TWI837797B - 交織擺動控制方法、焊接控制裝置、焊接系統、焊接方法、及交織擺動控制程式 - Google Patents

交織擺動控制方法、焊接控制裝置、焊接系統、焊接方法、及交織擺動控制程式 Download PDF

Info

Publication number
TWI837797B
TWI837797B TW111132930A TW111132930A TWI837797B TW I837797 B TWI837797 B TW I837797B TW 111132930 A TW111132930 A TW 111132930A TW 111132930 A TW111132930 A TW 111132930A TW I837797 B TWI837797 B TW I837797B
Authority
TW
Taiwan
Prior art keywords
welding
swing
speed
interweaving
aforementioned
Prior art date
Application number
TW111132930A
Other languages
English (en)
Other versions
TW202319158A (zh
Inventor
中田太
川崎啲文
戸田忍
児玉克
Original Assignee
日商神鋼ROBOTiX股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021156169A external-priority patent/JP2023047210A/ja
Application filed by 日商神鋼ROBOTiX股份有限公司 filed Critical 日商神鋼ROBOTiX股份有限公司
Publication of TW202319158A publication Critical patent/TW202319158A/zh
Application granted granted Critical
Publication of TWI837797B publication Critical patent/TWI837797B/zh

Links

Images

Abstract

本發明是提供:使用在導軌上移動的可搬移型焊接機器人來進行下向焊接、橫向焊接、直立焊接之各種姿勢的焊接時,能夠用來獲得良好的焊接品質之交織擺動控制方法。 交織擺動控制方法,係具有:設定步驟,其係至少設定與用來決定交織擺動模樣的基準距離相關之交織擺動基準軌跡的條件;以及 速度條件算出步驟,其係根據在設定步驟所決定的交織擺動模樣,針對於預先設定的複數個方向成分,分別計算出來對於可令可搬移型焊接機器人移動之機器人移動機構下達指令的速度條件; 並且是將:對於在速度條件算出步驟所計算出來的複數個方向成分的各個速度條件之停止訊號的指令、以及在下達停止訊號之後隨即執行或者經過了預先設定的停止時間之後才執行之出發訊號的指令,至少在到達交織擺動端的時點予以同步執行。

Description

交織擺動控制方法、焊接控制裝置、焊接系統、焊接方法、及交織擺動控制程式
本發明是關於:使用可搬移型焊接機器人來對於具有溝槽的工件進行焊接之交織擺動控制方法、焊接控制裝置、焊接系統、焊接方法以及交織擺動控制程式。
在造船、鋼骨、橋樑之類的焊接構造物的製造上,在於工場內執行的焊接作業,基於重視作業效率的考量,大多是採用:主要以下向姿勢的焊接為對象之應用了定置型且大型化的多軸焊接機器人之系統。此處所稱之應用了定置型的多軸焊接機器人之系統,例如係指:將被焊接物(以下,有時候也稱「工件」)設置在定置型的定位器上,並且使用多軸焊接機器人來進行自動焊接的型式之焊接機器人系統。另外,無法適用大型的多軸焊接機器人的現場焊接、小型物品的構件和複雜形狀構件的焊接,則大多是採用:被稱為半自動焊接的手動焊接、或者使用了作業員一個人即可搬運之輕量小型化的可搬移型焊接機器人的自動焊接。尤其是可搬移型焊接機器人,因為可以發揮其能夠搬運攜帶的特點,很適合應用於現場焊接。
然而,在進行電弧焊接法時,為了能夠對於被焊接物的焊接接頭獲得充分的融入以及適當的焊堆形狀,乃將焊炬朝向焊接接頭的溝槽寬度方向或溝槽深度方向一邊進行擺動,一邊沿著焊道的方向進行焊接。這種焊炬的擺動,被稱為「交織擺動」、「震盪擺動」或「運棒」,配合不同的焊接姿勢,所形成的交織擺動模樣也有所不同。此外,在以下的說明中,係將焊炬的擺動稱為「交織擺動」,將因為這種交織擺動而形成的軌跡稱為「交織擺動模樣」。藉由利用上述的多軸焊接機器人或可搬移型焊接機器人等來執行這種焊炬的交織擺動,不僅能夠獲得充分的融入以及適當的焊堆形狀,還可以達成焊接的自動化。
專利文獻1是揭示出:將多關節焊接機器人與旋轉定位器組合在一起之定置型的焊接裝置,如專利文獻1的圖17所示,其是在橫向焊接中將交織擺動形成鋸齒狀而可以獲得適當的焊堆。此外,其是在直立焊接中將交織擺動形成矩形狀而可以獲得適當的焊堆。
專利文獻2所揭示的自動焊接裝置,是移動和焊接準備工作都很容易之輕量小型化的焊接裝置,其中是組裝著X、Y、Z方向的三個正交軸以及用來將焊炬進行擺動的驅動軸。並且在專利文獻2中也揭示出:依據從共用的記憶體讀出的焊接速度來控制馬達而將焊接速度控制在既定的速度,焊接擺動控制部則是針對各領域的每一個焊接層來控制馬達,而將焊炬部的擺動振幅控制成與溝槽底面的寬度相對應。
專利文獻3所揭示的可搬移型的自動焊接裝置,是除了在導軌上進行移動之X、Y、Z方向的三個正交軸之外,還加入可將焊炬予以傾斜的T軸。並且在專利文獻3還揭示出:將用來量測溝槽形狀的兩點位置之間分割成不同領域,將利用前一點與後一點所計算出來的焊接速度進行線性內插補間來決定出各領域的焊接條件,並且根據所決定出來的焊接速度來設定各領域的震盪條件,而在進行焊接中,將焊炬進行震盪(震盪擺動)。 [先前技術文獻] [專利文獻]
[專利文獻1] 日本國特開2013-202673號公報 [專利文獻2] 日本國特公平8-15665號公報 [專利文獻3] 日本國特開2021-16881號公報
[發明所欲解決之問題]
然而,專利文獻1所揭示之直立焊接與橫向焊接的交織擺動,係可藉由應用鋸齒狀和矩形狀之類的複雜的交織擺動模樣,而能夠獲得適當的焊堆,這種特殊的交織擺動模樣,只要使用具有複數個自由度之多關節機器人的話,即可很容易就實現,但是,如果想要將以多關節機器人作為構成要素之自動焊接裝置,如同可搬移型焊接機器人這般地應用於現場焊接的話,即使單就裝置的重量或設定時間的觀點考量,也是不具有實用性而且很困難。
又,專利文獻2或專利文獻3所揭示的焊接裝置,雖然是在可搬移型焊接機器人中,利用了交織擺動專用的擺動機構或者可將焊炬朝溝槽寬度方向移動的移動機構,藉由在焊接過程中將焊炬往返移動來進行交織擺動,但是,兩者都是依照預先決定的焊接速度來設定交織擺動條件,在焊接過程中來將焊炬進行交織擺動。換言之,每一種預先決定的焊接速度之交織擺動條件都會不同,因此,必須就焊接速度與交織擺動條件之兩者的關係一起進行管理。
此處,圖28(a)係顯示:相對於預先決定的焊接速度,交織擺動周期屬於適當的情況下之交織擺動的動作。對於這種狀態,假設將焊接速度加大的話,就會如圖28(b)所示般地,交織擺動模樣的間隙會變大,根據這種交織擺動模樣之間隙的話,將會出現焊炬無法抵達的地方,因而會有焊接金屬在溝槽內融入不足之虞慮。
此外,在進行交織擺動時,為了想要讓焊接金屬充分地融入溝槽壁,有時候會在交織擺動的兩端設定停止時間。在交織擺動的兩端設定停止時間之目的,是想要讓焊炬逗留在焊炬停止的地方來提高輸入熱量來獲得焊接金屬充分的融入。然而,專利文獻2或專利文獻3所揭示的可搬移型焊接機器人,焊炬雖然會在交織擺動的兩端逗留的同時,還是朝焊接線方向進行移動。因此,作為入熱點的焊炬還是會繼續移動下去,所以就無法達成原本之目的。此外,假設焊接速度變大的話,將會如圖29所示般地,交織擺動模樣的間隙會變大,根據這種交織擺動模樣之間隙的話,將會出現焊炬無法抵達的地方,因而會有焊接金屬在溝槽內融入不足之虞慮。
圖28(b)和圖29所示之上述的令人產生虞慮的現象,都是因為交織擺動與焊接線方向的移動並未同步,各自單獨地進行移動所導致的。如果想要不會引發這種現象的話,就必須針對於每一種預先決定的焊接速度,就其周期、寬度、停止時間等的交織擺動條件加以進行管理。此外,如果焊接長度變長,用來決定焊接速度之溝槽形狀的量測點的點數變多的話,不僅在管理上會變複雜化,而且也會有招致包含交織擺動條件在內的焊接條件發生錯誤之虞慮。
本發明是有鑑於前述的技術課題而開發完成的,其目的是要提供:使用在導軌上移動的可搬移型焊接機器人來進行下向焊接、橫向焊接、直立焊接之各種姿勢的焊接時,能夠用來獲得良好的焊接品質之交織擺動控制方法、焊接控制裝置、焊接系統、焊接方法以及交織擺動控制程式。 [解決問題之技術手段]
本發明之上述目的,係可藉由與交織擺動控制方法相關之下列[1]的構成方式來達成。 [1] 一種交織擺動控制方法,係使用在導軌上移動的可搬移型焊接機器人對於具有溝槽的工件進行焊接,其特徵為,具有: 設定步驟,其係至少設定與用來決定交織擺動模樣的基準距離相關之交織擺動基準軌跡的條件;以及 速度條件算出步驟,其係根據在前述設定步驟所決定的交織擺動模樣,針對於預先設定的複數個方向成分,分別計算出來對於可令前述可搬移型焊接機器人移動之機器人移動機構下達指令的速度條件; 並且是將:對於在前述速度條件算出步驟所計算出來的前述複數個方向成分的各個前述速度條件之停止訊號的指令、以及在下達前述停止訊號之後隨即執行或者經過了預先設定的停止時間之後才執行之出發訊號的指令,至少在到達交織擺動端的時點予以同步執行。
又,本發明之上述目的,係可藉由與焊接控制裝置相關之下列[2]的構成方式來達成。 [2] 一種焊接控制裝置,係用來對於:使用在導軌上移動的可搬移型焊接機器人對於具有溝槽的工件的焊接,進行交織擺動控制,其特徵為,具有: 設定步驟,其係至少設定與用來決定交織擺動模樣的基準距離相關之交織擺動基準軌跡的條件;以及 速度條件算出步驟,其係根據在前述設定步驟所決定的交織擺動模樣,針對於預先設定的複數個方向成分,分別計算出來對於可令前述可搬移型焊接機器人移動之機器人移動機構下達指令的速度條件; 並且具有:將對於在前述速度條件算出步驟所計算出來的前述複數個方向成分的各個前述速度條件之停止訊號的指令、以及在下達前述停止訊號之後隨即執行或者經過了預先設定的停止時間之後才執行之出發訊號的指令,至少在到達交織擺動端的時點予以同步執行的功能。
又,本發明之上述目的,係可藉由與焊接系統相關之下列[3]的構成方式來達成。 [3] 一種焊接系統,其係具有上述[2]所述的焊接控制裝置。
又,本發明之上述目的,係可藉由與焊接方法相關之下列[4]的構成方式來達成。 [4] 一種焊接方法,其係使用上述[3]所述的焊接系統。
又,本發明之上述目的,係可藉由與交織擺動控制程式相關之下列[5]的構成方式來達成。 [5] 一種交織擺動控制程式,係用來對於:使用在導軌上移動的可搬移型焊接機器人對於具有溝槽的工件的焊接,進行交織擺動控制,其特徵為,具有: 設定步驟,其係至少設定與用來決定交織擺動模樣的基準距離相關之交織擺動基準軌跡的條件;以及 速度條件算出步驟,其係根據在前述設定步驟所決定的交織擺動模樣,針對於預先設定的複數個方向成分,分別計算出來對於可令前述可搬移型焊接機器人移動之機器人移動機構下達指令的速度條件; 並且執行:將對於在前述速度條件算出步驟所計算出來的前述複數個方向成分的各個前述速度條件之停止訊號的指令、以及在下達前述停止訊號之後隨即執行或者經過了預先設定的停止時間之後才執行之出發訊號的指令,至少在到達交織擺動端的時點予以同步執行的功能。 [發明之效果]
根據本發明,係可提供:使用在導軌上移動的可搬移型焊接機器人來進行下向焊接、橫向焊接、直立焊接之各種姿勢的焊接時,能夠用來獲得良好的焊接品質之交織擺動控制方法、焊接控制裝置、焊接系統、焊接方法以及交織擺動控制程式。
以下,將佐以圖面來說明本發明的其中一種實施方式的焊接系統。再者,本實施方式只是使用了可搬移型焊接機器人的情況之其中一例而已,本發明的焊接系統並不受本實施方式的構成方式所限定。
<焊接系統的構成要素> 圖1係顯示本實施方式之焊接系統的構成要素之概略圖。焊接系統50,係如圖1所示般地,具備:可搬移型焊接機器人100、進給裝置300、焊接電源400、保護氣體供給源500、以及控制裝置600。
[控制裝置] 控制裝置600是藉由機器人用控制纜線610而連接到可搬移型焊接機器人100,藉由電源用控制纜線620而連接到焊接電源400。控制裝置600是具有:保持著預先設定了可搬移型焊接機器人100的動作模樣、焊接開始位置、焊接結束位置、焊接條件、交織擺動等的教學數據之數據保持部601,並且根據這個教學數據來對於可搬移型焊接機器人100以及焊接電源400下達指令,來進行控制可搬移型焊接機器人100的動作以及焊接條件。
又,控制裝置600係具有:從藉由後述的偵測(sensing)工作所獲得的偵測數據來算出溝槽形狀訊息之溝槽形狀訊息計算部602、以及根據該溝槽形狀訊息來進行修正且取得上述教學數據的焊接條件之焊接條件取得部603。並且藉由上述溝槽形狀訊息計算部602與焊接條件取得部603來構成控制部604。
此外,控制裝置600係將用來執行教學和可搬移型焊接機器人100的人工手動操作等之控制器、與具有其他的控制功能的控制器形成一體。然而,控制裝置600並不限於這種形態,也可以是將用來執行教學的控制器與具有其他控制功能的控制器分開成兩個控制器,或者是依照不同的功能而分割成複數個控制器,或者也可以將控制裝置600包含在可搬移型焊接機器人100內。又,在本實施方式中,雖然是使用機器人用控制纜線610以及電源用控制纜線620來傳輸訊號,但並不限於這種方式,也可以利用無線傳輸的方式來傳輸訊號。此外,從在焊接現場之使用方便性的觀點考量,是將:用來執行教學和可搬移型焊接機器人100的人工手動操作等之控制器、與具有其他控制功能之控制器分開成兩個控制器為佳。
[焊接電源] 焊接電源400是根據來自控制裝置600的指令,而將電力供給到耗損電極也就是焊條211以及工件W o,藉以在焊條211與工件W o之間產生電弧。來自焊接電源400的電力是經由電纜線410而被送往進給裝置300,再從進給裝置300經由電纜線同軸導管420而送往焊炬200。如圖2所示般地,來自焊接電源400的電力是經由焊炬200前端的火嘴而被供給到焊條211。再者,焊接作業時的電流,可以是直流電或交流電,而且其波形並未特別限定。因此,電流也可以是矩形波或三角形波之類的脈衝電流。
又,焊接電源400,例如:是以電纜線410當作正極電極而連接到焊炬200側,並且是以電纜線430當作負極電極而連接到工件W o。又,這種方式是以反極性來進行焊接的情況,如果是以正極性來進行焊接的話,只要將正極電極的電纜線連接到工件W o側,並且將負極電極的電纜線連接到焊炬200側即可。
[保護氣體供給源] 保護氣體供給源500是由:內部封裝著保護氣體的容器、以及氣閥等的附屬構件所構成的。保護氣體是從保護氣體供給源500經由氣體輸送管510而被送到進給裝置300。送到進給裝置300之後的保護氣體是經由電纜線同軸導管420而被送到焊炬200。被送抵焊炬200之後的保護氣體,是流經過焊炬200內部而被引導之噴嘴210而從焊炬200的前端側噴出來。本實施方式所使用的保護氣體,例如:可以使用氬氣(Ar)或二氧化碳(CO 2)或這兩種氣體的混合氣體。
[進給裝置] 進給裝置300是不斷地釋出焊條211而送到焊炬200。被進給裝置300給送出來的焊條(亦稱為焊絲,以下都稱為焊條)211並未特別地限定,係可配合工件W o的性質和焊接形態等的條件來做選擇,例如:可以使用實心焊條或含助焊劑焊條。此外,焊條的材質也不拘,例如:可以是軟鋼、也可以是不鏽鋼、鋁、鈦之類的材質。此外,焊條的線徑也並未特別限定,在本實施方式中的較佳線徑,上限為1.6mm,下限為0.9mm。
本實施方式的電纜線同軸導管420,是在軟管的外皮側形成有具有電纜線的功能之導電路,在軟管的內部配置有可保護焊條211的保護管,並且形成了保護氣體的流路。然而,電纜線同軸導管420並不限於這種導管,也可以採用例如:以用來將焊條211進給到焊炬200的保護管為中心,並且將電力供給用纜線和保護氣體供給用軟管束集成一體的導管。此外,例如也可以個別地設置:用來進給焊條211以及保護氣體的軟管和電纜線。
[可搬移型焊接機器人] 可搬移型焊接機器人100係如圖2以及圖3所示般地,係具備:導軌120、被設置在導軌120上,沿著該導軌120移動的機器人本體110、以及被載置在機器人本體110的焊炬連接部130。機器人本體110,主要是由:設置在導軌120上的本體部112、安裝在這個本體部112的固定臂部114、以及以可朝向箭頭R 1方向旋轉的狀態被安裝在這個固定臂部114的焊炬旋轉驅動部116所構成的。
焊炬連接部130係如圖4所示般地,是藉由滑動平台169與曲柄170而被安裝在焊炬旋轉驅動部116。焊炬連接部130係具備:用來固定焊炬200的焊炬夾具132以及焊炬夾具134。又,在本體部112之與用來裝設焊炬200的這一側相反的另一側,是設置著用來支承電纜線同軸導管420的纜線夾具150,而該電纜線同軸導管420則是用來連接進給裝置300與焊炬200。
又,在本實施方式中,是以接觸型感測器當作偵測手段,該接觸型感測器是利用:在工件W o與焊條211之間施加電壓且當焊條211與工件W o接觸時所產生的電壓下降現象,來偵側(sensing)溝槽10的表面等。偵測手段,並不限於本實施方式的接觸型感測器,也可以採用:圖像感測器、雷射感測器等、或者將這些偵測手段組合在一起來使用,但是,基於裝置結構的簡單性和方便性的觀點考量,是使用本實施方式的接觸型感測器為佳。
機器人本體110的本體部112,係如圖2中的箭頭X所示般地,係具備:可令機器人本體110朝向對於圖面垂直方向也就是作為焊接線方向的X軸方向沿著導軌120移動之X軸移動機構181。又,本體部112係具備:可令固定臂部114藉由滑動支承部113而相對於本體部112,朝向與X軸方向以及Z軸方向垂直的溝槽10的寬度方向也就是Y軸方向移動之Y軸移動機構182。此外,本體部112係具備:可令機器人本體110朝向與X軸方向保持垂直的溝槽10的深度方向移動之Z軸移動機構183。
此外,如圖4所示般地,已經安裝了焊炬連接部130的滑動平台169、曲柄170以及焊炬旋轉驅動部116,是構成:可令焊條211的前端沿著近似直線移動之近似直線移動機構180。
具體而言,曲柄170是被固定在未圖示的馬達之旋轉軸168,而該馬達是被固定在焊炬旋轉驅動部116,該曲柄170的前端是利用連結銷171而連結在滑動平台169的其中一端。滑動平台169是在中間部具有長溝169a,而被固定在焊炬旋轉驅動部116的固定銷172則是可滑動地嵌合在長溝169a。
如此一來,利用未圖示的馬達將曲柄170以旋轉軸168為中心進行轉動的話,滑動平台169就會以固定銷172為支點進行轉動,並且受到嵌合在長溝169a內之固定銷172的引導而會沿著長溝169a移動。亦即,因為曲柄170是如圖3及圖4中的箭頭R 2所示般地進行轉動,因而安裝有焊炬200的焊炬連接部130,就將焊炬200予以傾斜的同時,又將焊條211的前端相對於X軸方向沿著圖4中的假想線IL所示的近似直線進行驅動。此外,本實施方式中之朝向X軸方向移動的機構,是有上述的X軸移動機構181以及近似直線移動機構180,在以下的說明中,如果要對於這些機構做區別性的說明時,係將X軸移動機構181所執行的朝向X軸方向的移動時,標示為「XA軸方向」,將近似直線移動機構180所執行的朝向X軸方向的移動時,標示為「XB軸方向」,如果並未區分是由哪一個機構所執行的移動時,則只單純地標示為「X軸方向」來進行說明。
又,焊炬旋轉驅動部116係如圖2中的箭頭R 1所示般地,被安裝成可相對於固定臂部114進行旋轉,而能夠調整到最合適的角度之後才進行固定。
如上所述,機器人本體110係利用:近似直線移動機構180、X軸移動機構181、Y軸移動機構182、以及Z軸移動機構183,而能夠將前端部也就是焊炬200在X軸方向、Y軸方向及Z軸方向的三個方向上,進行四個自由度的驅動。但,機器人本體110並不限於這種驅動方式,亦可配合其用途來進行所需個數的自由度的驅動。
藉由採用上述的構成方式,被安裝在焊炬連接部130之焊炬200之焊條211的前端部,是可以朝向任意的方向。亦即,機器人本體110是可以在導軌120上朝向X軸方向進行驅動。又,焊炬200是可以朝向溝槽10的寬度方向也就是Y軸方向或溝槽10的深度方向也就是Z軸方向進行驅動。又,藉由利用曲柄170所執行的驅動,例如:可以因應設定有前進角或後退角等的施工狀況來將焊炬200予以傾斜。
在導軌120的下方,設置有例如:磁鐵之類的安裝構件140,而將導軌120建構成可利用安裝構件140來使得對於工件W o的裝卸工作更為容易。要將可搬移型焊接機器人100設置到工件W o時,操作人員是握持住可搬移型焊接機器人100的兩側把手160,而可以很容易就將可搬移型焊接機器人100設置到工件W o上。
<可搬移型焊接機器人之各驅動軸的移動速度的設定方法> 在用來將可搬移型焊接機器人100的焊炬200朝向X軸方向、Y軸方向以及Z軸方向的任何一個方向移動之X軸移動機構181、Y軸移動機構182、Z軸移動機構183以及近似直線移動機構180的各驅動軸係使用了步進馬達。步進馬達的旋轉軸是結合於減速機,而X軸方向、Y軸方向、Z軸方向的移動機構,則是在減速機的旋轉軸安裝了小齒輪(pinion)。
如果是XA軸方向的話,則是將安裝在導軌120上的軌條與小齒輪進行嚙合來執行XA軸方向的驅動。又,如果是Y軸方向的話,則是將安裝在滑動支承部113上的軌條與小齒輪進行嚙合來執行Y軸方向的驅動。同樣地,如果是Z軸方向的話,也是將安裝在可搬移型焊接機器人100的內部之Z軸方向的滑動支承部上的軌條與小齒輪進行嚙合來執行Z軸方向的驅動。
XB軸方向的話,因為在焊炬旋轉驅動部116之減速機的旋轉軸168安裝了曲柄170,所以只要將曲柄170予以旋轉,就可以使焊炬200傾斜並且將焊條211的前端朝向XB軸方向移動。焊炬旋轉驅動部116係可以設定焊炬200之焊炬角度,而且也可以設定焊條211的前端朝向XB軸方向移動的移動速度和移動距離。
從朝向X軸方向、Y軸方向以及Z軸方向出發起迄停止為止的移動速度的過程,是依據步進馬達的特性,並且是以圖5所示的波形來執行速度的加減速的方式,來進行速度的設定。雖然設定速度VH是要成為本來的移動速度,但是,在其前後分別設定了加速時間Tsu1以及減速時間Tsu2,因此在出發側,是從第1速度設定值也就是初期速度VL加速至第2速度設定值也就是設定速度VH,而在停止側,則是從設定速度VH減速至初期速度VL之後停止。從出發至停止為止的移動時間TH,雖然是包含:加速時間Tsu1、減速時間Tsu2以及在兩者之間之以設定速度VH進行移動的期間,但是,加速時間Tsu1以及減速時間Tsu2會因為各軸的負荷和設定速度而改變,大約是數十毫秒至數百毫秒。此外,將初期速度VL設成低於設定速度VH的理由,是因為如果從停止狀態直接地加速至設定速度VH的話,步進馬達的速度無法跟隨得上,而會有步調不一致的虞慮之緣故。
又,因為即將成為焊道的熔融池是位於熱源也就是電弧的正下方,因此可以保持穩定的狀態,而能夠形成良好的焊道。如果設定速度VH超過初期速度VL的話,會將焊接速度也就是電弧的移動速度急遽地變化至設定速度,如此一來,母材在尚未充分地熔融之前,作為熱源的電弧瞬間就被移動離開了,因此,母材的熔融不夠充分,熔融池就無法再位於電弧的正下方,在焊接速度瞬間急遽地變化之處就會形成不平整的焊道。為了避免這種現象,要使得電弧的移動速度到達設定速度VH的作法,是在從初期速度VL起迄設定速度VH的期間,將電弧的移動速度呈斜坡狀逐漸地加速,來使得熔融池的形成速度也能夠追隨上電弧的移動速度,而能夠讓熔融池存在於電弧的正下方。
從而,如果設定速度VH小於等於初期速度VL的話,就不必設定加速時間Tsu1以及減速時間Tsu2,圖5就變成從設定速度VH開始的矩形型。將圖5所示的波形當作一個單位,藉由將這個單位集合起來朝向各方向進行移動。換言之,每一次圖5所示的設定被反覆時,就同步地發出停止訊號以及出發訊號的指令,不斷反覆地出發以及停止的同時,焊炬200朝向X軸方向、Y軸方向、Z軸方向進行移動。此外,初期速度VL至設定速度VH之速度變化的斜率、設定速度VH至初期速度VL之速度變化的斜率,換言之,這些的加速度,只要是採用:上述之不會有發生步調不一致的虞慮之範圍內的一定值即可,因此,只要根據預先設定的斜率,來決定加速時間Tsu1以及減速時間Tsu2即可。
[取得焊接線位置偵測點P n之焊接條件] 圖6係顯示工件W o的溝槽部位之立體圖,而且是顯示:對於溝槽10的長邊方向也就是焊接線方向,不只是有直線也包含有曲線,而且在溝槽10的寬度方向上的溝底間隙GA有產生變化的溝槽10進行焊接時的示意立體圖。又,圖7係對於如同圖6這般地也包含有曲線的溝槽10,將可搬移型焊接機器人100設置到直線的導軌120時的示意立體圖。
在對於溝槽10進行焊接時,預先作成:已經設定了可搬移型焊接機器人100的動作、以及焊接條件的教學程式,在開始焊接前,先使用沿著導軌120移動的可搬移型焊接機器人100來取得或修正焊接時的焊接條件。詳細地說,例如:依據控制裝置600的動作訊號,來驅動可搬移型焊接機器人100而開始進行自動偵測溝槽形狀,計算出來溝槽形狀訊息,進而運算出焊接條件來進行自動覆蓋保護氣體的電弧焊接。
亦即,在教學程式之作成時或修正時的設定步驟中,至少先設定了後述之交織擺動基準軌跡的條件之後,計算出來溝槽形狀訊息,然後,在計算焊接條件的階段中,在計算出這個焊接條件時,至少具有速度條件算出步驟,在這個速度條件算出步驟中,針對於複數個方向成分都計算出用來對於各移動機構180、181、182以及183下達指令的速度條件,然後,執行自動覆蓋保護氣體的電弧焊接。
在本實施方式中,所稱的在設定步驟所設定的「交織擺動基準軌跡的條件」,係指:與用來決定出交織擺動模樣的基準距離相關的條件,而在本實施方式中,則是包含:X軸方向的基準距離、Y軸方向的基準距離、以及Z軸方向的基準距離之中的至少兩種訊息。更具體而言,係如圖24中的左圖所示,作為表示X軸方向的基準距離的項目,係可舉出:後述的間距Pt;作為表示Y軸方向的基準距離的項目,係可舉出:Y軸的交織擺動幅度YO;作為表示Z軸方向的基準距離的項目,係可舉出:Z軸的交織擺動幅度ZO。此外,在本實施方式中,間距Pt以及交織擺動幅度ZO是預先設定的項目,交織擺動幅度YO的設定值,則是會依據在後述的溝槽形狀訊息算出工序所計算出來的間隙寬度而產生變化。
此外,在設定步驟所設定的條件,除了交織擺動基準軌跡的條件之外,還可以舉出:後述的交織擺動端之停止時間的條件、交織擺動往回程之速度比G的條件、將隨意的位置往隨意的方向移位之移位量的條件等。此外,交織擺動端之停止時間的條件,只要因應於端停止的位置來設置設定值即可,例如:是以可分別成其中一方的交織擺動端的停止時間T1、與另一方的交織擺動端的停止時間T2的方式來進行設定為佳。
此外,有關於將隨意的位置往隨意的方向移位之移位量的條件,容後詳細說明,如圖24中的左圖所示般地,在本實施方式中,是將位於圖面上側的交織擺動端YO的位置往X軸方向移位的距離XO設定為移位量。依據交織擺動基準軌跡的條件來決定的交織擺動模樣,亦即,以圖24中的左圖的實線所示的軌跡,為了方便於說明起見,將其稱為「標準交織擺動模樣」的話,從這個標準交織擺動模樣,將位於圖面上側之交織擺動端的位置往X軸方向移位了被作為移位量XO所設定之數值量的距離的話,就可以將其應用到圖中以虛線所示的軌跡這樣子的鋸齒狀之特殊的交織擺動模樣。再者,這種移位量XO,可以是預先作為固定值來進行設定,例如:在焊接前就先進行設定,或者也可以是根據在焊接中的間隙變動,每一次變動時都改變其設定值。
偵測(sensing)是利用上述的接觸型感測器,在偵測工序中,進行偵測:溝槽形狀、板厚、起點端和終點端等。
偵測工序,例如在圖6所示般的這種從溝槽10的焊接開始點10s起迄焊接結束點10e的焊接區間中,溝槽不只是有直線也包含了曲線,並且溝底間隙GA也有所變化,每個地方的溝槽形狀都不一樣的情況下,將倒梯形的截面形狀也就是溝槽10的截面形狀,當作溝槽形狀偵測位置F n(F 0,F 2,・・・,F 5),而設有複數個偵測位置,在本實施方式中,是設有六個地方的偵測位置。
此外,在本實施方式中,是將溝槽形狀偵測位置F n與焊接線WL的交點,當作焊接線位置偵測點P n(P 0~P 5)。所稱的「焊接線WL」,係指:設定在工件W o上的溝槽10中之隨意的位置之焊條211的前端之移動軌跡,焊炬200的前端是沿著焊接線WL也就是沿著X軸方向並且又朝向溝槽寬度方向也就是Y軸方向進行交織擺動。
詳細地說,係將最靠近焊接開始點10s的溝槽形狀偵測位置F n當作第1溝槽形狀偵測位置F s(F 0),並且將最靠近焊接結束點10e的溝槽形狀偵測位置F n當作第2溝槽形狀偵測位置F e(F 5),讓可搬移型焊接機器人100在導軌120上移動的同時,利用接觸型感測器來進行偵測。至於第1溝槽形狀偵測位置F s及第2溝槽形狀偵測位置F e的位置設定,係可以藉由教學等的方式,預先輸入在控制裝置600內。
偵測工序之後,從偵測工序所獲得之在各溝槽形狀偵測位置F n(F 0~F 5)處的溝槽截面形狀的偵測數據計算出:溝槽形狀的溝槽角度、板厚、溝底間隙GA、工件端部W e間的距離L等。此外,在以下的說明中,係將這些數據訊息的算出工序稱為「溝槽形狀訊息算出工序」。然後,再依據在各溝槽形狀偵測位置F n(F 0~F 5)處所計算出來的溝槽形狀,來計算出在焊接線WL中的各焊接線偵測點P n(P 0~P 5)的焊接條件,經由對於從控制裝置600內所取得的或者對於預先設定的焊接條件進行修正的焊接條件算出工序,來決定出在實際上進行焊接時的焊接條件。根據在此所取得之各焊接線偵測點P n(P 0~P 5)的焊接條件,來進行焊道的疊層的話,在溝槽內之焊道的疊層數、道程(pass)數都會是相同的。而且各焊接線偵測點P n(P 0~P 5)的焊接條件中係包含例如:每一個道程(pass)的焊接電流、焊接電壓、焊接速度、焊炬之焊條前端的瞄準位置、交織擺動幅度等。
[焊接線位置偵測點P n間之交織擺動時之X軸方向的移動速度(焊接速度)之控制方法] 接下來,將詳細說明使用本實施方式的焊接系統50之焊接線位置偵測點P n間之焊接速度的控制方法。 焊接線位置偵測點P n的焊接速度,是從先前的焊接條件算出工序中計算出來的,然而,用來決定相鄰的焊接線位置偵測點(P n-1,P n)之間的焊接速度的方法,則是以與決定交織擺動模樣的基準距離相關的要素之一的間距Pt為基準,來將相鄰的焊接線位置偵測點(P n-1,P n)之間之X軸方向的移動距離DX n進行分割而使其產生階段性的變化來補充在相鄰的焊接線位置偵測點(P n-1,P n)的焊接速度。以下,將進行更詳細的說明。
如圖3所示般地,導軌120是沿著想要進行焊接的溝槽10來設置,因此,將溝槽10視為是沿著X軸方向,將焊接速度與X軸方向的移動速度視為相同。換言之,在相鄰的焊接線位置偵測點(P n-1,P n)處的焊接速度,是與在焊接線位置偵測點(P n-1,P n)處之X軸方向的移動速度視為相同。根據這個定義,以下列的數式進行計算。 首先,將相鄰的焊接線位置偵測點(P n-1,P n)間之X軸方向的移動距離DX n除以預先設定之暫定的間距Pt’,如數式(1)所示般地,求出暫定的分割數m’。
接下來,以將暫定的分割數m’之小數點以下的位數捨棄後的整數作為正式的分割數m,利用數式(2)來計算出ΔD的數值。
然後,利用數式(3)來計算出正式的間距Pt。
此外,此處的計算,是意味著:將焊接線位置偵測點(P n-1,P n)間在X軸方向的移動距離DX n,能夠利用間距Pt來予以分割成m個整數的分割數且沒有餘數之意。此處計算出來的間距Pt與分割數m,將成為後述之用來決定交織擺動條件的單位。
其次,計算出被劃分成每一個間距Pt之部分的焊接速度VX k,也就是X軸方向的移動速度。 如數式(4)所示般地,藉由將在焊接線位置偵測點(P n-1,P n)所計算出來的焊接速度(VXP n-1,VXP n)的差值除以分割數m,來計算出作為每一個間距Pt的增減量之焊接速度ΔVX。
使用數式(4)來計算的話,每一個間距Pt的焊接速度將會成為如數式(5)所示的結果。
此處的k是採用1~m的整數,從數式(4)以及數式(5)可以計算出VX m=VXP n
此外,雖然可以從數式(5)計算出每一個間距Pt的焊接速度VX k,但是,焊接速度VX k(係如後述之間距Pt的1/2(亦即1/2間距Pt)的情況所示般地),將會是位於交織擺動時的交織擺動端,所以係被設定成暫停。這種設定也是為了用來決定後述的交織擺動條件而做的設定。圖8就是表示以這種方式所獲得的焊接線位置偵測點(P n-1,P n)間的焊接速度VX的控制方法。焊接速度VX,係如已經在圖5說明過的這樣子,是以梯形的速度設定為單位來控制X軸方向的移動速度,也就是控制焊接速度。
換言之,焊接線位置偵測點(P n-1,P n)間的焊接速度VX,是以間距Pt為基準來對於X軸方向的移動距離DX n以ΔVX的量做階段性的變化,反覆地在每一次間距Pt的1/2長度時執行出發與停止。本實施方式的圖6,是針對於相鄰的焊接線位置偵測點之間(P 0,P 1)、(P 1,P 2)、(P 2,P 3)、(P 3,P 4)、(P 4,P 5),與圖8同樣地計算出焊接速度VX,藉此,可以決定出整個溝槽10的長度的焊接速度VX。間距Pt的數值也是會影響到後述之交織擺動的往返周期,在本實施方式中,交織擺動之目的是要利用焊接金屬來將溝槽10的截面予以填埋起來,因此,將間距Pt設定在間距Pt=5~10mm之合適的範圍。
例如在上述專利文獻3所揭示的先前技術,是使用溝槽的兩點之間的焊接速度且利用線性內插補間的方式來決定出焊接速度,因此,焊接速度在溝槽兩點之間是保持連續狀態。就也包含專利文獻3所揭示的先前技術在內之一般常識而言,焊接速度都是保持一定或者是保持連續性地進行變化,但是,本實施方式則是配合交織擺動端的位置,以上述的方式,反覆地在間距Pt的1/2長度時執行出發與停止。這種控制方式,就是用來解決圖28(b)和圖29所示的技術課題的手段。
此外,在進行焊接時,就每一個間距Pt的1/2長度,焊接速度VX要到達設定速度VH之前,是會有數十毫秒至數百毫秒的加速度領域,但是,如上所述般地,這是對於焊接現象不會造成影響的加速度,因此,對於焊接品質而言也沒有問題。
[焊接線位置偵測點P n間之交織擺動模樣的控制方法] 在控制裝置600內計算出各焊接線偵測點P n的焊接條件,例如:瞄準的位置和交織擺動幅度。交織擺動的行為之目的,是在於:藉由將機器人本體110一邊進行焊接一邊在導軌120上朝X軸方向進行移動,並且將焊炬朝Y軸方向或Z軸方向進行擺動,而利用焊接金屬將溝槽10的截面予以填埋起來。此外,交織擺動幅度的項目是交織擺動之重要的要素,因此在Y軸方向及Z軸方向之至少其中一個方向上的交織擺動的幅度,是以能夠符合這種目的之方式來決定出來為佳。
接下來,將說明使用了本實施方式之焊接系統50來進行控制:焊接線位置偵測點P n間之交織擺動模樣的方法。
<基本的控制方法> 首先,以下向焊接為例,來說明基本的控制方法。此外,此處所說明的控制方法,是讓交織擺動端位於間距的Pt/2處,且將焊炬往X軸方向及Y軸方向之兩個方向移動所導致的交織擺動。
圖9是相鄰的焊接線位置偵測點(P n-1,P n)間的下向焊接時的交織擺動模樣UL之示意圖。焊炬是在溝槽10內,以X軸方向的間距Pt進行一次往返。亦即,將位於Pt/2的交織擺動端之前的路程視為去程,將位於下一個Pt/2之另外一方的交織擺動端之前的路程視為返路,而反覆地進行交織擺動。這種交織擺動之X軸方向的移動速度,是根據圖10所示的焊接速度VX k(k是1,2,3,4・・・m的整數)的設定,讓機器人本體110在軌道上朝X軸方向行走,此外,Y軸方向的移動速度也就是交織擺動速度,則是根據圖10所示的交織擺動速度VYA k以及VYB k(k是1,2,3,4・・・m的整數)的設定,來描繪成圖9的交織擺動模樣UL。
此時之交織擺動幅度,是根據後述的數式(7)來決定出來的,在圖9所示之焊接線位置偵測點P n-1的開始時,是從交織擺動幅度YO 1開始,在結束的焊接線位置偵測點P n,則是以交織擺動幅度YO m(=YOP n)來執行結束的動作。這種動作的控制方式,是以將在焊接線位置偵測點(P n-1,P n)所計算出來之交織擺動幅度(YOP n-1,YOP n)的差值除以分割數m而獲得的交織擺動幅度增減量ΔYO,做階段性的變化來補足交織擺動幅度(YOP n-1,YOP n)。
更詳細地說明的話,在焊接線位置偵測點(P n-1,P n)的交織擺動幅度(YOP n-1,YOP n)之間的交織擺動幅度增減量ΔYO是如下列數式(6)所示。
從而,在焊接線位置偵測點(P n-1,P n)間的交織擺動幅度YO是如下列數式(7)所示。
此處的k是採用1~m的整數,由數式(6)以及(7)可以得知YO m=YOP n
亦即,數式(7)是將焊接線位置偵測點(P n-1,P n)之間分割成m個分割數,也就是意味著:在各分割後的領域中,是根據這個數式(7)來決定出交織擺動幅度YO。此外,分割數m則是使用在設定焊接速度VX時所採用的整數。
本實施方式之用來控制焊炬的動作的方法,是在X軸方向上之隨意的移動距離內,更具體的說,也就是在將X軸方向的焊接線位置偵測點(P n-1,P n)間的距離分割成m個分割數後的間距Pt的領域內,將焊接速度VX k與交織擺動速度VY k予以同步。焊炬在X軸方向上移動了相當於間距Pt量的距離之時間TX k,如果是使用該領域所設定之數式(5)的焊接速度VX k的話,就如下列數式(8)~數式(10)所示的結果。
數式(9)以及數式(10),是分別對應其一半的時間,亦即,區分成:焊炬在X軸方向上各移動了1/2間距Pt的時間,而分別對應於後述之交織擺動的去程時間與回程時間。
又,如果將焊炬在X軸方向移動1/2間距Pt時的速度,換言之,將去程之在X軸方向的移動速度VXA k、以及回程之在X軸方向的移動速度VXB k,以對應於數式(9)以及數式(10)的方式來表現的話,就如下列數式(11)以及數式(12)所示的結果。
另一方面,焊炬朝Y軸方向是以交織擺動幅度YO進行一次往返,所以此時之Y軸方向的移動速度,亦即,交織擺動速度是區分成上述的去程與回程來表示。 焊炬在交織擺動的去程所耗費的時間,是與焊炬在X軸方向移動1/2間距Pt所耗費的時間相同。而且,焊炬在交織擺動的回程所耗費的時間,也是與焊炬在X軸方向移動1/2間距Pt所耗費的時間相同。各自的時間是從數式(9)以及數式(10)計算出來,並且交織擺動幅度YO k是從數式(7)計算出來,所以交織擺動速度就如下列數式(13)以及數式(14)所示的結果。
此外,數式(13)是表示去程的交織擺動速度,數式(14)是將符號逆轉以表示回程的交織擺動速度。
圖10是顯示從數式(5)、數式(8)、數式(9)、數式(10)、數式(11)、數式(12)、數式(13)以及數式(14)計算出來之交織擺動速度VY與焊接速度VX的時序圖,圖11是顯示當時之焊炬的交織擺動模樣。
如圖10所示般地,焊接速度VX與交織擺動速度VY都是被控制成:以圖5所說明之梯形的速度設定為單位,來將兩種速度組合在一起。又,在圖中之圓環數字0~8的時間點,焊接速度VX與交織擺動速度VY是同時地暫停,並且又同時地出發。換言之,配合焊接速度VX的出發與停止,交織擺動速度VY也是在同一時間點出發與停止的方式,同步地將焊炬進行交織擺動。圖11是顯示此時之交織擺動的軌跡。圖10中之圓環數字0~8的時間點之焊炬的位置,就是圖11中之圓環數字0~8的位置。
從圖11可以看出來:在X軸方向的間距Pt中,焊炬是以Pt/2的去程與Pt/2的回程來做一次往返的移動,然後不斷反覆地以這種方式使得焊炬進行交織擺動。換言之,本實施方式中的交織擺動模樣是取決於X軸方向的間距Pt,而與焊接速度VX無關。
如此一來,先前之利用圖28(b)來說明過的技術課題,換言之,因為焊接速度VX的影響,使得交織擺動的周期意外地擴大,而在交織擺動之間產生了電弧無法到達的地方,進而導致在溝槽內會有焊接金屬融入不足之虞慮將可以獲得消解。根據本實施方式,無需依賴焊接速度VX,即可確實地將焊炬依照所期望的軌道,在所期望的時間點,移動到所期望的位置,來進行交織擺動,因此,能夠很有效率地執行焊接之原本的目的,也就是利用焊接金屬將溝槽10的截面填埋起來,其結果是可以獲得優異的焊接品質。
<兩端停止時間的控制方法> 此外,在進行交織擺動時,有時候為了要使得焊接金屬能夠充分地融入到溝槽壁內,乃在交織擺動兩端設有停止時間(以下,有時候係將交織擺動兩端的停止時間,也簡稱為「停止時間」)。關於本實施方式中之兩端停止的控制方法,還是舉出下向焊接的例子,來做說明如下。
將圖11中之交織擺動上側的端部,也就是在圓環數字1、3、5以及7的停止時間設為T1,將交織擺動下側的端部,也就是在圓環數字2、4、6以及8的停止時間設為T2。如上所述,如果就用以解決本發明之課題的方法來做考慮的話,無論在交織擺動兩端是否有設定停止時間,都必須將焊炬在X軸方向移動相當於間距Pt之距離量的時間保持一定。這是為了要在有設定停止時間的情況下,或者在追加了後述之Z軸方向的交織擺動的情況下,還是不會改變焊接線位置偵測點(P n-1,P n)間的焊接時間,而能夠維持控制裝置600的焊接條件算出工序所計算出來的焊接線位置偵測點(P n-1,P n)的焊接速度之緣故。因此,在交織擺動端部設有停止時間的情況下,焊炬朝Y軸方向以交織擺動幅度YO進行一次往返的時間TY,是被置換成:從數式(8)減去T1,T2之後的下列數式(15)。
此處的k是採用1~m的整數。此外,因為設定了停止時間T1,T2,所以相應地必須加快焊接速度VX,因此,使用數式(15)並且從數式(9)、數式(10)、數式(11)以及數式(12)來計算出焊接速度VX。
另一方面,因為以交織擺動幅度YO進行一次往返的時間TY變短,相應地交織擺動速度也需加快地進行移動。此時的交織擺動速度VY也同樣地是使用數式(15)並且從數式(9)、數式(10)、數式(13)以及數式(14)計算出來。
圖12是顯示設定了兩端停止時間之時序圖。圖中,即使是設定了在圓環數字1’→1,2’→2,・・・8’→8之間的停止時間,也是與圖10的情況相同地,焊接速度VX與交織擺動速度VY是不斷反覆:同步地出發與同步地停止的動作。將此時的交織擺動模樣顯示於圖13。在圖12中之圓環數字的時間點之焊炬的位置,就是圖13中之圓環數字的位置。雖然是在交織擺動兩端停止了T1,T2的停止時間,但是,交織擺動模樣還是與沒有設定停止時間的情況之圖11的情況相同。因為是將焊炬控制成:在停止時間中,焊炬並不移動而是停留在交織擺動的兩端。
如此一來,即使焊炬在Y軸方向上的移動是在交織擺動兩端,依據預先設定好的停止時間來停留之後,才與往焊接線方向的移動同步地出發,還是可以解決先前之利用圖29來說明過的技術課題,亦即,因為受到焊接速度的影響,在X軸方向的交織擺動間隔擴大,根據該交織擺動間隔將會產生電弧無法到達的地方,進而發生了在溝槽內會有焊接金屬融入不足之虞慮,將可以獲得解決。
根據本實施方式,無論在交織擺動兩端是否有設定停止時間,而且也無論焊接速度的大小如何,交織擺動模樣都保持一定無變化,可將焊炬依照所期望的軌道,在所期望的時間點,移動到所期望的位置,因此,能夠很有效率地執行焊接之原本的目的,也就是利用焊接金屬將溝槽10的截面填埋起來。
<伴隨著X、Y、Z之三個軸方向的移動之交織擺動的控制方法> 在溝槽的背面張貼了陶瓷之類的絕緣材,而在溝槽的背面側也形成有焊道的背面焊接法(背焊法)中,為了要確實地形成溝槽背面側的焊道也就是背面焊珠,可以考慮採用:以在溝槽中央部能夠獲得良好的焊接金屬融入的方式來進行控制交織擺動。
本實施方式之一例,是在同時進行上述的X軸方向與Y軸方向的移動之交織擺動的基本控制方法中,又加入將焊炬在交織擺動中央部朝Z軸方向,亦即,朝溝槽深度方向移動,以能夠促進在溝槽中央部的融入之方式來進行控制交織擺動。因此,將針對於這種伴隨著X、Y、Z之三個軸方向的移動之交織擺動的控制方法說明如下。
圖14A及圖14B係顯示:在基本的控制法中已經說明過的Y軸方向的交織擺動中再加入溝槽板厚方向也就是Z軸方向的交織擺動幅度,之伴隨著X、Y、Z之三個軸方向的移動之交織擺動控制方法的交織擺動模樣。
如上所述,作為用來進行背面焊接之一例的情況下,是要設定溝槽板厚方向的交織擺動幅度ZO。焊炬在X軸方向移動一個間距Pt的期間,也朝Y軸方向以交織擺動幅度YO進行一次往返。並且也朝Z軸方向,在Y軸方向之交織擺動去程的期間做一次,在回程的期間做一次,也就是做一次往返的交織擺動。如圖14A所示般地,圓環數字0→1”→1→2”→2是焊炬在X軸方向移動一個間距Pt的軌跡。以後,就每一個間距Pt都反覆地進行這種軌跡,利用圖8所示之焊接速度VX的設定,讓機器人本體110在導軌上朝X軸方向行走而描繪出交織擺動模樣UL。
Z軸方向的交織擺動速度VZ,係先設定交織擺動幅度ZO,然後就如數式(16)以及數式(17)所示的結果。
此處的k是採用1~m的整數。此外,數式(16)是表示Z軸方向之去程的交織擺動速度VZ,數式(16)中的TA k是從數式(9)計算出來的。再者,數式(17)是表示將符號逆轉後之回程的交織擺動速度VZ,數式(17)中的TB k是從數式(10)計算出來的。 圖15是顯示伴隨著X、Y、Z之三個軸方向的移動之交織擺動的時序圖。圖15中所示的焊接速度VX是從數式(11)及數式(12)計算出來的,又,交織擺動速度VY是從數式(13)及數式(14)計算出來的,交織擺動速度VZ則是從數式(16)及數式(17)計算出來的。
圖15中的圓環數字0~8是與表示基本的控制法之圖10中之相同時間點的編號。圖15中的圓環數字1”~8”是表示焊炬位於Z軸方向的交織擺動端時的時間點。將各驅動軸控制成:不僅是在Y軸方向的交織擺動的兩端部,就連在Z軸方向的交織擺動端部,往X、Y、Z之三個軸方向的移動速度也都是同步地出發和停止。
圖16是顯示此時的交織擺動模樣。將圖15中所示之圓環數字的焊炬位置,在圖16中也以相同的圓環數字來表示。這個圓環數字是與圖14A中的圓環數字的位置相同。本實施方式是與基本的控制法同樣地,即使是在伴隨著X、Y、Z之三個軸方向的移動的交織擺動中,也不會受到焊接速度VX的影響,能夠將焊炬確實地依照所期望的軌道,在所期望的時間點,移動到所期望的位置來進行交織擺動。 此外,如前所述般地,即使在伴隨著X、Y、Z之三個軸方向的移動之交織擺動中,也可以在Y軸方向的交織擺動的兩端部設定停止時間。此外,即使是在Z軸方向的交織擺動端部,亦可採用與在Y軸方向的交織擺動的兩端部設定停止時間相同的方式來設定停止時間。
[往返之交織擺動速度的控制方法] 使用可搬移型焊接機器人100來進行橫向焊接的話,就變成是將圖3的工件W o予以垂直豎立的情況,可搬移型焊接機器人100與工件W o之間的位置關係並未改變,因此,還是可以照樣地援用在進行下向焊接時之交織擺動設定,也都可以照樣地適用:基本的控制方法、兩端停止時間的控制方法以及伴隨著X、Y、Z之三個軸方向的移動之交織擺動控制方法。
橫向焊接的特徵是:被電弧熔融後的焊條與工件W o的熔融金屬受到重力的影響而往下垂,無法形成適當的焊道的形狀,而會有無法作成良好的焊接接頭之虞慮。作為用以解決這種虞慮的對策,可以考慮採用:藉由改變往返之交織擺動的速度來抑制熔融金屬的下垂,進而利用電弧來將熔融金屬往上推擠般地移動焊炬的方法。換言之,是需要對於交織擺動往返時的交織擺動速度進行控制。
其次,舉出進行橫向焊接時之往返的交織擺動速度的控制方法之一例,來說明本實施方式。此外,往返的交織擺動速度的控制方法,係如上所述般地,是對於橫向焊接特別具有效果,此處只是舉出一例來說明將本實施方式應用在橫向焊接的情況,但是,本實施方式並不限於只能應用在橫向焊接,也可以適用在各種的焊接姿勢。
<對橫向焊接有效之往返的交織擺動速度的控制方法> 圖17是橫向焊接時之交織擺動模樣的示意圖。如前所述,在進行橫向焊接時,熔融金屬因為受到重力的影響而會朝向圖17中之Y軸方向的正側(+側)下垂。另一方面,焊炬因為進行交織擺動而會在溝槽內做上下擺動,當焊炬朝向溝槽內的下側也就是Y軸方向的正側(+側)而且是重力作用的方向移動時,會有助長熔融金屬下垂之虞慮。因此,係能夠以:當焊炬朝向溝槽內的下側移動時,快速地移動來迅速抵達交織擺動之下側端停止位置,並且當焊炬朝向溝槽內的上側,亦即朝向Y軸方向的負側(-側)且是與重力作用的相反方向移動時,緩慢地移動,而可獲得利用電弧將下垂的熔融金屬往上推擠的作用的方式,來移動焊炬。 以下,將說明這種在交織擺動的去程與回程中改變交織擺動的移動速度之情況下的交織擺動控制方法。
在交織擺動的去程與回程中,交織擺動速度都是相同的情況,已顯示在前先所述之基本的控制法的數式(13)以及數式(14)。圖17所示之本實施方式,是以:對於在交織擺動的去程,亦即朝Y軸方向之正側(+側)的移動以及在交織擺動的回程,亦即朝Y軸方向之負側(-側)的移動,設定了交織擺動速度比的方式,來控制交織擺動速度。假設交織擺動速度的比率是G的話,將會成為數式(18)所示的關係。
此處的VYA k是表示:去程的交織擺動速度,VYB k是表示:回程的交織擺動速度,k是採用1~m的整數。這個數式(18)是顯示出:回程的交織擺動速度VYB k是以去程的交織擺動速度VYA k的G倍進行移動。
即使以這種方式來改變往返的交織擺動速度,還是必須將焊炬在X軸方向上行進一個間距Pt的時間TX保持不變。這是為了要讓焊接線位置偵測點(P n-1,P n)間的焊接時間,無關於交織擺動速度的增減,都一直保持不變的緣故。因此,為了要將時間TX保持不變,就必須配合交織擺動速度的增減,來對於交織擺動的去程以及回程的移動時間進行控制。
換言之,假設焊炬移動了去程的交織擺動幅度YO所需要的時間為TA,同樣地移動了回程的交織擺動幅度YO所需要的時間為TB的話,就會成為數式(19)以及數式(20)的關係。
此處的k是採用1~m的整數。又,TX k是從數式(8)計算出來的。
將交織擺動幅度YO分別除以數式(19)和數式(20)的時間,就可以得到去程以及回程的交織擺動速度,係如下列的數式(21)以及數式(22)所示。
數式(21)中的VYA是表示:朝Y軸方向的正側(+側)移動也就是交織擺動去程的移動速度,數式(22)中的VYB是表示:將符號反轉,朝Y軸方向的負側(-側)移動也就是交織擺動回程的移動速度。又,YO k是從數式(7)計算出來的。
同樣地,焊炬在X軸方向移動一個間距Pt的速度,是分開成Y軸方向之交織擺動的去程與回程的部分來做區別,將間距Pt的1/2距離除以數式(19)以及數式(20),將會成為下列的數式(23)以及數式(24)。
此處的k是採用1~m的整數。此外,數式(23)中的VXA是表示:焊炬朝Y軸方向的正側(+側)也就是在去程移動了交織擺動幅度YO時之焊炬的X軸方向的移動速度,數式(24)中的VXB是表示:焊炬朝Y軸方向的負側(-側)也就是在回程移動了交織擺動幅度YO時之焊炬的X軸方向的移動速度。
圖18就是數式(19)~數式(24)的時序圖。這種控制方法,是與下向焊接之基本的控制方法同樣地,在圖中之圓環數字0~8的時間點,朝向X軸、Y軸方向的出發、停止的時機都是同步進行,而是利用交織擺動去程與回程之速度的比率G,來改變交織擺動速度VY和焊接速度VX,以將焊炬在X軸方向行進一個間距Pt的時間TX都還是維持一定。在間距Pt內的焊接速度VX雖然有發生變化,但是在焊接線位置偵測點(P n-1,P n)間的焊接時間還是維持不變,距離DX也沒有改變,所以就全體而言,焊接速度VX並沒有改變。
此時的交織擺動模樣是與下向焊接之基本的控制方法所示的圖11中的交織擺動模樣相同。根據本實施方式,即使是以上述的方式來改變交織擺動速度,還是與基本的控制方法同樣地,能夠將焊炬確實地依照所期望的軌道,在所期望的時間點,移動到所期望的位置來進行交織擺動。
<特殊交織擺動模樣的控制方法> 如前所述,橫向焊接的特徵為:被電弧熔融的焊條與工件W o的熔融金屬因為受到重力的影響而下垂,難以獲得適當的焊道形狀,而會有無法獲得良好的焊接接頭之虞慮。而前述之作為解決對策的交織擺動控制方法,係藉由改變往返的交織擺動速度來抑制熔融金屬的下垂,並且將焊炬進行能夠利用電弧來將下垂的熔融金屬往上推擠的動作。
此外,亦可將交織擺動模樣改變成特殊的軌跡,來謀求獲得能夠利用電弧來將下垂的熔融金屬往上推擠的這種作用。因此,接下來,將針對於特殊交織擺動模樣的控制方法,舉出鋸齒狀的交織擺動模樣的例子當作特殊交織擺動模樣,藉以說明本實施方式。此外,針對於特殊交織擺動模樣的控制方法,並不侷限在進行橫向焊接,亦可使用於各種的焊接姿勢。
圖19是顯示對於橫向焊接有效的特殊交織擺動模樣的示意立體圖。係在溝槽10內將焊炬做鋸齒狀的移動,而可利用熔融金屬適當地將溝槽10的截面填埋起來。關於鋸齒狀的交織擺動模樣,雖然在上述專利文獻1也曾經揭示出:係可利用使用了多關節機器人的焊接裝置來予以實現,但是,本實施方式則是藉由在可搬移型焊接機器人100中,組合了X軸方向以及Y軸方向的驅動來實現鋸齒狀的交織擺動模樣。
本實施方式之鋸齒狀的交織擺動模樣,係可藉由將基本的控制方法所示之交織擺動模樣,將其在圖11中的圓環數字1、3、5及7所示的上側端部設定成往X軸方向移位,即可做出鋸齒狀的交織擺動模樣。將此時的移位量設定為XO。
即使在本控制方法中,焊炬之朝Y軸方向的交織擺動幅度、時間以及速度都是與基本的控制方法所示的交織擺動幅度、時間以及速度相同,交織擺動幅度是從數式(7)計算出來,交織擺動時間是從數式(9)及數式(10)計算出來,交織擺動速度是從數式(13)及數式(14)計算出來。
另一方面,在X軸方向的移動距離,則是相當於:焊炬在交織擺動之往去程移動的時間中,除了朝X軸方向移動了間距Pt之1/2的距離(1/2Pt)之外,還又追加移動了移位量XO的距離。相反地,焊炬在交織擺動之往回程移動的時間中,朝X軸方向除了移動了間距Pt之1/2的距離(1/2Pt)之外,還又追加移動了移位量XO的距離,因此,必須退回去相當於移位量XO的距離。從這兩者的關係來計算出在間距Pt之1/2的距離(1/2Pt)中之X軸方向的移動速度的話,則是如下列數式(25)及數式(26)所示。
此處的數式(25)中的VXA是表示:焊炬在交織擺動的去程移動時之朝X軸方向的移動速度。又,數式(26)中的VXB是表示:焊炬在交織擺動的回程移動時之朝X軸方向的移動速度。數式(25)中的TA k是從數式(9)計算出來的,數式(26)中的TB k是從數式(10)計算出來。此外,k是採用1~m的整數。
圖20是顯示出使用了數式(13)、數式(14)、數式(25)以及數式(26)之時序圖,圖21是顯示出此時的交織擺動模樣。圖20中的圓環數字,是與基本的控制法的圖10相同,都是同步地執行朝X軸方向與Y軸方向出發、停止的時間點,此時之焊炬的位置,是相當於在圖21與圖19中之相同的圓環數字的位置。
雖然會因為移位量XO的數值而改變,但是,從圖20可以看出,焊炬在交織擺動的回程中移動時之X軸方向的速度為負值。換言之,是表示:焊炬朝向與焊接方向相反的方向後退移動。從圖21的交織擺動模樣可以看出,藉由執行這種動作,可以將交織擺動描繪出鋸齒狀的軌跡。用來形成鋸齒形狀的三角形,亦即,圖21中之分別由:圓環數字0、1以及2;圓環數字2、3以及4;圓環數字4、5以及6;圓環數字6、7以及8所形成的三角形,係可藉由移位量XO的數值來予以改變。 再者,雖然在間距Pt內的焊接速度VX有做負值的設定,但是,焊接線位置偵測點(P n-1,P n)間的焊接時間不變,距離DX也未改變,因此,就整體而言,焊接速度VX並未改變。 根據本實施方式,即使在執行這種鋸齒狀交織擺動的情況下,能夠將焊炬控制成依照所期望的軌道,在所期望的時間點,移動到所期望的位置。
[對直立焊接有效之交織擺動模樣的控制方法] 圖22是顯示使用了可搬移型焊接機器人100之直立焊接的立體圖。可搬移型焊接機器人100與工件W o的溝槽10之位置關係,是以在下向焊接時所示的圖3相同,因此,可以直接援用在下向焊接時之交織擺動的設定,可以適用:基本的控制方法、兩端停止時間的控制方法以及伴隨著X、Y、Z之三個軸方向的移動之交織擺動控制方法。
圖23是顯示本實施方式之對於直立焊接的交織擺動模樣。圖23(a)、(b)以及(c)是從圖22中的觀察點B觀看時的圖,是顯示出:利用基本的控制方法、兩端停止時間的控制方法以及伴隨著X、Y、Z之三個軸方向的移動之交織擺動控制方法所描繪的交織擺動模樣UL。
又,在進行直立焊接時,由熔融金屬所形成的熔融池很容易往圖中之Z軸方向的負側(-側)也就是溝槽外側垂流出去,因而對於溝槽10的壁面施加的熱量較少,也會有融入不足的情況。此時,為了要使得溝槽10的兩側壁較容易融入,也可以將焊炬沿著溝槽10的壁面進行交織擺動。這是如圖23(c)所示般地,藉由應用伴隨著X、Y、Z之三個軸方向的移動之交織擺動控制方法,並且在Z軸方向上設定兩個停止位置就可以達成。此外,無論是在哪一個停止位置,也都可以設定停止時間。
此外,圖24是同時地顯示出:前述之伴隨著X、Y、Z之三個軸方向的移動之交織擺動控制的交織擺動模樣、焊接速度VX、交織擺動速度VY及VZ的關係。
[使用了近似直線移動機構的交織擺動控制方法] 又,本實施方式的可搬移型焊接機器人100是具有:可將焊炬200傾斜的同時又將焊條211的前端朝X軸方向近乎直線地進行驅動之近似直線移動機構180(請參照圖4)。此處,是將X軸的移動機構所執行的使可搬移型焊接機器人100沿著導軌120進行移動的方向,當作XA方向,而將近似直線移動機構180所執行之焊炬200的移動方向,當作XB方向,並且就這兩種方向來做說明。
在溝槽始端及溝槽終端設有:用來阻擋熔融池之陶瓷片、不鏽鋼片之類的擋板之情況下,是使用近似直線移動機構180來將焊炬200倒向溝槽的長邊方向,而使得焊條前端面向於母材與擋板的接合角落來進行焊接,以消除溝槽端部之沒有受到焊接的地方。
換言之,如圖25所示般地,在焊接開始點10s的這一面具有擋板350的情況下,係如圖25中之圓環數字1所示般地,是將:以自動方式或者以手動方式傾斜後的焊炬200的焊接點設定在溝槽始端而開始進行溝槽焊接,利用近似直線移動機構180將焊條前端朝XB方向移動,然後,將焊炬200的傾斜狀態回復到圖25中之圓環數字2所示之適當的焊炬角度。回復到適當的焊炬角度之後,接下來,就使用X軸的移動機構來繼續進行焊接,直到抵達XA方向中之圓環數字3所示之溝槽終端的面前為止。然後,再度利用近似直線移動機構180將焊炬200傾斜之後,自動地進行焊接直到圓環數字4所示的溝槽終端為止。藉由以這種方式來將焊條211的前端朝XB方向進行移動,即使置換成前述之利用X軸的移動機構所執行的朝XA方向的移動,還是可以做相同的交織擺動控制。 此外,藉由將XA方向與XB方向的移動速度設定為相同速度,只將移動方向改為相反方向,幾乎無需改變焊條211前端的位置,只要控制焊炬200的焊炬角度來轉動焊炬200之焊炬的轉動控制方法亦屬可能。
<焊炬的轉動控制方法> 圖26是顯示藉由將焊炬在XA方向與XB方向的移動速度設成相同速度,將移動方向設成相反方向,來控制焊炬的焊炬角度之後使其進行轉動時之焊炬的動作之示意圖。如此一來,幾乎沒有改變焊條211前端的位置,焊炬200可以進行轉動,因此,例如將圖26中之θ3所示的焊炬,依照前進角朝向紙面右側的方向進行焊接的情況下,在進行與焊接終端部保持連續的折返焊接時,可以應用這種轉動控制方法,在焊接終端部無需改變焊條211的前端位置,只要將焊炬的焊炬角度改變成圖26中之θ3’所示的焊接方向的前進角,即可繼續地進行連續焊接。
圖27是顯示此時的時序圖。對於XA方向,是以速度Vθ的設定,並且是以時間Tθ的間隔,反覆地執行出發與停止。對於XB方向,則是為了要與XA方向的移動互相抵消,乃是以負值的速度Vθ,並且是與XA方向相同的間隔,反覆地執行相反方向的動作,來使得XA方向以及XB方向的移動互相抵消,而能夠不改變焊條前端的位置,只改變焊炬200的焊炬角度將其轉動。速度Vθ以及時間Tθ是被設定在不影響焊接的範圍。
此外,本發明並不限定在前述的實施方式,亦可適當地加以變形和改良等。
以上,是佐以圖面來說明了各種的實施方式,但是,本發明並不限定在這些例子。只要是熟悉此項技術人士的話,皆有可能在本發明的申請專利範圍所記載的範疇內,想到各種的變更例或修正例,這些的變更例或修正例,當然也都是屬於本發明的技術範圍的例子。此外,在未脫離本發明的要旨的範圍內,也可以將上述實施方式中的各構成要素,依據需求來進行組合。
此外,本申請案是依據2021年9月24日在日本提出申請之日本特許出願(特願2021-156169)來主張優先權的,因此,本申請案的內容是參照且援用其內容。
F n:溝槽形狀偵測位置 G:去程與回程的速度比 P n:焊接線位置偵測點 VXP n:在焊接線位置偵測點P n的焊接速度 YOP n:在焊接線位置偵測點P n的交織擺動幅度 Pt:間距(基準距離) T1,T2:停止時間 Tsu1:加速時間(上昇期間) Tsu2:減速時間(下降期間) UL:交織擺動模樣 VH:設定速度(第2速度設定值) VL:初期速度(第1速度設定值) VX:焊接速度(X軸方向速度) VY:交織擺動速度(Y軸方向速度) VZ:交織擺動速度(Z軸方向速度) WL:焊接線 W o:工件 XO:移位量 YO:交織擺動幅度 ZO:交織擺動幅度 θ3:焊炬角度 10:溝槽 50:焊接系統 100:可搬移型焊接機器人 120:導軌 180:近似直線移動機構 181:X軸移動機構(使得可搬移型焊接機器人沿著導軌移動的移動機構) 182:Y軸移動機構(在溝槽寬度方向上移動的機構) 183:Z軸移動機構(在溝槽深度方向上移動的機構) 200:焊炬 211:焊條 600:控制裝置(焊接控制裝置)
[圖1]係本發明之焊接系統的一種實施方式的概略圖。 [圖2]係圖1所示的可搬移型焊接機器人的概略側面圖。 [圖3]係圖2所示的可搬移型焊接機器人的立體圖。 [圖4]係圖2所示的近似直線移動機構的放大圖。 [圖5]係顯示基準速度設定波形的圖表。 [圖6]係工件的溝槽部位之示意立體圖。 [圖7]係對於具有曲線的溝槽應用了直線導軌之可搬移型焊接機器人的示意立體圖。 [圖8]係顯示焊接線位置偵測點之間的焊接速度之時序圖。 [圖9]係顯示下向焊接時的交織擺動模樣的示意立體圖。 [圖10(a)]係交織擺動速度的時序圖;[圖10(b)]係焊接速度的時序圖。 [圖11]係顯示在圖10所示的時序圖中的交織擺動模樣的圖表。 [圖12]係在兩端設定了停止時間之交織擺動的時序圖。 [圖13]係顯示在圖12所示的時序圖中的交織擺動模樣的圖表。 [圖14A]係顯示在X、Y、Z之三個軸方向都進行移動之交織擺動模樣的立體圖。 [圖14B]係圖14A中的箭頭A方向的端面圖。 [圖15]係顯示在X、Y、Z之三個軸方向都進行移動之交織擺動的時序圖。 [圖16]係顯示在圖15所示的時序圖中的交織擺動模樣的圖表。 [圖17]係橫向焊接時的交織擺動模樣的示意圖。 [圖18(a)]係用來達成圖17所示的交織擺動模樣之交織擺動速度的時序圖;[圖18(b)]係用來達成圖17所示的交織擺動模樣之焊接速度的時序圖。 [圖19]係鋸齒狀的交織擺動模樣的示意圖。 [圖20(a)]係用來達成圖19所示的鋸齒狀的交織擺動模樣之交織擺動速度的時序圖;[圖20(b)]係用來達成圖19所示的鋸齒狀的交織擺動模樣之焊接速度的時序圖。 [圖21]係顯示鋸齒狀的交織擺動模樣的圖表。 [圖22]係直立焊接的立體圖。 [圖23(a)]係圖22所示的直立焊接的交織擺動模樣之一例的箭頭B方向的端面圖;[圖23(b)]係另外一例的箭頭B方向的端面圖;[圖23(c)]係再另外一例的箭頭B方向的端面圖。 [圖24]係一起顯示出在X、Y、Z之三個軸方向都進行移動之交織擺動模樣和各方向的焊接速度以及交織擺動速度的時序圖。 [圖25]係顯示:藉由組合了X軸的移動機構所執行的焊炬的XA方向移動、與焊炬旋轉驅動部所執行的焊炬的XB方向移動,在溝槽兩端進行焊接的狀態之示意圖。 [圖26]係顯示:藉由組合了X軸的移動機構所執行的焊炬的XA方向移動、與焊炬旋轉驅動部所執行的焊炬的XB方向移動,在焊炬的焊條前端位置未移動的情況下,改變焊炬角度的狀態之示意圖。 [圖27]係用來改變圖26所示的焊炬角度的時序圖。 [圖28(a)]係顯示當焊接速度與交織擺動周期都洽當時的交織擺動的圖;[圖28(b)]係顯示當焊接速度過大時的交織擺動的圖。 [圖29]係顯示在交織擺動端有停止且焊接速度過大時之交織擺動的圖。

Claims (19)

  1. 一種交織擺動控制方法,係使用在導軌上移動的可搬移型焊接機器人對於具有溝槽的工件進行焊接,其特徵為,具有: 設定步驟,其係至少設定與用來決定交織擺動模樣的基準距離相關之交織擺動基準軌跡的條件;以及 速度條件算出步驟,其係根據在前述設定步驟所決定的交織擺動模樣,針對於預先設定的複數個方向成分,分別計算出來對於可令前述可搬移型焊接機器人移動之機器人移動機構下達指令的速度條件; 並且是將:對於在前述速度條件算出步驟所計算出來的前述複數個方向成分的各個前述速度條件之停止訊號的指令、以及在下達前述停止訊號之後隨即執行或者經過了預先設定的停止時間之後才執行之出發訊號的指令,至少在到達交織擺動端的時點予以同步執行。
  2. 如請求項1所述之交織擺動控制方法,其中,前述方向成分,是從:前述工件的焊接線方向、對於前述焊接線方向呈垂直的溝槽寬度方向、以及分別對於前述焊接線方向和前述溝槽寬度方向呈垂直的溝槽深度方向的至少其中兩種方向選擇出來的。
  3. 如請求項2所述之交織擺動控制方法,其中, 係具有:可令前述可搬移型焊接機器人沿著前述導軌移動的X軸移動機構,來作為前述機器人移動機構之中之可令前述可搬移型焊接機器人朝向前述焊接線方向移動的機構,並且 係具有:設在前述可搬移型焊接機器人的Y軸移動機構以及Z軸移動機構,來作為前述機器人移動機構之中之可令前述可搬移型焊接機器人分別朝向前述溝槽寬度方向和前述溝槽深度方向移動的機構。
  4. 如請求項3所述之交織擺動控制方法,其中,作為可令前述可搬移型焊接機器人朝向前述焊接線方向移動的機構,還包含:前述可搬移型焊接機器人所具備的近似直線移動機構。
  5. 如請求項1至請求項4中的任一項所述之交織擺動控制方法,其中,作為每一種前述方向成分的前述速度條件,如果是具有:第1速度設定值VL、以及較諸前述第1速度設定值VL更大且就每一種交織擺動幅度都產生變動的第2速度設定值VH之情況下, 則在每一次下達前述出發訊號的指令時,都反覆地執行:速度條件處理過程,而該速度條件處理過程,是在從前述出發訊號起迄發出前述停止訊號之前的前述速度條件下,在前述出發訊號之後設定前述第1速度設定值VL,在前述第1速度設定值VL之後設定前述第2速度設定值VH,在前述第2速度設定值VH之後再度設定前述第1速度設定值VL,在再度設定的前述第1速度設定值VL之後設定前述停止訊號。
  6. 如請求項5所述之交織擺動控制方法,其中,將從前述第1速度設定值VL起迄前述第2速度設定值VH的期間視為上昇期間,將從前述第2速度設定值VH起迄再度設定的前述第1速度設定值VL的期間視為下降期間的情況下, 在前述上昇期間和前述下降期間之各自的前述速度條件之斜率的絕對值都是固定值。
  7. 如請求項2至請求項4中的任一項所述之交織擺動控制方法,其中,前述交織擺動基準軌跡的條件,作為用來決定前述交織擺動模樣的前述基準距離,係包含:從其中一側來與焊接中心線相鄰的前述交織擺動端之間的距離,也就是間距Pt。
  8. 如請求項7所述之交織擺動控制方法,其中,係以將前述交織擺動端位於前述Pt的1/2處也就是位於Pt/2處的方式,來決定前述交織擺動基準軌跡。
  9. 如請求項8所述之交織擺動控制方法,其中,如果是在前述交織擺動端以外的位置,設置前述停止訊號的指令以及前述出發訊號的指令之情況下, 則是將前述停止訊號的指令以及前述出發訊號的指令設置在前述交織擺動端與前述Pt/2處之間。
  10. 如請求項8所述之交織擺動控制方法,其中,前述交織擺動基準軌跡的條件,作為為了使得位於前述Pt/2處之其中一側的前述交織擺動端的位置產生偏移而被設定的偏移量,是具有至少一個前述方向成分。
  11. 如請求項9所述之交織擺動控制方法,其中,前述交織擺動基準軌跡的條件,作為為了使得位於前述Pt/2處之其中一側的前述交織擺動端的位置產生偏移而被設定的偏移量,是具有至少一個前述方向成分。
  12. 如請求項10所述之交織擺動控制方法,其中,用來設定前述偏移量的前述方向成分,至少是前述焊接線方向,並且是可使得前述交織擺動端的位置朝向前述焊接線方向中的焊接進行方向偏移。
  13. 如請求項11所述之交織擺動控制方法,其中,用來設定前述偏移量的前述方向成分,至少是前述焊接線方向,並且是可使得前述交織擺動端的位置朝向前述焊接線方向中的焊接進行方向偏移。
  14. 如請求項2至請求項4中之任一項所述之交織擺動控制方法,其中,在前述焊接的停止中或前述焊接中,改變焊炬角度的情況下,是由:可令前述可搬移型焊接機器人沿著前述導軌移動的X軸移動機構、以及前述可搬移型焊接機器人所具備的近似直線移動機構來構成:可令前述機器人移動機構之中的前述可搬移型焊接機器人朝向前述焊接線方向移動的機構, 並且根據前述X軸移動機構所達成的移動速度與前述近似直線移動機構所達成的移動速度之組合,來控制前述可搬移型焊接機器人在前述焊接線方向上的移動速度。
  15. 如請求項2所述之交織擺動控制方法,其中,前述交織擺動基準軌跡的條件,係包含:在各前述交織擺動端的停止時間、在前述溝槽寬度方向上的交織擺動幅度、在前述溝槽深度方向上的交織擺動幅度、以及在前述交織擺動中的去程與回程的速度比之至少其中一種。
  16. 一種焊接控制裝置,係用來對於:使用在導軌上移動的可搬移型焊接機器人對於具有溝槽的工件的焊接,進行交織擺動控制,其特徵為,具有: 設定步驟,其係至少設定與用來決定交織擺動模樣的基準距離相關之交織擺動基準軌跡的條件;以及 速度條件算出步驟,其係根據在前述設定步驟所決定的交織擺動模樣,針對於預先設定的複數個方向成分,分別計算出來對於可令前述可搬移型焊接機器人移動之機器人移動機構下達指令的速度條件; 並且具有:將對於在前述速度條件算出步驟所計算出來的前述複數個方向成分的各個前述速度條件之停止訊號的指令、以及在下達前述停止訊號之後隨即執行或者經過了預先設定的停止時間之後才執行之出發訊號的指令,至少在到達交織擺動端的時點予以同步執行的功能。
  17. 一種焊接系統,其係具備請求項16所述之焊接控制裝置。
  18. 一種焊接方法,其係使用請求項17所述之焊接系統。
  19. 一種交織擺動控制程式,係用來對於:使用在導軌上移動的可搬移型焊接機器人對於具有溝槽的工件的焊接,進行交織擺動控制,其特徵為,具有: 設定步驟,其係至少設定與用來決定交織擺動模樣的基準距離相關之交織擺動基準軌跡的條件;以及 速度條件算出步驟,其係根據在前述設定步驟所決定的交織擺動模樣,針對於預先設定的複數個方向成分,分別計算出來對於可令前述可搬移型焊接機器人移動之機器人移動機構下達指令的速度條件; 並且執行:將對於在前述速度條件算出步驟所計算出來的前述複數個方向成分的各個前述速度條件之停止訊號的指令、以及在下達前述停止訊號之後隨即執行或者經過了預先設定的停止時間之後才執行之出發訊號的指令,至少在到達交織擺動端的時點予以同步執行的功能。
TW111132930A 2021-09-24 2022-08-31 交織擺動控制方法、焊接控制裝置、焊接系統、焊接方法、及交織擺動控制程式 TWI837797B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-156169 2021-09-24
JP2021156169A JP2023047210A (ja) 2021-09-24 2021-09-24 ウィービング制御方法、溶接制御装置、溶接システム、溶接方法及びウィービング制御プログラム

Publications (2)

Publication Number Publication Date
TW202319158A TW202319158A (zh) 2023-05-16
TWI837797B true TWI837797B (zh) 2024-04-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6445979B1 (en) 1999-11-05 2002-09-03 Fanuc Ltd. Operation line tracking device using sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6445979B1 (en) 1999-11-05 2002-09-03 Fanuc Ltd. Operation line tracking device using sensor

Similar Documents

Publication Publication Date Title
US20150076119A1 (en) Synchronized rotating arc welding method and system
KR102157486B1 (ko) 용접 장치 및 용접 장치의 제어 방법
JP2019089108A (ja) 造形物の製造方法及び製造装置
TWI735215B (zh) 可搬式熔接機器人之熔接控制方法、熔接控制裝置、可搬式熔接機器人及熔接系統
EP1555080B1 (en) Tig welding equipment and tig welding method
TWI837797B (zh) 交織擺動控制方法、焊接控制裝置、焊接系統、焊接方法、及交織擺動控制程式
JP2020185590A (ja) 積層造形物の製造方法及び積層造形物
CN104169032A (zh) 电弧焊接方法和电弧焊接装置
CN117999141A (zh) 横摆控制方法、焊接控制装置、焊接系统、焊接方法及横摆控制程序
KR100294110B1 (ko) 탱크의 롤러 시임용접방법 및 이 방법을 실행하기 위한 롤러 시임 저항용접기
JP6859471B1 (ja) 積層造形物の製造方法
JP5077515B2 (ja) 溶接ロボットシステム
JPH10225768A (ja) 溶接装置
JPWO2020054310A1 (ja) 突き合わせ溶接方法
CN117980103A (zh) 横摆控制方法、焊接控制装置、焊接系统及横摆控制程序
JP2003326364A (ja) Tig溶接装置及びtig溶接方法
JP3890256B2 (ja) Tig溶接装置及びtig溶接方法
JPH0563266B2 (zh)
KR102241954B1 (ko) 사각 구조물 자동 용접장치
JP2698000B2 (ja) 溶接装置
WO2019171706A1 (ja) 溶接装置およびその制御方法
JP2022137736A (ja) アーク溶接方法
CN116252084A (zh) 自动焊接装置、自动焊接方法、计算机设备及存储介质
Harwig et al. Semiadaptive synergic-fill welding tractor for ship unit erection
JP4861101B2 (ja) アーク溶接方法