TWI830467B - 構造推定系統、構造推定程式 - Google Patents

構造推定系統、構造推定程式 Download PDF

Info

Publication number
TWI830467B
TWI830467B TW111141062A TW111141062A TWI830467B TW I830467 B TWI830467 B TW I830467B TW 111141062 A TW111141062 A TW 111141062A TW 111141062 A TW111141062 A TW 111141062A TW I830467 B TWI830467 B TW I830467B
Authority
TW
Taiwan
Prior art keywords
pattern
image
height
aforementioned
output
Prior art date
Application number
TW111141062A
Other languages
English (en)
Other versions
TW202324561A (zh
Inventor
福田宗行
豊田康
弓場竜
竇書洋
土肥歩未
田中潤一
Original Assignee
日商日立全球先端科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日立全球先端科技股份有限公司 filed Critical 日商日立全球先端科技股份有限公司
Publication of TW202324561A publication Critical patent/TW202324561A/zh
Application granted granted Critical
Publication of TWI830467B publication Critical patent/TWI830467B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0078Testing material properties on manufactured objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • G06V10/449Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
    • G06V10/451Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
    • G06V10/454Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/418Imaging electron microscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/652Specific applications or type of materials impurities, foreign matter, trace amounts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24571Measurements of non-electric or non-magnetic variables
    • H01J2237/24578Spatial variables, e.g. position, distance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2814Measurement of surface topography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Databases & Information Systems (AREA)
  • Geometry (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Quality & Reliability (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Debugging And Monitoring (AREA)

Abstract

本揭示係關於目的在推定附著在試料上的異物等的高度的系統、非暫時性電腦可讀媒體。為達成上述目的,提案出一種系統等,其係在中間層具備使用將藉由前述荷電粒子線裝置所得的資料、或由該資料所抽出的特徵量作為輸入、且將前述試料的構造物或前述試料上的異物的高度、或深度作為輸出的教師資料所學習的參數的學習模型,輸入藉由荷電粒子線裝置所取得的資料、或由該資料所抽出的特徵量,藉此輸出前述高度、或深度資訊。

Description

構造推定系統、構造推定程式
本揭示係關於推定試料或試料上的異物的構造的系統及程式者。
已知一種根據藉由對試料掃描電子射束所得的訊號波形,來計測試料上的圖案的高度的手法。在專利文獻1係揭示一種手法,其係預先準備將藉由AFM(Atomic Force Microscope:原子力顯微鏡)所得的圖案的剖面形狀資訊、與藉由電子射束的掃描所得的訊號波形建立關連而記憶的函式庫,使用藉由射束掃描所得的訊號波形來參照該函式庫,藉此推定圖案的剖面形狀。 [先前技術文獻] [專利文獻]
[專利文獻1] 日本特開2006-093251號公報(美國對應專利USP7,408,155)
(發明所欲解決之課題)
伴隨近來的半導體元件的多層化,考慮到必須評估附著在半導體元件上的異物的高度等3次元資訊的情形。此係基於若異物附著在試料上,有對之後的製造工程造成影響的可能性之故。尤其對之後的工程所造成的影響度依異物高度的不同而改變,因此以藉由異物高度的定量評估,來事前掌握該影響度為宜。另一方面,以高度計測裝置而言,有如上述專利文獻1所示之剖面SEM(掃描型電子顯微鏡)或AFM的裝置,但是按每個異物,使用AFM等來計測高度,在圖求高產出量的半導體測定中並不實際。
亦考慮如專利文獻1所揭示藉由預先準備函式庫,來抑制按每個異物的AFM測定的勞力。但是與形成在半導體元件上的圖案不同,未意圖地附著在晶圓上的異物係有各種形狀或組成者,難以進行專利文獻1所揭示之函式庫作成。此外,如半導體圖案般的構造物亦考慮圖求更簡易且高精度的高度計測。
本揭示係提供可推定考慮如異物般之多樣形狀的對象物的3次元資訊、或其他構造物的更高精度的3次元資訊的構造推定系統及程式。 (解決課題之手段)
本揭示之構造推定系統係具備有:輸出試料上的構造物、前述構造物上的異物、前述異物對前述構造物上的其他層所造成的影響等推定結果的學習器。前述學習器係藉由將由荷電粒子線裝置所得的資料或該資料的特徵作為輸入,且將前述推定結果作為輸出的教師資料,來預先實施學習。前述構造推定系統係藉由對前述學習器輸入由前述荷電粒子線裝置所得的資料或該資料的特徵,而得前述推定結果。 (發明之效果)
藉由本揭示之構造推定系統,可推定3次元構造體、異物、因異物所致之影響等的高精度的3次元資訊。
<實施形態1>
圖1係說明本揭示之實施形態1之構造推定方法的概略的流程圖。在本實施形態1中,係由藉由掃描電子顯微鏡等荷電粒子線裝置所得的資料(觀察畫像),推定形成在試料上的構造物(若為半導體晶圓,為如線或支柱般的凸圖案、如孔或溝槽般的凹圖案等)、或載置於試料上的異物等的高度或深度。
由荷電粒子線裝置取得資料(S101),讀出對應所取得的資料或由該資料所抽出的特徵量的學習模型(S102),對所讀出的學習模型輸入上述資料或特徵量(S103),藉此輸出有關構造物或異物的高度或深度的資訊(S104)。
可由以掃描電子顯微鏡等所取得的資料,取得構造物或異物的亮度、尺寸資訊、陰影像等。尤其在凹圖案的底部的亮度與凹圖案的深度有相關,此外,凹圖案的寬幅或大小(size)與凹圖案的深度亦有相關。以下係使用圖示,說明用以計測(推定)形成在試料上的圖案等的深度的深度計測系統。
圖2係示出本實施形態1之電腦系統202之1例的圖。電腦系統202係藉由對學習模型輸入試料的觀察畫像,推定試料上的構造物或異物的高度。學習模型的教師資料係使用藉由電子顯微鏡等畫像生成裝置所生成的畫像、或由該畫像所抽出的特徵量作為輸入,且使用試料上的構造物或異物的高度作為輸出。
電腦系統202係具備:識別器201、測長值/面積值運算部203、亮度評估部204、高度運算部205、輸出入裝置206。SEM畫像200係藉由荷電粒子線裝置所取得的試料的觀察畫像。測長值/面積值運算部203係由SEM畫像200取得試料的尺寸值與面積值。亮度評估部204係取得SEM畫像200的亮度值。輸出入裝置206係供使用者輸入有關試料的材料等資訊(後述之圖4中再次說明)的元件。高度運算部205係對識別器201輸入亮度值/尺寸值/面積值/試料資訊,藉此推定有關試料上的構造物或異物的高度或深度的資訊。
以識別器201而言,係使用以輸出試料的觀察畫像或對應由觀察畫像所抽出的特徵量的深度位準的方式,施行使用教師資料的學習處理者。以識別器201而言,例如可使用神經網路、廻歸樹(regression tree)、貝氏識別器等任意學習器。學習完畢的模型資料係可儲存在後述之記憶部305。
圖3係示出深度(高度)計測系統300之1例的圖。深度計測系統300係具備有:攝像部301、電腦系統202、訊號處理部303、輸出入部304、記憶部305。電腦系統202係除了實施圖2中所說明的深度推定之外,控制攝像部301所具備之以下之光學系。
攝像部301係具備有:照射電子射束307的電子槍306、將電子射束307集束的聚光鏡308、將已通過聚光鏡308的電子射束307更加集束的聚光鏡309。攝像部301係另外具備有:將電子射束307偏向的偏向器310 、控制電子射束307所集束的高度的接物鏡311。
已通過攝像部301的光學系的電子射束307係被照射在被載置於試料載台313上的試料312。藉由電子射束307的照射而由試料312被放出的2次電子(Secondary Electron:SE)或反向散射電子(Backscattered Electron:BSE)等放出電子314係藉由被設置在其軌道上的下段檢測器315與上段檢測器316予以檢測。設在上段檢測器316的開口係使電子射束307通過者。藉由使該開口十分小,可檢測由形成在試料312上的深孔或深溝之底被放出且通過圖案中心近傍而脫出至試料表面上的2次電子。藉由使用位於上段檢測器316的正前面的能量過濾器317a或位於下段檢測器315的正前面的能量過濾器317b的能量過濾,可將放出電子314進行能量區分。
攝像部301係另外具備有:藉由將電子射束307偏向至光軸外,來限制電子射束307到達至試料312的消隱偏向器318、及接擋藉由消隱偏向器318所偏向的電子射束307的消隱用電極319。
訊號處理部303係根據下段檢測器315與上段檢測器316的輸出,生成SEM畫像200。訊號處理部303係與未圖示的掃描偏向器的掃描同步,使檢測訊號記憶在訊框記憶體等,藉此生成畫像資料。當在訊框記憶體記憶檢測訊號時,使檢測訊號記憶在訊框記憶體的掃描位置所對應的位置,藉此生成訊號輪廓(1次元資訊)、SEM畫像(2次元資訊)。此外,視需要以偏向器320將2次電子偏向,藉此可將由深孔等脫出之通過光軸近傍的2次電子導至下段檢測器315的開口外(下段檢測器315的檢測面)。
圖4係示出識別器201的構成例的圖。在此係說明使用神經網路來構成識別器201之例,惟並非為侷限於此,亦可使用其他識別器。識別器201係具備有:用以輸入(a)孔或溝槽的底部的亮度資訊、(b)孔或溝槽的尺寸資訊或面積資訊的輸入單元,作為輸入層。此外,圖案底部的亮度係取決於構成底部的材料的2次電子放出效率δ,因此亦可設置例如輸入有關底部的材料的資訊作為試料資訊的輸入單元。材料資訊係例如材料的種類或2次電子放出效率δ等。
神經網路係藉由被輸入至輸入層的資訊依序被傳播至中間層=>輸出層,由輸出層輸出深度位準。中間層係由複數中間單元所構成。被輸入至輸入層的資訊係藉由各輸入單元與各中間單元之間的結合係數而被加權,且被輸入至各中間單元。藉由加算對中間單元的輸入而成為該中間單元的值。中間單元的值係藉由輸出入函數而予以非線性轉換。中間單元的輸出係藉由各中間單元與各輸出單元之間的結合係數而被加權,對各輸出單元予以輸入。藉由加算對輸出單元的輸入而成為輸出層的輸出值。識別器201係輸出以SI單位(例如微米)表示的值、或表示其他深度的程度的參數。亦可取代此或與其一併輸出比某基準值為更深或更淺的推定結果。
藉由使學習進展,單元間的結合係數、或記述各單元之輸出入函數的係數等參數(常數、係數等)逐漸被最適化。記憶部305係記憶該等經最適化的值,作為神經網路的學習結果。使用神經網路以外作為識別器201的情形亦同樣地,記憶部305記憶在學習過程中經最適化的參數。在以下的實施形態中亦同。
在上述之例中,係說明抽出尺寸資訊或面積資訊、及底部的亮度資訊,將其作為特徵量而作為識別器201的輸入資料之例。若使用深度學習,可由觀察畫像來自動發現特徵量且學習。
圖5係示出用以生成學習模型的GUI畫面501之1例的圖。使用者係可使用GUI畫面501,來建構識別器201的學習模型(使識別器201學習)。GUI畫面501係顯示在圖2的輸出入裝置206所具備的顯示裝置。使用者係將在經驗上得知的圖案的深度、或藉由其他深度(高度)計測裝置所得之高度計測結果作為教師資料而在GUI畫面501上進行輸入,藉此可建構學習模型。
SEM畫像顯示欄506係顯示與試料上座標(Location)及識別碼(ID)建立關連而被記憶在預定的記憶媒體的SEM畫像507。由SEM畫像顯示欄506選擇任意畫像,並且由輸入部502~505輸入所需資訊,藉此可建構學習模型。
在輸入部502,若藉由利用其他分析裝置所為之分析而具體得知深度時,輸入該值作為該畫像的正解資料。藉由反覆該輸入,可實施深度學習的學習階段(phase)。在輸入部503係設有表示深度的程度的按鍵。在圖5中,係例示表示Deep、Middle、Shallow的3位準的按鍵。若得知大概深度的程度,使用輸入部503來選擇正解資料。輸入部504係被設置為若比輸入部503的分類更詳細地判明深度資訊時,用以選擇按照深度的按鍵作為正解資料。輸入部505係為了讀出在其他高度計測裝置所取得的高度資訊而登錄作為正解資料,被設置為用以輸入記憶有高度資訊的記憶媒體的位址(URI等)且讀出。所被讀出的深度資訊係被使用作為座標與識別碼相一致的畫像的正解資料,且自動與畫像資料一併生成教師資料。
以攝像部301而言,可使用對以聚焦離子束等使試料的剖面露出的試料,生成藉由對該露出面掃描電子射束而得的畫像的掃描電子顯微鏡(剖面SEM)、或可高精度計測高度的原子力顯微鏡(Atomic Force Microscope)等。藉由將以該等裝置所得的深度(高度)資訊與圖案的座標資訊或識別資訊一併記憶,可準備供建構學習模型之用的事前資訊。若以剖面SEM計測深度,考慮準備以露出複數不同高度的圖案的剖面的方式被試樣胚化(coupon)的試料,藉由進行SEM觀察,來計測深度。
<實施形態2> 在實施形態1中,係說明以如通孔或溝槽般之構成半導體元件的圖案為對象,來計測深度之例。在本揭示之實施形態2中,係說明使用以掃描電子顯微鏡等畫像形成裝置所得的畫像來推定未意圖地附著在試料上的異物的高度的系統。
若異物附著在半導體晶圓上,有對之後的製造工程造成影響的可能性。尤其,對之後的工程所造成的影響度依異物高度的不同而改變,因此以藉由異物高度的定量評估,來事前掌握其影響度為宜。另一方面,以高度計測裝置而言,有如上所述之剖面SEM或AFM般的裝置,但是按每個異物,使用AFM等來計測高度,在圖求高產出量的半導體測定中,並不實際。因此,在本實施形態2中,係說明使用將觀察畫像或觀察畫像的特徵量作為輸入、且將異物的高度作為輸出的學習資料來實施學習之例。
圖6係本實施形態2中的攝像部301的概略構成圖。關於與圖3相同的構成,係標註相同符號。攝像部301以外的構成係與實施形態1相同。圖6所例示的光學系係具備有:檢測器601與602。檢測器601與602係根據藉由偏向器310而被掃描的射束的照射,檢測由試料312放出的電子之中以相對較大仰角被放出的反向散射電子(Backscattered Electron:BSE)。圖6係顯示在射束的理想光軸604以軸對稱設有左右2個檢測器之例,亦可在紙面垂直方向另外配置2個檢測器,而形成為4方向檢測器。
在本實施形態2中,係說明設有2個或4個檢測器的掃描電子顯微鏡作為攝像部301,惟若可形成試料的陰影像,檢測器數量不拘。檢測器係配置在與理想光軸604呈正交的方向。此外,檢測器係被配置在藉由接物鏡311的集束作用而由異物等由相對光軸呈傾斜的方向所放出的電子603到達的位置。訊號處理部303係可使用藉由該等檢測器所得的檢測結果,生成試料的陰影像。
與根據一般的2次電子的檢測所形成的畫像相比,根據設在複數方向的陰影像檢測器的輸出的畫像係成為由斜上方觀看異物等般的畫像。因此,包含更多高度方向的資訊,可謂為相對容易抽出高度方向的特徵量。因此,在本實施形態2中,係使用將由被配置在複數方向的檢測器的輸出所得的資訊作為輸入、將高度資訊作為輸出的教師資料,使其學習學習模型。藉由對學習模型輸入由具備有複數方向檢測器的掃描電子顯微鏡所得的資訊,來推定高度資訊。
以用以由斜上方觀看異物的其他手法而言,亦可使用:(a)使用射束傾斜用偏向器,由相對理想光軸604呈傾斜的方向照射射束的射束傾斜;(b)將試料載台傾斜,由傾斜的方向照射射束的載台傾斜等。
圖7係示出本實施形態2中的識別器201的構成例的圖。本實施形態2中對高度運算部205的輸入係設為:(a)複數方向檢測器(例如4方向檢測器)的輸出、(b)根據該輸出所形成的畫像、(c)由該畫像所抽出的特徵量之中至少1個。圖7係顯示將根據4方向檢測器各個的輸出所形成的畫像作為輸入資料之例。亦可在掃描電子顯微鏡內設置EDX(Energy Dispersive X-ray Spectrometry)檢測器,將藉由元素分析所得的元素資訊一併設為輸入資料。藉由具備有如圖7所示之識別器201的系統,不需要以高頻度實施藉由剖面SEM或AFM所為之高度計測,可根據藉由掃描電子顯微鏡等畫像生成裝置所得的資訊,來推定異物的高度資訊。
接著說明學習模型的生成工程。教師資料的輸入係包含:(a)4方向檢測器的輸出、(b)根據該輸出所得的畫像、(c)由畫像所抽出的1以上的特徵量之中至少1個。教師資料的輸出係包含由剖面SEM或AFM等高精度高度計測裝置所得的高度資訊。使用該教師資料來生成學習模型。
以由畫像資料生成藉由AFM等所得之高度映射資料的深層神經網路手法而言,可適用使用池化層而以多段的編碼器/解碼器轉換畫素單位的資料的語義分割(Semantic Segmentation)法、或活用敵對生成學習而生成畫素單位的資料的畫像生成法。
圖8係本實施形態2中的電腦系統202的構成圖。在本實施形態2中,電腦系統202係具備有:合成畫像生成部802及資料集生成部803,來取代實施形態1中所說明的測長值/面積值運算部203與亮度評估部204。合成畫像生成部802係使用後述之背景畫像與異物畫像來生成合成畫像。資料集生成部803係將該合成畫像與高度資訊801作為資料集而生成教師資料。
圖9係示出根據掃描電子顯微鏡的輸出而生成學習模型的工程的流程圖。在此,係說明根據附著在裸晶圓(未形成有圖案的晶圓)上的異物的SEM畫像來生成學習模型之例。
在掃描電子顯微鏡內導入裸晶圓(S901),根據由如光學顯微鏡般的上位裝置所得的異物資訊,以異物被定位在掃描電子顯微鏡的視野內的方式,使載台移動(S902)。之後,對包含異物的區域掃描電子射束,且根據以4方向檢測器所檢測到的訊號,生成SEM畫像200(S903)。此時,為了增加學習模型的資料量,對1異物,取得電子射束的對焦、加速電壓等射束條件、或ABCC(Auto Brightness Contrast Control)等訊號處理條件不同的複數畫像。畫像係與座標資訊或附在異物的識別資訊一併記憶在記憶部305。
合成畫像生成部802係按每個預先取得的複數種的背景畫像、與所取得的異物畫像的不同組合而生成合成畫像(S904)。背景畫像係經由預定的製造工程而形成有圖案等的晶圓的畫像,形成為按每個不同的佈局取得畫像者。生成合成畫像時,以畫像處理由裸晶圓上的異物畫像切出異物部分,疊合在備妥作為背景畫像的複數畫像,藉此生成按每個佈局的異物畫像。背景畫像亦與異物畫像同樣地,以準備按不同的畫像取得條件而得的複數種畫像為宜。藉由將異物畫像與背景畫像個別取得且合成,可以較少的畫像取得來生成學習模型。
資料集生成部803係將藉由AFM或剖面SEM所得的高度資訊801、及藉由合成處理所生成的合成畫像作為資料集而生成教師資料(S905),且將該教師資料記憶在記憶部305(S906)。藉由如以上所示之學習模型生成法,可由1異物畫像生成供學習模型之用的複數畫像。
亦可一邊使射束的加速電壓等改變一邊取得畫像,生成將該連續像(動態畫像)與高度資訊形成為一組(set)的教師資料。例如若使射束的加速電壓(著陸能量)改變而取得畫像時,對異物或試料的構造物之射束的到達深度會改變。亦即,連續像上的異物的看起來的樣子的變化係使其看到依異物的高度而不同的動作。因此,改變著陸能量,取得(a)藉由各個的著陸能量的射束照射所得的複數像、(b)該複數像的連續像(動態畫像)、或(c)由該畫像所抽出的異物的亮度的變化等資訊,生成將該資訊與藉由AFM等所得的高度資訊形成為一組(set)的教師資料集。使用該教師資料,生成高度推定模型。該高度推定模型係在中間層具備使用將藉由荷電粒子線裝置所得的資料、或由該資料所抽出的特徵量作為輸入、且將試料的構造物或該構造物上的異物的高度作為輸出的教師資料所學習的參數。在該學習模型輸入掃描電子顯微鏡的輸出,藉此可高精度地推定高度。以成為輸入資料的動態畫像而言,亦可為無須改變著陸能量等條件,而藉由進行複數訊框掃描所得的連續像。
<實施形態3> 為使學習模型高精度化,亦可將掃描電子顯微鏡的攝像條件(例如,倍率、著陸能量、ABCC條件、射束的掃描速度、掃描方式等)、半導體元件的製造製程條件(製造工程的識別資訊、各製造工程中的製造條件等)、異物所位於的部位的圖案(設計資料等)的資訊作為輸入資料。此外,亦可按每個該等資訊準備學習模型,根據選擇例如對應由電子顯微鏡畫像所得的異物周圍的圖案資訊的學習模型,來推定高度。該等條件的變化係使電子顯微鏡的像質變化,因此亦可藉由將該等條件作為輸入資料,或準備每個該等條件的學習模型,來實現模型的高精度化。因此,在本揭示之實施形態3中,係說明預先準備複數學習模型,由該等之中選擇適當的學習模型而得推定結果之例。
圖10係本實施形態3之異物高度推定系統1000的構成圖。異物高度推定系統1000係具備有:攝像部301、上位異物檢查裝置1002、記憶設計資料1004的記憶媒體、電腦系統202。
上位異物檢查裝置1002係例如光學式檢查裝置般,檢測藉由對試料照射光所得的反射光,由該被檢測出的反射光,檢測試料上的異物的座標的裝置。亦可使用藉由其他適當手法來檢測異物的座標的裝置。
電腦系統202係具備有:電腦可讀媒體1006、執行被記憶在電腦可讀媒體1006的各模組的處理單元1005、輸出入裝置206。電腦可讀媒體1006係儲存有:程式庫(recipe)生成模組1007、計測處理模組1008、模型生成模組1009、識別器模組1010。該等模組係藉由處理單元1005執行來實現各模組所構裝的功能的軟體模組。以下為方便記載起見,有將各模組作為動作主體來進行說明的情形,惟實際上執行各模組的是處理單元1005。
程式庫生成模組1007係根據上位異物檢查裝置1002所輸出的異物的座標資訊、及由輸出入裝置206所輸入的計測條件,使攝像部301自動動作。計測處理模組1008係根據攝像部301的輸出,按照預定的計測演算法來計測圖案或異物等的大小等。模型生成模組1009係將藉由攝像部301所得的資料(實施形態2中所說明的4方向檢測器的輸出畫像等)作為輸入、且將針對藉由攝像部301而畫像化的異物而使用AFM等來計測高度後的結果所得的高度作為輸出的教師資料,來學習模型的中間層的參數。識別器模組1010係構裝有使用藉由模型生成模組1009所學習的學習模型來推定高度的識別器201。
模型生成模組1009係生成對應形成在試料上的圖案狀態的複數模型,且將該複數模型儲存在電腦可讀媒體1006。4方向檢測器的輸出係被形成在試料上的圖案狀態大幅左右,尤其圖案密度大幅影響。因此,在本實施形態3中,係按照圖案密度來記憶複數模型。圖案密度係指表示例如平均單位面積的圖案數、平均單位面積的圖案邊緣的數量、平均單位面積的圖案的佔有面積、或平均單位面積的圖案長度等的程度的參數。亦即,平均單位面積的圖案數等愈多愈為高密度。亦可為圖案的密集度、或依密集度而改變的其他值,來取代密度。
識別器模組1010係收取對識別器201的輸入(對各輸入單元的輸入),使用記憶部305所儲存的學習結果(結合係數或輸出入函數的係數等)來計算各單元的輸出。使用該輸出來作為識別器201的輸出。藉此構裝識別器201。關於其他實施形態中的識別器201亦可同樣地構裝。
圖11係示出異物高度推定系統1000推定異物的高度的工程的流程圖。電腦系統202係收取藉由上位異物檢查裝置1002被檢測到的異物的座標資訊(S1101)。處理單元1005係根據被記憶在程式庫生成模組1007的資訊,生成攝像部301的程式庫(S1102)。具體而言,根據如將攝像部301的視野對合在上位異物檢查裝置1002所取得的異物座標的載台的控制條件等、及由輸出入裝置206被輸入的攝像部301的裝置條件(射束的加速電壓或倍率等光學條件),生成程式庫(recipe)。攝像部301係讀入所生成的程式庫(S1103),執行使用檢查程式庫的檢查(S1104)。
另一方面,程式庫生成模組1007或計測處理模組1008係根據所收取到的座標資訊,讀出對應所收取到的座標的部分的設計資料(S1105),計測或運算關於異物座標的圖案密度的值(例如,計數平均單位面積的圖案數)(S1106)。識別器模組1010係為了高度推定而選擇對應藉由計測或運算所得的圖案密度的模型(S1107),在該選擇模型輸入藉由檢查所得的畫像,藉此輸出高度資訊(S1108)。可藉由如圖11所例示的順序,根據對應異物存在的位置的適當模型的選擇,來推定高度。
學習模型亦可將ADC(Auto Defect Classification)的結果作為輸入資料,亦可準備對應ADC結果的模型,按照ADC的結果來選擇適當的模型,且推定使用該模型的高度。ADC係使用畫像處理的缺陷種類推定法。ADC係根據事前設定的規則,藉由分類軟體,按每個異物或缺陷的發生原因進行分級。以下係說明使用對應分級結果的模型之例。
圖12係使用對應ADC結果的模型的電腦系統202的構成圖。圖12的電腦系統202係具備有:藉由讀入分類軟體1201,將SEM畫像200所包含的異物或缺陷進行分類的ADC處理部1202。識別器201係按每個藉由ADC處理部1202所得之分類結果具備有學習模型。高度運算部205係讀出對應藉由ADC處理部1202所得之分類結果的模型,使用該模型(識別器),輸出SEM畫像200所包含的異物等的高度資訊。藉由圖12的構成,使用2次元畫像,根據可判斷的特徵(異物的2次元形狀的特徵),將異物分類,可使用適於在此所分類的異物的學習模型來推定高度,因此可以高精度推定高度。
在本實施形態3中,主要說明按照設計資料(佈局)或電路的密度(平均單位面積的圖案或邊緣的數等)來切換模型之例,惟並非為侷限於此,亦可按照其他參數來切換模型。使用例如將複數陰影像檢測器的輸出與佈局資料(設計資料)作為輸入、且將藉由AFM等所得的異物的高度資訊作為輸出的教師資料,來實施學習。對識別器201輸入複數陰影像檢測器的輸出、及參照上位異物檢查裝置1002所輸出的座標資訊而由設計資料1004所讀出的該座標所對應的佈局資料。藉此,可推定高度資訊。如上所示之學習模型係根據佈局的形狀或密度,供高度推定用的構造會改變,因此可進行高精度的高度推定。
以由畫像資料生成藉由AFM所得之高度映射資料的深層神經網路手法而言,可適用使用池化層而以多段的編碼器/解碼器轉換畫素單位的資料的語義分割法、或活用敵對生成學習而生成畫素單位的資料的畫像生成法。
<實施形態4> 圖13係示出一併顯示使用學習模型的高度的推定結果、與由學習模型所輸出的推定準確度的顯示畫面之1例的圖。該顯示畫面係顯示在例如圖10所例示的輸出入裝置206的顯示裝置。處理單元1005係由電腦可讀媒體1006讀出所需資訊,且顯示如圖13所例示的畫面。使用者係一邊參照該畫面,一邊判定是否另外作成教師資料。
在圖13中,按每個被賦予識別資訊(ID)1301的異物,顯示使用學習模型所被推測出的高度資訊(height)1303與推定準確度(accuracy)1304。座標資訊(coordinate)1305係異物的座標。推定準確度係藉由識別器模組1010,連同高度資訊一起由學習模型被輸出。在SEM image欄1302係設有用以讀出SEM畫像的連結,藉由選擇連結而由記憶媒體讀出SEM畫像而顯示在顯示裝置。推定準確度係當識別器201輸出推定結果時,可使用例如與其他推定結果候補之間的相對評估值來算出。亦可使用其他適當手法來求出準確度。在以下實施形態中亦同。
藉由如圖13所例示的畫面,針對推定準確度低的異物,可掌握必須使用AFM等高精度的高度計測裝置來更新教師資料,可有效率地實施學習模型的更新判斷。此外,圖13的畫面係設有AFM(measurement)1306之欄,構成為可藉由該欄的選擇,將所被選擇出的異物的座標資訊1305與SEM image欄1302的資訊送至AFM的控制裝置。藉由如上所示之構成,可輕易進行用以取得更新教師資料所需資訊的高度計測裝置的條件設定。此外,可在推定準確度設定預定的臨限值,並且將低於臨限值的異物與其他異物區別顯示,藉此可輕易視認更新教師資料所需異物。
<實施形態5> 近來,半導體元件係隨同微細化(尺度化(scaling))一起進展多層化,層數亦不斷增大。此外,隨著尺度化進展,對於形成在半導體晶圓上的圖案,附著在半導體晶圓上的異物的大小(size)相對變大,被預想評估所附著的異物與元件的最後加工的相關的必要性為至此為止更為提高。此外,亦考慮在某製造工程後所附著的異物對在之後的製造工程所形成的圖案的最後加工造成影響的可能性。在本揭示之實施形態5中,係說明評估在某層所附著的異物對在之後的製造工程所生成的其他層所造成的影響的系統。
本實施形態5之系統係使用將根據對第1層照射荷電粒子射束所得的資料、或由該資料所抽出的特徵作為輸入、且在比製造第1層的製造工程更為之後的製造工程中所製造的第2層的第1位置所對應的位置中的圖案畫像或特徵作為輸出的教師資料,來實施學習。對該學習模型輸入第1位置中的畫像資料或由該資料所抽出的特徵,藉此輸出第2層的第1位置所對應的位置的畫像或特徵。
圖14係示出生成本實施形態5中的識別器201的學習模型的工程的流程圖。以系統構成而言,亦可使用圖10所示者等。使用圖10所例示的上位異物檢查裝置1002,來特定在第1層的製造工程中所生成之附著在半導體晶圓上的異物的座標(第1位置)(S1401)。接著,對攝像部301導入半導體晶圓,且針對附著在第1位置的異物,執行使用攝像部301的計測或檢查(S1402)。此時,亦可使用AFM來作為計測工具。攝像部301係根據在上位異物檢查裝置1002所特定出的座標資訊,以對該座標位置照射電子射束的方式,控制試料載台313(參照圖3)、或視野移動用的偏向器的至少一方。取得藉由檢查計測所得的畫像資料或由畫像資料所抽出的特徵量(S1403)。該資料或特徵係成為後述之學習模型的輸入資料。
圖14中所使用的畫像資料較佳為使用根據實施形態2中所說明的複數方向所配置的陰影像檢測器的輸出所生成的畫像,惟並非為侷限於此,亦可為藉由平常的2次電子畫像或傾斜射束的掃描所得的畫像、或連續像(動態畫像)。以特徵而言,係有:異物的大小、尺寸、表示異物的邊緣部分的亮度區域的大小、縱橫比、異物形狀的種類、材質(使用EDX檢測器等來特定)等。
接著,在形成在第1層上的第2層的製造工程後,藉由對第2層的第1位置的電子射束的掃描、或AFM的探針的掃描,執行對第2層的第1位置的計測或檢查(S1404)。攝像部301或AFM係可利用在上位異物檢查裝置1002所取得的第1位置的座標資訊來移動視野。
電腦系統202係根據在攝像部301等所取得的訊號,取得畫像資料或由該畫像所抽出的圖案等的特徵(S1405)。在S1404所取得的特徵亦可為形成在半導體晶圓的第2層上的圖案的尺寸值(CD值)、形狀、形狀的變形量、對設計資料之邊緣位置的背離的程度、表示該等特徵的異常(被認為例如預定的臨限值以上的變形等)的區域的大小等評估圖案的最後加工等的1以上的參數,亦可為如以AFM所得的高度資訊般的試料表面資訊。
圖15係示出載置於第1層上的異物上推第2層的樣子的圖。如上所示,考慮到異物的正上方的更加周圍亦被異物上推,因此為了適當評估異物的影響,以將包含周圍區域的特徵或畫像的資料作為神經網路的輸出資料為宜。因此,在第2層上所取得的畫像資料或特徵係為了將載置於第1層上的異物對第2層的影響的指標值作為神經網路的輸出,以抽出比異物大小為更寬的區域的特徵為宜。
可建構根據如以上所示之輸入資料與輸出資料來生成學習模型(S1406),藉此可推定表示載置於第1層的異物對設在第1層的上層的第2層造成什麼樣的影響的資料的學習模型。其中,考慮到異物的影響依形成在第2層的圖案的佈局或圖案密度而改變,因此以準備對應圖案佈局的種類或密度的複數模型為宜。
以由第1層的畫像資料生成第2層的資料的深層神經網路手法而言,可適用使用池化層(Pooling layer)而以多段的編碼器/解碼器轉換畫素單位的資料的語義分割法、或活用敵對生成學習而生成畫素單位的資料的畫像生成法。
圖16係示出使用如上所述所生成的學習模型來推定試料資訊的工程的流程圖。首先,將形成有第1層的半導體晶圓導入至上位異物檢查裝置1002內,取得異物的座標資訊(S1601)。接著,根據所取得的異物的座標資訊,以對該座標照射電子射束的方式,驅動攝像部301內的試料載台等,以執行異物的計測或檢查(S1602)。
另一方面,電腦系統202係根據所取得的座標資訊,參照設計資料1004,取得對應座標資訊的第2層的佈局資訊,選擇按照該佈局的種類所記憶的模型(S1603)。如上所述異物對其他層所造成的影響依圖案的密度或佈局的種類而改變,因此預先準備對應佈局或圖案密度等的複數模型,按照異物座標來選擇適當的模型。
電腦系統202係藉由對所選擇出的模型輸入畫像資料及特徵之中至少一方,輸出對應座標資訊的第2層的推定資訊(S1604、S1605)。
圖17係示出輸出資料(推定資訊)的顯示例的圖。例如輸出入裝置206可顯示本畫面。在此係示出將在攝像部301所得的第1層上的異物的電子顯微鏡畫像、與異物對第2層所造成的影響的推定結果加以重疊之例。更具體而言,圖17係示出重疊在異物畫像來顯示相對基準圖案之實際圖案的變形率(deformation rate)與推定準確度(accuracy)之例。變形率係可由例如形成第2層之後形成在異物上的圖案的電子顯微鏡畫像所包含的圖案邊緣、與設計資料的邊緣的差分等來求出。學習模型係使用將該值作為輸出的教師資料而預先學習。
圖17係示出異物的左半部係進行使用學習模型X的圖案資訊推定,右半部係進行使用學習模型Y的圖案資訊推定之例。若附著在第1層的異物跨越第2層的密度區域等不同的2個圖案區域,被認為異物對各個的圖案區域的影響會不同,因此藉由使用對應各個區域的適當模型來實施推定,可適當評估異物對第2層的影響。
圖18係示出由學習模型輸出缺陷率(Defect rate)時的顯示例的圖。藉由圖18的顯示例,可掌握附著在第1層的異物使第2層的圖案缺陷發生的程度。缺陷係例如配線的斷線或短路,學習模型生成時,使用將第2層上的缺陷檢查結果作為輸出的教師資料來進行學習。圖18係示出對1個異物,使用複數模型推定缺陷率,且顯示該結果之例。若對1個異物重疊不同的複數佈局時,藉由如上所示之顯示,可掌握1個異物成為其他層的缺陷要因的可能性。
<實施形態6> 圖19係示出異物高度推定結果的顯示例的圖。在圖19之例中,係藉由神經網路來輸出異物的各部位的高度與其準確度。藉由如上所示以部位單位來顯示高度的推定結果與準確度,例如若準確度低的區域被準確度高的區域所包圍,亦可推測該準確度低的區域與準確度高的區域為同等的高度。關於異物的高度,係可藉由至此為止的實施形態中所說明的手法來進行學習。
圖20係示出根據推定準確度高的區域的高度資訊,來推定推定準確度低的區域的高度的手法之1例的圖。斜線部係表示推定準確度低的區域,其他區域係表示推定準確度相對高的區域。如圖所例示,以跨越推定準確度低的部分的方式,將推定準確度高的區域間進行內插插值,藉此可推定推定準確度低的區域的高度。藉由內插插值或外插插值所推定出的結果,若原本的推定結果與藉由內插等所推定出的結果為相同或同等(例如誤差率n%以下)時,以推定準確度變高的方式進行學習,且若在推定結果有背離時,以將插值結果作為推定結果的方式進行學習。藉此,實際上無須實施使用AFM等的再計測,可更新模型,俾以提高推定精度。
<實施形態7> 在本揭示之實施形態7中,係說明由藉由具備有圖6所例示之陰影像檢測器的荷電粒子線裝置所得的輸出來推定高度的學習模型的更新方法。具體而言,說明按照陰影像檢測器的輸出,來切換模型的更新方法的手法。以系統構成而言,係可使用例如實施形態2中所說明者。
圖21係示出更新識別器201的學習模型的順序的圖。在本實施形態7中,如圖21所例示,以設有左側檢測器與右側檢測器的2個檢測器的掃描電子顯微鏡為例來進行說明,惟亦可適用具備有3個以上的檢測器的荷電粒子線裝置。
如圖21所例示,根據左側檢測器的輸出所生成的畫像、與根據右側檢測器的輸出所生成的畫像係其看起來的樣子不同。例如根據左側檢測器的輸出所生成的畫像係由異物被放出至紙面右側,根據因接物鏡的集束作用而偏向的電子的檢測所生成,因此成為右側的邊緣被強調(高亮度)的畫像(a1)。另一方面,根據右側檢測器的輸出所生成的畫像係與左側檢測器相反,成為左側邊緣被強調的畫像(a2)。此外,考慮到異物的高度愈高,高亮度區域愈大。此外,左右檢測器輸出的差較大之處,被認為異物的形狀複雜,且使用學習模型的推定未被適當實施。因此,在本實施形態7中,求出複數檢測器的差分(b),若該差分超過預定值,係將異物的座標資訊送至AFM,且實施藉由AFM所為之高度計測(c1)。若差分為預定值以下,未使用如上述區域間插值般的AFM,而根據推定結果的特徵抽出,更新推定準確度低的部分的資料。藉此,可效率佳地更新學習模型。
在圖21中,係說明當左右檢測器的輸出(或畫像)的差分大時,實施使用AFM的高度計測的模型更新法,但是若幾乎沒有輸出的差分時,考慮根據陰影像檢測器輸出的高度推定結果的精度會降低的情形。為了針對如上所示之部分,實施更為高度的推定,亦可實施使用AFM的高度計測,使用將該結果作為輸出的教師資料,使其學習學習模型。
<實施形態8> 即使在充分學習藉由荷電粒子線裝置所得的畫像資料或特徵與高度的實測值的情形下,亦有兩者的資訊量大幅不同,因此高度推定精度降低的案例。由荷電粒子線裝置的輸出資料自動判定如上所示之案例,藉此可進行藉由併用高度推定與實測所為之安定的高精度計測。因此,在本揭示之實施形態8中,係說明判定是否可由藉由荷電粒子線裝置所得的畫像資料或特徵來進行高度推定的學習模型的生成、及活用該學習模型而以安定的精度計測高度的方法。
圖22係示出由藉由荷電粒子線裝置所得的畫像資料或特徵判定可否高度推定的學習模型的生成工程的流程圖。首先,輸入藉由荷電粒子線裝置所得的畫像資料或特徵(S2201)。接著實施藉由識別器所為之高度推定(S2202)。接著使用AFM來計測高度(S2203)。比較推定值與藉由AFM所得之高度計測值(S2204)。若在推定值與計測值之間有充分背離,將該部位判定為難以高度推定的部位(S2205)。接著將畫像資料或特徵資訊作為輸入,且藉由機械學習,生成輸出為高度推定之主旨的推定結果的不可高度推定判定模型。該模型係若輸入為畫像資料,抽出可推定為畫像內難以高度推定的區域的區域,若輸入為特徵資訊,輸出是否可使用該特徵來推定高度。藉由活用該模型,藉由輸入資料的分析,可判斷為可推定或應實測。其中,亦可藉由使用該高度推定NG的部分的資料來實施高度推定的追加學習,藉此達成高度推定的精度提升。
圖23係示出活用圖22中所說明的可否高度推定判定模型而由荷電粒子線裝置的輸出判定可否高度推定,以AFM實測NG的部位的工程的流程圖。首先,輸入藉由荷電粒子線裝置所得之畫像資料或特徵資訊(S2301)。接著,活用可否高度推定判定模型,且判定可否高度推定(S2302)。若不可高度推定,係以AFM計測高度(S2303)。
<實施形態9> 在實施形態3中,係說明執行ADC作為前處理,且使用對應該分類結果的學習模型來推定異物的高度之例。在本揭示之實施形態9中,係說明使用學習模型來實施ADC處理之例。
圖24係示出將陰影像作為輸入資料,進行缺陷分類的電腦系統之1例的圖。在圖24中,識別器201係使用將SEM畫像200(陰影像)作為輸入、且將高度資訊801(AFM計測結果)與缺陷種類資訊2401作為輸出的教師資料來預先實施學習。使用該識別器201來將缺陷或異物分類。以推定結果而言,不僅缺陷的種類(斷線、短路、異物、異物等的形狀等),亦可輸出其高度資訊,因此亦可推定例如缺陷等對接下來的工程所造成的影響。
圖25係本實施形態9中的電腦系統202的構成圖。圖25所例示的系統係具備:識別器201及2502。識別器201係將在AFM等所得的異物的高度資訊801、與根據陰影像檢測器的輸出所生成的SEM畫像200的資料集作為教師資料,來實施學習。識別器2502係將在高度運算部205所推定出的高度資訊、根據陰影像檢測器的輸出所生成的畫像等、及缺陷種類資訊2401的資料集作為教師資料來實施學習。上層缺陷分類部2501係使用識別器2502來執行缺陷分類。
上層缺陷分類部2501係將下層(第1層)的SEM畫像200所包含的異物的2次元式特徵、與所被推定出的高度資訊(3次元資訊)作為輸入,來推定形成在上層(第2層)的圖案的缺陷種類。藉由具備有識別器2502的系統,可進行對應缺陷的特徵的適當分類。為了學習識別器2502,取得下層的異物畫像等SEM畫像、及對應下層的異物座標的上層的位置的SEM畫像,將該等SEM畫像、或由畫像所抽出的特徵(缺陷種類等)作為資料集來學習識別器2502。
圖26係示出用以將本實施形態9中的學習模型最適化的GUI畫面之1例的圖。在GUI畫面2601係具有:左欄2605、及右欄2608。在左欄2605係顯示有複數將成為資料集的輸入的下層的異物的SEM畫像2602、及與異物座標相同位置的上層的SEM畫像2603形成為一組(set)的縮略圖2604。在右欄2608係設有按每個缺陷種類的輸入欄2606與2607。
操作人員係觀看上層的SEM畫像2603,判斷缺陷的種類(SEM畫像2603係線圖案彼此短路的狀態),使用指向元件等,使縮略圖2604移動至右欄2608所對應的缺陷種類的輸入欄,藉此可更新學習資料。資料集生成部803係生成將縮略圖2604所包含的下層的SEM畫像2602、或由該SEM畫像所抽出的特徵作為輸入、且將輸入有縮略圖2604的輸入欄的缺陷種類作為輸出的資料集。將該資料集設為識別器2502的教師資料。藉由如上所示之構成,可由下層的異物畫像來特定上層的缺陷種類。
<實施形態10> 在本揭示之實施形態10中,係說明生成推定異物存在於下層時在上層發生什麼樣的情形的推定模型,使用該推定模型,來推定上層的狀況之例。在本實施形態10中所使用的神經網路中的輸入層係被輸入:(a)包含上層(第2層)的設計資料(設計資訊)、及由該設計資料所抽出的特徵(例如,圖案的線寬、圖案的面積、圖案間的距離等)之中至少一方的第1資料;及(b)包含藉由如圖3或圖6所例示的掃描電子顯微鏡所示之影像系統而得的下層(第1層)的畫像、及由該第2畫像所抽出的特徵的至少一方的第2資料。下層的畫像係以根據立體捕捉異物等的複數陰影像檢測器的輸出而生成為宜。以由第2畫像所抽出的特徵而言,考慮例如異物的形狀、大小、亮度資訊、陰影像檢測器間的差分資料等。
本實施形態10中所使用的神經網路的中間層係使用將第1資料與第2資料作為輸入、且將包含上層的畫像與上層的特徵之中至少一方的第3資料作為輸出的教師資料,來實施學習。輸出層係根據中間層的輸出來生成輸出資料。
圖27係示出包含包括如上所述之推定模型的模組(識別器201)的電腦系統202之1例的圖。資料集生成部803係收取設計資料1004作為學習資料。資料集生成部803係另外由SEM畫像200,收取上層輪廓線畫像與下層畫像作為學習資料。資料集生成部803係使用該等資料,生成上述教師資料,使識別器201學習。輪廓線生成部2701係收取下層畫像與設計資料1004作為輸入,對識別器201輸入該等,藉此推定上層的輪廓線。
圖28係說明本實施形態10中的學習過程的流程圖。首先,使用如圖10所例示之上位異物檢查裝置1002,特定附著在第1層的製造工程中所生成的半導體晶圓上的異物的座標(第1位置)(S1401)。接著,對攝像部301導入半導體晶圓,且針對附著在第1位置的異物,執行使用攝像部301的計測或檢查(S1402)。在此,例如由複數陰影像檢測器的輸出生成異物畫像。如後所述,該異物畫像係被使用在用以生成教師資料來作為資料集,但是,除了畫像以外,亦可將由該畫像所抽出的特徵使用在用以生成資料集。此外,電腦系統202係由設計資料1004讀出對應第1位置的圖案的設計資料(佈局資料)(S2801)。
接著,電腦系統202係在第1層上積層第2層之後,取得第2層的第1位置的畫像(S1404、S1405)。
將經由如以上所示之工程而得的下層的異物畫像資料、上層的設計資料、及上層的畫像資料(或由畫像資料所抽出的圖案的輪廓線資料)的資料集作為教師資料來學習識別器201(S1406)。在成為教師資料的資料集係包含有:位於下層的異物畫像、表示圖案的理想形狀的設計資料(佈局資料)、及與受到異物影響的上層的圖案的設計資料相同的圖案的畫像資料(或藉由將畫像所包含的邊緣細線化所被抽出的輪廓線資料)。亦即,在資料集係包含有:未受到異物影響的圖案畫像(上層的佈局資料)、受到異物影響的圖案畫像(上層圖案的實際畫像、或輪廓線資料)、及成為使圖案等變形之要因的異物的畫像,成為包含變形前形狀、變形原因、變形後形狀的教師資料。因此,可建構用以推定下層異物對上層所造成的影響的學習模型。
在上述之例中,係說明使用將下層異物的SEM畫像與上層的設計資料作為輸入、且將上層的SEM畫像(或由SEM畫像所抽出的輪廓線資料)作為輸出的教師資料,來學習學習模型之例,惟亦可追加關於製造製程的資訊或SEM的攝像條件作為輸入,且追加上層圖案的致命度等作為輸出,來學習學習模型。
準備異物附著相對較多的晶圓,藉由取得下層異物的畫像或對應異物附著的位置的上層圖案的SEM畫像等,可準備更多成為教師資料的資料集。
<關於本揭示之變形例> 本揭示係包含各種變形例,而非為限定於前述實施形態者。例如,上述實施形態係為了容易理解本揭示來進行說明而詳細說明者,並非必定為限定於具備所說明的全部構成者。此外,可將某實施形態的構成的一部分置換成其他實施形態的構成,此外,亦可在某實施形態的構成加上其他實施形態的構成。此外,關於各實施形態的構成的一部分,可進行其他構成的追加/刪除/置換。
在以上之實施形態中,電腦系統202所具備的識別器201係可藉由對儲存有學習結果的記憶部305、及各單元輸入值時,按照學習結果來輸出值的功能而構成。識別器201的該功能或電腦系統202所具備的其他功能部係可使用構裝有該等功能的電路元件等硬體所構成,亦可藉由運算裝置執行構裝有該等功能的軟體而構成。
200:SEM畫像 201:識別器 202:電腦系統 203:測長值/面積值運算部 204:亮度評估部 205:高度運算部 206:輸出入裝置 301:攝像部 302:全體控制部 303:訊號處理部 304:輸出入部 305:記憶部 306:電子槍 307:電子射束 308:聚光鏡 309:聚光鏡 310:偏向器 311:接物鏡 312:試料 313:試料載台 314:放出電子 315:下段檢測器 316:上段檢測器 317,317a,317b:能量過濾器 318:消隱偏向器 319:消隱用電極 501:GUI畫面 502~505:輸入部 506:SEM畫像顯示欄 507:SEM畫像 601,602:檢測器 603:電子 604:理想光軸 801:高度資訊 802:合成畫像生成部 803:資料集生成部 1000:異物高度推定系統 1002:上位異物檢查裝置 1004:設計資料 1005:處理單元 1006:電腦可讀媒體 1007:程式庫生成模組 1008:計測處理模組 1009:模型生成模組 1010:識別器模組 1201:分類軟體 1202:ADC處理部 1301:識別資訊(ID) 1302:SEM image欄 1303:高度資訊(height) 1304:推定準確度(accuracy) 1305:座標資訊(coordinate) 1306:AFM(measurement) 2401:缺陷種類資訊 2501:上層缺陷分類部 2502:識別器 2601:GUI畫面 2602:SEM畫像 2603:SEM畫像 2604:縮略圖 2605:左欄 2606,2607:輸入欄 2608:右欄 2701:輪廓線生成部
[圖1] 係說明實施形態1之構造推定方法的概略的流程圖。 [圖2] 係示出實施形態1之電腦系統202之1例的圖。 [圖3] 係示出深度(高度)計測系統300之1例的圖。 [圖4] 係示出識別器201的構成例的圖。 [圖5] 係示出用以生成學習模型的GUI畫面501之1例的圖。 [圖6] 係實施形態2中的攝像部301的概略構成圖。 [圖7] 係示出實施形態2中的識別器201的構成例的圖。 [圖8] 係實施形態2中的電腦系統202的構成圖。 [圖9] 係示出根據掃描電子顯微鏡的輸出,生成學習模型的工程的流程圖。 [圖10] 係實施形態3之異物高度推定系統1000的構成圖。 [圖11] 係示出異物高度推定系統1000推定異物的高度的工程的流程圖。 [圖12] 係使用對應ADC結果的模型的電腦系統202的構成圖。 [圖13] 係示出一併顯示使用學習模型的高度的推定結果、與由學習模型所輸出的推定準確度的顯示畫面之1例的圖。 [圖14] 係示出生成實施形態5中的識別器201的學習模型的工程的流程圖。 [圖15] 係示出載置於第1層上的異物上推第2層的樣子的圖。 [圖16] 係示出使用如上所述所生成的學習模型來推定試料資訊的工程的流程圖。 [圖17] 係示出輸出資料(推定資訊)的顯示例的圖。 [圖18] 係示出由學習模型輸出缺陷率(Defect rate)時的顯示例的圖。 [圖19] 係示出異物高度推定結果的顯示例的圖。 [圖20] 係示出根據推定準確度高的區域的高度資訊,推定推定準確度低的區域的高度的手法之1例的圖。 [圖21] 係示出更新識別器201的學習模型的順序的圖。 [圖22] 係示出由藉由荷電粒子線裝置所得的畫像資料或特徵來判定可否高度推定的學習模型的生成工程的流程圖。 [圖23] 係示出活用圖22中所說明的可否高度推定判定模型而由荷電粒子線裝置的輸出判定可否高度推定,以AFM實測NG的部位的工程的流程圖。 [圖24] 係示出將陰影像作為輸入資料來進行缺陷分類的電腦系統之1例的圖。 [圖25] 係實施形態9中的電腦系統202的構成圖。 [圖26] 係示出用以將實施形態9中的學習模型最適化的GUI畫面之1例的圖。 [圖27] 係示出包含包括如上所述之推定模型的模組(識別器201)的電腦系統202之1例的圖。 [圖28] 係說明實施形態10中的學習過程的流程圖。

Claims (5)

  1. 一種構造推定系統,其係由藉由具備有配置在複數方向的複數方向檢測器的荷電粒子線裝置所得的資料,推定關於形成在試料的構造物上的圖案的高度的資訊的構造推定系統, 前述構造推定系統係包含:電腦系統, 前述電腦系統係具備有:執行至少包含運算用模組且用以實現所被構裝的各功能的複數模組的處理單元, 前述電腦系統係具備有:將前述關於形成在試料的構造物上的圖案的高度的資訊輸出作為學習結果的作為學習器的識別器, 前述作為學習器的識別器係使用將藉由前述荷電粒子線裝置所得的資料亦即前述複數方向檢測器的輸出、根據前述輸出所形成的畫像、或由前述畫像所抽出的前述圖案的特徵之中至少1個作為輸入、且將前述關於形成在試料的構造物上的圖案的高度的資訊作為輸出的教師資料,來預先實施學習, 前述運算用模組係對前述作為學習器的識別器,輸入前述複數方向檢測器的輸出、根據前述輸出所形成的畫像、或由前述畫像所抽出的前述圖案的特徵之中至少1個,藉此取得前述關於形成在試料的構造物上的圖案的高度的資訊。
  2. 如請求項1之構造推定系統,其中,由前述作為學習器的識別器所被輸出的前述圖案的特徵係表示: 前述圖案的亮度值、 前述圖案的尺寸值、 前述圖案的形狀的評估值、 前述圖案的形狀的變形量、 前述圖案的最後加工的評估值、 之中至少1個的參數。
  3. 如請求項1之構造推定系統,其中,前述方向檢測器係被配置在相對前述荷電粒子線裝置的射束光軸呈傾斜的方向。
  4. 一種構造推定程式,其係使電腦系統執行由藉由具備有配置在複數方向的複數方向檢測器的荷電粒子線裝置所得的資料,推定關於形成在試料的構造物上的圖案的高度的資訊的處理的構造推定程式, 前述電腦系統係具備輸出關於前述圖案的高度的資訊的作為學習器的識別器, 前述作為學習器的識別器係使用將藉由前述荷電粒子線裝置所得的資料亦即前述複數方向檢測器的輸出、根據前述輸出所形成的畫像、或由前述畫像所抽出的前述圖案的特徵之中至少1個作為輸入、且將前述關於形成在試料的構造物上的圖案的高度的資訊作為輸出的教師資料,來預先實施學習, 前述構造推定程式係使前述電腦系統,對前述作為學習器的識別器,輸入前述複數方向檢測器的輸出、根據前述輸出所形成的畫像、或由前述畫像所抽出的前述圖案的特徵之中至少1個,藉此取得前述關於形成在試料的構造物上的圖案的高度的資訊。
  5. 如請求項4之構造推定程式,其中,由前述作為學習器的識別器所被輸出的前述圖案的特徵係表示: 前述圖案的亮度值、 前述圖案的尺寸值、 前述圖案的形狀的評估值、 前述圖案的形狀的變形量、 前述圖案的最後加工的評估值、 之中至少1個的參數。
TW111141062A 2019-02-15 2020-02-04 構造推定系統、構造推定程式 TWI830467B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/005648 WO2020166076A1 (ja) 2019-02-15 2019-02-15 構造推定システム、構造推定プログラム
WOPCT/JP2019/005648 2019-02-15

Publications (2)

Publication Number Publication Date
TW202324561A TW202324561A (zh) 2023-06-16
TWI830467B true TWI830467B (zh) 2024-01-21

Family

ID=72044427

Family Applications (4)

Application Number Title Priority Date Filing Date
TW110136681A TWI785824B (zh) 2019-02-15 2020-02-04 構造推定系統、構造推定程式
TW109103331A TWI744786B (zh) 2019-02-15 2020-02-04 構造推定系統、構造推定程式
TW112150261A TW202418425A (zh) 2019-02-15 2020-02-04 構造推定系統、電腦可讀儲存媒體
TW111141062A TWI830467B (zh) 2019-02-15 2020-02-04 構造推定系統、構造推定程式

Family Applications Before (3)

Application Number Title Priority Date Filing Date
TW110136681A TWI785824B (zh) 2019-02-15 2020-02-04 構造推定系統、構造推定程式
TW109103331A TWI744786B (zh) 2019-02-15 2020-02-04 構造推定系統、構造推定程式
TW112150261A TW202418425A (zh) 2019-02-15 2020-02-04 構造推定系統、電腦可讀儲存媒體

Country Status (4)

Country Link
US (1) US20220130027A1 (zh)
KR (2) KR102592253B1 (zh)
TW (4) TWI785824B (zh)
WO (1) WO2020166076A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220062635A (ko) * 2019-10-18 2022-05-17 주식회사 히타치하이테크 검사 시스템, 및 비일시적 컴퓨터 판독 가능 매체
JP7364540B2 (ja) 2020-08-05 2023-10-18 株式会社日立ハイテク 画像処理システム
JP7130267B2 (ja) * 2020-09-03 2022-09-05 株式会社リガク 全反射蛍光x線分析装置及び推定方法
KR102468352B1 (ko) * 2021-02-26 2022-11-18 김이경 파동분포를 제어하기 위한 구조를 설계하는 방법 및 그 장치
JP2023014480A (ja) * 2021-07-19 2023-01-31 株式会社日立ハイテク 計測方法、計測システム、及び非一時的なコンピューター可読媒体
DE112022004546T5 (de) * 2022-01-26 2024-08-14 Hitachi High-Tech Corporation Verfahren zur messung der höhe eines fremdkörpers und vorrichtung mit einem strahl geladener teilchen
WO2024069701A1 (ja) * 2022-09-26 2024-04-04 株式会社日立ハイテク モデル生成方法及び欠陥検査システム
CN116187399B (zh) * 2023-05-04 2023-06-23 北京麟卓信息科技有限公司 一种基于异构芯片的深度学习模型计算误差定位方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363085A (ja) * 2003-05-09 2004-12-24 Ebara Corp 荷電粒子線による検査装置及びその検査装置を用いたデバイス製造方法
WO2014091928A1 (ja) * 2012-12-12 2014-06-19 東京エレクトロン株式会社 基板の欠陥検査方法、基板の欠陥検査装置及びコンピュータ記憶媒体
TW201816670A (zh) * 2016-10-14 2018-05-01 美商克萊譚克公司 用於經組態用於半導體應用之深度學習模型之診斷系統及方法
TW201824417A (zh) * 2016-09-14 2018-07-01 美商克萊譚克公司 用於影像融合之以卷積神經網路為基礎之模式選擇及缺陷分類
TW201825883A (zh) * 2016-10-17 2018-07-16 美商克萊譚克公司 最佳化使用於設定檢查相關演算法之訓練組
US20180240225A1 (en) * 2017-02-20 2018-08-23 Hitachi High-Technologies Corporation Sample observation device and sample observation method
TW201905731A (zh) * 2017-06-30 2019-02-01 美商克萊譚克公司 用於使用半導體製造程序中之深度學習預測缺陷及臨界尺寸之系統及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6205239B1 (en) * 1996-05-31 2001-03-20 Texas Instruments Incorporated System and method for circuit repair
WO2002049065A1 (fr) * 2000-12-12 2002-06-20 Ebara Corporation Dispositif a faisceau d'electrons et procede de production de dispositifs a semi-conducteur utilisant ledit dispositif a faisceau d'electrons
CN101630623B (zh) * 2003-05-09 2012-02-22 株式会社荏原制作所 基于带电粒子束的检查装置及采用了该检查装置的器件制造方法
JP4585822B2 (ja) 2004-09-22 2010-11-24 株式会社日立ハイテクノロジーズ 寸法計測方法及びその装置
JP2012173017A (ja) * 2011-02-18 2012-09-10 Hitachi High-Technologies Corp 欠陥分類装置
WO2020120050A1 (en) * 2018-12-14 2020-06-18 Asml Netherlands B.V. Apparatus and method for grouping image patterns to determine wafer behavior in a patterning process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363085A (ja) * 2003-05-09 2004-12-24 Ebara Corp 荷電粒子線による検査装置及びその検査装置を用いたデバイス製造方法
WO2014091928A1 (ja) * 2012-12-12 2014-06-19 東京エレクトロン株式会社 基板の欠陥検査方法、基板の欠陥検査装置及びコンピュータ記憶媒体
TW201824417A (zh) * 2016-09-14 2018-07-01 美商克萊譚克公司 用於影像融合之以卷積神經網路為基礎之模式選擇及缺陷分類
TW201816670A (zh) * 2016-10-14 2018-05-01 美商克萊譚克公司 用於經組態用於半導體應用之深度學習模型之診斷系統及方法
TW201825883A (zh) * 2016-10-17 2018-07-16 美商克萊譚克公司 最佳化使用於設定檢查相關演算法之訓練組
US20180240225A1 (en) * 2017-02-20 2018-08-23 Hitachi High-Technologies Corporation Sample observation device and sample observation method
TW201905731A (zh) * 2017-06-30 2019-02-01 美商克萊譚克公司 用於使用半導體製造程序中之深度學習預測缺陷及臨界尺寸之系統及方法

Also Published As

Publication number Publication date
TW202101626A (zh) 2021-01-01
KR20210053326A (ko) 2021-05-11
WO2020166076A1 (ja) 2020-08-20
TWI785824B (zh) 2022-12-01
TW202418425A (zh) 2024-05-01
TW202220077A (zh) 2022-05-16
TWI744786B (zh) 2021-11-01
US20220130027A1 (en) 2022-04-28
TW202324561A (zh) 2023-06-16
KR102592253B1 (ko) 2023-10-24
KR20230148862A (ko) 2023-10-25

Similar Documents

Publication Publication Date Title
TWI830467B (zh) 構造推定系統、構造推定程式
WO2016121265A1 (ja) 試料観察方法および試料観察装置
WO2014119124A1 (ja) 欠陥観察方法および欠陥観察装置
US9343264B2 (en) Scanning electron microscope device and pattern dimension measuring method using same
KR101987726B1 (ko) 전자선식 패턴 검사 장치
JP7305422B2 (ja) パターン評価システム及びパターン評価方法
KR20180113572A (ko) 결함 분류 장치 및 결함 분류 방법
US9341584B2 (en) Charged-particle microscope device and method for inspecting sample using same
KR20210087063A (ko) 화상 평가 장치 및 방법
KR20220002572A (ko) 화상 처리 프로그램, 화상 처리 장치 및 화상 처리 방법
JP6826455B2 (ja) 画像形成装置
US11133147B2 (en) Charged particle ray device and cross-sectional shape estimation program
JP5953117B2 (ja) パターン評価装置、及びコンピュータープログラム
TWI822581B (zh) 影像生成系統、非暫時性電腦可讀媒體及影像生成方法
JP7167323B2 (ja) パターン計測装置および計測方法