TWI819314B - 設計電路的方法以及sram裝置 - Google Patents
設計電路的方法以及sram裝置 Download PDFInfo
- Publication number
- TWI819314B TWI819314B TW110120095A TW110120095A TWI819314B TW I819314 B TWI819314 B TW I819314B TW 110120095 A TW110120095 A TW 110120095A TW 110120095 A TW110120095 A TW 110120095A TW I819314 B TWI819314 B TW I819314B
- Authority
- TW
- Taiwan
- Prior art keywords
- finfet
- pmos
- nmos
- fins
- circuit
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 104
- 230000005669 field effect Effects 0.000 claims abstract description 5
- 230000004044 response Effects 0.000 claims description 4
- 230000003068 static effect Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 27
- 239000000463 material Substances 0.000 description 14
- 230000008569 process Effects 0.000 description 9
- 238000006467 substitution reaction Methods 0.000 description 9
- 238000013461 design Methods 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 5
- 238000004088 simulation Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/04—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
- G11C16/0483—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/39—Circuit design at the physical level
- G06F30/392—Floor-planning or layout, e.g. partitioning or placement
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/41—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
- G11C11/412—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/41—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
- G11C11/413—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
- G11C11/417—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
- G11C11/418—Address circuits
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/39—Circuit design at the physical level
- G06F30/398—Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/02—Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
- G11B5/09—Digital recording
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/31—Structure or manufacture of heads, e.g. inductive using thin films
- G11B5/3109—Details
- G11B5/313—Disposition of layers
- G11B5/3143—Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding
- G11B5/3146—Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding magnetic layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/41—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
- G11C11/413—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
- G11C11/417—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/54—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using elements simulating biological cells, e.g. neuron
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1078—Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
- G11C7/1096—Write circuits, e.g. I/O line write drivers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/18—Bit line organisation; Bit line lay-out
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C8/00—Arrangements for selecting an address in a digital store
- G11C8/08—Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C8/00—Arrangements for selecting an address in a digital store
- G11C8/10—Decoders
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B10/00—Static random access memory [SRAM] devices
- H10B10/18—Peripheral circuit regions
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/41—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
- G11C11/413—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
- G11C11/417—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
- G11C11/419—Read-write [R-W] circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/0203—Particular design considerations for integrated circuits
- H01L27/0207—Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0924—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B10/00—Static random access memory [SRAM] devices
- H10B10/12—Static random access memory [SRAM] devices comprising a MOSFET load element
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Evolutionary Computation (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geometry (AREA)
- Power Engineering (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Pure & Applied Mathematics (AREA)
- Computational Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Neurology (AREA)
- Architecture (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Algebra (AREA)
- Computational Linguistics (AREA)
- Artificial Intelligence (AREA)
- Databases & Information Systems (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
- Logic Circuits (AREA)
Abstract
一種設計電路的方法。方法包含:提供電路;選擇電路中的第一NMOS鰭式場效電晶體(FinFET);以及用具有第二鰭片數目的第二NMOS FinFET及具有第三鰭片數目的第三NMOS FinFET替換具有第一鰭片數目的第一NMOS FinFET,其中第二鰭片數目與第三鰭片數目的總和等於第一鰭片數目。
Description
在本發明的實施例中闡述的技術大體來說涉及半導體積體電路,且更具體來說,涉及設計電路的方法以及SRAM裝置。
半導體積體電路(integrated circuit;IC)行業已經歷快速成長。IC材料及設計中的技術進步已產生數代IC,其中每一代都具有比前一代更小且更複雜的電路。然而,此等進步已增加處理及製造IC的複雜度,且為了實現此等進步,需要IC處理及製造方面的類似發展。在IC演進的主流過程中,功能密度(亦即,每晶片面積的內連裝置的數目)已大體上增加,而幾何大小(亦即,可使用製造製程產生的最小組件)已減小。然而,此主流演進需要藉由大量投資設施建立而遵循莫耳規則(Moore's rule)。因此,不斷需要開發具有較小晶片面積、較低成本以及較低洩漏電流的IC。
本發明實施例提供一種設計電路的方法,包括:提供電路;選擇所述電路中的第一NMOS鰭式場效電晶體(FinFET);以及用具有第二鰭片數目的第二NMOS FinFET及具有第三鰭片數
目的第三NMOS FinFET替換具有第一鰭片數目的所述第一NMOS FinFET,其中所述第二鰭片數目與所述第三鰭片數目的總和等於所述第一鰭片數目。
本發明實施例提供一種設計電路的方法,包括:提供電路;選擇所述電路中的第一PMOS FinFET及第二PMOS FinFET;以及用具有第三鰭片數目的第三PMOS FinFET替換具有第一鰭片數目的所述第一PMOS FinFET及具有第二鰭片數目的所述第二PMOS FinFET,其中所述第一鰭片數目與所述第二鰭片數目的總和等於所述第三鰭片數目。
本發明實施例提供一種SRAM裝置,包括:記憶胞,包含:第一反相器;第二反相器,交叉耦接至所述第一反相器;第一存取電晶體,連接在所述第一反相器的第一資料節點與第一位元線之間;以及第二存取電晶體,連接在所述第二反相器的第二資料節點與第二位元線之間;以及寫入驅動器,包含:第一PMOS FinFET,具有耦接至第一電源端的源極端及汲極端的一者;第二PMOS FinFET,具有耦接至所述第一PMOS FinFET的源極端及汲極端的另一者的源極端及汲極端的一者,以及耦接至所述第一位元線的閘極端;第三PMOS FinFET,具有耦接至所述第一電源端的源極端及汲極端的一者;第四PMOS FinFET,具有耦接至所述第三PMOS FinFET的源極端及汲極端的另一者的源極端及汲極端的一者,以及耦接至所述第二位元線的閘極端;第一NMOS FinFET及第二NMOS FinFET,並聯連接在所述第二PMOS FinFET的源極端及汲極端的另一者與第二電源端之間,其中將所述第一PMOS FinFET的閘極端與所述第一NMOS FinFET及所述第二NMOS
FinFET的閘極端連接以接收第一寫入訊號;以及第三NMOS FinFET及第四NMOS FinFET,並聯連接在所述第四PMOS FinFET的源極端及汲極端的另一者與所述第二電源端之間,其中將所述第三PMOS FinFET的閘極端與所述第三NMOS FinFET及所述第四NMOS FinFET的閘極端連接以接收第二寫入訊號。
100、300、500:方法
102、104、106、302、304、306、502、504、506、508、510:步驟
290、490、690、890:電路
710:記憶陣列
720:寫入驅動器
730a、730b:標頭電路
782:鰭片
784:閘極指狀件
790:SRAM電路
891、992、993、1093:反相器
990、1090:記憶體裝置電路
991:字元線驅動器
1091:解碼器驅動器
1092NAND:閘極
A0、A1:輸入訊號端
BL、BLB:位元線
CLK:時鐘訊號端
D1、D2:汲極
DEC:輸出端
G1、G2:閘極
N1、N1a、N1b、N2、NM1、NM2、NM3、NM4、NM5、NM6、NM81、NM82、NM83:NMOS FinFET
P1、P2、P3、P4、P5、P6、P7、P8、P9、PM1、PM2、PM3、PM4、PM5、PM6、PM81、PM82、PM83:PMOS FinFET
S1、S2:源極
SD:停機訊號
T1、T2、T3、T4、T5、T6:FinFET
VDD:第二功率域/端
VDDAI、VDDHD_DR、VSS:端
VDDM:第一功率域
WC:第一寫入訊號
WL:字元線/字元線訊號端
WT:第二寫入訊號
當結合隨附圖式閱讀時,自以下詳細描述最佳地理解本公開的態樣。應注意,根據業界中的標準慣例,各種特徵未按比例繪製。實際上,出於論述清晰起見,可任意增大或減小各種特徵的尺寸。另外,圖式說明為本發明的實施例的實例且並不意欲為限制性的。
圖1為示出根據一些實施例的實例方法的流程圖。
圖2A為示出根據一些實施例的使用圖1的方法的NMOS FinFET的替換的圖。
圖2B為示出根據一些實施例的使用圖1的方法的NMOS FinFET的另一替換的圖。
圖3為示出根據一些實施例的實例方法的流程圖。
圖4A為示出根據一些實施例的使用圖3的方法的PMOS FinFET的替換的圖。
圖4B為示出根據一些實施例的使用圖3的方法的PMOS FinFET的另一替換的圖。
圖5為示出根據一些實施例的實例方法的流程圖。
圖6為示出根據一些實施例的使用圖5的方法的NMOS
FinFET及多個PMOS FinFET的替換的圖。
圖7A為根據一些實施例的可將圖5的方法應用於其的SRAM裝置的圖。
圖7B為示出根據一些實施例的應用圖5的方法的圖。
圖7C為示出根據一些實施例的對應於圖7B的佈局的圖。
圖7D為示出根據一些實施例的應用圖5的方法的圖。
圖7E為示出根據一些實施例的對應於圖7D的佈局的圖。
圖8為示出根據一些實施例的包含將圖5的方法應用於其的反相器的電路的圖。
圖9為示出根據一些實施例的包含將圖5的方法應用於其的字元線驅動器的記憶體裝置電路的圖。
圖10為示出根據一些實施例的包含將圖5的方法應用於其的列解碼器驅動器或行解碼器驅動器的記憶體裝置電路的圖。
以下揭露提供用於實施所提供主題的不同特徵的許多不同實施例或實例。下文描述組件及配置的特定實例以簡化本公開。當然,此等組件及配置僅為實例且並不意欲為限制性的。舉例而言,在以下描述中,第一特徵在第二特徵上方或第二特徵上的形成可包含第一特徵與第二特徵直接接觸地形成的實施例,且亦可包含額外特徵可在第一特徵與第二特徵之間形成以使得第一特徵與第二特徵可不直接接觸的實施例。另外,本公開可在各種實例中重複參考標號及/或字母。此重複是出於簡單及清楚的目的,且其本身並不規定所論述的各種實施例及/或組態之間的關係。
此外,為易於描述,本文中可使用諸如「在......之下」、「在......下方」、「下部」、「在......上方」、「上部」以及類似者的空間相對術語來描述如圖中所示出的一個元件或特徵相對於另一元件或特徵的關係。除圖式中所描繪的定向之外,空間相對術語意欲涵蓋裝置在使用或操作中的不同定向。設備可以其他方式定向(旋轉90度或處於其他定向)且本文中所使用的空間相對描述詞可同樣相應地進行解譯。
隨著積體電路(IC)大小減小,努力克服此大小減小所面臨的問題。舉例而言,鰭式場效電晶體(fin field-effect transistor;FinFET)的效能自減小的通道長度(包含洩漏電流)而降低。豎直半導體裝置(諸如FinFET)為半導體基底的表面上的三維結構。鰭片自基底的主體向上延伸,且可藉由在基底上沈積鰭片材料、蝕刻基底的非鰭片區域或其組合而形成。FinFET的通道形成於此豎直鰭片中,且閘極設置於鰭片上方(例如,包繞)。在鰭片周圍包繞閘極增大了通道區與閘極之間的接觸面積,且允許閘極自兩側控制通道。隨著積體電路裝置變得更小,裝置之間的間隔或「間距」可在相鄰裝置之間產生電磁干擾。因此,需要用以改良FinFET效能的新方法及結構。具體言之,電路設計者可基於最小裝置指狀件及總鰭片數目考慮而實施關於先進的FinFET技術節點(例如,N10、N7、N5等)的電路設計。對於低功率應用,若錯誤PMOS或NMOS鰭片大小用於電路設計中,則電路洩漏電流將較高。
根據一些實施例,提供用於FinFET半導體裝置分組的方法。一般而言,將最佳鰭片分組設計應用於一些裝置以在相同飽和電流(Idsat)速度操作下實現較低的洩漏電流(Ioff)。具有較大鰭
片大小的PMOS FinFET由於較高電洞移動率而具有較高的飽和洩漏比,而具有較小鰭片大小的NMOS FinFET由於較高電子移動率而具有較高的飽和洩漏比。藉由交換基於PMOS及NMOS屬性的鰭片大小選擇,將減少電路洩漏電流。在下文所論述的一些實施例中,藉由在無任何額外電路改變的情況下交換鰭片大小選擇,在相同飽和電流速度操作下,洩漏電流可減少大於5%至10%。
具體言之,FinFET具有與FinFET的旋轉速度相關聯的飽和電流(Idsat)及FinFET的斷開狀態下的洩漏電流(Ioff)。FinFET的不同鰭片大小可引起不同的飽和洩漏比(Idsat/Ioff)特性,此是由於不同鰭片大小具有將在下文詳細描述的包含壓縮應力及拉伸應力的不同隔離應力。
對於n型FinFET(亦稱為「NMOS FinFET」,在本文中可互換使用),NMOS FinFET的源極/汲極可包含拉伸應力材料。拉伸應力為由所施加負載引起的應力狀態,所施加負載傾向於使材料沿著所施加負載的軸線伸長,換言之,拉伸應力為由拉動材料引起的應力。以拉力加載的具有相等橫截面積的結構的強度與橫截面的形狀無關。在一些實施例中,拉伸應力材料可為與矽相比具有較小晶格常數的材料(例如,硼)。拉伸應力材料可藉由將拉伸應力施加至NMOS FinFET的鰭片結構來改良通道區中的載子的移動率(亦即,NMOS FinFET的電子移動率)。因此,具有較小鰭片大小的NMOS FinFET由於較高電子移動率而具有較高飽和洩漏比,因此在相同飽和電流條件下具有較低洩漏電流。
另一方面,對於p型FinFET(亦稱為「PMOS FinFET」,在本文中可互換使用),PMOS FinFET的源極/汲極可包含壓縮應
力材料。壓縮應力(或壓縮)為由所施加負載引起的應力狀態,所述所施加負載用以沿著所施加負載的軸線減小材料(壓縮部件)的長度,換言之,其為引起材料擠壓的應力狀態。在一些實施例中,壓縮應力材料可為與矽相比具有較大晶格常數的材料(例如,矽鍺)。壓縮應力材料可藉由將壓縮應力施加至PMOS FinFET的鰭片結構來改良通道區中的載子的移動率(亦即,PMOS FinFET的電洞移動率)。因此,具有較大鰭片大小的PMOS FinFET由於較高電洞移動率而具有較高飽和洩漏比,因此在相同飽和電流條件下具有較低洩漏電流。
因而,對於NMOS FinFET需要具有較小鰭片大小,而對於PMOS FinFET需要具有較大鰭片大小,以便在相同飽和電流條件下具有較低洩漏電流。因此,藉由將具有較大鰭片大小(例如,3個鰭片)的一個NMOS FinFET分解成具有較小鰭片大小(例如,一個具有2個鰭片且另一個具有1個鰭片)的多個NMOS FinFET,洩漏電流將減少。此方法可在電路設計期間應用於電路中的任何NMOS FinFET,且下文將參考圖1描述細節。另一方面,藉由將具有較小鰭片大小(例如,一個具有2個鰭片且另一個具有1個鰭片)的多個PMOS FinFET分組為具有較大鰭片大小(例如,3個鰭片)的一個PMOS FinFET,洩漏電流將減少。此方法可在電路設計期間應用於電路中的任何PMOS FinFET,且下文將參考圖3描述細節。
圖1為示出根據一些實施例的實例方法100的流程圖。在圖1中所繪示的實例中,方法100在提供電路的步驟102處開始。電路可為包含NMOS FinFET的任何電路。在一些非限制性實
例中,電路為處理連續類比訊號的類比電路。舉例而言,類比電路可包含以下中的至少一者:差動放大器、運算放大器(Op Amp)、射頻(radio frequency;RF)放大器、比較器、電流鏡、類比乘法器、類比除法器、類比數位轉換器(analog-to-digital converter;ADC)、數位類比轉換器(digital-to-analog converter;DAC)、電壓控制振盪器(voltage controlled oscillator;VCO)、I/Q調變器以及類比開關多工器或類似者。另一方面,在一些非限制性實例中,電路為處理離散數位訊號的數位電路。舉例而言,數位電路可包含以下中的至少一者:邏輯AND閘極、邏輯OR閘極、反相器、邏輯NAND閘極、邏輯NOR閘極、正反器、多工器(亦即,資料選擇器)、同步時序邏輯電路、異步時序邏輯電路或類似者。
方法100接著繼續進行至選擇電路中的第一NMOS FinFET的步驟104。通常基於與第一NMOS FinFET的飽和電流(Idsat)及洩漏電流(Ioff)相關聯的考慮因素而選擇第一NMOS FinFET,但理論上可選擇電路中的任何NMOS FinFET。舉例而言,第一NMOS FinFET可為靜態隨機存取記憶體(static random-access-memory;SRAM)裝置(其細節將在下文參考圖7A進行描述)的寫入驅動器中的NMOS FinFET,此是由於寫入驅動器中的彼NMOS FinFET的洩漏電流顯著地有助於SRAM裝置的整體洩漏。應注意,亦可選擇電路中除第一NMOS FinFET以外的NMOS FinFET。換言之,可在步驟104處選擇電路中的多個NMOS FinFET。
方法100接著繼續進行至用第二NMOS FinFET及第三NMOS FinFET替換第一NMOS FinFET的步驟106。具體言之,第
一NMOS FinFET具有第一鰭片數目,第二NMOS FinFET具有第二鰭片數目,且第三NMOS FinFET具有第三鰭片數目。鰭片數目愈大,整體鰭片結構愈寬。第一鰭片數目等於第二鰭片數目與第三鰭片數目的總和。因而,整體鰭片結構的寬度在替換之後不變。然而,第二NMOS FinFET及第三NMOS FinFET的總洩漏電流小於第一NMOS FinFET的洩漏電流,此是因為具有較小鰭片大小的NMOS FinFET由於較高電子移動率而具有較高飽和洩漏比。
圖2A為示出根據一些實施例的使用圖1的方法100的NMOS FinFET的替換的圖。圖2B為示出根據一些實施例的使用圖1的方法100的NMOS FinFET的另一替換的圖。如圖2A中所繪示,在圖1中所繪示的步驟104處選擇電路290中的NMOS FinFET NM1。NMOS FinFET NM1具有閘極G1、源極S1以及汲極D1。具體言之,NMOS FinFET NM1具有三個鰭片(亦即,閘極結構在三個平行鰭片結構上方且控制彼等三個鰭片結構)。在圖1中所繪示的步驟106處,用NMOS FinFET NM2及NMOS FinFET NM3替換NMOS FinFET NM1。具體言之,NMOS FinFET NM2具有一個鰭片,而NMOS FinFET NM3具有兩個鰭片。NMOS FinFET NM2具有閘極G1、源極S1以及汲極D1;NMOS FinFET NM3亦具有閘極G1、源極S1以及汲極D1。換言之,分別連接NMOS FinFET NM2及NMOS FinFET NM3的閘極、源極以及汲極。因而,對應於總鰭片大小的總鰭片數目在圖1中所繪示的步驟106處的替換之後不變(亦即,兩者均為三個)。然而,NMOS FinFET NM2及NMOS FinFET NM3的總洩漏電流小於NMOS FinFET NM1的洩漏電流,此是因為具有較小鰭片大小的NMOS FinFET由於較
高電子移動率而具有較高飽和洩漏比。因而,在圖1中所繪示的步驟106處的替換之後,總洩漏電流減少。
替代地,如圖2B中所繪示,用NMOS FinFET NM4、NMOS FinFET NM5以及NMOS FinFET NM6替換NMOS FinFET NM1。具體言之,NMOS FinFET NM4具有一個鰭片,NMOS FinFET NM5具有一個鰭片,且NMOS FinFET NM6具有一個鰭片。NMOS FinFET NM4具有閘極G1、源極S1以及汲極D1;NMOS FinFET NM5亦具有閘極G1、源極S1以及汲極D1;NMOS FinFET NM6亦具有閘極G1、源極S1以及汲極D1。換言之,分別連接NMOS FinFET NM4、NMOS FinFET NM5以及NMOS FinFET NM6的閘極、源極以及汲極。因而,對應於總鰭片大小的總鰭片數目在圖1中所繪示的步驟106處的替換之後不變(亦即,兩者均為三個)。然而,NMOS FinFET NM4、NMOS FinFET NM5以及NMOS FinFET NM6的總洩漏電流小於NMOS FinFET NM1的洩漏電流,此是因為具有較小鰭片大小的NMOS FinFET由於較高電子移動率而具有較高飽和洩漏比。因而,在圖1中所繪示的步驟106處的替換之後,總洩漏電流減少。
應注意,方法100可應用於電路中的任何NMOS FinFET,且圖2A及圖2B僅為實例。在一個實例中,具有兩個鰭片的NMOS FinFET可用兩個NMOS FinFET替換,其中所述NMOS FinFET中的每一者具有一個鰭片。在一個實例中,具有四個鰭片的NMOS FinFET可用以下替換:(1)四個NMOS FinFET,其中的每一者具有一個鰭片;(2)一個NMOS FinFET,具有兩個鰭片,以及兩個NMOS FinFET,其中的每一者具有一個鰭片;(3)一個NMOS
FinFET,具有三個鰭片,以及一個NMOS FinFET,具有一個鰭片;以及(4)兩個NMOS FinFET,其中的每一者具有兩個鰭片。在一個實例中,具有五個鰭片的NMOS FinFET可用以下替換:(1)五個NMOS FinFET,其中的每一者具有一個鰭片;(2)一個NMOS FinFET,具有兩個鰭片,以及三個NMOS FinFET,其中的每一者具有一個鰭片;(3)一個NMOS FinFET,具有三個鰭片,以及兩個NMOS FinFET,其中的每一者具有一個鰭片;(4)一個NMOS FinFET,具有四個鰭片,以及一個NMOS FinFET,具有一個鰭片;(5)一個NMOS FinFET,具有一個鰭片,以及兩個NMOS FinFET,其中的每一者具有兩個鰭片;以及(6)一個NMOS FinFET,具有兩個鰭片,以及一個NMOS FinFET,具有三個鰭片。同樣,圖1中所繪示的此方法100可應用於具有N個鰭片的NMOS FinFET,其中N為大於一的整數。如由模擬結果所繪示,藉由實施如圖1中所繪示的方法100,在以下條件下:使用典型製程;在0.75伏特下操作;以及在85℃的溫度下,洩漏電流分別對於標準電壓(例如200毫伏)可減小7%至20%,對於低電壓(例如150毫伏)可減小10%至25%,且對於超低電壓(例如100毫伏)可減小10%至25%。
圖3為示出根據一些實施例的實例方法300的流程圖。在圖3中所繪示的實例中,方法300在提供電路的步驟302處開始。電路可為包含PMOS FinFET的任何電路。在一些非限制性實例中,電路為處理連續類比訊號的類比電路。舉例而言,類比電路可包含以下中的至少一者:差動放大器、運算放大器(Op Amp)、射頻(RF)放大器、比較器、電流鏡、類比乘法器、類比除法器、
類比數位轉換器(ADC)、數位類比轉換器(DAC)、電壓控制振盪器(VCO)、I/Q調變器以及類比開關多工器或類似者。另一方面,在一些非限制性實例中,電路為處理離散數位訊號的數位電路。舉例而言,數位電路可包含以下中的至少一者:邏輯AND閘極、邏輯OR閘極、反相器、邏輯NAND閘極、邏輯NOR閘極、正反器、多工器(亦即,資料選擇器)、同步時序邏輯電路、異步時序邏輯電路或類似者。
方法300接著繼續進行至選擇電路中的第一PMOS FinFET及第二PMOS FinFET的步驟304。通常基於與第一PMOS FinFET及第二PMOS FinFET的飽和電流(Idsat)及洩漏電流(Ioff)相關聯的考慮因素而選擇第一PMOS FinFET及第二PMOS FinFET,但理論上可選擇電路中的PMOS FinFET中的任兩者。舉例而言,第一PMOS FinFET及第二PMOS FinFET可為SRAM裝置(其細節將在下文參考圖7A進行描述)的標頭單元中的PMOS FinFET,此是由於標頭單元中的PMOS FinFET的洩漏電流顯著地有助於SRAM裝置的整體洩漏。應注意,除第一PMOS FinFET及第二PMOS FinFET以外,亦可選擇電路中除第一PMOS FinFET及第二PMOS FinFET以外的PMOS FinFET。換言之,可在步驟304處選擇電路中的多於兩個(例如,四個)PMOS FinFET。
方法300接著繼續進行至用第三PMOS FinFET替換第一PMOS FinFET及第二PMOS FinFET的步驟306。具體言之,第一PMOS FinFET具有第一鰭片數目,第二PMOS FinFET具有第二鰭片數目,且第三PMOS FinFET具有第三鰭片數目。鰭片數目愈大,整體鰭片結構愈寬。第三鰭片數目等於第一鰭片數目與第二鰭片
數目的總和。因而,整體鰭片結構的寬度在替換之後不變。然而,第三PMOS FinFET的洩漏電流小於第一PMOS FinFET及第二PMOS FinFET的總洩漏電流,此是因為具有較大鰭片大小的PMOS FinFET由於較高電洞移動率而具有較高飽和洩漏比。
圖4A為示出根據一些實施例的使用圖3的方法300的PMOS FinFET的替換的圖。圖4B為示出根據一些實施例的使用圖3的方法300的PMOS FinFET的另一替換的圖。如圖4A中所繪示,在圖3中所繪示的步驟304處選擇電路490中的兩個PMOS FinFET PM1及PMOS FinFET PM2。具體言之,PMOS FinFET PM1具有一個鰭片(亦即,閘極結構在一個鰭片結構上方且控制此鰭片結構),而PMOS FinFET PM2具有兩個鰭片(亦即,閘極結構在兩個鰭片結構上方且控制彼等兩個鰭片結構)。PMOS FinFET PM1具有閘極G2、源極S2以及汲極D2;PMOS FinFET PM2具有閘極G2、源極S2以及汲極D2。換言之,分別連接PMOS FinFET PM1及PMOS FinFET PM2的閘極、源極以及汲極。在圖3中所繪示的步驟306處,用PMOS FinFET PM3替換PMOS FinFET PM1及PMOS FinFET PM2。具體言之,PMOS FinFET PM3具有三個鰭片。PMOS FinFET PM3具有閘極G2、源極S2以及汲極D2。因而,對應於總鰭片大小的總鰭片數目在圖3中所繪示的步驟306處的替換之後不變(亦即,兩者均為三個)。然而,PMOS FinFET PM3的洩漏電流小於PMOS FinFET PM1及PMOS FinFET PM2的總洩漏電流,此是因為具有較大鰭片大小的PMOS FinFET由於較高電洞移動率而具有較高飽和洩漏比。因而,在圖3中所繪示的步驟306處的替換之後,總洩漏電流減少。
替代地,如圖4B中所繪示,在圖3中所繪示的304步驟處選擇電路490中的三個PMOS FinFET PM4、PMOS FinFET PM5以及PMOS FinFET PM6。具體言之,PMOS FinFET PM4具有一個鰭片,PMOS FinFET PM5具有一個鰭片,而PMOS FinFET PM6具有一個鰭片。PMOS FinFET PM4具有閘極G2、源極S2以及汲極D2;PMOS FinFET PM5亦具有閘極G2、源極S2以及汲極D2;PMOS FinFET PM6亦具有閘極G2、源極S2以及汲極D2。換言之,分別連接PMOS FinFET PM4、PMOS FinFET PM5以及PMOS FinFET PM6的閘極、源極以及汲極。在圖3中所繪示的步驟306處,用PMOS FinFET PM3替換PMOS FinFET PM4、PMOS FinFET PM5以及PMOS FinFET PM6。具體言之,PMOS FinFET PM3具有三個鰭片。PMOS FinFET PM3具有閘極G2、源極S2以及汲極D2。因而,對應於總鰭片大小的總鰭片數目在圖3中所繪示的步驟306處的替換之後不變(亦即,兩者均為三個)。然而,PMOS FinFET PM3的洩漏電流小於PMOS FinFET PM4、PMOS FinFET PM5以及PMOS FinFET PM6的總洩漏電流,此是因為具有較大鰭片大小的PMOS FinFET由於較高電洞移動率而具有較高飽和洩漏比。因而,在圖3中所繪示的步驟306處的替換之後,總洩漏電流減少。
應注意,方法300可應用於電路中的任何PMOS FinFET,且圖4A及圖4B僅為實例。在一個實例中,具有兩個鰭片的PMOS FinFET可用於替換兩個PMOS FinFET,且所述兩個PMOS FinFET中的每一者具有一個鰭片。在一個實例中,具有四個鰭片的PMOS FinFET可用於替換:(1)四個PMOS FinFET,其中的每一者具有
一個鰭片;(2)一個PMOS FinFET,具有兩個鰭片,以及兩個PMOS FinFET,其中的每一者具有一個鰭片;(3)一個PMOS FinFET,具有三個鰭片,以及一個PMOS FinFET,具有一個鰭片;以及(4)兩個PMOS FinFET,其中的每一者具有兩個鰭片。在一個實例中,具有五個鰭片的PMOS FinFET可用於替換:(1)五個PMOS FinFET,其中的每一者具有一個鰭片;(2)一個PMOS FinFET,具有兩個鰭片,以及三個PMOS FinFET,其中的每一者具有一個鰭片;(3)一個PMOS FinFET,具有三個鰭片,以及兩個PMOS FinFET,其中的每一者具有一個鰭片;(4)一個PMOS FinFET,具有四個鰭片,以及一個PMOS FinFET,具有一個鰭片;(5)一個PMOS FinFET,具有一個鰭片,以及兩個PMOS FinFET,其中的每一者具有兩個鰭片;以及(6)一個PMOS FinFET,具有兩個鰭片,以及一個PMOS FinFET,具有三個鰭片。同樣,圖3中所繪示的此方法300可應用於總鰭片數目為N的多個PMOS FinFET,其中N為大於一的整數。如由模擬結果所繪示,藉由實施如圖1中所繪示的方法100,在以下條件下:使用典型製程;在0.75伏特下操作;以及在85℃的溫度下,洩漏電流分別對於標準電壓(例如200毫伏)可減小7%至20%,對於低電壓(例如150毫伏)可減小10%至25%,且對於超低電壓(例如100毫伏)可減小10%至25%。
圖5為示出根據一些實施例的實例方法500的流程圖。一般而言,方法500可視為圖1中所繪示的方法100及圖3中所繪示的方法300的組合。在圖5中所繪示的實例中,方法500在提供電路的步驟502處開始。電路可為包含NMOS FinFET及
PMOS FinFET兩者的任何電路。在一些非限制性實例中,電路為處理連續類比訊號的類比電路。舉例而言,類比電路可包含以下中的至少一者:差動放大器、運算放大器(Op Amp)、射頻(RF)放大器、比較器、電流鏡、類比乘法器、類比除法器、類比數位轉換器(ADC)、數位類比轉換器(DAC)、電壓控制振盪器(VCO)、I/Q調變器以及類比開關多工器或類似者。另一方面,在一些非限制性實例中,電路為處理離散數位訊號的數位電路。舉例而言,數位電路可包含以下中的至少一者:邏輯AND閘極、邏輯OR閘極、反相器、邏輯NAND閘極、邏輯NOR閘極、正反器、多工器(亦即,資料選擇器)、同步時序邏輯電路、異步時序邏輯電路或類似者。
方法500接著繼續進行至選擇電路中的第一NMOS FinFET的步驟504。通常基於與第一NMOS FinFET的飽和電流(Idsat)及洩漏電流(Ioff)相關聯的考慮因素而選擇第一NMOS FinFET,但理論上可選擇電路中的任何NMOS FinFET。舉例而言,第一NMOS FinFET可為靜態隨機存取記憶體(SRAM)裝置(其細節將在下文參考圖7A進行描述)的寫入驅動器中的NMOS FinFET,此是由於寫入驅動器中的彼NMOS FinFET的洩漏電流顯著地有助於SRAM裝置的整體洩漏。應注意,亦可選擇電路中除第一NMOS FinFET以外的NMOS FinFET。換言之,可在步驟504處選擇電路中的多個NMOS FinFET。
方法500接著繼續進行至用第二NMOS FinFET及第三NMOS FinFET替換第一NMOS FinFET的步驟506。具體言之,第一NMOS FinFET具有第一鰭片數目,第二NMOS FinFET具有第
二鰭片數目,且第三NMOS FinFET具有第三鰭片數目。鰭片數目愈大,整體鰭片結構愈寬。第一鰭片數目等於第二鰭片數目與第三鰭片數目的總和。因而,整體鰭片結構的寬度在替換之後不變。然而,第二NMOS FinFET及第三NMOS FinFET的總洩漏電流小於第一NMOS FinFET的洩漏電流,此是因為具有較小鰭片大小的NMOS FinFET由於較高電子移動率而具有較高飽和洩漏比。
方法500接著繼續進行至選擇電路中的第一PMOS FinFET及第二PMOS FinFET的步驟508。通常基於與第一PMOS FinFET及第二PMOS FinFET的飽和電流(Idsat)及洩漏電流(Ioff)相關聯的考慮因素而選擇第一PMOS FinFET及第二PMOS FinFET,但理論上可選擇電路中的PMOS FinFET中的任兩者。舉例而言,第一PMOS FinFET及第二PMOS FinFET可為SRAM裝置(其細節將在下文參考圖7A進行描述)的標頭單元中的PMOS FinFET,此是由於標頭單元中的PMOS FinFET的洩漏電流顯著地有助於SRAM裝置的整體洩漏。應注意,除第一PMOS FinFET及第二PMOS FinFET以外,亦可選擇電路中除第一PMOS FinFET及第二PMOS FinFET以外的PMOS FinFET。換言之,可在步驟508處選擇電路中的多於兩個(例如,四個)PMOS FinFET。
方法500接著繼續進行至用第三PMOS FinFET替換第一PMOS FinFET及第二PMOS FinFET的步驟510。具體言之,第一PMOS FinFET具有第一鰭片數目,第二PMOS FinFET具有第二鰭片數目,且第三PMOS FinFET具有第三鰭片數目。鰭片數目愈大,整體鰭片結構愈寬。第三鰭片數目等於第一鰭片數目與第二鰭片數目的總和。因而,整體鰭片結構的寬度在替換之後不變。然而,
第三PMOS FinFET的洩漏電流小於第一PMOS FinFET及第二PMOS FinFET的總洩漏電流,此是因為具有較大鰭片大小的PMOS FinFET由於較高電洞移動率而具有較高飽和洩漏比。
圖6為示出根據一些實施例的使用圖5的方法500的NMOS FinFET及多個PMOS FinFET的替換的圖。由於方法500可視為圖1中所繪示的方法100及圖3中所繪示的方法300的組合,因此圖6可視為圖2A及圖4A的組合。具體言之,電路690尤其包含NMOS FinFET NM1及兩個PMOS FinFET PM1及PMOS FinFET PM2。在步驟504處選擇NMOS FinFET NM1。NMOS FinFET NM1具有閘極G1、源極S1以及汲極D1。具體言之,NMOS FinFET NM1具有三個鰭片(亦即,閘極結構在三個平行鰭片結構上方且控制彼等三個鰭片結構)。在圖5中所繪示的步驟506處,用NMOS FinFET NM2及NMOS FinFET NM3替換NMOS FinFET NM1。具體言之,NMOS FinFET NM2具有一個鰭片,而NMOS FinFET NM3具有兩個鰭片。NMOS FinFET NM2具有閘極G1、源極S1以及汲極D1;NMOS FinFET NM3亦具有閘極G1、源極S1以及汲極D1。換言之,分別連接NMOS FinFET NM2及NMOS FinFET NM3的閘極、源極以及汲極。
另一方面,在圖5中所繪示的步驟508處選擇PMOS FinFET PM1及PMOS FinFET PM2。具體言之,PMOS FinFET PM1具有一個鰭片(亦即,閘極結構在一個鰭片結構上方且控制此鰭片結構),而PMOS FinFET PM2具有兩個鰭片(亦即,閘極結構在兩個鰭片結構上方且控制彼等兩個鰭片結構)。PMOS FinFET PM1具有閘極G2、源極S2以及汲極D2;PMOS FinFET PM2具有閘
極G2、源極S2以及汲極D2。換言之,分別連接PMOS FinFET PM1及PMOS FinFET PM2的閘極、源極以及汲極。在圖5中所繪示的步驟510處,用PMOS FinFET PM3替換PMOS FinFET PM1及PMOS FinFET PM2。具體言之,PMOS FinFET PM3具有三個鰭片。PMOS FinFET PM3具有閘極G2、源極S2以及汲極D2。
因而,對於NMOS FinFET,總鰭片數目在圖5中所繪示的步驟506處的替換之後不變(亦即,兩者均為三個)。然而,NMOS FinFET NM2及NMOS FinFET NM3的總洩漏電流小於NMOS FinFET NM1的洩漏電流,此是因為具有較小鰭片大小的NMOS FinFET由於較高電子移動率而具有較高飽和洩漏比。另一方面,對於PMOS FinFET,總鰭片數目在圖5中所繪示的步驟510處的替換之後不變(亦即,兩者均為三個)。然而,PMOS FinFET PM3的洩漏電流小於PMOS FinFET PM1及PMOS FinFET PM2的總洩漏電流,此是因為具有較大鰭片大小的PMOS FinFET由於較高電洞移動率而具有較高飽和洩漏比。因此,在圖5中所繪示的步驟506及步驟510處的替換之後,電路690的總洩漏電流減少。
圖7A為根據一些實施例的可應用圖5的方法500的SRAM裝置的圖。圖7B為示出根據一些實施例的應用圖5的方法500的圖,而圖7C為示出根據一些實施例的對應於圖7B的佈局的圖。圖7D為示出根據一些實施例的應用圖5的方法500的圖,而圖7E為示出根據一些實施例的對應於圖7D的佈局的圖。如圖7A中所繪示,SRAM電路(亦稱為「SRAM裝置」,其將被互換使用)790尤其包含記憶陣列710、字元線(WL)、位元線(BL及BLB)、用於寫入操作的寫入驅動器720以及標頭電路730a及標
頭電路730b(統稱為730)。應注意,SRAM電路790可包含其他組件,諸如未繪示的記憶體控制器、未繪示的讀取驅動器、未繪示的列解碼器、未繪示的行解碼器以及未繪示的I/O電路。
記憶陣列710包含以行及列配置的多個記憶胞位元(memory cell bit;MCB)。對於每一記憶胞位元(MCB),MCB可由互補位元線BL及BLB耦接,且資料可經由互補位元線BL及BLB自MCB讀取並寫入至MCB。在圖7A中所繪示的實例中,MCB包含但不限於六個電晶體(6T)SRAM結構。在一些實施例中,可使用多於或少於六個電晶體來實施MCB。舉例而言,在一些實施例中,MCB可使用4T、8T或10T SRAM結構。圖7A中所繪示的MCB包含由NMOS/PMOS FinFET對T1及T2形成的第一反相器、由NMOS/PMOS FinFET對T3及T4形成的第二反相器以及存取FinFET T5及存取FinFET T6。FinFET T1、FinFET T3、FinFET T5以及FinFET T6為NMOS FinFET,而FinFET T2及FinFET T4為PMOS FinFET。
在所示出實例中,MCB在第一功率域(亦即,VDDM)中操作且因此經由標頭電路730a連接至VDDM電力軌。如所示出實例中所繪示,標頭電路730a包含並聯連接的兩個PMOS FinFET P5及PMOS FinFET P6。PMOS FinFET P5及PMOS FinFET P6的源極耦接至VDDM電力軌,而PMOS FinFET P5及PMOS FinFET P6的汲極耦接至端VDDAI,端VDDAI繼而耦接至PMOS FinFET T2及PMOS FinFET T4的源極。PMOS FinFET P5及PMOS FinFET P6回應於停機訊號SD而導通或關斷,以用於在SRAM電路790的休眠模式期間節省功率消耗。
另一方面,在圖7A中所繪示的實例中,寫入驅動器720尤其包含四個PMOS FinFET P1、PMOS FinFET P2、PMOS FinFET P3、PMOS FinFET P4以及兩個NMOS FinFET。PMOS FinFET P1及PMOS FinFET P2串聯連接在端VDDHD_DR與NMOS FinFET N1之間,而PMOS FinFET P3及PMOS FinFET P4串聯連接在端VDDHD_DR與NMOS FinFET N2之間。端VDDHD_DR具備低於第一功率域(亦即VDDM)的第二功率域(亦即VDD)中的電壓。PMOS FinFET P1及NMOS FinFET N1的閘極連接至第一寫入訊號WC,而PMOS FinFET P3及NMOS FinFET N2的閘極連接至第二寫入訊號WT。PMOS FinFET P2及PMOS FinFET P4的閘極連接至互補位元線BLB及BL。
在所示出實例中,寫入驅動器720在第二功率域(亦即VDD)中操作且因此經由標頭電路730b連接至VDD電力軌。如所示出實例中所繪示,標頭電路730b包含並聯連接的兩個PMOS FinFET P7及PMOS FinFET P8。PMOS FinFET P7及PMOS FinFET P8的源極耦接至VDD電力軌,而PMOS FinFET P7及PMOS FinFET P8的汲極耦接至端VDDHD_DR,端VDDHD_DR繼而耦接至PMOS FinFET P1及PMOS FinFET P3的源極。PMOS FinFET P7及PMOS FinFET P8回應於停機訊號SD而導通或關斷,以用於在SRAM電路790的休眠模式期間節省功率消耗。
參考圖7B及圖7C,圖5的方法500可應用於NMOS FinFET N1。應注意,圖5的方法500亦可應用於為簡單起見而未詳細描述的NMOS FinFET N2。如上文所提及,NMOS FinFET N1為SRAM電路790的寫入驅動器720中的NMOS FinFET,若將圖
5的方法500應用於NMOS FinFET N1,則洩漏電流可減少。在所示出實例中,NMOS FinFET N1具有五個鰭片782及三個閘極指狀件784,如圖7C中所繪示。在應用圖5的方法500之後,NMOS FinFET N1由兩個NMOS FinFET N1a及NMOS FinFET N1b替換。NMOS FinFET N1a具有兩個鰭片782及三個閘極指狀件784,而NMOS FinFET N1b具有三個鰭片782及三個閘極指狀件784。因此,NMOS FinFET N1的鰭片數目等於NMOS FinFET N1a及NMOS FinFET N1b的鰭片數目的總和。換言之,總鰭片數目不變。然而,NMOS FinFET N1a及NMOS FinFET N1b的總洩漏電流小於NMOS FinFET N1的洩漏電流,此是因為具有較小鰭片大小的NMOS FinFET由於較高電子移動率而具有較高飽和洩漏比。
參考圖7D及圖7E,圖5的方法500可應用於PMOS FinFET P5及PMOS FinFET P6。應注意,圖5的方法500亦可應用於為簡單起見而未詳細描述的PMOS FinFET P7及PMOS FinFET P8。如上文所提及,PMOS FinFET P5及PMOS FinFET P6中的每一者為SRAM電路790的標頭電路730中的PMOS FinFET,若將圖5的方法500應用於PMOS FinFET P5及PMOS FinFET P6,則洩漏電流可減少。在所示出實例中,PMOS FinFET P5及PMOS FinFET P6中的每一者具有三個鰭片782及一百個閘極指狀件784,如圖7E中所繪示。換言之,PMOS FinFET P5及PMOS FinFET P6共同地具有三個鰭片782及兩百個閘極指狀件784。在應用圖5的方法500之後,PMOS FinFET P5及PMOS FinFET P6由PMOS FinFET P9替換。PMOS FinFET P9具有六個鰭片782及一百個閘極指狀件784。因此,PMOS FinFET P9的鰭片數目等於
PMOS FinFET P5及PMOS FinFET P6的鰭片數目的總和。換言之,總鰭片數目不變。然而,PMOS FinFET P9的洩漏電流小於PMOS FinFET P5及PMOS FinFET P6的總洩漏電流,此是因為具有較大鰭片大小的PMOS FinFET由於較高電洞移動率而具有較高飽和洩漏比。
因此,在圖7B中所繪示的替換及圖7D中所繪示的替換之後,SRAM電路790的總洩漏電流減少。基於模擬結果,藉由應用圖7B中所繪示的替換,洩漏電流可對於標準電壓(例如,200毫伏)減少3%至10%且對於低電壓(例如,150毫伏)減少5%至10%。另一方面,基於模擬結果,藉由應用圖7D中所繪示的替換,洩漏電流可減少5%至10%。
此外,圖5的方法500可應用於各種電路。在一個非限制性實例中,方法可應用於反相器,如下文在圖8中所繪示。在一個非限制性實例中,方法可應用於記憶體裝置的字元線(WL)驅動器,如下文圖9中所繪示。在一個非限制性實例中,方法可應用於記憶體裝置的列解碼器(YDEC)驅動器或行解碼器(XDEC)驅動器,如下文圖10中所繪示。應注意,上文所描述的方法100、方法300以及方法500的其他應用亦在本公開的範疇內。
圖8為示出根據一些實施例的包含應用圖5的方法500的反相器的電路890的圖。如圖8中所繪示,電路890可尤其包含反相器891。在所示出實例中,反相器891包含並聯耦接的兩個PMOS FinFET PM81及PMOS FinFET PM82。並聯的PMOS FinFET PM81及PMOS FinFET PM82在兩個端VDD及端VSS之間與NMOS FinFET NM81串聯連接。PMOS FinFET PM81及NMOS
FinFET NM81的閘極連接至輸入端。PMOS FinFET PM81及PMOS FinFET PM82中的每一者具有三個鰭片,而NMOS FinFET NM81具有五個鰭片。在應用圖5的方法500之後,用PMOS FinFET PM83替換PMOS FinFET PM81及PMOS FinFET PM82,同時用兩個NMOS FinFET NM82及NMOS FinFET NM83替換NMOS FinFET NM81。PMOS FinFET PM83具有六個鰭片,NMOS FinFET NM82具有兩個鰭片,而NMOS FinFET NM83具有三個鰭片。換言之,PMOS FinFET PM83的鰭片數目等於PMOS FinFET PM81的鰭片數目與PMOS FinFET PM82的鰭片數目的總和;NMOS FinFET NM81的鰭片數目等於NMOS FinFET NM82的鰭片數目與NMOS FinFET NM83的鰭片數目的總和。換言之,總鰭片數目不變。然而,由於具有較大鰭片大小的PMOS FinFET由於較高電洞移動率而具有較高飽和洩漏比,因此上方洩漏電流減少,而具有較小鰭片大小的NMOS FinFET由於較高電子移動率而具有較高飽和洩漏比。
圖9為示出根據一些實施例的包含應用圖5的方法500的字元線驅動器的記憶體裝置電路990的圖。如圖9中所繪示,記憶體裝置電路990可尤其包含字元線驅動器991。記憶體電路990可為SRAM裝置,但其他類型的記憶體裝置亦在本公開的範疇內。在所示出實例中,字元線驅動器991包含在時鐘訊號端CLK與字元線訊號端WL之間串聯連接的兩個反相器992及反相器993-1、993-2。反相器993-1、993-2為末級,因此對洩漏電流具有相對較大的貢獻。反相器993-1包含例如其中的每一者具有三個鰭片的八個PMOS FinFET。在應用圖5的方法500之後,用其中
的每一者具有六個鰭片的四個PMOS FinFET替換八個PMOS FinFET。換言之,PMOS FinFET的總鰭片數目不變。然而,由於具有較大鰭片大小的PMOS FinFET由於較高電洞移動率而具有較高飽和洩漏比,因此上方洩漏電流減少。應注意,只要總鰭片數目不變,亦可採用其他替換配置(例如,各具有八個鰭片的三個PMOS FinFET)。亦應注意,亦可藉由應用圖5的方法500來類似地替換反相器993-2中的NMOS FinFET。
圖10為示出根據一些實施例的包含應用圖5的方法500的列解碼器驅動器或行解碼器驅動器的記憶體裝置電路1090的圖。如圖10中所繪示,記憶體裝置電路1090可尤其包含列解碼器驅動器或行解碼器驅動器1091。記憶體電路1090可為SRAM裝置,但其他類型的記憶體裝置亦在本公開的範疇內。在所示出實例中,列解碼器驅動器或行解碼器驅動器1091包含在兩個輸入訊號端A0、輸入訊號端A1與輸出端DEC之間串聯連接的NAND閘極1092及反相器1093-1、1093-2。反相器1093-1、1093-2為末級,因此對洩漏電流具有相對較大的貢獻。反相器1093-1包含例如其中的每一者具有三個鰭片的八個PMOS FinFET。反相器1093-2更包含例如其中的每一者具有六個鰭片的四個NMOS FinFET。在應用圖5的方法500之後,用其中的每一者具有六個鰭片的四個PMOS FinFET替換八個PMOS FinFET;用各具有三個鰭片的八個NMOS FinFET替換四個NMOS FinFET。換言之,PMOS FinFET的總鰭片數目不變;NMOS FinFET的總鰭片數目不變。然而,由於具有較大鰭片大小的PMOS FinFET由於較高電洞移動率而具有較高飽和洩漏比,因此上方洩漏電流減少,而具有較小鰭片大小的
NMOS FinFET由於較高電子移動率而具有較高飽和洩漏比。再者,應注意,只要總NMOS/PMOS鰭片數目不變,亦可採用其他替換配置。
根據一些所揭露實施例,提供一種設計電路的方法。方法包含:提供電路;選擇電路中的第一NMOS鰭式場效電晶體(FinFET);以及用具有第二鰭片數目的第二NMOS FinFET及具有第三鰭片數目的第三NMOS FinFET替換具有第一鰭片數目的第一NMOS FinFET,其中第二鰭片數目與第三鰭片數目的總和等於第一鰭片數目。
在相關實施例中,所述電路為邏輯電路。
在相關實施例中,所述電路為類比電路。
在相關實施例中,提供所述電路包含提供反相器電路,所述反相器電路具有在第一電源端與第二電源端之間與所述第一NMOS FinFET串聯連接的第一PMOS FinFET。
在相關實施例中,提供所述電路包含提供記憶體裝置的字元線驅動器,且所述字元線驅動器包括串聯連接在時鐘訊號端與字元線訊號端之間的第一反相器及第二反相器。
在相關實施例中,所述第二反相器包括所述第一NMOS FinFET。
在相關實施例中,提供所述電路包含提供記憶體裝置的解碼器驅動器,且所述解碼器驅動器包括串聯連接在兩個輸入訊號端與輸出端之間的NAND閘極及反相器。
在相關實施例中,所述反相器包括所述第一NMOS FinFET。
在相關實施例中,提供所述電路包含提供靜態隨機存取記憶體(SRAM)電路,且所述SRAM電路包括記憶胞及寫入驅動器,所述記憶胞及所述寫入驅動器兩者耦接在第一位元線與第二位元線之間。
在相關實施例中,所述寫入驅動器包括所述第一NMOS FinFET。
在相關實施例中,所述寫入驅動器包括:第一PMOS FinFET,具有耦接至第一電源端的源極端及汲極端的一者;第二PMOS FinFET,具有耦接至所述第一PMOS FinFET的源極端及汲極端的另一者的源極端及汲極端的一者,以及耦接至所述第一位元線的閘極端;第三PMOS FinFET,具有耦接至所述第一電源端的源極端及汲極端的一者;第四PMOS FinFET,具有耦接至所述第三PMOS FinFET的源極端及汲極端的另一者的源極端及汲極端的一者,以及耦接至所述第二位元線的閘極端;所述第一NMOS FinFET,連接在所述第二PMOS FinFET的源極端及汲極端的另一者與第二電源端之間,其中所述第一NMOS FinFET的閘極端連接至第一寫入輸入端;以及第四NMOS FinFET,連接在所述第四PMOS FinFET的源極端及汲極端的另一者與所述第二電源端之間,其中所述第四NMOS FinFET的閘極端連接至第二寫入輸入端。
在相關實施例中,所述的方法更包括:選擇所述電路中的第一PMOS FinFET及第二PMOS FinFET;以及用具有第六鰭片數目的第三PMOS FinFET替換具有第四鰭片數目的所述第一PMOS FinFET及具有第五鰭片數目的所述第二PMOS FinFET,其中所述
第四鰭片數目與所述第五鰭片數目的總和等於所述第六鰭片數目。
根據一些所揭露實施例,提供另一種設計電路的方法。方法包含:提供電路;選擇電路中的第一PMOS FinFET及第二PMOS FinFET;以及用具有第三鰭片數目的第三PMOS FinFET替換具有第一鰭片數目的第一PMOS FinFET及具有第二鰭片數目的第二PMOS FinFET,其中第一鰭片數目與第二鰭片數目的總和等於第三鰭片數目。
在相關實施例中,所述第一PMOS FinFET與所述第二PMOS FinFET並聯連接。
在相關實施例中,提供所述電路包含提供SRAM電路,且所述SRAM電路包括記憶胞及連接在所述記憶胞與第一電壓端之間的第一標頭電路,其中所述第一標頭電路包括並聯連接的所述第一PMOS FinFET及所述第二PMOS FinFET,且所述第一PMOS FinFET及所述第二PMOS FinFET回應於停機訊號而導通或關斷。
在相關實施例中,所述SRAM電路更包括寫入驅動器及連接在所述寫入驅動器與第二電壓端之間的第二標頭電路,其中所述第二標頭電路包括並聯連接的具有第四鰭片數目的第四PMOS FinFET及具有第五鰭片數目的第五PMOS FinFET,且所述方法更包括:用具有第六鰭片數目的第六PMOS FinFET替換所述第四PMOS FinFET及所述第五PMOS FinFET,其中所述第四鰭片數目與所述第五鰭片數目的總和等於所述第六鰭片數目。
在相關實施例中,所述第一電壓端在第一電壓域中具備
第一電壓,所述第二電壓端在第二電壓域中具備第二電壓,且所述第一電壓域高於所述第二電壓域。
在相關實施例中,提供所述電路包含提供反相器電路,所述反相器電路具有並聯連接的所述第一PMOS FinFET及所述第二PMOS FinFET以及第一NMOS FinFET。
根據另外的所揭露實施例,提供一種SRAM裝置。SRAM裝置包含記憶胞及寫入驅動器。記憶胞包含:第一反相器;第二反相器,交叉耦接至第一反相器;第一存取電晶體,連接在第一反相器的第一資料節點與第一位元線之間;第二存取電晶體,連接在第二反相器的第二資料節點與第二位元線之間。寫入驅動器包含:第一PMOS FinFET,具有耦接至第一電源端的第一源極/汲極端;第二PMOS FinFET,具有耦接至第一PMOS FinFET的第二源極/汲極端的第一源極/汲極端,以及耦接至第一位元線的閘極端;第三PMOS FinFET,具有耦接至第一電源端的第一源極/汲極端;第四PMOS FinFET,具有耦接至第三PMOS FinFET的第二源極/汲極端的第一源極/汲極端,以及耦接至第二位元線的閘極端;第一NMOS FinFET及第二NMOS FinFET,並聯連接在第二PMOS FinFET的第二源極/汲極端與第二電源端之間,其中將第一PMOS FinFET的閘極端與第一NMOS FinFET及第二NMOS FinFET的閘極端連接以接收第一寫入訊號;第三NMOS FinFET及第四NMOS FinFET,並聯連接在第四PMOS FinFET的第二源極/汲極端與第二電源端之間,其中將第三PMOS FinFET的閘極端與第三NMOS FinFET及第四NMOS FinFET的閘極端連接以接收第二寫入訊號。
在相關實施例中,所述第一NMOS FinFET及所述第二NMOS FinFET共同具有第一鰭片數目,所述第一NMOS FinFET及所述第二NMOS FinFET替換具有所述第一鰭片數目的第一單一NMOS FinFET,且其中所述第三NMOS FinFET及所述第四NMOS FinFET共同具有所述第一鰭片數目,所述第三NMOS FinFET及所述第四NMOS FinFET替換具有所述第一鰭片數目的第二單一NMOS FinFET。
本公開概述各種實施例,使得所屬領域中具有通常知識者可更佳地理解本公開的態樣。所屬領域中具有通常知識者應瞭解,其可易於使用本公開作為用於設計或修改用於進行本文中所引入的實施例的相同目的及/或達成相同優勢的其他製程及結構的基礎。所屬領域中具有通常知識者亦應認識到,此類等效構造並不脫離本公開的精神及範疇,且所屬領域中具有通常知識者可在不脫離本公開的精神及範疇的情況下在本文中作出各種改變、替代以及更改。
100:方法
102、104、106:步驟
Claims (9)
- 一種設計電路的方法,包括:提供電路;選擇所述電路中的第一NMOS鰭式場效電晶體(FinFET);以及用具有第二鰭片數目的第二NMOS FinFET及具有第三鰭片數目的第三NMOS FinFET替換具有第一鰭片數目的所述第一NMOS FinFET,其中所述第二鰭片數目與所述第三鰭片數目的總和等於所述第一鰭片數目,其中,替換前的所述第一NMOS FinFET的鰭片結構寬度等同於替換後的所述第二NMOS FinFET以及所述第三NMOS FinFET的總鰭片結構寬度。
- 如請求項1所述的方法,其中提供所述電路包含提供反相器電路,所述反相器電路具有在第一電源端與第二電源端之間與所述第一NMOS FinFET串聯連接的第一PMOS FinFET。
- 如請求項1所述的方法,其中提供所述電路包含提供記憶體裝置的字元線驅動器,且所述字元線驅動器包括串聯連接在時鐘訊號端與字元線訊號端之間的第一反相器及第二反相器。
- 如請求項1所述的方法,其中提供所述電路包含提供記憶體裝置的解碼器驅動器,且所述解碼器驅動器包括串聯連接在兩個輸入訊號端與輸出端之間的NAND閘極及反相器。
- 如請求項1所述的方法,其中提供所述電路包含提供靜態隨機存取記憶體(SRAM)電路,且所述SRAM電路包括記 憶胞及寫入驅動器,所述記憶胞及所述寫入驅動器兩者耦接在第一位元線與第二位元線之間。
- 一種設計電路的方法,包括:提供電路;選擇所述電路中的第一PMOS FinFET及第二PMOS FinFET;以及用具有第三鰭片數目的第三PMOS FinFET替換具有第一鰭片數目的所述第一PMOS FinFET及具有第二鰭片數目的所述第二PMOS FinFET,其中所述第一鰭片數目與所述第二鰭片數目的總和等於所述第三鰭片數目,其中,替換前的所述第一PMOS FinFET以及所述第二PMOS FinFET的總鰭片結構寬度等同於替換後的所述第三PMOS FinFET的鰭片結構寬度。
- 如請求項6所述的方法,所述第一PMOS FinFET與所述第二PMOS FinFET並聯連接。
- 如請求項6所述的方法,其中提供所述電路包含提供SRAM電路,且所述SRAM電路包括記憶胞及連接在所述記憶胞與第一電壓端之間的第一標頭電路,其中所述第一標頭電路包括並聯連接的所述第一PMOS FinFET及所述第二PMOS FinFET,且所述第一PMOS FinFET及所述第二PMOS FinFET回應於停機訊號而導通或關斷。
- 一種SRAM裝置,包括:記憶胞,包含:第一反相器; 第二反相器,交叉耦接至所述第一反相器;第一存取電晶體,連接在所述第一反相器的第一資料節點與第一位元線之間;以及第二存取電晶體,連接在所述第二反相器的第二資料節點與第二位元線之間;以及寫入驅動器,包含:第一PMOS FinFET,具有耦接至第一電源端的源極端及汲極端的一者;第二PMOS FinFET,具有耦接至所述第一PMOS FinFET的源極端及汲極端的另一者的源極端及汲極端的一者,以及耦接至所述第一位元線的閘極端;第三PMOS FinFET,具有耦接至所述第一電源端的源極端及汲極端的一者;第四PMOS FinFET,具有耦接至所述第三PMOS FinFET的源極端及汲極端的另一者的源極端及汲極端的一者,以及耦接至所述第二位元線的閘極端;第一NMOS FinFET及第二NMOS FinFET,並聯連接在所述第二PMOS FinFET的源極端及汲極端的另一者與第二電源端之間,其中將所述第一PMOS FinFET的閘極端與所述第一NMOS FinFET及所述第二NMOS FinFET的閘極端連接以接收第一寫入訊號;以及第三NMOS FinFET及第四NMOS FinFET,並聯連接在所述第四PMOS FinFET的源極端及汲極端的另一者與所述第二電源端之間,其中將所述第三PMOS FinFET的閘極端與 所述第三NMOS FinFET及所述第四NMOS FinFET的閘極端連接以接收第二寫入訊號,其中所述第一NMOS FinFET及所述第二NMOS FinFET共同具有第一鰭片數目,所述第一NMOS FinFET及所述第二NMOS FinFET替換具有所述第一鰭片數目的第一單一NMOS FinFET,且其中所述第三NMOS FinFET及所述第四NMOS FinFET共同具有所述第一鰭片數目,所述第三NMOS FinFET及所述第四NMOS FinFET替換具有所述第一鰭片數目的第二單一NMOS FinFET,其中,替換前的所述第一NMOS FinFET的鰭片結構寬度等同於替換後的所述第二NMOS FinFET以及所述第三NMOS FinFET的總鰭片結構寬度,替換前的所述第一PMOS FinFET以及所述第二PMOS FinFET的總鰭片結構寬度等同於替換後的所述第三PMOS FinFET的鰭片結構寬度。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063041456P | 2020-06-19 | 2020-06-19 | |
US63/041,456 | 2020-06-19 | ||
US17/226,428 US11568121B2 (en) | 2020-06-19 | 2021-04-09 | FinFET semiconductor device grouping |
US17/226,428 | 2021-04-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202201657A TW202201657A (zh) | 2022-01-01 |
TWI819314B true TWI819314B (zh) | 2023-10-21 |
Family
ID=77934067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110120095A TWI819314B (zh) | 2020-06-19 | 2021-06-02 | 設計電路的方法以及sram裝置 |
Country Status (5)
Country | Link |
---|---|
US (2) | US11568121B2 (zh) |
KR (2) | KR102559484B1 (zh) |
CN (1) | CN113488095B (zh) |
DE (1) | DE102021112563A1 (zh) |
TW (1) | TWI819314B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11568121B2 (en) * | 2020-06-19 | 2023-01-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET semiconductor device grouping |
EP4385803A1 (en) | 2022-09-05 | 2024-06-19 | LG Energy Solution, Ltd. | Apparatus and method for pairing batteries |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180204775A1 (en) * | 2017-01-16 | 2018-07-19 | International Business Machines Corporation | Uniform shallow trench isolation |
US20180336944A1 (en) * | 2017-05-22 | 2018-11-22 | Taiwan Semiconductor Manufacturing Company Limited | Combined Read/Write Circuit for Semiconductor Memory Device |
CN109860291A (zh) * | 2017-11-30 | 2019-06-07 | 中芯国际集成电路制造(上海)有限公司 | 半导体结构及其形成方法 |
CN110546458A (zh) * | 2017-04-07 | 2019-12-06 | 罗伯特·博世有限公司 | 转速传感器和用于运行转速传感器的方法 |
US10535774B1 (en) * | 2017-08-08 | 2020-01-14 | Marvell International Ltd. | Modular memory-like layout for finFET analog designs |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002126749A (ja) | 2000-10-27 | 2002-05-08 | Takashi Sato | 液体磁気処理装置 |
US7115920B2 (en) * | 2004-04-12 | 2006-10-03 | International Business Machines Corporation | FinFET transistor and circuit |
US7586780B2 (en) | 2006-12-18 | 2009-09-08 | Panasonic Corporation | Semiconductor memory device |
US7737501B2 (en) * | 2007-07-11 | 2010-06-15 | International Business Machines Corporation | FinFET SRAM with asymmetric gate and method of manufacture thereof |
US8665629B2 (en) * | 2007-09-28 | 2014-03-04 | Qimonda Ag | Condensed memory cell structure using a FinFET |
US8441885B2 (en) | 2011-03-18 | 2013-05-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methods and apparatus for memory word line driver |
US8669147B2 (en) | 2012-06-11 | 2014-03-11 | Globalfoundries Inc. | Methods of forming high mobility fin channels on three dimensional semiconductor devices |
US8766364B2 (en) | 2012-08-31 | 2014-07-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fin field effect transistor layout for stress optimization |
US9202918B2 (en) | 2013-09-18 | 2015-12-01 | Globalfoundries Inc. | Methods of forming stressed layers on FinFET semiconductor devices and the resulting devices |
US10431295B2 (en) * | 2014-05-30 | 2019-10-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Static random access memory and method of controlling the same |
US10211208B2 (en) * | 2015-06-26 | 2019-02-19 | Intel Corporation | High-mobility semiconductor source/drain spacer |
FR3038781B1 (fr) | 2015-07-10 | 2017-07-28 | Gulplug | Ensemble de prise electrique avec solution de deconnexion electrique |
US10163470B2 (en) | 2015-09-18 | 2018-12-25 | Taiwan Semiconductor Manufacturing Company Ltd. | Dual rail memory, memory macro and associated hybrid power supply method |
DE102016117328B4 (de) * | 2015-10-19 | 2024-06-13 | Taiwan Semiconductor Manufacturing Co., Ltd. | Dual-Port SRAM-Zelle |
CN105304123B (zh) * | 2015-12-04 | 2018-06-01 | 上海兆芯集成电路有限公司 | 静态随机存取存储器 |
US10062697B2 (en) * | 2016-02-16 | 2018-08-28 | Samsung Electronics Co., Ltd. | Semiconductor device without a break region |
US11302694B2 (en) * | 2016-02-16 | 2022-04-12 | Samsung Electronics Co., Ltd. | Semiconductor device without a break region |
DE102017107425A1 (de) | 2016-04-28 | 2017-11-02 | Johnson Electric S.A. | Magnetsensor-Integrierter-Schaltkreis und Motorkomponente |
US10037400B2 (en) * | 2016-06-02 | 2018-07-31 | Marvell World Trade Ltd. | Integrated circuit manufacturing process for aligning threshold voltages of transistors |
US10468481B2 (en) | 2018-01-19 | 2019-11-05 | Globalfoundries Inc. | Self-aligned single diffusion break isolation with reduction of strain loss |
US11080453B2 (en) | 2018-10-31 | 2021-08-03 | Taiwan Semiconductor Manufacturing Company Ltd. | Integrated circuit fin layout method, system, and structure |
CN111243502B (zh) * | 2018-11-29 | 2021-04-23 | 成都辰显光电有限公司 | 一种像素驱动电路和显示装置 |
WO2020125506A1 (en) * | 2018-12-21 | 2020-06-25 | Huawei Technologies Co., Ltd. | Complementary ring oscillators to monitor in-situ stress within integrated circuits |
US11595036B2 (en) * | 2020-04-30 | 2023-02-28 | Analog Devices, Inc. | FinFET thyristors for protecting high-speed communication interfaces |
US11568121B2 (en) * | 2020-06-19 | 2023-01-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET semiconductor device grouping |
-
2021
- 2021-04-09 US US17/226,428 patent/US11568121B2/en active Active
- 2021-05-14 DE DE102021112563.4A patent/DE102021112563A1/de active Pending
- 2021-06-02 TW TW110120095A patent/TWI819314B/zh active
- 2021-06-08 KR KR1020210074267A patent/KR102559484B1/ko active IP Right Grant
- 2021-06-18 CN CN202110680897.7A patent/CN113488095B/zh active Active
-
2023
- 2023-01-30 US US18/161,627 patent/US11989498B2/en active Active
- 2023-07-19 KR KR1020230093723A patent/KR20230117288A/ko not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180204775A1 (en) * | 2017-01-16 | 2018-07-19 | International Business Machines Corporation | Uniform shallow trench isolation |
CN110546458A (zh) * | 2017-04-07 | 2019-12-06 | 罗伯特·博世有限公司 | 转速传感器和用于运行转速传感器的方法 |
US20180336944A1 (en) * | 2017-05-22 | 2018-11-22 | Taiwan Semiconductor Manufacturing Company Limited | Combined Read/Write Circuit for Semiconductor Memory Device |
US10535774B1 (en) * | 2017-08-08 | 2020-01-14 | Marvell International Ltd. | Modular memory-like layout for finFET analog designs |
CN109860291A (zh) * | 2017-11-30 | 2019-06-07 | 中芯国际集成电路制造(上海)有限公司 | 半导体结构及其形成方法 |
Also Published As
Publication number | Publication date |
---|---|
US11568121B2 (en) | 2023-01-31 |
US11989498B2 (en) | 2024-05-21 |
KR20230117288A (ko) | 2023-08-08 |
CN113488095A (zh) | 2021-10-08 |
TW202201657A (zh) | 2022-01-01 |
KR20210157325A (ko) | 2021-12-28 |
DE102021112563A1 (de) | 2021-12-23 |
US20230245677A1 (en) | 2023-08-03 |
KR102559484B1 (ko) | 2023-07-24 |
US20210397773A1 (en) | 2021-12-23 |
CN113488095B (zh) | 2024-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI631666B (zh) | 半導體裝置、積體電路結構與半導體裝置之形成方法 | |
US10109342B2 (en) | Dram architecture to reduce row activation circuitry power and peripheral leakage and related methods | |
US20230245677A1 (en) | FinFET Semiconductor Device Grouping | |
CN107403635B (zh) | 存储器宏及其操作方法 | |
Chen | Overcoming research challenges for CMOS scaling: Industry directions | |
US8526219B2 (en) | Enhanced static random access memory stability using asymmetric access transistors and design structure for same | |
KR20180039655A (ko) | 복수의 양자 처리 소자들을 포함하는 고도 처리 장치 | |
JP4412893B2 (ja) | 半導体集積回路およびその製造方法 | |
US10840251B2 (en) | Memory device and manufacturing method | |
US11257825B1 (en) | Semiconductor device and manufacturing method thereof | |
JP6140885B2 (ja) | ピエゾ抵抗体をチャネルに用いたトランジスタおよび電子回路 | |
KR102596651B1 (ko) | 양자 와이어 공진 터널링 트랜지스터를 포함하는 디지털 회로 | |
TWI614748B (zh) | 用於減少列啟動電路功率及周邊漏洩之動態隨機存取記憶體架構及其相關方法 | |
Bounouar et al. | On the use of nanoelectronic logic cells based on metallic Single Electron Transistors | |
US11903331B2 (en) | Digital circuits comprising quantum wire resonant tunneling transistors | |
Wu | Quantum Wire Resonant Tunneling Transistors (QWRTTs) and Circuits | |
Kumar et al. | Retention Problem Free High Density 4T SRAM cell with Adaptive Body Bias in 18nm FD-SOI | |
KR102716572B1 (ko) | 반도체 소자 및 sram 메모리 셀 구조물을 형성하기 위한 방법 | |
WO2023141906A1 (zh) | 共轭逻辑门电路、集成电路、电子设备 |