TWI834347B - 環形核燃料棒 - Google Patents

環形核燃料棒 Download PDF

Info

Publication number
TWI834347B
TWI834347B TW111139923A TW111139923A TWI834347B TW I834347 B TWI834347 B TW I834347B TW 111139923 A TW111139923 A TW 111139923A TW 111139923 A TW111139923 A TW 111139923A TW I834347 B TWI834347 B TW I834347B
Authority
TW
Taiwan
Prior art keywords
nuclear fuel
annular
cladding tube
fuel rod
ceramic
Prior art date
Application number
TW111139923A
Other languages
English (en)
Other versions
TW202326757A (zh
Inventor
路克 C 歐森
凱瑟琳 E 馬茲格爾
愛德華 J 拉赫達
艾爾溫 羅伯特
麥可 R 艾基斯
保羅 佛朗尼
羅佩茲 丹尼斯 阿多諾
路克 D 科澤尼亞克
福斯托 法蘭西斯契尼
Original Assignee
美商西屋電器公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商西屋電器公司 filed Critical 美商西屋電器公司
Publication of TW202326757A publication Critical patent/TW202326757A/zh
Application granted granted Critical
Publication of TWI834347B publication Critical patent/TWI834347B/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/045Pellets
    • G21C3/048Shape of pellets
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/10End closures ; Means for tight mounting therefor
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/16Details of the construction within the casing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • G21C3/64Ceramic dispersion fuel, e.g. cermet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Metallurgy (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

揭示一種環形核燃料棒。環形核燃料棒包括由陶瓷複合材料或陶瓷金屬複合材料製成的外包覆管、由陶瓷複合材料或陶瓷金屬複合材料製成的內包覆管、位於外包覆管和內包覆管之間的核燃料區,及用於液體冷卻劑流動的開放通道。

Description

環形核燃料棒
本發明大致上關於一種包含內外管的環形核燃料棒,更具體地,關於一種包含由陶瓷複合材料或陶瓷金屬複合材料製成的內外管的環形核燃料棒。
在各種具體例中,揭示一種環形核燃料棒。環形核燃料棒包括由陶瓷複合材料或陶瓷金屬複合材料製成的外包覆管、由陶瓷複合材料或陶瓷金屬複合材料製成的內包覆管、位於外包覆管和內包覆管之間的核燃料區、及用於液體冷卻劑流動的開放通道。開放通道延伸穿過內包覆管。
在各種其他具體例中,揭示一種環形核燃料棒。環形核燃料棒包括由陶瓷複合材料或陶瓷金屬複合材料製成的外包覆管;由陶瓷金屬複合材料或陶瓷金屬複合材料製成的內包覆管;位於外包覆管和內包覆管之間的核燃料區,其中核燃料區包含呈環形顆粒形式的核陶瓷金屬材料;及用於液體冷卻劑流動的開放通道。開放通道延伸穿過內包覆管。
本申請案主張2021年10月21日申請、標題為「環形核燃料棒」之美國非臨時申請案第17/451,726號的權益和根據35 U.S.C. § 120的優先權,其全體揭示內容以引用之方式併入本文。
本發明是在合同編號NE-0008824的政府支持下完成的。政府對本發明具有某些權利。
闡述許多特定細節以提供對如本說明書中所描述且附圖中所說明之具體例之整體結構、功能、製造及使用的徹底理解。未詳細地描述熟知操作、組件及元件,以免混淆說明書中所描述的具體例。讀者將理解,本文中所描述及說明之具體例為非限制性實例,且因此可瞭解本文中揭示之特定結構及功能細節可為代表性及說明性的。可對其進行變化及改變而不脫離申請專利範圍之範疇。
核燃料棒通常包含基於鋯的包覆和二氧化鈾(UO 2)燃料。然而,基於鋯的包覆和UO 2燃料的能量密度和運行功率可能受到限制。例如,安全要求將UO 2燃料的中心線溫度限制在低於UO 2的熔點,並在導致高於正常功率水平的瞬變和意外情況期間低於指定的包覆表面溫度。
因此,本揭示的目標是提供一種環形核燃料棒,其提供增加的能量密度、允許更高功率水平之降低的燃料顆粒的中心線溫度,以及包含大於5%濃縮 235U的核燃料。
現參照圖1,根據本揭示之至少一個態樣提供環形核燃料棒100。環形核燃料棒100可包括外包覆管102、內包覆管104、位於外包覆管102和內包覆管104之間的核燃料區106、以及開放通道108。開放通道108可延伸穿過內包覆管104。液體冷卻劑可在開放通道108內流動。由於從核燃料區106到延伸穿過內包覆管104之開放通道108內的液體冷卻劑和外包覆102外面的液體冷卻劑的每體積的額外熱傳面積,功率密度的增加是可能的。
外包覆管102可以由陶瓷複合材料或陶瓷金屬複合材料製成。內包覆管104可以由陶瓷複合材料或陶瓷金屬複合材料製成。外包覆管102和內包覆管104可以是相同的複合材料(亦即,陶瓷/陶瓷或陶瓷金屬/陶瓷金屬)或不同的複合材料(亦即,陶瓷/陶瓷金屬或陶瓷金屬/陶瓷)。
陶瓷複合材料可包含碳化矽(SiC)、氧化鋁(Al 2O 3)、碳化硼(BC)、氮化硼(BN)、碳纖維(C)、其他超高溫陶瓷基質複合材料(UHTCMC)、工業級陶瓷諸如:SiO 2、SiN、ZrO 2、SiAlON類陶瓷、ZrB 2、HfB 2、TaSi 2、Si 3N 4、MoSi 2、ZrSi 2、(Hf、Zr、Ta)C、或其組合。
陶瓷金屬複合材料可包含金屬,諸如鋯(Zr)、鉬(Mo)、鎢(W)、釩(V)、鉻(Cr)、鈮(Nb)、FeCrAl、FeCrAlY、或其組合。陶瓷金屬複合材料進一步包含一或多種本文中揭示之陶瓷(亦即,SiC、Al 2O 3、BC、BN、C、超高溫陶瓷基質複合材料、或工業級陶瓷)或該等陶瓷的組合。
陶瓷複合材料和陶瓷金屬複合材料係用以提供抗氧化性、高溫(亦即,大於500°C、大於1000°C、或大於1500°C)下的卓越強度,並消除許多操作限制(亦即,事故和瞬變中遇到的更高表面溫度)以及與基於鋯的包覆相關的意外問題。
核燃料區106可包含呈環形顆粒形式的核燃料。呈環形顆粒形式的核燃料降低了燃料顆粒的中心線溫度。呈環形顆粒形式的核燃料可以是UO 2、氮化鈾(UN)、二硼化鈾(UB 2)、四硼化鈾(UB 4)和碳化鈾(UC)。核燃料可以單獨、與另一核燃料組合、或與添加劑諸如選自由Zr、Cr、Mo、ZrB 2、Cr 2O 3、Al 2O 3及其組合組成之群組的添加劑組合。
呈環形顆粒形式的核燃料可包含大於5%的濃縮 235U。呈環形顆粒形式的核燃料可包含至少6%的濃縮 235U、至少6.5%的濃縮 235U、至少7%的濃縮 235U、至少7.5%的濃縮 235U、至少8%的濃縮 235U、至少8.5%的濃縮 235U、至少9%的濃縮 235U、至少9.5%的濃縮 235U、至少10%的濃縮 235U、至少10.5%的濃縮 235U、至少11%的濃縮 235U、至少11.5%的濃縮 235U、至少12%的濃縮 235U、至少12.5%的濃縮 235U、至少13%的濃縮 235U、至少13.5%的濃縮 235U、至少14%的濃縮 235U、至少14.5%的濃縮 235U、至少15%的濃縮 235U、至少15.5%的濃縮 235U、至少16%的濃縮 235U、至少16.5%的濃縮 235U、至少17%的濃縮 235U、至少17.5%的濃縮 235U、至少18%的濃縮 235U、至少18.5%的濃縮 235U、至少19%的濃縮 235U、至少19.5%的濃縮 235U、或至少20%的濃縮 235U。
呈環形顆粒形式的核燃料可包含大於5%至6%的濃縮 235U、大於5%至6.5%的濃縮 235U、大於5%至7%的濃縮 235U、大於5%至7.5%的濃縮 235U、大於5%至8%的濃縮 235U、大於5%至8.5%的濃縮 235U、大於5%至9%的濃縮 235U、大於5%至9.5%的濃縮 235U、大於5%至10%的濃縮 235U、大於5%至10.5%的濃縮 235U、大於5%至11%的濃縮 235U、大於5%至11.5%的濃縮 235U、大於5%至12%的濃縮 235U、大於5%至12.5%的濃縮 235U、大於5%至13%的濃縮 235U、大於5%至13.5%的濃縮 235U、大於5%至14%的濃縮 235U、大於5%至14.5%的濃縮 235U、大於5%至15%的濃縮 235U、大於5%至15.5%的濃縮 235U、大於5%至16%的濃縮 235U、大於5%至16.5%的濃縮 235U、大於5%至17%的濃縮 235U、大於5%至17.5%的濃縮 235U、大於5%至18%的濃縮 235U、大於5%至18.5%的濃縮 235U、大於5%至19%的濃縮 235U、大於5%至19.5%的濃縮 235U、及大於5%至20%的濃縮 235U。
呈環形顆粒形式的核燃料可包含至少10%至20%的濃縮 235U、至少10.5%至20%的濃縮 235U、至少11%至20%的濃縮 235U、至少11.5%至20%的濃縮 235U、至少12%至20%的濃縮 235U、至少12.5%至20%的濃縮 235U、至少13%至20%的濃縮 235U、至少13.5%至20%的濃縮 235U、至少14%至20%的濃縮 235U、至少14.5%至20%的濃縮 235U、至少15%至20%的濃縮 235U、至少15.5%至20%的濃縮 235U、至少16%至20%的濃縮 235U、至少16.5%至20%的濃縮 235U、至少17%至20%的濃縮 235U、至少17.5%至20%的濃縮 235U、至少18%至20%的濃縮 235U、至少18.5%至20%的濃縮 235U、至少19%至20%的濃縮 235U、及至少19.5%至20%的濃縮 235U。
核燃料區106可包含呈環形顆粒形式的核陶瓷金屬燃料。呈環形顆粒形式的核陶瓷金屬燃料降低了燃料顆粒的中心線溫度。呈環形顆粒形式的核陶瓷金屬燃料可包含惰性金屬基質(亦即,Mo、Zr、不銹鋼、Al、W、Ta、Nb、FeCrAl、FeCrAlY)和本文中揭示之任何核燃料(亦即,UO 2、UN、UB 2、UB 4、UC。核燃料可以單獨、與另一核燃料組合、或與添加劑諸如選自由Zr、Cr、Mo、ZrB 2、Cr 2O 3、Al 2O 3及其組合組成之群組的添加劑組合。惰性金屬基質提供來自燃料顆粒的高熱傳輸。
呈環形顆粒形式的核陶瓷金屬燃料可包含大於5%的濃縮 235U。呈環形顆粒形式的核陶瓷金屬燃料可包含至少6%的濃縮 235U、至少6.5%的濃縮 235U、至少7%的濃縮 235U、至少7.5%的濃縮 235U、至少8%的濃縮 235U、至少8.5%的濃縮 235U、至少9%的濃縮 235U、至少9.5%的濃縮 235U、至少10%的濃縮 235U、至少10.5%的濃縮 235U、至少11%的濃縮 235U、至少11.5%的濃縮 235U、至少12%的濃縮 235U、至少12.5%的濃縮 235U、至少13%的濃縮 235U、至少13.5%的濃縮 235U、至少14%的濃縮 235U、至少14.5%的濃縮 235U、至少15%的濃縮 235U、至少15.5%的濃縮 235U、至少16%的濃縮 235U、至少16.5%的濃縮 235U、至少17%的濃縮 235U、至少17.5%的濃縮 235U、至少18%的濃縮 235U、至少18.5%的濃縮 235U、至少19%的濃縮 235U、至少19.5%的濃縮 235U、或至少20%的濃縮 235U。
呈環形顆粒形式的核陶瓷金屬燃料可包含大於5%至6%的濃縮 235U、大於5%至6.5%的濃縮 235U、大於5%至7%的濃縮 235U、大於5%至7.5%的濃縮 235U、大於5%至8%的濃縮 235U、大於5%至8.5%的濃縮 235U、大於5%至9%的濃縮 235U、大於5%至9.5%的濃縮 235U、大於5%至10%的濃縮 235U、大於5%至10.5%的濃縮 235U、大於5%至11%的濃縮 235U、大於5%至11.5%的濃縮 235U、大於5%至12%的濃縮 235U、大於5%至12.5%的濃縮 235U、大於5%至13%的濃縮 235U、大於5%至13.5%的濃縮 235U、大於5%至14%的濃縮 235U、大於5%至14.5%的濃縮 235U、大於5%至15%的濃縮 235U、大於5%至15.5%的濃縮 235U、大於5%至16%的濃縮 235U、大於5%至16.5%的濃縮 235U、大於5%至17%的濃縮 235U、大於5%至17.5%的濃縮 235U、大於5%至18%的濃縮 235U、大於5%至18.5%的濃縮 235U、大於5%至19%的濃縮 235U、大於5%至19.5%的濃縮 235U、及大於5%至20%的濃縮 235U。
呈環形顆粒形式的核陶瓷金屬燃料可包含至少10%至20%的濃縮 235U、至少10.5%至20%的濃縮 235U、至少11%至20%的濃縮 235U、至少11.5%至20%的濃縮 235U、至少12%至20%的濃縮 235U、至少12.5%至20%的濃縮 235U、至少13%至20%的濃縮 235U、至少13.5%至20%的濃縮 235U、至少14%至20%的濃縮 235U、至少14.5%至20%的濃縮 235U、至少15%至20%的濃縮 235U、至少15.5%至20%的濃縮 235U、至少16%至20%的濃縮 235U、至少16.5%至20%的濃縮 235U、至少17%至20%的濃縮 235U、至少17.5%至20%的濃縮 235U、至少18%至20%的濃縮 235U、至少18.5%至20%的濃縮 235U、至少19%至20%的濃縮 235U、及至少19.5%至20%的濃縮 235U。
在各種具體例中,本文揭示之環形核燃料棒可進一步包含位於外包覆管202和核燃料區206之間的50微米至2毫米的外間隙210。在各種具體例中,本文揭示之環形核燃料棒可進一步包含位於內包覆管204和核燃料區206之間的50微米至2毫米的內間隙212。在其他具體例中,本文揭示之環形核燃料棒可進一步包含位於外包覆管202和核燃料區206之間的外間隙210和位於內包覆管204和核燃料區206之間的內間隙212,如圖2所繪示。位於燃料顆粒和外/內包覆管之間的間隙(亦即,外間隙及/或內間隙)可以防止陶瓷或陶瓷金屬包覆管破裂,從而藉由避免顆粒和包覆之間因使用期間顆粒的膨脹所致之硬接觸來保持氣密性。
在各種具體例中,具有低熔點和相對高沸點的液態金屬或合金(亦即,液態金屬鍵結),諸如Na、K、Pb、Sn、Bi、Ga及其混合物,可以被含括在位於外包覆管202和核燃料區206之間的外間隙210中。在各種具體例中,液態金屬或合金可以被含括在位於內包覆管204和核燃料區206之間的內間隙212中。液態金屬鍵結可以增加核燃料顆粒包覆間隙的熱導率,容許因較大的間隙尺寸而增加的燃料膨脹,並且可以在包覆中裂縫或孔洩漏時阻止冷卻劑侵入燃料棒,從而有助於保留裂變產物並減少燃料冷卻劑的相互作用和腐蝕。
具有液態金屬鍵結、金屬和陶瓷金屬燃料的填充鈾燃料顆粒(亦即,UO 2、UN、UB 2、UB 4或UC)可以降低峰值燃料溫度,從而當核心平均時容許更高的熱體積產生率和較高的從燃料到冷卻劑的熱通量。
在各種具體例中,外包覆管、核燃料區和內包覆管可以由頂端塞和底端塞包圍。頂端塞可以是SiC(或與主要包覆材料匹配的陶瓷或複合塞)環形端塞或金屬環形端塞。底端塞可以是SiC環形端塞(或與主要包覆材料匹配的陶瓷或複合塞)或金屬環形端塞。在特定具體例中,可以使用陶瓷硬焊將SiC環形端塞附接到外包覆管、核燃料區和內包覆管。在特定具體例中,可以使用金屬硬焊將金屬環形端塞附接到外包覆管、核燃料區和內包覆管。在特定具體例中,可以使用機械互鎖方法將頂端塞和底端塞附接到外包覆管、核燃料區和內包覆管。可以使用機械互鎖方法、陶瓷硬焊、金屬硬焊、或其組合將頂端塞和底端塞附接到外包覆管、核燃料區和內包覆管。
本文中揭示之環形燃料棒可以提供極其有力的緻密核心,並且由於高 235U含量而可以實現>65吉瓦-天/公噸鈾(GWD/MTU)燃耗、>70 GWD/MTU燃耗、>75 GWD/MTU燃耗、>80 GWD/MTU燃耗、>85 GWD/MTU燃耗、>90 GWD/MTU燃耗、>95 GWD/MTU燃耗、或>100 GWD/MTU燃耗。
本文中揭示之環形燃料棒可使用於輕水反應器(LWR)、重水反應器(HWR)、鉛快速反應器(LFR)、鈉快速反應器、熔融鹽反應器及氣冷反應器中。
在以下實例中闡述本文中所描述之主題的各種態樣。
實施例1-環形核燃料棒,其包含由陶瓷複合材料或陶瓷金屬複合材料製成的外包覆管;由陶瓷複合材料或陶瓷金屬複合材料製成的內包覆管;位於外包覆管和內包覆管之間的核燃料區;以及用於液體冷卻劑流動的開放通道,其中開放通道延伸穿過內包覆管。
實施例2-如實施例1之環形核燃料棒,其中,該陶瓷複合材料包含碳化矽(SiC)、氧化鋁(Al 2O 3)、碳化硼(BC)、氮化硼(BN)、碳纖維(C)、其他超高溫陶瓷基質複合材料(UHTCMC)、工業級陶瓷諸如:SiO 2、SiN、ZrO 2、SiAlON類陶瓷、ZrB 2、HfB 2、TaSi 2、Si 3N 4、MoSi 2、ZrSi 2、(Hf、Zr、Ta)C、或其組合。
實施例3-如實施例1或2中任一者之環形核燃料棒,其中,該陶瓷金屬複合材料包含:金屬;及SiC、Al 2O 3、BC、BN、C、UHTCMC、工業級陶瓷諸如:SiO 2、SiN、ZrO 2、SiAlON類陶瓷、ZrB 2、HfB 2、TaSi 2、Si 3N 4、MoSi 2、ZrSi 2、(Hf、Zr、Ta)C、或其組合。
實施例4-如實施例1至3中任一者之環形核燃料棒,其中,該核燃料區包含呈環形顆粒形式的核燃料。
實施例5-如實施例4之環形核燃料棒,其中,該呈環形顆粒形式的核燃料係選自由二氧化鈾(UO 2)、氮化鈾(UN)、二硼化鈾(UB 2)、四硼化鈾(UB 4)及碳化鈾(UC)組成之群組,以及其中該核燃料係單獨、與另一核燃料組合、或與選自由Zr、Cr、Mo、ZrB 2、Cr 2O 3、Al 2O 3及其組合組成之群組的添加劑組合。
實施例6-如實施例4或5中任一者之環形核燃料棒,其中,該呈環形顆粒形式的核燃料包含大於5%的濃縮 235U。
實施例7-如實施例4或5中任一者之環形核燃料棒,其中,該呈環形顆粒形式的核燃料包含至少6%的濃縮 235U。
實施例8-如實施例1至7中任一者之環形核燃料棒,其進一步包含:位於該外包覆管和該核燃料區之間的外間隙;及位於該內包覆管和該核燃料區之間的內間隙。
實施例9-如實施例1至8中任一者之環形核燃料棒,其中,該外包覆管、該核燃料區和該內包覆管係由頂端塞和底端塞包圍。
實施例10-如實施例9之環形核燃料棒,其中,該頂端塞和該底端塞係SiC環形端塞或金屬環形端塞。
實施例11-如實施例10之環形核燃料棒,其中,該SiC環形端塞係使用陶瓷硬焊附接到該外包覆管、該核燃料區和該內包覆管。
實施例12-如實施例10之環形核燃料棒,其中,該金屬環形端塞係使用金屬硬焊附接到該外包覆管、該核燃料區和該內包覆管。
實施例13-如實施例8至12中任一者之環形核燃料棒,其進一步包含位於該外包覆管和該核燃料區之間的該外間隙中的液態金屬。
實施例14-如實施例8至12中任一者之環形核燃料棒,其進一步包含位於該內包覆管和該核燃料區之間的該內間隙中的液態金屬。
實施例15-如實施例9至14中任一者之環形核燃料棒,其中,該頂端塞和該底端塞係使用機械互鎖方法附接到該外包覆管、該核燃料區和該內包覆管。
實施例16-如實施例9至14中任一者之環形核燃料棒,其中,該頂端塞和該底端塞係使用機械互鎖方法、陶瓷硬焊、金屬硬焊、或其組合附接到該外包覆管、該核燃料區和該內包覆管。
實施例17-如實施例1至16中任一者之環形核燃料棒,其中,該環形燃料棒係使用於選自由:輕水反應器(LWR)、重水反應器(HWR)、鉛快速反應器(LFR)、鈉快速反應器、熔融鹽反應器及氣冷反應器組成之群組的反應器中。
實施例18-一種環形核燃料棒,其包含:陶瓷複合材料或陶瓷金屬複合材料製成的外包覆管;陶瓷複合材料或陶瓷金屬複合材料製成的內包覆管;位於該外包覆管和該內包覆管之間的核燃料區,其中該核燃料區包含呈環形顆粒形式的核陶瓷金屬燃料;用於液體冷卻劑流動的開放通道,其中該開放通道延伸穿過該內包覆管。
實施例19-如實施例18之環形核燃料棒,其中,該呈環形顆粒形式的核陶瓷金屬燃料包含:惰性金屬基質;及 UO 2、UN、UB 2、UB 4或UC,其中該UO 2、UN、UB 2、UB 4或UC係單獨、組合或與選自由Zr、Cr、Mo、ZrB 2、Cr 2O 3、Al 2O 3、及其組合組成之群組的添加劑組合。
實施例20-如實施例18之環形核燃料棒,其中,該呈環形顆粒形式的核陶瓷金屬燃料包含大於5%的濃縮 235U。
熟悉本技藝者將認識到,一般本文中且尤其在隨附申請專利範圍中所使用之術語(例如,隨附申請專利範圍之主體)一般意欲作為「開放式(open)」術語(例如,術語「包括(including)」應解譯為「包括但不限於」,術語「具有(having)」應解譯為「至少具有」,術語「包括(includes)」應解譯為「包括但不限於」等)。熟悉本技藝者應進一步理解,若期望特定數目之所引入申請專利範圍敍述,則此意圖將明確敍述於申請專利範圍中,且在無此敍述之情況下不存在此意圖。舉例而言,作為對理解之輔助,以下隨附申請專利範圍可含有介紹性片語「至少一個」及「一或多個」之使用以引入申請專利範圍陳述。然而,此類片語之使用不應視為暗示由不定冠詞「一(a)」或「一個(an)」對申請專利範圍敍述之引入將含有此類所引入申請專利範圍敍述之任何特定申請專利範圍限制於僅含有一個此類敍述的申請專利範圍,即使當同一申請專利範圍包括引入片語「一或多個」或「至少一個」及諸如「一(a)」或「一個(an)」之不定冠詞時(例如,「一(a)」及/或「一個(an)」應通常解譯為意謂「至少一個」或「一或多個」);此情況同樣適用於用以引入申請專利範圍敍述之定冠詞的使用。
此外,即使明確地敍述特定數目之所引入申請專利範圍敍述,但熟悉本技藝者將認識到,此類敍述通常應解譯為意謂至少所敍述之數目(例如,不具有其他修飾語的無修飾敍述「兩個敍述」通常意謂至少兩個敍述或兩個或更多個敍述)。此外,在使用類似於「A、B及C中之至少一者等」之公約的彼等情況下,一般此類構造意欲為熟悉本技藝者應瞭解公約之意義(例如,「具有A、B及C中之至少一者的系統」將包括但不限於具有僅A、僅B、僅C、A及B一起、A及C一起、B及C一起及/或A、B及C一起等的系統)。在使用類似於「A、B或C中之至少一者等」之公約的彼等情況下,一般此類構造意欲為熟悉本技藝者應瞭解公約之意義(例如,「具有A、B或C中之至少一者的系統」將包括但不限於具有僅A、僅B、僅C、A及B一起、A及C一起、B及C一起及/或A、B及C一起等的系統)。熟悉本技藝者將進一步理解,除非上下文另外規定,否則無論在描述內容、申請專利範圍或圖式中,通常呈現兩個或多於兩個替代性術語之分離性字組及/或片語應理解為涵蓋包括該等術語中之一者、該等術語中之任一者或兩種術語之可能性。例如,片語「A或B」將通常瞭解為包括可能性「A」或「B」或「A和B」。
值得注意,對「一個態樣」、「一態樣」、「一示例」、「一個示例」及類似者之任何參考意謂結合該態樣所描述之特定特徵、結構或特性包括於至少一個態樣中。因此,片語「在一個態樣中」、「在一態樣中」、「在一示例中」及「在一個示例中」貫穿本說明書在各處之出現未必皆參考同一態樣。此外,特定特徵、結構或特性可在一或多個態樣中以任何適合方式組合。
在本說明書中所參考及/或在任何申請資料表(Application Data Sheet)中所列出之任何專利申請案、專利、非專利公開案或其他揭示內容材料以引用之方式併入本文中,在某種程度上所併入之材料與本說明書不相矛盾。因而,且在必需之程度上,如本文中所明確闡述之揭示內容取代以引用方式併入本文中之任何矛盾材料。據稱以引用方式併入本文中但與本文中所闡述之現有定義、陳述或其他揭示內容材料相矛盾的任何材料或其部分將僅在彼併入材料與現有揭示內容材料之間不出現矛盾的程度上併入。
術語「包含(comprise)」(及包含之任何形式,諸如「包含(comprises)」及「包含(comprising)」)、「具有(have)」(及具有之任何形式,諸如「具有(has)」及「具有(having)」)、「包括(include)」(及包括之任何形式,諸如「包括(includes)」及「包括(including)」)以及「含有(contain)」(及含有之任何形式,諸如「含有(contains)」及「含有(containing)」)為開放式連繫動詞。因此,一種「包含」、「具有」、「包括」或「含有」一或多個元件之系統具有彼等一或多個元件,但不限於僅擁有彼等一或多個元件。同樣,系統、裝置、或設備之「包含」、「具有」、「包括」或「含有」一或多個特徵的元件擁有彼等一或多個特徵,但不限於僅擁有彼等一或多個特徵。
除非另有特別說明,否則本揭示中使用的用語「實質上」、「約」或「概略」意指一特定值由熟悉技藝人士所判定的可接受誤差,該誤差部分取決於數值的量測或判定方式。在某些具體例中,術語「實質上」、「約」或「概略」意謂在1、2、3或4個標準差內。在某些具體例中,術語「實質上」、「約」或「概略」意謂在既定值或範圍之50%、20%、15%、10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.5%或0.05%內。
總體而言,已描述由採用本文中所描述之概念而產生的眾多益處。出於說明及描述之目的,已呈現一或多個形式之前述描述。其並非意欲為窮盡性的或限於所揭示之精確形式。根據上述教示,修改或變化為可能的。選擇及描述一或多個形式以說明原理及實際應用,從而使熟悉本技藝者能夠利用各種形式及適於所涵蓋之特定用途的各種修改。意圖據此所提交的申請專利範圍定義整個範疇。
100:環形核燃料棒 102:外包覆管 104:內包覆管 106:核燃料區 108:開放通道 200:環形核燃料棒 202:外包覆管 204:內包覆管 206:核燃料區 208:開放通道 210:外間隙 212:內間隙
可如下根據結合附圖進行之以下描述來理解本文中所描述之具體例的各種特徵連同其優點:
圖1繪示根據本揭示之至少一個態樣之環形核燃料棒。
圖2繪示根據本揭示之至少一個態樣之環形核燃料棒。
貫穿若干視圖,對應元件符號指示對應零件。本文中所闡述之範例以一種形式說明本發明之各種具體例,且此類範例並不被詮釋為以任何方式限制本發明之範疇。
100:環形核燃料棒
102:外包覆管
104:內包覆管
106:核燃料區
108:開放通道

Claims (24)

  1. 一種環形核燃料棒,其包含:陶瓷複合材料或陶瓷金屬複合材料製成的外包覆管;陶瓷複合材料或陶瓷金屬複合材料製成的內包覆管;位於該外包覆管和該內包覆管之間的核燃料區;及用於液體冷卻劑流動的開放通道,其中該開放通道延伸穿過該內包覆管。
  2. 如請求項1之環形核燃料棒,其中,該陶瓷複合材料包含超高溫陶瓷基質複合材料(UHTCMC)、工業級陶瓷、或其組合。
  3. 如請求項1之環形核燃料棒,其中,該陶瓷金屬複合材料包含:金屬;及UHTCMC、工業級陶瓷、或其組合。
  4. 如請求項1之環形核燃料棒,其中,該核燃料區包含呈環形顆粒形式的核燃料。
  5. 如請求項4之環形核燃料棒,其中,該呈環形顆粒形式的核燃料係選自由二氧化鈾(UO2)、氮化鈾(UN)、二硼化鈾(UB2)、四硼化鈾(UB4)及碳化鈾(UC)組成之群組,以及其中該核燃料係單獨、與另一核燃料組合、或與選自由Zr、Cr、Mo、ZrB2、Cr2O3、Al2O3及其組合組成之群組的添加劑組合。
  6. 如請求項4之環形核燃料棒,其中,該呈環形顆粒形式的核燃料包含大於5%的濃縮235U。
  7. 如請求項4之環形核燃料棒,其中,該呈環形顆粒形式的核燃料包含至少6%的濃縮235U。
  8. 如請求項1之環形核燃料棒,其進一步包含:位於該外包覆管和該核燃料區之間的外間隙;及位於該內包覆管和該核燃料區之間的內間隙。
  9. 如請求項1之環形核燃料棒,其中,該外包覆管、該核燃料區和該內包覆管係由頂端塞和底端塞封閉。
  10. 如請求項9之環形核燃料棒,其中,該頂端塞和該底端塞係SiC環形端塞或金屬環形端塞。
  11. 如請求項10之環形核燃料棒,其中,該SiC環形端塞係使用陶瓷硬焊附接到該外包覆管、該核燃料區和該內包覆管。
  12. 如請求項10之環形核燃料棒,其中,該金屬環形端塞係使用金屬硬焊附接到該外包覆管、該核燃料區和該內包覆管。
  13. 如請求項8之環形核燃料棒,其進一步包含位於該外 包覆管和該核燃料區之間的該外間隙中的液態金屬。
  14. 如請求項8之環形核燃料棒,其進一步包含位於該內包覆管和該核燃料區之間的該內間隙中的液態金屬。
  15. 如請求項9之環形核燃料棒,其中,該頂端塞和該底端塞係使用機械互鎖方法附接到該外包覆管、該核燃料區和該內包覆管。
  16. 如請求項9之環形核燃料棒,其中,該頂端塞和該底端塞係使用機械互鎖方法、陶瓷硬焊、金屬硬焊、或其組合附接到該外包覆管、該核燃料區和該內包覆管。
  17. 如請求項1之環形核燃料棒,其中,該環形核燃料棒係使用於選自由:輕水反應器(LWR)、重水反應器(HWR)、鉛快速反應器(LFR)、鈉快速反應器、熔融鹽反應器及氣冷反應器組成之群組的反應器中。
  18. 如請求項2之環形核燃料棒,其中該超高溫陶瓷基質複合材料(UHTCMC)包括碳化矽(SiC)、氧化鋁(Al2O3)、碳化硼(BC)、氮化硼(BN)、及碳纖維(C)之任一者。
  19. 如請求項2之環形核燃料棒,該工業級陶瓷包括SiO2、SiN、ZrO2、SiAlON類陶瓷、ZrB2、HfB2、TaSi2、Si3N4、MoSi2、ZrSi2、及(Hf、Zr、Ta)C之任一者。
  20. 如請求項3之環形核燃料棒,其中該超高溫陶瓷基質複合材料(UHTCMC)包括碳化矽(SiC)、氧化鋁(Al2O3)、碳化硼(BC)、氮化硼(BN)、及碳纖維(C)之任一者。
  21. 如請求項3之環形核燃料棒,其中該工業級陶瓷包括SiO2、SiN、ZrO2、SiAlON類陶瓷、ZrB2、HfB2、TaSi2、Si3N4、MoSi2、ZrSi2、及(Hf、Zr、Ta)C之任一者。
  22. 一種環形核燃料棒,其包含:陶瓷複合材料或陶瓷金屬複合材料製成的外包覆管;陶瓷複合材料或陶瓷金屬複合材料製成的內包覆管;位於該外包覆管和該內包覆管之間的核燃料區,其中該核燃料區包含呈環形顆粒形式的核陶瓷金屬燃料;用於液體冷卻劑流動的開放通道,其中該開放通道延伸穿過該內包覆管。
  23. 如請求項22之環形核燃料棒,其中,該呈環形顆粒形式的核陶瓷金屬燃料包含:惰性金屬基質;及UO2、UN、UB2、UB4或UC,其中該UO2、UN、UB2、UB4或UC係單獨、組合或與選自由Zr、Cr、Mo、ZrB2、Cr2O3、Al2O3、及其組合組成之群組的添加劑組合。
  24. 如請求項22之環形核燃料棒,其中,該呈環形顆粒形式的核陶瓷金屬燃料包含大於5%的濃縮235U。
TW111139923A 2021-10-21 2022-10-20 環形核燃料棒 TWI834347B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/451,726 2021-10-21
US17/451,726 US20230132157A1 (en) 2021-10-21 2021-10-21 Annular nuclear fuel rod

Publications (2)

Publication Number Publication Date
TW202326757A TW202326757A (zh) 2023-07-01
TWI834347B true TWI834347B (zh) 2024-03-01

Family

ID=85036988

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111139923A TWI834347B (zh) 2021-10-21 2022-10-20 環形核燃料棒

Country Status (4)

Country Link
US (1) US20230132157A1 (zh)
CA (1) CA3235734A1 (zh)
TW (1) TWI834347B (zh)
WO (1) WO2023070067A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3422523A (en) * 1963-06-26 1969-01-21 Martin Marietta Corp Process for fabricating nuclear reactor fuel elements
FR2898727A1 (fr) * 2006-12-08 2007-09-21 Korea Atomic Energy Res Barre de combustible nucleaire annulaire pouvant etre regulee en flux de chaleur de tubes interne et externe
KR101152301B1 (ko) * 2010-10-27 2012-06-11 한국수력원자력 주식회사 이중냉각 환형 핵연료봉 및 이의 제조방법
CN110752043A (zh) * 2019-10-31 2020-02-04 华南理工大学 一种环形全陶瓷容错事故燃料元件
WO2020093246A1 (zh) * 2018-11-06 2020-05-14 中广核研究院有限公司 核燃料组件的管材及燃料包壳

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3091581A (en) * 1958-03-03 1963-05-28 Martin Marietta Corp Fissionable fuel capsules and method of manufacturing same
JPH10142364A (ja) * 1996-11-14 1998-05-29 Toshiba Corp 炉心燃料およびその再処理方法
KR100756391B1 (ko) * 2006-03-15 2007-09-10 한국원자력연구원 내부 피복관 및 외부 피복관의 열유속 조절이 가능한 환형핵연료봉
KR100804406B1 (ko) * 2006-07-15 2008-02-15 한국원자력연구원 이중 냉각 핵연료봉의 상, 하부 봉단마개
KR100821373B1 (ko) * 2007-05-23 2008-04-11 한국원자력연구원 비대칭 열유속 개선 환형 핵연료봉
KR101007848B1 (ko) * 2009-04-15 2011-01-14 한국수력원자력 주식회사 환형마개가 형성된 이중냉각 핵연료봉과 이를 제작하는 핵연료봉 제조방법
KR101218774B1 (ko) * 2011-12-23 2013-01-09 한국원자력연구원 고속로용 핵연료봉
US9455053B2 (en) * 2013-09-16 2016-09-27 Westinghouse Electric Company Llc SiC matrix fuel cladding tube with spark plasma sintered end plugs
US10734121B2 (en) * 2014-03-12 2020-08-04 Westinghouse Electric Company Llc Double-sealed fuel rod end plug for ceramic-containing cladding
CN111316372A (zh) * 2017-12-22 2020-06-19 泰拉能源公司 环形金属核燃料及其制造方法
EP3503119B1 (en) * 2017-12-22 2023-06-07 Westinghouse Electric Sweden AB Nuclear fuel rod comprising high density fuel units
CN109036592A (zh) * 2018-06-12 2018-12-18 中山大学 用于嬗变的掺杂燃料-包壳组合
US11935661B2 (en) * 2020-10-12 2024-03-19 Bwxt Nuclear Energy, Inc. Cermet fuel element and fabrication and applications thereof, including in thermal propulsion reactor
CN114068043A (zh) * 2021-10-09 2022-02-18 中广核研究院有限公司 颗粒密实燃料元件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3422523A (en) * 1963-06-26 1969-01-21 Martin Marietta Corp Process for fabricating nuclear reactor fuel elements
FR2898727A1 (fr) * 2006-12-08 2007-09-21 Korea Atomic Energy Res Barre de combustible nucleaire annulaire pouvant etre regulee en flux de chaleur de tubes interne et externe
KR101152301B1 (ko) * 2010-10-27 2012-06-11 한국수력원자력 주식회사 이중냉각 환형 핵연료봉 및 이의 제조방법
WO2020093246A1 (zh) * 2018-11-06 2020-05-14 中广核研究院有限公司 核燃料组件的管材及燃料包壳
CN110752043A (zh) * 2019-10-31 2020-02-04 华南理工大学 一种环形全陶瓷容错事故燃料元件

Also Published As

Publication number Publication date
US20230132157A1 (en) 2023-04-27
CA3235734A1 (en) 2023-04-27
WO2023070067A1 (en) 2023-04-27
TW202326757A (zh) 2023-07-01

Similar Documents

Publication Publication Date Title
JP6702644B2 (ja) SiC基材に放電プラズマにより端栓を焼結させた燃料被覆管
US20160049211A1 (en) Silicon carbide multilayered cladding and nuclear reactor fuel element for use in water-cooled nuclear power reactors
JP6314254B2 (ja) 軽水炉用燃料棒及び燃料集合体
US9548139B2 (en) Multilayer tube in ceramic matrix composite material, resulting nuclear fuel cladding and associated manufacturing processes
JP6300953B2 (ja) 原子炉燃料棒およびそれを束ねた燃料集合体
JP6082810B2 (ja) 管状体および管状体の製造方法
US20120314831A1 (en) Light Water Reactor TRISO Particle-Metal-Matrix Composite Fuel
TWI834347B (zh) 環形核燃料棒
KR20160135259A (ko) 중간 내산화층을 구비한 세라믹 강화 지르코늄 합금 핵연료 클래딩
Zabiego et al. Overview of CEA’s R&D on GFR fuel element design: from challenges to solutions
Ferber et al. Behavior of tubular ceramic heat exchanger materials in acidic coal ash from coal-oil-mixture combustion
TW202039875A (zh) 自癒液體丸護套間隙熱傳填料
JP2018081018A (ja) 炉心溶融物保持装置
US20240013936A1 (en) Nuclear reactor with an axially stratified fuel bed
JP2017096653A (ja) 核燃料コンパクト、核燃料コンパクトの製造方法、及び核燃料棒
EP3680917B1 (en) A cladding tube for a fuel rod for nuclear reactors
RU2382423C2 (ru) Микротвэл ядерного реактора на быстрых нейтронах
Ryshkewitch Sintered Beryllia
JP2023007565A (ja) 原子炉燃料棒、該燃料棒の製造方法および該燃料棒を束ねた燃料集合体
Whittemore Jr PROCESS OF MAKING A NUCLEAR FUEL ELEMENT
Cunningham Selected advances in materials research
Miller et al. Design Basis for the PEGCPR Fuel Assembly
Goettler Continuous fiber ceramic composite. Phase I final report, April 1992--April 1993
JP2017062185A (ja) 燃料棒及び燃料集合体