TWI829901B - 多射束裝置及量測多射束裝置中之射束電流之方法 - Google Patents

多射束裝置及量測多射束裝置中之射束電流之方法 Download PDF

Info

Publication number
TWI829901B
TWI829901B TW109110145A TW109110145A TWI829901B TW I829901 B TWI829901 B TW I829901B TW 109110145 A TW109110145 A TW 109110145A TW 109110145 A TW109110145 A TW 109110145A TW I829901 B TWI829901 B TW I829901B
Authority
TW
Taiwan
Prior art keywords
current
charged particle
detectors
aperture array
particle beam
Prior art date
Application number
TW109110145A
Other languages
English (en)
Other versions
TW202044310A (zh
Inventor
艾爾伯圖斯 維克 傑拉杜斯 馬格努斯
邁可 羅伯特 葛森
厄文 保羅 史莫克曼
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202044310A publication Critical patent/TW202044310A/zh
Application granted granted Critical
Publication of TWI829901B publication Critical patent/TWI829901B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3177Multi-beam, e.g. fly's eye, comb probe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • H01J37/243Beam current control or regulation circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/043Beam blanking
    • H01J2237/0435Multi-aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24535Beam current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24542Beam profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/282Determination of microscope properties
    • H01J2237/2826Calibration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本發明揭示量測一多射束裝置中之射束電流之系統及方法。該多射束裝置可包括經組態以產生一初級帶電粒子射束之一帶電粒子源,及一孔徑陣列。該孔徑陣列可包含:複數個孔徑,其經組態以自該初級帶電粒子射束形成複數個小射束;及一偵測器,其包括用以偵測輻照該孔徑陣列之該初級帶電粒子射束之至少一部分之一電流的電路系統。量測射束電流之該方法可包括使該初級帶電粒子射束輻照於該孔徑陣列上且偵測該初級帶電粒子射束之至少一部分之一電流。

Description

多射束裝置及量測多射束裝置中之射束電流之方法
本文所提供之實施例揭示一種多射束裝置,且更特定言之,一種包括具有整合射束電流量測能力之孔徑陣列之多射束電子顯微鏡。
在積體電路(IC)之製造程序中,檢測未完成或已完成的電路組件以確保其係根據設計而製造且無缺陷。可使用利用光學顯微鏡或帶電粒子(例如電子)束顯微鏡,諸如掃描電子顯微鏡(SEM)的檢測系統。隨著IC組件之實體大小繼續縮小,缺陷偵測之準確度及良率變得愈來愈重要。儘管較亮電子源可用以增大產出率及解析度;然而,電子源之穩定性可受到損害,從而致使檢測工具不足以達成其所希望的目的。
因此,相關技術系統在例如在高射束電流下判定電子源之穩定性方面面臨限制。需要對此項技術之進一步改良。
本發明之實施例可提供量測一多射束裝置中之射束電流之系統及方法。在一個態樣中,本發明係針對一種多射束裝置。該多射束裝置可包括經組態以產生一初級帶電粒子射束之一帶電粒子源,及一孔徑陣 列。該孔徑陣列可包含:複數個孔徑,其經組態以自該初級帶電粒子射束形成複數個小射束;及一偵測器,其包括用以偵測輻照該孔徑陣列之該初級帶電粒子射束之至少一部分之一電流的電路系統。
該偵測器可包括用以累積該初級帶電粒子射束之至少該部分之電荷且基於該累積電荷量測該電流的電路系統。該電路系統可經組態以監測該初級帶電粒子射束之至少該部分之該電流。該初級帶電粒子射束之至少該部分之該電流可用以判定該初級帶電粒子射束之一總電流。
該偵測器可包括用以進一步偵測該初級帶電粒子射束之一部分之一位置或一大小之至少一改變的電路系統。該偵測器可包含經組態以偵測該初級帶電粒子射束之複數個參數中之至少一者之一改變的複數個電流偵測器。該複數個參數可包含一射束位置、一射束直徑、一射束電流、一射束電流密度或該射束電流密度之一均一性。該複數個電流偵測器中之每一者可與該孔徑陣列之至少一個孔徑相關聯且可安置於該孔徑陣列上。該電流偵測器可包含一法拉第(Faraday)杯、一二極體、一二極體陣列、一閃爍體或一光電倍增管。
在另一態樣中,本發明係針對一種多射束裝置,其包含經組態以產生一初級帶電粒子射束之一帶電粒子源。該裝置可包括一第一孔徑陣列及一第二孔徑陣列,該第一孔徑陣列包含第一複數個孔徑且經組態以自該初級帶電粒子射束形成複數個小射束。該第二孔徑陣列可包含第二複數個孔徑及複數個電流偵測器,其中該複數個電流偵測器中之每一者與該第二複數個孔徑之至少一孔徑相關聯,且包括用以偵測輻照該第二孔徑陣列之該複數個小射束之一對應小射束之一電流的電路系統。
該第一孔徑陣列可包含安置於該帶電粒子源與該第二孔徑 陣列之間的一電流限制孔徑陣列。該複數個電流偵測器中之每一者可包括用以累積該複數個小射束之該對應小射束之至少一部分之電荷且基於該累積電荷量測該電流的電路系統。該複數個電流偵測器中之每一者可包括用以監測該對應小射束之該電流且偵測該對應小射束之一位置或一大小之一改變中的至少一者之電路系統。該複數個電流偵測器中之每一者可包括用以偵測該對應小射束之複數個參數中之至少一者之一改變的電路系統,該複數個參數包含一小射束位置、一小射束直徑、一小射束電流、一小射束電流密度或該小射束電流密度之一均一性中之一者。該複數個電流偵測器中之每一者可為一法拉第杯、一二極體、一二極體陣列、一閃爍體或一光電倍增管。
在另一態樣中,本發明係針對一種多射束裝置,其包括:一帶電粒子源,其經組態以產生一初級帶電粒子射束;一第一孔徑陣列,其包括:第一複數個孔徑,其經組態以自該初級帶電粒子射束形成複數個小射束;及一第一電流偵測器,其包括用以偵測輻照該第一孔徑陣列之該初級帶電粒子射束之至少一部分之一電流的電路系統。該多射束裝置可包括一第二孔徑陣列,其包含第二複數個孔徑,其中該第二複數個孔徑中之每一者經組態以接收該複數個小射束之一對應小射束之至少一部分。
該第一電流偵測器可包括用以累積該初級帶電粒子射束之至少一部分之電荷且基於該累積電荷量測該電流的電路系統。該第二孔徑陣列可包含與該第二複數個孔徑中之至少一者相關聯的一第二電流偵測器。
在又一態樣中,本發明係針對一種量測一多射束裝置中之射束電流之方法。該方法可包括使一初級帶電粒子射束輻照於一孔徑陣列 上且偵測該初級帶電粒子射束之至少一部分之一電流。該方法可包含使用一控制電路基於該經偵測電流調整複數個射束參數之至少一個射束參數。該方法可進一步包含累積該初級帶電粒子射束之至少該部分之電荷且基於該累積電荷量測該射束電流。
該方法可進一步包含:監測該初級帶電粒子射束之至少該部分之該射束電流、偵測該初級帶電粒子射束之該部分之複數個參數中之至少一者的改變。該複數個參數包含一射束位置、一射束直徑、一射束電流、一射束電流密度或該射束電流密度之一均一性中的至少一者。該方法可進一步包含基於該初級帶電粒子射束之至少該部分之該量測電流判定該初級帶電粒子射束之一總電流。該偵測器可包含複數個電流偵測器,且該複數個電流偵測器中之每一者與該孔徑陣列之至少一個孔徑相關聯。
在又一態樣中,本發明係針對一種非暫時性電腦可讀媒體,其儲存一指令集,該指令集可由一多射束裝置之一或多個處理器執行以致使該多射束裝置執行用以量測該多射束裝置中之射束電流之一方法。該方法可包含:控制一初級帶電粒子射束輻照於一孔徑陣列上;及基於由一偵測器偵測之該初級帶電粒子射束之至少一部分之經偵測電流來判定該初級帶電粒子射束之電流。
可由一多射束裝置之一或多個處理器執行之該指令集可致使該多射束裝置啟動該偵測器以累積該初級帶電粒子射束之至少該部分之電荷,且基於該累積電荷量測該初級帶電粒子射束之至少該部分之該電流。
1:帶電粒子射束檢測系統
10:主腔室
20:裝載/鎖定腔室
30:設備前端模組(EFEM)
30a:第一裝載埠
30b:第二裝載埠
40:控制器
100:電子射束工具/裝置
100_1:主光軸
101:電子源
101s:交越
102:初級電子射束
102_1:小射束
102_2:小射束
102_3:小射束
102_1s:探測光點
102_2s:探測光點
102_3s:探測光點
102_1se:次級電子射束
102_2se:次級電子射束
102_3se:次級電子射束
103:槍孔徑
110:聚光透鏡
120:源轉換單元
130:初級投影光學系統
131:物鏡
132:偏轉掃描單元
140:電子偵測器件
140_1:偵測元件
140_2:偵測元件
140_3:偵測元件
150:次級光學系統
150_1:副光軸
160:射束分離器
171:槍孔徑板
190:樣本
300:多射束裝置
300_1:主光軸
301:初級電子源
302:初級電子射束
302_1:小射束
302_2:小射束
302_3:小射束
303:孔徑
305:電流限制孔徑陣列
310:聚光透鏡
320:射束限制孔徑陣列
323:孔徑
400:多射束裝置
400_1:主光軸
401:初級電子源
402:初級電子射束
402_1:小射束
402_2:小射束
402_3:小射束
402_1S:探測光點
402_2S:探測光點
402_3S:探測光點
403:孔徑
404:電流偵測器
405:電流限制孔徑陣列
410:聚光透鏡
420:射束限制孔徑陣列
423:孔徑
431:物鏡
440:射束控制電路
450:電流量測電路
460:透鏡控制電路
470:載物台控制電路
480:控制器
490:樣本
495:載物台
500_1:主光軸
503:孔徑/中心孔徑
504_1:電流偵測器
504_2:電流偵測器
504_3:電流偵測器
504_4:電流偵測器
504C:電流偵測器
505:電流限制孔徑陣列
515:虛擬邊界
515C:虛擬邊界
515D:虛擬邊界
610:步驟
620:步驟
630:步驟
640:步驟
650:步驟
圖1為說明符合本發明之實施例的例示性電子射束檢測 (EBI)系統之示意圖。
圖2為說明符合本發明之實施例的例示性電子射束工具的示意圖,該例示性電子射束工具可為圖1之例示性電子射束檢測系統之一部分。
圖3為說明符合本發明之實施例的多射束裝置中之孔徑陣列之例示性配置的示意圖。
圖4為說明符合本發明之實施例的例示性多射束裝置之方塊圖,該例示性多射束裝置可為圖1之例示性電子射束檢測系統之一部分。
圖5A至圖5D為說明符合本發明之實施例的包括整合射束電流偵測器之多射束裝置之孔徑陣列之例示性組態的示意圖。
圖6為展示符合本發明之實施例的量測多射束裝置中之射束電流之例示性方法的流程圖。
現在將詳細參考例示性實施例,在隨附圖式中說明該等例示性實施例之實例。以下描述參考隨附圖式,其中除非另外表示,否則不同圖式中之相同編號表示相同或相似元件。例示性實施例之以下描述中所闡述之實施並不表示所有實施。取而代之,其僅僅為符合關於所附申請專利範圍中所敍述之所揭示實施例的態樣的裝置及方法之實例。舉例而言,儘管一些實施例係在利用電子射束之內容背景中予以描述,但本發明不限於此。可以相似方式應用其他類型之帶電粒子射束。此外,可使用其他成像系統,諸如光學成像、光偵測、x射線偵測等。
可藉由顯著增大IC晶片上之電路組件(諸如電晶體、電容 器、二極體等)之填集密度來實現電子器件之增強之計算能力,同時縮減器件之實體大小。舉例而言,在智慧型手機中,IC晶片(其可為拇指甲大小)可包括超過20億個電晶體,每一電晶體之大小小於人類毛髮之1/1000。不出乎意料地,半導體IC製造為具有數百個個別步驟之複雜程序。甚至一個步驟中之錯誤亦有可能顯著影響最終產品之機能。即使一個「致命缺陷」亦可造成器件故障。製造程序之目標為改良程序之總體良率。舉例而言,對於得到75%良率之50步驟程序,每一個別步驟必須具有大於99.4%之良率,且若個別步驟良率為95%,則總程序良率下降至7%。
隨著幾何結構縮小及IC晶片行業遷移至三維(3D)架構(諸如NAND閘、鰭式場效電晶體(FinFET)及進階動態隨機存取記憶體(DRAM)),在每一較低節點處尋找缺陷變得更具挑戰性且昂貴。雖然在IC晶片製造設施中高程序良率係合乎需要的,但維持高晶圓產出率(被定義為每小時處理晶圓之數目)亦為必需的。高程序良率及高晶圓產出率可受缺陷之存在影響,尤其當涉及操作員干預時。因此,藉由檢測工具(諸如SEM)進行微米及奈米大小缺陷之偵測及識別對於維持高良率、高產出率及低成本可為必需的。
半導體晶片在極清潔且受控之環境中經製造,該環境具有極低等級之污染物,諸如灰塵、空浮粒子、氣霧粒子及化學蒸氣。更特定言之,需要半導體清潔室具有由在指定粒度下之每立方呎粒子數目指定之受控污染等級。典型晶片製造清潔室每立方呎空氣含有1至10個粒子,每一粒子之直徑小於5μm。作為對比,典型城市環境中外部之環境空氣每立方呎含有大致12.5億個粒子,各粒子之直徑具有約200μm之平均大小。程序中之晶圓上的小至1μm之一粒灰塵可橫跨位於晶片上之數千個 電晶體,此可能使得整個晶片無用。在一些狀況下,用以在晶圓上產生重複圖案之倍縮光罩或光罩上的一粒灰塵可能造成再現物理缺陷或電缺陷。舉例而言,在單晶片中連接電晶體之一或多個金屬線可重疊或可能不當地經由灰塵粒子連接,從而導致貫穿整個晶片之電路的短路。
在維持高產出率(被定義為例如每小時晶圓處理數目)的同時,確保能夠以高準確度及高解析度觀測、檢測及成像晶圓愈來愈重要。為了增大產出率,一些檢測工具可使用多個射束以用於在樣本表面上同時形成多個探測光點。作為一項實例,檢測工具可產生初級射束,該初級射束分裂成多個射束(例如「小射束」),該多個射束可接著各自在樣本表面上方進行掃描,如在多射束檢測系統或多帶電粒子射束裝置中。
為了在多帶電粒子射束裝置(諸如多射束SEM)中維持高產出率的同時增強解析度,初級射束需要具有高電流密度或高亮度使得多個小射束具有儘可能多的電子。初級射束(例如電子射束)之電流密度可被定義為每單位時間射束之每單位面積的電子(或電荷)數目。儘管電流密度可為重要射束參數,但在電子顯微法之內容背景中,射束亮度之相關性可更高,此係因為電子以一發散角範圍射出電子源且射束內之電子之角度分佈可為重要的射束參數。因此,射束亮度可被定義為初級源每單位立體角(以立體弧度表示)的電流密度。
可例如藉由增大陽極與陰極(通常為電子源)之間的電壓而產生高亮度電子射束。然而,使初級電子源經受高電壓歷時延伸之時間段可影響電子源之耐久性及穩定性。初級電子源之不穩定性可能不僅影響源之效能而且影響所產生之初級電子射束。舉例而言,初級電子射束可展現發射電流隨著時間之變化、初級射束之位置相對於檢測系統之其他組件之 變化、射束之大小之變化、射束之總電流之變化、射束之電流密度之均一性變化等,從而有可能縮減檢測系統之總效率及產出率。
在多射束SEM系統中,初級電子射束分裂成多個小射束,且該多個小射束中之每一者可在樣本表面上產生探測光點。小射束之電子與樣本之相互作用產生含有與樣本上之探測光點相關聯的資訊之信號。該等所產生信號隨後經處理以產生表示經探測樣本區域之影像,因此使使用者能夠在視覺上分析樣本及其上之任何缺陷。來自不穩定電子源之不穩定初級電子射束可造成所產生小射束電流之非均一性,因而影響影像品質。在IC晶片製造設施中,常常依賴諸如多射束SEM之視覺檢測工具以用於晶圓檢測及缺陷分析。因此,影像品質之任何損害可阻礙使用者之分析及檢測晶圓之能力,且有可能影響總體產出率。
因為影像品質可受到多個因素影響,該等因素包括但不限於不穩定的初級電子射束、不穩定的初級電子源、未校準之偵測系統、SEM柱中之未對準光學件、樣本污染、機械振動、熱干擾及聲干擾等,所以在晶圓檢測期間判定影像品質之降級原因係極具挑戰性的。此等成像缺陷來源中之任一者或全部有可能影響檢測系統之總體解析度及產出率。本發明之一些態樣提議在孔徑陣列處量測射束電流(或小射束電流),藉此在使初級電子射束進行掃描以用於晶圓檢測的同時偵測及監測初級電子源或初級電子射束之不穩定性。量測資訊可進一步用以判定不穩定性之源且相應地調整初級電子源、初級電子射束或檢測系統之相關組件。
在本發明之一個態樣中,包括射束電流偵測器之多射束裝置可用以量測初級射束或小射束之電流。射束電流偵測器可安置於由初級電子射束或小射束輻照之孔徑陣列上。射束電流偵測器可包括用以藉由累 積初級電子射束之至少一部分之電荷且量測初級電子射束之該部分之電流從而量測初級電子射束之電流的電路系統。
出於清楚起見,圖式中之組件的相對尺寸可被誇示。在以下圖式描述內,相同或類似參考數字係指相同或類似組件或實體,且僅描述關於個別實施例之差異。
如本文中所使用,除非另外特定陳述,否則術語「或」涵蓋所有可能組合,除非不可行。舉例而言,若陳述組件可包括A或B,則除非另外特定陳述或不可行,否則組件可包括A,或B,或A及B。作為第二實例,若陳述組件可包括A、B或C,則除非另外特定陳述或不可行,否則組件可包括A,或B,或C,或A及B,或A及C,或B及C,或A及B及C。
現在參看圖1,其說明符合本發明之實施例的例示性電子射束檢測(EBI)系統1。如圖1中所展示,帶電粒子射束檢測系統1包括主腔室10、裝載/鎖定腔室20、電子射束工具100,及設備前端模組(EFEM)30。電子射束工具100位於主腔室10內。
EFEM 30包括第一裝載埠30a及第二裝載埠30b。EFEM 30可包括額外裝載埠。第一裝載埠30a及第二裝載埠30b收納含有待檢測之晶圓(例如,半導體晶圓或由其他材料製成之晶圓)或樣本的晶圓前開式單元匣(FOUP)(晶圓及樣本在下文中被集體地稱作「晶圓」)。EFEM 30中之一或多個機器人臂(圖中未繪示)將晶圓輸送至裝載/鎖定腔室20。
裝載/鎖定腔室20連接至裝載/鎖定真空泵系統(圖中未繪示),其移除裝載/鎖定腔室20中之氣體分子以達到低於大氣壓力之第一壓力。在達到第一壓力之後,一或多個機器人臂(圖中未繪示)將晶圓自裝載/ 鎖定腔室20輸送至主腔室10。主腔室10連接至主腔室真空泵系統(圖中未繪示),其移除主腔室10中之氣體分子以達到低於第一壓力之第二壓力。在達到第二壓力之後,晶圓經受電子射束工具100之檢測。
控制器40以電子方式連接至電子射束工具100,且亦可以電子方式連接至其他組件。控制器40可為經組態以執行EBI系統1之各種控制的電腦。雖然控制器40在圖1中被展示為在包括主腔室10、裝載/鎖定腔室20及EFEM 30之結構之外,但應瞭解,控制器40可為該結構之部分。
雖然本發明提供容納電子射束檢測系統之主腔室10的實例,但應注意,本發明之態樣在其最廣泛意義上而言不限於容納電子射束檢測系統之腔室。實際上,應瞭解,前述原理亦可應用於其他腔室。
現在參看圖2,其說明說明符合本發明之實施例的可為圖1之例示性帶電粒子射束檢測系統之一部分的例示性電子射束工具之示意圖。電子射束工具100(在本文中亦被稱作裝置100)包含電子源101、具有槍孔徑103之槍孔徑板171、聚光透鏡110、源轉換單元120、初級投影光學系統130、樣本載物台(圖2中未展示)、次級光學系統150,及電子偵測器件140。初級投影光學系統130可包含物鏡131。電子偵測器件140可包含複數個偵測元件140_1、140_2及140_3。射束分離器160及偏轉掃描單元132可置放於初級投影光學系統130內部。可瞭解,適當時,可新增/省略裝置100之其他通常已知的組件。
電子源101、槍孔徑板171、聚光透鏡110、源轉換單元120、射束分離器160、偏轉掃描單元132及初級投影光學系統130可與裝置100之主光軸100_1對準。次級光學系統150及電子偵測器件140可與裝 置100之副光軸150_1對準。
電子源101可包含陰極、提取器或陽極,其中初級電子可自陰極發射且經提取或加速以形成初級電子射束102,該初級電子射束形成交越(虛擬或真實)101s。初級電子射束102可被視覺化為自交越101s發射。
源轉換單元120可包含影像形成元件陣列(圖2中未展示)。影像形成元件陣列可包含複數個微偏轉器或微透鏡以運用初級電子射束102之複數個小射束形成交越101s之複數個平行影像(虛擬或真實)。圖2展示三個小射束102_1、102_2及102_3作為一實例,且應瞭解,源轉換單元120可處置任何數目個小射束。
聚光透鏡110可聚焦初級電子射束102。可藉由調整聚光透鏡110之聚焦倍率或藉由改變射束限制孔徑陣列內之對應射束限制孔徑的徑向大小來使源轉換單元120下游之小射束102_1、102_2及102_3的電流變化。物鏡131可將小射束102_1、102_2及102_3聚焦至樣本190上以供檢測且可在樣本190之表面上形成三個探測光點102_1s、102_2s及102_3s。槍孔徑板171可阻擋不在使用中之初級電子射束102之周邊電子以縮減庫侖相互作用效應。庫侖相互作用效應可放大探測光點102_1s、102_2s及102_3s中之每一者之大小,且因此使檢測解析度劣化。
射束分離器160可為韋恩濾波器類型之射束分離器,其包含產生靜電偶極子場E1及磁偶極子場B1(兩者皆在圖2中未展示)之靜電偏轉器。若應用該等射束分離器,則由靜電偶極子場E1對小射束102_1、102_2及102_3之電子施加的力可與由磁偶極子場B1對電子施加之力量值相等且方向相反。小射束102_1、102_2及102_3因此可以零偏轉角直接通 過射束分離器160。
偏轉掃描單元132可使小射束102_1、102_2及102_3偏轉以使探測光點102_1s、102_2s及102_3s遍及樣本190之表面區段中的三個小的經掃描區域進行掃描。回應於小射束102_1、102_2及102_3入射於探測光點102_1s、102_2s及102_3s處,可自樣本190發射三個次級電子射束102_1se、102_2se及102_3se。次級電子射束102_1se、102_2se及102_3se中之每一者可包含具有能量之分佈的電子,包括次級電子(能量
Figure 109110145-A0305-02-0014-1
50eV)及反向散射電子(能量介於50eV與小射束102_1、102_2及102_3之著陸能量之間)。射束分離器160可將次級電子射束102_1se、102_2se及102_3se導向次級光學系統150。次級光學系統150可將次級電子射束102_1se、102_2se及102_3se聚焦至電子偵測器件140之偵測元件140_1、140_2及140_3上。偵測元件140_1、140_2及140_3可偵測對應的次級電子射束102_1se、102_2se及102_3se且產生用以建構樣本190之對應經掃描區域之影像的對應信號。
現在參看圖3,其說明符合本發明之實施例的多射束裝置300中之孔徑陣列之例示性配置。應瞭解,多射束裝置300可大體上相似於圖2之電子射束工具100。多射束裝置300可包括初級電子源301、初級電子射束302、電流限制孔徑陣列305、聚光透鏡310及射束限制孔徑陣列320。多射束裝置300之組件中之每一者可與主光軸300_1對準。
多射束裝置300之初級電子源301及初級電子射束302大體上類似於圖2中所說明之電子射束工具100的電子源101及初級電子射束102。在一些實施例中,初級電子源301可包括例如鎢長絲、六硼化鑭(LaB6)陰極、六硼化鈰(CeB6)、鎢/氧化鋯(W/ZrO2)等。電子源可經由熱 離子發射自加熱源產生電子,或經由電場誘發性發射自陰極產生電子。亦可採用電子發射或電子產生之其他合適的方法。
初級電子射束302可包含歸因於朝向樣本(圖中未繪示)驅動電子之高加速電場而具有高動能的電子。電子之動能可在0.2keV至40keV或更高之範圍內,其係藉由提取電壓、加速電壓、射束修改透鏡或其類似者予以判定。在一些實施例中,初級電子射束302可具有光軸(未說明),初級電子射束302沿著該光軸朝向樣本行進。初級電子射束302之光軸可與主光軸300_1對準。
多射束裝置300可包含具有複數個孔徑303以形成複數個小射束之電流限制孔徑陣列305。圖3展示三個小射束302_1、302_2及302_3作為一實例,但應瞭解,電流限制孔徑陣列305在適當時可包含任何數目個孔徑303且形成任何數目個小射束。電流限制孔徑陣列305之孔徑303的橫截面可為例如圓形、矩形、橢圓形或其組合。電流限制孔徑陣列305可沿著主光軸300_1定位於初級電子源301與聚光透鏡310之間。電流限制孔徑陣列305可被置放成遠離初級電子源301相隔固定預定距離。
在一些實施例中,電流限制孔徑陣列305可包含具有均一孔徑之矩陣,舉例而言,電流限制孔徑陣列305之孔徑303中之每一者在橫截面、形狀或大小上可為均一的。在一些實施例中,電流限制孔徑陣列305可包含具有非均一孔徑之矩陣,該等非均一孔徑包括具有非均一橫截面、形狀或大小之孔徑。在一些實施例中,孔徑303可以線性、圓形、矩形、螺旋形、鋸齒形、蛇形、三角形圖案或其組合來配置。應瞭解,電流限制孔徑陣列305之孔徑可橫越陣列隨機佈置。亦可使用孔徑之其他合適的佈局及組態。
在一些實施例中,電流限制孔徑陣列305可包含金屬、陶瓷、塑膠、合金、複合物、半導體或真空相容且可經處理以形成孔徑303之任何合適的材料。可使用光微影、壓花、超精度雷射加工、射出成形、機械鑽孔、以微機電系統(MEMS)為基礎之技術等或任何其他合適技術來製造電流限制孔徑陣列305之孔徑303。
在一些實施例中,多射束裝置300可包括孔徑板(圖中未繪示),諸如圖2之槍孔徑板171。孔徑板可經組態以阻擋不在使用中之初級電子射束102之周邊電子以縮減庫侖相互作用效應。庫侖相互作用效應可放大樣本表面上之探測光點之大小,且因此尤其使檢測解析度劣化。
在一些實施例中,多射束裝置300可包括電流限制孔徑陣列305及孔徑板。孔徑板可被置放於初級電子源301與電流限制孔徑陣列305之間。孔徑板可被置放成與初級電子源301相隔預定距離使得孔徑板之平面垂直於主光軸300_1。基於射束電流要求,孔徑板之位置可為固定的或可調整的。
電流限制孔徑陣列305可經組態以藉由將初級電子射束302分裂成小射束302_1、302_2及302_3而縮減初級射束電流。小射束302_1、302_2及302_3中之每一者可具有低於初級電子射束302之初級射束電流的相關聯小射束電流。如本文所使用之相關聯小射束電流被稱作藉由形成小射束之電子每時間間隔之數目所判定之電流。
返回參看圖3,多射束裝置300之聚光透鏡310大體上相似於圖2中所說明之電子射束工具100之聚光透鏡110。聚光透鏡310可經組態以使小射束302_1、302_2及302_3準直。來自一源之電子射束本質上發散,且未經準直之電子射束可能產生不當的較大探測光點,從而導致所獲 取影像之不良解析度。舉例而言,在圖3中,一或多個小射束(諸如302_1)可在通過孔徑板(圖中未繪示)或電流限制孔徑陣列305之後發散且可必須由聚光透鏡310準直成多個相對平行小射束。
多射束裝置300可包含射束限制孔徑陣列320。小射束302_1、302_2及302_3可在通過聚光透鏡310之後經導向至射束限制孔徑陣列320。射束限制孔徑陣列320可包含經組態以接收小射束且允許小射束之至少一部分通過的複數個孔徑323。在一些實施例中,該複數個孔徑323中之每一者可經對準以自聚光透鏡310接收經準直小射束(例如小射束302_1)。
射束限制孔徑陣列320可包含以矩形、圓形、三角形、正方形、蛇形或螺旋圖案配置之孔徑323之矩陣。在一些實施例中,孔徑323可橫越射束限制孔徑陣列320隨機地佈置。射束限制孔徑陣列320之孔徑323可具有均一的橫截面、形狀或大小。
現在參看圖4,其說明符合本發明之實施例的可為圖1之例示性電子射束檢測系統1之一部分的例示性多射束裝置400。多射束裝置400可包括初級電子源401、初級電子射束402、具有複數個孔徑403之電流限制孔徑陣列405、電流偵測器404、聚光透鏡410、射束限制孔徑陣列420、物鏡431、射束控制電路440、電流量測電路450、透鏡控制電路460、載物台控制電路470、控制器480及安置於載物台495上之樣本490。在一些實施例中,射束控制電路440、電流量測電路450、透鏡控制電路460、載物台控制電路470及控制器480中之一或多者可為圖1之控制器40之部分。複數個孔徑403中之每一者經組態以產生一小射束(例如402_1、402_2、402_3)且在樣本490上產生對應的探測光點(例如402_1S、 402_2S、402_3S)。
應瞭解,初級電子源401、初級電子射束402及聚光透鏡410分別相似於或大體上相似於初級電子源301、初級電子射束302及聚光透鏡310。電流限制孔徑陣列405可包含複數個孔徑403,其大體上相似於孔徑303或電流限制孔徑陣列305。
電流限制孔徑陣列405可包括經組態以量測初級電子射束402之電流之電流偵測器404。在一些實施例中,電流偵測器404可包含法拉第杯、二極體、二極體陣列或閃爍體。應瞭解,亦可採用電流偵測之其他器件及技術。
在一些實施例中,多射束裝置400可包括安置於電流限制孔徑陣列405上之一個電流偵測器404。電流偵測器404可被置放於電流限制孔徑陣列405上使得入射初級電子射束402之至少一部分覆蓋電流偵測器404整體。入射於電流偵測器404上之入射初級電子射束402之一部分的電荷(例如電子)可累積歷時預定時間。可基於累積電荷使用電流量測電路450來量測入射於電流偵測器404上之初級電子射束402之該部分的電流。舉例而言,對於諸如電子之連續帶電粒子射束,在假定電子之電荷為1.6×10-19庫侖的情況下,1nA(1×10-9安培)之量測電流對應於每秒入射於電流偵測器404上的約62.5億個電子。
在一些實施例中,電流量測電路450可電連接至電流偵測器404及控制器480,該控制器經組態以控制電流量測電路450。電流量測電路450可包括時序控制單元、量測電路、取樣保持電路、類比數位轉換器電路,及用於信號處理及與多射束裝置400之其他元件通信的其他相關組件。控制器480可包含中央處理單元,包括電腦、伺服器、微處理器、 處理器或積體電路。在一些實施例中,控制器480可為圖1之控制器40之一部分或大體上相似於圖1之控制器40。
初級電子射束402之總電流或電流密度可基於入射於電流偵測器404上之射束之部分之量測電流或電流密度而判定。舉例而言,初級電子射束402之電流密度可基於射束之部分之量測電流及曝露至初級電子射束402之電流偵測器之面積而判定。
在一些實施例中,電流偵測器404可經組態以監測射束電流或射束電流密度歷時延伸之時間段以判定射束參數之變化,射束參數包括但不限於,射束電流、射束電流密度、射束相對於電流限制孔徑陣列405之位置、射束之大小及電流密度之均一性。舉例而言,若電流偵測器404被置放於入射於電流限制孔徑陣列405上之初級電子射束402之直徑邊緣附近,則該射束之位置之小的移位使得電流偵測器404並未被初級電子射束402完全覆蓋可導致偵測到之電荷之量減低,從而致使量測電流較小。
在諸如多射束裝置400之習知多射束SEM中,初級電子射束402可包含具有圓形橫截面之圓錐形發散射束,且電流限制孔徑陣列405可包括孔徑之正方形陣列(例如圖7中所展示之孔徑703)。在此組態中,可需要使用多於一個電流偵測器404。舉例而言,沿著孔徑之正方形陣列之每一側且在由入射於電流限制孔徑陣列405上之初級電子射束402之周邊所形成的邊界內置放電流偵測器(例如電流偵測器404或圖7之704),可使能夠偵測沿著X方向及Y方向之射束漂移。在本發明之內容背景中,射束之「漂移」可指射束參數隨著時間推移相對於該參數之預期初始值的有限及連續變化。舉例而言,漂移可指相對於主光軸(例如圖3之主 光軸300_1)所量測之射束位置之X及Y座標的改變,或沿著垂直於主光軸之平面之射束錐直徑之大小的改變。在基於來自電流量測電路450之資訊偵測及判定射束參數之漂移後,控制器480即可藉由經由射束控制電路440調整源設定、或經由透鏡控制電路460調整透鏡設定或經由載物台控制電路470調整射束目標定位而促進初級電子射束402之再定位或修整。應瞭解,在適當需要時亦可採用其他控制機構。
圖4中所說明之射束控制電路440可經組態以控制初級電子射束402。控制初級電子射束可包括但不限於,控制提取電壓、控制加速電壓控制射束偏轉電壓、等。在一些實施例中,射束控制電路440可基於來自電流量測電路450之回饋經由控制器480來控制初級電子射束402。舉例而言,電流量測電路480可判定入射於孔徑陣列405上之射束電流密度之變化且產生一信號。控制器480可使用信號處理電路(圖中未繪示)處理輸入信號且基於該輸入信號產生輸出信號。可將輸出信號傳達至射束控制電路440以基於該信號調整初級電子射束402之射束電流密度。
圖4中所說明之量測電路450可經組態以量測初級電子射束402或小射束402_1、402_2及402_3之電流。量測電路450可與安置於電流限制孔徑陣列405上之一或多個電流偵測器404電連接。在一些實施例中,量測電路450可與電流偵測器404及安置於射束限制孔徑陣列上之電流偵測器(未說明)電連接。量測電路450可包含與電流偵測器404(例如法拉第杯)連接之電導線、諸如電流錶或電壓錶之電流量測器具,或顯示橫越自導電線至接地之電阻所產生的電壓之示波器。在一些實施例中,量測電路450可與控制器480交換資訊。
在一些實施例中,電流量測電路450可包含經組態以控制 電流偵測器404之切換器件。切換器件可基於經程式化時間排程控制電流偵測器404以收集電荷。舉例而言,切換器件可經組態以在偵測模式中以50%作用區間循環操作電流偵測器404。然而,在監測模式中,電流偵測器404可以100%作用區間循環經操作。作用區間循環可指信號或系統起作用的週期之分率。可藉由施加電壓信號以吸引或排斥電子來啟動或撤銷啟動諸如法拉第杯之電流偵測器。
圖4中所說明之透鏡控制電路460可經組態以控制聚光透鏡410或物鏡431。透鏡控制電路460可與控制器480交換資訊。在一些實施例中,可基於來自控制器480之資訊而調整聚光透鏡410或物鏡431或此兩者。舉例而言,透鏡控制電路460可調整聚光透鏡之焦點或焦點強度以確保小射束準直。在一些實施例中,透鏡聚焦電路450可包含用以儲存與透鏡調整及透鏡位置相關之資訊之儲存模組,諸如本端記憶體。控制器480可包含經組態以儲存來自射束控制電路440、量測電路450、透鏡控制電路460或載物台控制電路470之資訊之全域記憶體。
圖4中所說明之載物台控制電路470可經組態以控制上方牢固地置放有樣本490之載物台495之移動。載物台控制電路470可包括信號處理單元,該等信號處理單元經組態以自位置感測器接收載物台位置資訊且基於所接收之位置資訊處理載物台位置資訊以產生用於移動載物台495之信號。在一些實施例中,可基於探測光點402_1S、402_2S或402_3S之部位而調整載物台495之位置。載物台控制電路470可與控制器480交換資訊。在一些實施例中,可藉由載物台控制電路470調整載物台495之位置以補償射束參數之變化。
在一些實施例中,多射束裝置之主光軸400_1可與電流限 制孔徑陣列405之幾何中心對準。一或多個電流偵測器404可被置放成處於或接近於電流限制孔徑陣列405之幾何中心以獲得與初級電子源401相關之資訊。在一些實施例中,自置放成處於或接近於電流限制孔徑陣列405之中心的電流偵測器404所獲得之資訊可與自置放於電流限制孔徑陣列405上之別處的電流偵測器404所獲得之資訊組合使用,以判定漂移之原因。舉例而言,可產生橫越平面(例如上方入射有初級電子射束402且安置有電流偵測器404的電流限制孔徑陣列405之平面)之初級電子射束402內的電子密度映圖以判定在X-Y軸中之電子密度梯度或在該平面內之電子密度分佈,從而使使用者能夠在檢測晶圓時校正漂移。
射束限制孔徑陣列420可包括複數個孔徑423,該複數個孔徑經組態以接收小射束402_1、402_2及402_3且限制通過至物鏡431之電子之數目,從而在樣本490上形成對應的探測光點402_1S、402_2S及402_3S。在一些實施例中,射束限制孔徑陣列420可包含安置於其上之複數個電流偵測器404(圖中未繪示)。射束限制孔徑陣列420可包括與孔徑423中之每一者相關聯之電流偵測器404。替代地,每一電流偵測器404可與多於一個孔徑423相關聯。舉例而言,若射束限制孔徑陣列420包含由射束限制孔徑陣列420之基板分離之兩個孔徑423使得單一小射束(例如小射束402_3)完全輻照包含該兩個孔徑的包括將該兩個孔徑分離之基板的射束限制孔徑陣列420之部分,且若電流偵測器404被置放於將該等孔徑423分離之基板之部分內。
在一些實施例中,多射束裝置400除了包括電流限制孔徑陣列405以外亦可包括孔徑板(例如圖2之槍孔徑板171)及射束限制孔徑陣列420。一或多個電流偵測器404亦可用於孔徑板、射束限制孔徑陣列420 及電流限制孔徑陣列405上。在此組態中,可在SEM柱中在沿著初級電子射束402或小射束402_1、402_2及402_3之路徑之多個部位處監測射束參數,諸如射束位置、射束電流密度、射束電流密度均一性等,以在晶圓檢測期間判定漂移之原因且允許使用者校正漂移。
在一些實施例中,電流偵測器404可包括使用以MEMS為基礎之器件製造技術來製造之一或多個微機電法拉第杯。諸如法拉第杯之電流偵測器可包括同軸地密封於接地外部殼內之導電圓柱形的電荷接收器杯。內杯與外部殼之間的間隙可填充有介電質或絕緣體,包括但不限於聚合物、空氣、陶瓷等。法拉第杯亦可包括在前方的抑制柵格以排斥雜散電子,且亦阻滯在該杯中收集之離子或電荷反向散射。諸如金屬導線之同軸連接器可與該內杯電連接以形成量測電路。使用法拉第杯以用於電荷或電子偵測的一些優點可為但不限於,高準確度、獨立於所分析之電荷之能量及質量、可擴展性、可製造性、易於操作、與廣泛範圍之真空度相容及易於進行資料分析。
現在參看圖5A,其說明符合本發明之實施例的包括複數個孔徑503及電流偵測器504之電流限制孔徑陣列505的例示性組態。儘管圖5A說明四個電流偵測器504-1、504-2、504-3及504-4,但可使用更多或更少的電流偵測器。電流限制孔徑陣列505大體上相似於圖4之電流限制孔徑陣列405。如所說明,圖5A展示描繪入射初級電子射束402在電流限制孔徑陣列505上之周邊的虛擬邊界515,其涵蓋孔徑503之正方形陣列及沿著虛擬邊界515之邊緣而定位但在由虛擬邊界515表示之受限制區域內的一或多個電流偵測器504。在一些實施例中,電流偵測器504可在由虛擬邊界515表示之受限制區域內位於電流限制孔徑陣列505上之任何位 置,使得電流偵測器中無一者會阻擋帶電粒子之通過孔徑503之陣列。
在一些實施例中,電流偵測器(例如圖5A之504-1、504-2、504-3或504-4)可與電流限制孔徑陣列505之至少一孔徑相關聯。舉例而言,若電流限制孔徑陣列505包含數目為n個孔徑,則電流偵測器之數目可為n-m,其中m為正整數且m<n。在一些實施例中,兩個或多於兩個電流偵測器可與電流限制孔徑陣列505之一孔徑相關聯。舉例而言,若電流限制孔徑陣列505包含數目為n個孔徑,則電流偵測器之數目可為n+m,其中m為正整數。在一些實施例中,電流限制孔徑陣列505之每一孔徑可與一電流偵測器504相關聯。在此組態中,孔徑之數目等於電流偵測器之數目。
現在參看圖5B,其說明電流限制孔徑陣列505之例示性組態,其中電流限制孔徑陣列505之幾何中心與主光軸500_1(相似於圖3之主光軸300_1及圖4之400_1)對準。在此組態中,電流偵測器504C可經定位成接近於中心孔徑503。另外,亦可採用一或多個周邊電流偵測器504。
在一些實施例中,電流限制孔徑陣列505之每一孔徑503可具有與該孔徑鄰近地安置之一相關聯電流偵測器504。在此組態中,每一電流偵測器504可產生與圖4之入射初級電子射束402相關之資訊。可將所產生之資訊儲存於圖4之電流量測電路450內之本端記憶體或控制器480中。該資訊可用以產生初級電子射束402內之電子密度之映射,例如以判定漂移之原因。
在一些實施例中,可基於所收集之總射束電流或由電流偵測器(例如504-1、504-2、504-3及504-4)偵測之平均射束電流來判定總射 束電流。如圖5C中所展示,其說明電流限制孔徑陣列505之例示性組態,表示入射於電流限制孔徑陣列505上之初級電子射束402之橫截面的虛擬邊界515C沿著x軸移位使得電流偵測器504-2之一部分未曝露至初級電子射束402。由偵測器收集之射束電流之量可基於入射於電流偵測器上之射束之部分而變化,舉例而言,與由電流偵測器504-1、504-3、504-4中之一者收集之帶電粒子之數目相比,由電流偵測器504-2收集之帶電粒子之數目可能較少。因此,所收集之總射束電流可能較少,此指示初級電子射束402漂移。在一些實施例中,每一電流偵測器504可經組態以產生與所收集之帶電粒子之數目相關之資訊。在此類組態中,可基於自每一電流偵測器接收到之資訊而判定射束漂移之量及方向。
現在參看圖5D,其說明電流限制孔徑陣列505之例示性組態,其中由虛擬邊界515D表示之初級電子射束402之直徑與由圖5A中所展示之虛擬邊界515表示之初級電子射束402之直徑相比較小,使得一或多個電流偵測器504之一部分並未曝露至初級電子射束402之電子。在一些實施例中,如圖5D中所說明,由虛擬邊界515D表示之初級電子射束402之全部可能未入射於一或多個孔隙503上,從而造成探測光點大小及形狀變化。由電流偵測器504收集之射束電流之量可指示入射於電流限制孔徑陣列505上之射束大小之改變。因此,可基於與由每一電流偵測器504收集之帶電粒子之數目相關的資訊而判定射束大小之改變。
儘管未說明,但應瞭解,在一些實施例中,入射於由虛擬邊界515D表示之電流限制孔徑陣列505上之初級電子射束402可能足夠大以曝露所有孔徑503但可能僅曝露一或多個電流偵測器504之一部分。
圖6表示符合本發明之實施例的量測多射束裝置(例如圖3 之多射束裝置300)中之射束電流之例示性方法的程序流程圖。量測射束電流之方法可包括:自初級帶電粒子源產生初級帶電粒子射束(諸如電子射束);使初級帶電粒子射束輻照於孔徑陣列上;及偵測入射於孔徑陣列上之初級帶電粒子射束之電流。
在步驟610中,可使初級帶電粒子射束(例如圖3之初級電子射束302)輻照於孔徑陣列(例如圖3之電流限制孔徑陣列305)上。初級帶電粒子射束可自初級帶電粒子源(例如圖3之初級電子源301)產生。在一些實施例中,多射束裝置可包括安置於初級帶電粒子源與電流限制孔徑陣列之間的槍孔徑板。槍孔徑板可經組態以藉由阻擋初級電子射束之周邊電子而調整射束電流或射束電流密度,藉此產生具有電流密度之較高均一性的電子射束。
電流限制孔徑陣列可包含經組態以產生複數個小射束(例如小射束302_1、302_2及302_3)之複數個孔徑(例如圖3之孔徑303)。電流限制孔徑陣列可經組態以阻擋初級電子射束之周邊電子及離軸射束電子以縮減庫侖相互作用效應。庫侖相互作用效應可放大探測光點中之每一者之大小,且因此使檢測解析度劣化。
在一些實施例中,電流限制孔徑陣列可包含孔徑矩陣。矩陣中之每一孔徑可在大小、形狀或橫截面上係均一的。該等孔徑可以矩形或正方形或圓形矩陣配置。孔徑之其他佈局亦係可能的。
在步驟620中,包括電路系統之偵測器(例如圖4之電流偵測器404)可經組態以偵測初級電子射束之至少一部分之電流。可基於入射於偵測器上之射束之部分之經偵測電流而判定初級電子射束之總電流。在一些實施例中,偵測器可包含安置於電流限制孔徑陣列上之一個電流偵測 器。可基於由一個電流偵測器偵測之電流而獲得與射束電流或射束電流密度相關之資訊。
在一些實施例中,如圖5A至圖5D中所說明,偵測器可包含安置於電流限制孔徑陣列上之複數個電流偵測器(例如圖5A之電流偵測器504)。舉例而言,一或多個電流偵測器504可沿著虛擬邊界515之邊緣但在由虛擬邊界515表示之受限制區域內定位。在一些實施例中,電流偵測器504可在由虛擬邊界515表示之受限制區域內位於電流限制孔徑陣列505上之任何位置,使得電流偵測器中無一者會阻擋帶電粒子之通過孔徑503之陣列。在此組態中,除了判定射束電流或射束電流密度以外,亦可判定射束位置及射束錐直徑。在一些實施例中,電流偵測器可與電流限制孔徑陣列之每一孔徑鄰近地置放。在此組態中,或許有可能基於自每一電流偵測器獲得之資訊而判定射束電流密度之均一性。
電流偵測器可電連接至電流量測電路(例如圖4之電流量測電路450)。電流偵測器中之每一者可包含連接至電量測器件之電導線,該電量測器件諸如但不限於電流錶、電壓錶、示波器等。電流偵測器可包含法拉第杯、二極體、二極體陣列或一閃爍體。亦可採用其他電流偵測構件。
在步驟630中,偵測器可經組態以累積入射於偵測器上之初級電子射束之至少部分的電荷。可在偵測器中收集初級電子射束之電荷(諸如電子)歷時預定時間。電流偵測器可由電流量測電路中之切換器件控制。
在偵測模式中,切換器件可啟動電流偵測器而以50%作用區間循環或75%作用區間循環操作。然而,在監測模式中,電流偵測器可 以100%作用區間循環操作。100%作用區間循環係指電流偵測器之連續操作。
在步驟640中,可基於累積電荷量測射束電流或小射束電流。電流偵測器可曝露至初級電子射束之一部分且因此,可僅累積入射於其上之射束之部分中的電荷。可基於表示電子射束之部分的累積電荷之量測電流、入射於電流偵測器上之射束之面積、曝光時間及初級帶電粒子射束之電荷之類型而判定總射束電流或電流密度。
在步驟650中,在量測射束電流(例如使用圖4之電流量測電路450)之後,可調整射束之參數。舉例而言,參看圖4,控制器480可經組態以將信號發送至射束控制電路440以控制初級電子射束402。控制初級電子射束402可包括基於經量測射束電流調整一或多個射束參數。舉例而言,可藉由控制提取電壓、控制加速電壓、控制射束偏轉電壓等來調整射束參數。舉例而言,在判定射束並不足夠大以恰當覆蓋電流限制孔徑陣列505之所有孔徑後,初級電子射束402之射束電流可增大以放大大小,且因此藉由入射初級電子射束402覆蓋所有孔徑。在一些實施例中,可例如藉由使初級電子射束偏轉使得所有孔徑可接收適當電流且由入射初級射束覆蓋,而調整初級電子射束402以基於經量測射束電流抵消經判定漂移。
在一些實施例中,電流偵測器可經組態以監測複數個射束參數,包括但不限於射束位置、射束直徑、射束電流、射束電流密度或射束電流密度之均一性。如圖5A至圖5D中所說明,將一或多個電流偵測器置放於電流限制孔徑陣列上可使能夠基於由電流偵測器收集之射束電流之量來判定射束位置。舉例而言,若射束在一方向上移位,則電子及因此所 收集電流的總數目可基於移位量及移位方向而變化,因此允許使用者判定射束位置、射束電流及射束電流密度。如圖5D中所說明,可基於由周邊電流偵測器收集之電荷量而判定射束位置。
可使用以下條項進一步描述實施例:
1.一種多射束裝置,其包含:一帶電粒子源,其經組態以產生一初級帶電粒子射束;及一孔徑陣列,其包含:複數個孔徑,其經組態以自該初級帶電粒子射束形成複數個小射束;及一偵測器,其包括用以偵測輻照該孔徑陣列之該初級帶電粒子射束之至少一部分之一電流的電路系統。
2.如條項1之裝置,其中該偵測器包括用以累積該初級帶電粒子射束之至少該部分之電荷且基於該累積電荷量測該電流的電路系統。
3.如條項1及2中任一項之裝置,其中該偵測器包括用以監測該初級帶電粒子射束之至少該部分之該電流的電路系統。
4.如條項3之裝置,其中該偵測器包括用以偵測該初級帶電粒子射束之至少該部分之一位置或一大小之一改變中的至少一者之電路系統。
5.如條項1至4中任一項之裝置,其中該初級帶電粒子射束之至少該部分之該電流用以判定該初級帶電粒子射束之一總電流。
6.如條項1至5中任一項之裝置,其中該偵測器包含經組態以偵測該初級帶電粒子射束之複數個參數中之至少一者之一改變的複數個電流偵測器。
7.如條項6之裝置,其中該複數個參數包含一射束位置、一射束 直徑、一射束電流、一射束電流密度或該射束電流密度之一均一性中的至少一者。
8.如條項6及7中任一項之裝置,其中該複數個電流偵測器中之每一者與該孔徑陣列之至少一個孔徑相關聯。
9.如條項6至8中任一項之裝置,其中該複數個電流偵測器中之每一者安置於該孔徑陣列上。
10.如條項1至9中任一項之裝置,其中該偵測器包含一法拉第杯、一二極體、一二極體陣列或一閃爍體。
11.一種多射束裝置,其包含:一帶電粒子源,其經組態以產生一初級帶電粒子射束;一第一孔徑陣列,其包含第一複數個孔徑且經組態以自該初級帶電粒子射束形成複數個小射束;及一第二孔徑陣列,其包含:第二複數個孔徑;及複數個電流偵測器,其中該複數個電流偵測器中之每一者與該第二複數個孔徑之至少一孔徑相關聯,且包括用以偵測輻照該第二孔徑陣列之該複數個小射束之一對應小射束之一電流的電路系統。
12.如條項11之裝置,其中該第一孔徑陣列安置於該帶電粒子源與該第二孔徑陣列之間。
13.如條項11及12中任一項之裝置,其中該第一孔徑陣列包含一電流限制孔徑陣列。
14.如條項11至13中任一項之裝置,其中該複數個電流偵測器中之每一者包括用以累積該複數個小射束之該對應小射束之至少一部分之電荷 且基於該累積電荷量測該電流的電路系統。
15.如條項11至14中任一項之裝置,其中該複數個電流偵測器中之每一者包括用以監測該對應小射束之該電流的電路系統。
16.如條項15之裝置,其中該複數個電流偵測器中之每一者包括用以偵測該對應小射束之一位置或一大小之一改變中的至少一者之電路系統。
17.如條項11至16中任一項之裝置,其中該複數個電流偵測器中之每一者包括用以偵測該對應小射束之複數個參數中之至少一者之一改變的電路系統。
18.如條項17之裝置,其中該複數個參數包含一小射束位置、一小射束直徑、一小射束電流、一小射束電流密度或該小射束電流密度之一均一性中的至少一者。
19.如條項11至18中任一項之裝置,其中該複數個電流偵測器中之該每一者包含一法拉第杯、一二極體、一二極體陣列或一閃爍體。
20.一種多射束裝置,其包含:一帶電粒子源,其經組態以產生一初級帶電粒子射束;一第一孔徑陣列,其包含:第一複數個孔徑,其經組態以自該初級帶電粒子射束形成複數個小射束;及一第一電流偵測器,其包括用以偵測輻照該第一孔徑陣列之該初級帶電粒子射束之至少一部分之一電流的電路系統;及一第二孔徑陣列,其包含第二複數個孔徑,其中該第二複數個孔徑中之每一者經組態以接收該複數個小射束之一對應小射束之至少一部分。
21.如條項20之裝置,其中該第一電流偵測器包括用以累積該初級帶電粒子射束之至少一部分之電荷且基於該累積電荷量測該電流的電路系統。
22.如條項20及21中任一項之裝置,其中該第二孔徑陣列包含與該第二複數個孔徑中之至少一者相關聯的一第二電流偵測器。
23.如條項22之裝置,其中該第二電流偵測器包括用以累積該複數個小射束之該對應小射束之至少該部分之電荷且基於該累積電荷量測該電流的電路系統。
24.如條項20至23中任一項之裝置,其中該第一電流偵測器包括用以偵測該初級帶電粒子射束之複數個參數中之至少一者之一改變的電路系統。
25.如條項22至24中任一項之裝置,其中該第二電流偵測器包括用以偵測該對應小射束之複數個參數中之至少一者之一改變的電路系統。
26.如條項24之裝置,其中該初級帶電粒子射束之該複數個參數包含一射束位置、一射束直徑、一射束電流、一射束電流密度或該射束電流密度之一均一性中的至少一者。
27.如條項25之裝置,其中該對應小射束之該複數個參數包含一小射束位置、一小射束直徑、一小射束電流、一小射束電流密度或該小射束電流密度之一均一性中的至少一者。
28.如條項20至27中任一項之裝置,其中該第一電流偵測器包含一法拉第杯、一二極體、一二極體陣列或一閃爍體。
29.如條項22至28中任一項之裝置,其中該第二電流偵測器包含一法拉第杯、一二極體、一二極體陣列、一閃爍體。
30.如條項20至29中任一項之裝置,其中該第一孔徑陣列包含複數個電流偵測器。
31.一種量測一多射束裝置中之射束電流之方法,該方法包含:使一初級帶電粒子射束輻照於一孔徑陣列上;使用定位於該孔徑陣列上之一偵測器偵測該初級帶電粒子射束之至少一部分之一電流;及基於該經偵測電流調整複數個射束參數中之至少一個射束參數。
32.如條項30之方法,其進一步包含累積該初級帶電粒子射束之至少該部分之電荷且基於該累積電荷量測該射束電流。
33.如條項30及31中任一項之方法,其進一步包含監測該初級帶電粒子射束之至少該部分之該射束電流。
34.如條項30至32中任一項之方法,其進一步包含偵測該初級帶電粒子射束之該部分之複數個參數中之至少一者的改變。
35.如條項33之方法,其中該複數個參數包含一射束位置、一射束直徑、一射束電流、一射束電流密度或該射束電流密度之一均一性中的至少一者。
36.如條項30至34中任一項之方法,其進一步包含基於該初級帶電粒子射束之至少該部分之該量測電流判定該初級帶電粒子射束之一總電流。
37.如條項30至35中任一項之方法,其中該偵測器包含複數個電流偵測器,且其中該複數個電流偵測器中之每一者與該孔徑陣列之至少一個孔徑相關聯。
38.一種非暫時性電腦可讀媒體,其儲存一指令集,該指令集可由 一多射束裝置之一或多個處理器執行以致使該多射束裝置執行用以量測該多射束裝置中之射束電流之一方法,該方法包含:控制一初級帶電粒子射束輻照於一孔徑陣列上;及基於由一偵測器偵測之該初級帶電粒子射束之至少一部分之電流判定該初級帶電粒子射束之電流。
39.如條項37之非暫時性電腦可讀媒體,其中可由一多射束裝置之一或多個處理器執行之該指令集致使該多射束裝置進一步執行以下操作:啟動該偵測器以累積該初級帶電粒子射束之至少該部分之電荷;基於該累積電荷量測該初級帶電粒子射束之至少該部分之該電流;及基於該經量測電流調整複數個射束參數中之至少一個射束參數。
可提供非暫時性電腦可讀媒體,其儲存用於控制器(例如圖1之控制器40)之處理器進行影像檢測、影像獲取、載物台定位、射束聚焦、電場調整、射束彎曲等之指令。非暫時性媒體之常見形式包括例如軟碟、可撓性磁碟、硬碟、固態磁碟機、磁帶或任何其他磁性資料儲存媒體、緊密光碟唯讀記憶體(CD-ROM)、任何其他光學資料儲存媒體、具有孔圖案之任何實體媒體、隨機存取記憶體(RAM)、可程式化唯讀記憶體(PROM)及可抹除可程式化唯讀記憶體(EPROM)、FLASH-EPROM或任何其他快閃記憶體、非揮發性隨機存取記憶體(NVRAM)、快取記憶體、暫存器、任何其他記憶體晶片或卡匣,及其網路化版本。
應瞭解,本發明之實施例不限於已在上文所描述及在隨附圖式中所說明之確切構造,且可在不脫離本發明之範疇的情況下作出各種修改及改變。本發明已結合各種實施例進行了描述,藉由考慮本文中所揭示之本發明之規格及實踐,本發明之其他實施例對於熟習此項技術者將為 顯而易見的。意欲規格及實例僅被認為是例示性的,其中本發明之真正範疇及精神藉由以下申請專利範圍指示。
以上描述意欲為說明性,而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下如所描述進行修改。
500_1:主光軸
503:孔徑/中心孔徑
504_1:電流偵測器
504_2:電流偵測器
504_3:電流偵測器
504_4:電流偵測器
505:電流限制孔徑陣列
515:虛擬邊界

Claims (18)

  1. 一種用於檢測一樣本之多射束裝置,其包含:一帶電粒子源,其經組態以產生一初級帶電粒子射束(primary charged-particle beam);一孔徑陣列,其包含:複數個孔徑,其經組態以自該初級帶電粒子射束形成複數個小射束(beamlets);及複數個偵測器,其於該孔徑陣列相對於該初級帶電粒子射束之一射束入口(entrance)側上並且沿著一虛擬邊界的一內側邊緣而安置,該虛擬邊界表示入射於該孔徑陣列上之該初級帶電粒子射束的一期望大小和位置,該複數個偵測器經組態以累積輻照該孔徑陣列之該初級帶電粒子射束之至少一部分之電荷;及一控制器,其具有耦接至該複數個偵測器及該帶電粒子源的電路系統,該電路系統經組態以:改變該複數個偵測器之一操作模式以在一偵測模式及一監測模式之間切換,其中,在該偵測模式中,該控制器使該複數個偵測器在一第一預定時間內累積電荷,且在該監測模式中,該控制器使該複數個偵測器在不同於該第一預定時間之一第二預定時間內累積電荷,並且基於由該複數個偵測器累積之電荷連續地監測入射於該孔徑陣列上之該初級帶電粒子射束之一漂移,及在檢測該樣本時,基於由該複數個偵測器累積之該等電荷來調整該帶電粒子源之一參數以校正該初級帶電粒子射束之該漂 移。
  2. 如請求項1之裝置,其中該控制器包含用以基於由該複數個偵測器累積之該電荷量測一電流的電路系統。
  3. 如請求項2之裝置,其中該控制器包含用以監測該初級帶電粒子射束之至少該部分之該電流之電路系統。
  4. 如請求項3之裝置,其中該控制器包含用以偵測該初級帶電粒子射束之至少該部分之一位置或一大小之一改變中的至少一者之電路系統。
  5. 如請求項2之裝置,其中該初級帶電粒子射束之至少該部分之該電流用以判定該初級帶電粒子射束之一總電流。
  6. 如請求項1之裝置,其中該複數個偵測器經組態以偵測該初級帶電粒子射束之複數個參數中之至少一者之一改變。
  7. 如請求項6之裝置,其中該複數個參數包含一射束位置、一射束直徑、一射束電流、一射束電流密度或該射束電流密度之一均一性中的至少一者。
  8. 如請求項6之裝置,其中該複數個偵測器中之每一者與該孔徑陣列之至少一個孔徑相關聯。
  9. 如請求項6之裝置,其中該複數個偵測器中之每一者安置於該孔徑陣列上。
  10. 如請求項1之裝置,其中該複數個偵測器包含一法拉第杯、一二極體、一二極體陣列或一閃爍體(scintillator)。
  11. 如請求項1之裝置,其中,在該偵測模式中,該控制器包含基於由該複數個偵測器累積之該電荷、該第一預定時間及曝露至該初級帶電粒子射束之該複數個偵測器之面積來量測該初級帶電粒子射束之一電流密度之電路系統。
  12. 如請求項1之裝置,其中,在該偵測模式中,該複數個偵測器週期性地啟動或撤銷以用於該電荷之累積。
  13. 如請求項1之裝置,其中,在該監測模式中,該複數個偵測器連續地啟動以監測累積電荷之一變化。
  14. 一種在用於檢測一樣本之一多射束裝置中量測射束電流之方法,該方法包含:由一帶電粒子源產生一初級帶電粒子射束;使該初級帶電粒子射束輻照於一孔徑陣列上包含於該孔徑陣列之一射束入口側上並且沿著一虛擬邊界的一內側邊緣而安置的複數個偵測器, 該虛擬邊界表示入射於該孔徑陣列上之該初級帶電粒子射束的一期望大小和位置,該複數個偵測器經組態以支援一偵測模式及一監測模式;使用該複數個偵測器以在該偵測模式之期間的一第一預定時間內以及在該監測模式之期間的一第二預定時間內累積該初級帶電粒子射束之至少一部分之電荷,其中該第一預定時間不同於該第二預定時間;基於由該複數個偵測器累積之電荷連續地監測入射於該孔徑陣列上之該初級帶電粒子射束之一漂移;及在檢測該樣本時,基於由該複數個偵測器累積之該等電荷來調整該帶電粒子源之一參數以校正該初級帶電粒子射束之該漂移。
  15. 如請求項14之方法,其進一步包含基於該累積電荷量測一射束電流。
  16. 如請求項15之方法,其進一步包含監測該初級帶電粒子射束之至少該部分之該射束電流。
  17. 如請求項14之方法,其進一步包含偵測該初級帶電粒子射束之該部分之複數個參數中之至少一者的改變。
  18. 如請求項14之方法,其中該複數個偵測器中之每一者與該孔徑陣列之至少一個孔徑相關聯。
TW109110145A 2019-03-28 2020-03-26 多射束裝置及量測多射束裝置中之射束電流之方法 TWI829901B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19166009.1A EP3716313A1 (en) 2019-03-28 2019-03-28 Aperture array with integrated current measurement
EP19166009.1 2019-03-28

Publications (2)

Publication Number Publication Date
TW202044310A TW202044310A (zh) 2020-12-01
TWI829901B true TWI829901B (zh) 2024-01-21

Family

ID=66001094

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109110145A TWI829901B (zh) 2019-03-28 2020-03-26 多射束裝置及量測多射束裝置中之射束電流之方法

Country Status (8)

Country Link
US (1) US11791132B2 (zh)
EP (2) EP3716313A1 (zh)
JP (1) JP7250948B2 (zh)
KR (1) KR102655279B1 (zh)
CN (1) CN113678225A (zh)
IL (1) IL286301A (zh)
TW (1) TWI829901B (zh)
WO (1) WO2020193130A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4117012A1 (en) * 2021-07-07 2023-01-11 ASML Netherlands B.V. Charged particle-optical device, charged particle apparatus and method
DE102021118561B4 (de) 2021-07-19 2023-03-30 Carl Zeiss Multisem Gmbh Verfahren zum Betreiben eines Vielstrahl-Teilchenmikroskopes mit schneller Strahlstromregelung, Computerprogrammprodukt und Vielstrahl-Teilchenmikroskop
US20230052445A1 (en) * 2021-08-12 2023-02-16 Ims Nanofabrication Gmbh Beam Pattern Device Having Beam Absorber Structure
CN117665897A (zh) * 2022-08-29 2024-03-08 华为技术有限公司 一种法拉第杯和带电粒子束测量方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060060775A1 (en) * 2004-09-09 2006-03-23 Hitachi High-Technologies Corporation Measurement method of electron beam current, electron beam writing system and electron beam detector
US20060138359A1 (en) * 2004-12-28 2006-06-29 Canon Kabushiki Kaisha Charged-particle beam exposure apparatus and method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4167050B2 (ja) * 2002-12-13 2008-10-15 キヤノン株式会社 荷電粒子線露光装置及びその制御方法、並びにデバイス製造方法
JP4738723B2 (ja) * 2003-08-06 2011-08-03 キヤノン株式会社 マルチ荷電粒子線描画装置、荷電粒子線の電流の測定方法及びデバイス製造方法
JP4313145B2 (ja) * 2003-10-07 2009-08-12 株式会社日立ハイテクノロジーズ 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
US7868300B2 (en) * 2005-09-15 2011-01-11 Mapper Lithography Ip B.V. Lithography system, sensor and measuring method
DE602008003970D1 (de) * 2008-02-08 2011-01-27 Integrated Circuit Testing Strahlstromkalibriersystem
JP5227902B2 (ja) * 2009-06-16 2013-07-03 株式会社日立ハイテクノロジーズ 荷電粒子顕微鏡装置及び荷電粒子ビーム制御方法
WO2012065941A1 (en) * 2010-11-13 2012-05-24 Mapper Lithography Ip B.V. Charged particle lithography system with aperture array cooling
NL2006868C2 (en) * 2011-05-30 2012-12-03 Mapper Lithography Ip Bv Charged particle multi-beamlet apparatus.
JP5977550B2 (ja) * 2012-03-22 2016-08-24 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置
NL2009696C2 (en) * 2012-10-25 2014-04-29 Univ Delft Tech Apparatus and method for inspecting a surface of a sample.
JP6834817B2 (ja) * 2016-08-08 2021-02-24 株式会社ニューフレアテクノロジー マルチビーム検査用アパーチャ、マルチビーム用ビーム検査装置、及びマルチ荷電粒子ビーム描画装置
JP2018078251A (ja) 2016-11-11 2018-05-17 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060060775A1 (en) * 2004-09-09 2006-03-23 Hitachi High-Technologies Corporation Measurement method of electron beam current, electron beam writing system and electron beam detector
US20060138359A1 (en) * 2004-12-28 2006-06-29 Canon Kabushiki Kaisha Charged-particle beam exposure apparatus and method

Also Published As

Publication number Publication date
JP2022524834A (ja) 2022-05-10
IL286301A (en) 2021-10-31
US20200312619A1 (en) 2020-10-01
WO2020193130A1 (en) 2020-10-01
KR20210132159A (ko) 2021-11-03
TW202044310A (zh) 2020-12-01
KR102655279B1 (ko) 2024-04-08
JP7250948B2 (ja) 2023-04-03
CN113678225A (zh) 2021-11-19
EP3716313A1 (en) 2020-09-30
EP3948921A1 (en) 2022-02-09
US11791132B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
TWI829901B (zh) 多射束裝置及量測多射束裝置中之射束電流之方法
US6844550B1 (en) Multi-beam multi-column electron beam inspection system
KR102179897B1 (ko) 시료를 검사하기 위한 방법 및 하전 입자 다중-빔 디바이스
TWI794782B (zh) 具有多個偵測器之帶電粒子束裝置及用於成像之方法
US8378299B2 (en) Twin beam charged particle column and method of operating thereof
TW202020918A (zh) 用於多帶電粒子束的設備
TWI767235B (zh) 電光系統及形成樣本之影像之方法
TWI767443B (zh) 用於形成影像之非暫時性電腦可讀媒體
US20200381212A1 (en) Multiple charged-particle beam apparatus and methods of operating the same
US8963084B2 (en) Contamination reduction electrode for particle detector
US20200211814A1 (en) Scanning efficiency by individual beam steering of multi-beam apparatus
US20230377831A1 (en) Anti-scanning operation mode of secondary-electron projection imaging system for apparatus with plurality of beamlets
US11804355B2 (en) Apparatus for multiple charged-particle beams
EP4306945A1 (en) Method of assessing a sample, apparatus for assessing a sample
TW202405856A (zh) 具有大視場之帶電粒子束設備及其方法
TW202300906A (zh) 資料處理裝置及方法以及帶電粒子評估系統及方法
TW202420370A (zh) 評估樣本之方法、評估樣本之設備
TW202309965A (zh) 帶電粒子光學裝置、帶電粒子設備及方法
TW202316470A (zh) 帶電粒子評估系統及在帶電粒子評估系統中對準樣品之方法