TWI839450B - 藉由偵測在具有分離網格電漿處理裝置內氮存在的漏氣偵測方法 - Google Patents

藉由偵測在具有分離網格電漿處理裝置內氮存在的漏氣偵測方法 Download PDF

Info

Publication number
TWI839450B
TWI839450B TW109102547A TW109102547A TWI839450B TW I839450 B TWI839450 B TW I839450B TW 109102547 A TW109102547 A TW 109102547A TW 109102547 A TW109102547 A TW 109102547A TW I839450 B TWI839450 B TW I839450B
Authority
TW
Taiwan
Prior art keywords
plasma
fluorescence
nitrogen
chamber
oxygen
Prior art date
Application number
TW109102547A
Other languages
English (en)
Other versions
TW202100977A (zh
Inventor
孟雙
新亮 呂
紹銘 馬
華 仲
Original Assignee
美商得昇科技股份有限公司
大陸商北京屹唐半導體科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/258,744 external-priority patent/US11039527B2/en
Application filed by 美商得昇科技股份有限公司, 大陸商北京屹唐半導體科技有限公司 filed Critical 美商得昇科技股份有限公司
Publication of TW202100977A publication Critical patent/TW202100977A/zh
Application granted granted Critical
Publication of TWI839450B publication Critical patent/TWI839450B/zh

Links

Images

Abstract

提供用於偵測氣漏的電漿處理裝置與相關聯方法。在一示例實例中,該電漿處理裝置可包含,一處理室以加工一工件,藉由分離網格而與該處理室隔開的一電漿室,及一感應耦合元件,以使用該電漿室內的處理氣體來感應生成一氧電漿。該電漿處理裝置可偵測:在氧電漿下游處理空間內,由一氧化氮(NO)及氧自由基之間反應生成的餘輝發射強度,以測量起因於氣漏存在的氮濃度。

Description

藉由偵測在具有分離網格電漿處理裝置內氮存在的漏氣偵測方法 請求優先權
本申請案根據並請求2019年1月28日提申之美國專利申請第16/258,744號「Air Leak Detection in Plasma Processing Apparatus with Separation Grid」的優先權,該案合併至本文以供參考。
本案一般關於使用電漿源的電漿處理。
可使用電漿處理工具來製造(諸如)積體電路、微機械裝置、平板顯示器、及其他裝置。在現代電漿蝕刻及/或剥除應用中所使用的電漿處理工具,需要提供高電漿均勻度及複數電漿控制,其包含獨立電漿曲線圖、電漿密度及離子能量控制。例如在某些結構中,電漿處理工具可在高度控制環境中進行許多電漿處理,例如密封處理室。這對於避免雜質(如空氣及/或水蒸汽)進入電漿處理工具而言,可能是重要的,因為任何這類雜質對於一或更多電漿處理態樣可能有負作用。
本案實施例的態樣及優點將在以下的描述中部份地提出、或可由該描述習得、或經由實施例的實行而習得。
本案一示例觀點係指向,一種偵測電漿處理裝置內氮存在的方法。此方法可包含,允許含氧氣體進入電漿室。此方法可包含,在電漿室內,從含氧氣體生成一或更多物種。此方法可包含,經由分離網格來過濾一或更多物種,以產生混合物,網格將電漿室與處理室隔開。混合物可包含一或更多氧自由基。此方法可包含,取得處理室內相關聯於螢光的資料,其中螢光係從受激二氧化氮分子發射。此方法可包含,至少部分根據相關聯於螢光的資料,來判定電漿處理裝置內的氮存在。
本案另一示例觀點指向,一種用於偵測氮存在的電漿處理裝置。此電漿處理裝置可包含處理室,其具有工作支架。工件支架可在電漿處期間支撐工件。此電漿處理裝置可包含電漿室,其藉分離網格與處理室隔開。此電漿處理裝置可包含感應耦合元件,其經配置以使用電漿室內的處理氣體來感應生成電漿。處理氣體包含含氧氣體。此電漿處理裝置可包含控制器,其經配置,以便取得處理室內相關聯於螢光的資料。螢光可發射自受激的二氧化氮分子。此控制器,可至少部分地根據相關聯螢光資料,以判定該電漿處理室內的氮存在。在該電漿內生成的一或更更多氧自由基,通過分離網格,可供曝露至 工件。
本案其他示例觀點係指向,用於偵測具有分離網格之電漿處理裝置內氣漏的系統、方法及設備。
許多實施例的這些及其他的特性、態樣、及優點,在參照下文描述及後附申請專利範圍之下,將得到更佳的瞭解。合併在說明書中並構成其一部份的附屬圖式,繪示了本發明的實施例,並連同說明書描述用來解釋相關原理。
符號 英文 中文
50:Gas inlet 氣體入口
52:Plasma chamber 電漿室
53:Processing chamber 處理室
60:Optical emission spectrum 光發射光譜
62:Magnitude axis 振幅軸
66:Luminescence continuum spectrum 螢光連續光譜
69:Wavelength axis 波長軸
100:Plasma processing apparatus 電漿處理裝置
110:Processing chamber 處理室
112:Workpiece support or pedestal 工件支架或基座
114:Workpiece 工件
120:Plasma chamber 電漿室
122:Dielectric side wall 介電側壁
124:Ceiling 頂板
125:Plasma chamber interior 電漿室內部
128:Faraday shield 法拉第屏蔽
130:Induction coil 感應線圈
132:Impedance matching network 阻抗匹配網路
134:RF power generator RF功率產生器
135:Inductively coupled plasma source 感應耦合電漿源
150:Gas supply 氣體供應器
151:Gas distribution channel 氣體分配通道
158:Control valve/mass flow controller 控制閥/質量流控制器
159:Feed gas line 饋入氣體管線
160:Gas exhaust port 氣體排出埠
162:Detection unit 偵測單元
164:Optical view port 光學取景埠
200:Separation grid assembly 分離網格組合
210:First grid plate 第一網格板
220:Second grid plate 第二網格板
400:Method 方法
500:Optical emission spectrum 光發射光譜
510:Magnitude axis 振幅軸
520:Wavelength axis 波長軸
530:First portion 第一部
540:Second portion 第二部
600:Plot 曲線
602:Magnitude axis 振幅軸
604:Time axis 時間軸
606:First portion 第一部
608:Second portion 第二部
612:Magnitude axis 振幅軸
614:Time axis 時間軸
616:First portion 第一部
618:Second portion 第二部
700:Model 模型
710:Magnitude axis OES振幅軸
720:Flow axis 氮流軸
730:Calibration curve 校準曲線
800:Model 模型
810:Magnitude axis OES振幅軸
820:Flow axis 氮流軸
830:Calibration curve 校準曲線
900:Plasma processing chamber 電漿處理室
902:First plasma 第一電漿
904:Second plasma 第二電漿
910:Bias electrode 偏壓電極
912:Matching network 匹配網路
914:RF power generator RF功率產生器
916:Gas exhaust port 氣體排出埠
針對本技術領域具通常知識者的實施例,在參照附圖之下,更詳細地陳述於說明書中,其中:
第一圖繪出示例電漿處理裝置內的氮存在偵測;
第二圖繪出示例相關聯於氮存在偵測的光發射光譜;
第三圖繪出依照本案示例實施例的示例電漿處理裝置程序;
第四圖繪出依照本案示例實施例的示例處理的流程圖;
第五圖繪出可供依照本案示例實施例資料處理使用的示例光發射光譜;
第六圖繪出依照本案示例實施例的示例資料處理在光發射光譜結合前後的比較;
第七圖繪出依照本案示例實施例的使氮濃度與時 間平均結合強度相關聯的示例模型;
第八圖繪出依照本案示例實施例的使氮濃度與時間平均結合強度相關聯的示例模型;以及
第九圖繪出依照本案示例實施例的示例電漿處理裝置。
現在詳細地參照實施例,其一或多個示例已在圖式中加以圖解。所提出各個示例是要解釋該等實施例,並非要做為本發明的限制。事實上,此技術領域具通常知識者應能輕易看出,可對實施例做出各種修改及變化而不會偏離本發明的範疇及精神。例如,經繪出或描述為某一實施例之某部分的特徵可配合另一具體實施例使用,以產生又更進一步的具體實施例。因此,本發明各態樣企圖涵蓋這類修改及變化。
本案示例觀點指向電漿處理裝置及相關聯的用於在電漿處理裝置內偵測氣漏的方法(如氮存在)。電漿處理裝置可包含:處理室,用以處理工件(如基板、矽晶圓、薄膜、或任何其他合適的半導體材料);藉由分離網格與處理室隔開的電漿室;及感應耦合元件,其使用處理氣體(如含氧氣體),在電漿室內感應生成氧電漿。電漿處理裝置可偵測餘輝(亦指螢光)發射強度(亦指強度),其來自氧電漿下游處理空間(如處理室內介於分離網格及工件之間的空間、或靠近可供氣體從處理室排出的氣體排出埠的空間)內的一氧化氮(NO)及氧自由基之 間的反應,以量測起因於氣漏存在的氮濃度。
某些情況下,吾人期盼的是,工件處理步驟期間或當場乾式清潔步驟期間,在電漿源下游位置的室漏速率偵測(如即時監測/偵測),而不犠牲工件產量。也令人期盼地,電漿處理裝置可在電漿源下游位置發生氣漏的早期,偵測氣漏(如低度氣漏偵測),及警告使用者及/或可根據此氣漏偵測而停止工件處理。
依照本案示例觀點,氣漏偵測(如氮存在偵測),藉由偵測介於分離網格與工件及/或靠近氣體排出埠(用於從處理室排放氣體)的處理空間中螢光強度,可內建在工件處理期間或現場乾式清潔期間的氧電漿步驟中。藉由一氧化氮及氧電漿下游氧自由基的反應,可生成螢光。這種螢光可為電漿區內(電漿室內)、及/或下游區內(如處理室內)氮存在的指標,且藉由螢光強度與一個使氮濃度和螢光強度起相關聯性的模型(如校正曲線)間的比較,可判定氮濃度。從多光發射光譜可取得此模型,且每一光發射光譜可相關聯於已知的氮濃度。然後,測得的氮濃度可轉變成為等效室漏率。
某些實施例中,發光攝譜儀(OES)探針可連接到電漿源下游處理室上的光學取景埠。OES探針可偵測,以分離網格而隔離於電漿源之處理室內一個位置上的螢光,以致電漿源可激發電漿室內分離網格上方被收容的電漿,且只有活性自由基與中性粒子可流入處理室。例如,OES探針可偵測處理室 內介於分離網格及工件或工件支架之間一個位置上的螢光,及/或靠近一個可供氣體從處理室排出的氣體排出埠的位置上的螢光。
某些實施例中,氮可與氧自由基反應以形成一氧化氮(NO)。處理室內電漿下游的一氧化氮,可與氧自由基再結合,形成受激狀態的二氧化氮(NO2),然後其可發射螢光光子,腐蝕基態。來自這類一氧化氮與氧自由基之間反應的螢光,可在處理室內形成綠-黃螢光,及OES探針可捕獲相關聯於此螢光的資料。某些實施例中,相關聯於螢光資料可包含光發射光譜(如光連續光譜),在約615奈米有最大發射的約400奈米至約1400奈米波長範圍。可被判定的是,相關聯螢光資料(如螢光強度)係線性相關於氧氛圍內的氮濃度。因此,得使用此相關聯螢光資料來確實地測量處理室內的氮濃度。
某些實施例中,為了定量地從螢光來判定氮濃度,得使用經控制的氮摻雜來執行校準程序。根據在控制摻雜之下的氮濃度所測得的螢光發射,可推斷取得一模型(如校準曲線)。然後,來自測量值的螢光強度可與此模型進行比較,以決定對應的處理室內氮濃度。得完成資料處理演算法,以增加訊號對雜訊比,以致可以改良氮濃度偵測的精確度。如此,即使OES探針所捕獲的光發射光譜內螢光強度可能是虛弱而帶有雜訊的,也可正確地判定非常低的氮濃度。
某些實施例中,電漿處理裝置可包含控制器,以 取得處理室內的相關聯螢光資料。控制器更可根據此相關聯螢光資料,來判定電漿處理裝置內的氮濃度。
例如在某些實施例中,針對一時段(如數次運轉)內多時間點的每一個時間點,藉由相關聯螢光資料(如光發射光譜)的第一部的平均強度,控制器可判定背景。例如,控制器可平均對應於波長範圍約200奈米至約350奈米的OES強度,以取得背景。控制器可將光發射光譜的第二部減去此背景。例如,控制器可從對應於波長範圍約400奈米至約750奈米的OES強度,扣除此背景。控制器可結合此經扣除的光發射光譜第二部,以取得此時間點的結合強度。例如,控制器可結合對應於波長範圍約400奈米至約750奈米的已經扣除的OES強度,以取得訊號。控制器可將此時段所取得的多個經結合的強度加以平均,以取得時間-平均結合強度。多結合強度的每一者可相關聯於每個時間點。例如,控制器可將數個運轉下的結合OES訊號加以平均,以取得時間-平均結合OES訊號。控制器可將時間平均結合強度與一個模型(其使氮濃度相關聯於時間平均結合強度)進行比較,以決定氮濃度。例如,控制器可將時間平均結合OES訊號與校準曲線進行比較,以判定氮濃度。
某些實施例中,如果被偵測得的波長係在螢光連續光譜內,OES探針可由單一波長端點偵測器來取代。例如,單一波長端點偵測器,可偵測光譜中約在峰值波長(如約615奈米)上的螢光。某些實施例中,OES探針可由多波長端點偵測 器(如發光二極體)來取代,以偵測寬頻螢光強度,而非得自OES探針的全光譜。
某些實施例中,依照本案示例實施例的電漿處理裝置及相關聯方法,可提供數個技術效益及優點。例如,電漿處理裝置及相關聯方法,可提供一種可行性,在不需要額外處理步驟下,利用電荷分離網格來追蹤(如即時追蹤),工件處理期間在處理空間內的室漏速率,或電漿處理裝置下游的現場乾式清潔步驟中的室漏速率,因此,此電漿處理裝置及相關聯方法不會犠牲工件產量。附加地,可以有多種偵測器,如OES探針,及端點偵測器,或發光二極體,其面對介於分離網格及工件支架之間的處理空間,及/或靠近可供氣體從處理室排出的氣體排出埠。
為了說明和討論的目的,參照「工件」、即「半導體晶圓」,來討論本發明的各態樣。本技術領域中具有通常知識者在使用本文提供的揭露內容後將理解到,本發明的示例態樣可與任何半導體基板或其他合適的基板結合使用。另外,術語「約」與數值結合使用,欲指在所述數值的百分之十(20%)之內。「基座」是指可用於支撐工件的任何結構。
第一圖繪出依照本案示例實施例電漿處理裝置內的示例氮存在偵測。氣體入口50將含氧(O2)氣體輸送到電漿室52(如感應耦合電漿室),以生成一或更多物種。氣體入口50可能有氣漏(如含氮氣體N2)。氮氣可與電漿室52內的氧自由基反 應,形成一氧化氮(NO)。一氧化氮(NO)及氧自由基可通過分離網格,其將電漿室52與處理室53隔開。一氧化氮(NO)及氧自由基可在處理室53內反應,形成受激發的二氧化氮(NO2),其在介於分離網格與工件支架的處理空間中的處理室53內發射出螢光。
第二圖繪出相關聯於依照本案示例實施例的氮存在偵測之示例光發射光譜(60)。螢光連續光譜(66)可從發光攝譜儀探針來取得。螢光連續光譜66被描繪成波長軸69及振幅軸62。此螢光連續光譜66包含範圍約200奈米到約800奈米的波長,其具有約615奈米處的峰值波長。
第三圖繪出依照本案示例實施例的示例電漿處理裝置100。如圖所示,電漿處理裝置100包含處理室110(如第一圖中處理室53實施例)及電漿室120(如第一圖中電漿室52實施例),其與處理室110隔開。處理室110包含工件支架或基座112,其可操作以握住待處理的工件114,如半導體晶圓。這個示例實施例中,藉由感應耦合電漿源135,在電漿室120(即電漿生成區)內生成電漿,且從電漿室120經由分離網格組合200,將令人期盼的物種輸送到基板114表面。
電漿室120包含介電側壁122和頂板124。介電側壁122、頂板124和分離網格200界定電漿室內部125。介電側壁122可由介電質材料形成,例如石英及/或氧化鋁。感應耦合電漿源135可包含感應線圈130,其鄰近介電側壁122設置在電漿室 120周圍。感應線圈130透過合適的阻抗匹配網路132耦合到RF功率產生器134。可從氣體供應器150及環形氣體分配通道151、或其他合適的氣體引入機制,將處理氣體(例如,如含氧氣體)提供至室內部。當感應線圈130被來自RF功率產生器134的RF功率激發時,可在電漿室120中產生電漿。在具體實施例中,電漿處理裝置100可包含可選用的接地的法拉第屏蔽128,以降低感應線圈130對電漿的電容耦合。
如第三圖所示,分離網格200將電漿室120及處理室110隔開。可使用分離網格200,對於從電漿室120內電漿所生混合物,執行離子過濾,以生成過濾後的混合物(如氧自由基)。濾後混合物可曝露至處理室110內的工件114。
某實施例中,分離網格200可為多板分離網格。例如,分離網格200可包含彼此以平行關係隔開的第一網格板210及第二網格板220。第一網格板210及第二網格板220可以一個距離隔開。
第一網格板210可具有包含複數孔的第一網格型樣。第二網格板220可具有包含複數孔的第二網格型樣。第一網格型樣可與第二網格型樣相同或不同。帶電荷的微粒可在其穿過分離網格中之每一網格板210、220的孔的路徑中,在壁上進行再結合。中性物種(例如自由基)可相對自由地通過第一網格板210和第二網格板220中的孔。孔的大小以及每一網格板210和220的厚度可影響帶電粒子和中性粒子的通透度。
在一些具體實施例中,第一網格板210可由金屬(例如,鋁)或其他導電材料製成,及/或第二網格板220可由導電材料或介電材料(例如,石英、陶瓷)製成。在一些具體實施例中,第一網格板210及/或第二網格板220可由其他材料製成,例如矽或碳化矽。在網格板由金屬或其他導電材料製成的情況下,網格板可接地。在一些具體實施例中,網格組合可包含具有單一網格板的單一網格。
如第三圖所示,裝置100可包含氣體輸送系統150,其組態為(例如)經由氣體分配通道151或其他分配系統(例如,噴頭)將處理氣體輸送至電漿室120。氣體輸送系統可包含饋入氣體管線159。可使用閥及/或質量流量控制器158來控制饋入氣體管線159,以將所需的氣體量輸送到電漿室中作為處理氣體。如第三圖所示,氣體輸送系統150可包含饋入氣體管線,用於輸送含氧氣體。可使用控制閥及/或質量流控制器158來控制饋入氣體管線的流率,將處理氣體送入電漿室120內。
如第三圖所示,依照本案示例觀點,偵測單元162(如發光攝譜儀(OES)探針、單波長端點偵測器、或多波長端點偵測器),可連接到光學取景埠164,以偵測處理室110中介於分離網格210及工件114之間處理空間內的螢光、及/或靠近可供氣體自處理室110排出的氣體排出埠160的處理空間內的螢光,以便偵測因氣漏存在而引起的氮濃度。
第四圖繪出依照本案示例實施例之示例方法 (400)的流程圖。方法(400)將參照(例如)第三圖的電漿處理裝置100來討論。可在任何合適的電漿處理裝置中完成方法(400)。為了解說及討論,第四圖繪示的步驟係以特定順序執行。在利用本文提供的揭示內容之下,本技術領域中具通常知識者將明瞭,任何本文所述方法的許多步驟,可在多種方式之下,省略、擴張、同時執行、重組、及/或修改,而不偏離本案範圍。又,可執行許多步驟(未示),而不偏離本案範圍。
在(410),此方法可包含,允許含氧氣體進入電漿室。例如,電漿處理裝置100的氣體輸送系統150可輸送含氧氣體進入電漿室120。
在(420),方法可包含,在電漿室內從含氧氣體生成一或更多物種。例如,來自含氧氣體的一或更多物種,可在電漿室120內生成。
在(430),方法可包含,透過將電漿室與處理室隔開的分離網格,過濾此一或更多物種,以產生混合物(如氧自由基)。例如,分離網格200可過濾一或更多物種,以產生氧自由基。
在(440),方法可包含,曝露此混合物至處理室內的工件。例如,在處理室110內,工件114可曝露在氧自由基之下。
某些實施例中,電漿處理裝置內的氮存在偵測方法,可在處理期間完成(如現場乾式清潔步驟),而在處理室內 沒有工件。
在(450),方法可包含,取得處理室內相關聯於螢光的資料。例如,氮可與氧自由基反應,形成一氧化氮(NO)。處理室110內的一氧化氮可與氧自由基再結合,形成受激狀態的二氧化氮(NO2),然後它可發射螢光光子,而衰變成為基態。這類一氧化氮與氧自由基之間反應所生成的螢光,可在處理室內形成綠-黃螢光,及OES探針可捕獲相關聯於螢光的資料。另一例子係描述於上述的第一圖。
在(460),方法可包含,至少部分地根據此相關聯於螢光的資料,來判定電漿處理裝置內的氮存在。某些實施例中,針對一個時段(如數次運轉)內多個時間點的每一個時間點,此方法可包含,藉由相關聯於螢光資料的第一部(如光發射光譜)強度的平均,判定背景。例如,方法可包含,將對應至波長範圍約200奈米至約350奈米的OES強度,加以平均,以取得背景。方法可包含,從光發射光譜的第二部,扣除此背景。例如,方法可包含,將對應至波長範圍約400奈米至約750奈米的OES強度,扣掉此背景。此方法可包含,結合已扣除的光發射光譜第二部,以取得在該時間點的結合後強度。例如,此方法可包含,將已扣除的對應到波長範圍約400奈米至750奈米的OES強度,加以結合,以取得訊號。此方法可包含,將多數個在此時段內取得的經結合的強度,加以平均,以取得時間平均結合強度。多數個經結合強度的每一者,可相關聯於每一個時 間點。例如,此方法可包含,將數次運轉期間的經結合OES訊號,加以平均,以取得時間平均結合OES訊號。此方法可包含,將時間平均經結合強度,與一模型進行比較,(此模型使氮濃度與時間平均經結合強度起了相關聯性),以判定氮濃度。例如,此方法可包含,將時間平均結合OES訊號與校準曲線進行比較,以判定氮濃度。
第五圖繪出依照本案示例實施例之可供資料處理的示例光發射光譜500。光發射光譜500描繪在振幅軸510及波長軸520之間。光發射光譜具有第一部530,對應至範圍約200奈米至約350奈米的波長;第二部540,對應至範圍約400奈米至約750奈米的波長。可將第一部530的強度平均,取得背景。可從第二部扣除此背景,且可結合此經扣除的第二部,以取得訊號。
第六圖繪出依照本案示例實施例之光發射光譜結合前與後的示例資料處理比較。結合前與後的訊號,係描繪在振幅軸與時間軸之內。可從光發射光譜(如第二圖及第五圖所示的光譜),取得每一時間點上的訊號。結合之前的訊號,係繪示在振幅軸602及時間軸604之內。曲線600內每一時間點上的訊號,可以是對應至光發射光譜峰值波長的強度。第一部606顯示:取得在氧氣7000sccm且氮氣0sccm條件之下的訊號,第二部608顯示:取得在氧氣7000sccm且氮氣3sccm條件之下的訊號。結合後的訊號,係描繪在振幅軸612及時間軸614之 間。第一部616顯示:取得在氧氣7000sccm且氮氣0sccm條件之下的訊號。針對第一部616內每一時間點的訊號,其對應範圍約0秒至約10秒的第一時間點,可結合光發光光譜的某一部分(如第五圖之光發射光譜500的第二部540),以取得在這個時間點上經結合的強度。此時段內的結合強度能夠加以平均,以取得時間平均結合強度。第二部618顯示:取得在氧氣7000sccm且氮氣3sccm條件之下的訊號。針對第二部618內每一時間點的訊號,其對應範圍約10秒至約30秒的第二時間點,可結合光發光光譜的某一部分(如第五圖之光發射光譜500的第二部540),以取得在這個時間點上的經結合的強度。此時段內的結合強度能夠加以平均,以取得時間平均結合強度。
第七圖繪出依照本案示例實施例之使氮濃度與時間平均結合強度起關聯的示例模型700。校準曲線730係描繪在OES振幅軸710及氮流軸720之中。校準曲線730顯示,大約在餘輝波長周圍(約600奈米),已知氮流率(如經控制的氮摻雜)及時間平均結合強度之間的線性關係。第七圖顯示大範圍的氮濃度,其具有約0sccm到大於約100sccm的氮流率。根據所測得的從最低度到最高度的結合強度,來判定八個氮流。
第八圖繪出依照本案示例實施例之使氮濃度與時間平均結合強度起關聯性的示例模型800。校準曲線830係描繪在OES振幅軸810及氮流軸820之中。校準曲線830顯示,已知氮流率(如經控制的氮摻雜)及時間平均結合強度之間的線性 關係。第八圖顯示大範圍的氮濃度,其具有約0sccm到大於約12sccm的氮流率。根據所測得的結合強度,來判定三個氮流。
第九圖繪出示例電漿處理裝置900,其可用來完成依照本案示例實施例的處理。電漿處理裝置900係相似於第三圖的電漿處理裝置100。
更具體地,電漿處理裝置900包含處理室110及與處理室110隔開的電漿室120。處理室110包含基板支架或基座112,其可操作以握住待處理的工件114,如半導體晶圓。這個示例實施例中,藉由感應耦合電漿源135,在電漿室120(即電漿生成區)內生成電漿,且從電漿室120經由分離網格組合200,將令人期盼的物種輸送到基板114表面。
電漿室120包含介電側壁122和頂板124。介電側壁122、頂板124和分離網格200界定電漿室內部125。介電側壁122可由介電質材料形成,例如石英及/或氧化鋁。感應耦合電漿源135可包含感應耦合元件130,其鄰近介電側壁122設置在電漿室120周圍。感應線圈130透過合適的匹配網路132耦合到RF功率產生器134。可從氣體供應器150及環形氣體分配通道151、或其他合適的氣體引入機制,將處理氣體(例如,如惰氣)提供至室內部。當感應線圈130被來自RF功率產生器134的RF功率激發時,可在電漿室120中產生電漿。在具體實施例中,電漿處理裝置100可包含可選用的接地的法拉第屏蔽128,以降低感應線圈130對電漿的電容耦合。
如第九圖所示,分離網格200將電漿室120及處理室110隔開。可使用分離網格200,對於從電漿室120內電漿所生混合物,執行離子過濾,以生成過濾後的混合物。濾後混合物可曝露至處理室110內的工件114。
某實施例中,分離網格200可為多板分離網格。例如,分離網格200可包含彼此以平行關係隔開的第一網格板210及第二網格板220。第一網格板210及第二網格板220可以一個距離隔開。
第一網格板210可具有包含複數孔的第一網格型樣。第二網格板220可具有包含複數孔的第二網格型樣。第一網格型樣可與第二網格型樣相同或不同。帶電荷的微粒可在其穿過分離網格中之每一網格板210、220的孔的路徑中,在壁上進行再結合。中性物種(例如自由基)可相對自由地通過第一網格板210和第二網格板220中的孔。孔的大小以及每一網格板210和220的厚度可影響帶電粒子和中性粒子的通透度。
在一些具體實施例中,第一網格板210可由金屬(例如,鋁)或其他導電材料製成,及/或第二網格板220可由導電材料或介電材料(例如,石英、陶瓷)製成。在一些具體實施例中,第一網格板210及/或第二網格板220可由其他材料製成,例如矽或碳化矽。在網格板由金屬或其他導電材料製成的情況下,網格板可接地。
第九圖的示例電漿處理裝置900可操作,以在電漿 室120內生成第一電漿902(如遠程電漿),而且在處理室110內生成第二電漿904(如直接電漿)。可由感應耦合電漿源來生成第一電漿902。可由(例如)電容耦合電漿源(如偏壓)來生成第二電漿904。如本文所使用的,「遠程電漿」係指電漿距離工件遙遠地來生成,如在藉由分離格柵與工件隔開的電漿室內。如本文所使用者,「直接電漿」係指直接地曝露到工件的電漿,如在具有可操作來支撐工件的基座的處理室內所生成的電漿。
更具體地,第九圖的電漿處理裝置900包含在基座112上具有偏壓電極910的偏壓源。經由合適的匹配網路912,偏壓電極910可耦合至RF功率產生器914。當偏壓電極910受到RF能量的激發時,可從處理室110內的混合物生成第二電漿904,以直接曝露至工件114。處理室110可包含氣體排出埠916,可供從處理室110排空氣體。
如第九圖所示,裝置900可包含氣體輸送系統150,其組態為(例如)經由氣體分配通道151或其他分配系統(例如,噴頭)將處理氣體輸送至電漿室120。氣體輸送系統可包含饋入氣體管線159。可使用閥及/或質量流量控制器來控制饋入氣體管線159,以將所需的氣體量輸送到電漿室中作為處理氣體。如第九圖所示,氣體輸送系統150可包含用於輸送含氧氣體的饋入氣體管線。可使用控制閥及/或質量流量控制器158,控制每一饋入氣體管線內的流率,以流動處理氣體進入電漿室120。
如第九圖所示,依照本案示例觀點,偵測單元162(如發光攝譜儀(OES)探針、單波長端點偵測器、或多波長端點偵測器),可連接到光學取景埠164,以偵測處理室110內介於分離網格210及工件114之間一個處理空間內的螢光,及/或靠近可供氣體從處理室110排出之氣體排出埠160的處理空間內的螢光,以測量因為氣漏存在而造成的氮濃度。
雖然已針對本發明標的的特定示例具體實施例詳細地描述了本發明標的,但將理解到,本技術領域中具有通常知識者在理解前述內容後,可容易地對這些具體實施例進行修改、變化和均等。因此,本文揭示內容的範圍僅作為示範,而非作為限制,且主要揭示內容並未排除包含對本技術領域中具有通常知識者而言係可輕易完成的本發明標的的這類修飾、變化及/或添加。
50:Gas inlet 氣體入口
52:Plasma chamber 電漿室
53:Processing chamber 處理室

Claims (17)

  1. 一種偵測一電漿處理裝置內氮存在的方法,該方法包括:允許一含氧氣體進入一電漿室;在該電漿室內從該含氧氣體生成一或更多物種,該一或更多物種包含一氧電漿;經由一分離網格來過濾該一或更多物種,以產生一混合物,該網格將該電漿室與一位在該電漿室下游的處理室隔開,該混合物包括一或更多氧自由基,其中該氧電漿係包含在該電漿室中,如此使得在該處理室內的該混合物藉由該分離網格與該氧電漿分隔開來;取得在該處理室內所產生相關聯於螢光的資料,其中該螢光係從位在該氧電漿下游處的受激二氧化氮分子發射而來;及至少部分根據該相關聯於該螢光的資料來判定該電漿處理裝置內的氮存在,該螢光對應一600-615奈米峰值波長。
  2. 如申請專利範圍第1項的方法,其中該受激二氧化氮分子係藉由該處理室內一氧化氮與該一或更多氧自由基的再結合反應而生成。
  3. 如申請專利範圍第2項的方法,其中該一氧化氮係藉由一或更多氮分子與該一或更多氧自由基的反應而生成。
  4. 如申請專利範圍第1項的方法,其中判定該氮存在包括 判定該電漿處理裝置內的氮濃度。
  5. 如申請專利範圍第1項的方法,其中該氮係在該電漿室內。
  6. 如申請專利範圍第1項的方法,其中該氮係在該處理室內。
  7. 如申請專利範圍第1項的方法,其中該相關聯螢光的資料,係在該處理室內位於該分離網格及一工件支架之間的一位置上取得。
  8. 如申請專利範圍第1項的方法,其中該相關聯於螢光的資料,係在靠近一氣體排出埠的一位置上取得,該氣體排出埠可供一氣體從該處理室排出。
  9. 如申請專利範圍第1項的方法,其中該相關聯於螢光的資料,係取自一發光攝譜儀(OES)探針,其連接到該處理室上的一光學取景埠。
  10. 如申請專利範圍第1項的方法,其中該相關聯於螢光的資料包括一光發射光譜,其包括範圍約400奈米至約1400奈米的波長。
  11. 如申請專利範圍第1項的方法,其中該相關聯於螢光的資料包括取自一多波長端點偵測器的光發射資料。
  12. 如申請專利範圍第1項的方法,其中該相關聯於螢光的資料包括取自一單波長端點偵測器的光發射資料。
  13. 如申請專利範圍第1項的方法,更包括曝露該混合物至 一工件。
  14. 如申請專利範圍第4項的方法,其中判定該電漿處理裝置內氮濃度包括:針對一時段內複數時間點的每一時間點,藉由該相關聯於螢光資料的一第一部的平均強度判定一背景,其中該相關聯於螢光的資料包括一光發射光譜;自該光發射光譜的一第二部扣除該背景,其中該第二部包括比該第一部還要高的波長;結合經扣除後的該光發射光譜的第二部,以取得在此時間點的一結合強度;將該時段內所取得的複數結合強度加以平均,以取得相關聯於每一時間點的該複數結合強度的每一者的一時間-平均結合強度;及將該時間-平均結合強度、與使氮濃度和時間平均結合濃度互相關聯的一模型進行比較,以便判定該氮濃度。
  15. 如申請專利範圍第14項的方法,其中該光發射光譜的該第一部包括範圍約200奈米至約350奈米的波長。
  16. 如申請專利範圍第14項的方法,其中該光發射光譜的該第二部包括範圍約400奈米至約750奈米的波長。
  17. 如申請專利範圍第14項的方法,其中該模型係獲得自複數光發射光譜,該複數光發射光譜的每一者相關聯於一已知 氮濃度。
TW109102547A 2019-01-28 2020-01-22 藉由偵測在具有分離網格電漿處理裝置內氮存在的漏氣偵測方法 TWI839450B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/258,744 US11039527B2 (en) 2019-01-28 2019-01-28 Air leak detection in plasma processing apparatus with separation grid
US16/258,744 2019-01-28

Publications (2)

Publication Number Publication Date
TW202100977A TW202100977A (zh) 2021-01-01
TWI839450B true TWI839450B (zh) 2024-04-21

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018375A2 (en) 2010-07-27 2012-02-09 Axcelis Technologies Inc. Plasma mediated ashing processes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018375A2 (en) 2010-07-27 2012-02-09 Axcelis Technologies Inc. Plasma mediated ashing processes

Similar Documents

Publication Publication Date Title
JP5536041B2 (ja) 微量気体濃度の監視によるウエハプラズマ処理中のアーキング現象を検出する方法、及び、プラズマ処理装置
US6492186B1 (en) Method for detecting an endpoint for an oxygen free plasma process
US20040011379A1 (en) Processing apparatus and cleaning method
TWI828612B (zh) 用於判定與電漿處理系統中之異常事件相關聯之化學物種的方法及設備
KR20180073700A (ko) 진보된 광학 센서 및 플라즈마 챔버용 방법
US6769288B2 (en) Method and assembly for detecting a leak in a plasma system
KR101015730B1 (ko) 종료점을 사용한 에치특성을 구하는 장치 및 방법
KR100690144B1 (ko) 플라즈마를 이용한 가스분석장치
US5284547A (en) Plasma-process system with batch scheme
TWI839450B (zh) 藉由偵測在具有分離網格電漿處理裝置內氮存在的漏氣偵測方法
CN112368798B (zh) 具有分离格栅的等离子体加工设备中的空气泄露检测
KR101273922B1 (ko) 능동형 오염방지장치를 갖는 셀프 플라즈마 발광분광기 및 이를 이용한 플라즈마 챔버의 오염 방지 방법
JP2006086325A (ja) クリーニングの終点検出方法
US20050219520A1 (en) Method for in situ monitoring of chamber peeling
KR100835379B1 (ko) 사중극자 질량 분석기를 이용한 챔버 상태 모니터링 방법
US20050221617A1 (en) Inductively coupled plasma chamber attachable to a processing chamber for analysis of process gases
KR20070018404A (ko) 플라즈마 식각 장치
CN116453931B (zh) 晶圆处理设备
KR101939634B1 (ko) 플라즈마 반응기 벽면 상태 진단 방법
JPH0837175A (ja) 汚染測定方法
JPH0722401A (ja) プラズマエッチング装置
KR20070069856A (ko) 플라즈마 안정성 검출기
KR20070091461A (ko) 검출창을 구비한 플라즈마 식각 장치
KR20200100587A (ko) 가스 성분의 모니터 방법 및 그 장치 그리고 그것을 이용한 처리 장치
JP2000040690A5 (zh)