TWI835594B - 半導體裝置 - Google Patents

半導體裝置 Download PDF

Info

Publication number
TWI835594B
TWI835594B TW112109860A TW112109860A TWI835594B TW I835594 B TWI835594 B TW I835594B TW 112109860 A TW112109860 A TW 112109860A TW 112109860 A TW112109860 A TW 112109860A TW I835594 B TWI835594 B TW I835594B
Authority
TW
Taiwan
Prior art keywords
gate
substrate
semiconductor device
region
disposed
Prior art date
Application number
TW112109860A
Other languages
English (en)
Inventor
張錦維
林浩揚
張家豪
陳信宏
Original Assignee
力晶積成電子製造股份有限公司
Filing date
Publication date
Application filed by 力晶積成電子製造股份有限公司 filed Critical 力晶積成電子製造股份有限公司
Application granted granted Critical
Publication of TWI835594B publication Critical patent/TWI835594B/zh

Links

Images

Abstract

本揭露提供一種半導體裝置,其包括基底、多個閘極結構、絕緣層、源極以及汲極。基底具有第一導電型且包括第一表面以及與第一表面相對的第二表面。基底包括自第一表面延伸至基底中的多個溝渠。閘極結構設置在溝渠中。絕緣層設置在基底的第一表面上且覆蓋閘極結構。源極設置在絕緣層上。汲極設置在基底的第二表面上。基底包括多個U形摻雜區、主體區以及摻雜區。U形摻雜區包覆閘極結構的側表面及底表面且具有不同於第一導電型的第二導電型。主體區配置於鄰近第一表面的由溝渠所界定的區域中且具有第二導電型。摻雜區配置於鄰近第一表面的主體區中且具有第一導電型。

Description

半導體裝置
本發明是有關於一種半導體裝置,且特別是有關於一種用於功率元件的半導體裝置。
功率金屬氧化物半導體場效電晶體(metal oxide semiconductor field Effect transistor,MOSFET)是一種常應用於類比和/或數位電路的功率元件,其可設計為在低壓(例如約10伏特)下或是在高壓(例如約200伏特)下工作。溝渠式閘極MOSFET(trench gate MOSFET)是一種常見的功率元件,其可包括形成於溝渠中的閘極以及設置在閘極下方之場板(field plate)的雙閘極(double gate)結構。一般而言,場板被形成於溝渠中的底部氧化層所包覆以與基底間隔開來。然而,底部氧化層的厚度會顯著地影響溝渠式閘極MOSFET的性能表現。舉例來說,若底部氧化層的厚度太大,則在操作時不易達到全耗盡(full depletion)狀態;若底部氧化層的厚度太薄,則無法承受高電場的操作。因此,在元件尺寸不斷縮小的趨勢下,已難以良好地控制氧化層的厚度。
本發明提供一種半導體裝置,其中形成於基底的U形摻雜區設計為包覆閘極結構的側表面及底表面且具有不同於基底的第一導電型的第二導電型,如此可使得半導體裝置在操作時(例如施加逆偏壓時)能夠達到全耗盡(full depletion)狀態,且即便在元件尺寸不斷縮小的趨勢下,也能夠良好地控制U形摻雜區的摻雜範圍。
本發明一實施例提供一種半導體裝置,其包括基底、多個閘極結構、絕緣層、源極以及汲極。基底具有第一導電型且包括第一表面以及與第一表面相對的第二表面,其中基底包括自第一表面延伸至基底中的多個溝渠。多個閘極結構分別設置在多個溝渠中。絕緣層設置在基底的第一表面上且覆蓋多個閘極結構。源極設置在絕緣層上。汲極設置在基底的第二表面上。基底包括多個U形摻雜區、主體區以及摻雜區。U形摻雜區包覆閘極結構的側表面及底表面且具有不同於第一導電型的第二導電型。主體區配置於鄰近第一表面的由多個溝渠所界定的區域中且具有第二導電型。摻雜區配置於鄰近第一表面的主體區中且具有第一導電型。
在一些實施例中,摻雜區在水平於第一表面的方向上延伸至U形摻雜區中。
在一些實施例中,摻雜區的延伸至U形摻雜區中的部分與閘極結構直接接觸。
在一些實施例中,U形摻雜區形成於基底的界定溝渠的側表面和底表面的部分中。
在一些實施例中,主體區配置在相鄰的兩個U形摻雜區之間。
在一些實施例中,閘極結構包括絕緣結構、閘極以及閘極介電層。絕緣結構填入溝渠中以覆蓋溝渠的底表面。閘極設置在絕緣結構上。閘極介電層設置在絕緣結構上且環繞閘極。
在一些實施例中,閘極結構更包括設置於絕緣結構中且與閘極間隔開來的遮蔽閘極,遮蔽閘極與源極電性連接。
在一些實施例中,基底包括在主體區下方以及相鄰的兩個閘極結構之間的漂移區,U形摻雜區將遮蔽閘極與漂移區間隔開來。
在一些實施例中,U形摻雜區的摻雜濃度小於主體區的摻雜濃度。
在一些實施例中,U形摻雜區包括第一部分與第二部分,第一部分在閘極結構與主體區之間且與主體區和閘極結構接觸,第二部分在第一部分下方,第一部分的摻雜濃度大於第二部分的摻雜濃度。
基於上述,在上述半導體裝置中,形成於基底的U形摻雜區包覆閘極結構的側表面及底表面且具有不同於基底的第一導電型的第二導電型,如此可使得半導體裝置在操作時能夠達到全耗盡(full depletion)狀態,且即便在元件尺寸不斷縮小的趨勢下,也能夠良好地控制U形摻雜區的摻雜範圍。
參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之參考號碼表示相同或相似之元件,以下段落將不再一一贅述。
應當理解,當諸如元件被稱為在另一元件「上」或「連接到」另一元件時,其可以直接在另一元件上或與另一元件連接,或者也可存在中間元件。若當元件被稱為「直接在另一元件上」或「直接連接到」另一元件時,則不存在中間元件。如本文所使用的,「連接」可以指物理及/或電性連接,而「電性連接」或「耦合」可為二元件間存在其它元件。本文中所使用的「電性連接」可包括物理連接(例如有線連接)及物理斷接(例如無線連接)。
本文使用的「約」、「近似」或「實質上」包括所提到的值和在所屬技術領域中具有通常知識者能夠確定之特定值的可接受的偏差範圍內的平均值,考慮到所討論的測量和與測量相關的誤差的特定數量(即,測量系統的限制)。例如,「約」可以表示在所述值的一個或多個標準偏差內,或±30%、±20%、±10%、±5%內。再者,本文使用的「約」、「近似」或「實質上」可依光學性質、蝕刻性質或其它性質,來選擇較可接受的偏差範圍或標準偏差,而可不用一個標準偏差適用全部性質。
使用本文中所使用的用語僅為闡述例示性實施例,而非限制本揭露。在此種情形中,除非在上下文中另有解釋,否則單數形式包括多數形式。
圖1是本發明一實施例的半導體裝置的剖面示意圖。
請參照圖1,半導體裝置10包括基底100、多個閘極結構GS1、絕緣層140、源極SE及汲極DE。
基底100具有第一導電型且包括第一表面S1以及與第一表面S1相對的第二表面S2。基底100包括自第一表面S1延伸至基底100中的多個溝渠100T。
基底100可包括經摻雜的半導體基底以及形成於半導體基底上的磊晶層。在一些實施例中,經摻雜的半導體基底和磊晶層可具有相同的導電類型(例如N型)。在一些實施例中,經摻雜的半導體基底可為N型重摻雜(N +)的矽基底。如此一來,在半導體結構10為溝渠式閘極金氧半導體結構的情況下,N型重摻雜(N +)的矽基底可作為溝渠式閘極金氧半導體結構的汲極(例如汲極DE),但本發明不以此為限。溝渠式閘極金氧半導體結構的汲極(例如汲極DE)也可設置在基底100的底表面(例如第二表面S2)上。磊晶層可為N型輕摻雜(N -)的磊晶層,且其形成方式可包括對經摻雜的半導體基底進行磊晶生長(epitaxy growth)製程。基底100可摻雜有第一導電型的摻雜物或與第一導電型互補的第二導電型的摻雜物。舉例而言,第一導電型可為N型,而第二導電型可為P型。
閘極結構GS1分別設置在溝渠100T中且包括絕緣結構110、閘極介電層120以及閘極130。絕緣結構110填入溝渠100T中以覆蓋溝渠100T的底表面。閘極130設置在絕緣結構110上。閘極介電層120設置在絕緣結構110上且環繞閘極130。絕緣結構110可包括如氧化物等的絕緣材料。閘極介電層120可包括如氧化矽等常用於閘極介電層的材料。閘極130可包括如摻雜多晶矽等常用於閘極的材料。
絕緣層140設置在基底的第一表面S1上且覆蓋閘極結構GS1。絕緣層140可包括如氧化矽等的絕緣材料。在一些實施例中,可藉由對閘極介電層120進行如燈退火(lamp annealing)等熱氧化製程形成絕緣層140。在另一些實施例中,可藉由如化學氣相沉積等沉積製程形成絕緣層140。
源極SE設置在絕緣層140上。源極SE可包括金屬、矽化物、多晶矽或其組合等適合的導電材料。汲極DE可設置在基底100的第二表面S2上。汲極DE可包括金屬、矽化物、多晶矽或其組合等適合的導電材料。
基底100包括主體區102、摻雜區104以及多個U形摻雜區106。主體區102配置於鄰近基底100的第一表面S1的由多個溝渠100T所界定的區域中且具有不同於第一導電型的第二導電型。摻雜區104配置於鄰近基底100的第一表面S1的主體區102中且具有第一導電型。U形摻雜區106包覆閘極結構GS1的側表面及底表面且具有第二導電型,如此可形成超級接面(super junction)而使得半導體裝置10在操作時能夠達到全耗盡(full depletion)狀態。另一方面,即便在元件尺寸不斷縮小的趨勢下,U形摻雜區106的摻雜範圍也能夠受到良好的控制,使得半導體裝置10具有良好的崩潰電壓(breakdown voltage)和汲極至源極漏電流(IDSS)。在一些實施例中,第一導電型為N型,而第二導電型為P型。
在一些實施例中,摻雜區104可在水平於基底100的第一表面S1的方向上延伸至U形摻雜區106中。在一些實施例中,摻雜區104的延伸至U形摻雜區106中的部分可與閘極結構GS1直接接觸。在一些實施例中,基底100可包括配置在主體區102下方以及相鄰的兩個閘極結構GS1之間的漂移區108。當分別對閘極130和汲極DE施加閘極電壓和汲極電壓的情況下,電子可經由如圖1所示的路徑109傳遞至漂移區108中並朝向汲極DE移動。
在一些實施例中,U形摻雜區106是藉由對溝渠100T進行如離子佈植等摻雜製程形成,因此,U形摻雜區106可形成於基底100的界定溝渠100T的側表面和底表面的部分中。在一些實施例中,主體區102可在形成U形摻雜區106之後形成,故主體區102可配置在相鄰的兩個U形摻雜區106之間。
在一些實施例中,可藉由以下步驟形成主體區102、摻雜區104和U形摻雜區106。首先,在基底100中形成溝渠100T之後,可對溝渠100T進行摻雜製程以形成U形摻雜區106。接著,於溝渠100T中形成閘極結構GS1之後,可對基底100進行第一摻雜製程,以於相鄰的兩個U形摻雜區106之間形成主體區102。之後,可對基底100進行第二摻雜製程,以於主體區102中形成摻雜區104。
在一些實施例中,當對基底100進行第一摻雜製程時,U形摻雜區106的鄰近基底100的第一表面S2的一部分也會植入具有第一導電型的摻雜物,故該部分(即第一部分106a)的摻雜濃度會大於U形摻雜區106的其他部分(即第二部分106b)的摻雜濃度。在一些實施例中,第一部分106a在閘極結構GS1與主體區102之間且與主體區102和閘極結構GS1接觸,而第二部分106b在第一部分106a下方且在閘極結構GS1和漂移區108之間。
在一些實施例中,U形摻雜區106的摻雜濃度可小於主體區102的摻雜濃度,如此可有利於降低臨界電壓(threshold voltage)。
圖2是本發明另一實施例的半導體裝置的剖面示意圖。圖2所示出的半導體裝置20與圖1所示出的半導體裝置10相似,其主要的差異在於半導體裝置20的閘極結構GS2包括遮蔽閘極150,其他相同或相似構件/膜層/圖案以相同或相似元件符號表示,於此不再重複贅述。
請參照圖2,閘極結構GS2可包括絕緣結構110、閘極介電層120、閘極130以及遮蔽閘極150。絕緣結構110可填入溝渠100T中以覆蓋溝渠100T的底表面。閘極130可設置在絕緣結構110上。閘極介電層120可設置在絕緣結構110上且環繞閘極130。遮蔽閘極150可設置於絕緣結構110中且與閘極130間隔開來,其中遮蔽閘極150與源極SE電性連接。在一些實施例中,U形摻雜區106可將遮蔽閘極150與漂移區108間隔開來。遮蔽閘極150可包括如摻雜多晶矽等常用於閘極的材料。在一些實施例中,遮蔽閘極150的材料可相同於閘極130的材料。
綜上所述,在上述實施例的半導體裝置中,形成於基底的U形摻雜區包覆閘極結構的側表面及底表面且具有不同於基底的第一導電型的第二導電型,如此可形成超級接面(super junction)而使得半導體裝置在操作時能夠達到全耗盡(full depletion)狀態。另一方面,即便在元件尺寸不斷縮小的趨勢下,U形摻雜區的摻雜範圍也能夠受到良好的控制,使得半導體裝置具有良好的崩潰電壓(breakdown voltage)和汲極至源極漏電流(IDSS)。
10、20:半導體裝置 100:基底 102:主體區 104:摻雜區 106:U形摻雜區 106a:第一部分 106b:第二部分 108:漂移區 109:路徑 100T:溝渠 110:絕緣結構 120:閘極介電層 130:閘極 140:絕緣層 150:遮蔽閘極 DE:汲極 GS1、GS2:閘極結構 SE:源極 S1:第一表面 S2:第二表面
圖1是本發明一實施例的半導體裝置的剖面示意圖。 圖2是本發明另一實施例的半導體裝置的剖面示意圖。
10:半導體裝置
100:基底
102:主體區
104:摻雜區
106:U形摻雜區
106a:第一部分
106b:第二部分
108:漂移區
109:路徑
100T:溝渠
110:絕緣結構
120:閘極介電層
130:閘極
140:絕緣層
DE:汲極
GS1:閘極結構
SE:源極
S1:第一表面
S2:第二表面

Claims (10)

  1. 一種半導體裝置,包括:基底,具有第一導電型且包括第一表面以及與所述第一表面相對的第二表面,其中所述基底包括自所述第一表面延伸至所述基底中的多個溝渠;多個閘極結構,分別設置在多個所述溝渠中;絕緣層,設置在所述基底的所述第一表面上且覆蓋多個所述閘極結構;源極,設置在所述絕緣層上;以及汲極,設置在所述基底的所述第二表面上,其中所述基底包括:主體區,配置於鄰近所述第一表面的由多個所述溝渠所界定的區域中且具有不同於所述第一導電型的第二導電型;摻雜區,配置於鄰近所述第一表面的所述主體區中且具有所述第一導電型;以及多個U形摻雜區,包覆所述閘極結構的側表面及底表面且具有所述第二導電型。
  2. 如請求項1所述的半導體裝置,其中所述摻雜區在水平於所述第一表面的方向上延伸至所述U形摻雜區中。
  3. 如請求項1所述的半導體裝置,其中所述摻雜區的延伸至所述U形摻雜區中的部分與所述閘極結構直接接觸。
  4. 如請求項1所述的半導體裝置,其中所述U形摻雜區形成於所述基底的界定所述溝渠的所述側表面和所述底表面的部分中。
  5. 請求項1所述的半導體裝置,其中所述主體區配置在相鄰的兩個所述U形摻雜區之間。
  6. 如請求項1所述的半導體裝置,其中所述閘極結構包括:絕緣結構,填入所述溝渠中以覆蓋所述溝渠的所述底表面;閘極,設置在所述絕緣結構上;以及閘極介電層,設置在所述絕緣結構上且環繞所述閘極。
  7. 如請求項6所述的半導體裝置,其中所述閘極結構更包括:遮蔽閘極,設置於所述絕緣結構中且與所述閘極間隔開來,所述遮蔽閘極與所述源極電性連接。
  8. 如請求項7所述的半導體裝置,其中所述基底包括在主體區下方以及相鄰的兩個所述閘極結構之間的漂移區,所述U形摻雜區將所述遮蔽閘極與所述漂移區間隔開來。
  9. 如請求項1所述的半導體裝置,其中所述U形摻雜區的摻雜濃度小於所述主體區的摻雜濃度。
  10. 如請求項1所述的半導體裝置,其中所述U形摻雜區包括第一部分與第二部分,所述第一部分在所述閘極結構與所述主體區之間且與所述主體區和所述閘極結構接觸,所述第二 部分在所述第一部分下方,所述第一部分的摻雜濃度大於所述第二部分的摻雜濃度。
TW112109860A 2023-03-16 半導體裝置 TWI835594B (zh)

Publications (1)

Publication Number Publication Date
TWI835594B true TWI835594B (zh) 2024-03-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220393004A1 (en) 2021-06-03 2022-12-08 Nxp Usa, Inc. Termination ballast to suppress hotspot formation in trench field plate power mosfets

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220393004A1 (en) 2021-06-03 2022-12-08 Nxp Usa, Inc. Termination ballast to suppress hotspot formation in trench field plate power mosfets

Similar Documents

Publication Publication Date Title
JP4738562B2 (ja) 半導体装置の製造方法
TWI445172B (zh) 底部漏極橫向雙擴散金屬氧化物半導體功率金屬氧化物半導體場效應管的結構及製備方法
TWI478241B (zh) 金氧半場效應電晶體作用區與邊界終止區的電荷平衡
TWI407564B (zh) 具有溝槽底部多晶矽結構之功率半導體及其製造方法
KR20030070264A (ko) 고전압 수평형 디모스 트랜지스터 및 그 제조 방법
KR20110065379A (ko) 차폐 전극 구조를 가진 절연된 게이트 전계 효과 트랜지스터 디바이스를 형성하는 방법
CN102770960A (zh) 半导体器件及其制造方法
CN102769037A (zh) 减少表面电场的结构及横向扩散金氧半导体元件
TW201947761A (zh) 橫向雙擴散金屬氧化物半導體元件及其製造方法
US7649222B2 (en) Semiconductor device
US20080191272A1 (en) Semiconductor device
KR20230082182A (ko) 고전압 반도체 소자 및 제조방법
JP5037103B2 (ja) 炭化珪素半導体装置
US10615079B2 (en) Semiconductor device and method for manufacturing the same
JP3344381B2 (ja) 半導体装置及びその製造方法
KR19990050418A (ko) 이중 필드판 구조를 갖는 전력소자
US7948031B2 (en) Semiconductor device and method of fabricating semiconductor device
CN114843346B (zh) 低阻沟槽型碳化硅晶体管及其制造方法
JP2000260990A (ja) 高電圧素子及びその製造方法
TWI835594B (zh) 半導體裝置
CN113921610B (zh) Ldmos器件结构及其制造方法
US11664434B2 (en) Semiconductor power devices having multiple gate trenches and methods of forming such devices
KR100940643B1 (ko) 반도체 소자의 제조방법
TW202147620A (zh) 功率元件
CN111370486A (zh) 沟槽型mos场效应晶体管及方法、电子设备