TWI819037B - 基板之處理方法及電漿處理裝置 - Google Patents

基板之處理方法及電漿處理裝置 Download PDF

Info

Publication number
TWI819037B
TWI819037B TW108125978A TW108125978A TWI819037B TW I819037 B TWI819037 B TW I819037B TW 108125978 A TW108125978 A TW 108125978A TW 108125978 A TW108125978 A TW 108125978A TW I819037 B TWI819037 B TW I819037B
Authority
TW
Taiwan
Prior art keywords
substrate
mentioned
plasma
frequency power
gas
Prior art date
Application number
TW108125978A
Other languages
English (en)
Other versions
TW202012692A (zh
Inventor
長池宏史
吉越大祐
舟久保隆男
岩﨑峰久
謝其儒
東佑樹
Original Assignee
日商東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司 filed Critical 日商東京威力科創股份有限公司
Publication of TW202012692A publication Critical patent/TW202012692A/zh
Application granted granted Critical
Publication of TWI819037B publication Critical patent/TWI819037B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/4554Plasma being used non-continuously in between ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)
  • Plasma Technology (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

本發明係使藉由PEALD成膜時之生產性提昇。
本發明係藉由PEALD於基板成膜特定膜之成膜方法,且具有:吸附步驟,其係使前驅物吸附於基板;及改質步驟,其係自改質氣體產生電漿,並且利用上述電漿所含之自由基將吸附於基板之前驅物改質;上述改質步驟具有對自上述改質氣體產生電漿之電漿源供給有效功率未達500W之高頻電力的電力供給步驟。

Description

基板之處理方法及電漿處理裝置
本發明係關於一種成膜方法及成膜裝置。
於專利文獻1中,揭示有一種藉由電漿增強原子層沈積法(PEALD,Plasma Enhanced Atomic Layer Deposition)而於基板上生成氧化膜之方法。於該成膜方法中,反覆進行包括以下之步驟(i)及步驟(ii)之循環,藉由PEALD生成矽氧化膜等氧化膜。上述步驟(i)例如包含如下步驟:為了使前驅物吸附於基板,而對供配置基板之反應空間供給上述前驅物,繼而進行沖洗以將未被吸附之前驅物自基板去除。上述步驟(ii)包含如下步驟:將所吸附之前驅物曝露於氧等電漿中,使該前驅物發生表面反應,繼而進行沖洗以將未反應之成分自基板去除。
[先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開2015-61075號公報
本發明之技術使藉由PEALD成膜時之生產性提昇。
本發明之一態樣係藉由PEALD於基板成膜特定膜之成膜方法,且具有:吸附步驟,其係使前驅物吸附於基板;及改質步驟,其係自改質氣體產生電漿,並且利用上述電漿所含之自由基將吸附於基板之前驅物改質;上述改質步驟具有對自上述改質氣體產生電漿之電漿源供給有效功率未達500W之高頻電力的電力供給步驟。
根據本發明,可使藉由PEALD成膜時之生產性提昇。
1:電漿處理裝置
1a:電漿處理裝置
10:處理容器
10a:氣體導入孔
10b:搬入搬出口
10c:閘閥
11:載置台
12:靜電吸盤
12a:載置部
12b:基體部
13:靜電吸盤載置板
14a:冷媒流路
14b:冷媒入口配管
14c:冷媒出口配管
14d:加熱器
14e:氣體流路
15:支持構件
16:聚焦環
20:開關
21:直流電源
22:加熱器電源
23a:第1高頻電源
23b:第2高頻電源
24a:第1整合器
24b:第2整合器
30:簇射頭
31:電極板
31a:氣體噴出孔
32:電極支持體
32a:氣體擴散室
32b:氣體流通孔
32c:氣體導入口
33:絕緣性遮蔽構件
40:氣源群
41:流量控制機器群
42:閥群
43:氣體供給管
44:流量控制機器群
45:閥群
46:氣體供給管
50:沈積物遮罩
51:沈積物遮罩
52:排氣口
53:排氣裝置
54:排氣通路
54a:排氣板
100:控制部
P1:部分
P2:部分
P3:部分
P4:部分
S:處理區域
W:晶圓
圖1係模式性地表示作為第1實施形態之成膜裝置之電漿處理裝置之構成之概略的縱剖視圖。
圖2係用以說明圖1之電漿處理裝置中之晶圓W之處理的流程圖。
圖3係對本發明人等所進行之試驗中之試件之貼附位置進行說明之圖。
圖4係表示確認試驗1之結果之圖。
圖5係表示確認試驗2之結果之圖。
首先,對專利文獻1中記載之先前之成膜方法進行說明。
於半導體器件之製造步驟中,對半導體晶圓等被處理基板(以下稱作「基板」)進行成膜處理等處理。作為成膜方法,例如有ALD(atomic layer deposition,原子層沈積法),於成膜裝置中藉由反覆進行特定循環而使原子層逐層沈積,於基板上形成所需之膜。
於專利文獻1之藉由PEALD於基板上生成氧化膜之方法中,如上所述反覆進行包括以下之步驟(i)及步驟(ii)之循環。上述步驟(i)係為了使前驅物吸附於基板而將上述前驅物供給至反應空間,繼而進行沖洗以將未被吸附之前驅物自基板去除。上述步驟(ii)係使所吸附之前驅物曝露於電漿中,使該前驅物發生表面反應,繼而進行沖洗以將未反應之成分自基板去除。
此外,即便於成膜時對基板周邊過量供給使前驅物發生表面反應之電漿所含之自由基(氧自由基等),對成膜亦無不良影響。超過特定量之自由基僅無助於由前驅物構成之吸附層之改質(反應)。因此,成膜時可藉由以基板表面整體之前驅物與自由基進行反應而改質之方式,對該基板之周邊供給充分量之自由基來確保膜厚之均一性等成膜之穩定性。
無助於基板表面上之改質之自由基到達收容基板之處理容器之內壁等與基板不同之部位。其結果,若於到達之部分存在前驅物等,則與該前驅物進行反應而生成多餘之反應產物等(以下稱作「沈積物」)。可藉由使用電漿等之乾洗將生成之沈積物去除。但,氧(O)自由基等自由基壽命較長,存在不與基板反應之自由基於不易藉由乾洗去除之部位(例如,距基 板數10cm~數m之較處理容器更靠排氣方向下游側之部分)生成沈積物之情況。
將沈積物去除之方法包括使用三氟化氮(NF3)氣體等之乾洗或使用遠距電漿之清洗。但,將較處理容器更靠排氣方向下游側之部分等遠離產生電漿之區域之部位中生成之沈積物去除需要長時間。又,亦存在於該等清洗於技術上較為困難之情形時,採用將附著有沈積物之部分卸除後利用藥液等進行洗淨之方法之情況。但,該方法亦需要長時間以將沈積物去除。
又,除如上述將沈積物去除之方法以外,亦有僅控制溫度,抑制沈積物附著之方法。例如,通常沈積物容易附著於低溫部,因此存在將抑制沈積物附著之部分設為溫度高於成膜對象之基板的方法。例如,若將基板設為20℃,將裝置內壁設為60℃,則可減少附著於裝置內壁之沈積物之量。但,ALD之成膜係基板之溫度越高則越進行反應。因此,於藉由ALD進行成膜時,難以將防止沈積物附著之部分設為溫度高於成膜對象之基板之情形較多。
以下,一面參照圖式,一面對本實施形態之成膜裝置及成膜方法進行說明,上述本實施形態之成膜裝置及成膜方法係用以減少於藉由PEALD進行成膜時因無助於基板表面上之反應之自由基造成之反應產物附著(生成)於不易藉由乾洗去除之部位之量。再者,於本說明書及圖式中,對實質上具有相同功能構成之要素,藉由標註相同符號而省略重複說明。
<第1實施形態>
圖1係模式性地表示作為第1實施形態之成膜裝置之電漿處理裝置之構成之概略的縱剖視圖。再者,於本實施形態中,電漿處理裝置1係以具有成膜功能及蝕刻功能之兩者之電容耦合型電漿處理裝置為例進行說明。又,電漿處理裝置1係設為使用O自由基成膜SiO2膜者。
如圖1所示,電漿處理裝置1具有大致圓筒形狀之處理容器10。
處理容器10於內部產生電漿,且氣密地收容作為基板之半導體晶圓(以下稱作「晶圓」)W。於本實施形態中,處理容器10係用以對直徑300mm之晶圓W進行處理者。處理容器10包含例如鋁,且其內壁面經實施陽極氧化處理。該處理容器10安全接地。
於處理容器10內,收容有載置晶圓W之載置台11。
載置台11具有靜電吸盤12及靜電吸盤載置板13。靜電吸盤12於上方具有載置部12a,且於下方具有基體部12b。靜電吸盤載置板13設置於靜電吸盤12之基體部12b之下方。又,基體部12b及靜電吸盤載置板13包含導電性材料、例如鋁(Al)等金屬,作為下部電極發揮功能。
載置部12a具有於一對絕緣層之間設置有電極之構造。於上述電極,經由開關20連接有直流電源21。而且,利用藉由自直流電源21對上述電極施加直流電壓而產生之靜電力,將晶圓W吸附於載置部12a之載置面。
又,於基體部12b之內部,形成有冷媒流路14a。自設置於處理容器10之外部之冷卻器單元(未圖示)經由冷媒入口配管14b將冷媒供給至冷媒流路14a。供給至冷媒流路14a之冷媒經由冷媒出口配管14c返回至冷卻器單元。如此,藉由使冷媒、例如冷卻水等於冷媒流路14a中循環,可將載置台11及載置於載置台11之晶圓W冷卻至特定溫度。
又,於基體部12b之冷媒流路14a之上方,設置有作為加熱元件之加熱器14d。加熱器14d係與加熱器電源22連接,藉由利用該加熱器電源22施加電壓,可使載置台11及載置於載置台11之晶圓W升溫至特定溫度。再者,加熱器14d亦可設置於載置部12a。
又,於載置台11,設置有用以將氦氣等冷熱傳遞用氣體(背側氣體)自氣體供給源(未圖示)供給至晶圓W之背面之氣體流路14e。藉由該冷熱傳遞用氣體,可將利用靜電吸盤12吸附保持於載置台11之載置面之晶圓W控制為特定溫度。
以上述方式構成之載置台11固定於大致圓筒形狀之支持構件15,上述支持構件15設置於處理容器10之底部。支持構件15包含例如陶瓷等絕緣體。
亦可於靜電吸盤12之基體部12b之周緣部上,以包圍載置部12a之側方之方式設置以圓環狀形成之聚焦環16。聚焦環16以與靜電吸盤12同軸之方式設置。該聚焦環16係為了提昇電漿處理之均一性而設置。再者,聚 焦環16可包含根據蝕刻處理等電漿處理適當選擇之材料,例如可包含矽或石英。
於載置台11之上方,以與載置台11對向之方式設置有作為電漿源之簇射頭30。簇射頭30具有:電極板31,其具有作為上部電極之功能,以與載置台11上之晶圓W對向之方式配置;及電極支持體32,其設置於電極板31之上方。再者,簇射頭30介隔絕緣性遮蔽構件33支持於處理容器10之上部。
電極板31與靜電吸盤載置板13作為一對電極(上部電極及下部電極)發揮功能。於電極板31形成有複數個氣體噴出孔31a。氣體噴出孔31a係用以對處理容器10內位於載置台11之上方之區域即處理區域S供給處理氣體者。再者,電極板31包含例如矽(Si)。
電極支持體32係將電極板31裝卸自如地支持者,且包含例如表面經陽極氧化處理之鋁等導電性材料。於電極支持體32之內部,形成有氣體擴散室32a。自該氣體擴散室32a形成有與氣體噴出孔31a連通之複數個氣體流通孔32b。又,於電極支持體32,經由流量控制機器群41、閥群42、氣體供給管43、氣體導入口32c而連接有氣源群40,以對氣體擴散室32a供給處理氣體。
氣源群40具有電漿處理等所需之複數種氣體供給源。於電漿處理裝置1中,來自選自氣源群40中之一個以上之氣體供給源之處理氣體經由流 量控制機器群41、閥群42、氣體供給管43、氣體導入口32c供給至氣體擴散室32a。而且,供給至氣體擴散室32a之處理氣體經由氣體流通孔32b、氣體噴出孔31a以簇射狀分散供給至處理區域S內。
為了不經由簇射頭30地對該處理容器10內之處理區域S供給處理氣體,而於處理容器10之側壁形成有氣體導入孔10a。氣體導入孔10a之數量可為1個,亦可為兩個以上。於氣體導入孔10a,經由流量控制機器群44、閥群45、氣體供給管46而連接有氣源群40。
再者,於處理容器10之側壁進而形成晶圓W之搬入搬出口10b,該搬入搬出口10b可藉由閘閥10c打開及關閉。
又,於處理容器10之側壁,沿其內周面裝卸自如地設置有沈積物遮罩(以下稱作「遮罩」)50。遮罩50係防止成膜時之沈積物或蝕刻副產物附著於處理容器10之內壁者,例如藉由於鋁材被覆Y2O3等陶瓷而構成。又,於與遮罩50對向之面且支持構件15之外周面,裝卸自如地設置有與遮罩50相同之沈積物遮罩(以下稱作「遮罩」)51。
於處理容器10之底部,形成有用以將該處理容器內排氣之排氣口52。於排氣口52連接有例如真空泵等排氣裝置53,且構成為可利用該排氣裝置53將處理容器10內減壓。
進而,於處理容器10內具有將上述處理區域S與排氣口52連接之排氣通路54。排氣通路54由包含遮罩50之內周面之處理容器10之側壁之內周 面及包含遮罩51之外周面之支持構件15之外周面劃分形成。處理區域S內之氣體經由排氣通路54及排氣口52排出至處理容器10外。
於排氣通路54之排氣口52側之端部即排氣方向下游側之端部,以將該排氣通路54阻塞之方式設置有平板狀之排氣板54a。但,因於排氣板54a設置有貫通孔,故經由排氣通路54及排氣口52之處理容器10內之排氣不受排氣板54a之阻礙。排氣板54a例如藉由於鋁材被覆Y2O3等陶瓷而構成。
進而,於電漿處理裝置1,分別經由第1整合器24a、第2整合器24b連接有第1高頻電源23a、第2高頻電源23b。
第1高頻電源23a於下述控制部100之控制下產生有效功率未達500W之電漿產生用之高頻電力,供給至簇射頭30。本實施形態之第1高頻電源23a將電力大小為50W以上且未達500W之連續振盪之高頻電力供給至簇射頭30之電極支持體32。來自第1高頻電源23a之高頻電力之頻率例如為27MHz~100MHz。第1整合器24a具有用以使第1高頻電源23a之輸出阻抗與負載側(電極支持體32側)之輸入阻抗整合之電路。
第2高頻電源23b產生用以將離子吸入至晶圓W之高頻電力(高頻偏壓電力),並將該高頻偏壓電力供給至靜電吸盤載置板13。高頻偏壓電力之頻率係400kHz~13.56MHz之範圍內之頻率,於一例中為3MHz。第2整合器24b具有用以使第2高頻電源23b之輸出阻抗與負載側(靜電吸盤載置板 13側)之輸入阻抗整合之電路。
於以上之電漿處理裝置1,設置有控制部100。控制部100例如為電腦,且具有程式儲存部(未圖示)。於程式儲存部,儲存有控制電漿處理裝置1中之晶圓W之處理之程式。又,於程式儲存部,儲存有用以利用處理器控制各種處理之控制程式或用以根據處理條件使電漿處理裝置1之各構成部執行處理之程式、即處理配方。再者,上述程式係記錄於電腦可讀取之記憶媒體中者,亦可為自該記憶媒體安裝於控制部100者。
其次,使用圖2對以上述方式構成之電漿處理裝置1中之晶圓W之處理進行說明。
(步驟S1)
首先,如圖2所示,將晶圓W搬送至處理容器10內。具體而言,將處理容器10內排氣,於成為特定壓力之真空氣氛之狀態下將閘閥10c打開,自與處理容器10相鄰之真空氣氛之搬送室,利用搬送機構將晶圓W搬送至載置台11上。進行晶圓W向載置台11之交接、及搬送機構自處理容器10之退出後,將閘閥10c封閉。
(步驟S2)
繼而,於晶圓W形成包含Si之反應前驅物。具體而言,自選自氣源群40之複數個氣源中之氣源,經由氣體導入孔10a,將Si原料氣體供給至處理容器10內。藉此,於晶圓W形成由包含Si之反應前驅物構成之吸附層。 再者,此時,藉由使排氣裝置53動作,而將處理容器10內之壓力調整為特定壓力。Si原料氣體例如為胺基矽烷系氣體。
(步驟S3)
其次,對處理容器10內之空間進行沖洗。具體而言,自處理容器10內排出以氣相狀態存在之Si原料氣體。排氣時,亦可對處理容器10供給Ar等稀有氣體或氮氣等惰性氣體作為沖洗氣體。再者,該步驟S3亦可省略。
(步驟S4)
其次,藉由電漿處理於晶圓W上形成SiO2。具體而言,自選自氣源群40之複數個氣源中之氣源,經由簇射頭30將含O氣體供給至處理容器10內。又,自第1高頻電源23a供給電力大小為50W以上且未達500W之連續振盪之高頻電力。進而,藉由使排氣裝置53動作,而將處理容器10內之空間之壓力調整為特定壓力。藉此,自含O氣體產生電漿。繼而,所產生之電漿中含有之O自由基將晶圓W上形成之Si前驅物改質。具體而言,上述前驅物包含Si與氫之鍵,利用O自由基將上述前驅物之氫取代為氧,於晶圓W上形成SiO2。含O氣體例如為二氧化碳(CO2)氣體或氧氣(O2)氣體。
利用O自由基進行之晶圓W(前驅物)之改質係進行特定時間以上。上述特定時間根據高頻電力之大小預先確定。
(步驟S5)
繼而,將處理容器10內之空間進行沖洗。具體而言,自處理容器10 內排出含O氣體。排氣時,亦可對處理容器10供給Ar等稀有氣體或氮氣等惰性氣體作為沖洗氣體。再者,該步驟S5亦可省略。
藉由將上述步驟S2~S5之循環進行一次以上,而於晶圓W之表面積層SiO2之原子層,形成SiO2膜。再者,上述循環之執行次數根據SiO2膜所需之膜厚而設定。
於本實施形態中,於步驟S4中,供給電力大小為50W以上且未達500W之連續振盪之高頻電力作為電漿產生用之高頻電力。本發明人等已確認,只要於步驟S4中將連續振盪之高頻電力大小設為50W以上且未達500W,便可無損SiO2之成膜性地減少沈積物於不易藉由乾洗去除之部位之附著量。再者,「不易藉由乾洗去除之部位」係指較排氣板54a更靠排氣方向下游側之部分等。又,上述「成膜性」係指特定時間內形成之膜厚及其面內均一性。
(步驟S6)
上述步驟S2~S5之循環之執行結束後,判定是否滿足該循環之停止條件,具體而言,例如判定循環是否已進行特定次數。
於不滿足上述停止條件之情形時(否之情形時),再次執行步驟S2~S5之循環。
(步驟S7)
於滿足上述停止條件之情形時(是之情形時)、即成膜已結束之情形 時,於相同處理容器10內進行以所獲得之SiO2膜為遮罩之蝕刻對象層之蝕刻等所需之處理。再者,該步驟S7亦可省略。
於本例中,雖於處理容器10內於成膜後繼續進行蝕刻,但亦可於蝕刻後進行成膜,亦可於蝕刻與蝕刻之間進行成膜。
(步驟S8)
此後,以與向處理容器10中搬入時相反之順序,將晶圓W自處理容器10搬出,電漿處理裝置1中之處理結束。
又,於對特定片數之晶圓W進行如上所述之處理後,進行電漿處理裝置1之清洗。具體而言,自選自氣源群40之複數個氣源中之氣源,將含F氣體供給至處理容器10內。又,自第1高頻電源23a供給高頻電力。進而,藉由使排氣裝置53動作,而將處理容器10內之空間之壓力設定為特定壓力。藉此,自含F素氣體產生電漿。所產生之電漿中之F自由基將處理容器10內附著之因O自由基所致之沈積物分解去除。又,於清洗時,即便於較處理容器10更靠排氣方向下游側之部分附著有沈積物,該沈積物若為少量,則亦利用上述F自由基分解去除。沈積物分解後利用排氣裝置53排出。再者,上述含F氣體例如為CF4氣體、SF6氣體、NF3氣體等。清洗氣體包含該等含F氣體,且視需要添加O2氣體等含氧氣體或Ar氣體。又,清洗時之處理容器10內之壓力為百~數百mTorr。
以上,根據本實施形態,於產生含O氣體之電漿,並利用該電漿中所含之O自由基將晶圓W之表面改質,形成SiO2時,自第1高頻電源23a供給 電力大小為50W以上且未達500W之連續振盪之高頻電力。因此,可減少O自由基與由前驅物形成之吸附層反應而生成之沈積物之附著量、具體而言對於較排氣板54a更靠排氣方向下游側之部分之附著量。假使雖出現附著但僅為微量,則可使用簡易之乾洗於短時間內將所附著之沈積物去除。由此,可提昇生產性。
再者,作為藉由將自第1高頻電源23a供給之連續振盪之高頻電力大小設為50W以上且未達500W來減少沈積物之附著量之機制,考量如下情況。
若將連續振盪之高頻電力大小設為50W以上且未達500W,則處理區域S中產生之O自由基之量係足以令晶圓W之整面之反應前驅物進行反應之量,但例如少於1000W以上之情形。因此,無助於晶圓W之表面之處理且於處理區域S或排氣通路54內未去活化之O自由基變少。其結果,認為因O自由基所致之沈積物之附著量、尤其沈積物對較排氣板54a更靠排氣方向下游側之部分等多餘之部分之生成量減少。
又,根據本實施形態之方法,可於處理容器10內整體或較排氣板54a更靠排氣方向下游側之部分整體之類廣闊區域減少沈積物之附著量。
(確認試驗1)
本發明人等對於如圖3所示之部分P1~P4貼附試件,將上述步驟S2~S5之循環反覆進行500次或600次時,對於附著於試件之沈積物之量進行試驗。部分P1係指處理容器10之側壁與遮罩50之間之部分且較載置台 11上之晶圓W更靠上方之部分。又,部分P2係指,部分P1係指,處理容器10之側壁與遮罩50之間之部分且高度與載置台11上之晶圓W大致相同之部分。部分P3係指處理容器10之側壁與遮罩50之間之部分且較載置台11上之晶圓W更靠下方之部分。部分P4係較排氣板54a更靠下游側之部分且最接近排氣板54a之歧管之最下方之部分。
本發明人等於上述確認試驗中使O自由基之電漿產生時之連續振盪之高周高頻電力大小不同,測定沈積物之量。
圖4係表示確認試驗1之結果且於處理條件1-1~1-4下產生O自由基之電漿時之沈積物之量的圖。
處理條件1-1、1-2、1-3、1-4下之上述連續振盪之高頻電力大小分別為1000W、400W、250W、150W。又,於處理條件1-1~103下,將上述步驟S2~S5之循環反覆進行500次,於處理條件1-4下反覆進行600次。
於該確認試驗1中,如圖4所示,於處理條件1-1時、即上述連續振盪之高頻電力大小為1000W時,於上述部分P1~P4之任一者中,沈積物之量均為80nm以上而較多。相對於此,已確認於處理條件1-2~1-4時、即上述連續振盪之高頻電力大小為400W、250W、150W時,與1000W時相比,於上述部分P1~P4之任一者中,沈積物之量均減少。又,已確認若降低上述連續振盪之高頻電力,則與之相應地沈積物之量減少。
再者,上述確認試驗1時獲得之SiO2之面內均一性係若上述連續振盪之高頻電力大小為50W以上則幾乎不存在因電力大小導致差異。
又,與上述確認試驗1同樣地使用連續振盪之高頻電力對成膜之SiO2膜進行電漿蝕刻。蝕刻條件如下所述。
處理腔室內壓力:40mTorr
電漿形成用高頻電力:300W
偏壓用高頻電力:100W
氣體流量:CF4/Ar=500/40sccm
蝕刻時間:15秒
根據該結果,即便改變上述連續振盪之高頻電力大小,蝕刻量及其面內均一性中亦無差異。具體而言,於上述連續振盪之高頻電力大小為400W、250W之情形時,蝕刻量之平均值分別為22.5nm、22.6nm,蝕刻量之面內不均係兩者均為自平均值±3.5%。即,可知即便作為沈積物對策,改變上述連續振盪之高頻電力大小,實用上亦無問題。
<第2實施形態>
第2實施形態之電漿處理裝置1係僅電漿產生用之高頻電源與第1實施形態之電漿處理裝置1不同。
於本實施形態中,供給有效功率未達500W之電漿產生用之高頻電力之第1高頻電源23a亦可供給成為接通位準之期間與成為斷開位準之期間週期性連續之脈衝狀電力。再者,脈衝狀電力中之斷開位準亦可不為零。即,第1高頻電源23a亦可產生成為高位準之期間與成為低位準之期間週期 性連續之脈衝狀電力。
於本實施形態中,第1高頻電源23a於進行脈衝調變之情形時,以占空比為75%以下且頻率為5kHz以上之脈衝波狀,供給有效功率未達500W之高頻電力。更具體而言,於本實施形態中,第1高頻電源23a以占空比未達50%且頻率為5kHz以上20kHz以下之脈衝波狀,供給電力大小為150W以上300W以下之高頻電力。再者,進行脈衝調變之情形時之有效功率係指高頻電力之大小乘以占空比所得者。例如,於以脈衝波狀供給之高頻電力之大小為1000W且占空比為30%之情形時,有效功率為300W。
於本實施形態中,於步驟S4中利用電漿中所含之O自由基將晶圓W之表面改質,形成SiO2時,以占空比為75%以下且頻率為5kHz以上之脈衝波狀,供給有效功率未達500W之高頻電力。本發明人等已確認可藉由以脈衝波狀供給高頻電力,而無損SiO2之成膜性地減少沈積物朝向不易藉由乾洗去除之部位之附著量。又,本發明人等已確認,若於本實施形態中使用大小與第1實施形態中使用之高頻電力之大小相同之高頻電力,則可較第1實施形態更減少沈積物朝向不易藉由乾洗去除之部位之附著量。
再者,作為減少上述沈積物朝向不易藉由乾洗去除之部位之附著量之機制,考慮如下。
於供給占空比未達75%且頻率為5kHz以上之脈衝波之有效功率未達500W之高頻電力之情形時,處理區域S中產生之O自由基之量係足夠晶圓W整面之反應前驅物進行反應之量。但,上述自由基之量與供給同等功 率之連續振盪之高頻電力之情形相比減少。因此,無助於晶圓W之表面之處理且於處理區域S或排氣通路54內未去活化之O自由基進而變少。其結果,認為因O自由基所致之沈積物之附著量、尤其朝向較排氣板54a更靠排氣方向下游側之部分之類不易藉由乾洗去除之部位之附著量減少。
(確認試驗2)
本發明人等於對如圖3所示之部分P1~P4貼附試件,將步驟S2~S5之循環反覆進行500次時,對於附著於試件之沈積物之量進行試驗。
本發明人等於上述確認試驗中,將處理容器10內之壓力設為200mTorr,使步驟S4中供給之高頻電力之脈衝波之頻率不同,測定沈積物之量。
圖5係表示確認試驗2之結果且於處理條件2-1~處理條件2-5下產生O自由基之電漿時之沈積物之量的圖。
處理條件2-1、2-2、2-3、2-4、2-5下之高頻電力之脈衝波之頻率分別為5kHz、10kHz、20kHz、30kHz、50kHz。又,於處理條件2-1~2-5下,高頻電力大小、脈衝波之占空比、步驟S4之時間(步驟時間)共通,分別為200W、50%、4秒。進而,於處理條件2-1~2-5下,CO2氣體之流量及Ar氣體之流量亦共通,分別為290sccm、40sccm。
於該確認試驗2中,如圖5所示,於處理條件2-1時、即上述脈衝波之頻率為5kHz時,於部分P1~P4中之任一者中,沈積物之量均未達80nm而為65nm以下。即,若以脈衝波狀供給200W之大小之高頻電力,則與 圖4之處理條件1-1時、即供給1000W之連續振盪之高頻電力時相比,於上述部分P1~P4中之任一者中,沈積物之量均減少約20%以上。處理條件2-2~2-5下亦情況相同,最大減少99%以上。
再者,確認試驗2時獲得之SiO2之膜厚及其面內均一性係於處理條件2-1~2-5中之任一條件下均與使用600W之連續振盪之高頻電力產生電漿,成膜SiO2膜之情形幾乎無差異。具體而言,例如於處理條件2-3時、及使高頻電力大小改變而設為300W之情形時,SiO2膜之膜厚之平均值為4.0nm,膜厚之面內均一性之平均值為±2.7%。相對於此,於僅使電漿產生用之高頻電力與處理條件2-3不同而使用600W之連續振盪之高頻電力,成膜SiO2膜之情形時,SiO2膜之膜厚之平均值為4.3nm,膜厚之面內均一性之平均值為±2.6%。即,即便為用以產生電漿而以脈衝波狀供給低電力之高頻電力,SiO2膜之均一性中亦無較大影響,又,膜厚與供給連續振盪之高頻電力之情形相比略微減少,但該膜厚可藉由循環數量調整。
再者,於僅使步驟時間與處理條件2-2不同而設為2秒,成膜SiO2膜之情形時,膜厚之平均值為3.57nm,膜厚之面內均一性之平均值為±4.4%。
又,對與上述確認試驗2同樣地使用脈衝波狀之高頻電力而成膜之SiO2膜進行電漿蝕刻。蝕刻條件如下所述。
處理腔室內壓力:40mTorr
電漿形成用高頻電力:300W
偏壓用高頻電力:100W
氣體流量:CF4/Ar=500/40sccm
蝕刻時間:15秒
根據該結果,即便改變以脈衝波狀供給之高頻電力之脈衝頻率,蝕刻量及其面內均一性中亦無差異。例如,於使高頻電力之大小、占空比及步驟時間於處理條件2-1等下共通且脈衝波之頻率為10kHz(處理條件2-2)之情形時及20kHz(處理條件2-3)之情形時,蝕刻量之平均值係兩者均為22.3nm。又,蝕刻量之面內不均於10kHz(處理條件2-2)之情形時為自平均值±3.2%,於20kHz(處理條件2-3)之情形時為自平均值±3.6%。即,可知即便作為沈積物對策改變上述脈衝頻率之大小,實用上亦無問題。
又,根據上述蝕刻結果,即便改變步驟時間,蝕刻量及其面內均一性中亦無差異。例如,於使脈衝波之頻率、高頻電力大小、占空比及步驟時間與處理條件2-2相同而進行成膜之情形時(步驟時間為4秒),蝕刻量之平均值為22.3nm,蝕刻量之面內不均為自平均值±3.2%。即便對於如此進行成膜之情形,僅使步驟時間改變而設為8秒進行成膜,其蝕刻量之平均值及其面內不均亦不變,又,即便僅使步驟時間改變而設為2秒進行成膜,上述平均值等亦幾乎不變。再者,將步驟時間設為2秒之情形時之蝕刻量之平均值為22.0nm,蝕刻量之面內不均為自平均值±4.0%。
於以上之例中,於電漿處理裝置1中進行成膜及該成膜後之蝕刻,但亦可於成膜前進行蝕刻,亦可於該蝕刻中進行成膜。又,於電漿處理裝置1中,亦可於成膜之前後之兩者進行蝕刻,亦可僅進行成膜而不進行蝕 刻。
於以上之例中,電漿處理裝置1於成膜或蝕刻中使用電容耦合型電漿。但,亦可於成膜或蝕刻中使用感應耦合型電漿,亦可使用微波之類表面波電漿。
又,於以上之例中,使用O自由基進行SiO2膜之成膜,但亦可用於利用氮自由基形成之SiN膜等使用其他自由基進行成膜之情形。
應該認為本次揭示之實施形態於全部方面均為例示而非限制性者。上述實施形態亦可於不脫離隨附申請專利範圍及其主旨之情況下以各種形態進行省略、置換、變更。
再者,如下所述之構成亦屬於本發明之技術範圍。
(1)一種成膜方法,其係藉由PEALD而於基板成膜特定膜者,且具有:吸附步驟,其係使前驅物吸附於基板;及改質步驟,其係自改質氣體產生電漿,並且利用上述電漿中所含之自由基將吸附於基板之前驅物改質;上述改質步驟具有對自上述改質氣體產生電漿之電漿源供給有效功率未達500W之高頻電力的電力供給步驟。
(2)如上述(1)中記載之成膜方法,其中上述電力供給步驟係供給50 W以上且未達500W之連續振盪之高頻電力。
(3)如上述(1)中記載之成膜方法,其中上述電力供給步驟係以占空比為75%以下且頻率為5kHz以上之脈衝波狀供給高頻電力。
(4)如上述(1)至(3)中任一項中記載之成膜方法,其中上述改質步驟係進行特定時間以上。
(5)如上述(1)至(4)中任一項中記載之成膜方法,其具有將利用上述自由基於上述基板以外之部位生成之反應產物去除的清洗步驟。
(6)一種成膜裝置,其係藉由PEALD而於基板成膜特定膜者,且具有:處理容器,其於內部產生電漿,且氣密地收容基板;電漿源,其於上述處理容器內,自將形成於基板上之前驅物改質之改質氣體產生電漿;高頻電源,其對上述電漿源供給電漿產生用之高頻電力;及控制部,其控制上述高頻電源,對上述電漿源供給有效功率未達500W之高頻電力作為電漿產生用之電力。
1:電漿處理裝置
1a:電漿處理裝置
10:處理容器
10a:氣體導入孔
10b:搬入搬出口
10c:閘閥
11:載置台
12:靜電吸盤
12a:載置部
12b:基體部
13:靜電吸盤載置板
14a:冷媒流路
14b:冷媒入口配管
14c:冷媒出口配管
14d:加熱器
14e:氣體流路
15:支持構件
16:聚焦環
20:開關
21:直流電源
22:加熱器電源
23a:第1高頻電源
23b:第2高頻電源
24a:第1整合器
24b:第2整合器
30:簇射頭
31:電極板
31a:氣體噴出孔
32:電極支持體
32a:氣體擴散室
32b:氣體流通孔
32c:氣體導入口
33:絕緣性遮蔽構件
40:氣源群
41:流量控制機器群
42:閥群
43:氣體供給管
44:流量控制機器群
45:閥群
46:氣體供給管
50:沈積物遮罩
51:沈積物遮罩
52:排氣口
53:排氣裝置
54:排氣通路
54a:排氣板
100:控制部
S:處理區域
W:晶圓

Claims (5)

  1. 一種基板之處理方法,其包含:將基板配置於電容耦合型之電漿處理裝置內之載置台之步驟,藉由PEALD於上述基板進行特定膜之成膜之步驟,及對上述基板進行之蝕刻步驟,且上述成膜之步驟具有:吸附步驟,其係使前驅物吸附於上述基板;及改質步驟,其係自改質氣體產生電漿,並且利用上述電漿中所含之自由基將吸附於上述基板之前驅物改質;於電容耦合型之電漿處理裝置內進行上述成膜之步驟之後,將偏壓電力供給至上述載置台,而進行上述蝕刻步驟,於上述改質步驟中,供給有效功率為50W以上且未達500W之高頻電力,用以自上述改質氣體產生電漿。
  2. 如請求項1之基板之處理方法,其中於上述改質步驟中,供給連續振盪之高頻電力。
  3. 如請求項1之基板之處理方法,其中於上述改質步驟中,以占空比為75%以下且頻率為5kHz以上之脈衝波狀供給高頻電力。
  4. 如請求項1之基板之處理方法,其具有將利用上述自由基於上述基板以外之部位生成之反應產物去除的清洗步驟。
  5. 一種電漿處理裝置,其係電容耦合型之電漿處理裝置,且具有:處理容器;高頻電源,其供給電漿產生用之高頻電力;載置台;將偏壓電力供給至上述載置台之電源;及控制部;上述控制部係以執行將基板配置於上述處理容器內之上述載置台之步驟、成膜之步驟、及蝕刻步驟之方式控制,上述成膜之步驟係藉由PEALD於上述基板進行特定膜之成膜之步驟,且具有:吸附步驟,其係使前驅物吸附於上述基板;及改質步驟,其係自改質氣體產生電漿,並且利用上述電漿中所含之自由基將吸附於上述基板之前驅物改質;上述蝕刻步驟係於上述成膜之步驟之後,將上述偏壓電力自上述電源供給至上述載置台,而對上述基板進行蝕刻,於上述改質步驟中,對上述電漿源供給有效功率為50W以上且未達500W之高頻電力。
TW108125978A 2018-07-27 2019-07-23 基板之處理方法及電漿處理裝置 TWI819037B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-141402 2018-07-27
JP2018141402A JP7079686B2 (ja) 2018-07-27 2018-07-27 成膜方法及び成膜装置

Publications (2)

Publication Number Publication Date
TW202012692A TW202012692A (zh) 2020-04-01
TWI819037B true TWI819037B (zh) 2023-10-21

Family

ID=69181595

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108125978A TWI819037B (zh) 2018-07-27 2019-07-23 基板之處理方法及電漿處理裝置

Country Status (5)

Country Link
US (1) US20210140044A1 (zh)
JP (1) JP7079686B2 (zh)
KR (1) KR20210035769A (zh)
TW (1) TWI819037B (zh)
WO (1) WO2020022318A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10555412B2 (en) 2018-05-10 2020-02-04 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
CN113169026B (zh) 2019-01-22 2024-04-26 应用材料公司 用于控制脉冲电压波形的反馈回路
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
JP7413099B2 (ja) 2020-03-16 2024-01-15 東京エレクトロン株式会社 成膜方法および成膜装置
US11848176B2 (en) 2020-07-31 2023-12-19 Applied Materials, Inc. Plasma processing using pulsed-voltage and radio-frequency power
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11984306B2 (en) 2021-06-09 2024-05-14 Applied Materials, Inc. Plasma chamber and chamber component cleaning methods
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11776788B2 (en) * 2021-06-28 2023-10-03 Applied Materials, Inc. Pulsed voltage boost for substrate processing
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
JP2023132258A (ja) * 2022-03-10 2023-09-22 東京エレクトロン株式会社 埋込方法及び基板処理装置
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201819675A (zh) * 2016-10-06 2018-06-01 南韓商圓益Ips股份有限公司 複合膜製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085703A1 (ja) 2003-03-25 2004-10-07 Tokyo Electron Limited 処理装置及び処理方法
JP4245012B2 (ja) 2006-07-13 2009-03-25 東京エレクトロン株式会社 処理装置及びこのクリーニング方法
JP5514129B2 (ja) 2010-02-15 2014-06-04 東京エレクトロン株式会社 成膜方法、成膜装置、および成膜装置の使用方法
US9284642B2 (en) 2013-09-19 2016-03-15 Asm Ip Holding B.V. Method for forming oxide film by plasma-assisted processing
JP6562629B2 (ja) 2013-12-30 2019-08-21 ラム リサーチ コーポレーションLam Research Corporation パルスプラズマ暴露を伴うプラズマ原子層堆積
US10629435B2 (en) 2016-07-29 2020-04-21 Lam Research Corporation Doped ALD films for semiconductor patterning applications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201819675A (zh) * 2016-10-06 2018-06-01 南韓商圓益Ips股份有限公司 複合膜製造方法

Also Published As

Publication number Publication date
JP2020017698A (ja) 2020-01-30
TW202012692A (zh) 2020-04-01
KR20210035769A (ko) 2021-04-01
WO2020022318A1 (ja) 2020-01-30
US20210140044A1 (en) 2021-05-13
JP7079686B2 (ja) 2022-06-02

Similar Documents

Publication Publication Date Title
TWI819037B (zh) 基板之處理方法及電漿處理裝置
TWI809154B (zh) 成膜裝置及成膜方法
KR20100049704A (ko) 성막 장치
TW201546899A (zh) 電漿處理裝置之清潔方法
TWI518217B (zh) Etching method and etching device
TW201724162A (zh) 被處理體之處理方法
JP3946640B2 (ja) プラズマ処理装置およびプラズマ処理方法
JP6804280B2 (ja) プラズマ処理装置及びプラズマ処理方法
TWI756424B (zh) 電漿處理裝置之洗淨方法
WO2006120843A1 (ja) プラズマクリーニング方法、成膜方法およびプラズマ処理装置
TWI593012B (zh) Plasma processing method and plasma processing device
TWI828704B (zh) 電漿處理方法與用於電漿處理腔室的腔室部件及其製造方法
JP2006319042A (ja) プラズマクリーニング方法、成膜方法
KR20210049173A (ko) 에칭 방법
CN109075068B (zh) 蚀刻方法
JP5213741B2 (ja) 基板製造方法
JP2016058536A (ja) プラズマ処理装置及びクリーニング方法
WO2022264829A1 (ja) クリーニング方法及びプラズマ処理装置
JP3147868U (ja) 基板処理装置
JP7061981B2 (ja) プラズマエッチング装置およびプラズマエッチング方法
JP2010242180A (ja) 基板処理装置及び半導体装置の製造方法
JP3373466B2 (ja) プラズマ処理装置及びプラズマ処理方法
TW202234510A (zh) 基板處理方法及基板處理裝置
JP2023033720A (ja) 成膜方法および成膜装置
KR20230011032A (ko) 기판처리장치 클리닝방법 및 이를 포함하는 기판처리방법