TWI840702B - 用於檢測流體中粒子尺寸的方法和裝置 - Google Patents

用於檢測流體中粒子尺寸的方法和裝置 Download PDF

Info

Publication number
TWI840702B
TWI840702B TW110134566A TW110134566A TWI840702B TW I840702 B TWI840702 B TW I840702B TW 110134566 A TW110134566 A TW 110134566A TW 110134566 A TW110134566 A TW 110134566A TW I840702 B TWI840702 B TW I840702B
Authority
TW
Taiwan
Prior art keywords
particle
intensity
data representing
particles
detection system
Prior art date
Application number
TW110134566A
Other languages
English (en)
Other versions
TW202219480A (zh
Inventor
梅迪 費茲艾拉凡尼
艾菲雪克 葛許
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202219480A publication Critical patent/TW202219480A/zh
Application granted granted Critical
Publication of TWI840702B publication Critical patent/TWI840702B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0227Investigating particle size or size distribution by optical means using imaging; using holography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0038Investigating nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1029Particle size
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1493Particle size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Computer Vision & Pattern Recognition (AREA)

Abstract

本文揭示的示例涉及用於檢測流體中粒子尺寸的系統和方法。該系統包括用於輸送流體的導管和樣本區域。一些流體通過樣本區域。第一成像元件具有光學透鏡和數位檢測器。雷射源發射第一雷射束。數位檢測器生成穿過光學透鏡的散射光的初始強度的度量。散射光從穿過樣本區域的粒子散射,並且包括來自穿過樣本區域的第一雷射束的光。控制器基於初始強度與表示聚焦和散焦粒子的強度的數據的比較來輸出校正粒子強度。校正粒子強度生成對應於粒子的實際尺寸的校正度量。

Description

用於檢測流體中粒子尺寸的方法和裝置
本文揭示的示例總體上涉及一種用於檢測流體中粒子尺寸的方法和裝置。
粒子的檢測在包括半導體製造在內的許多技術領域中很重要。積體電路元件中許多例行地觀察到的缺陷的原因可以追溯到生產處理某個階段的微小粒子污染。通常,可以發現小的污染粒子漂浮在環境大氣中,甚至漂浮在製造工廠使用的超純水(UPW)中。這些粒子可能會進入生產線,並在製造處理中污染基板。已經使用多種技術來檢測這些小粒子,包括測量粒子在流體(包括氣體和液體)中的擴散、空氣動力學、光學或電遷移率的方法和裝置。雖然這些方法提供了有關粒子存在的有用資訊,但大多數傳統方法在確定粒子尺寸上缺乏準確性和精確度,這使得確定適當的糾正措施變得困難和具有挑戰性。
通常稱為液體粒子計數器(LPC)的市售工具通常用於鑑定UPW的純度和清潔度。LPC使用多種方法來檢測和測量粒子大小或粒子大小分佈,其包括遮光(遮蔽)、光散射、Coulter原理和直接成像。在光散射中,可以使用雷射光進行粒子檢測。然而,由於雷射光的橫截面積在中心比靠近外圍區域具有更大的強度,因此很難區分穿過雷射光中心的小粒子和穿過雷射光區域的外圍的較大粒子。這種技術的局限性在於所使用的檢測器通常具有單個感測元件(例如光電二極體或光電倍增管),因此失去了區分多個粒子到達視域的能力。例如,通過雷射光中心的具有給定尺寸的較小粒子將具有與通過雷射光外圍區域的較大粒子基本相同的光散射位準。
因此,需要一種更準確的方法和裝置來檢測流體中的粒子尺寸。
本文揭示了用於檢測流體中粒子尺寸的系統和方法。提供了一種用於檢測粒子的系統。該系統包括配置成儲存流體的導管和限定在導管內的樣本區域。至少一部分流體以給定的速度通過樣本區域。該系統還包括第一成像元件,其包括光學透鏡和數位檢測器。雷射源被配置為發射第一雷射束。數位檢測器被配置為生成穿過光學透鏡的散射光的初始強度的度量。散射光從穿過樣本區域的一或更多個粒子散射。散射光包括來自第一雷射束的光。第一雷射束被第一成像元件引導穿過樣本區域。控制器被配置為基於從數位檢測器獲得的初始強度與表示聚焦粒子的強度和散焦粒子的強度的數據的比較來輸出校正粒子強度。校正粒子強度產生對應於一或更多個粒子的實際尺寸的校正度量。
在另一個示例中,用於粒子檢測的系統包括被配置為儲存流體的導管,以及限定在導管內的樣本區域。至少一部分流體以給定的速度通過樣本區域。該系統包括具有光學透鏡和數位檢測器的第一成像元件。雷射源被配置為發射第一雷射束。數位檢測器被配置為生成穿過光學透鏡的散射光的初始強度的度量。散射光從穿過樣本區域的一或更多個粒子散射。散射光包括來自第一雷射束的光。第一雷射束被第一成像元件引導穿過樣本區域。控制器被配置為儲存確定模組。確定模組被配置為基於從數位檢測器獲得的強度與表示聚焦粒子和散焦粒子的強度的數據的比較,輸出校正粒子強度。校正粒子強度產生對應於一或更多個粒子的實際尺寸的校正度量。
在又一個示例中,本文提供了一種用於檢測粒子的方法。該方法包括生成穿過第一成像元件的光學透鏡的散射光的初始強度的度量。散射光從穿過第一雷射束的一或更多個粒子累積。該方法包括將初始強度與表示聚焦粒子的強度或散焦粒子的強度的數據進行比較。基於校正粒子強度生成校正度量,該校正粒子強度係基於初始強度與表示聚焦粒子的強度或散焦粒子的強度的數據之間的比較。該方法還包括將校正粒子強度分類到對應於一或更多個粒子的實際尺寸的箱中。
本文揭示的示例一般涉及用於檢測和確定流體中的粒子尺寸的系統和方法。在一個示例中,本文討論的流體是大氣。在另一個例子中,這裡討論的流體是水。然而,應當注意,所揭示的發明對於包括許多不同氣體或液體的流體具有實用性。
隨著檢測流體中較小粒子的需要的增加,例行方法遇到若干限制。例如,一種傳統方法使用集中光的雷射束和相對較高的數值孔徑(NA)來收集光的圖像以檢測小粒子。然而,這些傳統工具(例如液體粒子計數器(LPC)),受到使用具有單個感測元件(例如光電二極體或光電倍增管)的檢測器的限制。單個感測元件在感測元件的不同位置的視域中很難區分一個以上粒子(即多個粒子)的到達。小粒子或大粒子可以穿過雷射束的中心軸,也可以穿過雷射束的外圍區域。由於能量集中在小光束中,許多落在中心焦點區域之外的粒子接收到的光很少。傳統的感測元件難以區分穿過中心軸或外圍區域的粒子之間的強度的測量。小粒子在感測元件檢測能力的下限處散射光,而大粒子會產生超過感測元件上限的散射訊號。當粒子被成像時,收集透鏡的相對較高的數值孔徑意味著焦深較短。因此,未位於聚光透鏡焦平面處的粒子將被成像為離焦(out-of-focus)。此外,通過中心區域之外的粒子會收到降低的輻射強度,並且這些粒子會被成像為離焦特徵。為了區分同時到達視域中的粒子,可以求助於陣列感測器(例如CCD或CMOS檢測器),它們原則上可以分離出不同粒子的圖像。然而,在這種情況下,如果粒子由於遠離成像透鏡的焦平面而成像散焦,則由粒子散射並由透鏡收集的能量將擴散到感測元件的許多像素上。將收集到的光傳播到幾個像素上會阻礙傳統感測元件估計粒子大小的能力,因為任何給定像素訊號的強度的測量不區分大小粒子、離焦粒子或未通過感測元件焦平面的粒子的降低的輻射強度。
本文揭示的方法和成像系統能夠同時觀察通過照明束(例如雷射束)的多個粒子。所揭示的方法和裝置的一個優點是可以減少來自包含流體、水、空氣或影響使用數位檢測器的感測系統的檢測靈敏度的其他不想要的訊號的容器的任何背景散射的影響。具有單個雷射源的感測系統可以精確地區分通過雷射束中心的小粒子和通過雷射束外圍區域的大粒子。
本文揭示的雷射束的橫截面的強度具有高斯分佈。總散射訊號(Tss)與粒子位置(Ps)處的光的強度、散射係數(CS)和成像元件的收集效率(CE)的乘積(即Tss~Ps‧CS‧CE)成正比。在一個示例中,總散射訊號被成像到數位檢測器上。可以假設粒子是球形的,即具有圓形橫截面。因此,來自粒子的光散射受米氏(Mie)散射所控制。米氏散射是直徑等於或大於入射光波長的粒子的彈性散射光。對於直徑為入射光波長(λ)1/4大小或更小的粒子,根據此處的等式1,光的散射減少為瑞利散射:
其中I表示散射光的強度,n和n 0分別為粒子和周圍媒體的折射率,d為粒子直徑。
根據此處的等式2,照明強度是雷射源的功率和雷射束在撞擊粒子點處的橫截面的函數:
其中I 1表示粒子在距雷射束中心軸的徑向位置r 1處的強度,並且W 0是聚焦區域處雷射束的半寬度。雷射束的半寬是強度為峰值的1/e 2處的點。照明強度I 0基本上等於雷射束的功率(P)除以雷射束的橫截面積(A)。
收集效率與聚光透鏡的數值孔徑的平方成正比。因此,散射光到達給定粒子的焦平面,如公式3所示:
1其中NA表示聚光透鏡的數值孔徑,積分值近似等於(NA) 2
粒子成像系統和粒子檢測系統被配置為使得聚光透鏡的焦平面與雷射束的中心軸重合。通過雷射束中心軸的粒子將使來自粒子的散射光量最大化。同時,散射光被成像透鏡有效收集,並在檢測器陣列上成像為一個小焦點。如果粒子小於聚光透鏡的分辨率極限,焦點的圖像會是艾瑞盤(Airy disc)圖案,即光通過小圓形孔徑時繞射產生的圖案的中心明亮圓形區域。
根據本文揭示的方法和裝置,分析給定粒子圖像的外圍區域周圍的艾瑞盤圖案的像素以確定粒子尺寸。透過評估艾瑞盤的環之間的距離,可以確定粒子在成像階段經歷的散焦量的估計值。該估計距離表示粒子位置與雷射束中心軸的距離。知道一或更多個距離,就可以確定粒子穿過雷射束的位置處光強度的降低。因此可以確定由於來自粒子的散射光而導致的總訊號位準的校正因子。在具有訊號雷射源的粒子成像系統或粒子檢測系統中利用校正因子,該訊號雷射源用於檢測流體(例如超純水(UPW))中的粒子大小,以確定粒子大小和位置。在一個示例中,粒子成像系統可用於放大被檢查的粒子。在一個示例中,粒子檢測系統檢測流體中的粒子,例如超純水。
圖1是鄰近包含流體120的導管104而設置的粒子檢測系統100的示意性正交視圖。導管104被適當地配置以用於使流體120流動。流體120可以是流過導管104的氣體或液體。流體120可以通過入口108進入導管104。出口112通過導管104流體連接到入口108。流體120通過入口108流入、通過導管104並通過出口112流出。入口108可以耦合到UPW源(未示出)。在一些示例中,出口112經由回流116與入口108連通。回流116將流體120引導至入口108,將流體120恢復到已經離開出口112的導管104中。流體120可以被UPW處理以去除污染物,包括有機和無機化合物、經溶解的和粒子狀物質以及氣體。氣體可以是溶解的、揮發性的、非揮發性的、反應性的、惰性的、親水的和疏水的。然而,應當理解,可以對UPW進行處理以去除本文未具體列舉的污染物,並且UPW仍可能包含小粒子,粒子檢測系統100可以檢測這些小粒子以最小化半導體處理中的粒子污染。
粒子124(即污染物),可能存在於流體120中。粒子124可以是在製造處理之後保留在流體120中的殘餘材料。例如,在流體120已經用於清潔基板的表面之後,粒子124可以保留在導管104中。粒子124可以是礦物質沉積物、微生物和微量有機(trace organic)和非有機化學品,以及其他污染物。取決於污染來自何處的製造處理,粒子124可以從幾微米(mm)到幾奈米(nm)。
樣本區域126可以是導管104的一部分或一段。樣本區域126可以是導管104的一部分並且僅標誌導管104的位置。或者,樣本區域126可以是容器、導管部分上的螺栓、插入到導管104中的部分、或使導管104準備好而用於由粒子檢測系統100採樣的其他合適的元件。樣本區域126可以由玻璃、石英、塑料或其他能夠使光從粒子檢測系統100進行透光和檢測的基本上透明的材料製成。在一個示例中,導管104由石英形成並且樣本區域126位於粒子檢測系統100的交叉點處。在另一個示例中,導管的透明部分代替導管104的一部分以形成樣本區域126。雖然樣本區域126被示為大體圓柱形,但形狀不限於這種幾何形狀,並且可以是任何幾何形狀,使得流體120被配置為流過其中。樣本區域126圍繞流經導管104的流體120。流體120中的粒子124穿過樣本區域126並且對粒子檢測系統100呈可見的。
粒子檢測系統100包括雷射源146和粒子檢測器130。粒子檢測器130包括成像透鏡134和數位檢測器138。雷射源146發射光束142。聚焦透鏡128位於雷射源146和樣本區域126之間。聚焦透鏡128在光束142進入樣本區域126之前聚焦或縮小光束142的直徑。或者,聚焦透鏡128可以加寬光束142的直徑。光束142可以被配置為使得從粒子124反射的光由粒子的p偏振照明支配。光的P偏振照明具有平行於入射平面偏振的電場。每個散射光脈衝可包括從粒子124產生的散射光的照明。透過分析散射光的強度,可以確定每個粒子124的尺寸。
散射光的強度I可以由上面示出和討論的等式1表示。光照強度用I 0表示;n是粒子124的折射率;n 0是流體的折射率;λ是真空中光的波長。這裡的光是指來自光束142的光。波長λ可以是DUV(0.2nm)到近紅外範圍(1050nm)之間的任何範圍。變量d表示粒子124的直徑。上面示出和討論的等式3描述了粒子124引發的散射強度I,其中粒子124具有與光束142的波長λ相比的小的直徑d,例如,粒子124的直徑d小於光束142的波長λ的1/4。
粒子檢測器130將資訊156傳輸到數據庫152。粒子檢測器130可以另外從數據庫152接收資訊156。資訊156包括用於校正或擬合由數位檢測器138所收集的來自粒子124的散射光的強度I的數據。數位檢測器138是檢測和傳送用於製作圖像的資訊的圖像感測器或成像器。資訊通常儲存在陣列中,圖像的每個像素值儲存在陣列的相應列和行中。
資訊156可以從輸出160發送或接收。在一個示例中,輸出160是區域的電腦,其具有控制器600,如圖6所示。在另一個示例中,輸出160是遠程電腦或具有控制器600的虛擬電腦。
圖2是具有適用於圖1所示的粒子檢測系統100的兩個成像元件的粒子成像系統200的示意性正交視圖。粒子成像系統200被配置為檢測粒子240。就粒子124的所有特性包括尺寸而言,粒子240基本上類似於上面討論的粒子124。在一個示例中,粒子成像系統200包括第一成像元件204和可選的第二成像元件216。在另一示例中,粒子成像系統200僅包括第一成像元件204或第二成像元件216中的一個。
第一成像元件204具有第一成像透鏡208和檢測陣列212。第一成像透鏡208與如上所述的聚焦透鏡128基本相似。類似地,檢測陣列212基本上類似於上述數位檢測器138。第二成像元件216具有第二成像透鏡210和第二檢測陣列214。每個檢測陣列212和214被配置為檢測和儲存'n×m'個像素陣列,即具有'n'個像素列和'm'個像素行。每個檢測陣列212和214是諸如電荷耦合元件(CCD)、主動像素感測器(CMOS)、混合CCD/CMOS或其他合適的成像感測器的圖像感測器。n或m的值可以在一個小的個位數和幾千之間並且表示所儲存圖像的分辨率,即,較高的值表示具有較小像素的較高分辨率。
衰減器220可以放置在粒子240和檢測陣列212之間。在一個示例中,衰減器220可以可選地定位在第一成像透鏡208和檢測陣列212之間。在另一個示例中,衰減器220被放置在第一成像透鏡208和粒子124之間。衰減器220可以是有色、染色和/或著色的透明材料,例如玻璃、塑料或石英。與不使用衰減器220的情況相比,衰減器220可以將來自撞擊粒子240的雷射束228的散射光的量減少約100。衰減器220在檢測陣列212飽和之前增加檢測陣列212可檢測到的粒子240的尺寸範圍,即超過檢測陣列212在第一成像透鏡208處累積散射光252的能力。例如,當使用衰減器220時,檢測陣列212可以檢測約50nm至約1000nm範圍內的粒子240。在該範圍內,檢測陣列212可以檢測由於來自粒子240的p偏振照明而產生的散射光。
雷射源224被配置為發射雷射束228。雷射束228具有與上述光束142基本相同的特性。雷射束228具有波長λ。雷射束228沿著焦平面236的路徑投射。焦平面236包括照明232的偏振方向,其可以沿著中心軸244,粒子240在該中心軸上穿過雷射束228。在一個示例中,中心軸沿著y方向202。在一個示例中,照明232的偏振方向指的是雷射束228的偏振。照明232的偏振方向也是電場的方向。照明232的偏振方向與焦平面236共面。對於p偏振照明,照明232的偏振方向垂直於雷射束228的傳播方向。照明232的偏振方向平行於聚光透鏡208和210的圖像平面。
粒子平面248垂直於雷射束228的傳播方向並且包括粒子240的行進方向,即中心軸244,以及成像透鏡208和210的光軸。換言之,粒子平面248沿x方向201和y方向202投影。z方向203與x方向和y方向202正交。粒子平面248垂直於焦平面236。粒子240可以在負y方向202上沿著粒子平面248傳播。由於p偏振照明的散射,給定粒子240通過雷射束228將產生散射光252的脈衝。光脈衝被轉換為度量(例如電壓或電流),並且度量被儲存為檢測陣列212的輸出上的訊號。
散射光252由第一成像元件204的第一成像透鏡208收集。散射光252在第一成像元件204內產生電壓,並且相應的訊號被儲存在檢測陣列212上。可選地,第二成像元件216經由第一成像透鏡208捕獲散射光252。散射光252可以在散射光252撞擊檢測陣列212之前穿過衰減器220,從而導致陣列產生與散射光252的幅度對應的電壓。對應於電壓幅度的度量與檢測陣列212的n×m像素的相應測量值或度量一起儲存。在另一個示例中,電流被測量,並且對應的值或度量被儲存在n×m像素圖像上。對應於照明強度I 0的散射光252在檢測陣列212中產生對應的訊號。所收集的散射光252的示例量是每個第一成像透鏡208的數值孔徑(NA)的函數。
圖3是繪示由圖2所示的成像元件204或216之一者所收集的散射光252的平面視圖。圖2中所示的第一成像裝置204在圖3中被擴展以另外說明可選的第三成像鏡頭300。第三成像透鏡300設置於檢測陣列212與第一成像透鏡208之間。在一範例中,第三成像透鏡300為放大透鏡。在中心軸244和第一成像透鏡208之間產生第一焦距304。在檢測陣列212和第三成像透鏡300之間產生第二焦距308。在一個示例中,可以改變第一焦距304或第二焦距以便對成像元件204或216中的一個進行聚焦或散焦。
雷射束228的橫截面的強度I被示為具有高斯分佈312。當來自粒子240的散射光252散佈到檢測陣列212上時,雷射束228的橫截面被顯示為投影到粒子平面248上。雷射束228具有全光束寬度316。全光束寬度228是等式1中波束寬度W 0的兩倍。第二粒子320被示為在x方向201上距中心軸244位移一段距離324。散射的第二光332由第一成像元件204收集並以與粒子240基本相同的方式作為訊號儲存在檢測陣列212上。角度328是與第三成像透鏡300正交的假想線301而與散射光252錐體的邊緣之間的交點處的角度。角度328在等式1中表示為ϴ。粒子240和經位移粒子320是具有相同直徑和半徑的兩個獨立粒子。經位移粒子320在雷射束228截面內的位置上不同於粒子240,其由高斯分佈312表示。
經位移粒子320可以在雷射束228的橫截面內在x方向201上移動,這由經位移粒子320在高斯分佈312中的位置來指示。如圖所示,經位移粒子320可以在距中心軸244一段距離324處通過。透過以第一成像透鏡208或第三成像透鏡300中的一個或兩者的角度328聚焦或散焦,粒子240的位置在檢測陣列212上改變。隨著角度328改變,經位移粒子320在檢測陣列212上的位置也移動。在另一示例中,粒子240在檢測陣列212上的位置被實驗性地移動。來自粒子240或經位移粒子320的散射光252被收集在檢測陣列212處,粒子240位於中心軸244的中心。在另一示例中,數學演算法用於將圖4A-4F中所示的粒子240的圖像進行聚焦和散焦。
圖4A-4F描繪了繪示出由圖2中所示的粒子成像系統200的檢測陣列收集的散射光252的分佈的圖表。圖4A-4C示出了當粒子240穿過雷射束228的橫截面時投射到檢測陣列212上的散射光252的繞射圖案。繞射圖案包括焦點400。在一些示例中,繞射圖案包括光環404-408。沿中心軸244傳播的粒子240的散射光252會聚集作為檢測陣列212上的焦點400。在一個示例中,焦點400是艾瑞盤。在另一個例子中,光環404被投射到檢測陣列212上。隨著經位移粒子320距中心軸244的距離324增加,會圍繞焦點400而形成光環404。焦點400和光環404被投射到檢測陣列212上。在又一個示例中,隨著第二粒子320距中心軸244的距離324增加,外部的光環408被投射到檢測陣列212上。因此,焦點400、光環404和外部的光環408被投射到檢測陣列212上。圖4B-4C示出了由於經位移粒子320在第一成像透鏡208處的散焦而散佈在檢測陣列212的像素上的散射的第二光332。
圖4D-4F示出了當粒子240穿過雷射束228的橫截面時由檢測陣列212接收的散射光252的強度分佈。光環404-408的強度在檢測陣列212上成像為離焦特徵。被經位移粒子320散射並被第一成像透鏡208收集的能量擴散到檢測陣列212的像素上。光環404-408中的每一者的強度小於焦點400的強度。每個光環404-408被顯示為沿z方向203的特定位置處的局部強度最大值。在一個示例中,光環404的強度大於外部的光環408的強度。強度的局部最小值可能不會出現在檢測陣列212上。有利地,本文揭示的裝置和方法利用來自光環404-408的強度數據來確定粒子240的實際尺寸。
位置分量Z對應於粒子240距中心軸244的距離。位置分量Z可以為正也可以為負。尺寸分量X對應於粒子240的直徑。粒子240的尺寸分量X為約10nm至約1000nm,例如約50nm。在一實例中,粒子240大小分量X約為40nm;在另一個例子中,尺寸分量X約為50nm。可檢測粒子240的示例性尺寸為約20nm。在其他示例中,可檢測粒子240為約60nm,或約35nm。在另一個示例中,可檢測粒子240具有從約50nm到約100nm的尺寸,例如約80nm。在又一示例中,可檢測粒子240具有約20nm至約30nm的尺寸,例如約25nm或約10nm。
圖5是確定粒子尺寸的方法500的流程圖。在方塊504,粒子穿過雷射束的橫截面。在一個示例中,粒子240穿過由雷射源224發射的雷射束228的橫截面。當粒子穿過雷射束時,散射光252在成像元件處被累積和收集。該粒子具有直徑d m和給定的半徑r n。多個已知直徑的粒子通過雷射束。來自粒子的散射光被收集在成像元件上。
在方塊508處,在數位檢測器處檢測散射光的強度。上述檢測陣列212是數位檢測器的示例。如上所述,散射光的強度與粒子的尺寸相關。此外,散射光的強度與粒子在雷射束橫截面內的水平位置相關。例如,當粒子240穿過雷射束228時,散射光252被第一成像元件204收集。在一個示例中,散射光具有繞射圖案,該繞射圖案包括焦點,例如焦點400。給定半徑(r n)和給定直徑(d m)處的強度I radial與徑向和直徑分量I radial(r n,d m)一起儲存。
在另一個示例中,粒子在距雷射束中心一定距離處穿過雷射束。散射光的繞射圖案包括圍繞焦點的光環。光環的強度不同並且可以包括強度的局部最小值和強度的局部最大值。隨著光環距焦點的徑向距離增加,光環的強度降低。散射的第二光332是從在離中心軸244的距離324處通過的經位移粒子320所收集的光的示例。光環404-408是所收集的散射光內的繞射圖案中的光環的示例。
在方塊512確定並校正背景雜訊。確定模組被配置為從聚焦強度或散焦強度中去除背景雜訊。確定模組從方塊508接收數據。來自方塊508的數據在確定模組處被處理,該模組識別接收到的數據中的背景訊號。可以從檢測到的強度訊號中減去背景訊號。在一個示例中,透過從每個檢測到的粒子的強度中減去背景訊號來確定差異。確定模組從強度數據中分離背景訊號並將校正數據提供給方塊516。
在方塊516處儲存總徑向強度I total。總徑向強度I total是對於一預定直徑的在給定半徑處的因給定粒子所引起的總散射光。總徑向強度可以用徑向和直徑分量表示為I(r n,d m),其中n和m在所有實數的域中。總徑向強度(I total)等於給定半徑(I radial)處的強度和校正因子(I correction)的總和,其中強度大於背景雜訊,即I radial>背景訊號。背景訊號包括成像元件的雜訊和/或粒子在其中流動的流體的背景訊號。對於給定半徑和直徑的每個強度I total(r n,d m)係儲存在程式庫中,例如數據庫中。
在方塊520,穿過雷射束的粒子具有給定的直徑d m。粒子在偏離雷射束橫截面中心的位置r n處穿過雷射束。在一個示例中,經位移粒子320在距中心軸244的距離324處穿過雷射束228。在成像元件處收集雷射束橫截面內多個位置r n的強度數據,其中r表示距中心的距離,n表示沿x方向的正或負位置。當已為給定尺寸的粒子收集強度數據時,在方塊524,方法500可返回方塊504以改變所檢測粒子的位置r n+1
在方塊528,改變穿過雷射束的粒子的直徑d m。同樣,多個已知直徑的粒子會通過雷射束。例如,粒子的直徑可以在約20nm和約30nm之間,或約40nm和約50nm之間。在又一個示例中,直徑可以在約80nm和約100nm之間。檢測來自每個粒子的散射光,如方塊504-516所述。在方塊524,方法500可以返回到方塊504,改變要檢測的粒子的直徑d m+1
在方塊532處,檢測流體中的粒子或該組粒子的強度。在一個示例中,流體是空氣。在另一個示例中,流體可以是氣體。超純水(UPW)是可以檢測到粒子的流體的另一個例子。在一個示例中,粒子檢測器130檢測超純水的導管104中的粒子124的初始強度I initial。數位檢測器138是這裡描述的數位檢測器的一個示例。來自粒子124的散射光強度在粒子檢測器130上產生繞射圖案。繞射圖案包括焦點和光環或光,類似於上面參考圖4A-4E討論的焦點和光環。
初始強度I initial在方塊540被校正,總強度I total(r n,d m)在方塊536被檢索。初始強度I initial可以利用總強度I total來擬合初始強度I initial。在另一個例子中,總強度I total(r n,d m)是一個數據集,透過它初始強度I initial來進行比較。可以透過根據最近的附近的演算法擬合初始強度I initial來確定實際強度I actual。在另一示例中,實際強度I actual由查找演算法確定,利用強度的大小來確定最接近的匹配。在另一個例子中,粒子的實際強度I actual是基於強度的大小來分類的。按大小對粒子進行分類包括將表示每個粒子的資訊分類到儲存器(bins)或類別中。該資訊對應於強度訊號的度量,該度量包括電壓或電流測量。
在方塊544,實際強度I actual被儲存在區域的或遠程記憶體中。在方塊548,方法500返回到方塊532,在其中檢測到額外的粒子124。
圖6是耦合到控制器600以用於圖1的粒子檢測系統100和圖2的粒子成像系統200中的成像元件601的平面圖。在一些示例中,第一成像元件204是成像元件601。並且在另一示例中,第二成像元件216是成像元件601。在另一個示例中,成像元件601是粒子檢測器130。應當理解,第一成像元件204和第二成像元件216中的一者或兩者可以被配置為成像元件601。類似地,粒子檢測器130可以被配置為成像元件601。因此,第一成像元件204和第二成像元件216以及粒子檢測器130被配置為單獨使用或彼此組合使用。控制器600包括彼此耦合的處理器604、記憶體608和支援電路612。控制器600可以在成像元件601上,或者在替代示例中,控制器600可以在從成像元件601接收圖像的遠程元件(未示出)上。成像元件601具有至少一個聚焦透鏡602,其被配置為捕捉粒子檢測系統100的圖像。
第一成像元件204包括輸入控制單元(例如電源、時脈、高速緩存、輸入/輸出(I/O)電路),其耦合到第一成像元件204的各種組件以促進其控制。可選地,第一成像元件204可以包括顯示單元(未示出)。處理器604可以是任何形式的一般的微處理器或一般的中央處理單元(CPU)中的一種,它們中的每一者都可以用於工業設置,例如可程式化邏輯控制器(PLC)、監控和數據採集(SCADA)系統或其他合適的工業控制器。應當理解,控制器600也可以以與第一成像元件204基本相同的方式耦合到第二成像元件216。
記憶體608是非暫時性的並且可以是容易獲得的記憶體中的一或更多個,例如隨機存取記憶體(RAM)、唯讀記憶體(ROM)或任何其他形式的區域的或遠程數位儲存。記憶體608包含在由處理器604執行時促進第一成像元件204的操作的指令。記憶體608中的指令為程式產品的形式,例如實現本發明方法的程式。程式產品的程式代碼可以符合多種不同程式化語言中的任何一種。說明性的電腦可讀儲存媒體包括但不限於:(i)在其上永久儲存資訊的不可寫入儲存媒體(例如,電腦內的唯讀記憶體元件(例如可由CD-ROM驅動器讀取的CD-ROM磁盤、閃存、ROM晶片或任何類型的固態非易失性半導體記憶體));和(ii)在其上儲存有可更改資訊的可寫入儲存媒體(例如,軟碟驅動器或硬碟驅動器中的軟碟片或任何類型的固態隨機存取半導體記憶體)。這種電腦可讀儲存媒體在承載指導本文所述方法的功能的電腦可讀指令時是本揭示發明的示例。
在一個示例中,一組粒子240(例如訓練組),被釋放到粒子成像系統200中以確定該組粒子240的繞射圖案(即,焦點400,或光環404-408)。在一個示例中,該組粒子240可以是約20nm至約60nm,例如約40nm。該組粒子240基本相同,因此如果每個粒子240通過中心軸244,則每個粒子240的總積分訊號對於該組粒子240中的每個粒子240保持相同。每個粒子240的總積分訊號的變化是該組粒子240的每個粒子240與中心軸244之間的間隔(即,距離324)的指示。確定每個粒子240相對於中心軸244的位置。此外,所有粒子240的繞射圖案由nxm陣列接收(例如檢測陣列212),並且繞射圖案儲存在記憶體608中。因此,離焦粒子(例如,經位移粒子320)的若干個繞射圖案之間的關係對應於成像透鏡(例如第一成像透鏡208)的散焦量。否則,確定離焦粒子路徑(例如經位移粒子320的路徑)與中心軸244之間的間隔。來自該訓練組的粒子240的數據儲存在記憶體608中並用作機器學習演算法的基礎。由具有「小」尺寸的粒子240產生的繞射圖案基本上相同,而與粒子240的直徑無關。換句話說,所謂粒子240的「小」尺寸是相對於諸如第一成像透鏡208、第二成像透鏡210或成像透鏡134的成像透鏡的繞射極限焦距分佈而言的。以此方式,利用機器學習演算法使粒子成像系統200能夠自動確定通過中心軸244的每個粒子240的位置。在另一示例中,粒子檢測系統100利用機器學習演算法自動確定穿過光束142的粒子124的位置。示例性機器學習演算法包括回歸演算法、基於實例的演算法、貝葉斯(Bayesian)演算法、決策樹和神經網路、監督和半監督演算法。
在一個示例中,本揭示發明可以實現為儲存在電腦可讀儲存媒體(例如608)上的程式產品,其用於與電腦系統(未示出)一起使用。程式產品的程式定義了這裡描述的本揭示發明的功能。程式/指令包括被配置為處理從圖1-5中所示的粒子成像系統收集的光的演算法。
本文揭示的示例總體上涉及一種用於檢測移動通過流體的粒子的尺寸的方法和裝置。有利地,該方法和裝置可以增強利用單個照明光束的粒子檢測系統中的小粒子和大粒子之間的區別。雖然前述針對具體示例,但在不脫離其基本範圍的情況下可以設計其他示例,並且其範圍由所附申請專利範圍確定。
120:流體 104:導管 100:粒子檢測系統 108:入口 112:出口 116:回流 124:粒子 126:樣本區域 146:雷射源 130:粒子檢測器 134:透鏡 138:數位檢測器 142:光束 128:聚焦透鏡 156:資訊 152:數據庫 160:輸出 600:控制器 200:粒子成像系統 240:粒子 216:第二成像元件 204:第一成像元件 208:第一成像透鏡 212:檢測陣列 210:第二成像透鏡 214:第二檢測陣列 220:衰減器 228:雷射束 252:散射光 236:焦平面 232:照明 244:中心軸 202:y方向 248:粒子平面 201:x方向 203:z方向 300:第三成像鏡頭 304:第一焦距 308:第二焦距 312:高斯分佈 316:全光束寬度 320:粒子 324:距離 332:散射的第二光 328:角度 301:假想線 400:焦點 404-408:光環 500:方法 504:方塊 508:方塊 516:方塊 520:方塊 524:方塊 528:方塊 536:方塊 540:方塊 544:方塊 532:方塊 548:方塊 600:控制器 601:成像元件 604:處理器 608:記憶體 612:支援電路 602:聚焦透鏡
為了能夠詳細地理解本揭示發明的上述特徵,可以通過參考本文中的示例對以上簡要概括的本揭示發明進行更具體的描述,其中一些示例在附圖中示出。然而,應當注意,附圖僅示出示例並且因此不應被認為是對本揭示發明範圍的限制。因此,附圖允許其他同樣有效的示例。
圖1是鄰近包含流體的導管而設置的粒子檢測系統的示意性正交視圖。
圖2是具有適用於圖1所示的粒子檢測系統的兩個成像元件的粒子成像系統的示意性正交視圖。
圖3為繪示圖2所示的成像元件之一所收集的散射光的平面圖。
圖4A-4F描繪了由圖1和2中所示的粒子成像系統的檢測陣列所收集的散射光的分佈的圖表。
圖5是確定粒子尺寸的方法的流程圖。
圖6是耦合到控制器的成像元件的平面圖,其用於在圖1的粒子檢測系統和圖2的粒子成像系統。
為了便於理解,在可能的情況下使用了相同的元件符號來表示具有共同特徵的相同元件。可以預期,一個示例的元素和特徵可以有益地合併到其他示例中而無需進一步敘述。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
240:粒子
204:第一成像元件
208:第一成像透鏡
212:檢測陣列
228:雷射束
252:散射光
244:中心軸
202:y方向
201:x方向
300:第三成像鏡頭
304:第一焦距
308:第二焦距
312:高斯分佈
316:全光束寬度
320:粒子
324:距離
332:散射的第二光
328:角度
301:假想線

Claims (20)

  1. 一種粒子檢測系統,包括:一導管,其被配置為輸送一流體;一樣本區域,其被限定在該導管內,其中該流體的至少一部分以一給定的速度通過該樣本區域;一第一成像元件,其包括:一光學透鏡;和一數位檢測器;一雷射源,其被配置為發射一第一雷射束,該數位檢測器被配置為生成穿過該光學透鏡的一散射光的一初始強度的一度量,該散射光從穿過該樣本區域的一或更多個粒子來散射,該散射光包括來自該第一雷射束的光,其中該第一雷射束被該第一成像元件引導穿過該樣本區域;和一控制器,其被配置為基於從該數位檢測器獲得的該初始強度與表示一聚焦粒子的強度和一散焦粒子的強度的數據的比較來輸出一修正的粒子強度,其中該修正的粒子強度產生對應於該一或更多個粒子的一實際大小的一校正度量。
  2. 如請求項1所述的粒子檢測系統,其中該度量是對應於該散射光的該初始強度的一電壓或一電流。
  3. 如請求項1所述的粒子檢測系統,還包括:一確定模組,該確定模組被配置為從該聚焦強度或散焦強度中去除一背景訊號。
  4. 如請求項1所述的粒子檢測系統,還包括:與該控制器通訊的一程式庫,其儲存表示一聚焦粒子的強度和一散焦粒子的強度的該數據,其中該程式庫包括表示預定粒子的一陣列中的一預定粒子與一第二成像元件的至少一個成像透鏡之間的一焦距的一差距的數據。
  5. 如請求項4所述的粒子檢測系統,其中,表示一聚焦粒子強度和一散焦粒子強度的該數據包括:表示為預定粒子的該陣列中的每個預定粒子的迭代累積的一相應強度的數據;和表示預定粒子的該陣列中的每個預定粒子的一相應強度的數據。
  6. 如請求項4所述的粒子檢測系統,其中,該焦距由一焦距演算法確定。
  7. 如請求項4所述的粒子檢測系統,其中透過調製該預定粒子與至少一個成像透鏡之間的一物理距離來改變該焦距。
  8. 如請求項1所述的粒子檢測系統,還包括:一確定模組,其被配置為輸出表示一聚焦粒子的強度和一散焦粒子的強度的該數據,其中該確定模組被配置為:在預定粒子的一陣列中的一預定粒子的一預定直徑中進行變化;為預定粒子的該陣列中的每個預定粒子迭代累加一相 應的強度;和將預定粒子的該陣列中的每個預定粒子的該對應強度儲存在一程式庫中,其中該對應強度是一聚焦粒子的該強度和一散焦粒子的該強度之一。
  9. 如請求項1所述的粒子檢測系統,其中,該表示一聚焦粒子強度和一散焦粒子強度的該數據還包括:表示繞射圖案的數據;和表示該繞射圖案之每者中的環的一總數的數據,其中該繞射圖案由像素的一陣列檢測。
  10. 如請求項9所述的粒子檢測系統,其中表示一聚焦粒子強度和一散焦粒子強度的該數據還包括:表示該繞射圖案之每者中每個環的一厚度的數據;和表示該繞射圖案之每者中的每個環之間的一距離的數據。
  11. 一種粒子檢測系統,包括一導管,其被配置為儲存一流體;一樣本區域,其被限定在該導管內,其中該流體的至少一部分以一給定的速度通過該樣本區域;一第一成像元件,其包括:一光學透鏡;和一數位檢測器;一雷射源,其配置為發射一第一雷射束,該數位檢測器配置為生成穿過該光學透鏡的一散射光的一初始強度 的一度量,該散射光從穿過該樣本區域的一或更多個粒子散射,該散射光包括來自該第一雷射束的光,其中該第一雷射束被該第一成像元件引導穿過該樣本區域;和一控制器,其被配置為儲存一確定模組,該確定模組被配置為基於從該數位檢測器獲得的該初始強度與表示一聚焦粒子和一散焦粒子的強度的數據的一比較來輸出一校正粒子強度,其中該校正粒子強度生成與該一或更多個粒子的一實際大小相對應的一校正度量。
  12. 如請求項11所述的粒子檢測系統,其中該校正度量是對應於該散射光的該初始強度的一電壓或一電流。
  13. 如請求項11所述的粒子檢測系統,還包括:一確定模組,該確定模組被配置為從該聚焦強度或該散焦強度中去除一背景訊號。
  14. 如請求項11所述的粒子檢測系統,還包括:與該控制器通訊的一程式庫,其儲存表示一聚焦粒子的強度和一散焦強度粒子的強度的該數據,其中該程式庫包括表示預定粒子的一陣列中的一預定粒子和一第二成像元件的至少一個成像透鏡之間的一焦距的一差距的數據。
  15. 如請求項14所述的粒子檢測系統,其中表示一聚焦粒子強度和一散焦粒子強度的該數據包括:表示為預定粒子的該陣列中的每個預定粒子的迭代累積一相應強度的數據;和 表示預定粒子的該陣列中的每個預定粒子的一相應強度的數據。
  16. 如請求項11所述的粒子檢測系統,其中表示一聚焦粒子強度和一散焦粒子強度的該數據還包括:表示焦點繞射圖案的數據;和表示該焦點繞射圖案之每者中的環的一總數的數據。
  17. 如請求項16所述的粒子檢測系統,表示一聚焦粒子強度和一散焦粒子強度的該數據還包括:表示該焦點繞射圖案之每者中的每個環的一厚度的數據;和表示該焦點繞射圖案之每者中的每個環之間的一距離的數據。
  18. 一種檢測粒子的方法,該方法包括以下步驟:產生穿過一第一成像元件的一光學透鏡的散射光的一初始強度的一度量,該散射光被從穿過一第一雷射束的一或更多個粒子來累積;將該初始強度與表示一聚焦粒子強度或一散焦粒子強度的數據進行比較;基於一校正粒子強度生成一校正度量,該校正粒子強度係基於該初始強度與表示一聚焦粒子的該強度或一散焦粒子的該強度的該數據之間的一比較;和將該校正粒子強度分類到對應於該一或更多個粒子的一實際尺寸的一儲存器中。
  19. 如請求項18所述的方法,還包括以下步驟:從一程式庫中檢索該校正粒子強度,其中表示一聚焦粒子的該強度和散焦粒子的該強度的該數據儲存在該程式庫中,其中該程式庫是透過使粒子的一陣列通過一第二雷射束而實驗地產生的。
  20. 如請求項18所述的方法,還包括以下步驟:從表示一聚焦粒子強度或一散焦粒子強度的該數據中去除一背景訊號。
TW110134566A 2020-09-25 2021-09-16 用於檢測流體中粒子尺寸的方法和裝置 TWI840702B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/033,521 US11353389B2 (en) 2020-09-25 2020-09-25 Method and apparatus for detection of particle size in a fluid
US17/033,521 2020-09-25

Publications (2)

Publication Number Publication Date
TW202219480A TW202219480A (zh) 2022-05-16
TWI840702B true TWI840702B (zh) 2024-05-01

Family

ID=80822298

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110134566A TWI840702B (zh) 2020-09-25 2021-09-16 用於檢測流體中粒子尺寸的方法和裝置

Country Status (5)

Country Link
US (1) US11353389B2 (zh)
KR (1) KR20230073300A (zh)
CN (1) CN116324372A (zh)
TW (1) TWI840702B (zh)
WO (1) WO2022066309A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11506587B1 (en) * 2022-06-29 2022-11-22 HLM Diagnostics Inc. Liquid droplet and solid particle sensing device
CN115598024B (zh) * 2022-11-16 2023-03-14 长春光吉科技有限责任公司 细胞分级计数装置及其方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080111992A1 (en) * 2005-02-03 2008-05-15 Kazuo Moriya Defective Particle Measuring Apparatus and Defective Particle Measuring Method
US8154724B2 (en) * 2007-12-04 2012-04-10 Particle Measuring Systems, Inc. Two-dimensional optical imaging methods and systems for particle detection
TW201506375A (zh) * 2013-06-03 2015-02-16 Ronald Knox 粒子偵測系統及相關方法
US20160123897A1 (en) * 2014-11-04 2016-05-05 Sri Rama Prasanna Pavani Computational wafer image processing
JP2017167081A (ja) * 2016-03-18 2017-09-21 株式会社島津製作所 粒子径分布測定装置、データ処理方法及びデータ処理プログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3521381B2 (ja) 1998-02-23 2004-04-19 リオン株式会社 粒子計数装置
JP3412606B2 (ja) 2000-08-04 2003-06-03 株式会社島津製作所 レーザ回折・散乱式粒度分布測定装置
JP4132692B2 (ja) 2001-02-20 2008-08-13 株式会社堀場製作所 粒径分布測定装置
DE102014017552A1 (de) * 2014-10-15 2016-04-21 Retsch Technology Gmbh Vorrichtung und Verfahren zur Bestimmung der Partikelgröße und/oder der Partikelform von Partikeln in einem Partikelstrom
US20180259441A1 (en) * 2017-03-07 2018-09-13 Axsun Technologies, Inc. OCT Sensing of Particulates in Oil
US11442000B2 (en) * 2019-12-16 2022-09-13 Applied Materials, Inc. In-situ, real-time detection of particulate defects in a fluid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080111992A1 (en) * 2005-02-03 2008-05-15 Kazuo Moriya Defective Particle Measuring Apparatus and Defective Particle Measuring Method
US8154724B2 (en) * 2007-12-04 2012-04-10 Particle Measuring Systems, Inc. Two-dimensional optical imaging methods and systems for particle detection
TW201506375A (zh) * 2013-06-03 2015-02-16 Ronald Knox 粒子偵測系統及相關方法
US20160123897A1 (en) * 2014-11-04 2016-05-05 Sri Rama Prasanna Pavani Computational wafer image processing
JP2017167081A (ja) * 2016-03-18 2017-09-21 株式会社島津製作所 粒子径分布測定装置、データ処理方法及びデータ処理プログラム

Also Published As

Publication number Publication date
TW202219480A (zh) 2022-05-16
KR20230073300A (ko) 2023-05-25
US11353389B2 (en) 2022-06-07
WO2022066309A1 (en) 2022-03-31
CN116324372A (zh) 2023-06-23
US20220099546A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
KR102438824B1 (ko) 3차원 반도체 구조체들의 검사를 위한 결함 발견 및 레시피 최적화
TWI779421B (zh) 流體中的顆粒缺陷的原位即時偵測
TWI840702B (zh) 用於檢測流體中粒子尺寸的方法和裝置
JP7184763B2 (ja) 半導体ウェハ検査用三次元イメージング
US10082470B2 (en) Defect marking for semiconductor wafer inspection
JP6490211B2 (ja) ウェハ欠陥発見
EP2232229B1 (en) Two-dimensional optical imaging methods for particle detection
US7505619B2 (en) System and method for conducting adaptive fourier filtering to detect defects in dense logic areas of an inspection surface
TWI440844B (zh) 檢測樣品表面缺陷之檢測系統及其檢測方法
JP2006098154A (ja) 欠陥検査方法およびその装置
WO2015175894A1 (en) Defect sampling for electron beam review based on defect attributes from optical inspection and optical review
TW201631315A (zh) 檢測系統及具有增強偵測之技術
KR102630492B1 (ko) 광학 표면 결함 재료 특성화를 위한 방법 및 시스템
JP7236473B2 (ja) 多重散乱信号に基づく埋設粒子深度値域分類
TWI727137B (zh) 空白光罩之缺陷檢查方法、分選方法及製造方法
US8908172B2 (en) Defect inspection device and method of inspecting defect
JP3573587B2 (ja) 微小欠陥検査方法およびその装置並びに露光方法および半導体基板の製造方法
Yin et al. Efficient and precise detection for surface flaws on large-aperture optics based on machine vision and machine learning
KR102447224B1 (ko) 미세 입자의 정성 및 정량 분석 장치
JP2010185692A (ja) ディスク表面検査装置、その検査システム及びその検査方法
JP7507893B2 (ja) 流体中で粒子サイズを検出するための方法および装置
JPH05172732A (ja) 液体中微粒子検出装置およびその検出方法
JP2015203658A (ja) 検査装置
JP2001074645A (ja) 微量微細粒子の測定方法及び測定装置
JP2006047375A (ja) マスク表面の異物検査装置および方法