側2個感測元件列。圖像感測器510的其他4個輻射吸收層110可以以類似的方式被劃分為感測元件列組。結果,圖像感測器510總共具有2×5=10個感測元件列組,每個感測元件列組具有2個相鄰感測元件列。結果,物體540的所得圖像應該具有2×5=10個圖像元素(圖像的每個圖像元素對應於一個感測元件列組)。For example, the 4 sensing element columns of the radiation absorbing layer 110.1 can be divided into 2 sensing element column groups, each sensing element column group has 2 adjacent sensing element columns. Specifically, the first sensing element column group may include left 2 sensing element columns, and the second sensing element column group may include right 2 sensing element columns. The other four radiation absorbing layers 110 of the image sensor 510 can be divided into sensing element column groups in a similar manner. As a result, the image sensor 510 has 2×5=10 sensor column groups in total, and each sensor column group has 2 adjacent sensor column groups. As a result, the resulting image of object 540 should have 2x5=10 image elements (each image element of the image corresponds to a sensing element column group).

儘管本文已經公開了各個方面和實施例,但其他方面和實施例對於本領域技術人員來說將是顯而易見的。本文所公開的各個方面和實施例是出於說明的目的而不旨在限制,真實範圍和精神由所附權利要求指示。Although various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the appended claims.

100,100.1:輻射檢測器 110,110.1,110.5:輻射吸收層 111:第一摻雜區 112:本征區 113:第二摻雜區 114:離散區 119A,119B:電觸點 120,120.1,120.5:電子器件層 120w,515w:厚度 121:電子系統 130:填充材料 131:通孔 150,150(3,5),150(4,1),150(4,4)-150(4,7):像素(感測元件) 500:成像系統 510:圖像感測器 515,515.1,515.5:准直器區域 519:參考直線 520:電腦 530:輻射源 532:輻射束 540:物體 600:流程圖 610:步驟 100, 100.1: Radiation detectors 110, 110.1, 110.5: radiation absorbing layer 111: the first doped region 112: Intrinsic area 113: the second doped region 114: discrete area 119A, 119B: electrical contacts 120, 120.1, 120.5: Electronic device layer 120w, 515w: thickness 121: Electronic system 130: filling material 131: Through hole 150,150(3,5),150(4,1),150(4,4)-150(4,7): pixel (sensing element) 500: imaging system 510: image sensor 515, 515.1, 515.5: Collimator area 519: Reference line 520: computer 530: Radiation source 532: Radiation Beam 540: object 600: Flowchart 610: Step

圖1示意性地示出了根據實施例的輻射檢測器。 圖2示意性地示出了根據實施例的輻射檢測器的簡化剖視圖。 圖3示意性地示出了根據實施例的輻射檢測器的詳細剖視圖。 圖4示意性地示出了根據替代實施例的輻射檢測器的詳細剖視圖。 圖5示意性地示出了根據實施例的包括圖像感測器的成像系統。 圖6示出了概括成像系統的操作的流程圖。 Fig. 1 schematically shows a radiation detector according to an embodiment. Fig. 2 schematically shows a simplified cross-sectional view of a radiation detector according to an embodiment. Fig. 3 schematically shows a detailed cross-sectional view of a radiation detector according to an embodiment. Fig. 4 schematically shows a detailed cross-sectional view of a radiation detector according to an alternative embodiment. Fig. 5 schematically shows an imaging system including an image sensor according to an embodiment. Figure 6 shows a flowchart outlining the operation of the imaging system.

100.1:輻射檢測器 100.1: Radiation detectors

110.1,110.5:輻射吸收層 110.1, 110.5: Radiation absorbing layer

120.1,120.5:電子器件層 120.1, 120.5: Electronic device layer

120w,515w:厚度 120w, 515w: thickness

150(3,5),150(4,1),150(4,4)-150(4,7):感測元件 150(3,5), 150(4,1), 150(4,4)-150(4,7): sensing element

500:成像系統 500: imaging system

510:圖像感測器 510: image sensor

515,515.1,515.5:准直器區域 515, 515.1, 515.5: Collimator area

519:參考直線 519: Reference line

520:電腦 520: computer

530:輻射源 530: Radiation source

532:輻射束 532: Radiation Beam

540:物體 540: object

Claims (22)

一種成像系統,包括圖像感測器,所述圖像感測器包括: M個輻射檢測器的堆疊,每個所述輻射檢測器包括(A)輻射吸收層和(B)被配置為處理在所述輻射吸收層中產生的電信號的電子器件層,M為大於1的整數;以及 分別用於所述M個輻射檢測器的M個電子器件層的M個准直器區域, 其中,存在用於所述圖像感測器的參考直線,使得對於所述M個電子器件層中的每個電子器件層,與所述每個電子器件層相交且平行於所述參考直線的每條直線與對應的准直器區域相交,並且 其中,對於所述M個輻射吸收層中的每個輻射吸收層,與所述每個輻射吸收層相交且平行於所述參考直線的每條直線不與所述M個准直器區域的任何准直器區域相交。 An imaging system includes an image sensor, the image sensor includes: A stack of M radiation detectors, each of said radiation detectors comprising (A) a radiation absorbing layer and (B) an electronics layer configured to process electrical signals generated in said radiation absorbing layer, M being greater than 1 an integer of ; and M collimator regions for the M electronics layers of the M radiation detectors, respectively, Wherein, there is a reference straight line for the image sensor, so that for each electronic device layer in the M electronic device layers, the Each line intersects the corresponding collimator region, and Wherein, for each radiation-absorbing layer in the M radiation-absorbing layers, each straight line that intersects each radiation-absorbing layer and is parallel to the reference straight line does not collide with any of the M collimator regions. Collimator regions intersect. 如請求項1所述的成像系統,其中所述M個准直器區域分別位於所述M個電子器件層上並與所述M個電子器件層直接物理接觸。The imaging system according to claim 1, wherein the M collimator regions are respectively located on the M electronic device layers and are in direct physical contact with the M electronic device layers. 如請求項1所述的成像系統,還包括: 輻射源,其中所述M個准直器區域中的每個准直器區域相對於所述輻射源完全遮蔽對應的電子器件層。 The imaging system as described in claim 1, further comprising: A radiation source, wherein each of the M collimator regions completely shields a corresponding electronics layer with respect to the radiation source. 如請求項1所述的成像系統,其中所述M個准直器區域中的每個准直器區域具有板的形狀,所述板的厚度與所述對應的電子器件層的厚度相同。The imaging system of claim 1, wherein each of the M collimator regions has a shape of a plate having the same thickness as the corresponding electronics layer. 如請求項1所述的成像系統,其中所述M個輻射吸收層和所述M個電子器件層以交替方式佈置。The imaging system of claim 1, wherein the M radiation absorbing layers and the M electronic device layers are arranged in an alternating manner. 如請求項1所述的成像系統,其中所述M個准直器區域包含鎢。The imaging system of claim 1, wherein the M collimator regions comprise tungsten. 如請求項1所述的成像系統, 其中,對於所述M個輻射檢測器中的每個輻射檢測器,所述每個輻射檢測器的所述輻射吸收層被配置為響應於入射X射線光子產生電信號,並且 其中,所述每個輻射檢測器的所述電子器件層被配置為處理產生的電信號。 The imaging system of claim 1, wherein, for each of the M radiation detectors, the radiation absorbing layer of each radiation detector is configured to generate an electrical signal in response to incident X-ray photons, and Wherein, the electronics layer of each radiation detector is configured to process generated electrical signals. 如請求項1所述的成像系統, 其中,所述M個輻射吸收層中的每個輻射吸收層包括佈置在多個感測元件列中的多個感測元件, 其中,對於所述M個輻射吸收層中的每個輻射吸收層的每個感測元件列,所述成像系統被配置為將所述每個感測元件列中的電壓超過預定閾值電壓的感測元件的最終電壓相加,並且 其中,平行於所述參考直線的直線與所述每個感測元件列的所有感測元件都相交。 The imaging system of claim 1, Wherein, each radiation absorbing layer in the M radiation absorbing layers includes a plurality of sensing elements arranged in a plurality of sensing element columns, Wherein, for each sensing element column of each radiation absorbing layer in the M radiation absorbing layers, the imaging system is configured to sense the voltage in each sensing element column exceeding a predetermined threshold voltage. The final voltage of the measured element is summed, and Wherein, a straight line parallel to the reference straight line intersects all sensing elements in each sensing element column. 如請求項8所述的成像系統, 其中,對所述每個感測元件列中的最終電壓超過所述每個感測元件列中的第二感測元件的最終電壓至少預定電壓容差值的第一感測元件不進行所述最終電壓的所述相加, 其中,所述第一感測元件與所述第二感測元件相鄰,並且 其中,所述第二感測元件位於所述第一感測元件與所述M個准直器區域之間。 The imaging system of claim 8, Wherein, the first sensing element whose final voltage in each sensing element column exceeds the final voltage of the second sensing element in each sensing element column by at least a predetermined voltage tolerance value does not perform the above-mentioned step. The summation of the final voltage, wherein the first sensing element is adjacent to the second sensing element, and Wherein, the second sensing element is located between the first sensing element and the M collimator regions. 如請求項8所述的成像系統, 其中,對所述每個感測元件列中的最終電壓超過相鄰感測元件列的第二感測元件的最終電壓至少預定電壓容差值的第一感測元件不進行所述最終電壓的所述相加,並且 其中,垂直於所述參考直線的直線與所述第一感測元件和所述第二感測元件都相交。 The imaging system of claim 8, Wherein, for the first sensing element whose final voltage in each sensing element column exceeds the final voltage of the second sensing element of the adjacent sensing element column by at least a predetermined voltage tolerance value, the final voltage measurement is not performed. the addition, and Wherein, a straight line perpendicular to the reference straight line intersects both the first sensing element and the second sensing element. 如請求項1所述的成像系統, 其中,所述M個輻射吸收層中的每個輻射吸收層包括佈置在多個感測元件列中的多個感測元件, 其中,所述圖像感測器的所述感測元件列佈置在相鄰感測元件列的多個感測元件列組中, 其中,對於所述圖像感測器的每個感測元件列組,所述成像系統被配置為將所述每個感測元件列組中的電壓超過預定閾值電壓的感測元件的最終電壓相加, 其中,所述每個感測元件列組包括N個感測元件列,N為大於1的整數,並且 其中,對於所述每個感測元件列組中的每個感測元件列,平行於所述參考直線的直線與所述每個感測元件列中的所有感測元件都相交。 The imaging system of claim 1, Wherein, each radiation absorbing layer in the M radiation absorbing layers includes a plurality of sensing elements arranged in a plurality of sensing element columns, Wherein, the sensing element columns of the image sensor are arranged in a plurality of sensing element column groups of adjacent sensing element columns, Wherein, for each sensing element column group of the image sensor, the imaging system is configured to calculate the final voltage of the sensing element whose voltage in each sensing element column group exceeds a predetermined threshold voltage add up, Wherein, each sensing element column group includes N sensing element columns, N is an integer greater than 1, and Wherein, for each sensing element row in each sensing element row group, a straight line parallel to the reference straight line intersects all sensing elements in each sensing element row. 一種方法,包括: 利用成像系統的圖像感測器接收入射輻射,所述圖像感測器包括: M個輻射檢測器的堆疊,每個所述輻射檢測器包括(A)輻射吸收層和(B)被配置為處理在所述輻射吸收層中產生的電信號的電子器件層,M為大於1的整數;以及 分別用於所述M個輻射檢測器的M個電子器件層的M個准直器區域, 其中,存在用於所述圖像感測器的參考直線,使得對於所述M個電子器件層中的每個電子器件層,與所述每個電子器件層相交且平行於所述參考直線的每條直線與對應的准直器區域相交,並且 其中,對於所述M個輻射吸收層中的每個輻射吸收層,與所述每個輻射吸收層相交且平行於所述參考直線的每條直線不與所述M個准直器區域的任何准直器區域相交。 A method comprising: The incident radiation is received with an image sensor of the imaging system, the image sensor comprising: A stack of M radiation detectors, each of said radiation detectors comprising (A) a radiation absorbing layer and (B) an electronics layer configured to process electrical signals generated in said radiation absorbing layer, M being greater than 1 an integer of ; and M collimator regions for the M electronics layers of the M radiation detectors, respectively, Wherein, there is a reference straight line for the image sensor, so that for each electronic device layer in the M electronic device layers, the Each line intersects the corresponding collimator region, and Wherein, for each radiation-absorbing layer in the M radiation-absorbing layers, each straight line that intersects each radiation-absorbing layer and is parallel to the reference straight line does not collide with any of the M collimator regions. Collimator regions intersect. 如請求項12所述的方法,其中所述M個准直器區域分別位於所述M個電子器件層上並與所述M個電子器件層直接物理接觸。The method according to claim 12, wherein the M collimator regions are respectively located on the M electronic device layers and are in direct physical contact with the M electronic device layers. 如請求項12所述的方法,其中所述M個准直器區域中的每個准直器區域相對於同一輻射源完全遮蔽對應的電子器件層。The method of claim 12, wherein each of the M collimator regions completely shields the corresponding electronics layer from the same radiation source. 如請求項12所述的方法,其中所述M個准直器區域中的每個准直器區域具有板的形狀,所述板的厚度與所述對應的電子器件層的厚度相同。The method of claim 12, wherein each of the M collimator regions has the shape of a plate having the same thickness as the corresponding electronics layer. 如請求項12所述的方法,其中所述M個輻射吸收層和所述M個電子器件層以交替方式佈置。The method of claim 12, wherein the M radiation absorbing layers and the M electronic device layers are arranged in an alternating manner. 如請求項12所述的方法,其中所述M個准直器區域包含鎢。The method of claim 12, wherein the M collimator regions comprise tungsten. 如請求項12所述的方法, 其中,對於所述M個輻射檢測器中的每個輻射檢測器,所述每個輻射檢測器的所述輻射吸收層被配置為響應於入射X射線光子產生電信號,並且 其中,所述每個輻射檢測器的所述電子器件層被配置為處理產生的電信號。 The method of claim 12, wherein, for each of the M radiation detectors, the radiation absorbing layer of each radiation detector is configured to generate an electrical signal in response to incident X-ray photons, and Wherein, the electronics layer of each radiation detector is configured to process generated electrical signals. 如請求項12所述的方法, 其中,所述M個輻射吸收層中的每個輻射吸收層包括佈置在多個感測元件列中的多個感測元件, 其中,所述方法還包括:對於所述M個輻射吸收層中的每個輻射吸收層的每個感測元件列,利用所述成像系統將所述每個感測元件列中的電壓超過預定閾值電壓的感測元件的最終電壓相加,並且 其中,平行於所述參考直線的直線與所述每個感測元件列的所有感測元件都相交。 The method of claim 12, Wherein, each radiation absorbing layer in the M radiation absorbing layers includes a plurality of sensing elements arranged in a plurality of sensing element columns, Wherein, the method further includes: for each sensing element column of each radiation absorbing layer in the M radiation absorbing layers, using the imaging system to increase the voltage in each sensing element column beyond a predetermined threshold voltage is summed to the final voltage of the sense element, and Wherein, a straight line parallel to the reference straight line intersects all sensing elements in each sensing element column. 如請求項19所述的方法, 其中,對所述每個感測元件列中的最終電壓超過所述每個感測元件列中的第二感測元件的最終電壓至少預定電壓容差值的第一感測元件不進行所述最終電壓的所述相加, 其中,所述第一感測元件與所述第二感測元件相鄰,並且 其中,所述第二感測元件位於所述第一感測元件與所述M個准直器區域之間。 The method of claim 19, Wherein, the first sensing element whose final voltage in each sensing element column exceeds the final voltage of the second sensing element in each sensing element column by at least a predetermined voltage tolerance value does not perform the above-mentioned step. The summation of the final voltage, wherein the first sensing element is adjacent to the second sensing element, and Wherein, the second sensing element is located between the first sensing element and the M collimator regions. 如請求項19所述的方法, 其中,對所述每個感測元件列中的最終電壓超過相鄰感測元件列的第二感測元件的最終電壓至少預定電壓容差值的第一感測元件不進行所述最終電壓的所述相加,並且 其中,垂直於所述參考直線的直線與所述第一感測元件和所述第二感測元件都相交。 The method of claim 19, Wherein, for the first sensing element whose final voltage in each sensing element column exceeds the final voltage of the second sensing element of the adjacent sensing element column by at least a predetermined voltage tolerance value, the final voltage measurement is not performed. the addition, and Wherein, a straight line perpendicular to the reference straight line intersects both the first sensing element and the second sensing element. 如請求項12所述的方法, 其中,所述M個輻射吸收層中的每個輻射吸收層包括佈置在多個感測元件列中的多個感測元件, 其中,所述圖像感測器的所述感測元件列佈置在相鄰感測元件列的多個感測元件列組中, 其中,所述方法還包括:對於所述圖像感測器的每個感測元件列組,利用所述成像系統將所述每個感測元件列組中的電壓超過預定閾值電壓的感測元件的最終電壓相加, 其中,所述每個感測元件列組包括N個感測元件列,N為大於1的整數,並且 其中,對於所述每個感測元件列組中的每個感測元件列,平行於所述參考直線的直線與所述每個感測元件列中的所有感測元件都相交。 The method of claim 12, Wherein, each radiation absorbing layer in the M radiation absorbing layers includes a plurality of sensing elements arranged in a plurality of sensing element columns, Wherein, the sensing element columns of the image sensor are arranged in a plurality of sensing element column groups of adjacent sensing element columns, Wherein, the method further includes: for each sensing element column group of the image sensor, using the imaging system to detect the voltage in each sensing element column group exceeding a predetermined threshold voltage The final voltage of the elements is summed, Wherein, each sensing element column group includes N sensing element columns, N is an integer greater than 1, and Wherein, for each sensing element row in each sensing element row group, a straight line parallel to the reference straight line intersects all sensing elements in each sensing element row.
TW111137643A 2021-11-16 2022-10-04 Image sensors with shielded electronics layers TW202321735A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/130782 WO2023087123A1 (en) 2021-11-16 2021-11-16 Image sensors with shielded electronics layers
WOPCT/CN2021/130782 2021-11-16

Publications (1)

Publication Number Publication Date
TW202321735A true TW202321735A (en) 2023-06-01

Family

ID=86396088

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111137643A TW202321735A (en) 2021-11-16 2022-10-04 Image sensors with shielded electronics layers

Country Status (3)

Country Link
CN (1) CN118215861A (en)
TW (1) TW202321735A (en)
WO (1) WO2023087123A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101002109B (en) * 2004-08-12 2011-02-09 皇家飞利浦电子股份有限公司 Anti-scatter-grid for a radiation detector
RU2445647C2 (en) * 2006-11-17 2012-03-20 Конинклейке Филипс Электроникс Н.В. Radiation detector with multiple electrodes on sensitive layer
CN110398769B (en) * 2008-06-16 2024-03-22 皇家飞利浦电子股份有限公司 Radiation detector and method of manufacturing a radiation detector
EP3320372B1 (en) * 2015-07-09 2020-04-08 Koninklijke Philips N.V. Device and method for simultaneous x-ray and gamma photon imaging with a stacked detector
JP6574530B2 (en) * 2016-03-08 2019-09-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Combined X-ray and nuclear radiation imaging
WO2018133093A1 (en) * 2017-01-23 2018-07-26 Shenzhen Xpectvision Technology Co., Ltd. Methods of making semiconductor x-ray detector
US10191162B2 (en) * 2017-05-05 2019-01-29 Prismatic Sensors Ab Radiation hard silicon detectors for x-ray imaging

Also Published As

Publication number Publication date
WO2023087123A1 (en) 2023-05-25
CN118215861A (en) 2024-06-18

Similar Documents

Publication Publication Date Title
TW202321735A (en) Image sensors with shielded electronics layers
WO2023015564A1 (en) Determination of photon origination points using radiation detectors
TWI842206B (en) Imaging systems with image sensors for side radiation incidence during imaging and method of using the same
WO2024044925A1 (en) Side incidence image sensors with protruding integrated circuit chips
WO2023123161A1 (en) Imaging systems with image sensors for side radiation incidence during imaging
WO2024031301A1 (en) Imaging systems and corresponding operation methods
WO2023122921A1 (en) Image sensors with small and thin integrated circuit chips
TWI831514B (en) Imaging methods using bi-directional counters
TWI802283B (en) Imaging systems
TWI822069B (en) Battery roll testing method with imaging systems
WO2024031595A1 (en) Radiation detecting systems with measurement results adjusted according to radiation source intensities
US11882378B2 (en) Imaging methods using multiple radiation beams
WO2023123301A1 (en) Imaging systems with rotating image sensors
WO2024007285A1 (en) Scanning of objects with radiation detectors
US11904187B2 (en) Imaging methods using multiple radiation beams
TWI814258B (en) Imaging methods using radiation detectors
WO2023173387A1 (en) Radiation detectors including perovskite
CN112955787B (en) Radiation detector
WO2023039701A1 (en) 3d (3-dimensional) printing with void filling
WO2023115516A1 (en) Imaging systems and methods of operation
WO2023141911A1 (en) Method and system for performing diffractometry
TW202228278A (en) Imaging method and imaging system
TW202338319A (en) Flow cytometry systems and operation method thereof