TWI835557B - 內連線結構及其形成方法 - Google Patents

內連線結構及其形成方法 Download PDF

Info

Publication number
TWI835557B
TWI835557B TW112105256A TW112105256A TWI835557B TW I835557 B TWI835557 B TW I835557B TW 112105256 A TW112105256 A TW 112105256A TW 112105256 A TW112105256 A TW 112105256A TW I835557 B TWI835557 B TW I835557B
Authority
TW
Taiwan
Prior art keywords
conductive
conductive lines
side wall
dielectric layer
contact structure
Prior art date
Application number
TW112105256A
Other languages
English (en)
Other versions
TW202435407A (zh
Inventor
陸怡雯
彭國芝
涂瑞能
何美玲
Original Assignee
力晶積成電子製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶積成電子製造股份有限公司 filed Critical 力晶積成電子製造股份有限公司
Priority to TW112105256A priority Critical patent/TWI835557B/zh
Application granted granted Critical
Publication of TWI835557B publication Critical patent/TWI835557B/zh
Publication of TW202435407A publication Critical patent/TW202435407A/zh

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本揭露提供一種內連線結構及其形成方法。內連線結構包括多條導電線、多個導電通孔以及多個接觸結構。多條導電線設置在基底上方。多條導電線在第一方向上排列且各自在第二方向上延伸。第一方向與第二方向交叉。多個導電通孔各自設置在相對應的導電線上且與相對應的導電線電性連接。多個接觸結構各自設置在相對應的導電線和相對應的導電通孔之間。相鄰的兩條導電線以空氣隙間隔開來。接觸結構包括上部分以及下部分。上部分接觸導電線的頂面以及導電通孔的底面。下部分在垂直於第一方向和第二方向的第三方向上朝基底延伸以覆蓋並接觸導電線的側壁。

Description

內連線結構及其形成方法
本發明是有關於一種半導體結構及其形成方法,且特別是有關於一種內連線結構及其形成方法。
隨著半導體裝置的尺寸不斷的縮小,內連線結構在電阻電容延遲(RC delay)方面已難以滿足現今的需求。
本發明提供一種內連線結構及其形成方法,其藉由將相鄰的兩條導電線設計為以空氣隙(air gap)間隔開來降低寄生電容,並藉由將接觸結構設計為包括朝基底延伸以覆蓋並接觸導電線的側壁的部分來降低電阻,如此可使得內連線結構具有良好的電阻電容延遲(RC delay)。
本發明一實施例提供一種內連線結構,其包括多條導電線、多個導電通孔及多個接觸結構。多條導電線設置在基底上方。多條導電線在第一方向上排列且各自在第二方向上延伸。第 一方向與第二方向交叉。多個導電通孔各自設置在相對應的導電線上且與相對應的導電線電性連接。多個接觸結構各自設置在相對應的導電線和相對應的導電通孔之間。相鄰的兩條導電線由空氣隙(air gap)間隔開來。接觸結構包括上部分以及下部分,其中上部分接觸導電線的頂面以及導電通孔的底面,且下部分在垂直於第一方向和第二方向的第三方向上朝基底延伸以覆蓋並接觸導電線的側壁。
在一些實施例中,相鄰的兩個接觸結構以空氣隙間隔開來。
在一些實施例中,接觸結構與導電通孔彼此連接形成連續的膜層,且接觸結構包括沿第一方向延伸的第一側壁以及沿第二方向延伸的第二側壁,第一側壁的長度約等於第二側壁的長度。
在一些實施例中,接觸結構包括沿第一方向延伸的第一側壁以及沿第二方向延伸的第二側壁,第一側壁的長度小於第二側壁的長度。
在一些實施例中,內連線結構更包括設置在基底上且覆蓋導電線的介電層。介電層包括通孔孔洞及與通孔孔洞連通的溝槽,其中導電通孔形成於通孔孔洞中,接觸結構形成於溝槽中,且空氣隙形成於介電層中。
在一些實施例中,其中介電層與接觸結構之間存在空隙(void)。
在一些實施例中,內連線結構更包括置在基底上且覆蓋導電線及接觸結構的介電層,其中介電層包括通孔孔洞,導電通孔形成於通孔孔洞中,且空氣隙形成於介電層中。
本發明一實施例提供一種形成內連線結構的方法,其包括:於基底上形成多條導電線,其中多條導電線在第一方向上排列且各自在第二方向上延伸,且第一方向與第二方向交叉;於基底上形成犧牲材料層,其中犧牲材料層共形地覆蓋多條導電線;以有角度的離子束對犧牲材料層進行摻雜,使得犧牲材料層包括經摻雜的部分,經摻雜的部分覆蓋導電線的頂表面且在第三方向上自頂表面朝基底延伸以覆蓋導電線的側表面,其中第三方向與第一方向和第二方向垂直;移除犧牲材料層的未經摻雜的部分以於每條導電線的上端形成犧牲圖案;於基底上形成覆蓋導電線及犧牲圖案的介電層,其中介電層未填滿相鄰的兩條導電線之間的空間而於相鄰的兩條導電線之間形成空氣隙(air gap);於介電層中形成暴露出犧牲圖案的通孔孔洞;通過通孔孔洞移除犧牲圖案,以形成與通孔孔洞連通且暴露出導電線的上端的溝渠;以及將導電材料填入溝渠及通孔孔洞中,以於溝渠中形成接觸結構,並於通孔孔洞中形成導電通孔。
在一些實施例中,導電材料未填滿溝渠,使得空隙(void)形成於接觸結構和介電層之間。
在一些實施例中,接觸結構與導電通孔彼此連接形成連續的膜層,且接觸結構包括沿第一方向延伸的第一側壁以及沿第 二方向延伸的第二側壁,第一側壁的長度約等於第二側壁的長度。
本發明另一實施例提供一種形成內連線結構的方法,其包括:於基底上形成多條導電線,其中多條導電線在第一方向上排列且各自在第二方向上延伸,第一方向與第二方向交叉;於基底上形成覆蓋多條導電線的犧牲層,其中每條導電線包括被犧牲層環繞的下部分以及被犧牲層暴露的上部分;於每條導電線的上部分上形成接觸結構;移除犧牲層以暴露出導電線的下部分;於基底上形成覆蓋導電線及接觸結構的介電層,其中介電層未填滿相鄰的兩條導電線之間的空間而於相鄰的兩條導電線之間形成空氣隙(air gap);於介電層中形成暴露出接觸結構的通孔孔洞;以及將導電材料填入通孔孔洞中,以於通孔孔洞中形成導電通孔。
在一些實施例中,其中接觸結構包括沿第一方向延伸的第一側壁以及沿第二方向延伸的第二側壁,第一側壁的長度小於第二側壁的長度。
基於上述,在上述內連線結構及其形成方法中,其藉由將相鄰的兩條導電線設計為以空氣隙(air gap)間隔開來降低寄生電容,並藉由將接觸結構設計為包括朝基底延伸以覆蓋並接觸導電線的側壁的部分來降低電阻,如此可使得內連線結構具有良好的電阻電容延遲(RC delay)。
10、20:內連線結構
100、200:基底
110、210:導電線
120、122、124:犧牲材料層
122a、124a:經摻雜的部分
122b、124b:未經摻雜的部分
126:犧牲圖案
130、132、134、240、242:介電層
134a:空隙
140:導電結構
142、230:接觸結構
142a、210a、230a:上部分
142b、210b、230b:下部分
144、250:導電通孔
220:犧牲材料層
222:犧牲層
AG:空氣隙
D1:第一方向
D2:第二方向
D3:第三方向
Imp1、Imp2:離子束
SW1:第一側壁
SW2:第二側壁
T:溝渠/渠槽
VAH:通孔孔洞
圖1A至圖1I是本發明一實施例的形成內連線結構的方法的剖面示意圖。
圖2是圖1I於一實施例中的立體示意圖。
圖3A至圖3H是本發明另一實施例的形成內連線結構的方法的剖面示意圖。
圖4是圖3H於一實施例中的立體示意圖。
參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之參考號碼表示相同或相似之元件,以下段落將不再一一贅述。
應當理解,當諸如元件被稱為在另一元件「上」或「連接到」另一元件時,其可以直接在另一元件上或與另一元件連接,或者也可存在中間元件。若當元件被稱為「直接在另一元件上」或「直接連接到」另一元件時,則不存在中間元件。如本文所使用的,「連接」可以指物理及/或電性連接,而「電性連接」或「耦合」可為二元件間存在其它元件。本文中所使用的「電性連接」可包括物理連接(例如有線連接)及物理斷接(例如無線連接)。
本文使用的「約」、「近似」或「實質上」包括所提到的值和在所屬技術領域中具有通常知識者能夠確定之特定值的可接受 的偏差範圍內的平均值,考慮到所討論的測量和與測量相關的誤差的特定數量(即,測量系統的限制)。例如,「約」可以表示在所述值的一個或多個標準偏差內,或±30%、±20%、±10%、±5%內。再者,本文使用的「約」、「近似」或「實質上」可依光學性質、蝕刻性質或其它性質,來選擇較可接受的偏差範圍或標準偏差,而可不用一個標準偏差適用全部性質。
使用本文中所使用的用語僅為闡述例示性實施例,而非限制本揭露。在此種情形中,除非在上下文中另有解釋,否則單數形式包括多數形式。
圖1A至圖1I是本發明一實施例的形成內連線結構的方法的剖面示意圖。圖2是圖1I於一實施例中的立體示意圖。
在一些實施例中,內連線結構(如圖1I或圖2所示的內連線結構10)可藉由以下步驟形成。
首先,請參照圖1A,於基底100上形成多條導電線110。導電線110在第一方向D1上排列且各自在第二方向D2上延伸。第一方向D1與第二方向D2交叉。在一些實施例中,第一方向D1與第二方向D2相互垂直。
基底100可包括形成於半導體基底或半導體上覆絕緣體(semiconductor on insulator,SOI)基底上的內層介電層及/或接觸窗、主動元件(例如PMOS、NMOS、CMOS、JFET或BJT等元件)或被動元件(例如電容、電阻或電感等)等前段製程(front-end of line,BEoL)所形成的構件。半導體基底或SOI基 底中的半導體材料可包括元素半導體、合金半導體或化合物半導體。舉例而言,元素半導體可包括Si或Ge。合金半導體可包括SiGe、SiGeC等。化合物半導體可包括SiC、III-V族半導體材料或II-VI族半導體材料。III-V族半導體材料可包括GaN、GaP、GaAs、AlN、AlP、AlAs、InN、InP、InAs、GaNP、GaNAs、GaPAs、AlNP、AlNAs、AlPAs、InNP、InNAs、InPAs、GaAlNP、GaAlNAs、GaAlPAs、GaInNP、GaInNAs、GaInPAs、InAlNP、InAlNAs或InAlPAs。II-VI族半導體材料可包括CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe或HgZnSTe。半導體材料可摻雜有第一導電型的摻雜物或與第一導電型互補的第二導電型的摻雜物。舉例而言,第一導電型可為N型,而第二導電型可為P型。
導電線110可為後段製程(back-end of line,BEoL)所形成之構件。導電線110可包括如鎢(W)、鈷(Co)、鋁(Al)、矽化鎢(WSix)或矽化鈷(CoSix)等的金屬材料。
接著,請參照圖1B,於基底100上形成犧牲材料層120。犧牲材料層120共形地覆蓋多條導電線110。在一些實施例中,犧牲材料層120可包括非晶矽(amorphous silicon)。
之後,以有角度的離子束(如圖1C的離子束Imp1和/或圖1D的離子束Imp2)對犧牲材料層120進行摻雜,使得犧牲材料層(如圖1C所示的犧牲材料層122或如圖1D所示的犧牲材料層124)包括經摻雜的部分(如圖1C所示的經摻雜的部分122a或如圖1D所示的經摻雜的部分124a),其中經摻雜的部分覆蓋導電線110的頂表面且在第三方向D3上自頂表面朝基底100延伸以覆蓋導電線110的側壁。在一些實施例中,第三方向D3與第一方向D1和第二方向D2垂直。
在一些實施例中,上述犧牲材料層之經摻雜的部分可藉由以下步驟形成。首先,請參照圖1B和圖1C,以有角度的離子束Imp1對犧牲材料層120進行摻雜,使得犧牲材料層122包括經摻雜的部分122a。如圖1C所示,離子束Imp1相較於基底100的表面以約30度至約60度的角度(例如約45度)進行照射,如此可使得犧牲材料層122的經摻雜的部分122a形成於導電線110頂端處,以覆蓋導電線110的頂表面且在第三方向D3上自頂表面朝基底100延伸以覆蓋導電線110的側壁。犧牲材料層122的其他部分(例如犧牲材料層122的位於導電線110底端處上的部分或是犧牲材料層122的位於相鄰的兩條導電線110之間的基底100上之部分)則未照射到離子束Imp1而視為犧牲材料層122的未經摻雜的部分122b。如圖1C所示,由於離子束Imp1是從右上至左下的方式對犧牲材料層120進行摻雜,故犧牲材料層122的經摻雜的部分122a在導電線110右側的摻雜濃度大於 在導電線110左側的摻雜濃度。
接著,請參照圖1C和圖1D,為了使得導電線110左右兩側的經摻雜的部分122a具有約略相同的摻雜濃度,可以有角度的離子束Imp2對犧牲材料層122進行摻雜,使得犧牲材料層124包括經摻雜的部分124a。如圖1D所示,由於離子束Imp2是從左上至右下的方式對犧牲材料層122進行摻雜,故犧牲材料層124的經摻雜的部分124a在導電線110左側的摻雜濃度約等於在導電線110右側的摻雜濃度。
如圖1D所示,離子束Imp2相較於基底100的表面以約30度至約60度的角度(例如約45度)進行照射,如此可使得犧牲材料層124的經摻雜的部分124a形成於導電線110頂端處,以覆蓋導電線110的頂表面且在第三方向D3上自頂表面朝基底100延伸以覆蓋導電線110的側壁。犧牲材料層124的其他部分(例如犧牲材料層124的位於導電線110底端處的部分或是犧牲材料層124的位於相鄰的兩條導電線110之間的基底100上之部分)則未照射到離子束Imp2而視為犧牲材料層124的未經摻雜的部分124b。
之後,請參照圖1D和圖1E,移除犧牲材料層124的未經摻雜的部分124b以於每條導電線110的上端形成犧牲圖案126。在一些實施例中,可採用對犧牲材料層124的經摻雜的部分124a與犧牲材料層124的未經摻雜的部分124b具有良好蝕刻選擇比的工藝來移除犧牲材料層124的未經摻雜的部分124b。舉 例而言,在犧牲材料層120包括非晶矽(amorphous silicon)的情況下,可採用對經摻雜之非晶矽與未經摻雜之非晶矽具有良好蝕刻選擇比的濕蝕刻工藝來移除未經摻雜之非晶矽。
接著,請參照圖1E和圖1F,於基底100上形成覆蓋導電線110及犧牲圖案126的介電層130。介電層130未填滿相鄰的兩條導電線110之間的空間而於相鄰的兩條導電線110之間形成空氣隙(air gap)AG,如此可降低兩條導電線110之間的寄生電容,而有助於改善電阻電容延遲(RC delay)。在一些實施例中,相鄰的兩條導電線110由空氣隙AG間隔開來。在一些實施例中,空氣隙AG可形成於相鄰的兩個犧牲圖案126之間。介電層130的材料可包括如氧化矽等的介電材料。
然後,請參照圖1F和圖1G,於介電層130中形成暴露出犧牲圖案126的通孔孔洞VAH。在一些實施例中,可藉由蝕刻製程來移除介電層130的一部分,使得所形成之介電層132包括暴露出犧牲圖案126的通孔孔洞VAH。
而後,請參照圖1G和圖1H,通過通孔孔洞VAH移除犧牲圖案126,以形成與通孔孔洞VAH連通且暴露出導電線110的上端的溝渠T。在一些實施例中,可採用對介電層132與犧牲圖案126具有良好蝕刻選擇比的工藝來移除犧牲圖案126。舉例而言,在介電層132包括氧化矽且犧牲圖案126包括經摻雜的非晶矽的情況下,可採用對氧化矽與經摻雜的非晶矽具有良好蝕刻選擇比的蝕刻工藝移除犧牲圖案126。
之後,請參照圖1H和圖1I,將導電材料填入溝渠T及通孔孔洞VAH中,以於溝渠T中形成接觸結構142,並於通孔孔洞VAH中形成導電通孔144。如圖1I所示,接觸結構142包括上部分142a以及下部分142b。上部分142a接觸導電線110的頂面以及導電通孔144的底面。下部分142b在垂直於第一方向D1和第二方向D2的第三方向D3上朝基底100延伸以覆蓋並接觸導電線110的側壁,如此可藉由增加接觸面積來降低電阻而有助於改善電阻電容延遲(RC delay)。在一些實施例中,由於接觸結構142和導電通孔144是於同一製程中同時形成,故接觸結構142與導電通孔144可彼此連接而形成連續的膜層。換句話說,接觸結構142可視為導電結構140的延伸部分,而導電通孔144可視為導電結構140的通孔部分。導電材料可包括如鎢(W)、鈷(Co)、鋁(Al)、矽化鎢(WSix)或矽化鈷(CoSix)等的金屬材料。
在一些實施例中,可藉由選擇性化學氣相沉積(CVD)製程來形成接觸結構142和導電通孔144。選擇性CVD製程是指導電材料選擇性地形成於導電線110上的製程。舉例來說,在導電線110為如鎢等的金屬材料的情況下,可藉由選擇性CVD製程來將如鎢等的導電材料選擇性地形成於導電線110上。
在一些實施例中,接觸結構142可包括沿第一方向D1延伸的第一側壁SW1以及沿第二方向D2延伸的第二側壁SW2。在導電材料是經由通孔孔洞VAH填入溝渠T中的情況下,所形 成之接觸結構142的第一側壁SW1在第一方向D1的長度可約等於第二側壁SW2在第二方向D2上的長度(如圖2所示)。在一些實施例中,如圖1I所示,導電材料在第一方向D1上可未填滿溝渠T,而使得空隙(void)134a形成於接觸結構142和介電層134之間。
圖3A至圖3H是本發明另一實施例的形成內連線結構的方法的剖面示意圖。圖4是圖3H於一實施例中的立體示意圖。
在一些實施例中,內連線結構(如圖3H或圖4所示的內連線結構20)可藉由以下步驟形成。
首先,請參照圖3A,於基底200上形成多條導電線210。導電線210在第一方向D1上排列且各自在第二方向D2上延伸。第一方向D1與第二方向D2交叉。在一些實施例中,第一方向D1與第二方向D2相互垂直。基底200與如上所述之基底100相似,於此不再重複贅述。導電線210與如上所述之導電線110相似,於此不再重複贅述。
接著,請參照圖3A至圖3C,於基底200上形成覆蓋多條導電線210的犧牲層222,其中每條導電線210包括被犧牲層暴露的上部分210a及被犧牲層222環繞的下部分210b。犧牲層222可包括如氧化矽等的介電材料。
在一些實施例中,犧牲層222可藉由以下步驟形成。首先,請參照圖3B,於基底200上形成覆蓋多條導電線210的犧 牲材料層220。接著,請參照圖3C,藉由回蝕刻(etch back)製程來移除犧牲材料層220的一部分以形成犧牲層222。
然後,請參照圖3C和圖3D,於每條導電線210的被犧牲層222所暴露出的上部分210a上形成接觸結構230。在一些實施例中,可藉由選擇性CVD製程來形成接觸結構230。選擇性CVD製程是指接觸結構230選擇性地形成於導電線210上的製程。舉例來說,在導電線210為如鎢等的金屬材料的情況下,可藉由選擇性CVD製程來將如鎢等的金屬材料選擇性地形成於導電線210上。在一些實施例中,接觸結構230可包括沿第一方向D1延伸的第一側壁SW1以及沿第二方向D2延伸的第二側壁SW2(如圖4所示)。在接觸結構230藉由選擇性CVD製程選擇性地形成於導電線210上的情況下,接觸結構230的第一側壁SW1在第一方向D1向上的長度小於接觸結構230的第二側壁SW2在第二方向D2向上的的長度(如圖4所示)。
而後,請參照圖3D和圖3E,移除犧牲層222以暴露出導電線210的下部分210b。
然後,請參照圖3E和圖3F,於基底200上形成覆蓋導電線210及接觸結構230的介電層240。介電層240未填滿相鄰的兩條導電線之間的空間而於相鄰的兩條導電線210之間形成空氣隙AG,如此可降低兩條導電線210之間的寄生電容,而有助於改善電阻電容延遲(RC delay)。在一些實施例中,相鄰的兩條導電線210由空氣隙AG間隔開來。在一些實施例中,空氣隙 AG可形成於相鄰的兩個接觸結構230之間。介電層240的材料可包括如氧化矽等的介電材料。
之後,請參照圖3F和圖3G,於介電層240中形成暴露出接觸結構230的通孔孔洞VAH。在一些實施例中,可對介電層240執行蝕刻製程以形成包括通孔孔洞VAH的介電層242。
然後,請參照圖3G和圖3H,將導電材料填入通孔孔洞VAH中,以於通孔孔洞VAH中形成導電通孔250。如圖3H所示,接觸結構230可包括上部分230a以及下部分230b。上部分230a接觸導電線210的頂面以及導電通孔250的底面。下部分230b在垂直於第一方向D1和第二方向D2的第三方向D3上朝基底200延伸以覆蓋並接觸導電線210的側壁,如此可藉由增加接觸面積來降低電阻而有助於改善電阻電容延遲(RC delay)。導電材料可包括如鎢(W)、鈷(Co)、鋁(Al)、矽化鎢(WSix)或矽化鈷(CoSix)等的金屬材料。
以下,將以圖1I和圖2來舉例說明內連線結構10。然而,形成內連線結構10的方法並不限於上述圖1A至圖1I所示出之方法。
請參照圖1I和圖2,內連線結構10包括多條導電線110、多個導電通孔144以及多個接觸結構142。導電線110設置在基底100上方,其中導電線110在第一方向D1上排列且各自在第二方向D2上延伸,第一方向D1與所述第二方向D2交叉。導電通孔144各自設置在相對應的導電線110上且與相對應的導 電線110電性連接。接觸結構142各自設置在相對應的導電線110和相對應的導電通孔144之間。相鄰的兩條導電線110由空氣隙AG間隔開來。接觸結構142包括上部分142a以及下部分142b。上部分142a接觸導電線110的頂面以及導電通孔144的底面。下部分142b在垂直於第一方向D1和第二方向D2的第三方向D3上朝基底100延伸以覆蓋並接觸導電線110的側壁。
在一些實施例中,相鄰的兩個接觸結構142以空氣隙AG間隔開來。在一些實施例中,接觸結構142與導電通孔144彼此連接形成連續的膜層,且接觸結構142包括沿第一方向D1延伸的第一側壁SW1以及沿第二方向D2延伸的第二側壁SW2。第一側壁SW1的長度約等於第二側壁SW2的長度。在一些實施例中,內連線結構10更包括設置在基底100上且覆蓋導電線110的介電層134。介電層134包括通孔孔洞VAH及與通孔孔洞VAH連通的溝槽T。導電通孔144形成於通孔孔洞VAH中。接觸結構142形成於溝槽T中。空氣隙AG形成於介電層134中。在一些實施例中,介電層134與接觸結構142之間存在空隙134a。
以下,將以圖3H和圖4來舉例說明內連線結構20。然而,形成內連線結構20的方法並不限於上述圖3A至圖3H所示出之方法。
請參照圖3H和圖4,內連線結構20包括多條導電線210、多個導電通孔250以及多個接觸結構230。導電線210設置 在基底200上方,其中導電線210在第一方向D1上排列且各自在第二方向D2上延伸,第一方向D1與所述第二方向D2交叉。導電通孔250各自設置在相對應的導電線210上且與相對應的導電線210電性連接。接觸結構230各自設置在相對應的導電線210和相對應的導電通孔250之間。相鄰的兩條導電線210由空氣隙AG間隔開來。接觸結構230包括上部分230a以及下部分230b。上部分230a接觸導電線210的頂面以及導電通孔250的底面。下部分230b在垂直於第一方向D1和第二方向D2的第三方向D3上朝基底200延伸以覆蓋並接觸導電線210的側壁。
在一些實施例中,相鄰的兩個接觸結構230以空氣隙AG間隔開來。在一些實施例中,接觸結構230包括沿第一方向D1延伸的第一側壁SW1以及沿第二方向D2延伸的第二側壁SW2。第一側壁SW1的長度小於第二側壁SW2的長度。在一些實施例中,內連線結構20更包括設置在基底200上且覆蓋導電線210及接觸結構230的介電層242。介電層242包括通孔孔洞VAH。導電通孔250形成於通孔孔洞VAH中,且空氣隙AG形成於介電層242中。
綜上所述,在上述實施例的內連線結構及其形成方法中,其藉由將相鄰的兩條導電線設計為以空氣隙(air gap)間隔開來降低寄生電容,並藉由將接觸結構設計為包括朝基底延伸以覆蓋並接觸導電線的側壁的部分來降低電阻,如此可使得內連線結構具有良好的電阻電容延遲(RC delay)。
10:內連線結構
100:基底
110:導電線
134:介電層
134a:空隙
140:導電結構
142:接觸結構
142a:上部分
142b:下部分
144:導電通孔
AG:空氣隙
D1:第一方向
D2:第二方向
D3:第三方向

Claims (11)

  1. 一種內連線結構,包括:多條導電線,設置在基底上方,其中多條所述導電線在第一方向上排列且各自在第二方向上延伸,所述第一方向與所述第二方向交叉;多個導電通孔,各自設置在相對應的導電線上且與所述相對應的導電線電性連接;以及多個接觸結構,各自設置在相對應的所述導電線和相對應的所述導電通孔之間,其中相鄰的兩條所述導電線由空氣隙(air gap)間隔開來,且所述接觸結構包括上部分以及下部分,所述上部分接觸所述導電線的頂面以及所述導電通孔的底面,所述下部分在垂直於所述第一方向和所述第二方向的第三方向上朝所述基底延伸以覆蓋並接觸所述導電線的側壁,其中相鄰的兩個所述接觸結構以所述空氣隙間隔開來。
  2. 如請求項1所述的內連線結構,其中所述接觸結構與所述導電通孔彼此連接形成連續的膜層,且所述接觸結構包括沿所述第一方向延伸的第一側壁以及沿所述第二方向延伸的第二側壁,所述第一側壁的長度約等於所述第二側壁的長度。
  3. 如請求項1所述的內連線結構,其中所述接觸結構包括沿所述第一方向延伸的第一側壁以及沿所述第二方向延伸的第二側壁,所述第一側壁的長度小於所述第二側壁的長度。
  4. 如請求項1所述的內連線結構,更包括:介電層,設置在所述基底上且覆蓋所述導電線,所述介電層包括通孔孔洞及與所述通孔孔洞連通的溝槽,其中所述導電通孔形成於所述通孔孔洞中,所述接觸結構形成於所述溝槽中,且所述空氣隙形成於所述介電層中。
  5. 如請求項4所述的內連線結構,其中所述介電層與所述接觸結構之間存在空隙(void)。
  6. 如請求項1所述的內連線結構,更包括:介電層,設置在所述基底上且覆蓋所述導電線及所述接觸結構,其中所述介電層包括通孔孔洞,所述導電通孔形成於所述通孔孔洞中,且所述空氣隙形成於所述介電層中。
  7. 一種形成內連線結構的方法,包括:於基底上形成多條導電線,其中多條所述導電線在第一方向上排列且各自在第二方向上延伸,所述第一方向與所述第二方向交叉;於所述基底上形成犧牲材料層,其中所述犧牲材料層共形地覆蓋多條所述導電線;以有角度的離子束對所述犧牲材料層進行摻雜,使得所述犧牲材料層包括經摻雜的部分,所述經摻雜的部分覆蓋所述導電線的頂表面且在第三方向上自所述頂表面朝所述基底延伸以覆蓋所述導電線的側壁,其中所述第三方向與所述第一方向和所述第二方向垂直; 移除所述犧牲材料層的未經摻雜的部分以於每條所述導電線的上端形成犧牲圖案;於所述基底上形成覆蓋所述導電線及所述犧牲圖案的介電層,其中所述介電層未填滿相鄰的兩條所述導電線之間的空間而於相鄰的兩條所述導電線之間形成空氣隙(air gap);於所述介電層中形成暴露出所述犧牲圖案的通孔孔洞;通過所述通孔孔洞移除所述犧牲圖案,以形成與所述通孔孔洞連通且暴露出所述導電線的所述上端的溝渠;以及將導電材料填入所述溝渠及所述通孔孔洞中,以於所述溝渠中形成接觸結構,並於所述通孔孔洞中形成導電通孔。
  8. 如請求項7所述的方法,其中所述導電材料未填滿所述溝渠,使得空隙(void)形成於所述接觸結構和所述介電層之間。
  9. 如請求項7所述的方法,其中所述接觸結構與所述導電通孔彼此連接形成連續的膜層,且所述接觸結構包括沿所述第一方向延伸的第一側壁以及沿所述第二方向延伸的第二側壁,所述第一側壁的長度約等於所述第二側壁的長度。
  10. 一種形成內連線結構的方法,包括:於基底上形成多條導電線,其中多條所述導電線在第一方向上排列且各自在第二方向上延伸,所述第一方向與所述第二方向交叉;於所述基底上形成覆蓋多條所述導電線的犧牲層,其中每條 所述導電線包括被所述犧牲層環繞的下部分以及被所述犧牲層暴露的上部分;於每條所述導電線的所述上部分上形成接觸結構;移除所述犧牲層以暴露出所述導電線的所述下部分;於所述基底上形成覆蓋所述導電線及所述接觸結構的介電層,其中所述介電層未填滿相鄰的兩條所述導電線之間的空間而於相鄰的兩條所述導電線之間形成空氣隙(air gap);於所述介電層中形成暴露出所述接觸結構的通孔孔洞;以及將導電材料填入所述通孔孔洞中,以於所述通孔孔洞中形成導電通孔。
  11. 如請求項10所述的方法,其中所述接觸結構包括沿所述第一方向延伸的第一側壁以及沿所述第二方向延伸的第二側壁,所述第一側壁的長度小於所述第二側壁的長度。
TW112105256A 2023-02-15 2023-02-15 內連線結構及其形成方法 TWI835557B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112105256A TWI835557B (zh) 2023-02-15 2023-02-15 內連線結構及其形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112105256A TWI835557B (zh) 2023-02-15 2023-02-15 內連線結構及其形成方法

Publications (2)

Publication Number Publication Date
TWI835557B true TWI835557B (zh) 2024-03-11
TW202435407A TW202435407A (zh) 2024-09-01

Family

ID=91269579

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112105256A TWI835557B (zh) 2023-02-15 2023-02-15 內連線結構及其形成方法

Country Status (1)

Country Link
TW (1) TWI835557B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202118100A (zh) * 2019-10-15 2021-05-01 台灣積體電路製造股份有限公司 用於記憶單元的側壁間隔物結構
US20220262708A1 (en) * 2019-06-28 2022-08-18 Taiwan Semiconductor Manufacturing Co., Ltd. Air Gap Seal for Interconnect Air Gap and Method of Fabricating Thereof
US20220399226A1 (en) * 2021-06-11 2022-12-15 United Semiconductor (Xiamen) Co., Ltd. Semiconductor structure and method for forming the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220262708A1 (en) * 2019-06-28 2022-08-18 Taiwan Semiconductor Manufacturing Co., Ltd. Air Gap Seal for Interconnect Air Gap and Method of Fabricating Thereof
TW202118100A (zh) * 2019-10-15 2021-05-01 台灣積體電路製造股份有限公司 用於記憶單元的側壁間隔物結構
US20220399226A1 (en) * 2021-06-11 2022-12-15 United Semiconductor (Xiamen) Co., Ltd. Semiconductor structure and method for forming the same

Similar Documents

Publication Publication Date Title
US11462563B2 (en) Memory device and manufacturing method thereof
US20240090226A1 (en) Semiconductor structure
US11450657B2 (en) Semiconductor device with improved electrostatic discharge or electro-over stress protection
CN111146275B (zh) 高电子迁移率晶体管元件及其制造方法
US11217629B2 (en) Semiconductor device and manufacturing method thereof
TWI835557B (zh) 內連線結構及其形成方法
CN111180505B (zh) 高电子迁移率晶体管元件及其制造方法
TWI697986B (zh) 記憶體元件及其製造方法
US10714491B2 (en) Memory device and manufacturing method thereof
TWI828456B (zh) 對準標記及其形成方法
TWI828598B (zh) 形成圖案的方法
CN110838496B (zh) 存储器元件及其制造方法
TWI835564B (zh) 半導體結構及其形成方法
TWI852733B (zh) 半導體裝置的形成方法
TWI775648B (zh) 半導體裝置及其製造方法
TWI839143B (zh) 記憶體裝置
TWI842646B (zh) 記憶體裝置
TWI832491B (zh) 半導體結構及其形成方法
US20240243187A1 (en) Semiconductor device and method of forming the same
TW201931572A (zh) 記憶體元件及其製造方法
TW202431643A (zh) 半導體裝置及形成半導體裝置的方法
TW202431586A (zh) 晶片堆疊結構及檢測元件失效的方法