TWI830111B - 最佳度量衡指導之系統及方法 - Google Patents
最佳度量衡指導之系統及方法 Download PDFInfo
- Publication number
- TWI830111B TWI830111B TW111100436A TW111100436A TWI830111B TW I830111 B TWI830111 B TW I830111B TW 111100436 A TW111100436 A TW 111100436A TW 111100436 A TW111100436 A TW 111100436A TW I830111 B TWI830111 B TW I830111B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- parameters
- guidance
- model parameters
- simulated images
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 68
- 238000005259 measurement Methods 0.000 claims abstract description 63
- 238000004458 analytical method Methods 0.000 claims abstract description 36
- 238000003384 imaging method Methods 0.000 claims description 40
- 238000013442 quality metrics Methods 0.000 claims description 28
- 230000015654 memory Effects 0.000 claims description 25
- 238000010894 electron beam technology Methods 0.000 abstract description 58
- 235000012431 wafers Nutrition 0.000 description 91
- 238000010191 image analysis Methods 0.000 description 29
- 238000012545 processing Methods 0.000 description 29
- 238000003860 storage Methods 0.000 description 26
- 230000008569 process Effects 0.000 description 25
- 239000002245 particle Substances 0.000 description 21
- 238000007689 inspection Methods 0.000 description 20
- 230000007547 defect Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 10
- 238000010801 machine learning Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- 238000001514 detection method Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000004626 scanning electron microscopy Methods 0.000 description 7
- 238000013135 deep learning Methods 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 230000005669 field effect Effects 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 230000005684 electric field Effects 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 238000003908 quality control method Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000001064 degrader Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000001198 high resolution scanning electron microscopy Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70616—Monitoring the printed patterns
- G03F7/7065—Defects, e.g. optical inspection of patterned layer for defects
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70616—Monitoring the printed patterns
- G03F7/70625—Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/68—Preparation processes not covered by groups G03F1/20 - G03F1/50
- G03F1/82—Auxiliary processes, e.g. cleaning or inspecting
- G03F1/84—Inspecting
- G03F1/86—Inspecting by charged particle beam [CPB]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
- G06T2207/10061—Microscopic image from scanning electron microscope
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30168—Image quality inspection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Quality & Reliability (AREA)
- Geometry (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
本發明揭示一種用於最佳電子束度量衡指導之系統及方法。根據某些實施例,該方法可包括:接收一樣本之一所獲取影像;基於該所獲取影像之一分析判定一影像參數之集合;基於該影像參數之集合判定一模型參數之集合;基於該模型參數之集合產生一模擬影像之集合。該方法可進一步包含:對該模擬影像之集合執行臨界尺寸之量測;及比較臨界尺寸量測與該模型參數之集合,以基於來自該模擬影像之集合及該模型參數之集合之資訊的比較來提供一指導參數之集合。該方法可進一步包含接收與包括臨界尺寸均一性之目標參數相關聯的輔助資訊。
Description
本文中之描述係關於度量衡指導之領域,且更特定言之,係關於建議用於度量衡之參數的最佳度量衡指導系統。
在積體電路(IC)之製造製程中,未完成或已完成電路組件經檢測以確保其根據設計而製造且無缺陷。可採用利用光學顯微鏡或帶電粒子(例如電子)束顯微鏡(諸如掃描電子顯微鏡(SEM))之檢測系統。隨著IC組件之實體大小繼續縮小,缺陷偵測之準確度及良率變得愈來愈重要。用於監測半導體製造製程之臨界尺寸控制及晶圓上之特徵的再現性亦為重要的。由於缺乏檢測工具條件之地面實況知識及底層成像樣本之統計資料,憑經驗建立度量衡參數。
因此,先前技術系統面臨例如用於半導體製造製程之經由度量衡之臨界尺寸量測之準確度的侷限性。需要對此項技術進一步改良。
本發明之實施例提供一種用於度量衡系統之系統及方法。在一些實施例中,提供一種度量衡系統。該度量衡系統可包含儲存一指令集之一記憶體及一處理器。該度量衡系統之該處理器可經組態以執行該指令集以使該度量衡系統執行以下操作:接收一所獲取影像;基於所獲取影像之一分析判定一影像參數之集合;自該影像參數之集合判定一模型參數之集合;使用該模型參數之集合產生一模擬影像之集合;及基於該模擬影像之集合及該模型參數之集合的分析輸出一指導參數之集合。該度量衡系統可包含經組態以獲取樣本之影像的該帶電粒子束裝置。該模擬影像之集合可包括一單個模擬影像。該分析可包含來自該模擬影像之集合及該模型參數之集合的資訊之一比較。來自該模擬影像之集合之資訊可包含臨界尺寸量測結果。該影像參數之集合可包括雜訊位準、所關注之圖案、線條粗糙度或邊緣輪廓,且該模型參數之集合是基於一品質度量或複數個品質度量自該影像參數之集合而判定。該複數個品質度量可包括局部雜訊位準、總體雜訊位準、邊緣輪廓統計資料或圖案結構中之任一者。指導參數之集合可包括建議成像參數、臨界尺寸均一性參數、量測精確度、可重複性或量測準確度中之一或多者。該度量衡系統之該處理器可進一步經組態以執行該指令集以進一步使該度量衡系統接收與目標參數相關聯之輔助資訊,且基於所接收輔助資訊分析所獲取影像。該等目標參數可包括定向間距、定向臨界尺寸均一性、定向圖案或定向量測精確度。該指令集可使該度量衡系統進一步對該模擬影像執行臨界尺寸之量測且比較臨界尺寸量測與模型參數之集合。
在一些實施例中,提供一種度量衡指導系統。該度量衡指導系統可包括該記憶體及該處理器,該記憶體儲存一指令集,該處理器經組態以執行該指令集以使該度量衡指導系統執行以下操作:基於所獲取影像之一分析判定一影像參數之集合;基於該影像參數之集合判定一模型參數之集合;基於該模型參數之集合產生一模擬影像之集合;分析該模擬影像之集合;及基於該模擬影像之集合及該模型參數之集合的一分析輸出一指導參數之集合。該模擬影像之集合可包括一單個模擬影像。該分析可包含自該模擬影像之集合及該模型參數之集合的資訊之一比較。來自該模擬影像之集合之資訊可包含臨界尺寸量測結果。該模擬影像之集合的分析可包括對該模擬影像之集合執行臨界尺寸之量測,及比較臨界尺寸量測與該模型參數之集合。該指令集可使該度量衡系統進一步接收與目標參數相關聯之輔助資訊且基於所接收輔助資訊分析所獲取影像。該等目標參數可包括定向間距、定向臨界尺寸均一性、定向圖案或定向量測精確度。該影像參數之集合可包括雜訊位準、所關注之圖案、線條粗糙度或邊緣輪廓,且該模型參數之集合是基於一品質度量或複數個品質度量自該影像參數之集合而判定。該複數個品質度量可包括局部雜訊位準、總體雜訊位準、邊緣輪廓統計資料或圖案結構。該指導參數之集合可包括建議成像參數、臨界尺寸均一性參數、量測精確度、可重複性或量測準確度中之一或多者。
在一些實施例中,提供一種度量衡指導方法。該方法可包括:接收一樣本之該所獲取影像;基於所獲取影像之一分析判定一影像參數之集合;基於該影像參數之集合判定一模型參數之集合;基於該模型參數之集合產生一模擬影像之集合;及基於該模擬影像之集合及該模型參數之集合的一分析提供一指導參數之集合。該方法可進一步包含:對該模擬影像之集合執行臨界尺寸之量測;及比較臨界尺寸量測與該模型參數之集合。該模擬影像之集合可包括一單個模擬影像。該分析可包含來自該模擬影像之集合及該模型參數之集合的資訊之一比較。來自該模擬影像之集合之資訊可包含臨界尺寸量測結果。該方法可進一步包含接收與目標參數相關聯之輔助資訊及基於所接收輔助資訊分析所獲取影像。該等目標參數可包括定向間距、定向臨界尺寸均一性、定向圖案或定向量測精確度。
在一些實施例中,主張一種非暫時性電腦可讀媒體,其包含可由一裝置之一或多個處理器執行之一指令集。該裝置可執行:接收一樣本之一所獲取影像;基於所獲取影像之一分析判定一影像參數之集合;基於該影像參數之集合判定一模型參數之集合;基於該模型參數之集合產生一模擬影像之集合;及基於該模擬影像之集合及該模型參數之集合的一分析提供一指導參數之集合。該指令集可使該裝置對該模擬影像之集合執行臨界尺寸之量測且比較臨界尺寸量測與該模型參數之集合。此外,該指令集亦可使該裝置接收與目標參數相關聯之輔助資訊且基於該所接收輔助資訊分析所獲取影像。
現將詳細參考例示性實施例,在隨附圖式中說明該等例示性實施例之實例。以下描述參考隨附圖式,其中除非另外表示,否則不同圖式中之相同編號表示相同或類似元件。例示性實施例之以下描述中所闡述之實施方案並不表示根據本發明的所有實施方案。實情為,其僅為根據關於如所附申請專利範圍中所列舉的主題之態樣的裝置及方法之實例。舉例而言,儘管一些實施例在使用電子束之上下文中描述,但本發明不限於此。可類似地應用其他類型之帶電粒子束。此外,可使用其他成像系統,諸如光學成像、光偵測、x射線偵測等。
可藉由顯著增加IC晶片上之電路組件(諸如電晶體、電容器、二極體等)之填集密度來實現電子器件之經強化的計算能力,同時減小器件之實體大小。舉例而言,在智慧型手機中,IC晶片(其為拇指甲大小)可包括超過20億個電晶體,各電晶體之大小小於人類毛髮之1/1000
th。並不出人意料,半導體IC製造為具有數百個個別步驟之複雜製程。甚至一個步驟中之錯誤有可能顯著影響最終產物之功能。甚至一個「致命缺陷」可造成器件故障。製造製程之目標為改良製程之總良率。舉例而言,對於得到75%良率之50步驟製程,各個別步驟必須具有大於99.4%之良率,且若個別步驟良率為95%,則總製程良率下降至7%。
當在IC晶片製造設施中需要高製程良率時,亦必需維持高晶圓產出量,該高晶圓產出量經定義為每小時加工之晶圓之數目。高製程良率及高晶圓產出量可受缺陷之存在影響,尤其當涉及操作員干預時為如此。因此,藉由檢測工具(諸如SEM)偵測及識別微米及奈米大小缺陷對於維持高良率及低成本為至關重要的。缺陷可指樣本或晶圓上之組件之可導致故障的異常條件。在一些實施例中,缺陷可指相比於標準之像差。缺陷可包括例如粒子污染、表面缺陷等。除偵測及識別缺陷之外,SEM檢測工具亦可用於藉由提供與晶圓上之微觀結構之元素分析組合的高解析度影像來識別缺陷之源。
然而,對於經由高解析度SEM成像識別缺陷,應瞭解,當成像及量測臨界尺寸時,應考慮多個參數,例如成像參數、雜訊位準、視場、像素尺寸、影像數目、視窗大小、平均像素數目等。作為一實例,若SEM檢測工具之成像參數未經最佳化,則判定晶圓上之場效電晶體之通道區域中的表面缺陷是否由存在不合需要之粒子或缺少所需材料所引起可為具有挑戰性的。存在不合需要之粒子(諸如塵埃)可表明在製程中之引入塵埃粒子之設施或外部源中的空氣過濾器問題,然而缺少所需材料可表明與製程或材料相關之問題。表面缺陷之校正判定可需要特定電子束能量、加速電壓、光束孔徑、光點大小、景深(depth-of-view)等。
實務上,前述參數中之一些由人類憑經驗判定,由於缺乏例如關於工具實體條件、工具維持記錄、底層成像樣本之統計資料等之資訊的地面實況知識,使得檢測製程易受錯誤影響。依賴操作人員經由SEM成像對於檢測之判斷可導致缺陷錯誤識別及誤導晶圓簽名分析,影響製程之成本、效率及產出量。在本發明中之所提議之最佳度量衡指導系統可藉由使用SEM判定用於檢測、成像或量測之經最佳化參數來顯著提昇缺陷識別。
如本文中所使用,晶圓簽名可指系統性缺陷之空間圖案,表明需要待識別及追蹤之製程缺陷。在製造製程期間,半導體晶圓經過諸多化學及機械處理步驟。成品晶圓在封裝之前切割成晶片。各處理步驟可易受製程變化以及可使得受影響之晶片無用之工具配方問題的影響。在多數情況下,此等製程缺陷在本質上為系統性的且造成發生故障晶粒之系統性晶圓簽名。在一些情況下,多個簽名可存在於一個晶圓上且識別哪個簽名對晶圓產出量影響最大可為至關重要的,因此資源可集中於解決最大良率降低者。
在本發明之一個態樣中,SEM檢測工具可用以獲取圖案或晶圓區域之初始影像(諸如
圖 4之影像310)。使用所獲取影像及與影像相關聯之目標資訊,度量衡指導系統(諸如
圖 5之度量衡指導系統320)可推斷一或多個初始影像參數,例如雜訊位準、所關注之圖案、圖案間距、圖案良率、間隙良率、線條粗糙度等。度量衡指導系統可自一或多個影像參數判定所估計模型參數之集合,且基於所估計模型參數產生模擬影像(諸如
圖 6之模擬影像625)。度量衡指導系統可基於對模擬影像及所估計模型參數之集合的臨界尺寸量測值之比較來提供指導參數之集合及建議。
出於清楚起見,圖式中之組件的相對尺寸可經放大。在以下圖式描述內,相同或類似附圖標號係指相同或類似組件或實體,且僅描述關於個別實施例之差異。
如本文中所使用,除非另有特定說明,否則術語「或」涵蓋所有可能組合,除非不可行。舉例而言,若陳述資料庫可包括A或B,則除非另有特定說明或不可行,否則資料庫可包括A、或B、或A及B。作為第二實例,若陳述資料庫可包括A、B或C,則除非另有特定說明或不可行,否則資料庫可包括A、或B、或C、或A及B、或A及C、或B及C、或A及B及C。
現參看
圖 1,其說明根據本發明之實施例的例示性電子束檢測(EBI)系統100。EBI系統100可用於成像。如
圖 1中所展示,EBI系統100包括主腔室101、裝載/鎖定腔室102、電子束工具104及設備前端模組(EFEM) 106。電子束工具104位於主腔室101內。EFEM 106包括第一裝載埠106a及第二裝載埠106b。EFEM 106可包括額外裝載埠。第一裝載埠106a及第二裝載埠106b收納含有待檢測之晶圓(例如,半導體晶圓或由其他材料製成之晶圓)或樣本(晶圓及樣本可互換使用)的晶圓前開式單元匣(FOUP)。可裝載含有複數個晶圓之一批次以作為批量進行處理。
EFEM 106中之一或多個機械臂(未展示)可將晶圓輸送至裝載/鎖定腔室102。裝載/鎖定腔室102連接至裝載/鎖定真空泵系統(未展示),該裝載/鎖定真空泵系統移除裝載/鎖定腔室102中之氣體分子以達到低於大氣壓之第一壓力。在達到第一壓力之後,一或多個機械臂(未展示)可將晶圓自裝載/鎖定腔室102輸送至主腔室101。主腔室101連接至主腔室真空泵系統(未展示),該主腔室真空泵系統移除主腔室101中之氣體分子以達到低於第一壓力之第二壓力。在達到第二壓力之後,晶圓經受電子束工具104之檢測。電子束工具104可為單光束系統或多光束系統。
控制器109以電子方式連接至電子束工具104。控制器109可為經組態以執行對EBI系統100之各種控制的電腦。雖然控制器109在
圖 1中展示為在包括主腔室101、裝載/鎖定腔室102及EFEM 106之結構外部,但應瞭解,控制器109可為結構之一部分。
圖 2說明根據本發明之實施例之例示性成像系統200。
圖 2之電子束工具104可經組態以用於EBI系統100。電子束工具104可為單光束裝置或多光束裝置。如
圖 2中所展示,電子束工具104包括機動樣本台201及由機動樣本台201支撐以固持待檢測之晶圓203的晶圓固持器202。電子束工具104進一步包括物鏡總成204、電子偵測器206 (其包括電子感測器表面206a及206b)、物鏡孔徑208、聚光透鏡210、光束限制孔徑212、槍孔徑214、陽極216及陰極218。在一些實施例中,物鏡總成204可包括經修改擺動物鏡延遲浸沒透鏡(SORIL),其包括極片204a、控制電極204b、偏轉器204c及激磁線圈204d。電子束工具104可另外包括能量色散X射線光譜儀(EDS)偵測器(未展示)以表徵晶圓203上之材料。
藉由在陽極216與陰極218之間施加電壓自陰極218發射初級電子束220。初級電子束220穿過槍孔徑214及光束限制孔徑212,此兩者可判定進入駐存於光束限制孔徑212下方之聚光透鏡210之電子束的大小。聚光透鏡210在光束進入物鏡孔徑208之前聚焦初級電子束220,以在電子束進入物鏡總成204之前設定電子束之大小。偏轉器204c使初級電子束220偏轉以促進晶圓上之光束掃描。舉例而言,在掃描製程中,可控制偏轉器204c以在不同時間點使初級電子束220依序偏轉至晶圓203之頂表面之不同位置上,以提供用於晶圓203之不同部分的影像重構的資料。此外,亦可控制偏轉器204c以在不同時間點使初級電子束220偏轉至特定位置處之晶圓203之不同側上,以提供用於彼位置處的晶圓結構之立體影像重構之資料。此外,在一些實施例中,陽極216及陰極218可經組態以產生多個初級電子束220,且電子束工具104可包括複數個偏轉器204c以同時將多個初級電子束220投射至晶圓之不同部分/側,以提供用於晶圓203之不同部分的影像重構之資料。
激磁線圈204d及極片204a產生在極片204a之一端處開始且在極片204a之另一端處終止的磁場。由初級電子束220掃描之晶圓203之一部分可浸沒於磁場中且可帶電,此又產生電場。電場在該初級電子束與晶圓203碰撞之前減少接近晶圓203之表面衝擊初級電子束220的能量。與極片204a電隔離之控制電極204b控制晶圓203上之電場,以防止晶圓203之微拱起及確保適當光束聚焦。
在接收初級電子束220後,可自晶圓203之部分發射次級電子束222。次級電子束222可在電子偵測器206之感測器表面206a及206b上形成光束點。電子偵測器206可產生表示光束點之強度之信號(例如電壓、電流等),且將信號提供給影像處理系統250。次級電子束222及所得光束點之強度可根據晶圓203之外部或內部結構而變化。此外,如上文所論述,初級電子束220可投影至晶圓之頂部表面的不同位置及/或特定位置處之晶圓之不同側上,以產生不同強度的次級電子束222 (及所得光束點)。因此,藉由以晶圓203之位置映射光束點之強度,處理系統可重構反映晶圓203之內部或外部結構的影像。
如上文所論述,成像系統200可用於檢測樣本台201上之晶圓203,且包含電子束工具104。成像系統200亦可包含影像處理系統250,該影像處理系統包括影像獲取器260、儲存器270及控制器109。影像獲取器260可包含一或多個處理器。舉例而言,影像獲取器260可包含電腦、伺服器、大型電腦主機、終端機、個人電腦、任何種類之行動計算器件及類似者或其組合。影像獲取器260可經由媒體(諸如電導體、光纖纜線、攜帶型儲存媒體、IR、藍芽、網際網路、無線網路、無線電或其組合)與電子束工具104之偵測器206連接。影像獲取器260可自偵測器206接收信號,且可建構影像。影像獲取器260可因此獲取晶圓203之影像。影像獲取器260亦可執行各種後處理功能,諸如產生輪廓、疊加所獲取影像上之指示符及其類似者。影像獲取器260可經組態以執行對所獲取影像之亮度及對比度等的調整。儲存器270可為儲存媒體,諸如硬碟、隨機存取記憶體(RAM)、其他類型之電腦可讀記憶體及其類似者。儲存器270可與影像獲取器260耦接,且可用於儲存作為原始影像之經掃描原始影像資料,及後處理影像。影像獲取器260及儲存器270可連接至控制器109。在一些實施例中,影像獲取器260、儲存器270及控制器109可一起整合為一個控制單元。
在一些實施例中,影像獲取器260可基於自偵測器206接收之成像信號來獲取樣本之一或多個影像。成像信號可對應於用於進行帶電粒子成像之掃描操作。所獲取影像可為包含複數個成像區域之單個影像。單個影像可儲存於儲存器270中。單個影像可為可劃分為複數個區域之原始影像。區域中之各者可包含含有晶圓203之特徵之一個成像區域。
現參看
圖 3,其為根據本發明之實施例之用於例示性度量衡系統300的示意圖。在一些實施例中,度量衡系統300包含電子束工具104、經組態以獲取及產生影像310之
圖 2之影像處理系統250、度量衡指導系統320及輸出器件330。或者,度量衡系統300可為
圖 2之成像系統200或
圖 1之EBI系統100之一部分。
影像310可包括樣本上之圖案之高解析度電子束影像。如本文中所使用,高解析度電子束影像係指(但不限於)解析度高到足以解析間距小於20 nm之影像中之兩個不同特徵的影像。可使用影像處理系統250之影像獲取器260或能夠獲取高解析度影像之任何此類系統來獲取影像310。可藉由可產生晶圓之檢測影像之任何電子束檢測系統來獲取影像310。晶圓可為半導體晶圓基板,或例如具有一或多個磊晶層或程序膜(process film)之半導體晶圓基板。本發明之實施例不限制檢測系統之特定類型,只要系統可產生具有充足解析度之晶圓影像即可。
在一些實施例中,影像310可為再檢測模式影像,其為在既定最佳之獲取條件下所獲取之影像。再檢測模式影像可具有較高解析度,例如最佳化放大率、最佳化對比度及亮度、最佳化電子束強度等。亦可最佳化偵測器206設定以獲取高解析度影像。
在一些實施例中,影像310可為例如樣本之低解析度影像,或晶圓203之特徵、晶圓203或晶圓203上之所關注區。可使用影像處理系統250之影像獲取器260或能夠獲取低解析度影像之任何此類系統來獲取影像310。可藉由可產生晶圓或晶圓上之所關注區域之檢測影像的任何電子束檢測系統來獲取影像310。晶圓203可為半導體晶圓基板,或例如具有一或多個磊晶層或程序膜之半導體晶圓基板。
影像310可包括例如晶圓203上之位置的參考影像,或晶圓203上之特徵的參考影像,或後處理參考影像,或類似者。在一些實施例中,影像310可包含包括自多個產品類型之晶圓的位置或特徵之參考影像之多個影像。舉例而言,當使用相同製程在相同生產線上製造多個產品類型時,自第一產品類型之特徵之參考影像可用作自與第一產品類型相比具有不同建構之第二產品類型之特徵的培訓影像。
影像310可儲存於影像處理系統250之儲存器270中。影像310亦可儲存於遠端儲存器位置(未說明) (例如遠端資料庫、網路、伺服器、雲端平台或類似者)中,可由包括度量衡指導系統320之度量衡系統300之組件來存取。
在一些實施例中,輔助資訊315可轉移至度量衡指導系統320。輔助資訊315可包括與成像條件或臨界尺寸均一性設定(例如目標臨界尺寸、圖案之目標間距、目標量測精確度等)相關聯之目標資訊。如本文中所使用,「臨界尺寸」係指影響器件之電特性的IC或電晶體之特徵之大小。舉例而言,導線之寬度、兩個導線之間的間距、場效電晶體之通道或電極之幾何形狀(例如與通道相比具有不同尺寸且不涵括通道之全寬的閘極)等。場效電晶體之組件中之各者之尺寸可為臨界尺寸。此等尺寸皆可影響器件之電氣效能,此係因為其可引起寄生電容及電阻。應瞭解,臨界尺寸為可經調整以在製造中使器件效能及良率最佳化之尺寸。
在一些實施例中,輔助資訊315可包括基於產品或製程預先判定之資訊。舉例而言,對於具有臨界尺寸22 nm之通道長度之場效電晶體,可設定0.1 nm之目標臨界尺寸量測精確度。或者,可基於工具實體條件、製程參數、產品尺寸等調整輔助資訊315中之目標資訊。可適合地應用其他適合之目標量測精確度值。
在一些實施例中,輔助資訊315可儲存於影像處理系統250之儲存器270中。輔助資訊315亦可儲存於遠端儲存器位置(未說明) (例如,遠端資料庫、網路、伺服器、雲端平台或類似者)中,可藉由包括度量衡指導系統320之度量衡系統300之組件來存取。
如
圖 3中所說明,度量衡指導系統320可與影像處理系統250耦接為獨立單元。或者,度量衡指導系統320可為影像處理系統250,或成像系統200,或EBI系統100之一部分。度量衡指導系統320可經組態以分析包括但不限於影像310及輔助資訊315之資訊,及包括用於成像條件及臨界尺寸均一性設定之建議的輸出指導參數。在一些實施例中,度量衡指導系統320亦可經組態以接收所獲取影像310及輔助資訊315且分析所接收影像及資訊以提供指導參數,例如成像條件及臨界尺寸均一性設定建議。
在一些實施例中,度量衡指導系統320經組態以自影像處理系統250接收影像310及輔助資訊315。在其他實施例中,度量衡指導系統320經組態以自儲存器270或其他儲存媒體接收影像310及輔助資訊315。
在一些實施例中,度量衡指導系統320可直接與電子束工具104耦接。由度量衡指導系統320提供之指導參數可直接由電子束工具104接收且經實施用於連續檢測操作,無需使用者驗證。在一些實施例中,由度量衡指導系統320提供之指導參數可顯示於輸出器件330上,以供使用者來驗證指導參數。
輸出器件330可經組態以顯示由度量衡指導系統320提供之指導參數。指導參數可包含文本檔案、參數建議之影像、視聽檔案或其組合。在一些實施例中,輸出器件330可與電子束工具104耦接,且指導參數可由電子束工具104接收。
在一些實施例中,輸出器件330可為經組態以顯示影像310或輔助資訊315之影像處理系統250之一部分。輸出器件330可連接至影像處理系統250之其他組件,包括但不限於儲存器270、控制器109等。應瞭解,輸出器件330可為
圖 2之影像獲取器260之一部分。在一些實施例中,輸出器件330可包含手持式顯示器件、可穿戴式顯示器件、多螢幕顯示器、交互式顯示器件或類似者。亦可使用其他適合之顯示器件。
圖 4說明根據本發明之實施例之例示性度量衡系統400。在一些實施例中,度量衡系統400包含包括影像獲取器260、儲存器270、控制器109及類似者之
圖 2之影像處理系統250。或者,影像處理系統250可包含包括度量衡指導系統320之度量衡系統400。
舉例而言,如
圖 4中所說明,影像310為由影像處理系統250之影像獲取器260所獲取之高解析度電子束影像。影像310展示包括由間距分隔開的豎直特徵之均勻陣列的圖案。豎直特徵可包含例如光阻線,或介電材料,或互連金屬線等。間距可包含晶圓203之表面,或底層基板材料,或保護層等。展示於影像310中之豎直特徵具有不規則線形及邊緣輪廓。儘管影像310為高解析度影像,但可存在低但有限量之雜訊位準。在獲取之後,影像310可直接轉移至度量衡指導系統320。在一些實施例中,在轉移至度量衡指導系統320之前,影像310可臨時儲存於儲存器(例如
圖 2之儲存器270)中。
資料庫410可經組態以儲存輔助資訊315。資料庫410亦可儲存影像310或其他相關之資訊,例如指導參數、品質度量等。在一些實施例中,資料庫410可直接與度量衡指導系統320耦接。資料庫410可包括例如Oracle™資料庫、Sybase™資料庫、相關資料庫或非相關資料庫,諸如Hadoop™序列檔案、HBase™或Cassandra™。資料庫410可包括計算組件(例如資料庫管理系統、資料庫伺服器等),其經組態以接收並處理儲存於資料庫410之記憶體器件中的資料之請求及自資料庫410提供資料。在一些實施例中,資料庫410可呈伺服器、電腦、大型電腦或此等組件之任何組合之形式。根據所揭示實施例之其他實施方案亦為可能的。
度量衡指導系統320可包括影像分析模組420、處理器430及記憶體440。度量衡指導系統320亦可包括其他組件(未在本文中說明),例如模擬器、圖形使用者介面、資料庫等。在一些實施例中,輸出器件330可為度量衡指導系統320之一部分。
在一些實施例中,影像分析模組420經組態以接收所獲取影像310。影像分析模組420可以適合之格式接收所獲取影像310,該格式例如JPEG檔案、PNG檔案、PDF檔案、TIFF檔案、BMP檔案等。亦可使用其他適合之影像格式。影像分析模組420可自一或多個源接收影像310,該源包括但不限於儲存器270、資料庫410及類似者。
影像分析模組420可進一步經組態以執行所接收影像310之分析及評估。基於影像310之分析及評估,影像分析模組420可推斷影像參數之集合。影像參數之集合可包含雜訊位準、圖案間距、圖案良率、線條粗糙度等。影像參數之所推斷集合可儲存於資料庫410、儲存器270或類似者中。影像分析模組420可包含電腦、軟體實施演算法、影像處理演算法或特徵擷取演算法,或類似者。
度量衡指導系統320可包括處理器430。處理器430可經組態以執行指令集以使度量衡指導系統320執行相關功能。處理器430可包含計算單元、電腦、可程式化IC電路、大型電腦、伺服器等。處理器430可經由有線連接或以無線方式與影像分析模組420耦接。在一些實施例中,影像分析模組420可為處理器430之一部分。
在一些實施例中,度量衡指導系統320之處理器430可包括記憶體440。記憶體440可經組態以儲存用於處理器430之指令。記憶體440可包含非揮發性記憶體、隨機存取記憶體(RAM)、動態隨機存取記憶體(DRAM)、靜態隨機存取記憶體(SRAM)、唯讀記憶體(ROM)、快閃記憶體及類似者。基於例如需要處理之資料及資訊之量或按需要,度量衡指導系統320可包含一或多個記憶體(例如記憶體440)。
在一些實施例中,處理器430可經組態以接收影像310,執行影像310之分析,及基於影像310之分析推斷影像參數之集合。影像參數之集合可包含雜訊位準、圖案間距、圖案良率、線條粗糙度等。影像參數之所推斷集合可儲存於資料庫410、儲存器270或類似者中。處理器430可進一步經組態以基於品質度量自影像參數之集合判定模型參數之集合,該等品質度量包括但不限於局部雜訊位準、總體雜訊位準、邊緣輪廓統計資料、臨界尺寸及圖案結構。處理器430可進一步經組態以:基於模型參數之集合產生一或多個模擬影像;對模擬影像執行臨界尺寸之量測;及比較經量測臨界尺寸與模型參數之集合。基於比較結果,度量衡指導系統320可輸出包括用於成像條件及臨界尺寸均一性設定之建議的指導參數。
度量衡系統400可包括輸出器件330,其經組態以基於經量測臨界尺寸與模型參數之集合的比較來顯示用於成像條件及臨界尺寸均一性設定之指導參數及建議。
在一些實施例中,輸出器件330可為影像處理系統(例如
圖 2之影像處理系統250)之一部分。在一些實施例中,輸出器件330可包含手持式顯示器件、可穿戴式顯示器件、多螢幕顯示器、交互式顯示器件或類似者。亦可使用其他適合之顯示器件。
圖 5為說明根據本發明之實施例之例示性度量衡指導方法500的流程圖。度量衡指導方法可由度量衡指導系統320執行,該度量衡指導系統可與包括EBI系統100的帶電粒子束裝置耦接。應瞭解,可控制帶電粒子束裝置以對晶圓203或晶圓上之所關注區域進行成像。成像可包含掃描晶圓203以對晶圓之至少一部分、晶圓上之圖案或晶圓203自身進行成像。
在步驟510中,可獲取圖案之一或多個經掃描原始影像。一或多個經掃描原始影像可包含晶圓之整個表面。步驟510中之影像獲取可包含自帶電粒子束裝置之偵測器(諸如電子束工具104之電子偵測器206)接收信號,或自儲存器270載入影像310。影像處理系統250之影像獲取器260可用以獲取影像310。
在步驟520中,影像310可由影像分析模組420分析。影像分析模組420可自影像獲取器260、儲存器270、資料庫410等接收所獲取影像。步驟520中之影像分析可包括判定所獲取影像310之一或多個影像參數。影像參數可包括雜訊位準、圖案、圖案間距、線條粗糙度、邊緣輪廓等(例如
圖 4之影像310中之雜訊位準、圖案、間距、邊緣輪廓)。影像分析模組420可使用特徵擷取演算法、影像識別演算法、深度學習神經網路處理器、機器學習演算法或其組合來判定影像參數。在一些實施例中,影像分析模組420可整合於度量衡指導系統320之處理器430內。在一些實施例中,處理器430可經組態以執行影像分析模組420之一或多個功能。
在步驟530中,度量衡指導系統320之處理器430可經組態以基於品質度量自影像參數判定一或多個模型參數。可基於品質度量評估模型參數。品質度量可包含基於內部品質對照及標準、歷史結果、效能度量等之參數值。品質度量可特定針對於產品、或製程、或其組合。品質度量可預先界定且儲存於資料庫410中,而且藉由使用者經由使用者輸入來存取,例如藉由執行查詢、命令或類似者。在一些實施例中,品質度量可包含一或多個參數之較佳數值範圍。舉例而言,品質度量可包含可接受局部及總體雜訊位準之範圍,或邊緣輪廓之可接受範圍之百分比偏差的範圍,或圖案之臨界尺寸等。
步驟520中之所判定的影像參數可對照比較品質度量以判定影像參數是否處於範圍內或超出範圍。舉例而言,經判定之圖案之臨界尺寸(例如使用
圖 4之影像分析模組420、
圖 4之處理器430等)可落在製程的可接受範圍外部,可接受範圍在本文中識別為品質度量的一個。若影像310中之圖案之臨界尺寸判定為超出範圍,則可在步驟520中再分析影像310。或者,度量衡指導系統320可建議再獲取代表性影像,或樣本重新運行。度量衡指導系統320亦可建議標記電子束工具104、影像獲取器260或EBI系統100,用於進一步檢測及效能驗證。
在步驟540中,度量衡指導系統320可使用模型參數產生一或多個模擬影像(例如
圖 6之模擬影像655,隨後論述)。可使用度量衡指導系統320之處理器430模擬影像。在一些實施例中,模擬器(未展示)可經組態以模擬影像。模擬器可為度量衡指導系統320之一部分、處理器430之一部分等。在產生模擬影像之後,度量衡指導系統320可經組態以量測模擬影像之臨界尺寸。可比較經量測臨界尺寸與模型參數以判定指導參數建議。指導參數可包含對成像條件、臨界尺寸均一性設定等之建議。在一些實施例中,步驟540可包括以下步驟:基於模型參數建構模型地面實況;產生模擬影像;執行臨界尺寸量測;及比較臨界尺寸量測值與模型地面實況以判定指導參數建議。此等單個步驟隨後論述於
圖 6之論述中。
在步驟550中,可輸出指導參數建議,諸如藉由顯示於顯示器上(例如
圖 3之輸出器件330)、藉由輸出至正文檔案或資料庫、藉由輸出至帶電粒子束裝置(例如藉由在通訊媒體上方發送至帶電粒子束裝置)等。在一些實施例中,指導參數可包括(但不限於)調整視野、增加平均像素數目、增加所需影像數目以達成目標精確度、增加臨界尺寸均一性之臨界值等。指導參數可同時顯示於多個顯示器上。指導參數可由一使用者或一組使用者再檢測且基於批准實施。在一些實施例中,步驟550中之由度量衡指導系統320提供之建議可直接實施無需使用者批准。
圖 6為說明根據本發明之實施例之例示性度量衡指導方法600的流程圖。度量衡指導方法可由度量衡指導系統320執行,該度量衡指導系統(包括EBI系統100)可與帶電粒子束裝置耦接。應瞭解,可控制帶電粒子束裝置以對晶圓203或晶圓上之所關注區進行成像。成像可包含掃描晶圓203以對晶圓之至少一部分、晶圓上之圖案或晶圓203自身進行成像。
在步驟610中,可獲取圖案之一或多個經掃描原始影像。一或多個經掃描原始影像可包含晶圓之整個表面。步驟610中之影像獲取可包含自帶電粒子束裝置之偵測器(諸如電子束工具104之電子偵測器206)接收信號,或自儲存器270載入影像605。影像處理系統250之影像獲取器260可用於獲取影像605。
在一些實施例中,影像605為高解析度電子束影像之頂部平面圖,該影像以經最佳化獲取條件獲取,例如電子束設定、放大率、亮度、對比度、偵測器設定等。如
圖 6中所說明,影像605展示包括由均勻間距分隔開之豎直特徵之均勻陣列的規則圖案。豎直特徵可包含例如光阻線,或介電材料,或互連金屬線等。間距可包含晶圓203之表面,或底層基板材料,或保護層等。
展示於影像605中之豎直特徵具有不規則線形及不規則邊緣輪廓。線形中之不規則性係指沿豎直軸線「y」之豎直特徵中的突出部分及凹處。舉例而言,不規則性可由於非最佳化光阻曝露條件、非最佳化光阻剝離條件所引起,或可為非最佳化成像條件之假影。邊緣輪廓係指包含豎直特徵之邊緣的材料之z維度(亦即豎直於晶圓203之表面的維度)中之輪廓。豎直特徵之邊緣可相比於相對應豎直特徵之中心部分更厚。邊緣輪廓可較佳地由影像605之橫截面視圖(未展示)表示。
儘管影像605為高解析度影像,但可存在低但有限量之雜訊位準。雜訊位準可由局部及總體因素造成,該等因素包括(但不限於)地面振動、聲干擾、電子束濾波器、檢測器中之雜質等。亦可存在其他局部及總體雜訊源。
在步驟620中,藉由影像分析模組420、或處理器430、或度量衡指導系統320或其組合分析影像605。作為一實例,影像分析模組420可自影像獲取器260、儲存器270、資料庫410等接收所獲取影像。步驟520中之影像分析可包括判定影像310之一或多個影像參數。影像參數可包括雜訊位準、圖案、圖案間距、線條粗糙度、邊緣輪廓等(例如
圖 4之影像310中之雜訊位準、圖案、間距、邊緣輪廓)。影像分析模組420可使用特徵擷取演算法、影像識別演算法、深度學習神經網路處理器、機器學習演算法或其組合來判定影像參數。在一些實施例中,影像分析模組420可整合於度量衡指導系統320之處理器430內。在一些實施例中,處理器430可經組態以執行影像分析模組420之一或多個功能。
在步驟630中,度量衡指導系統320可經組態以基於品質度量自影像參數評估模型參數。品質度量可包含基於內部品質對照及標準、歷史結果、效能度量等之參數值。品質度量可特定針對於產品、或製程、或其組合。品質度量可預先界定且儲存於資料庫410中,且藉由使用者經由使用者輸入來存取,例如藉由執行查詢、命令或類似者。在一些實施例中,品質度量可包含一或多個參數之較佳數值範圍。舉例而言,品質度量可包含可接受局部及總體雜訊位準之範圍,或邊緣輪廓之可接受範圍之百分比偏差的範圍,或圖案之臨界尺寸等。
在一些實施例中,可基於自模擬影像反覆校正指導參數來更新品質度量。舉例而言,度量衡指導系統320可提供指導參數建議之第一集合,該集合可經儲存(例如在
圖 4之資料庫410中)及使用,用於獲取下一個輸入影像或模擬影像之臨界尺寸量測。
在EBI系統100或電子束工具104之度量衡設定期間,需要使用者選擇多個參數及各參數之多個選擇以控制影像獲取及臨界尺寸量測。參數可包括視野大小、像素尺寸、影像數目、H字形桿數目、H字形桿大小等。如本文中所使用,H字形桿可包含尺寸量測軟體或應用中之尺寸測量工具,該尺寸測量工具經組態以在所獲取影像(例如影像310)中量測平面或非平面尺寸。
在步驟640中,度量衡指導系統320可自在步驟620中所判定之影像參數或在步驟630中所評估之模型參數來建構模型地面實況參數。在一些實施例中,模型地面實況參數亦可包括影像獲取參數。模型地面實況參數表示影像參數或獲取參數之「實際」值而非由一使用者或一組使用者憑經驗所選擇的值,例如平均像素數目、或H字形桿數目、或視野大小等。模型地面實況參數可包括工具實體條件(例如
圖 3之電子束工具104)之地面實況知識及與底層樣本相關聯之統計資料。
在步驟650中,可由度量衡指導系統320使用模型地面實況參數以產生模擬或模擬影像655。在一些實施例中,模擬器可經組態以模擬影像。模擬器可為度量衡指導系統320之一部分,或處理器430之一部分,或處理器430自身。應瞭解,模擬器可按需要僅產生一個模擬影像655或多個模擬影像655。模擬影像655可包含彼此之複製品,或彼此之輕微變化,或其組合。複製模擬影像655可適用於量測模擬模型參數之集合的多個尺寸或參數,例如第一影像上之H字形桿、第二影像上之邊緣輪廓、第三影像上之線條粗糙度等。
如
圖 6中所說明,模擬影像655可大體上類似於影像310以複寫影像310之獲取條件及臨界尺寸均一性設定。
在步驟660中,度量衡指導系統320可對模擬影像655執行臨界尺寸之量測。可執行多個量測以獲得臨界尺寸之統計資料。量測結果可臨時儲存於儲存器(例如
圖 4之資料庫410)中且隨後使用使用者輸入來存取。
步驟660亦可包含比較模擬影像655上之經量測臨界尺寸與自步驟640之模型地面實況參數。度量衡指導系統320可經組態以判定經量測臨界尺寸與用以產生模擬影像655之模型地面實況參數之間的差異。
在步驟670中,度量衡指導系統320可經組態以基於自步驟660之比較結果來提供用於檢測工具(例如EBI系統100、電子束工具104、影像處理系統250、控制器109等)之指導參數建議。指導參數建議可包括但不限於調整視野、增加平均像素數目、增加所需影像數目以達成目標精確度、增加臨界尺寸均一性之臨界值等。
指導參數建議可顯示於顯示器(例如
圖 3之輸出器件330)上。指導參數可同時顯示於多個顯示器上。指導參數可由一使用者或一組使用者再檢測且基於批准實施。在一些實施例中,步驟670中之由度量衡指導系統320提供之建議可直接實施無需使用者批准。
圖 7為說明根據本發明之實施例之例示性度量衡指導方法700的過程流程圖。度量衡指導方法可由度量衡指導系統320執行,該度量衡指導系統可與帶電粒子束裝置(諸如EBI系統100或電子束工具104)耦接。應瞭解,帶電粒子束裝置可經控制以對晶圓203或晶圓上之所關注區域進行成像。成像可包含掃描晶圓203以對晶圓之至少一部分、晶圓上之圖案或晶圓203自身進行成像。
在步驟710中,諸如度量衡指導系統320之系統或諸如度量衡指導系統320之影像分析模組420的模組接收所獲取影像(例如
圖 4之影像310)。影像獲取可包含自帶電粒子束裝置之偵測器(諸如電子束工具104之電子偵測器206)接收信號,或自儲存器270載入影像310。影像處理系統250之影像獲取器260可用以獲取影像310。影像分析模組420可自影像獲取器260、儲存器270、資料庫410等接收所獲取影像。
在步驟720中,所接收影像可由系統或模組分析以判定一或多個影像參數。影像參數可包括雜訊位準、圖案、圖案間距、線條粗糙度、邊緣輪廓等(例如
圖 4之影像310中之雜訊位準、圖案、間距、邊緣輪廓)。影像分析模組420可使用特徵擷取演算法、影像識別演算法、深度學習神經網路處理器、機器學習演算法或其組合自所接收影像判定影像參數。在一些實施例中,機器學習網路可經訓練以自所接收影像判定影像參數之集合。舉例而言,機器學習網路可包含廻旋類神經網路。在一些實施例中,可採用深度學習架構之線性分類器網路作為開始點以訓練及建構機器學習網路之影像特徵識別架構。在一些實施例中,影像分析模組420可整合於度量衡指導系統320之處理器430內。在一些實施例中,處理器430可經組態以執行影像分析模組420之一或多個功能。
在步驟730中,系統或模組可經組態以諸如基於品質度量自影像參數判定模型參數。品質度量可包含基於內部品質對照及標準、歷史結果、效能度量等之參數值。品質度量可特定針對於產品、或製程、或其組合。品質度量可預先界定及儲存於儲存器(例如資料庫410)中且由使用者經由使用者輸入來存取,例如藉由執行查詢、命令或類似者。在一些實施例中,品質度量可包含一或多個參數之較佳數值範圍。舉例而言,品質度量可包含可接受局部及總體雜訊位準之範圍,或邊緣輪廓之可接受範圍之百分比偏差的範圍,或圖案之臨界尺寸等。
在一些實施例中,機器學習網路可經訓練以自影像參數判定模型參數。模型參數可例如藉由深度學習神經網路處理器、數學演算法、軟體實施演算法、機器學習演算法或其組合自影像參數而判定。舉例而言,機器學習網路可包含廻旋類神經網路。在一些實施例中,可採用深度學習架構之線性分類器網路作為開始點以訓練及建構模型參數之集合。在一些實施例中,影像參數及模型參數可使用機器學習網路而判定。
在步驟740中,系統或模組可使用模型參數來產生模擬影像(例如
圖 6之模擬影像655)。可使用度量衡指導系統320之處理器430來模擬影像。在一些實施例中,模擬器(未展示)可經組態以模擬影像。模擬器可為度量衡指導系統320之一部分或處理器430之一部分。在產生模擬影像之後,度量衡指導系統可經組態以量測模擬影像之臨界尺寸。可比較經量測臨界尺寸與模型參數以判定指導參數建議。指導參數可包含對成像條件、臨界尺寸均一性設定等之建議。在一些實施例中,步驟740可包括以下步驟:基於模型參數建構模型地面實況;產生模擬影像;執行臨界尺寸量測;及比較臨界尺寸量測值與模型地面實況以判定指導參數建議。
在步驟750中,系統或模組可經組態以基於來自步驟740之比較結果來提供用於檢測工具(例如EBI系統100、電子束工具104、影像處理系統250、控制器109等)之指導參數建議。指導參數建議可包括但不限於調整視野、增加平均像素數目、增加所需影像數目以達成目標精確度、增加臨界尺寸均一性之臨界值等。
可諸如藉由顯示於顯示器(例如
圖 3之輸出器件330)上來輸出指導參數建議。指導參數可同時顯示於多個顯示器上。指導參數可由一使用者或一組使用者再檢測且基於批准實施。在一些實施例中,步驟750中之由度量衡指導系統320提供之建議可直接實施無需使用者批准。
可使用以下條項來進一步描述實施例:
1. 一種度量衡系統,其包含:
記憶體,其儲存指令集;以及
處理器,其經組態以執行指令集以使度量衡系統:
接收樣本之所獲取影像;
基於所獲取影像之分析判定影像參數之集合;
基於影像參數之集合判定模型參數之集合;
基於模型參數之集合產生模擬影像之集合;以及
基於模擬影像之集合及模型參數之集合的分析輸出指導參數之集合。
2. 如條項1之系統,其進一步包含經組態以獲取樣本之影像之帶電粒子束裝置。
3. 如條項1及2中任一項之系統,其中模擬影像之集合僅包括單個模擬影像。
4. 如條項1至3中任一項之系統,其中分析包含自模擬影像之集合及模型參數之集合的資訊之比較。
5. 如條項4之系統,其中自模擬影像之集合之資訊包含臨界尺寸量測結果。
6. 如條項1至5中任一項之系統,其中影像參數之集合、模型參數之集合或指導參數之集合中之至少一者包含單個參數。
7. 如條項1至6中任一項之系統,其中影像參數之集合包含雜訊位準、所關注之圖案、線條粗糙度或邊緣輪廓中之任一者。
8. 如條項1至7中任一項之系統,其中模型參數之集合是基於品質度量自影像參數之集合而判定。
9. 如條項8之系統,其中自影像參數之集合所判定之模型參數之集合是基於複數個品質度量。
10. 如條項9之系統,其中複數個品質度量包含局部雜訊位準、總體雜訊位準、邊緣輪廓統計資料或圖案結構中之任一者。
11. 如條項1至10中任一項之系統,其中指導參數之集合包含建議成像參數、臨界尺寸均一性參數、量測精確度、可重複性或量測準確度中之任一者。
12. 如條項1至11中任一項之系統,其中處理器經組態以執行指令集以進一步使度量衡系統:
接收與目標參數相關聯之輔助資訊;以及
基於所接收之輔助資訊分析所獲取影像。
13. 如條項12之系統,其中目標參數包含定向間距、定向臨界尺寸均一性、定向圖案或定向量測精確度中之任一者。
14. 如條項1至13中任一項之系統,其中處理器經組態以執行指令集以進一步使度量衡系統:
執行模擬影像之集合的臨界尺寸之量測以獲得臨界尺寸量測;以及
比較臨界尺寸量測與模型參數之集合。
15. 一種度量衡指導系統,其包含:
記憶體,其儲存指令集;以及
處理器,其經組態以執行指令集以使度量衡指導系統:
基於所獲取影像之分析判定影像參數之集合;
基於影像參數之集合判定模型參數之集合;
基於模型參數之集合產生模擬影像之集合;
分析模擬影像之集合;以及
基於模擬影像之集合及模型參數之集合的分析輸出指導參數之集合。
16. 如條項15之系統,其中模擬影像之集合僅包括單個模擬影像。
17. 如條項15及16中任一項之系統,其中分析包含自模擬影像之集合及模型參數之集合的資訊之比較。
18. 如條項17之系統,其中自模擬影像之集合之資訊包含臨界尺寸量測結果。
19. 如條項15至18中任一項之系統,其中影像參數之集合、模型參數之集合或指導參數之集合中之至少一者包含單個參數。
20. 如條項15至19中任一項之系統,其中分析模擬影像進一步包含:
對模擬影像之集合執行臨界尺寸之量測;以及
比較臨界尺寸量測與模型參數之集合。
21. 如條項15至20中任一項之系統,其中影像參數之集合包含雜訊位準、所關注之圖案、線條粗糙度或邊緣輪廓中之任一者。
22. 如條項15至21中任一項之系統,其中模型參數之集合是基於品質度量自影像參數之集合而判定。
23. 如條項22之系統,其中自影像參數之集合所判定之模型參數之集合是基於複數個品質度量。
24. 如條項23之系統,其中複數個品質度量包含局部雜訊位準、總體雜訊位準、邊緣輪廓統計資料或圖案結構中之任一者。
25. 如條項15至24中任一項之系統,其中指導參數之集合包含建議成像參數、臨界尺寸均一性參數、量測精確度、可重複性或量測準確度中之任一者。
26. 如條項15至25中任一項之系統,其中處理器經組態以執行指令集以進一步使度量衡指導系統:
接收與目標參數相關聯之輔助資訊;以及
基於所接收之輔助資訊分析所獲取影像。
27. 如條項26之系統,其中目標參數包含定向間距、定向臨界尺寸均一性、定向圖案或定向量測精確度中之任一者。
28. 一種度量衡指導方法,其包含:
接收樣本之所獲取影像;
基於所獲取影像之分析判定影像參數之集合;
基於影像參數之集合判定模型參數之集合;
基於模型參數之集合產生模擬影像之集合;以及
基於模擬影像之集合及模型參數之集合的分析提供指導參數之集合。
29. 如條項28之方法,其中模擬影像之集合僅包括單個模擬影像。
30. 如條項28及29中任一項之方法,其包含基於模擬影像之集合及模型參數之集合的分析提供指導參數之集合。
31. 如條項28至30中任一項之方法,其中分析包含自模擬影像之集合及模型參數之集合的資訊之比較。
32. 如條項31之方法,其中自模擬影像之集合之資訊包含臨界尺寸量測結果。
33. 如條項28至32中任一項之方法,其中影像參數之集合、模型參數之集合或指導參數之集合中之至少一者包含單個參數。
34. 如條項28至33中任一項之方法,其中模型參數之集合是基於品質度量自影像參數之集合而判定。
35. 如條項34之方法,其中自影像參數之集合所判定之模型參數之集合是基於複數個品質度量。
36. 如條項35之方法,其中複數個品質度量包含局部雜訊位準、總體雜訊位準、邊緣輪廓統計資料或圖案結構中之任一者。
37. 如條項28至36中任一項之方法,其中影像參數之集合包含雜訊位準、所關注之圖案、線條粗糙度或邊緣輪廓中之任一者。
38. 如條項28至37中任一項之方法,其中指導參數之集合包含建議成像參數、臨界尺寸均一性參數、量測精確度、可重複性或量測準確度中之任一者。
39. 如條項28至38中任一項之方法,其進一步包含:
接收與目標參數相關聯之輔助資訊;以及
基於所接收之輔助資訊分析所獲取影像。
40. 如條項39之方法,其中目標參數包含定向間距、定向臨界尺寸均一性、定向圖案或定向量測精確度中之任一者。
41. 如條項28至40中任一項之方法,其進一步包含:
對模擬影像之集合執行臨界尺寸之量測;以及
比較臨界尺寸量測與模型參數之集合。
42. 一種包含指令集之非暫時性電腦可讀媒體,該等指令可藉由裝置之一或多個處理器執行以使裝置執行方法,該方法包含:
接收樣本之所獲取影像;
基於所獲取影像之分析判定影像參數之集合;
基於影像參數之集合判定模型參數之集合;
基於模型參數之集合產生模擬影像之集合;以及
基於模擬影像之集合及模型參數之集合的分析提供指導參數之集合。
43. 如條項42之電腦可讀媒體,其中指令集進一步使裝置:
對模擬影像之集合執行臨界尺寸之量測;以及
比較臨界尺寸量測與模型參數之集合。
44. 如條項42及43中任一項之電腦可讀媒體,其中指令集進一步使裝置:
接收與目標參數相關聯之輔助資訊;以及
基於所接收之輔助資訊分析所獲取影像。
可提供一種非暫時性電腦可讀媒體,其儲存用於處理器(例如控制器109之處理器、處理器430)之指令以執行影像獲取、影像分析、使用建模資料之影像模擬、資料處理、資料庫管理、圖形顯示、帶電粒子束裝置或其他成像器件之操作等。非暫時性媒體之常見形式包括例如軟碟、可撓性磁碟、硬碟、固態磁碟機、磁帶或任何其他磁性資料儲存媒體緊密光碟唯讀記憶體(CD-ROM)、任何其他光學資料儲存媒體、任何具有孔圖案之實體媒體、隨機存取記憶體(RAM)、可程式化唯讀記憶體(PROM)及可擦除可程式化唯讀記憶體(EPROM)、快閃EPROM或任何其他快閃記憶體、非揮發性隨機存取記憶體(NVRAM)、快取記憶體、暫存器、任何其他記憶體晶片或匣及相同的網路化版本。
圖式中之方塊圖說明根據本發明之各種例示性實施例之系統、方法及電腦硬體或軟體產品之可能實施方案的架構、功能性及操作。就此而言,流程圖或方塊圖中之各區塊可表示程式碼之模組、片段或部分,其包含用於實施指定邏輯功能的一或多個可執行指令。應理解,在一些替代實施方案中,區塊中所指示之功能可不按圖中所提及之次序出現。舉例而言,取決於所涉及之功能性,連續示出之兩個區塊可大體上同時執行或實施,或兩個區塊有時可以相反次序執行。一些區塊亦可經省略。亦應理解,方塊圖之各區塊及區塊之組合可由執行指定功能或動作的基於專用硬體之系統,或由專用硬體及電腦指令之組合來實施。
應瞭解,本發明之實施例不限於上文所描述且在隨附圖式中所說明之確切建構,且可在不脫離本發明之範疇的情況下作出各種修改及改變。
100:電子束檢測系統
101:主腔室
102:裝載/鎖定腔室
104:電子束工具
106:設備前端模組
106a:第一裝載埠
106b:第二裝載埠
109:控制器
200:成像系統
201:機動樣本台
202:晶圓固持器
203:晶圓
204:物鏡總成
204a:極片
204b:控制電極
204c:偏轉器
204d:激磁線圈
206:電子偵測器
206a:電子感測器表面
206b:電子感測器表面
208:物鏡孔徑
210:聚光透鏡
212:光束限制孔徑
214:槍孔徑
216:陽極
218:陰極
220:初級電子束
222:次級電子束
250:影像處理系統
260:影像獲取器
270:儲存器
300:度量衡系統
310:影像
315:輔助資訊
320:度量衡指導系統
330:輸出器件
400:度量衡系統
410:資料庫
420:影像分析模組
430:處理器
440:記憶體
500:度量衡指導方法
510:步驟
520:步驟
530:步驟
540:步驟
550:步驟
600:度量衡指導方法
605:影像
610:步驟
620:步驟
630:步驟
640:步驟
650:步驟
655:模擬影像
660:步驟
670:步驟
700:度量衡指導方法
710:步驟
720:步驟
730:步驟
740:步驟
750:步驟
圖 1為說明根據本發明之實施例之例示性電子束檢測(EBI)系統的示意圖。
圖 2為說明根據本發明之實施例之例示性成像系統的示意圖。
圖 3為根據本發明之實施例之例示性度量衡系統的方塊圖。
圖 4為說明根據本發明之實施例之例示性度量衡系統的方塊圖。
圖 5為說明根據本發明之實施例之例示性度量衡指導方法的流程圖。
圖 6為展示根據本發明之實施例之使用模擬器之度量衡指導方法的流程圖。
圖 7為說明根據本發明之實施例之例示性度量衡指導方法的過程流程圖。
540:步驟
600:度量衡指導方法
605:影像
610:步驟
620:步驟
630:步驟
640:步驟
650:步驟
655:模擬影像
660:步驟
670:步驟
Claims (10)
- 一種度量衡指導系統(metrology guidance system),其包含: 一記憶體,其儲存一指令集;以及 一處理器,其經組態以執行該指令集以使該度量衡指導系統: 基於一所獲取影像之一分析判定一影像參數之集合(a set of image parameters); 基於該影像參數之集合判定一模型參數之集合; 基於該模型參數之集合產生一模擬影像之集合; 分析該模擬影像之集合;以及 基於該模擬影像之集合及該模型參數之集合的一分析輸出一指導參數之集合。
- 如請求項1之系統,其中該模擬影像之集合僅包括一單個模擬影像。
- 如請求項1或2之系統,其中該分析包含自該模擬影像之集合及該模型參數之集合的資訊之一比較。
- 如請求項1或2之系統,其中該影像參數之集合、該模型參數之集合或該指導參數之集合中之至少一者包含一單個參數。
- 如請求項1或2之系統,其中分析該模擬影像之集合進一步包含: 對該模擬影像之集合執行臨界尺寸之量測;以及 比較臨界尺寸量測與該模型參數之集合。
- 如請求項1或2之系統,其中該影像參數之集合包含雜訊位準、所關注之圖案、線條粗糙度或邊緣輪廓中之任一者。
- 如請求項1或2之系統,其中該模型參數之集合是基於一品質度量自該影像參數之集合而判定。
- 一種度量衡指導方法,其包含: 接收一樣本之一所獲取影像; 基於該所獲取影像之一分析判定一影像參數之集合; 基於該影像參數之集合判定一模型參數之集合; 基於該模型參數之集合產生一模擬影像之集合;以及 基於該模擬影像之集合及該模型參數之集合的一分析提供一指導參數之集合。
- 如請求項8之方法,其包含基於該模擬影像之集合及該模型參數之集合的該分析提供該指導參數之集合。
- 如請求項8或9之方法,其中該指導參數之集合包含建議成像參數、臨界尺寸均一性參數、量測精確度、可重複性或量測準確度中之任一者。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862723983P | 2018-08-28 | 2018-08-28 | |
US62/723,983 | 2018-08-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202217750A TW202217750A (zh) | 2022-05-01 |
TWI830111B true TWI830111B (zh) | 2024-01-21 |
Family
ID=67704517
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108130569A TWI751435B (zh) | 2018-08-28 | 2019-08-27 | 最佳度量衡指導之系統及方法 |
TW111100436A TWI830111B (zh) | 2018-08-28 | 2019-08-27 | 最佳度量衡指導之系統及方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108130569A TWI751435B (zh) | 2018-08-28 | 2019-08-27 | 最佳度量衡指導之系統及方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US11216938B2 (zh) |
KR (2) | KR20210036962A (zh) |
CN (1) | CN112689802B (zh) |
IL (1) | IL281060B2 (zh) |
TW (2) | TWI751435B (zh) |
WO (1) | WO2020043525A1 (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11380516B2 (en) | 2017-04-13 | 2022-07-05 | Fractilia, Llc | System and method for generating and analyzing roughness measurements and their use for process monitoring and control |
US10176966B1 (en) | 2017-04-13 | 2019-01-08 | Fractilia, Llc | Edge detection system |
US10522322B2 (en) | 2017-04-13 | 2019-12-31 | Fractilia, Llc | System and method for generating and analyzing roughness measurements |
WO2020043525A1 (en) | 2018-08-28 | 2020-03-05 | Asml Netherlands B.V. | Systems and methods of optimal metrology guidance |
WO2020236624A1 (en) | 2019-05-17 | 2020-11-26 | Magic Leap, Inc. | Methods and apparatuses for corner detection using neural network and corner detector |
US11836429B2 (en) * | 2019-10-23 | 2023-12-05 | Lam Research Corporation | Determination of recipes for manufacturing semiconductor devices |
US11416977B2 (en) * | 2020-03-10 | 2022-08-16 | Applied Materials, Inc. | Self-measurement of semiconductor image using deep learning |
EP3901902A1 (en) * | 2020-04-20 | 2021-10-27 | FEI Company | Method implemented by a data processing apparatus, and charged particle beam device for inspecting a specimen using such a method |
US11379972B2 (en) * | 2020-06-03 | 2022-07-05 | Applied Materials Israel Ltd. | Detecting defects in semiconductor specimens using weak labeling |
CN118401892A (zh) * | 2021-12-15 | 2024-07-26 | Asml荷兰有限公司 | 用于量测应用的条件调谐和图像处理的框架 |
CN118115565B (zh) * | 2024-04-19 | 2024-09-27 | 深圳市辰中科技有限公司 | 一种晶圆关键尺寸的量测设备及量测方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110255770A1 (en) * | 2010-04-09 | 2011-10-20 | Kabushiki Kaisha Toshiba | Inspection system and method for inspecting line width and/or positional errors of a pattern |
TW201502829A (zh) * | 2013-05-21 | 2015-01-16 | Kla Tencor Corp | 對參數追蹤最佳化之計量系統 |
TW201741779A (zh) * | 2016-03-01 | 2017-12-01 | Asml荷蘭公司 | 判定圖案化製程參數之方法與裝置 |
US20180173839A1 (en) * | 2016-12-19 | 2018-06-21 | Kla-Tencor Corporation | Metrology Recipe Generation Using Predicted Metrology Images |
Family Cites Families (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7479633B2 (en) | 2001-07-10 | 2009-01-20 | International Business Machines Corporation | Methodology for critical dimension metrology using stepper focus monitor information |
US7003758B2 (en) * | 2003-10-07 | 2006-02-21 | Brion Technologies, Inc. | System and method for lithography simulation |
JP4262592B2 (ja) | 2003-12-26 | 2009-05-13 | 株式会社日立ハイテクノロジーズ | パターン計測方法 |
JP4533689B2 (ja) * | 2004-07-15 | 2010-09-01 | 株式会社東芝 | パターン検査方法 |
US7171284B2 (en) | 2004-09-21 | 2007-01-30 | Timbre Technologies, Inc. | Optical metrology model optimization based on goals |
JP2008177064A (ja) * | 2007-01-19 | 2008-07-31 | Hitachi High-Technologies Corp | 走査型荷電粒子顕微鏡装置および走査型荷電粒子顕微鏡装置で取得した画像の処理方法 |
JP2008203109A (ja) * | 2007-02-21 | 2008-09-04 | Hitachi High-Technologies Corp | パターン寸法計測方法及びその装置 |
JP5604067B2 (ja) * | 2009-07-31 | 2014-10-08 | 株式会社日立ハイテクノロジーズ | マッチング用テンプレートの作成方法、及びテンプレート作成装置 |
JP5712130B2 (ja) * | 2009-08-21 | 2015-05-07 | 株式会社日立ハイテクノロジーズ | パターン形状推定方法、及びパターン測定装置 |
NL2006700A (en) * | 2010-06-04 | 2011-12-06 | Asml Netherlands Bv | Method and apparatus for measuring a structure on a substrate, computer program products for implementing such methods & apparatus. |
US8953869B2 (en) * | 2012-06-14 | 2015-02-10 | Kla-Tencor Corporation | Apparatus and methods for inspecting extreme ultra violet reticles |
US9311700B2 (en) * | 2012-09-24 | 2016-04-12 | Kla-Tencor Corporation | Model-based registration and critical dimension metrology |
JP5813610B2 (ja) * | 2012-09-28 | 2015-11-17 | 富士フイルム株式会社 | 画像評価装置、画像評価方法、及びプログラム |
WO2014167463A2 (en) * | 2013-04-10 | 2014-10-16 | Koninklijke Philips N.V. | Image quality index and/or imaging parameter recommendation based thereon |
US9518932B2 (en) | 2013-11-06 | 2016-12-13 | Kla-Tencor Corp. | Metrology optimized inspection |
WO2015082158A1 (en) * | 2013-12-05 | 2015-06-11 | Asml Netherlands B.V. | Method and apparatus for measuring a structure on a substrate, models for error correction, computer program products for implementing such methods & apparatus |
WO2015101461A2 (en) * | 2013-12-30 | 2015-07-09 | Asml Netherlands B.V. | Method and apparatus for design of a metrology target |
US10152654B2 (en) * | 2014-02-20 | 2018-12-11 | Kla-Tencor Corporation | Signal response metrology for image based overlay measurements |
US9547892B2 (en) * | 2014-05-06 | 2017-01-17 | Kla-Tencor Corporation | Apparatus and methods for predicting wafer-level defect printability |
US10133191B2 (en) * | 2014-07-21 | 2018-11-20 | Asml Netherlands B.V. | Method for determining a process window for a lithographic process, associated apparatuses and a computer program |
US10267746B2 (en) * | 2014-10-22 | 2019-04-23 | Kla-Tencor Corp. | Automated pattern fidelity measurement plan generation |
US10395361B2 (en) * | 2015-08-10 | 2019-08-27 | Kla-Tencor Corporation | Apparatus and methods for inspecting reticles |
WO2017027366A1 (en) * | 2015-08-10 | 2017-02-16 | Kla-Tencor Corporation | Apparatus and methods for predicting wafer-level defect printability |
WO2017025373A1 (en) * | 2015-08-12 | 2017-02-16 | Asml Netherlands B.V. | Inspection apparatus, inspection method and manufacturing method |
US10754256B2 (en) * | 2015-10-08 | 2020-08-25 | Asml Netherlands B.V. | Method and apparatus for pattern correction and verification |
US9965901B2 (en) * | 2015-11-19 | 2018-05-08 | KLA—Tencor Corp. | Generating simulated images from design information |
NL2017904A (en) * | 2015-12-18 | 2017-06-26 | Asml Netherlands Bv | Optical System and Method |
US11580375B2 (en) | 2015-12-31 | 2023-02-14 | Kla-Tencor Corp. | Accelerated training of a machine learning based model for semiconductor applications |
US10043261B2 (en) * | 2016-01-11 | 2018-08-07 | Kla-Tencor Corp. | Generating simulated output for a specimen |
US10395356B2 (en) | 2016-05-25 | 2019-08-27 | Kla-Tencor Corp. | Generating simulated images from input images for semiconductor applications |
US10185800B2 (en) * | 2016-06-27 | 2019-01-22 | Kla-Tencor Corporation | Apparatus and method for the measurement of pattern placement and size of pattern and computer program therefor |
US10628935B2 (en) * | 2017-01-30 | 2020-04-21 | Zhongke Jingyuan Electron Limited | Method and system for identifying defects of integrated circuits |
EP3367166A1 (en) * | 2017-02-24 | 2018-08-29 | ASML Netherlands B.V. | Method of measuring variation, inspection system, computer program, and computer system |
US10522322B2 (en) * | 2017-04-13 | 2019-12-31 | Fractilia, Llc | System and method for generating and analyzing roughness measurements |
US10488188B2 (en) * | 2017-04-13 | 2019-11-26 | Fractilia, Llc | System and method for removing noise from roughness measurements |
US10664955B2 (en) * | 2017-04-13 | 2020-05-26 | Fractilia, Llc | Edge detection system and its use for machine learning |
US10648801B2 (en) * | 2017-04-13 | 2020-05-12 | Fractilia, Llc | System and method for generating and analyzing roughness measurements and their use for process monitoring and control |
US10176966B1 (en) * | 2017-04-13 | 2019-01-08 | Fractilia, Llc | Edge detection system |
US10656532B2 (en) * | 2017-04-13 | 2020-05-19 | Fractilia, Llc | Edge detection system and its use for optical proximity correction |
TWI755453B (zh) * | 2017-05-18 | 2022-02-21 | 美商克萊譚克公司 | 鑑定一光微影光罩合格性之方法及系統 |
CN110709779B (zh) * | 2017-06-06 | 2022-02-22 | Asml荷兰有限公司 | 测量方法和设备 |
US10699926B2 (en) * | 2017-08-30 | 2020-06-30 | Kla-Tencor Corp. | Identifying nuisances and defects of interest in defects detected on a wafer |
EP3553602A1 (en) * | 2018-04-09 | 2019-10-16 | ASML Netherlands B.V. | Model based reconstruction of semiconductor structures |
US10714366B2 (en) * | 2018-04-12 | 2020-07-14 | Kla-Tencor Corp. | Shape metric based scoring of wafer locations |
WO2020043525A1 (en) * | 2018-08-28 | 2020-03-05 | Asml Netherlands B.V. | Systems and methods of optimal metrology guidance |
US10922808B2 (en) * | 2019-02-14 | 2021-02-16 | KLA—Tencor Corp. | File selection for test image to design alignment |
-
2019
- 2019-08-19 WO PCT/EP2019/072105 patent/WO2020043525A1/en active Application Filing
- 2019-08-19 KR KR1020217005913A patent/KR20210036962A/ko not_active Application Discontinuation
- 2019-08-19 IL IL281060A patent/IL281060B2/en unknown
- 2019-08-19 KR KR1020237037419A patent/KR20230155604A/ko not_active Application Discontinuation
- 2019-08-19 CN CN201980056714.5A patent/CN112689802B/zh active Active
- 2019-08-27 TW TW108130569A patent/TWI751435B/zh active
- 2019-08-27 TW TW111100436A patent/TWI830111B/zh active
- 2019-08-28 US US16/554,110 patent/US11216938B2/en active Active
-
2022
- 2022-01-03 US US17/567,847 patent/US11756187B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110255770A1 (en) * | 2010-04-09 | 2011-10-20 | Kabushiki Kaisha Toshiba | Inspection system and method for inspecting line width and/or positional errors of a pattern |
TW201502829A (zh) * | 2013-05-21 | 2015-01-16 | Kla Tencor Corp | 對參數追蹤最佳化之計量系統 |
TW201741779A (zh) * | 2016-03-01 | 2017-12-01 | Asml荷蘭公司 | 判定圖案化製程參數之方法與裝置 |
US20180173839A1 (en) * | 2016-12-19 | 2018-06-21 | Kla-Tencor Corporation | Metrology Recipe Generation Using Predicted Metrology Images |
Also Published As
Publication number | Publication date |
---|---|
KR20210036962A (ko) | 2021-04-05 |
IL281060B2 (en) | 2023-11-01 |
TW202217750A (zh) | 2022-05-01 |
US20220237759A1 (en) | 2022-07-28 |
IL281060B1 (en) | 2023-07-01 |
CN112689802B (zh) | 2024-03-29 |
US11216938B2 (en) | 2022-01-04 |
IL281060A (en) | 2021-04-29 |
US20200074610A1 (en) | 2020-03-05 |
WO2020043525A1 (en) | 2020-03-05 |
TWI751435B (zh) | 2022-01-01 |
CN112689802A (zh) | 2021-04-20 |
KR20230155604A (ko) | 2023-11-10 |
TW202036474A (zh) | 2020-10-01 |
US11756187B2 (en) | 2023-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI830111B (zh) | 最佳度量衡指導之系統及方法 | |
TWI805868B (zh) | 使用以深度學習為基礎之缺陷偵測及分類方案用於像素位準影像量化 | |
TWI755613B (zh) | 基於機器學習之圖案分組方法 | |
CN110770886B (zh) | 用于使用半导体制造工艺中的深度学习预测缺陷及临界尺寸的系统及方法 | |
TWI648533B (zh) | 用於相對於一所儲存高解析度晶粒圖像判定檢查資料之一位置之電腦實施方法及經組態以相對於一所儲存高解析度晶粒圖像判定檢查資料之一位置之系統 | |
US10483081B2 (en) | Self directed metrology and pattern classification | |
TWI683103B (zh) | 於樣品上判定所關注圖案之一或多個特性 | |
US9141730B2 (en) | Method of generating a recipe for a manufacturing tool and system thereof | |
US10832396B2 (en) | And noise based care areas | |
US20240046620A1 (en) | Fully automated sem sampling system for e-beam image enhancement | |
US20220375063A1 (en) | System and method for generating predictive images for wafer inspection using machine learning | |
JP7281547B2 (ja) | プロセス制御のためのインダイメトロロジ方法及びシステム | |
KR20130133685A (ko) | 제조 툴에 대한 레시피를 생성하는 방법 및 그 시스템 | |
EP4367632A1 (en) | Method and system for anomaly-based defect inspection | |
KR20140033371A (ko) | 데이터베이스 기반 셀-대-셀 레티클 검사 | |
CN115380252A (zh) | 用于晶片检查的处理参考数据 | |
TWI817474B (zh) | 用於對自影像資料提取之複數個圖案進行分組的系統及相關的非暫時性電腦可讀媒體 | |
TW202411790A (zh) | 訓練模型以產生預測資料 | |
TW202232391A (zh) | 基於機器學習之用於產生晶圓檢測之合成缺陷影像之系統及方法 |