TW202307463A - Method of determination of photon origination points using radiation detectors and radiation sensing system - Google Patents

Method of determination of photon origination points using radiation detectors and radiation sensing system Download PDF

Info

Publication number
TW202307463A
TW202307463A TW111125649A TW111125649A TW202307463A TW 202307463 A TW202307463 A TW 202307463A TW 111125649 A TW111125649 A TW 111125649A TW 111125649 A TW111125649 A TW 111125649A TW 202307463 A TW202307463 A TW 202307463A
Authority
TW
Taiwan
Prior art keywords
radiation
photon
radiation absorbing
sensing element
sensing
Prior art date
Application number
TW111125649A
Other languages
Chinese (zh)
Inventor
曹培炎
劉雨潤
Original Assignee
大陸商深圳幀觀德芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商深圳幀觀德芯科技有限公司 filed Critical 大陸商深圳幀觀德芯科技有限公司
Publication of TW202307463A publication Critical patent/TW202307463A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Disclosed herein is a method, comprising: receiving, with a first radiation sensor, a first photon from an object, the first radiation sensor comprising M sensing element groups, wherein each sensing element group of the M sensing element groups comprises multiple sensing elements, and wherein M is an integer greater than 1; determining a first subset of the M sensing element groups based on electrical signals in the M sensing element groups of the first radiation sensor; and determining a first estimated path of the first photon based on positions of the sensing element groups in the first subset.

Description

使用輻射探測器確定光子起源點的方法及輻射感測系統Method and radiation sensing system for determining point of origin of photons using radiation detector

本發明是有關於一種使用輻射探測器確定光子起源點的方法及輻射感測系統。The invention relates to a method and a radiation sensing system for determining the point of origin of a photon using a radiation detector.

輻射檢測器是一種測量輻射性質的裝置。性質的示例可以包括輻射的強度、相位和偏振的空間分佈。由輻射檢測器測量的輻射可以是已經透射穿過物體的輻射。由輻射檢測器測量的輻射可以是電磁輻射,例如紅外光、可見光、紫外光、X射線或γ射線。輻射也可以是其它類型,例如α射線和β射線。成像系統可以包括一個或多個圖像感測器,每個圖像感測器可以具有一個或多個輻射檢測器。A radiation detector is a device that measures the properties of radiation. Examples of properties may include the spatial distribution of the intensity, phase and polarization of the radiation. The radiation measured by the radiation detector may be radiation that has been transmitted through the object. The radiation measured by the radiation detector may be electromagnetic radiation, such as infrared light, visible light, ultraviolet light, X-rays or gamma rays. Radiation can also be of other types, such as alpha and beta rays. An imaging system may include one or more image sensors, each of which may have one or more radiation detectors.

本文公開了一種方法,所述方法包括:使用第一輻射感測器接收來自物體的第一光子,所述第一輻射感測器包括M個感測元件組,其中,所述M個感測元件組中的每個感測元件組包括多個感測元件,並且其中,M是大於1的整數;基於所述第一輻射感測器的M個感測元件組中的電信號確定所述M個感測元件組的第一子集;以及基於所述第一子集中的感測元件組的位置確定所述第一光子的第一估計路徑。A method is disclosed herein, the method comprising: using a first radiation sensor to receive a first photon from an object, the first radiation sensor comprising M sensing element groups, wherein the M sensing element groups Each sensing element group in the element group includes a plurality of sensing elements, and wherein M is an integer greater than 1; the determination of the A first subset of M sensing element groups; and determining a first estimated path of the first photon based on the positions of the sensing element groups in the first subset.

在一方面,所述確定所述第一子集包括識別具有光子存在信號的所述M個感測元件組中的感測元件組。In an aspect, said determining said first subset includes identifying a set of sensing elements of said sets of M sensing elements having a photon presence signal.

在一方面,所述識別包括:確定所述第一輻射感測器的每個感測元件的專用電極的電壓;以及組合所述M個感測元件組的每個感測元件組的所述多個感測元件的專用電極的電壓,從而得到所述每個感測元件組的組電壓,其中,感測元件組中的所述光子存在信號是所述感測元件組的組電壓超過預定的閾值電壓的事件。In an aspect, said identifying comprises: determining a voltage of a dedicated electrode of each sensing element of said first radiation sensor; and combining said The voltage of the dedicated electrode of a plurality of sensing elements, thereby obtaining the group voltage of each sensing element group, wherein the photon presence signal in the sensing element group is that the group voltage of the sensing element group exceeds a predetermined threshold voltage events.

在一方面,所述M個感測元件組中的每個感測元件組的所述多個感測元件的專用電極使用金屬線電連接到組節點,並且其中,感測元件組中的所述光子存在信號是所述感測元件組的組節點的電壓超過預定的閾值電壓的事件。In one aspect, the dedicated electrodes of the plurality of sensing elements of each sensing element group in the M sensing element groups are electrically connected to the group node using metal wires, and wherein all the sensing element groups in the sensing element group The photon presence signal is an event that a voltage of a group node of the sensing element group exceeds a predetermined threshold voltage.

在一方面,所述確定所述第一子集還包括基於所述第一子集中的感測元件組中的光子存在信號之間的時間關係,從所述第一子集中排除感測元件組。In an aspect, said determining said first subset further comprises excluding a set of sensing elements from said first subset based on a temporal relationship between photon presence signals in sets of sensing elements in said first subset .

在一方面,所述時間關係是所述第一子集中的感測元件組中的光子存在信號的時間順序。In an aspect, the temporal relationship is a temporal order of the photon presence signals in the sets of sensing elements in the first subset.

在一方面,所述第一光子在所述第一輻射感測器內部發生散射。In one aspect, the first photons are scattered within the first radiation sensor.

在一方面,所述第一光子的所述第一估計路徑包括在所述第一輻射感測器外部的部分。In an aspect, the first estimated path of the first photon includes a portion external to the first radiation sensor.

在一方面,所述M個感測元件組的感測元件位於所述輻射感測器的多個輻射吸收層中。In one aspect, the sensing elements of the M sensing element groups are located in a plurality of radiation absorbing layers of the radiation sensor.

在一方面,對所述第一光子不透明的層將所述多個輻射吸收層中的任意兩個相鄰的輻射吸收層分開。In one aspect, the first photon-opaque layer separates any two adjacent radiation absorbing layers of the plurality of radiation absorbing layers.

在一方面,所述第一光子是伽馬射線光子或X射線光子。In one aspect, the first photon is a gamma ray photon or an X-ray photon.

在一方面,所有所述M個感測元件組都具有相同數量的感測元件。In one aspect, all of the M sensing element groups have the same number of sensing elements.

在一方面,所述方法包括:使用第二輻射感測器接收來自物體的第二光子,所述第二輻射感測器包括N個感測元件組,其中,所述N個感測元件組中的每個感測元件組包括多個感測元件,並且其中,N是大於1的整數;基於所述第二輻射感測器的感測元件組中的電信號確定所述N個感測元件組的第二子集;以及基於所述第二子集中的感測元件組的位置確定所述第二光子的第二估計路徑。In one aspect, the method includes receiving second photons from an object using a second radiation sensor, the second radiation sensor comprising N sets of sensing elements, wherein the N sets of sensing elements Each sensing element group in includes a plurality of sensing elements, and wherein, N is an integer greater than 1; the N sensing elements are determined based on electrical signals in the sensing element groups of the second radiation sensor a second subset of sets of elements; and determining a second estimated path of the second photon based on the positions of the sets of sensing elements in the second subset.

在一方面,所述方法還包括基於所述第一估計路徑和所述第二估計路徑確定所述第一光子和所述第二光子的光子起源點的位置。In an aspect, the method further includes determining a location of a photon origin point of the first photon and the second photon based on the first estimated path and the second estimated path.

在一方面,所述方法還包括使所述第一輻射感測器和所述第二輻射感測器圍繞所述物體旋轉,同時保持所述第一輻射感測器和所述第二輻射感測器相對於彼此保持靜止。In one aspect, the method further includes rotating the first radiation sensor and the second radiation sensor around the object while maintaining the first radiation sensor and the second radiation sensor The detectors remain stationary relative to each other.

在一方面,所述方法還包括:使用所述第一輻射感測器接收來自所述物體的第二光子;基於所述第一輻射感測器的感測元件組中的電信號確定所述M個感測元件組的第二子集;以及,基於所述感測元件組在所述第二子集中的位置,確定所述第二光子的第二估計路徑。In an aspect, the method further includes: receiving second photons from the object using the first radiation sensor; determining the A second subset of M sets of sensing elements; and, based on a position of the set of sensing elements in the second subset, determining a second estimated path of the second photon.

在一方面,所述方法還包括基於所述第一估計路徑和所述第二估計路徑確定所述第一光子和所述第二光子的光子起源點的位置。In an aspect, the method further includes determining a location of a photon origin point of the first photon and the second photon based on the first estimated path and the second estimated path.

在一方面,所述確定所述第一光子的第一估計路徑包括:確定通過所述第一子集中的感測元件組的最佳擬合直線,從而得到所述第一估計路徑。In one aspect, the determining the first estimated path of the first photon comprises: determining a best-fit straight line passing through the sensing element groups in the first subset, so as to obtain the first estimated path.

在一方面,所述第一輻射感測器包括P個信號處理晶片和2P個輻射吸收層的堆疊,P為大於1的整數,其中,所述P個信號處理晶片中的每一個專用於處理所述2P個輻射吸收層中的兩個相鄰輻射吸收層中的電信號,並且其中,至少一個所述P個信號處理晶片被夾在所述2P個輻射吸收層中的兩個輻射吸收層之間。In one aspect, the first radiation sensor comprises a stack of P signal processing dies and 2P radiation absorbing layers, P being an integer greater than 1, wherein each of the P signal processing dies is dedicated to processing electrical signals in two adjacent radiation absorbing layers of the 2P radiation absorbing layers, and wherein at least one of the P signal processing wafers is sandwiched between two radiation absorbing layers of the 2P radiation absorbing layers between.

在一方面,所述兩個輻射吸收層被所述2P個輻射吸收層中的另一個輻射吸收層分開。In an aspect, the two radiation absorbing layers are separated by another radiation absorbing layer of the 2P radiation absorbing layers.

在一方面,分離層被夾在所述2P個輻射吸收層的任意兩個相鄰輻射吸收層之間,並且其中,所述分離層被配置為阻擋伽馬射線和X射線。In an aspect, the separation layer is sandwiched between any two adjacent radiation absorbing layers of the 2P radiation absorbing layers, and wherein the separation layer is configured to block gamma rays and X-rays.

在一方面,所述第一輻射感測器包括(A)Q個輻射吸收層的堆疊,以及(B)用於Q個輻射吸收層中的每一個的多信號處理晶片,其中,用於所述Q個輻射吸收層的每個輻射吸收層的所述多信號處理晶片和所述每個輻射吸收層的所有感測元件的專用電極位於所述每個輻射吸收層的同一側表面上,並且其中,不存在(A)垂直於所述每個輻射吸收層的所述同一側表面並且(B)與用於所述每個輻射吸收層的信號處理晶片相交的直線與所述每個輻射吸收層的任意感測元件的任意專用電極相交。In one aspect, the first radiation sensor comprises (A) a stack of Q radiation absorbing layers, and (B) a multi-signal processing die for each of the Q radiation absorbing layers, wherein for all The multi-signal processing chip of each radiation absorbing layer of the Q radiation absorbing layers and the dedicated electrodes of all sensing elements of each radiation absorbing layer are located on the same side surface of each radiation absorbing layer, and Wherein, there is no straight line (A) perpendicular to the same side surface of each radiation absorbing layer and (B) intersecting the signal processing wafer for each radiation absorbing layer and each radiation absorbing layer Any dedicated electrode of any sensing element of the layer intersects.

在一方面,用於所述Q個輻射吸收層中的一輻射吸收層的所述多信號處理晶片中的多個信號處理晶片被物理地附接到支撐基板,並且其中,所述多個信號處理晶片被夾在所述支撐基板與輻射吸收層之間。In an aspect, a plurality of signal processing dies of the multiple signal processing dies for one of the Q radiation absorbing layers are physically attached to a support substrate, and wherein the plurality of signal processing dies are physically attached to a support substrate, and wherein the plurality of signal processing dies A handle wafer is sandwiched between the support substrate and the radiation absorbing layer.

在一方面,用於所述Q個輻射吸收層中的一輻射吸收層的所述多信號處理晶片位於所述Q個輻射吸收層中的相鄰輻射吸收層的凹部中。In an aspect, the multi-signal processing wafer for one of the Q radiation absorbing layers is located in the recess of an adjacent one of the Q radiation absorbing layers.

在一方面,用於所述Q個輻射吸收層中的一輻射吸收層的所述多信號處理晶片位於分離層的凹部中,並且其中,所述分離層被配置為阻擋伽馬射線和X射線。In an aspect, the multi-signal processing wafer for a radiation absorbing layer of the Q radiation absorbing layers is located in a recess of a separation layer, and wherein the separation layer is configured to block gamma rays and X-rays .

本文公開了一種系統,所述系統包括第一輻射感測器,所述第一輻射感測器被配置為接收來自物體的第一光子,其中,所述第一輻射感測器包括M個感測元件組,其中,所述M個感測元件組中的每個感測元件組包括多個感測元件,其中,M是大於1的整數,其中,所述系統被配置為基於所述第一輻射感測器的M個感測元件組中的電信號確定所述M個感測元件組的第一子集,並且其中,所述系統被配置為基於所述第一子集中的感測元件組的位置確定所述第一光子的第一估計路徑。Disclosed herein is a system comprising a first radiation sensor configured to receive a first photon from an object, wherein the first radiation sensor comprises M sensor sensing element groups, wherein each sensing element group in the M sensing element groups includes a plurality of sensing elements, wherein M is an integer greater than 1, wherein the system is configured based on the Electrical signals in M sets of sensing elements of a radiation sensor determine a first subset of the M sets of sensing elements, and wherein the system is configured to sense The position of the set of elements determines a first estimated path of the first photon.

在一方面,所述系統還包括第二輻射感測器,所述第二輻射感測器被配置為接收來自所述物體的第二光子,其中,所述第二輻射感測器包括N個感測元件組,其中,所述N個感測元件組中的每個感測元件組包括多個感測元件,其中,N是大於1的整數,其中,所述系統被配置為基於所述第二輻射感測器的感測元件組中的電信號確定所述N個感測元件組的第二子集,並且其中,基於所述系統被配置為基於所述第二子集中的感測元件組的位置確定所述第二光子的第二估計路徑。In one aspect, the system further includes a second radiation sensor configured to receive second photons from the object, wherein the second radiation sensor includes N Sensing element groups, wherein each of the N sensing element groups includes a plurality of sensing elements, wherein N is an integer greater than 1, wherein the system is configured based on the The electrical signals in the sensing element sets of the second radiation sensor determine a second subset of the N sensing element sets, and wherein based on the system being configured to sense The position of the set of elements determines a second estimated path of the second photon.

在一方面,所述系統被配置為基於所述第一估計路徑和所述第二估計路徑確定所述第一光子和所述第二光子的光子起源點的位置。In an aspect, the system is configured to determine a location of a photon origin point of the first photon and the second photon based on the first estimated path and the second estimated path.

在一方面,所述第一輻射感測器包括P個信號處理晶片和2P個輻射吸收層的堆疊,P為大於1的整數,其中,所述P個信號處理晶片中的每一個專用於處理所述2P個輻射吸收層中的兩個相鄰輻射吸收層中的電信號,並且其中,至少一個所述P個信號處理晶片被夾在所述2P個輻射吸收層中的兩個輻射吸收層之間。In one aspect, the first radiation sensor comprises a stack of P signal processing dies and 2P radiation absorbing layers, P being an integer greater than 1, wherein each of the P signal processing dies is dedicated to processing electrical signals in two adjacent radiation absorbing layers of the 2P radiation absorbing layers, and wherein at least one of the P signal processing wafers is sandwiched between two radiation absorbing layers of the 2P radiation absorbing layers between.

在一方面,所述兩個輻射吸收層被所述2P個輻射吸收層中的另一個輻射吸收層分開。In an aspect, the two radiation absorbing layers are separated by another radiation absorbing layer of the 2P radiation absorbing layers.

在一方面,分離層被夾在所述2P個輻射吸收層的任意兩個相鄰輻射吸收層之間,並且其中,所述分離層被配置為阻擋伽馬射線和X射線。In an aspect, the separation layer is sandwiched between any two adjacent radiation absorbing layers of the 2P radiation absorbing layers, and wherein the separation layer is configured to block gamma rays and X-rays.

在一方面,所述第一輻射感測器包括(A)Q個輻射吸收層的堆疊,以及(B)用於Q個輻射吸收層中的每一個的多信號處理晶片,其中,用於所述Q個輻射吸收層的每個輻射吸收層的所述多信號處理晶片和所述每個輻射吸收層的所有感測元件的專用電極位於所述每個輻射吸收層的同一側表面上,並且其中,不存在(A)垂直於所述每個輻射吸收層的所述同一側表面並且(B)與用於所述每個輻射吸收層的信號處理晶片相交的直線與所述每個輻射吸收層的任意感測元件的任意專用電極相交。In one aspect, the first radiation sensor comprises (A) a stack of Q radiation absorbing layers, and (B) a multi-signal processing die for each of the Q radiation absorbing layers, wherein for all The multi-signal processing chip of each radiation absorbing layer of the Q radiation absorbing layers and the dedicated electrodes of all sensing elements of each radiation absorbing layer are located on the same side surface of each radiation absorbing layer, and Wherein, there is no straight line (A) perpendicular to the same side surface of each radiation absorbing layer and (B) intersecting the signal processing wafer for each radiation absorbing layer and each radiation absorbing layer Any dedicated electrode of any sensing element of the layer intersects.

在一方面,用於所述Q個輻射吸收層中的一輻射吸收層的所述多信號處理晶片中的多個信號處理晶片被物理地附接到支撐基板,並且其中,所述多個信號處理晶片被夾在所述支撐基板與輻射吸收層之間。In an aspect, a plurality of signal processing dies of the multiple signal processing dies for one of the Q radiation absorbing layers are physically attached to a support substrate, and wherein the plurality of signal processing dies are physically attached to a support substrate, and wherein the plurality of signal processing dies A handle wafer is sandwiched between the support substrate and the radiation absorbing layer.

在一方面,用於所述Q個輻射吸收層中的一輻射吸收層的所述多信號處理晶片位於所述Q個輻射吸收層中的相鄰輻射吸收層的凹部中。In an aspect, the multi-signal processing wafer for one of the Q radiation absorbing layers is located in the recess of an adjacent one of the Q radiation absorbing layers.

在一方面,用於所述Q個輻射吸收層中的一輻射吸收層的所述多信號處理晶片位於分離層的凹部中,並且其中,所述分離層被配置為阻擋伽馬射線和X射線。In an aspect, the multi-signal processing wafer for a radiation absorbing layer of the Q radiation absorbing layers is located in a recess of a separation layer, and wherein the separation layer is configured to block gamma rays and X-rays .

輻射檢測器radiation detector

作為示例,圖1示意性地示出了輻射檢測器100。輻射檢測器100可以包括圖元150(也稱為感測元件150)陣列。該陣列可以是矩形陣列(如圖1所示)、蜂窩陣列、六邊形陣列或任何其它合適的陣列。圖1的示例中的圖元150陣列有4列7行;然而,通常,圖元150陣列可以具有任意數量的行和任意數量的列。As an example, FIG. 1 schematically shows a radiation detector 100 . Radiation detector 100 may include an array of picture elements 150 (also referred to as sensing elements 150 ). The array may be a rectangular array (as shown in Figure 1), a honeycomb array, a hexagonal array, or any other suitable array. The array of primitives 150 in the example of FIG. 1 has 4 columns and 7 rows; however, in general, the array of primitives 150 can have any number of rows and any number of columns.

每個圖元150可以被配置為檢測從輻射源(未示出)入射在其上的輻射,並且可以被配置為測量輻射的特性(例如,粒子的能量、波長和頻率)。輻射可以包括粒子,例如光子和亞原子粒子。每個圖元150可以被配置為在一段時間內對入射在其上的能量落在多個能量區間中的輻射粒子的數量進行計數。所有圖元150可以被配置為在同一段時間內對多個能量區間內的入射在其上的輻射粒子的數量進行計數。當入射輻射粒子具有相似能量時,圖元150可以簡單地被配置為在一段時間內對入射在其上的輻射粒子的數量進行計數,而不測量各個輻射粒子的能量。Each primitive 150 may be configured to detect radiation incident thereon from a radiation source (not shown), and may be configured to measure properties of the radiation (eg, energy, wavelength, and frequency of particles). Radiation can include particles such as photons and subatomic particles. Each primitive 150 may be configured to count, over a period of time, the number of radiation particles incident thereon whose energies fall within a plurality of energy intervals. All primitives 150 may be configured to count the number of radiation particles incident thereon in multiple energy intervals over the same period of time. When the incident radiation particles have similar energies, the primitive 150 may simply be configured to count the number of radiation particles incident thereon over a period of time without measuring the energy of the individual radiation particles.

每個圖元150可以具有其自己的類比數位轉換器(ADC),其被配置為將表示入射輻射粒子的能量的類比信號數位化為數位信號,或者將表示多個入射輻射粒子的總能量的類比信號數位化成數位信號。圖元150可以被配置為平行作業。例如,當一個圖元150測量入射輻射粒子時,另一個圖元150可以正在等待輻射粒子到達。圖元150可以不必是可單獨定址的。Each primitive 150 may have its own analog-to-digital converter (ADC) configured to digitize an analog signal representing the energy of an incident radiation particle into a digital signal, or convert an analog signal representing the total energy of a plurality of incident radiation particles to a digital signal. Analog signals are digitized into digital signals. Primitives 150 may be configured to work in parallel. For example, while one primitive 150 is measuring incident radiation particles, another primitive 150 may be waiting for the radiation particles to arrive. Primitives 150 may not necessarily be individually addressable.

這裡描述的輻射檢測器100可以應用於例如X射線望遠鏡、X射線乳房照相、工業X射線缺陷檢測、X射線顯微鏡或微射線照相、X射線鑄造檢查、X射線無損測試、X射線焊縫檢查、X射線數位減影血管造影等。使用該輻射檢測器100代替照相底板、照相膠片、PSP板、X射線圖像增強器、閃爍體或其它半導體X射線檢測器也可能是合適的。The radiation detector 100 described herein can be used in, for example, X-ray telescopes, X-ray mammography, industrial X-ray defect detection, X-ray microscopy or microradiography, X-ray casting inspection, X-ray non-destructive testing, X-ray weld inspection, X-ray digital subtraction angiography, etc. It may also be appropriate to use the radiation detector 100 in place of a photographic plate, photographic film, PSP plate, X-ray image intensifier, scintillator, or other semiconductor X-ray detector.

圖2示意性地示出了根據實施例的圖1的輻射檢測器100沿著線2-2的簡化剖視圖。具體地,輻射檢測器100可以包括輻射吸收層110和用於處理或分析入射輻射在輻射吸收層110中產生的電信號的電子器件層120(可以包括一個或多個ASIC(專用積體電路)或可程式設計邏輯器件)。輻射檢測器100可以包括或不包括閃爍體(未示出)。輻射吸收層110可以包含半導體材料,例如矽、鍺、GaAs、CdTe、CdZnTe或其組合。該半導體材料可以對關注的輻射具有高質量衰減係數。Figure 2 schematically illustrates a simplified cross-sectional view of the radiation detector 100 of Figure 1 along line 2-2, according to an embodiment. Specifically, the radiation detector 100 may include a radiation absorbing layer 110 and an electronics layer 120 (which may include one or more ASICs (Application Specific Integrated Circuits)) for processing or analyzing electrical signals generated in the radiation absorbing layer 110 by incident radiation. or programmable logic device). The radiation detector 100 may or may not include a scintillator (not shown). The radiation absorbing layer 110 may include semiconductor materials such as silicon, germanium, GaAs, CdTe, CdZnTe or combinations thereof. The semiconductor material may have a high mass attenuation coefficient for the radiation of interest.

作為示例,圖3示意性地示出了圖1的輻射檢測器100沿著線2-2的詳細剖視圖。具體地,輻射吸收層110可以包括由第一摻雜區111、第二摻雜區113的一個或多個離散區114形成的一個或多個二極體(例如,p-i-n或p-n)。第二摻雜區113可以通過可選的本徵區112與第一摻雜區111分離。離散區114可以通過第一摻雜區111或本徵區112彼此分離。第一摻雜區111和第二摻雜區113可以具有相反類型的摻雜(例如,區域111是p型,區域113是n型,或者,區域111是n型,區域113是p型)。在圖3的示例中,第二摻雜區113的每個離散區114與第一摻雜區111和可選的本徵區112形成二極體。即,在圖3的示例中,輻射吸收層110具有多個二極體(更具體地,7個二極體對應於圖1的陣列中一列的7個圖元150,為了簡單起見,圖3中僅標記了其中的兩個圖元150)。多個二極體可以具有作為共用(公共)電極的電極119A。第一摻雜區111還可以具有離散部分。As an example, FIG. 3 schematically shows a detailed cross-sectional view of the radiation detector 100 of FIG. 1 along line 2-2. Specifically, the radiation absorbing layer 110 may include one or more diodes (eg, p-i-n or p-n) formed by the first doped region 111 , one or more discrete regions 114 of the second doped region 113 . The second doped region 113 may be separated from the first doped region 111 by an optional intrinsic region 112 . The discrete regions 114 may be separated from each other by the first doped region 111 or the intrinsic region 112 . The first doped region 111 and the second doped region 113 may have opposite types of doping (eg, region 111 is p-type and region 113 is n-type, or region 111 is n-type and region 113 is p-type). In the example of FIG. 3 , each discrete region 114 of the second doped region 113 forms a diode with the first doped region 111 and optionally the intrinsic region 112 . That is, in the example of FIG. 3, the radiation absorbing layer 110 has a plurality of diodes (more specifically, 7 diodes correspond to 7 primitives 150 in a column in the array of FIG. 3, only two of them are marked 150). A plurality of diodes may have an electrode 119A as a common (common) electrode. The first doped region 111 may also have discrete portions.

電子器件層120可以包括適合於處理或解釋由入射在輻射吸收層110上的輻射產生的信號的電子系統121。電子系統121可以包括諸如濾波器網路、放大器、積分器和比較器之類的類比電路,或者諸如微處理器和記憶體之類的數位電路。電子系統121可以包括一個或多個ADC(類比數位轉換器)。電子系統121可以包括由圖元150共用的元件或專用於單個圖元150的元件。例如,電子系統121可以包括專用於每個圖元150的放大器和在所有圖元150之間共用的微處理器。電子系統121可以通過通孔131電連接到圖元150。通孔之間的空間可以使用填充材料130填充,這可以增加電子器件層120與輻射吸收層110的連接的機械穩定性。其它接合技術可以在不使用通孔131的情況下將電子系統121連接到圖元150。The electronics layer 120 may include an electronic system 121 suitable for processing or interpreting signals generated by radiation incident on the radiation absorbing layer 110 . Electronic system 121 may include analog circuits such as filter networks, amplifiers, integrators, and comparators, or digital circuits such as microprocessors and memory. Electronic system 121 may include one or more ADCs (analog-to-digital converters). Electronic system 121 may include elements shared by primitives 150 or elements specific to a single primitive 150 . For example, electronic system 121 may include an amplifier dedicated to each picture element 150 and a microprocessor shared among all picture elements 150 . Electronic system 121 may be electrically connected to graphics element 150 through via 131 . The spaces between the via holes may be filled with a filling material 130 , which may increase the mechanical stability of the connection of the electronic device layer 120 to the radiation absorbing layer 110 . Other bonding techniques may connect electronics 121 to primitive 150 without using vias 131 .

當來自輻射源(未示出)的輻射撞擊包括二極體的輻射吸收層110時,輻射粒子可被吸收並通過多種機制產生一個或多個電荷載流子(例如,電子、電洞)。電荷載流子可以在電場下漂移到二極體之一的電極。該電場可以是外部電場。電極119B可以包括離散部分,每個離散部分與離散區114電接觸。術語“電觸點”可以與詞“電極”互換使用。電極119B也可以被稱為專用電極119B,因為它專用於圖元150。在實施例中,電荷載流子可以在各方向上漂移,使得由單個輻射粒子產生的電荷載流子基本上不被兩個不同的離散區114共用(這裡“基本上不被......共用”意指相比於其餘的電荷載流子,這些電荷載流子中的小於2%,小於0.5%,小於0.1%或小於0.01%的電荷載流子流向一個不同的離散區114)。由入射在這些離散區114之一的覆蓋區周圍的輻射粒子產生的電荷載流子基本上不與這些離散區114中的另一個共用。與離散區114相關聯的圖元150可以是離散區114周圍的區域,其中由入射到其中的輻射粒子產生的基本上全部(大於98%,大於99.5%,大於99.9%,或大於99.99%)的電荷載流子流向離散區114。即,這些電荷載流子中的小於2%、小於1%、小於0.1%或小於0.01%的電荷載流子流過圖元150。When radiation from a radiation source (not shown) strikes the radiation absorbing layer 110 comprising diodes, radiation particles may be absorbed and generate one or more charge carriers (eg, electrons, holes) through a variety of mechanisms. Charge carriers can drift to the electrodes of one of the diodes under the electric field. The electric field may be an external electric field. Electrode 119B may include discrete portions, each discrete portion being in electrical contact with discrete region 114 . The term "electrical contact" may be used interchangeably with the word "electrode". Electrode 119B may also be referred to as dedicated electrode 119B because it is dedicated to picture element 150 . In an embodiment, the charge carriers may drift in all directions such that charge carriers generated by a single radiation particle are not substantially shared by two distinct discrete regions 114 (herein "substantially not shared by...  ..shared means that less than 2%, less than 0.5%, less than 0.1%, or less than 0.01% of these charge carriers flow to a different discrete region 114 compared to the rest of the charge carriers ). Charge carriers generated by radiation particles incident around the footprint of one of the discrete regions 114 are substantially not shared with the other of the discrete regions 114 . The primitives 150 associated with the discrete region 114 may be the area surrounding the discrete region 114 in which substantially all (greater than 98%, greater than 99.5%, greater than 99.9%, or greater than 99.99%) of the The charge carriers flow to the discrete regions 114 . That is, less than 2%, less than 1%, less than 0.1%, or less than 0.01% of these charge carriers flow through the primitive 150 .

圖4示意性地示出了根據可替換實施例的圖1的輻射檢測器100沿著線2-2的詳細剖視圖。更具體地,輻射吸收層110可以包含諸如矽、鍺、GaAs、CdTe、CdZnTe或其組合之類的半導體材料的電阻器,但不包括二極體。該半導體材料可以對關注的輻射具有高質量衰減係數。在實施例中,圖4的電子器件層120在結構和功能方面類似於圖3的電子器件層120。Figure 4 schematically illustrates a detailed cross-sectional view of the radiation detector 100 of Figure 1 along line 2-2, according to an alternative embodiment. More specifically, the radiation absorbing layer 110 may include resistors of semiconductor materials such as silicon, germanium, GaAs, CdTe, CdZnTe, or combinations thereof, but not diodes. The semiconductor material may have a high mass attenuation coefficient for the radiation of interest. In an embodiment, the electronics layer 120 of FIG. 4 is similar in structure and function to the electronics layer 120 of FIG. 3 .

當輻射撞擊包括電阻器而不包括二極體的輻射吸收層110時,它可以被吸收並通過多種機制產生一個或多個電荷載流子。輻射粒子可以產生10至100000個電荷載流子。電荷載流子可以在電場下漂移到電極119A和119B。該電場可以是外部電場。電極119B可以包括離散部分。在實施例中,電荷載流子可以在各方向上漂移,使得由單個輻射粒子產生的電荷載流子基本上不被電極119B的兩個不同的離散部分共用(這裡“基本上不被......共用”意指相比於其餘的電荷載流子,這些電荷載流子中的小於2%,小於0.5%,小於0.1%或小於0.01%的電荷載流子流向一個不同的離散部分)。由入射在電極119B的這些離散部分之一的覆蓋區周圍的輻射粒子產生的電荷載流子基本上不與電極119B的這些離散部分中的另一個共用。與電極119B的離散部分相關聯的圖元150可以是離散部分周圍的區域,其中由入射到其中的輻射粒子產生的基本上全部(大於98%,大於99.5%,大於99.9%,或大於99.99%)的電荷載流子流向電極119B的離散部分。即,這些電荷載流子中的小於2%、小於0.5%、小於0.1%或小於0.01%的電荷載流子流過與電極119B的一個離散部分相關聯的圖元。When radiation strikes the radiation absorbing layer 110, which includes a resistor and does not include a diode, it can be absorbed and generate one or more charge carriers through a variety of mechanisms. Radiation particles can generate 10 to 100,000 charge carriers. Charge carriers can drift to electrodes 119A and 119B under the electric field. The electric field may be an external electric field. Electrode 119B may include discrete portions. In an embodiment, the charge carriers may drift in all directions such that the charge carriers generated by a single radiation particle are not substantially shared by two distinct discrete portions of the electrode 119B (herein "substantially not shared by .. ...shared"means that less than 2%, less than 0.5%, less than 0.1%, or less than 0.01% of these charge carriers flow to a different discrete part). Charge carriers generated by radiation particles incident around the footprint of one of the discrete portions of electrode 119B are not substantially shared with the other of the discrete portions of electrode 119B. A primitive 150 associated with a discrete portion of electrode 119B may be an area around the discrete portion in which substantially all (greater than 98%, greater than 99.5%, greater than 99.9%, or greater than 99.99%) of the ) charge carriers flow to discrete portions of electrode 119B. That is, less than 2%, less than 0.5%, less than 0.1%, or less than 0.01% of the charge carriers flow through the picture element associated with a discrete portion of electrode 119B.

輻射感測系統和輻射感測器Radiation Sensing Systems and Radiation Sensors

圖5示意性地示出了根據實施例的輻射感測系統500的透視圖。在實施例中,輻射感測系統500可以包括輻射感測器510。在實施例中,輻射感測器510可以包括如圖所示的12個輻射吸收層110和6個信號處理晶片122的堆疊。Fig. 5 schematically shows a perspective view of a radiation sensing system 500 according to an embodiment. In an embodiment, the radiation sensing system 500 may include a radiation sensor 510 . In an embodiment, radiation sensor 510 may include a stack of 12 radiation absorbing layers 110 and 6 signal processing dies 122 as shown.

在實施例中,每個信號處理晶片122在功能和結構方面可以類似於圖2至圖4的電子器件層120。例如,每個信號處理晶片122可以是ASIC晶片或可程式設計邏輯器件,用於處理和分析入射輻射在由信號處理晶片122服務的輻射吸收層110的感測元件150中產生的電信號。In an embodiment, each signal processing die 122 may be similar in function and structure to the electronics layer 120 of FIGS. 2-4 . For example, each signal processing die 122 may be an ASIC die or a programmable logic device for processing and analyzing electrical signals generated by incident radiation in sensing elements 150 of the radiation absorbing layer 110 served by the signal processing die 122 .

在實施例中,12個輻射吸收層110可以分成6對,每對具有兩個相鄰的輻射吸收層110。在實施例中,每對兩個相鄰的輻射吸收層110可以共用一信號處理晶片122。換句話說,共用的信號處理晶片122專用於處理和分析兩個相鄰輻射吸收層110的感測元件150中產生的電信號。In an embodiment, the 12 radiation absorbing layers 110 may be divided into 6 pairs, each pair having two adjacent radiation absorbing layers 110 . In an embodiment, each pair of two adjacent radiation absorbing layers 110 may share a signal processing chip 122 . In other words, the shared signal processing chip 122 is dedicated to processing and analyzing electrical signals generated in the sensing elements 150 of two adjacent radiation absorbing layers 110 .

例如,信號處理晶片122.1專用於處理和分析兩個相鄰輻射吸收層110.1a和110.1b中產生的電信號。換句話說,信號處理晶片122.1用於兩個輻射吸收層110.1a和110.1b。作為另一示例,信號處理晶片122.6用於兩個相鄰的輻射吸收層110.6a和110.6b。For example, the signal processing chip 122.1 is dedicated to processing and analyzing electrical signals generated in two adjacent radiation absorbing layers 110.1a and 110.1b. In other words, the signal processing die 122.1 is used for both radiation absorbing layers 110.1a and 110.1b. As another example, a signal processing die 122.6 is used for two adjacent radiation absorbing layers 110.6a and 110.6b.

在實施例中,大多數信號處理晶片122可以被夾在兩個輻射吸收層110之間。例如,信號處理晶片122.6被夾在輻射吸收層110.5b與110.6b之間。請注意,這兩個輻射吸收層110.5b和110.6b被輻射吸收層110.6a分開。In an embodiment, most of the signal processing die 122 may be sandwiched between two radiation absorbing layers 110 . For example, signal processing die 122.6 is sandwiched between radiation absorbing layers 110.5b and 110.6b. Note that the two radiation absorbing layers 110.5b and 110.6b are separated by the radiation absorbing layer 110.6a.

在實施例中,對於12個輻射吸收層110中的每一個,其專用電極119B位於其右側表面上,並且其公共電極119A位於其左側表面上。例如,輻射吸收層110.1a具有4×6=24個感測元件150,輻射吸收層110.1a的24個感測元件150的24個專用電極119B全部位於輻射吸收層110.1a的右側表面110s上。輻射吸收層110.1a的24個感測元件150的公共電極119A位於輻射吸收層110.1a的左側表面上,但為簡單起見未示出。In an embodiment, for each of the 12 radiation absorbing layers 110, its dedicated electrode 119B is located on its right side surface, and its common electrode 119A is located on its left side surface. For example, the radiation absorbing layer 110.1a has 4×6=24 sensing elements 150, and the 24 dedicated electrodes 119B of the 24 sensing elements 150 of the radiation absorbing layer 110.1a are all located on the right side surface 110s of the radiation absorbing layer 110.1a. The common electrode 119A of the 24 sensing elements 150 of the radiation absorbing layer 110.1a is located on the left side surface of the radiation absorbing layer 110.1a, but is not shown for simplicity.

在實施例中,將輻射吸收層110.1a和110.1b兩者的感測元件150電連接到相關聯的信號處理晶片122.1的傳輸線(未示出)在輻射吸收層110.1b的右側表面上延伸。在實施例中,在其他對的輻射吸收層110中的傳輸線及其相關聯的信號處理晶片122的佈置可以是相似的。In an embodiment, transmission lines (not shown) electrically connecting the sensing elements 150 of both radiation absorbing layers 110.1a and 110.1b to the associated signal processing die 122.1 run on the right side surface of the radiation absorbing layer 110.1b. In embodiments, the arrangement of the transmission lines and their associated signal processing dies 122 in the other pairs of radiation absorbing layers 110 may be similar.

在實施例中,輻射感測器510的感測元件150可分成感測元件組152,每個感測元件組可以具有多個感測元件150。在實施例中,輻射感測器510的所有感測元件組152都可以具有相同數量的感測元件150。例如,輻射感測器510的所有感測元件組152都可以具有兩個感測元件150。結果,輻射吸收層110.1a的24個感測元件150被分成如圖所示的12個感測元件組152。In an embodiment, the sensing elements 150 of the radiation sensor 510 may be divided into sensing element groups 152 , and each sensing element group may have a plurality of sensing elements 150 . In an embodiment, all sensing element groups 152 of the radiation sensor 510 may have the same number of sensing elements 150 . For example, all sensing element groups 152 of radiation sensor 510 may have two sensing elements 150 . As a result, the 24 sensing elements 150 of the radiation absorbing layer 110.1a are divided into 12 sensing element groups 152 as shown.

待分析物體object to be analyzed

在實施例中,物體520可以被定位成使得源自物體520並向輻射感測器510行進的光子將在輻射感測器510的沒有電極119A或119B的一側入射(即,撞擊)輻射感測器510(如圖所示)。In an embodiment, object 520 may be positioned such that photons originating from object 520 and traveling toward radiation sensor 510 will be incident (ie, hit) the radiation sensor on the side of radiation sensor 510 that does not have electrodes 119A or 119B. detector 510 (as shown).

例如,源自物體520並沿路徑521p向輻射感測器510行進的光子521撞擊輻射感測器510的該側。在實施例中,輻射感測器510的該側不具有任何電極119A或119B。For example, a photon 521 originating from object 520 and traveling along path 521 p towards radiation sensor 510 strikes the side of radiation sensor 510 . In an embodiment, this side of the radiation sensor 510 does not have any electrodes 119A or 119B.

光子存在信號-組電壓Photon Presence Signal - Group Voltage

在實施例中,光子521在入射到輻射感測器510之後可能在輻射感測器510內部發生散射(例如,康普頓散射)。結果,光子521可以在輻射感測器510的一些感測元件150中產生電信號。結果,輻射感測器510中的一些感測元件150的專用電極119B的電壓可能升高。In an embodiment, the photons 521 may be scattered inside the radiation sensor 510 after being incident on the radiation sensor 510 (eg, Compton scattering). As a result, photons 521 may generate electrical signals in some sensing elements 150 of radiation sensor 510 . As a result, the voltage of the dedicated electrodes 119B of some sensing elements 150 in the radiation sensor 510 may rise.

在實施例中,如果感測元件組152的兩個感測元件150的兩個專用電極119B的電壓的組合電壓(例如,之和)(簡稱為組電壓)超過預定的閾值電壓,則可以認為光子521存在於輻射感測器510的感測元件組152中。In an embodiment, if the combined voltage (eg, the sum) of the voltages of the two dedicated electrodes 119B of the two sensing elements 150 of the sensing element group 152 (referred to simply as the group voltage) exceeds a predetermined threshold voltage, it can be considered Photons 521 are present in sensing element group 152 of radiation sensor 510 .

感測元件組152的組電壓超過預定的閾值電壓的事件可以稱為感測元件組152中的光子存在信號。The event that the group voltage of the sensing element group 152 exceeds a predetermined threshold voltage may be referred to as a photon presence signal in the sensing element group 152 .

例如,如果信號處理晶片122.1確定感測元件組152(4,1)的兩個感測元件150的兩個專用電極119B的電壓,然後確定感應元件組152(4,1)的組電壓超過預定的閾值電壓,則可以認為光子521存在於感測元件組152(4,1)中。For example, if the signal processing chip 122.1 determines the voltages of the two dedicated electrodes 119B of the two sensing elements 150 of the sensing element group 152(4,1), then it is determined that the group voltage of the sensing element group 152(4,1) exceeds the predetermined , then it can be considered that the photon 521 exists in the sensing element group 152(4,1).

系統操作 - 確定光子估計路徑System Operation - Determine Photon Estimation Path

作為示例,假定光子存在信號出現在感測元件組152(2,3)、152(3,2)和152(4,1)中。這三個感測元件組在圖5中以灰色顯示,以便於查看。結果,在實施例中,光子521可以被認為存在於這三個感測元件組152中。這三個感測元件組構成輻射感測器510的所有感測元件組152的子集。請注意,在本質上,基於輻射感測器510的感測元件組152中的電信號來識別該子集的三個感測元件組152(2,3)、152(3,2)和152(4,1)。具體地,該子集的三個感測元件組152(2,3)、152(3,2)和152(4,1)被識別,因為它們具有光子存在信號。As an example, assume that photon presence signals are present in sensing element groups 152(2,3), 152(3,2), and 152(4,1). These three sensing element groups are shown in gray in Figure 5 for ease of viewing. As a result, photons 521 may be considered to be present in these three sensing element groups 152 in an embodiment. These three sensing element groups constitute a subset of all sensing element groups 152 of radiation sensor 510 . Note that, in essence, the three sensing element groups 152(2,3), 152(3,2) and 152 of the subset are identified based on the electrical signals in the sensing element group 152 of the radiation sensor 510 (4,1). Specifically, three sensing element groups 152(2,3), 152(3,2), and 152(4,1) of the subset are identified because they have photon presence signals.

在實施例中,光子521的估計路徑521p'可以基於包括感測元件組152(2,3)、152(3,2)和152(4,1)的子集中的感測元件組152的位置來確定。In an embodiment, the estimated path 521p' of the photon 521 may be based on the position of the sensing element group 152 in the subset comprising the sensing element groups 152(2,3), 152(3,2), and 152(4,1) to make sure.

在實施例中,估計路徑521p'可以是通過子集的三個感測元件組152(2,3)、152(3,2)和152(4,1)的最佳擬合直線。In an embodiment, the estimated path 521p' may be a best-fit straight line through the three sensing element groups 152(2,3), 152(3,2), and 152(4,1) of the subset.

在實施例中,輻射感測系統500還可以包括與輻射感測器510的所有6個信號處理晶片122電連接的電腦530。在實施例中,電腦530可以確定通過所有三個感測元件組152(2,3)、152(3,2)和152(4,1)的最佳擬合直線。In an embodiment, the radiation sensing system 500 may further include a computer 530 electrically connected to all six signal processing chips 122 of the radiation sensor 510 . In an embodiment, computer 530 may determine a best-fit straight line through all three sensing element groups 152(2,3), 152(3,2), and 152(4,1).

在實施例中,估計路徑521p'在輻射感測器510外部在兩個相反方向上延伸到無窮遠。結果,估計路徑521p'包括在輻射感測器510外部的部分。In an embodiment, the estimation path 521p' extends to infinity in two opposite directions outside the radiation sensor 510 . As a result, the estimated path 521 p ′ includes a portion outside the radiation sensor 510 .

在上述示例中,為了簡單的說明,所有具有光子存在信號的感測元件組152(即,三個感測元件組152(2,3)、152(3,2)和152(4,1))都位於同一輻射吸收層110(即,輻射吸收層110.1a)中。通常,具有光子存在信號的感測元件組152可以在多個輻射吸收層110中。In the above example, for simplicity of illustration, all sensing element groups 152 (i.e., three sensing element groups 152(2,3), 152(3,2) and 152(4,1) with photon presence signals ) are all located in the same radiation absorbing layer 110 (ie, radiation absorbing layer 110.1a). In general, sensing element groups 152 having photon presence signals may be in the plurality of radiation absorbing layers 110 .

概括系統操作的流程圖Flow chart outlining system operation

圖6示出了根據實施例的概括輻射感測系統500的操作的流程圖。在步驟610中,輻射感測器接收來自物體的光子,該輻射感測器包括M個感測元件組,其中M是大於1的整數。例如,在上述實施例中,輻射感測器510接收來自物體520的光子521。輻射感測器510包括多個感測元件組152。如果其他輻射吸收層110與輻射吸收層110.1a類似,則M=12層×12組/層=144個感測元件組152。FIG. 6 shows a flowchart outlining the operation of radiation sensing system 500 according to an embodiment. In step 610, the radiation sensor receives photons from the object, the radiation sensor includes M sensing element groups, where M is an integer greater than 1. For example, in the above embodiments, radiation sensor 510 receives photons 521 from object 520 . The radiation sensor 510 includes a plurality of sensing element groups 152 . If the other radiation absorbing layer 110 is similar to the radiation absorbing layer 110.1a, then M=12 layers×12 groups/layer=144 sensing element groups 152 .

另外,在步驟610中,M個感測元件組中的每個感測元件組包括多個感測元件。例如,在上述實施例中,輻射感測器510的144個感測元件組152中的每個感測元件組152都包括兩個感測元件150。Additionally, in step 610, each sensing element group in the M sensing element groups includes a plurality of sensing elements. For example, in the above embodiment, each of the 144 sensing element groups 152 of the radiation sensor 510 includes two sensing elements 150 .

在步驟620中,基於輻射感測器的感測元件組中的電信號確定M個感測元件組的子集。例如,在上述實施例中,基於輻射感測器510的感測元件組152中的電信號來確定包括三個感測元件組152(2,3)、152(3,2)和152(4,1)的子集。In step 620, a subset of M sensing element groups is determined based on electrical signals in the sensing element groups of the radiation sensor. For example, in the above-described embodiment, it is determined based on the electrical signal in the sensing element group 152 of the radiation sensor 510 that the three sensing element groups 152(2,3), 152(3,2) and 152(4 , a subset of 1).

在步驟630中,基於子集中的感測元件組的位置來確定光子的估計路徑。例如,在上述實施例中,基於子集中的三個感測元件組152(2,3)、152(3,2)和152(4,1)的位置來確定光子521的估計路徑521p'。In step 630, an estimated path of the photon is determined based on the locations of the sets of sensing elements in the subset. For example, in the embodiments described above, the estimated path 521p' of the photon 521 is determined based on the positions of the three sensing element groups 152(2,3), 152(3,2) and 152(4,1) in the subset.

附加實施例Additional embodiments

光子存在信號的時間關係Time relationship of photon presence signal

在實施例中,相對於圖6的步驟620,子集的確定還可以包括基於該子集中感測元件組中的光子存在信號之間的時間關係,從該子集中排除感測元件組。In an embodiment, with respect to step 620 of FIG. 6 , determining a subset may further include excluding a sensing element set from the subset based on a temporal relationship between photon presence signals in the sensing element set in the subset.

在上述示例中,子集的確定還可以包括基於感測元件組152(2,3)、152(3,2)和152(4,1)中的光子存在信號之間的時間關係,從該子集中排除感測元件組152。In the above example, the determination of the subsets may also include based on the temporal relationship between the photon presence signals in the sensing element groups 152(2,3), 152(3,2) and 152(4,1), from which Sensing element group 152 is excluded from the subset.

例如,假定光子存在信號出現在感測元件組152(2,3)中,然後出現在感測元件組152(4,1)中,然後出現在感測元件組152(3,2)中。由於隨著時間的推移光子521可能會更深地行進到輻射感測器510中,因此感測元件組152(3,2)中的光子存在信號很可能不是由光子521引起的。因此,在實施例中,可以從該子集中排除感測元素組152(3,2)。然後,光子521的估計路徑521p'的確定可以基於子集中的其餘感測元件組(即,基於感測元件組152(2,3)和152(4,1))。For example, assume that a photon presence signal occurs in sensing element group 152(2,3), then in sensing element group 152(4,1), then in sensing element group 152(3,2). Since photons 521 may travel deeper into radiation sensor 510 over time, the photon presence signal in sensing element set 152(3,2) is likely not caused by photons 521 . Thus, in an embodiment, sense element group 152(3,2) may be excluded from the subset. The determination of the estimated path 521p' of the photon 521 may then be based on the remaining sensing element sets in the subset (ie, based on sensing element sets 152(2,3) and 152(4,1)).

換句話說,子集的確定還包括基於子集的感測元件組152(2,3)、152(3,2)和152(4,1)中的光子存在信號的時間順序,從子集中排除感測元件組152。In other words, the determination of the subset also includes based on the temporal order of the photon presence signals in the sensing element groups 152(2,3), 152(3,2) and 152(4,1) of the subset, from the subset Sensing element group 152 is excluded.

輻射吸收層之間的分離層Separation layer between radiation absorbing layers

在實施例中,參照圖5,輻射感測器510還可以包括在12個輻射吸收層110之間的11個分離層(未示出),使得分離層被夾在任意兩個相鄰的輻射吸收層110之間並因此將它們分開。例如,參照圖11,分離層117被夾在兩個相鄰的輻射吸收層110.1a和110.1b之間並因此將它們分開。In an embodiment, referring to FIG. 5, the radiation sensor 510 may further include 11 separation layers (not shown) between the 12 radiation absorbing layers 110, so that the separation layer is sandwiched between any two adjacent radiation layers 110. between and thus separate the absorbent layers 110 . For example, referring to Figure 11, a separation layer 117 is sandwiched between and thus separates two adjacent radiation absorbing layers 110.1a and 110.1b.

在實施例中,11個分離層對於光子521可以是不透明的。換句話說,如果光子521撞擊11個分離層中的任何一個,則光子521被該分離層阻擋和吸收。In an embodiment, the 11 separate layers may be opaque to photons 521 . In other words, if a photon 521 strikes any one of the 11 separation layers, the photon 521 is blocked and absorbed by the separation layer.

在實施例中,光子521可以是伽馬射線光子或X射線光子。在實施例中,11個分離層可以包括阻擋和吸收伽馬射線光子和X射線光子的鎢。In an embodiment, photons 521 may be gamma ray photons or X-ray photons. In an embodiment, the 11 separation layers may include tungsten that blocks and absorbs gamma-ray photons and X-ray photons.

第二光子的估計路徑Estimated path of the second photon

參照圖7,假定源自物體520並沿路徑522p向輻射感測器510行進的第二光子522撞擊輻射感測器510的一側。請注意,輻射感測器510的該側不具有任何電極119A或119B。Referring to FIG. 7 , assume that a second photon 522 originating from an object 520 and traveling toward the radiation sensor 510 along a path 522p hits one side of the radiation sensor 510 . Note that this side of radiation sensor 510 does not have any electrodes 119A or 119B.

在實施例中,電腦530可以確定第二光子522的估計路徑522p'。在實施例中,第二光子522的估計路徑522p'的確定可以類似於上述第一光子521的估計路徑521p'的確定。In an embodiment, computer 530 may determine estimated path 522p′ of second photon 522 . In an embodiment, the determination of the estimated path 522p' of the second photon 522 may be similar to the determination of the estimated path 521p' of the first photon 521 described above.

光子起源點photon origin

在實施例中,電腦530可以分析估計路徑521p'和估計路徑522p'是否彼此相交。假定電腦530確定估計路徑521p'和估計路徑522p'在相交點525處彼此相交。結果,該相交點525可以被認為是第一光子521和第二光子522兩者的光子起源點。可以說,第一光子521和第二光子522的光子起源點525的確定是基於第一光子521的第一估計路徑521p'和第二光子522的第二估計路徑522p'。In an embodiment, the computer 530 may analyze whether the estimated path 521p' and the estimated path 522p' intersect each other. Assume that computer 530 determines that estimated path 521 p ′ and estimated path 522 p ′ intersect each other at intersection point 525 . As a result, this intersection point 525 can be considered a photon origin point for both the first photon 521 and the second photon 522 . It can be said that the determination of the photon origin point 525 of the first photon 521 and the second photon 522 is based on the first estimated path 521p′ of the first photon 521 and the second estimated path 522p′ of the second photon 522 .

作為伽馬射線光子源的放射示蹤劑Radiotracers as sources of gamma-ray photons

在實施例中,物體520可以包含發射正電子的放射示蹤劑。每個發射的正電子可能與附近的電子碰撞並結合,從而得到一個或多個伽馬射線光子。在實施例中,這些伽馬射線光子可以包括上述光子521和522。In an embodiment, object 520 may contain a positron-emitting radiotracer. Each emitted positron may collide with and combine with nearby electrons, resulting in one or more gamma-ray photons. In an embodiment, these gamma ray photons may include photons 521 and 522 described above.

可替換實施例Alternative embodiment

接收第二光子的第二輻射感測器a second radiation sensor receiving the second photon

在上述實施例中,參照圖7,輻射感測器510接收光子521和522兩者。在可替換實施例中,參照圖8,如圖所示,輻射感測系統500還可以包括接收第二光子522的另一輻射感測器512,而第一輻射感測器510接收第一光子521。In the embodiments described above, referring to FIG. 7 , radiation sensor 510 receives both photons 521 and 522 . In an alternative embodiment, referring to FIG. 8, as shown in the figure, the radiation sensing system 500 may further include another radiation sensor 512 receiving the second photon 522, while the first radiation sensor 510 receives the first photon 521.

在實施例中,輻射感測器512在結構和功能方面可以類似於輻射感測器510。輻射感測器510和512不必具有相同數量的輻射吸收層110或相同數量的感測元件150或相同數量的感測元件組152。In an embodiment, radiation sensor 512 may be similar to radiation sensor 510 in structure and function. Radiation sensors 510 and 512 do not have to have the same number of radiation absorbing layers 110 or the same number of sensing elements 150 or the same number of sensing element groups 152 .

在實施例中,輻射感測器512的信號處理晶片122(未示出)可以電連接到電腦530。In an embodiment, the signal processing chip 122 (not shown) of the radiation sensor 512 may be electrically connected to the computer 530 .

在實施例中,使用兩個輻射感測器510和512確定光子521和522的光子起源點525(圖8)可以類似於如上所述僅使用輻射感測器510確定光子521和522的光子起源點525(圖7)。In an embodiment, using two radiation sensors 510 and 512 to determine the photon point of origin 525 ( FIG. 8 ) of photons 521 and 522 may be similar to determining the photon origin of photons 521 and 522 using only radiation sensor 510 as described above. Point 525 (Fig. 7).

輻射感測器的旋轉Rotation of radiation sensor

在實施例中,參照圖8,在輻射感測器510和512從不同角度掃描整個物體520時,輻射感測器510和512可以圍繞物體520旋轉。在實施例中,當輻射感測器510和512圍繞物體520旋轉時,輻射感測器510和512可以相對於彼此靜止。In an embodiment, referring to FIG. 8 , the radiation sensors 510 and 512 may rotate around the object 520 while the radiation sensors 510 and 512 scan the entire object 520 from different angles. In an embodiment, radiation sensors 510 and 512 may be stationary relative to each other as radiation sensors 510 and 512 rotate around object 520 .

專用電極119B側Dedicated electrode 119B side

在上述實施例中,參照圖5,在一對輻射吸收層110.1a和110.1b中,輻射吸收層110.1b的專用電極119B位於輻射吸收層110.1b的右側表面上,輻射吸收層110.1b的公共電極119A位於輻射吸收層110.1b的左側表面上;並且輻射吸收層110.1a的專用電極119B位於輻射吸收層110.1a的右側表面上,輻射吸收層110.1a的公共電極119A位於輻射吸收層110.1a的左側表面上。In the above embodiment, referring to FIG. 5, in a pair of radiation absorbing layers 110.1a and 110.1b, the dedicated electrode 119B of the radiation absorbing layer 110.1b is located on the right side surface of the radiation absorbing layer 110.1b, and the common electrode 119B of the radiation absorbing layer 110.1b Electrode 119A is located on the left side surface of radiation absorbing layer 110.1b; and dedicated electrode 119B of radiation absorbing layer 110.1a is located on the right side surface of radiation absorbing layer 110.1a, and common electrode 119A of radiation absorbing layer 110.1a is located on the right side surface of radiation absorbing layer 110.1a. on the left surface.

在可替換實施例中,在第一對輻射吸收層110.1a和110.1b中,輻射吸收層110.1b的專用電極119B仍舊位於輻射吸收層110.1b的右側表面上,輻射吸收層110.1b的公共電極119A仍舊位於輻射吸收層110.1b的左側表面上;但是,輻射吸收層110.1a的專用電極119B位於輻射吸收層110.1a的左側表面上,輻射吸收層110.1a的公共電極119A位於輻射吸收層110.1a的右側表面上。In an alternative embodiment, in the first pair of radiation absorbing layers 110.1a and 110.1b, the dedicated electrode 119B of the radiation absorbing layer 110.1b is still located on the right side surface of the radiation absorbing layer 110.1b, and the common electrode of the radiation absorbing layer 110.1b 119A is still located on the left side surface of the radiation absorbing layer 110.1b; however, the dedicated electrode 119B of the radiation absorbing layer 110.1a is located on the left side surface of the radiation absorbing layer 110.1a, and the common electrode 119A of the radiation absorbing layer 110.1a is located on the radiation absorbing layer 110.1a on the right side of the surface.

光子存在信號-組節點的電壓Photon Presence Signal - Voltage at Group Node

在上述實施例中,參照圖5,光子存在信號被定義為如果感測元件組152的組電壓超過預定的閾值電壓,則光子存在信號出現在感測元件組152中。In the above embodiment, referring to FIG. 5 , the photon presence signal is defined as being present in the sensing element group 152 if the group voltage of the sensing element group 152 exceeds a predetermined threshold voltage.

在可替換實施例中,輻射感測器510的每個感測元件組152的感測元件150的專用電極119B可以使用金屬線電連接到組節點。例如,參考感測元件組152(4,2),感測元件組152(4,2)的2個專用電極119B使用金屬線156電連接到組節點154。輻射感測器510的其他感測元件組152可以具有類似的連接。In an alternative embodiment, the dedicated electrodes 119B of the sensing elements 150 of each sensing element group 152 of the radiation sensor 510 may be electrically connected to the group nodes using metal wires. For example, referring to sensing element group 152 ( 4 , 2 ), the 2 dedicated electrodes 119B of sensing element group 152 ( 4 , 2 ) are electrically connected to group node 154 using metal lines 156 . Other sensing element groups 152 of radiation sensor 510 may have similar connections.

在本可替換實施例中,光子存在信號可以被定義為如果感測元件組152的組節點154的電壓超過預定的閾值電壓,則光子存在信號出現在感測元件組152中。In this alternative embodiment, the photon presence signal may be defined such that the photon presence signal is present in the sensing element group 152 if the voltage at the group node 154 of the sensing element group 152 exceeds a predetermined threshold voltage.

信號處理晶片和專用電極位於輻射吸收層的同一側表面上Signal processing die and dedicated electrodes are located on the same side surface of the radiation absorbing layer

在上述實施例中,參照圖5,用於輻射吸收層100.1a的信號處理晶片122.1和輻射吸收層100.1a的專用電極119B不在輻射吸收層110.1a的同一側表面110s上。In the above embodiment, referring to FIG. 5, the signal processing chip 122.1 for the radiation absorbing layer 100.1a and the dedicated electrode 119B of the radiation absorbing layer 100.1a are not on the same side surface 110s of the radiation absorbing layer 110.1a.

在可替換實施例中,參照圖9,如圖所示,用於輻射吸收層100.1a的多個(例如,4個)信號處理晶片122和輻射吸收層100.1a的24個專用電極119B可以不在輻射吸收層110.1a的同一側表面110s上。In an alternative embodiment, referring to FIG. 9, as shown, the multiple (eg, 4) signal processing wafers 122 for the radiation absorbing layer 100.1a and the 24 dedicated electrodes 119B of the radiation absorbing layer 100.1a may not be in the On the same side surface 110s of the radiation absorbing layer 110.1a.

在實施例中,用於輻射吸收層100.1a的信號處理晶片122的覆蓋區不與輻射吸收層100.1a的專用電極119B重疊。換句話說,不存在(A)垂直於輻射吸收層110.1a的側表面110s並且(B)與用於輻射吸收層110.1a的信號處理晶片122相交的直線與輻射吸收層110.1a的任何專用電極119B相交。In an embodiment, the footprint of the signal processing die 122 for the radiation absorbing layer 100.1a does not overlap the dedicated electrode 119B of the radiation absorbing layer 100.1a. In other words, there is no line (A) perpendicular to the side surface 110s of the radiation absorbing layer 110.1a and (B) intersecting the signal processing wafer 122 for the radiation absorbing layer 110.1a and any dedicated electrode of the radiation absorbing layer 110.1a 119B intersects.

在實施例中,上述關於輻射吸收層110.1a及其4個相關聯的信號處理晶片122的特徵也適用於輻射感測器510的其他11個輻射吸收層110及其相關聯的信號處理晶片122。In an embodiment, the features described above with respect to the radiation absorbing layer 110.1a and its four associated signal processing dies 122 also apply to the other eleven radiation absorbing layers 110 of the radiation sensor 510 and their associated signal processing dies 122 .

相鄰輻射吸收層的凹部中的信號處理晶片Signal processing wafer in recess adjacent to radiation absorbing layer

圖10示出了沿平面10的圖9的輻射感測器510的剖視圖。在實施例中,參照圖10,如圖所示,用於輻射吸收層110.1b的多信號處理晶片122可以位於相鄰輻射吸收層110.1a的凹部116中。FIG. 10 shows a cross-sectional view of the radiation sensor 510 of FIG. 9 along plane 10 . In an embodiment, referring to FIG. 10 , as shown, a multiple signal processing die 122 for a radiation absorbing layer 110.1 b may be located in the recess 116 of an adjacent radiation absorbing layer 110.1 a.

分離層的凹部中的信號處理晶片Signal processing wafer in recess of separation layer

圖11示出了在分離層117被夾在輻射感測器510的任意兩個相鄰吸收層110之間的情況下沿平面10的圖9的輻射感測器510的剖視圖。在實施例中,參照圖11,如圖所示,用於輻射吸收層110.1b的多信號處理晶片122可以位於分離層117的凹部118中。FIG. 11 shows a cross-sectional view of the radiation sensor 510 of FIG. 9 along plane 10 with a separation layer 117 sandwiched between any two adjacent absorbing layers 110 of the radiation sensor 510 . In an embodiment, referring to FIG. 11 , a multi-signal processing die 122 for the radiation absorbing layer 110.1b may be located in the recess 118 of the separation layer 117 as shown.

在實施例中,輻射感測器510的分離層117可以被配置為阻擋伽馬射線和X射線。In an embodiment, the separation layer 117 of the radiation sensor 510 may be configured to block gamma rays and X-rays.

用於信號處理晶片的支撐基板Support substrates for signal processing chips

在實施例中,參照圖9,用於輻射吸收層110.1a的兩個左側信號處理晶片122可以物理地附接到第一支撐基板122s,使得這兩個左側信號處理晶片122被夾在第一支撐基板122s與輻射吸收層110.1a之間。In an embodiment, referring to FIG. 9, the two left signal processing dies 122 for the radiation absorbing layer 110.1a may be physically attached to the first support substrate 122s such that the two left signal processing dies 122 are sandwiched between the first Between the supporting substrate 122s and the radiation absorbing layer 110.1a.

類似地,在實施例中,用於輻射吸收層110.1a的兩個右側信號處理晶片122可以物理地附接到第二支撐基板(為簡單起見未示出),使得這兩個右側信號處理晶片122被夾在第二支撐基板與輻射吸收層110.1a之間。Similarly, in an embodiment, the two right side signal processing dies 122 for the radiation absorbing layer 110.1a may be physically attached to a second support substrate (not shown for simplicity) such that the two right side signal processing The wafer 122 is sandwiched between the second support substrate and the radiation absorbing layer 110.1a.

在實施例中,用於輻射感測器510的其他11個輻射吸收層110的信號處理晶片122可以具有類似的特徵(即,用於信號處理晶片122的支撐基板)。In an embodiment, the signal processing die 122 for the other 11 radiation absorbing layers 110 of the radiation sensor 510 may have similar features (ie, the supporting substrate for the signal processing die 122 ).

儘管本文已經公開了各個方面和實施例,但是其他方面和實施例對於本領域技術人員來說將是顯而易見的。本文所公開的各個方面和實施例是出於說明的目的而不是限制性的,真正的範圍和精神由所附申請專利範圍指示。Although various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and not limitation, with the true scope and spirit being indicated by the appended claims.

10:平面 100:輻射檢測器 110、110.1a、110.1b、110.5b、110.6a、110.6b:輻射吸收層 110s:側表面 111:第一摻雜區 112:本徵區 113:區域 114:離散區 116、118:凹部 117:分離層 119A、119B:電極 120:電子器件層 121:電子系統 122、122.1、122.6:信號處理晶片 122s:第一支撐基板 130:填充材料 131:通孔 150:圖元 152(2,3)、152(3,2)、154(4,1)、152(4,2):感測元件組 154:組節點 156:金屬線 500:輻射感測系統 510、512:輻射感測器 520:物體 521、522:光子 521p、521p'、522p、522p':路徑 525:相交點 530:電腦 610、620、630:步驟 10: Plane 100: radiation detector 110, 110.1a, 110.1b, 110.5b, 110.6a, 110.6b: radiation absorbing layer 110s: side surface 111: the first doped region 112: Intrinsic area 113: area 114: discrete area 116, 118: concave part 117: separation layer 119A, 119B: electrodes 120: Electronic device layer 121: Electronic system 122, 122.1, 122.6: signal processing chips 122s: the first supporting substrate 130: filling material 131: Through hole 150: primitive 152(2,3), 152(3,2), 154(4,1), 152(4,2): sensing element group 154: group node 156: metal wire 500: Radiation Sensing System 510, 512: radiation sensor 520: object 521, 522: photons 521p, 521p', 522p, 522p': path 525: Intersection point 530: computer 610, 620, 630: steps

圖1示意性地示出了根據實施例的輻射檢測器。 圖2示意性地示出了根據實施例的輻射檢測器的簡化剖視圖。 圖3示意性地示出了根據實施例的輻射檢測器的詳細剖視圖。 圖4示意性地示出了根據可替換實施例的輻射檢測器的詳細剖視圖。 圖5示意性地示出了根據實施例的操作中的輻射感測系統的輻射感測器的透視圖。 圖6示出了概括輻射感測系統的操作的流程圖。 圖7示意性地示出了根據實施例的進一步操作中的輻射感測系統。 圖8示意性地示出了根據可替換實施例的輻射感測系統。 圖9示意性地示出了根據可替換實施例的輻射感測器的透視圖。 圖10至圖11示意性地示出了根據實施例的圖9的輻射感測器的剖視圖。 Fig. 1 schematically shows a radiation detector according to an embodiment. Fig. 2 schematically shows a simplified cross-sectional view of a radiation detector according to an embodiment. Fig. 3 schematically shows a detailed cross-sectional view of a radiation detector according to an embodiment. Figure 4 schematically shows a detailed cross-sectional view of a radiation detector according to an alternative embodiment. Fig. 5 schematically shows a perspective view of a radiation sensor of a radiation sensing system in operation according to an embodiment. Figure 6 shows a flowchart outlining the operation of the radiation sensing system. Fig. 7 schematically shows the radiation sensing system in further operation according to an embodiment. Fig. 8 schematically shows a radiation sensing system according to an alternative embodiment. Fig. 9 schematically shows a perspective view of a radiation sensor according to an alternative embodiment. 10 to 11 schematically illustrate cross-sectional views of the radiation sensor of FIG. 9 according to an embodiment.

610、620、630:步驟 610, 620, 630: steps

Claims (35)

一種使用輻射探測器確定光子起源點的方法,包括: 使用第一輻射感測器接收來自物體的第一光子,所述第一輻射感測器包括M個感測元件組, 其中,所述M個感測元件組中的每個感測元件組包括多個感測元件,並且 其中,M是大於1的整數; 基於所述第一輻射感測器的M個感測元件組中的電信號確定所述M個感測元件組的第一子集;以及 基於所述第一子集中的感測元件組的位置確定所述第一光子的第一估計路徑。 A method of determining a point of origin of a photon using a radiation detector, comprising: receiving a first photon from an object using a first radiation sensor, the first radiation sensor comprising M sensing element groups, Wherein, each sensing element group in the M sensing element groups includes a plurality of sensing elements, and Wherein, M is an integer greater than 1; determining a first subset of the M sets of sensing elements based on electrical signals in the M sets of sensing elements of the first radiation sensor; and A first estimated path of the first photon is determined based on a position of a set of sensing elements in the first subset. 如請求項1所述的使用輻射探測器確定光子起源點的方法,其中,所述確定所述第一子集包括識別所述M個感測元件組中的具有光子存在信號的感測元件組。The method of using a radiation detector to determine a point of origin of a photon as claimed in claim 1, wherein said determining said first subset comprises identifying a sensing element group having a photon presence signal among said M sensing element groups . 如請求項2所述的使用輻射探測器確定光子起源點的方法,其中,所述識別包括: 確定所述第一輻射感測器的每個感測元件的專用電極的電壓;以及 組合所述M個感測元件組的每個感測元件組的多個感測元件的專用電極的電壓,從而得到所述每個感測元件組的組電壓, 其中,感測元件組中的所述光子存在信號是所述感測元件組的組電壓超過預定的閾值電壓的事件。 The method of using a radiation detector to determine the point of origin of a photon as claimed in claim 2, wherein the identification includes: determining a voltage at a dedicated electrode of each sensing element of said first radiation sensor; and Combining the voltages of the dedicated electrodes of the plurality of sensing elements in each sensing element group of the M sensing element groups, thereby obtaining the group voltage of each sensing element group, Wherein said photon presence signal in a set of sensing elements is an event that a set voltage of said set of sensing elements exceeds a predetermined threshold voltage. 如請求項2所述的使用輻射探測器確定光子起源點的方法, 其中,所述M個感測元件組中的每個感測元件組的多個感測元件的專用電極使用金屬線電連接到組節點,並且 其中,感測元件組中的所述光子存在信號是所述感測元件組的組節點的電壓超過預定的閾值電壓的事件。 The method for determining the point of origin of a photon using a radiation detector as described in claim 2, Wherein, the dedicated electrodes of the multiple sensing elements of each sensing element group in the M sensing element groups are electrically connected to the group nodes using metal wires, and Wherein said photon presence signal in a sensing element group is an event that a voltage of a group node of said sensing element group exceeds a predetermined threshold voltage. 如請求項2所述的使用輻射探測器確定光子起源點的方法,其中,所述確定所述第一子集還包括基於所述第一子集中的感測元件組中的光子存在信號之間的時間關係,從所述第一子集中排除感測元件組。The method of using a radiation detector to determine the point of origin of a photon as claimed in claim 2, wherein said determining said first subset further comprises based on the photon existence signals in the sensing element groups in said first subset , excluding groups of sensing elements from the first subset. 如請求項5所述的使用輻射探測器確定光子起源點的方法,其中,所述時間關係是所述第一子集中的感測元件組中的光子存在信號的時間順序。The method for determining a point of origin of a photon using a radiation detector as claimed in claim 5, wherein the time relationship is a time sequence of photon presence signals in the sensing element groups in the first subset. 如請求項1所述的使用輻射探測器確定光子起源點的方法,其中,所述第一光子在所述第一輻射感測器內部發生散射。The method for determining the point of origin of photons by using a radiation detector as claimed in claim 1, wherein the first photons are scattered inside the first radiation sensor. 如請求項1所述的使用輻射探測器確定光子起源點的方法,其中,所述第一光子的第一估計路徑包括在所述第一輻射感測器外部的部分。The method of determining a point of origin of a photon using a radiation detector as claimed in claim 1, wherein the first estimated path of the first photon includes a portion outside the first radiation sensor. 如請求項1所述的使用輻射探測器確定光子起源點的方法,其中,所述M個感測元件組的感測元件位於所述第一輻射感測器的多個輻射吸收層中。The method for determining the origin point of photons by using a radiation detector as claimed in claim 1, wherein the sensing elements of the M sensing element groups are located in multiple radiation absorbing layers of the first radiation sensor. 如請求項9所述的使用輻射探測器確定光子起源點的方法,其中,對所述第一光子不透明的層將所述多個輻射吸收層中的任意兩個相鄰的輻射吸收層分開。The method of determining a point of origin of a photon using a radiation detector as recited in claim 9, wherein a layer opaque to the first photon separates any two adjacent radiation absorbing layers of the plurality of radiation absorbing layers. 如請求項1所述的使用輻射探測器確定光子起源點的方法,其中,所述第一光子是伽馬射線光子或X射線光子。The method for determining the point of origin of a photon using a radiation detector as claimed in claim 1, wherein the first photon is a gamma ray photon or an X-ray photon. 如請求項1所述的使用輻射探測器確定光子起源點的方法,其中,所有所述M個感測元件組都具有相同數量的感測元件。The method for determining the point of origin of a photon using a radiation detector as claimed in claim 1, wherein all the M sensing element groups have the same number of sensing elements. 如請求項1所述的使用輻射探測器確定光子起源點的方法,還包括: 使用第二輻射感測器接收來自所述物體的第二光子,所述第二輻射感測器包括N個感測元件組, 其中,所述N個感測元件組中的每個感測元件組包括多個感測元件,並且 其中,N是大於1的整數; 基於所述第二輻射感測器的感測元件組中的電信號確定所述N個感測元件組的第二子集;以及 基於所述第二子集中的感測元件組的位置確定所述第二光子的第二估計路徑。 The method of using a radiation detector to determine the point of origin of a photon as described in Claim 1, further comprising: receiving second photons from the object using a second radiation sensor, the second radiation sensor comprising N sensing element groups, Wherein, each sensing element group in the N sensing element groups includes a plurality of sensing elements, and Wherein, N is an integer greater than 1; determining a second subset of the N sets of sensing elements based on electrical signals in sets of sensing elements of the second radiation sensor; and A second estimated path of the second photon is determined based on the locations of the sensing element sets in the second subset. 如請求項13所述的使用輻射探測器確定光子起源點的方法,還包括基於所述第一估計路徑和所述第二估計路徑確定所述第一光子和所述第二光子的光子起源點的位置。The method of using a radiation detector to determine a photon origin point as claimed in claim 13, further comprising determining the photon origin point of the first photon and the second photon based on the first estimated path and the second estimated path s position. 如請求項13所述的使用輻射探測器確定光子起源點的方法,還包括使所述第一輻射感測器和所述第二輻射感測器圍繞所述物體旋轉,同時保持所述第一輻射感測器和所述第二輻射感測器相對於彼此靜止。The method of determining a point of origin of a photon using a radiation detector as recited in claim 13, further comprising rotating the first radiation sensor and the second radiation sensor around the object while maintaining the first The radiation sensor and the second radiation sensor are stationary relative to each other. 如請求項1所述的使用輻射探測器確定光子起源點的方法,還包括: 使用所述第一輻射感測器接收來自所述物體的第二光子; 基於所述第一輻射感測器的感測元件組中的電信號確定所述M個感測元件組的第二子集;以及 基於所述第二子集中的感測元件組的位置確定所述第二光子的第二估計路徑。 The method of using a radiation detector to determine the point of origin of a photon as described in Claim 1, further comprising: receiving second photons from the object using the first radiation sensor; determining a second subset of the M sets of sensing elements based on electrical signals in sets of sensing elements of the first radiation sensor; and A second estimated path of the second photon is determined based on the locations of the sensing element sets in the second subset. 如請求項16所述的使用輻射探測器確定光子起源點的方法,還包括基於所述第一估計路徑和第二估計路徑確定所述第一光子和所述第二光子的光子起源點的位置。The method for determining a photon origin point using a radiation detector as claimed in claim 16, further comprising determining the position of the photon origin point of the first photon and the second photon based on the first estimated path and the second estimated path . 如請求項1所述的使用輻射探測器確定光子起源點的方法,其中,所述確定所述第一光子的第一估計路徑包括: 確定通過所述第一子集中的感測元件組的最佳擬合直線,從而得到所述第一估計路徑。 The method of using a radiation detector to determine the point of origin of a photon as claimed in claim 1, wherein said determining the first estimated path of the first photon comprises: Determining a best-fit straight line through the set of sensing elements in the first subset, thereby obtaining the first estimated path. 如請求項1所述的使用輻射探測器確定光子起源點的方法, 其中,所述第一輻射感測器包括P個信號處理晶片和2P個輻射吸收層的堆疊,P為大於1的整數, 其中,所述P個信號處理晶片中的每一個專用於處理所述2P個輻射吸收層的兩個相鄰輻射吸收層中的電信號,並且 其中,所述P個信號處理晶片中的至少一個被夾在所述2P個輻射吸收層的兩個輻射吸收層之間。 The method of determining the point of origin of a photon using a radiation detector as described in claim 1, Wherein, the first radiation sensor includes stacks of P signal processing chips and 2P radiation absorbing layers, where P is an integer greater than 1, Wherein, each of the P signal processing chips is dedicated to processing electrical signals in two adjacent radiation absorbing layers of the 2P radiation absorbing layers, and Wherein, at least one of the P signal processing chips is sandwiched between two radiation absorbing layers of the 2P radiation absorbing layers. 如請求項19所述的使用輻射探測器確定光子起源點的方法,其中,所述兩個輻射吸收層被所述2P個輻射吸收層中的另一個輻射吸收層分開。The method of determining a point of origin of a photon using a radiation detector as recited in claim 19, wherein said two radiation absorbing layers are separated by another one of said 2P radiation absorbing layers. 如請求項19所述的使用輻射探測器確定光子起源點的方法, 其中,分離層被夾在所述2P個輻射吸收層的任意兩個相鄰輻射吸收層之間,並且 其中,所述分離層被配置為阻擋伽馬射線和X射線。 The method of using a radiation detector to determine the point of origin of a photon as claimed in claim 19, wherein the separation layer is sandwiched between any two adjacent radiation absorbing layers of the 2P radiation absorbing layers, and Wherein, the separation layer is configured to block gamma rays and X-rays. 如請求項1所述的使用輻射探測器確定光子起源點的方法, 其中,所述第一輻射感測器包括(A)Q個輻射吸收層的堆疊,以及(B)用於所述Q個輻射吸收層中的每一個的多信號處理晶片, 其中,用於所述Q個輻射吸收層的每個輻射吸收層的所述多信號處理晶片和所述每個輻射吸收層的所有感測元件的專用電極位於所述每個輻射吸收層的同一側表面上,並且 其中,不存在(A)垂直於所述每個輻射吸收層的所述同一側表面並且(B)與用於所述每個輻射吸收層的信號處理晶片相交的直線與所述每個輻射吸收層的任意感測元件的任意專用電極相交。 The method of determining the point of origin of a photon using a radiation detector as described in claim 1, wherein said first radiation sensor comprises (A) a stack of Q radiation absorbing layers, and (B) a multi-signal processing wafer for each of said Q radiation absorbing layers, Wherein, the multi-signal processing chip for each radiation absorbing layer of the Q radiation absorbing layers and the dedicated electrodes of all sensing elements of each radiation absorbing layer are located on the same surface of each radiation absorbing layer. on the side surface, and Wherein, there is no straight line (A) perpendicular to the same side surface of each radiation absorbing layer and (B) intersecting the signal processing wafer for each radiation absorbing layer and each radiation absorbing layer Any dedicated electrode of any sensing element of the layer intersects. 如請求項22所述的使用輻射探測器確定光子起源點的方法, 其中,用於所述Q個輻射吸收層中的一輻射吸收層的所述多信號處理晶片中的多個信號處理晶片物理地附接到支撐基板,並且 其中,所述多個信號處理晶片被夾在所述支撐基板與所述輻射吸收層之間。 The method of determining the point of origin of a photon using a radiation detector as claimed in claim 22, wherein a plurality of signal processing dies of said multiple signal processing dies for a radiation absorbing layer of said Q radiation absorbing layers are physically attached to a support substrate, and Wherein, the plurality of signal processing chips are sandwiched between the supporting substrate and the radiation absorbing layer. 如請求項22所述的使用輻射探測器確定光子起源點的方法,其中,用於所述Q個輻射吸收層中的一輻射吸收層的所述多信號處理晶片位於所述Q個輻射吸收層中相鄰輻射吸收層的凹部中。The method for determining the point of origin of a photon using a radiation detector as claimed in claim 22, wherein the multi-signal processing wafer for one of the Q radiation absorbing layers is located in the Q radiation absorbing layers In the recess of the adjacent radiation absorbing layer. 如請求項22所述的使用輻射探測器確定光子起源點的方法, 其中,用於所述Q個輻射吸收層的輻射吸收層的所述多信號處理晶片位於分離層的凹部中,並且 其中,所述分離層被配置為阻擋伽馬射線和X射線。 The method of determining the point of origin of a photon using a radiation detector as claimed in claim 22, wherein the multi-signal processing wafer for the radiation absorbing layer of the Q radiation absorbing layers is located in the recess of the separation layer, and Wherein, the separation layer is configured to block gamma rays and X-rays. 一種輻射感測系統,包括第一輻射感測器,所述第一輻射感測器被配置為接收來自物體的第一光子, 其中,所述第一輻射感測器包括M個感測元件組, 其中,所述M個感測元件組中的每個感測元件組包括多個感測元件, 其中,M是大於1的整數, 其中,所述輻射感測系統被配置為基於所述第一輻射感測器的M個感測元件組中的電信號確定所述M個感測元件組的第一子集,並且 其中,所述輻射感測系統被配置為基於所述第一子集中的感測元件組的位置確定所述第一光子的第一估計路徑。 A radiation sensing system comprising a first radiation sensor configured to receive first photons from an object, Wherein, the first radiation sensor includes M sensing element groups, Wherein, each sensing element group in the M sensing element groups includes a plurality of sensing elements, Wherein, M is an integer greater than 1, Wherein, the radiation sensing system is configured to determine a first subset of the M sensing element groups based on electrical signals in the M sensing element groups of the first radiation sensor, and Wherein the radiation sensing system is configured to determine a first estimated path of the first photon based on the positions of the sensing element sets in the first subset. 如請求項26所述的輻射感測系統,還包括第二輻射感測器,所述第二輻射感測器被配置為接收來自所述物體的第二光子, 其中,所述第二輻射感測器包括N個感測元件組, 其中,所述N個感測元件組中的每個感測元件組包括多個感測元件, 其中,N是大於1的整數; 其中,所述輻射感測系統被配置為基於所述第二輻射感測器的感測元件組中的電信號確定所述N個感測元件組的第二子集,並且 其中,所述輻射感測系統被配置為基於所述第二子集中的感測元件組的位置確定所述第二光子的第二估計路徑。 The radiation sensing system of claim 26, further comprising a second radiation sensor configured to receive second photons from the object, Wherein, the second radiation sensor includes N sensing element groups, Wherein, each sensing element group in the N sensing element groups includes a plurality of sensing elements, Wherein, N is an integer greater than 1; wherein the radiation sensing system is configured to determine a second subset of the N sensing element groups based on electrical signals in the sensing element groups of the second radiation sensor, and Wherein the radiation sensing system is configured to determine a second estimated path of the second photon based on the positions of the sets of sensing elements in the second subset. 如請求項27所述的輻射感測系統,其中,所述輻射感測系統被配置為基於所述第一估計路徑和所述第二估計路徑確定所述第一光子和所述第二光子的光子起源點的位置。The radiation sensing system of claim 27, wherein the radiation sensing system is configured to determine the distance of the first photon and the second photon based on the first estimated path and the second estimated path The location of the point of origin of the photon. 如請求項26所述的輻射感測系統, 其中,所述第一輻射感測器包括P個信號處理晶片和2P個輻射吸收層的堆疊,P為大於1的整數, 其中,所述P個信號處理晶片中的每一個專用於處理所述2P個輻射吸收層的兩個相鄰輻射吸收層中的電信號,並且 其中,所述P個信號處理晶片中的至少一個被夾在所述2P個輻射吸收層的兩個輻射吸收層之間。 The radiation sensing system of claim 26, Wherein, the first radiation sensor includes stacks of P signal processing chips and 2P radiation absorbing layers, where P is an integer greater than 1, Wherein, each of the P signal processing chips is dedicated to processing electrical signals in two adjacent radiation absorbing layers of the 2P radiation absorbing layers, and Wherein, at least one of the P signal processing chips is sandwiched between two radiation absorbing layers of the 2P radiation absorbing layers. 如請求項29所述的輻射感測系統,其中,所述兩個輻射吸收層被所述2P個輻射吸收層中的另一個輻射吸收層分開。The radiation sensing system of claim 29, wherein the two radiation absorbing layers are separated by another one of the 2P radiation absorbing layers. 如請求項29所述的輻射感測系統, 其中,分離層被夾在所述2P個輻射吸收層的任意兩個相鄰輻射吸收層之間,並且 其中,所述分離層被配置為阻擋伽馬射線和X射線。 The radiation sensing system of claim 29, wherein the separation layer is sandwiched between any two adjacent radiation absorbing layers of the 2P radiation absorbing layers, and Wherein, the separation layer is configured to block gamma rays and X-rays. 如請求項26所述的輻射感測系統, 其中所述第一輻射感測器包括(A)Q個輻射吸收層的堆疊,以及(B)用於所述Q個輻射吸收層中的每一個的多信號處理晶片, 其中,用於所述Q個輻射吸收層的每個輻射吸收層的所述多信號處理晶片和所述每個輻射吸收層的所有感測元件的專用電極位於所述每個輻射吸收層的同一側表面上,並且 其中,不存在(A)垂直於所述每個輻射吸收層的所述同一側表面並且(B)與用於所述每個輻射吸收層的信號處理晶片相交的直線與所述每個輻射吸收層的任意感測元件的任意專用電極相交。 The radiation sensing system of claim 26, wherein said first radiation sensor comprises (A) a stack of Q radiation absorbing layers, and (B) a multi-signal processing die for each of said Q radiation absorbing layers, Wherein, the multi-signal processing chip for each radiation absorbing layer of the Q radiation absorbing layers and the dedicated electrodes of all sensing elements of each radiation absorbing layer are located on the same surface of each radiation absorbing layer. on the side surface, and Wherein, there is no straight line (A) perpendicular to the same side surface of each radiation absorbing layer and (B) intersecting the signal processing wafer for each radiation absorbing layer and each radiation absorbing layer Any dedicated electrode of any sensing element of the layer intersects. 如請求項32所述的輻射感測系統, 其中,用於所述Q個輻射吸收層中的一輻射吸收層的所述多信號處理晶片中的多個信號處理晶片物理地附接到支撐基板,並且 其中,所述多個信號處理晶片被夾在所述支撐基板與所述輻射吸收層之間。 The radiation sensing system of claim 32, wherein a plurality of signal processing dies of said multiple signal processing dies for a radiation absorbing layer of said Q radiation absorbing layers are physically attached to a support substrate, and Wherein, the plurality of signal processing chips are sandwiched between the supporting substrate and the radiation absorbing layer. 如請求項32所述的輻射感測系統,其中,用於所述Q個輻射吸收層中的一輻射吸收層的所述多信號處理晶片位於所述Q個輻射吸收層中相鄰輻射吸收層的凹部中。The radiation sensing system of claim 32, wherein the multi-signal processing wafer for one of the Q radiation absorbing layers is located adjacent to one of the Q radiation absorbing layers in the recess. 如請求項32所述的輻射感測系統, 其中,用於所述Q個輻射吸收層的輻射吸收層的所述多信號處理晶片位於分離層的凹部中,並且 其中,所述分離層被配置為阻擋伽馬射線和X射線。 The radiation sensing system of claim 32, wherein the multi-signal processing wafer for the radiation absorbing layer of the Q radiation absorbing layers is located in the recess of the separation layer, and Wherein, the separation layer is configured to block gamma rays and X-rays.
TW111125649A 2021-08-13 2022-07-08 Method of determination of photon origination points using radiation detectors and radiation sensing system TW202307463A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/CN2021/112531 2021-08-13
PCT/CN2021/112531 WO2023015564A1 (en) 2021-08-13 2021-08-13 Determination of photon origination points using radiation detectors

Publications (1)

Publication Number Publication Date
TW202307463A true TW202307463A (en) 2023-02-16

Family

ID=85199772

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111125649A TW202307463A (en) 2021-08-13 2022-07-08 Method of determination of photon origination points using radiation detectors and radiation sensing system

Country Status (3)

Country Link
CN (1) CN117795382A (en)
TW (1) TW202307463A (en)
WO (1) WO2023015564A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8299437B2 (en) * 2007-05-15 2012-10-30 National Institute Of Radiological Sciences Gamma ray detector and gamma ray reconstruction method
JP5585094B2 (en) * 2010-01-22 2014-09-10 独立行政法人放射線医学総合研究所 Radiation position detector position calculation method and apparatus
US9606245B1 (en) * 2015-03-24 2017-03-28 The Research Foundation For The State University Of New York Autonomous gamma, X-ray, and particle detector
EP3314304A4 (en) * 2015-06-25 2019-05-08 University of Maryland, Baltimore Techniques for producing an image of radioactive emissions using a compton camera
WO2020047835A1 (en) * 2018-09-07 2020-03-12 Shenzhen Xpectvision Technology Co., Ltd. Systems and methods for imaging the thyroid
CN111329500B (en) * 2018-12-19 2022-09-09 清华大学 Gamma radiation imaging device and imaging method
EP4004528A4 (en) * 2019-07-29 2023-01-11 Shenzhen Xpectvision Technology Co., Ltd. Systems and methods for three-dimensional imaging

Also Published As

Publication number Publication date
CN117795382A (en) 2024-03-29
WO2023015564A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
TW202307463A (en) Method of determination of photon origination points using radiation detectors and radiation sensing system
WO2023087123A1 (en) Image sensors with shielded electronics layers
TWI822463B (en) Imaging system
TWI842206B (en) Imaging systems with image sensors for side radiation incidence during imaging and method of using the same
WO2024031301A1 (en) Imaging systems and corresponding operation methods
WO2024044925A1 (en) Side incidence image sensors with protruding integrated circuit chips
TWI822069B (en) Battery roll testing method with imaging systems
WO2024138360A1 (en) Arrangements of radiation detectors in an image sensor
WO2023123161A1 (en) Imaging systems with image sensors for side radiation incidence during imaging
WO2023123301A1 (en) Imaging systems with rotating image sensors
TWI831514B (en) Imaging methods using bi-directional counters
WO2024138366A1 (en) IMAGING SYSTEMS AND CORRESPONDING OPERATION METHODS USING Re-MIBI (RHENIUM METHOXY-ISOBUTYL-ISONITRILE) IN OBJECTS
TWI814258B (en) Imaging methods using radiation detectors
TWI802283B (en) Imaging systems
WO2023115516A1 (en) Imaging systems and methods of operation
WO2024007285A1 (en) Scanning of objects with radiation detectors
WO2024031595A1 (en) Radiation detecting systems with measurement results adjusted according to radiation source intensities
WO2023039701A1 (en) 3d (3-dimensional) printing with void filling
CN112955787B (en) Radiation detector
TW202331301A (en) Method and system for performing diffractometry
TW202300905A (en) Method of battery film testing with imaging systems and imaging system
TW202329481A (en) Methods of operation of image sensors
TW202328661A (en) Flow speed measurements method using imaging systems
TW202248679A (en) Imaging methods using radiation detectors and imaging system
TW202228278A (en) Imaging method and imaging system